1
|
Aguilar-Colomer A, Jiménez-Jiménez C, González B, Esteban J, Vallet-Regí M, Colilla M, Izquierdo-Barba I. Mucolytic and antibiotic combination therapy using silica-based nanocarriers to eradicate Escherichia coli biofilms. NANOSCALE ADVANCES 2025:d5na00006h. [PMID: 40270836 PMCID: PMC12012629 DOI: 10.1039/d5na00006h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 04/04/2025] [Indexed: 04/25/2025]
Abstract
This research provides new insights into the treatment of E. coli biofilm-related infections through the design of new antimicrobial nanoformulations based on mesoporous silica nanoparticles (MSNs) for mucolytic and antibiotic combination therapy against E. coli biofilms. The development of nanosystems with well-defined compartments to house and sequentially deliver different antimicrobial agents was carried out. A relatively simple and direct straightforward approach was carried out, consisting of loading MSNs with levofloxacin (LVX) by an impregnation method followed by external coating with a gelatin shell embedding a mixture of N-acetylcysteine (AC) plus LVX. Thus, the release of the mucolytic agent, AC, at the earliest stage causes disaggregation of the outer mucopolysaccharide layer of the mature E. coli biofilm, as confirmed by confocal laser scanning microscopy studies. This biofilm disruption effect facilitates the antimicrobial action of LVX, which is released in a more sustained manner over longer periods of time than AC, achieving a remarkable reduction (ca. 99.8%) of mature E. coli biofilms. These results are supported by the combined effect of AC and LVX strategically combined in the same nanocarrier. Preliminary in vitro studies with preosteoblastic cells point to the good biocompatibility of these nanosystems.
Collapse
Affiliation(s)
- Anna Aguilar-Colomer
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n 28040 Madrid Spain
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Carla Jiménez-Jiménez
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n 28040 Madrid Spain
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Blanca González
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n 28040 Madrid Spain
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Jaime Esteban
- Unidad de Microbiología Clínica, IIS-Fundación Jiménez Díaz Avenida de los Reyes Católicos 2 28040 Madrid Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC) Madrid Spain
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n 28040 Madrid Spain
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Montserrat Colilla
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n 28040 Madrid Spain
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Isabel Izquierdo-Barba
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n 28040 Madrid Spain
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN) Spain
| |
Collapse
|
2
|
Turck D, Bohn T, Cámara M, Castenmiller J, de Henauw S, Hirsch‐Ernst K, Jos A, Maciuk A, Mangelsdorf I, McNulty B, Naska A, Pentieva K, Thies F, Craciun I, Fiolet T, Siani A. Pacran®, a powder obtained from cranberries, and defence against bacterial pathogens in the lower urinary tract: Evaluation of a health claim pursuant to Article 13(5) of Regulation (EC) No 1924/2006. EFSA J 2025; 23:e9319. [PMID: 40182009 PMCID: PMC11962652 DOI: 10.2903/j.efsa.2025.9319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
Following an application from Givaudan, submitted for authorisation of a health claim pursuant to Article 13(5) of Regulation (EC) No 1924/2006 via the Competent Authority of Italy, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on the scientific substantiation of a health claim related to Pacran® and defence against bacterial pathogens in the lower urinary tract. The Panel considers that the food Pacran®, a powder obtained from cranberries, is sufficiently characterised. Defence against bacterial pathogens in the lower urinary tract is a beneficial physiological effect. The applicant identified two human intervention studies which investigated the effect of Pacran® on the incidence of urinary tract infections (UTI) as being pertinent to the claim. In weighing the evidence, the Panel took into account that one human intervention study showed a beneficial effect of Pacran® consumed daily at doses of 500 mg for 6 months on the incidence of symptomatic, culture-confirmed UTI in women with a history of recurrent UTI, whereas such an effect was not consistently observed in another study under similar conditions. The Panel also took into account that limited evidence has been provided for a mechanism by which Pacran® could exert the claimed effect. The Panel concludes that the evidence provided is insufficient to establish a cause and effect relationship between the consumption of Pacran® and the defence against bacterial pathogens in the lower urinary tract.
