1
|
Angelini S, Gallipoli A, Montecchio D, Angelini F, Gianico A, Sbicego M, Braguglia CM. The strategic role of a mild hydrothermal pretreatment in enhancing anaerobic degradation of commercial bio-based compostable plastics associated to food waste. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125332. [PMID: 40228474 DOI: 10.1016/j.jenvman.2025.125332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/26/2025] [Accepted: 04/10/2025] [Indexed: 04/16/2025]
Abstract
The expansion of Anaerobic Digestion (AD) technology to turn food waste (FW) into biogas will influence the management of the associated compostable bio-based plastics disposed of in the organic fraction of municipal waste collection. Waste processing aspects and bio-based plastic biodegradation profile in anaerobic conditions need research. The fate of some commercially available compostable items made of thermoplastic starch or PLA-based blends was investigated, by performing lab-scale disposal phase and thermophilic AD, with the integration of a mild hydrothermal pretreatment. For comprehensive understanding of bio-based plastics degradation, the biomethane production, structural (visual inspection, weight, dimension) and composition changes (solids, organics and carbohydrates content) were analyzed. Thermal pretreatment promoted thermoplastic starch-based product disintegration (40 ± 2 %) and the extraction of carbohydrates into the liquid eluate, with the potential to be transformed into high-value-added products through fermentative upgrading processes. A significant biodegradation of pretreated bio-based plastics up to 27.5 % and 40 %, respectively for thermoplastic starch- and polylactic acid (PLA)-based material, was observed. These preliminary results evidence the strategic role of the hydrothermal pretreatment in enhancing anaerobic degradation and the possibility to treat the bio-based plastics as FW co-substrate, avoiding the time and cost-consuming sorting phase in waste management plants.
Collapse
Affiliation(s)
- Stefania Angelini
- Water Research Institute, National Research Council (CNR-IRSA), Strada Provinciale 35d, Montelibretti, 9 - 00010, Rome, Italy.
| | - Agata Gallipoli
- Water Research Institute, National Research Council (CNR-IRSA), Strada Provinciale 35d, Montelibretti, 9 - 00010, Rome, Italy.
| | - Daniele Montecchio
- Water Research Institute, National Research Council (CNR-IRSA), Strada Provinciale 35d, Montelibretti, 9 - 00010, Rome, Italy.
| | - Francesca Angelini
- Water Research Institute, National Research Council (CNR-IRSA), Strada Provinciale 35d, Montelibretti, 9 - 00010, Rome, Italy.
| | - Andrea Gianico
- Water Research Institute, National Research Council (CNR-IRSA), Strada Provinciale 35d, Montelibretti, 9 - 00010, Rome, Italy.
| | - Michela Sbicego
- Water Research Institute, National Research Council (CNR-IRSA), Strada Provinciale 35d, Montelibretti, 9 - 00010, Rome, Italy.
| | - Camilla Maria Braguglia
- Water Research Institute, National Research Council (CNR-IRSA), Strada Provinciale 35d, Montelibretti, 9 - 00010, Rome, Italy.
| |
Collapse
|
2
|
Mussa S, Farhan M, Ahmad S, Zahra K, Kanwal A, Khan QF, Afzaal M, Wahid A, Sarker PK, El-Sheikh MA, Ali S. Exploring the utility of different bulking agents for speeding up the composting process of household kitchen waste. Sci Rep 2025; 15:2488. [PMID: 39833327 PMCID: PMC11747255 DOI: 10.1038/s41598-025-85433-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025] Open
Abstract
Household kitchen waste (HKW) is produced in large quantity and its management is difficult due to high moisture content and complex organic matter. Aerobic composting of HKW is an easy, efficient, cost-effective and eco-friendly method. This study is designed to achieve a zero-waste concept and to convert HKW. We optimized the type and size of three different bulking agents to speed up the composting process. The tested bulking agents were fallen leaves, sawdust and fly ash. The results showed a higher and longer thermophilic phase (55oC) for 11 days in C2. Higher moisture content (69%) and higher organic matter degradation (38.4%) were also observed in C2. The pH range in all compost treatments was 7-8.5, Electrical conductivity range was 1.8-3.55 mS/cm, C/N ratio range was 15.4-18.1, water holding capacity range was 3.25-4.3 g water/g dry sample, total potassium range was 1.52-1.61%, total phosphorous range was 0.83-1.14%. The highest germination index (119.1%) was also obtained in C2. The highest chili height (16.7 cm), greater number of leaves (20), greater shoot fresh weight (4.75 g) and root fresh weight (1.2 g) was obtained in the presence of C2. Similarly, greater water WHC (2.8 g water/g DW), higher porosity (55.49%) and higher aggregate stability (54.14%) of soil was also obtained by C2. This research effectively reduced the maturation time to 32 days and converted kitchen waste into compost (resource). This is a very practical idea for home composting and kitchen gardening to combat food security issues in developing countries.