Collapse
|
3
|
Jangid H, Shidiki A, Kumar G. Cranberry-derived bioactives for the prevention and treatment of urinary tract infections: antimicrobial mechanisms and global research trends in nutraceutical applications. Front Nutr 2025; 12:1502720. [PMID: 40078413 PMCID: PMC11896822 DOI: 10.3389/fnut.2025.1502720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/03/2025] [Indexed: 03/14/2025] Open
Abstract
Introduction Urinary tract infections (UTIs) are a global health concern, increasingly complicated by antibiotic resistance. Cranberry-derived bioactive compounds, particularly proanthocyanidins (PACs), have emerged as a promising non-antibiotic strategy for UTI prevention. This review examines their efficacy, mechanisms of action, and the evolving research landscape through bibliometric analysis. Methods A comprehensive literature review was conducted to assess the role of cranberry metabolites in UTI prevention, focusing on anti-adhesive and antimicrobial mechanisms. Additionally, a bibliometric analysis of publications from 1962 to 2024 was performed to evaluate research trends, collaboration networks, and thematic developments. Results Cranberry metabolites, particularly A-type PACs, flavonoids, and phenolic acids, inhibit Escherichia coli adhesion to urothelial cells, reducing UTI recurrence. Gut microbiota-driven transformation of PACs into bioactive metabolites enhances their efficacy, while cranberry oligosaccharides disrupt biofilm formation in high-risk populations. Bibliometric analysis reveals a surge in research interest post-2000, with increasing global collaborations and a focus on clinical applications. Discussion and conclusion Cranberry bioactives demonstrate significant potential in UTI management, yet variations in formulation, dosage, and metabolic bioavailability present challenges. The growing research interest underscores the need for standardized clinical studies to optimize therapeutic efficacy and establish evidence-based guidelines for their use.
Collapse
Affiliation(s)
- Himanshu Jangid
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Amrullah Shidiki
- Department of Microbiology, National Medical College and Teaching Hospital, Birgunj, Nepal
| | - Gaurav Kumar
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
- Amity Institute of Microbial Technology (AIMT), Jaipur, Rajasthan, India
| |
Collapse
|
4
|
Kulkarni A, Michel S, Butler JE, Ziegler KJ. Gelation and large thermoresponse of cranberry-based xyloglucan. Carbohydr Polym 2024; 339:122189. [PMID: 38823897 DOI: 10.1016/j.carbpol.2024.122189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 06/03/2024]
Abstract
Cranberry waste contains potentially valuable components, such as proanthocyanidins, flavanols, and xyloglucan. Highly-purified xyloglucan (XG) from cranberries were studied through steady and oscillatory shear rheology at various concentrations and temperatures. At room temperature, an apparent yield stress is observed and the storage modulus exceeds the loss modulus ( [Formula: see text] ) for concentrations of 0.5 wt% and higher, indicating that the XG solution has formed a physical hydrogel. Thermoresponsive gelation is observed with a five-order of magnitude increase in shear moduli as it undergoes a weak to strong gel transition around 52 °C. The gelation time was 5 min with an observed storage moduli up to 3500 Pa. Cranberry-based XG exhibits thermoresponsive behavior at concentrations as low as 0.1 wt% (w/v), which is significantly lower than prior gelation studies of XG from other sources. The formation of a weak gel at room temperature and large storage moduli observed at room temperature is likely associated with the low level of impurities and small amount of galactose present in the XG chains.
Collapse
Affiliation(s)
- Aniruddha Kulkarni
- Department of Chemical Engineering, University of Florida, Gainesville 32611, FL, USA
| | - Stephen Michel
- Department of Chemical Engineering, University of Florida, Gainesville 32611, FL, USA
| | - Jason E Butler
- Department of Chemical Engineering, University of Florida, Gainesville 32611, FL, USA.
| | - Kirk J Ziegler
- Department of Chemical Engineering, University of Florida, Gainesville 32611, FL, USA.
| |
Collapse
|
5
|
Lessard-Lord J, Roussel C, Lupien-Meilleur J, Généreux P, Richard V, Guay V, Roy D, Desjardins Y. Short term supplementation with cranberry extract modulates gut microbiota in human and displays a bifidogenic effect. NPJ Biofilms Microbiomes 2024; 10:18. [PMID: 38448452 PMCID: PMC10918075 DOI: 10.1038/s41522-024-00493-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/22/2024] [Indexed: 03/08/2024] Open
Abstract
Cranberry is associated with multiple health benefits, which are mostly attributed to its high content of (poly)phenols, particularly flavan-3-ols. However, clinical trials attempting to demonstrate these positive effects have yielded heterogeneous results, partly due to the high inter-individual variability associated with gut microbiota interaction with these molecules. In fact, several studies have demonstrated the ability of these molecules to modulate the gut microbiota in animal and in vitro models, but there is a scarcity of information in human subjects. In addition, it has been recently reported that cranberry also contains high concentrations of oligosaccharides, which could contribute to its bioactivity. Hence, the aim of this study was to fully characterize the (poly)phenolic and oligosaccharidic contents of a commercially available cranberry extract and evaluate its capacity to positively modulate the gut microbiota of 28 human subjects. After only four days, the (poly)phenols and oligosaccharides-rich cranberry extract, induced a strong bifidogenic effect, along with an increase in the abundance of several butyrate-producing bacteria, such as Clostridium and Anaerobutyricum. Plasmatic and fecal short-chain fatty acids profiles were also altered by the cranberry extract with a decrease in acetate ratio and an increase in butyrate ratio. Finally, to characterize the inter-individual variability, we stratified the participants according to the alterations observed in the fecal microbiota following supplementation. Interestingly, individuals having a microbiota characterized by the presence of Prevotella benefited from an increase in Faecalibacterium with the cranberry extract supplementation.