Collapse
Affiliation(s)
- Sania Mussa
- Sustainable Development Study Center, Government College University Lahore, Lahore, Pakistan
| | - Muhammad Farhan
- Sustainable Development Study Center, Government College University Lahore, Lahore, Pakistan.
| | - Shoaib Ahmad
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Khadija Zahra
- Sustainable Development Study Center, Government College University Lahore, Lahore, Pakistan
| | - Amina Kanwal
- Department of Botany, Government College Women University Sialkot, Punjab, Pakistan
| | - Qaiser Farid Khan
- Department of Microbiology, Ikam ul Haq Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Muhammad Afzaal
- Sustainable Development Study Center, Government College University Lahore, Lahore, Pakistan
| | - Abdul Wahid
- Department of Environmental Science, Bahu din Zakaria University, Multan, Pakistan
| | - Pallab K Sarker
- Environmental Studies Department, University of California Santa Cruz, Santa Cruz, CA, USA.
| | - Mohamed A El-Sheikh
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
3
|
Rex P, Meenakshisundaram N, Barmavatu P. Sustainable valorisation of kitchen waste through greenhouse solar drying and microwave pyrolysis- technology readiness level for the production of biochar. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:381-395. [PMID: 39464812 PMCID: PMC11499482 DOI: 10.1007/s40201-024-00909-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 06/08/2024] [Indexed: 10/29/2024]
Abstract
This study proposes an integrated and sustainable approach for the effective conversion of kitchen waste into valuable products through a two-step process. The primary step involves the implementation of greenhouse solar drying to reduce the moisture content of kitchen waste. The secondary step implies microwave pyrolysis for effective degradation of kitchen waste to biooil, biogas and biochar. Biooil and biogas can be used as renewable fuel source. Biochar can be used as soil amendment. Selection of atmospheric conditions for biochar preparation is discussed, highlighting its crucial role in biochar characteristics. This article highlights, technology readiness level of biochar production from kitchen waste to assess the economic viability for the scalability of the process. In this entirety, the conversion of kitchen waste to valuable products through microwave pyrolysis has significant potential to address the challenges posed by high moisture content and heterogenous nature. With continued research and innovation, it is possible to develop a wide array of value-added products from kitchen waste, ultimately leading to a more eco-friendly and economic approach to waste management. Graphical Abstract
Collapse
Affiliation(s)
- Prathiba Rex
- Institute of Agricultural Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 602 105 India
| | - Nagaraj Meenakshisundaram
- Institute of Agricultural Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 602 105 India
| | - Praveen Barmavatu
- Department of Mechanical Engineering, Faculty of Engineering, Universidad Tecnológica Metropolitana, Av. José Pedro Alessandri 1242, Santiago, Chile
| |
Collapse
|
4
|
Chen P, Wang E, Zheng Y, Ran X, Ren Z, Guo J, Dong R. Synergistic effect of hydrothermal sludge and food waste in the anaerobic co-digestion process: microbial shift and dewaterability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:18723-18736. [PMID: 38349498 DOI: 10.1007/s11356-024-32282-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/27/2024] [Indexed: 03/09/2024]
Abstract
While thermal hydrolysis technology is commonly employed for sewage sludge treatment in extensive wastewater treatment facilities, persistent challenges remain, including issues such as ammonia-induced digestive inhibition and reduced productivity stemming from nutrient deficiency within the hydrothermal sludge. In this study, the effects of hydrothermal sludge-to-food waste mixing ratios and fermentation temperatures on anaerobic co-digestion were systematically investigated through a semi-continuous experiment lasting approximately 100 days. The results indicated that anaerobic co-digestion of hydrothermal sludge and food waste proceeded synergistically at any mixing ratio, and the synergistic effect is mainly attributed to the improvement of carbohydrate removal and digestive system stability. However, thermophilic digestion did not improve the anaerobic performance and methane yield. On the contrary, mesophilic digestion performed better in terms of organic matter removal, especially in the utilization of soluble carbohydrates, soluble proteins, and VFAs. Microbial community analysis revealed that the transition from mesophilic to thermophilic anaerobic co-digestion prompts changes in the methane-producing pathways. Specifically, the transition entails a gradual shift from pathways involving acetoclastic and hydrogenotrophic methanogenesis to a singular hydrogenotrophic methanogenesis pathway. This shift is driven by thermodynamic tendencies, as reflected in Gibbs free energy, as well as environmental factors like ammonia nitrogen and volatile fatty acids. Lastly, it is worth noting that the introduction of food waste did lead to a reduction in cake solids following dewatering. Nevertheless, it was observed that thermophilic digestion had a positive impact on dewatering performance.
Collapse
Affiliation(s)
- Penghui Chen
- College of Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Enzhen Wang
- College of Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Yonghui Zheng
- College of Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Xueling Ran
- College of Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Zhengran Ren
- Beijing Drainage Group Co. Ltd, Beijing, 100022, China
| | - Jianbin Guo
- College of Engineering, China Agricultural University, Beijing, 100083, People's Republic of China.
| | - Renjie Dong
- College of Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
- Yantai Institute, China Agricultural University, Yantai, 264032, Shandong, People's Republic of China
| |
Collapse
|
5
|
Gallipoli A, Angelini F, Angelini S, Braguglia CM, Montecchio D, Tonanzi B, Gianico A. Thermally enhanced solid-liquid separation process in food waste biorefinery: modelling the anaerobic digestion of solid residues. Front Bioeng Biotechnol 2024; 12:1343396. [PMID: 38371422 PMCID: PMC10869513 DOI: 10.3389/fbioe.2024.1343396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
The biochemical valorization potential of food waste (FW) could be exploited by extracting decreasing added-value bio-based products and converting the final residues into energy. In this context, multi-purpose and versatile schemes integrating thermal and biochemical conversion processes will play a key role. An upstream thermal pretreatment + solid-liquid separation unit was here proposed to optimize the conversion of the liquid fraction of FW into valuable chemicals through semi-continuous fermentation process, and the conversion of the residual solid fraction into biomethane through anaerobic digestion. The solid residues obtained after thermal pretreatment presented a higher soluble COD fraction, which resulted in higher methane production with respect to the raw residues (0.33 vs. 0.29 Nm3CH4 kg-1VSfed) and higher risk of acidification and failure of methanogenesis when operating at lower HRT (20d). On the contrary, at HRT = 40 d, the pretreatment did not affect the methane conversion rates and both tests evidenced similar methane productions of 0.33 Nm3CH4 kg-1VSfed. In the reactor fed with pretreated residue, the association of hydrogenotrophic methanogens with syntrophic bacteria prevented the acidification of the system. Modelling proved the eligibility of the FW solid residues as substrates for anaerobic digestion, given their small inert fractions that ranged between 0% and 30% of the total COD content.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Andrea Gianico
- National Research Council of Italy, Water Research Institute, CNR-IRSA, Rome, Italy
| |
Collapse
|
6
|
Woon JM, Khoo KS, Al-Zahrani AA, Alanazi MM, Lim JW, Cheng CK, Sahrin NT, Ardo FM, Yi-Ming S, Lin KS, Lan JCW, Hossain MS, Kiatkittipong W. Epitomizing biohydrogen production from microbes: Critical challenges vs opportunities. ENVIRONMENTAL RESEARCH 2023; 227:115780. [PMID: 36990197 DOI: 10.1016/j.envres.2023.115780] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 05/08/2023]
Abstract
Hydrogen is a clean and green biofuel choice for the future because it is carbon-free, non-toxic, and has high energy conversion efficiency. In exploiting hydrogen as the main energy, guidelines for implementing the hydrogen economy and roadmaps for the developments of hydrogen technology have been released by several countries. Besides, this review also unveils various hydrogen storage methods and applications of hydrogen in transportation industry. Biohydrogen productions from microbes, namely, fermentative bacteria, photosynthetic bacteria, cyanobacteria, and green microalgae, via biological metabolisms have received significant interests off late due to its sustainability and environmentally friendly potentials. Accordingly, the review is as well outlining the biohydrogen production processes by various microbes. Furthermore, several factors such as light intensity, pH, temperature and addition of supplementary nutrients to enhance the microbial biohydrogen production are highlighted at their respective optimum conditions. Despite the advantages, the amounts of biohydrogen being produced by microbes are still insufficient to be a competitive energy source in the market. In addition, several major obstacles have also directly hampered the commercialization effors of biohydrogen. Thus, this review uncovers the constraints of biohydrogen production from microbes such as microalgae and offers solutions associated with recent strategies to overcome the setbacks via genetic engineering, pretreatments of biomass, and introduction of nanoparticles as well as oxygen scavengers. The opportunities of exploiting microalgae as a suastainable source of biohydrogen production and the plausibility to produce biohydrogen from biowastes are accentuated. Lastly, this review addresses the future perspectives of biological methods to ensure the sustainability and economy viability of biohydrogen production.
Collapse
Affiliation(s)
- Jia Min Woon
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Asla A Al-Zahrani
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia; Basic and Applied Scientific Research Center- College of Science -Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Meznah M Alanazi
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India.