Collapse
Affiliation(s)
- Jacob Lessard-Lord
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Charlène Roussel
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Laval University, Québec, QC, Canada
| | - Joseph Lupien-Meilleur
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Pamela Généreux
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Véronique Richard
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Valérie Guay
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
| | - Denis Roy
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada.
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada.
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada.
| |
Collapse
|
6
|
Wilson LFL, Neun S, Yu L, Tryfona T, Stott K, Hollfelder F, Dupree P. The biosynthesis, degradation, and function of cell wall β-xylosylated xyloglucan mirrors that of arabinoxyloglucan. THE NEW PHYTOLOGIST 2023; 240:2353-2371. [PMID: 37823344 PMCID: PMC10952531 DOI: 10.1111/nph.19305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 09/02/2023] [Indexed: 10/13/2023]
Abstract
Xyloglucan is an abundant polysaccharide in many primary cell walls and in the human diet. Decoration of its α-xylosyl sidechains with further sugars is critical for plant growth, even though the sugars themselves vary considerably between species. Plants in the Ericales order - prevalent in human diets - exhibit β1,2-linked xylosyl decorations. The biosynthetic enzymes responsible for adding these xylosyl decorations, as well as the hydrolases that remove them in the human gut, are unidentified. GT47 xyloglucan glycosyltransferase candidates were expressed in Arabidopsis and endo-xyloglucanase products from transgenic wall material were analysed by electrophoresis, mass spectrometry, and nuclear magnetic resonance (NMR) spectroscopy. The activities of gut bacterial hydrolases BoGH43A and BoGH43B on synthetic glycosides and xyloglucan oligosaccharides were measured by colorimetry and electrophoresis. CcXBT1 is a xyloglucan β-xylosyltransferase from coffee that can modify Arabidopsis xyloglucan and restore the growth of galactosyltransferase mutants. Related VmXST1 is a weakly active xyloglucan α-arabinofuranosyltransferase from cranberry. BoGH43A hydrolyses both α-arabinofuranosylated and β-xylosylated oligosaccharides. CcXBT1's presence in coffee and BoGH43A's promiscuity suggest that β-xylosylated xyloglucan is not only more widespread than thought, but might also nourish beneficial gut bacteria. The evolutionary instability of transferase specificity and lack of hydrolase specificity hint that, to enzymes, xylosides and arabinofuranosides are closely resemblant.
Collapse
Affiliation(s)
- Louis F. L. Wilson
- Department of BiochemistryUniversity of CambridgeHopkins Building, Tennis Court RoadCambridgeCB2 1QWUK
| | - Stefanie Neun
- Department of BiochemistryUniversity of CambridgeSanger Building, Tennis Court RoadCambridgeCB2 1GAUK
| | - Li Yu
- Department of BiochemistryUniversity of CambridgeHopkins Building, Tennis Court RoadCambridgeCB2 1QWUK
| | - Theodora Tryfona
- Department of BiochemistryUniversity of CambridgeHopkins Building, Tennis Court RoadCambridgeCB2 1QWUK
| | - Katherine Stott
- Department of BiochemistryUniversity of CambridgeSanger Building, Tennis Court RoadCambridgeCB2 1GAUK
| | - Florian Hollfelder
- Department of BiochemistryUniversity of CambridgeSanger Building, Tennis Court RoadCambridgeCB2 1GAUK
| | - Paul Dupree
- Department of BiochemistryUniversity of CambridgeHopkins Building, Tennis Court RoadCambridgeCB2 1QWUK
| |
Collapse
|
7
|
Stair SL, Palmer CJ, Lee UJ. Evidence-based review of nonantibiotic urinary tract infection prevention strategies for women: a patient-centered approach. Curr Opin Urol 2023; 33:187-192. [PMID: 36862100 DOI: 10.1097/mou.0000000000001082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
PURPOSE OF REVIEW There is a growing interest in nonantibiotic prevention strategies for recurrent urinary tract infections (rUTIs). Our objective is to provide a focused, pragmatic review of the latest evidence. RECENT FINDINGS Vaginal estrogen is well tolerated and effective for preventing rUTI in postmenopausal women. Cranberry supplements at sufficient doses are effective in preventing uncomplicated rUTI. Methenamine, d -mannose, and increased hydration all have evidence to support their use, although the evidence is of somewhat variable quality. SUMMARY There is sufficient evidence to recommend vaginal estrogen and cranberry as first-line rUTI prevention strategies, particularly in postmenopausal women. Prevention strategies can be used in series or in tandem, based on patient preference and tolerance for side effects, to create effective nonantibiotic rUTI prevention strategies.
Collapse
Affiliation(s)
- Sabrina L Stair
- Section of Urology and Renal Transplantation, Virginia Mason Medical Center, 1100 Ninth Avenue, C7-URO, Seattle, Washington, USA
| | | | | |
Collapse
|
8
|
Pompilio A, Scocchi M, Mangoni ML, Shirooie S, Serio A, Ferreira Garcia da Costa Y, Alves MS, Şeker Karatoprak G, Süntar I, Khan H, Di Bonaventura G. Bioactive compounds: a goldmine for defining new strategies against pathogenic bacterial biofilms? Crit Rev Microbiol 2023; 49:117-149. [PMID: 35313120 DOI: 10.1080/1040841x.2022.2038082] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Most human infectious diseases are caused by microorganisms growing as biofilms. These three-dimensional self-organized communities are embedded in a dense matrix allowing microorganisms to persistently inhabit abiotic and biotic surfaces due to increased resistance to both antibiotics and effectors of the immune system. Consequently, there is an urgent need for novel strategies to control biofilm-associated infections. Natural products offer a vast array of chemical structures and possess a wide variety of biological properties; therefore, they have been and continue to be exploited in the search for potential biofilm inhibitors with a specific or multi-locus mechanism of action. This review provides an updated discussion of the major bioactive compounds isolated from several natural sources - such as plants, lichens, algae, microorganisms, animals, and humans - with the potential to inhibit biofilm formation and/or to disperse established biofilms by bacterial pathogens. Despite the very large number of bioactive products, their exact mechanism of action often remains to be clarified and, in some cases, the identity of the active molecule is still unknown. This knowledge gap should be filled thus allowing development of these products not only as novel drugs to combat bacterial biofilms, but also as antibiotic adjuvants to restore the therapeutic efficacy of current antibiotics.
Collapse
Affiliation(s)
- Arianna Pompilio
- Department of Medical, Oral and Biotechnological Sciences, and Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Marco Scocchi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Maria Luisa Mangoni
- Department of Biochemical Sciences, Sapienza University of Rome, Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Annalisa Serio
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Ygor Ferreira Garcia da Costa
- Laboratory of Cellular and Molecular Bioactivity, Pharmaceutical Research Center, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Maria Silvana Alves
- Laboratory of Cellular and Molecular Bioactivity, Pharmaceutical Research Center, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Gökçe Şeker Karatoprak
- Department of Pharmacognosy, Faculty of Pharmacy, Erciyes University, Talas, Kayseri, Turkey
| | - Ipek Süntar
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, Ankara, Turkey
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Giovanni Di Bonaventura
- Department of Medical, Oral and Biotechnological Sciences, and Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
9
|
Technological Properties and Composition of Enzymatically Modified Cranberry Pomace. Foods 2022; 11:foods11152321. [PMID: 35954089 PMCID: PMC9368176 DOI: 10.3390/foods11152321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 12/29/2022] Open
Abstract
Cranberry pomace obtained after juice production is a good source of dietary fiber and other bioactive compounds. In this study, cranberry pomace was hydrolyzed with Viscozyme® L, Pectinex® Ultra Tropical, Pectinex® Yieldmash Plus, and Celluclast® 1.5L (Novozyme A/S, Denmark). The soluble and insoluble dietary fiber was determined using the Megazyme kit, while the changes in mono-, disaccharide and oligosaccharides’ contents were determined using HPLC-RI; the total phenolic contents were determined by Folin−Ciocalteu’s Assay. Prebiotic activity, using two probiotic strains Lactobacillus acidophilus DSM 20079 and Bifidobacterium animalis DSM 20105, was investigated. The technological properties, such as hydration and oil retention capacity, were evaluated. The enzymatic treatment increased the yield of short-chain soluble saccharides. The highest oligosaccharide content was obtained using Viscozyme® L and Pectinex® Ultra Tropical. All of the tested extracts of cranberry pomace showed the ability to promote growth of selected probiotic bacteria. The insoluble dietary fiber content decreased in all of the samples, while the soluble dietary fiber increased just in samples hydrolyzed with Celluclast® 1.5L. The highest content of total phenolic compounds was obtained using Viscozyme® L and Pectinex® Ultra Tropical (10.9% and 13.1% higher than control, respectively). The enzymatically treated cranberry pomace exhibited lower oil and water retention capacities in most cases. In contrast, water swelling capacity increased by 23% and 70% in samples treated with Viscozyme® L and Celluclast® 1.5L, respectively. Enzymatically treated cranberry pomace has a different composition and technological properties depending on the enzyme used for hydrolysis and can be used in various novel food products.