| | - Chin Kui Cheng
- Center for Catalysis and Separation (CeCaS), Department of Chemical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, P. O. Box 127788, United Arab Emirates
| | - Nurul Tasnim Sahrin
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Fatima Musa Ardo
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Sun Yi-Ming
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Kuen-Song Lin
- Department of Chemical Engineering and Materials Science/Environmental Technology Research Center, Yuan Ze University, Chung-Li District, Taoyuan City, 32003, Taiwan; Environmental Technology Research Center, Yuan Ze University, Chung-Li District, Taoyuan City, 32003, Taiwan
| | - John Chi-Wei Lan
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Md Sohrab Hossain
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Worapon Kiatkittipong
- Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| |
Collapse
|
7
|
Vieira Turnell Suruagy M, Ross AB, Babatunde A. Influence of microwave temperature and power on the biomethanation of food waste under mesophilic anaerobic conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:117900. [PMID: 37150174 DOI: 10.1016/j.jenvman.2023.117900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 05/09/2023]
Abstract
Food waste is an attractive feedstock for Anaerobic Digestion due to its high biodegradability and moisture content. Nevertheless, due to its complex structure and composition, methane yield is typically compromised with 50-60% of the theoretical maximum obtained. The well-known limitation of the hydrolysis step can be circumvented by adopting feedstock pre-treatments, such as microwave irradiation. It improves solubilization of various FW components making them more readily available for the microorganisms and reducing AD process duration. In this work different heating rates (7.8, 3.9 and 1.9 °C/min) and temperatures (85, 115, 145, 175 °C) were applied when pre-treating food waste as a substrate for AD. Increase in the solubilization of organic matter in the form of Soluble Chemical Oxygen Demand was the most significative change in FW characteristics after pre-treatment, with final temperature of 175 °C and heating rate of 3.9 °C showing a 73.19% increment. Nevertheless, process performance of AD of MW FW was optimum at 85 °C 7.8 ramp, showing no intermediate products accumulation, up to 77% more methane produced in the first week of digestion compared to the other conditions tested and reduction of 96.36% on the lag phase duration, compared to the control. On the other hand, samples treated at 175 °C, regardless of heating rate, consistently showed poor process performance, with low methane yield, possibly due to the formation of hard-to-digest compounds. This work underlines the importance of adjusting microwave temperature and power when pre-treating FW for biomethane production so the process is optimized.
Collapse
Affiliation(s)
- Mariana Vieira Turnell Suruagy
- BioResource Systems Research Group, School of Civil Engineering, University of Leeds, Leeds, LS2 9JT, West Yorkshire, United Kingdom.
| | - Andrew Barry Ross
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Akintunde Babatunde
- School of Civil Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom
| |
Collapse
|
8
|
Roy P, Mohanty AK, Dick P, Misra M. A Review on the Challenges and Choices for Food Waste Valorization: Environmental and Economic Impacts. ACS ENVIRONMENTAL AU 2023; 3:58-75. [PMID: 36941850 PMCID: PMC10021016 DOI: 10.1021/acsenvironau.2c00050] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 01/22/2023]
Abstract
Valorization of food waste (FW) is instrumental for reducing the environmental and economic burden of FW and transitioning to a circular economy. The FW valorization process has widely been studied to produce various end-use products and summarize them; however, their economic, environmental, and social aspects are limited. This study synthesizes some of the valorization methods used for FW management and produces value-added products for various applications, and also discusses the technological advances and their environmental, economic, and social aspects. Globally, 1.3 billion tonnes of edible food is lost or wasted each year, during which about 3.3 billion tonnes of greenhouse gas is emitted. The environmental (-347 to 2969 kg CO2 equiv/tonne FW) and economic (-100 to $138/tonne FW) impacts of FW depend on the multiple parameters of food chains and waste management systems. Although enormous efforts are underway to reduce FW as well as valorize unavoidable FW to reduce environmental and economic loss, it seems the transdisciplinary approach/initiative would be essential to minimize FW as well as abate the environmental impacts of FW. A joint effort from stakeholders is the key to reducing FW and the efficient and effective valorization of FW to improve its sustainability. However, any initiative in reducing food waste should consider a broader sustainability check to avoid risks to investment and the environment.
Collapse
Affiliation(s)
- Poritosh Roy
- School
of Engineering, Thornbrough Building, University
of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
- Bioproducts
Discovery and Development Centre, Department of Plant Agriculture,
Crop Science Building, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Amar K. Mohanty
- School
of Engineering, Thornbrough Building, University
of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
- Bioproducts
Discovery and Development Centre, Department of Plant Agriculture,
Crop Science Building, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
- (A.K.M.)
| | - Phil Dick
- Ontario
Ministry of Agriculture, Food and Rural Affairs, Guelph, Ontario N1G 4Y2, Canada
| | - Manjusri Misra
- School
of Engineering, Thornbrough Building, University
of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
- Bioproducts
Discovery and Development Centre, Department of Plant Agriculture,
Crop Science Building, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
- (M.M.)
| |
Collapse
|
9
|
Plastic and Waste Tire Pyrolysis Focused on Hydrogen Production—A Review. HYDROGEN 2022. [DOI: 10.3390/hydrogen3040034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In this review, we compare hydrogen production from waste by pyrolysis and bioprocesses. In contrast, the pyrolysis feed was limited to plastic and tire waste unlikely to be utilized by biological decomposition methods. Recent risks of pyrolysis, such as pollutant emissions during the heat decomposition of polymers, and high energy demands were described and compared to thresholds of bioprocesses such as dark fermentation. Many pyrolysis reactors have been adapted for plastic pyrolysis after successful investigation experiences involving waste tires. Pyrolysis can transform these wastes into other petroleum products for reuse or for energy carriers, such as hydrogen. Plastic and tire pyrolysis is part of an alternative synthesis method for smart polymers, including semi-conductive polymers. Pyrolysis is less expensive than gasification and requires a lower energy demand, with lower emissions of hazardous pollutants. Short-time utilization of these wastes, without the emission of metals into the environment, can be solved using pyrolysis. Plastic wastes after pyrolysis produce up to 20 times more hydrogen than dark fermentation from 1 kg of waste. The research summarizes recent achievements in plastic and tire waste pyrolysis development.