Collapse
|
10
|
Cranberry Arabino-Xyloglucan and Pectic Oligosaccharides Induce Lactobacillus Growth and Short-Chain Fatty Acid Production. Microorganisms 2022; 10:microorganisms10071346. [PMID: 35889065 PMCID: PMC9319371 DOI: 10.3390/microorganisms10071346] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Numerous health benefits have been reported from the consumption of cranberry-derived products, and recent studies have identified bioactive polysaccharides and oligosaccharides from cranberry pomace. This study aimed to further characterize xyloglucan and pectic oligosaccharide structures from pectinase-treated cranberry pomace and measure the growth and short-chain fatty acid production of 86 Lactobacillus strains using a cranberry oligosaccharide fraction as the carbon source. In addition to arabino-xyloglucan structures, cranberry oligosaccharides included pectic rhamnogalacturonan I which was methyl-esterified, acetylated and contained arabino-galacto-oligosaccharide side chains and a 4,5-unsaturated function at the non-reducing end. When grown on cranberry oligosaccharides, ten Lactobacillus strains reached a final culture density (ΔOD) ≥ 0.50 after 24 h incubation at 32 °C, which was comparable to L. plantarum ATCC BAA 793. All strains produced lactic, acetic, and propionic acids, and all but three strains produced butyric acid. This study demonstrated that the ability to metabolize cranberry oligosaccharides is Lactobacillus strain specific, with some strains having the potential to be probiotics, and for the first time showed these ten strains were capable of growth on this carbon source. The novel cranberry pectic and arabino-xyloglucan oligosaccharide structures reported here combined with the Lactobacillus strains that can metabolize cranberry oligosaccharides and produce short-chain fatty acids, have excellent potential as health-promoting synbiotics.
Collapse
|
11
|
Ballén V, Cepas V, Ratia C, Gabasa Y, Soto SM. Clinical Escherichia coli: From Biofilm Formation to New Antibiofilm Strategies. Microorganisms 2022; 10:microorganisms10061103. [PMID: 35744621 PMCID: PMC9229135 DOI: 10.3390/microorganisms10061103] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023] Open
Abstract
Escherichia coli is one of the species most frequently involved in biofilm-related diseases, being especially important in urinary tract infections, causing relapses or chronic infections. Compared to their planktonic analogues, biofilms confer to the bacteria the capacity to be up to 1000-fold more resistant to antibiotics and to evade the action of the host’s immune system. For this reason, biofilm-related infections are very difficult to treat. To develop new strategies against biofilms, it is important to know the mechanisms involved in their formation. In this review, the different steps of biofilm formation in E. coli, the mechanisms of tolerance to antimicrobials and new compounds and strategies to combat biofilms are discussed.
Collapse
Affiliation(s)
- Victoria Ballén
- ISGlobal, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain; (V.B.); (V.C.); (C.R.); (Y.G.)
| | - Virginio Cepas
- ISGlobal, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain; (V.B.); (V.C.); (C.R.); (Y.G.)
| | - Carlos Ratia
- ISGlobal, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain; (V.B.); (V.C.); (C.R.); (Y.G.)
| | - Yaiza Gabasa
- ISGlobal, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain; (V.B.); (V.C.); (C.R.); (Y.G.)
| | - Sara M. Soto
- ISGlobal, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain; (V.B.); (V.C.); (C.R.); (Y.G.)
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
12
|
Khoo C, Duysburgh C, Marzorati M, Van den Abbeele P, Zhang D. A Freeze-Dried Cranberry Powder Consistently Enhances SCFA Production and Lowers Abundance of Opportunistic Pathogens In Vitro. BIOTECH 2022; 11:biotech11020014. [PMID: 35822787 PMCID: PMC9264401 DOI: 10.3390/biotech11020014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
The American cranberry, Vaccinium macrocarpon, contains fibers and (poly)phenols that could exert health-promoting effects through modulation of gut microbiota. This study aimed to investigate how a freeze-dried whole cranberry powder (FCP) modulated metabolite production and microbial composition using both a 48-h incubation strategy and a long-term human gut simulator study with the M-SHIME (Mucosal Simulator of the Human Intestinal Microbial Ecosystem). FCP was repeatedly administered over three weeks. The studies included five and three study subjects, respectively. In both models, FCP significantly increased levels of health-related short-chain fatty acids (SCFA: acetate, propionate and butyrate), while decreased levels of branched-chain fatty acids (markers of proteolytic fermentation). Interestingly, FCP consistently increased luminal Bacteroidetes abundances in the proximal colon of the M-SHIME (+17.5 ± 9.3%) at the expense of Proteobacteria (−10.2 ± 1.5%). At family level, this was due to the stimulation of Bacteroidaceae and Prevotellaceae and a decrease of Pseudomonodaceae and Enterobacteriaceae. Despite of interpersonal differences, FCP also increased the abundance of families of known butyrate producers. Overall, FCP displayed an interesting prebiotic potential in vitro given its selective utilization by host microorganisms and potential health-related effects on inhibition of pathogens and selective stimulation of beneficial metabolites.
Collapse
Affiliation(s)
- Christina Khoo
- Ocean Spray Cranberries, Inc., Bridge Street 152, Middleborough, MA 02349, USA
- Correspondence:
| | - Cindy Duysburgh
- ProDigest BV, Technologiepark-Zwijnaarde 73, 9052 Ghent, Belgium; (C.D.); (M.M.)
| | - Massimo Marzorati
- ProDigest BV, Technologiepark-Zwijnaarde 73, 9052 Ghent, Belgium; (C.D.); (M.M.)
- Center of Microbial Ecology and Technology (CMET), Ghent University, 9000 Ghent, Belgium
| | - Pieter Van den Abbeele
- ProDigest BV, Technologiepark-Zwijnaarde 73, 9052 Ghent, Belgium; (C.D.); (M.M.)
- Cryptobiotix SA, Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium;
| | - Derek Zhang
- Ocean Spray Cranberries, Inc., Bridge Street 152, Middleborough, MA 02349, USA
- IQVIA, Emperor Boulevard 4820, Durham, NC 27703, USA;
| |
Collapse
|
13
|
Nemzer BV, Al-Taher F, Yashin A, Revelsky I, Yashin Y. Cranberry: Chemical Composition, Antioxidant Activity and Impact on Human Health: Overview. Molecules 2022; 27:1503. [PMID: 35268605 PMCID: PMC8911768 DOI: 10.3390/molecules27051503] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/15/2022] Open
Abstract
Cranberries are a rich source of bioactive compounds that comprise a healthy diet. Cranberry is abundant in nutritional components and many bioactive compounds that have antioxidant properties. Both American (Vaccinium macrocarpon) and European (Vaccinium oxycoccus) cranberry species are rich in polyphenols such as phenolic acids, anthocyanins and flavonoids, and is one of the few fruits that is high in proanthocyanidins, which is linked to many health benefits. The review systematizes information on the chemical composition of cranberry, its antioxidant effect, and the beneficial impact on human health and disease prevention after cranberry consumption, and in particular, its effect against urinary tract inflammation with both adults and children, cardiovascular, oncology diseases, type 2 diabetes, metabolic syndrome, obesity, tooth decay and periodontitis, Helicobacter pylori bacteria in the stomach and other diseases. Additional research needs to study cranberry proteomics profiling, polyphenols interaction and synergism with other biologically active compounds from natural ingredients and what is important in formulation of new functional foods and supplements.
Collapse
Affiliation(s)
- Boris V. Nemzer
- Department of Research & Development, VDF FutureCeuticals, Inc., Momence, IL 60954, USA;
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Fadwa Al-Taher
- Department of Research & Development, VDF FutureCeuticals, Inc., Momence, IL 60954, USA;
| | - Alexander Yashin
- Chemistry Department, Lomonosov Moscow State University, 119992 Moscow, Russia; (A.Y.); (Y.Y.)
| | - Igor Revelsky
- International Analytical Center, Zelinsky Institute of Organic Chemistry at Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Yakov Yashin
- Chemistry Department, Lomonosov Moscow State University, 119992 Moscow, Russia; (A.Y.); (Y.Y.)
| |
Collapse
|
14
|
Murugaiyan J, Kumar PA, Rao GS, Iskandar K, Hawser S, Hays JP, Mohsen Y, Adukkadukkam S, Awuah WA, Jose RAM, Sylvia N, Nansubuga EP, Tilocca B, Roncada P, Roson-Calero N, Moreno-Morales J, Amin R, Kumar BK, Kumar A, Toufik AR, Zaw TN, Akinwotu OO, Satyaseela MP, van Dongen MBM. Progress in Alternative Strategies to Combat Antimicrobial Resistance: Focus on Antibiotics. Antibiotics (Basel) 2022; 11:200. [PMID: 35203804 PMCID: PMC8868457 DOI: 10.3390/antibiotics11020200] [Citation(s) in RCA: 171] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/24/2022] Open
Abstract
Antibiotic resistance, and, in a broader perspective, antimicrobial resistance (AMR), continues to evolve and spread beyond all boundaries. As a result, infectious diseases have become more challenging or even impossible to treat, leading to an increase in morbidity and mortality. Despite the failure of conventional, traditional antimicrobial therapy, in the past two decades, no novel class of antibiotics has been introduced. Consequently, several novel alternative strategies to combat these (multi-) drug-resistant infectious microorganisms have been identified. The purpose of this review is to gather and consider the strategies that are being applied or proposed as potential alternatives to traditional antibiotics. These strategies include combination therapy, techniques that target the enzymes or proteins responsible for antimicrobial resistance, resistant bacteria, drug delivery systems, physicochemical methods, and unconventional techniques, including the CRISPR-Cas system. These alternative strategies may have the potential to change the treatment of multi-drug-resistant pathogens in human clinical settings.