Collapse
|
10
|
Wang L, Zhou G, Qin T, Guo L, Li C, Liu M, Jiang G. Innovatively treat rural food waste through producing organic grains. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:83483-83495. [PMID: 35767168 DOI: 10.1007/s11356-022-21624-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Food waste (FW) in a whole country contains a large amount of nitrogen which could be used to replace chemical fertilizers to produce organic grains, thus mitigating environmental pollution from the source. A 2-year field experiment was carried out using rural FW to grow organic grains in Shandong Province, China. Different proportions of FW and cattle manure were designed: FM0, 100% cattle manure compost (CMC); FM1, 75% CMC + 25% FW; FM2, 50% CMC + 50% FW; FM3, 25% CMC + 75% FW; FM4, 100% FW; CF, 100% chemical fertilizer; CK, without any fertilizers. Compared with CK and FM0, the application of FW significantly increased the total nitrogen, total phosphorus, and total potassium content of the soil. Simultaneously, all the three indicators increased with the increase of the proportion of FW. FW did not cause increase of contents of heavy metals such as cuprum, zinc, and chromium in the soils, nor did it increase the heavy metals in the grains. Using FW to replace all cattle manure, the total organic yield of grains reached to an average of 18,163 kg ha-1. We found that 1 kg dry FW could produce 1.64 kg organic grains under organic conditions, with the average net income being 5.42 times that of chemical mode. Our findings may provide an innovative solution for treating rural food wastes, ensuring food safety, and conservating the agriculture ecosystem.
Collapse
Affiliation(s)
- Lan Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gaifang Zhou
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianyu Qin
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liyue Guo
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | - Caihong Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | - Meizhen Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gaoming Jiang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
11
|
Esteban-Lustres R, Torres MD, Piñeiro B, Enjamio C, Domínguez H. Intensification and biorefinery approaches for the valorization of kitchen wastes - A review. BIORESOURCE TECHNOLOGY 2022; 360:127652. [PMID: 35872274 DOI: 10.1016/j.biortech.2022.127652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Kitchen wastes (KW) are post-consumption residues from household and food service sector, heterogenous in composition and highly variable depending on the particular origin, which are often treated as municipal. There is a need to improve the management of these continuously produced and worldwidely available resources and their valorization into novel and commercially interesting products will aid in the development of bioeconomy. The successful implementation of such approach requires cooperation between academia, industrial stakeholders, public and private institutions, based on the different dimensions, including social, economic, ecologic and technological involved. This review aims at presenting a survey of technological aspects, regarding current and potential management strategies of KW, following either a single or multiproduct processing according to the biorefineries scheme. Emphasis is given to intensification tools, designed to enhance process efficiency.
Collapse
Affiliation(s)
- Rebeca Esteban-Lustres
- CINBIO, Departament of Chemical Engineering, Faculty of Sciences, Campus Ourense, University of Vigo, Edificio Politécnico, As Lagoas, 32004 Ourense, Spain
| | - María Dolores Torres
- CINBIO, Departament of Chemical Engineering, Faculty of Sciences, Campus Ourense, University of Vigo, Edificio Politécnico, As Lagoas, 32004 Ourense, Spain.
| | - Beatriz Piñeiro
- Economic Resources, CHOU, SERGAS, Ramon Puga Noguerol, 54, 32005 Ourense, Spain
| | - Cristina Enjamio
- Galaria, SERGAS, Edificio Administrativo San Lázaro s/n, 15701 Santiago de Compostela, A Coruña, Spain
| | - Herminia Domínguez
- CINBIO, Departament of Chemical Engineering, Faculty of Sciences, Campus Ourense, University of Vigo, Edificio Politécnico, As Lagoas, 32004 Ourense, Spain
| |
Collapse
|
12
|
Microbial Biogas Production from Pork Gelatine. HYDROGEN 2022. [DOI: 10.3390/hydrogen3020012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This research describes the results of the anaerobic digestion of gelatine as a potential hydrogen source with heat-shocked inoculum. The concentrations of applied gelatine were of VSS (volatile suspended solids) ranging from 10 g VSS/L to 30 g VSS/L. The initial process pH was 5.5, and, depending on the concentration, reached pH values from 7.5 to 7.8 after 55 days. Although the inoculum was heat-shocked in 30 g VSS/L of collagen, the process that occurred was hydrogenotrophic anaerobic digestion. In gelatine concentrations below 30 g VSS/L, hydrogen production was dominant only during the first 5 days of the experiments. Then, there was a change from dark fermentation to hydrogenotrophic methane production. The optimal hydrogen and methane yields resulted from the concentrations of 10 g VSS/L (7.65 mL ± 0.01 mL H2/g VSS and 3.49 ± 0.01 L CH4/g VSS). Additionally, 10 g VSS/L had the lowest accumulated emission of hydrogen sulphide (10.3 ± 0.01 mL of H2S), while 30 g VSS/L (0.440 ± 0.01mL H2S/g VSS) produced the lowest yield. After a lag time, the hydrogen production and hydrogen sulphide grew with a specific ratio, depending on the concentration. The hydrogen sulphide emission and sulphur added analysis proved that hydrogen sulphide originating from biogas created by bacteria remains longer than that from a substrate.
Collapse
|
13
|
Wang L, Qin T, Zhao J, Zhang Y, Wu Z, Cui X, Zhou G, Li C, Guo L, Jiang G. Exploring the nitrogen reservoir of biodegradable household garbage and its potential in replacing synthetic nitrogen fertilizers in China. PeerJ 2022; 10:e12621. [PMID: 35111391 PMCID: PMC8781309 DOI: 10.7717/peerj.12621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/19/2021] [Indexed: 01/06/2023] Open
Abstract
Biodegradable household garbage contains a large amount of nitrogen, which could be used as organic fertilizer to produce organic food and significantly reduce synthetic nitrogen fertilizers. There is limited information on how large the nitrogen reservoir of biodegradable household garbage is in a certain country or region. Here we took China as a case, analyzed the amount of biodegradable household garbage resources and their nitrogen reservoirs. It was noted that the biodegradable household garbage mainly included food waste, waste paper and wood chips, with the amount being 31.56, 29.55, and 6.45 × 106 t·a-1, respectively. Accordingly, the nitrogen reservoirs were 65.31 × 104, 6.80 × 104, and 3.81 × 104 t·a-1 in China. The nitrogen reservoir of food waste accounted for 86% of the total nitrogen reservoir of biodegradable household garbage, which was equivalent to 11% of the amount of actual absorption for synthetic nitrogen fertilizers (6.20 × 106 t·a-1) by agriculture plants in China. Our findings provided a scientific basis for the classification and utilization of biodegradable household garbage.
Collapse
Affiliation(s)
- Lan Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese 17 Academy of Sciences, Beijing, China,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Tianyu Qin
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese 17 Academy of Sciences, Beijing, China,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Jianshe Zhao
- Henan Zhongyuan Organic Agriculture Research Institute Co., Ltd., Zhengzhou, China
| | - Yicheng Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese 17 Academy of Sciences, Beijing, China,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyuan Wu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese 17 Academy of Sciences, Beijing, China,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohui Cui
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese 17 Academy of Sciences, Beijing, China,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Gaifang Zhou
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese 17 Academy of Sciences, Beijing, China,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Caihong Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese 17 Academy of Sciences, Beijing, China
| | - Liyue Guo
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese 17 Academy of Sciences, Beijing, China
| | - Gaoming Jiang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese 17 Academy of Sciences, Beijing, China,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Chen H, Wu J, Huang R, Zhang W, He W, Deng Z, Han Y, Xiao B, Luo H, Qu W. Effects of temperature and total solid content on biohydrogen production from dark fermentation of rice straw: Performance and microbial community characteristics. CHEMOSPHERE 2022; 286:131655. [PMID: 34315083 DOI: 10.1016/j.chemosphere.2021.131655] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/22/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Semi-continuous experiments were carried out in lab-scale continuous stirred tank reactors to evaluate the effects of fermentation temperature (37 ± 1 °C and 55 ± 1 °C) and total solids (TS) contents (3 %, 6 %, and 12 %) on biohydrogen production from the dark fermentations (DF) of rice straw (RS) and the total operation duration was 105 days. The experimental results show that biohydrogen production (0.46-63.60 mL/g VSadded) from the thermophilic (55 ± 1 °C) DF (TDF) was higher than the mesophilic (37 ± 1 °C) DF (MDF) (0.19-2.13 mL/g VSadded) at the three TS contents, and achieved the highest of 63.60 ± 2.98 mL/g VSadded at TS = 6 % in TDF. The pH, NH4+-N and total volatile fatty acid of fermentation liquids in the TDF were all higher than those in the MDF. The high abundance of lactic acid-producing bacteria resulted in low biohydrogen produced at TS = 3 %. Under the TDF with TS = 6 %, the highest abundance of hydrolytic bacteria (Ruminiclostridium 54.24 %) led to the highest biohydrogen production. The increase of TS content from 6 % to 12 % induced degradation pathway changes from biohydrogen production to methane production. This study demonstrated that butyric acid fermentation was the main pathway to produce biohydrogen from RS in both DFs.