Collapse
Affiliation(s)
- Jayaseelan Murugaiyan
- Department of Biological Sciences, SRM University-AP, Guntur District, Amaravati 522240, India;
| | - P. Anand Kumar
- Department of Veterinary Microbiology, NTR College of Veterinary Science, Sri Venkateswara Veterinary University, Gannavaram 521102, India;
| | - G. Srinivasa Rao
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science, Sri Venkateswara Veterinary University, Tirupati 517502, India;
| | - Katia Iskandar
- Department of Mathématiques Informatique et Télécommunications, Université Toulouse III, Paul Sabatier, INSERM, UMR 1295, 31000 Toulouse, France;
- INSPECT-LB: Institut National de Santé Publique, d’Épidémiologie Clinique et de Toxicologie-Liban, Beirut 6573, Lebanon
- Faculty of Pharmacy, Lebanese University, Beirut 6573, Lebanon
| | | | - John P. Hays
- Department of Medical Microbiology, Infectious Diseases, Erasmus University Medical Centre (Erasmus MC), 3015 GD Rotterdam, The Netherlands;
| | - Yara Mohsen
- Department of Epidemiology, High Institute of Public Health, Alexandria University, Alexandria 21544, Egypt;
- Infectious Disease Clinical Pharmacist, Antimicrobial Stewardship Department, International Medical Center Hospital, Cairo 11511, Egypt
| | - Saranya Adukkadukkam
- Department of Biological Sciences, SRM University-AP, Guntur District, Amaravati 522240, India;
| | - Wireko Andrew Awuah
- Faculty of Medicine, Sumy State University, 40007 Sumy, Ukraine; (W.A.A.); (A.-R.T.)
| | - Ruiz Alvarez Maria Jose
- Research Coordination and Support Service, National Institute of Health (ISS) Viale Regina -Elena, 299, 00161 Rome, Italy;
| | - Nanono Sylvia
- Infectious Diseases Institute (IDI), College of Health Sciences, Makerere University, Kampala 7072, Uganda;
| | | | - Bruno Tilocca
- Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (B.T.); (P.R.)
| | - Paola Roncada
- Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (B.T.); (P.R.)
| | - Natalia Roson-Calero
- ISGlobal, Hospital Clínic-Universitat de Barcelona, 08036 Barcelona, Spain; (N.R.-C.); (J.M.-M.)
| | - Javier Moreno-Morales
- ISGlobal, Hospital Clínic-Universitat de Barcelona, 08036 Barcelona, Spain; (N.R.-C.); (J.M.-M.)
| | - Rohul Amin
- James P Grant School of Public Health, BRAC University, Dhaka 1212, Bangladesh;
| | - Ballamoole Krishna Kumar
- Nitte (Deemed to be University), Division of Infectious Diseases, Nitte University Centre for Science Education and Research, Deralakatte, Mangalore 575018, India;
| | - Abishek Kumar
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Abdul-Rahman Toufik
- Faculty of Medicine, Sumy State University, 40007 Sumy, Ukraine; (W.A.A.); (A.-R.T.)
| | - Thaint Nadi Zaw
- Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK;
| | - Oluwatosin O. Akinwotu
- Department of Microbiology and Biotechnology Centre, Maharaja Sayajirao University of Baroda, Vadodara 390002, India;
- Environmental and Biotechnology Unit, Department of Microbiology, University of Ibadan, 200132 Ibadan, Nigeria
| | | | | |
Collapse
|
15
|
Renaud V, Houde VP, Pilon G, Varin TV, Roblet C, Marette A, Boutin Y, Bazinet L. The Concentration of Organic Acids in Cranberry Juice Modulates the Gut Microbiota in Mice. Int J Mol Sci 2021; 22:11537. [PMID: 34768966 PMCID: PMC8584276 DOI: 10.3390/ijms222111537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
A daily consumption of cranberry juice (CJ) is linked to many beneficial health effects due to its richness in polyphenols but could also awake some intestinal discomforts due to its organic acid content and possibly lead to intestinal inflammation. Additionally, the impact of such a juice on the gut microbiota is still unknown. Thus, this study aimed to determine the impacts of a daily consumption of CJ and its successive deacidification on the intestinal inflammation and on the gut microbiota in mice. Four deacidified CJs (DCJs) (deacidification rates of 0, 40, 60, and 80%) were produced by electrodialysis with bipolar membrane (EDBM) and administered to C57BL/6J mice for four weeks, while the diet (CHOW) and the water were ad libitum. Different parameters were measured to determine intestinal inflammation when the gut microbiota was profiled. Treatment with a 0% DCJ did not induce intestinal inflammation but increased the gut microbiota diversity and induced a modulation of its functions in comparison with control (water). The effect of the removal of the organic acid content of CJ on the decrease of intestinal inflammation could not be observed. However, deacidification by EDBM of CJ induced an additional increase, in comparison with a 0% DCJ, in the Lachnospiraceae family which have beneficial effects and functions associated with protection of the intestine: the lower the organic acid content, the more bacteria of the Lachnospiraceae family and functions having a positive impact on the gut microbiota.