Collapse
Affiliation(s)
- Hong Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410004, China
| | - Jun Wu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410004, China
| | - Rong Huang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410004, China
| | - Wenzhe Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weining He
- China Machinery International Engineering Design & Research Institute Co., Ltd, Changsha, 410007, China
| | - Zhengyu Deng
- China Machinery International Engineering Design & Research Institute Co., Ltd, Changsha, 410007, China
| | - Yunping Han
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Benyi Xiao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hongmei Luo
- Hunan Provincial Meteorological Service Center, Changsha, 410118, China
| | - Wei Qu
- Changsha Environmental Protection College, Changsha, 410004, China
| |
Collapse
|
15
|
Recovery of Household Waste by Generation of Biogas as Energy and Compost as Bio-Fertilizer—A Review. Processes (Basel) 2021. [DOI: 10.3390/pr10010081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Nowadays, organic waste and especially household waste represents a significant global issue due to population growth. The anaerobic digestion (AD) process is an essential operation contributing powerfully to the valorization of organic waste including food waste in terms of renewable energy generation (biogas) and the rich-nutrient residue that can be utilized as bio-fertilizer. Thus, this process (AD) allows for good recovery of household waste by generating biogas and compost. However, the AD operation has been affected by several key factors. In this paper, we aim to involve different critical parameters influencing the AD process, including temperature, pH, organic loading rate (OLR), carbon to nitrogen ratio (C/N), and total solid content (TS(%)). Further, the paper highlights the inhibition caused by the excessive accumulation of volatile fatty acids (VFAs) and ammoniac, which exhibits the positive effects of co-digestion, pretreatment methods, and mixing techniques for maintaining process stability and enhancing biogas production. We analyze some current mathematical models explored in the literature, such as distinct generic, non-structural, combined, and kinetic first-order models. Finally, the study discusses challenges, provides some possible solutions, and a future perspective that promises to be a highly useful resource for researchers working in the field of household waste recovery for the generation of biogas.
Collapse
|
16
|
Gianico A, Gallipoli A, Gazzola G, Pastore C, Tonanzi B, Braguglia CM. A novel cascade biorefinery approach to transform food waste into valuable chemicals and biogas through thermal pretreatment integration. BIORESOURCE TECHNOLOGY 2021; 338:125517. [PMID: 34273629 DOI: 10.1016/j.biortech.2021.125517] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
A novel biorefinery platform integrating thermal pretreatment and solid-liquid separation unit is here proposed to fully exploit food waste (FW) potential for production of valuable chemicals and energy through semi-continuous anaerobic bioconversion. The liquid fraction deriving from raw or pretreated FW, was fermented into volatile fatty acids (VFAs, from acetic to caproic acid) while the residual fraction was converted into biomethane. Thermal pretreatment effectively extracted a portion of the macromolecular organics, especially starch, to the liquid phase, promoting acidogenic fermentation and chain elongation pathways (0.43 gVFA g-1VSfed and 0.58 gVFA g-1VSfed with raw and pretreated extract, respectively). In parallel, anaerobic digestion of solid residue in 10 L reactors showed process stability and higher conversion rate for the pretreated residue (0.31 against 0.26 Nm3CH4 kg-1VSfed). The mass-transfer balance coupled with the economic assessment, calculated in terms of direct gross added value, indicated promising revenues by integrating the thermal upstream treatment.
Collapse
Affiliation(s)
- Andrea Gianico
- National Research Council of Italy, Water Research Institute, CNR-IRSA, Area della Ricerca RM1, Via Salaria km 29.300, Monterotondo, Rome 00015, Italy
| | - Agata Gallipoli
- National Research Council of Italy, Water Research Institute, CNR-IRSA, Area della Ricerca RM1, Via Salaria km 29.300, Monterotondo, Rome 00015, Italy.
| | - Giulio Gazzola
- National Research Council of Italy, Water Research Institute, CNR-IRSA, Area della Ricerca RM1, Via Salaria km 29.300, Monterotondo, Rome 00015, Italy
| | - Carlo Pastore
- National Research Council of Italy, Water Research Institute, CNR-IRSA, Via F. de Blasio 5, Bari 70132, Italy
| | - Barbara Tonanzi
- National Research Council of Italy, Water Research Institute, CNR-IRSA, Area della Ricerca RM1, Via Salaria km 29.300, Monterotondo, Rome 00015, Italy
| | - Camilla M Braguglia
- National Research Council of Italy, Water Research Institute, CNR-IRSA, Area della Ricerca RM1, Via Salaria km 29.300, Monterotondo, Rome 00015, Italy
| |
Collapse
|
17
|
Luo J, Huang W, Zhang Q, Guo W, Xu R, Fang F, Cao J, Wu Y. A preliminary metatranscriptomic insight of eggshells conditioning on substrates metabolism during food wastes anaerobic fermentation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143214. [PMID: 33160662 DOI: 10.1016/j.scitotenv.2020.143214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
The anaerobic treatment of food wastes (FW) for resource recovery has been extensively studied. However, the information on the traits of functional genes and enzymes for substrates metabolisms and their associations with microbial community are little. In this study, the influences of eggshells conditioning on the substrates metabolism for volatile fatty acids production (VFAs) in the process of FW fermentation were investigated at genetic levels by using the metatranscriptomic approach. The obtained results suggested that the critical genes involved in the carbohydrate and protein metabolisms (i.e. pgmB, GPI, glsA, pyrB and etc.) were up-regulated in the eggshell-conditioned reactor, which were beneficial to the bioconversion of macromolecule organics during FW fermentation. Moreover, the functional genes related with the intermediate products metabolism (i.e. pyruvate acid, butanoate) also exhibited differential genetic expression levels, which resulted in the alteration of microbial metabolic pathways and contributed to the acetic and butyric acids accumulation. In addition, a preliminary association of microbial distribution and genetic expressions was analyzed. The distinct distribution of microbial community in different FW fermentation systems affected the corresponding microbial contribution to those genetic expression levels of metabolic enzymes involved in VFAs production. This study would provide new insights of the underlying mechanism of VFAs promotion in the eggshell-conditioned FW fermentation process from the perspectives of substrates metabolisms at genetic and functional traits.
Collapse
Affiliation(s)
- Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China
| | - Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Qin Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Wen Guo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Runze Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yang Wu
- College of Environment, Hohai University, Nanjing 210098, China; State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
18
|
Sołowski G, Ziminski T, Cenian A. A shift from anaerobic digestion to dark fermentation in glycol ethylene fermentation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:15556-15564. [PMID: 33560510 PMCID: PMC7960603 DOI: 10.1007/s11356-020-12149-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 12/16/2020] [Indexed: 05/08/2023]
Abstract
Anaerobic digestion of aqueous glycol ethylene was tested. The process lasted two cycles of 7 days, but after the second cycle, high hydrogen production occurred shift to dark fermentation. The biogas production lasted 14 days, obtaining peak values of hydrogen, and then rapidly stopped. In investigations, the following were checked: dependence of hydrogen, methane and hydrogen sulphide in the process. Mixtures of water with glycol ethylene mass ratio from 0.6 to 0.85 were substrates in experiments. The highest methane production was for water ethylene 0.7 ratio 2.85 L of methane with a yield of 178 mL of methane/g VSS (volatile suspended solids) of glycol ethylene. The optimal ratio of water and glycol ethylene was 0.85 25.5 mL of hydrogen (giving yield 1.71 mL of hydrogen/g VSS of glycol ethylene) and 1.71 mL of hydrogen sulphide emission for a 0.6 ratio. Popular polymer industry wastes, glycol ethylene, can be utilised by anaerobic digestion.
Collapse
Affiliation(s)
- Gaweł Sołowski
- Institute of Fluid-Flow Machinery of Polish Academy of Sciences, Gdańsk, Poland.
| | - Tadeusz Ziminski
- Institute of Fluid-Flow Machinery of Polish Academy of Sciences, Gdańsk, Poland
| | - Adam Cenian
- Institute of Fluid-Flow Machinery of Polish Academy of Sciences, Gdańsk, Poland
| |
Collapse
|
19
|
Ubando AT, Del Rosario AJR, Chen WH, Culaba AB. A state-of-the-art review of biowaste biorefinery. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116149. [PMID: 33280912 DOI: 10.1016/j.envpol.2020.116149] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
Biorefineries provide a platform for different industries to produce multiple bio-products enhancing the economic value of the system. The production of these biorefineries has led to an increase in the generation of biowaste. To minimize the risk of environmental pollution, numerous studies have focused on a variety of strategies to mitigate these concerns reflected in the vast amount of literature written on this topic. This paper aims to systematically analyze and review the enormous body of scientific literature in the biowaste and biorefinery field for establishing an understanding and providing a direction for future works. A bibliometric analysis is first performed using the CorTexT Manager platform on a corpus of 1488 articles written on the topic of biowaste. Popular and emerging topics are determined using a terms extraction algorithm. A contingency matrix is then created to study the correlation of scientific journals and key topics from this field. Then, the connection and evolution of these terms were analyzed using network mapping, to determine relationships among key terms and analyze notable trends in this research field. Finally, a critical review of articles was presented across three main categories of biowaste management such as mitigation, sustainable utilization, and cleaner disposal from the perspective of the biorefinery concept. Operational and technological challenges are identified for the integration of anaerobic digestion in biorefineries, especially in developing nations. Moreover, logistical challenges in the biorefinery supply-chain are established based on the economics and collection aspect of handling biowaste.
Collapse
Affiliation(s)
- Aristotle T Ubando
- Mechanical Engineering Department, De La Salle University, 2401 Taft Avenue, 0922, Manila, Philippines; Center for Engineering and Sustainable Development Research, De La Salle University, Manila, 0922, Philippines; Thermomechanical Laboratory, De La Salle University, Laguna Campus, LTI Spine Road, Laguna Blvd, Biñan, Laguna, 4024, Philippines
| | - Aaron Jules R Del Rosario
- Mechanical Engineering Department, De La Salle University, 2401 Taft Avenue, 0922, Manila, Philippines; Center for Engineering and Sustainable Development Research, De La Salle University, Manila, 0922, Philippines
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung, 411, Taiwan.
| | - Alvin B Culaba
- Mechanical Engineering Department, De La Salle University, 2401 Taft Avenue, 0922, Manila, Philippines; Center for Engineering and Sustainable Development Research, De La Salle University, Manila, 0922, Philippines
| |
Collapse
|