Collapse
Affiliation(s)
- Valentine Renaud
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC G1V 0A6, Canada; (V.R.); (V.P.H.); (G.P.); (T.V.V.); (A.M.); (Y.B.)
- Laboratoire de Transformation Alimentaire et Procédés ElectroMembranaires (LTAPEM, Laboratory of Food Processing and ElectroMembrane Processes), Université Laval, Québec, QC G1V 0A6, Canada
| | - Vanessa P. Houde
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC G1V 0A6, Canada; (V.R.); (V.P.H.); (G.P.); (T.V.V.); (A.M.); (Y.B.)
- Québec Heart and Lung Institute, Department of Medicine, Université Laval, Québec, QC G1V 4G5, Canada
| | - Geneviève Pilon
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC G1V 0A6, Canada; (V.R.); (V.P.H.); (G.P.); (T.V.V.); (A.M.); (Y.B.)
- Québec Heart and Lung Institute, Department of Medicine, Université Laval, Québec, QC G1V 4G5, Canada
| | - Thibault V. Varin
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC G1V 0A6, Canada; (V.R.); (V.P.H.); (G.P.); (T.V.V.); (A.M.); (Y.B.)
- Québec Heart and Lung Institute, Department of Medicine, Université Laval, Québec, QC G1V 4G5, Canada
| | | | - André Marette
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC G1V 0A6, Canada; (V.R.); (V.P.H.); (G.P.); (T.V.V.); (A.M.); (Y.B.)
- Québec Heart and Lung Institute, Department of Medicine, Université Laval, Québec, QC G1V 4G5, Canada
| | - Yvan Boutin
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC G1V 0A6, Canada; (V.R.); (V.P.H.); (G.P.); (T.V.V.); (A.M.); (Y.B.)
- TransBioTech, Lévis, QC G6V 6Z3, Canada
| | - Laurent Bazinet
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC G1V 0A6, Canada; (V.R.); (V.P.H.); (G.P.); (T.V.V.); (A.M.); (Y.B.)
- Laboratoire de Transformation Alimentaire et Procédés ElectroMembranaires (LTAPEM, Laboratory of Food Processing and ElectroMembrane Processes), Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
16
|
Yu M, Xia Y, Xie W, Li Y, Yu X, Zheng J, Zhang Y. Enzymatic extraction of pectic oligosaccharides from finger citron ( Citrus medica L. var. sarcodactylis Swingle) pomace with antioxidant potential. Food Funct 2021; 12:9855-9865. [PMID: 34664579 DOI: 10.1039/d1fo01576a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Finger citron pomace is a cheap and renewable by-product of the citrus processing industry, representing up to 60% of the fruit biomass. In this study, a pectinase-based and ultrasonic-assisted method was firstly used to extract pectic oligosaccharides (POS) from finger citron pomace. Using the orthogonal experiment design (OED), the maximum conversion rate of up to 64.5% from pomace to POS was obtained under the extraction conditions of 0.25 mg mL-1 pectinase and 50 mg mL-1 pectin at 45 °C and pH 4.5 for 2 h. The extracted POS was then fractionated and purified to homogeneous oligosaccharides (FCPOS-1) with a molecular weight of 2.15 kDa, and the analyses of monosaccharide composition, FTIR, NMR and ESI-MS indicated that FCPOS-1 consisted of GalA and a small amount of mannose, galactose and arabinose. Multiple antioxidant activity assays in vitro revealed that FCPOS-1 possessed remarkable antioxidant properties, especially scavenging activity against DPPH radicals up to 94.07%. FCPOS-1 has the potential to be an effective natural antioxidant for applications in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Min Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yuandan Xia
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Wangling Xie
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yunlong Li
- Zhejiang Fomdas Foods Co., Ltd, Meizhu Agro Product Processing Park, Xinchang 312500, Zhejiang, China
| | - Xinjun Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jianyong Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yinjun Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
17
|
Xia JY, Yang C, Xu DF, Xia H, Yang LG, Sun GJ. Consumption of cranberry as adjuvant therapy for urinary tract infections in susceptible populations: A systematic review and meta-analysis with trial sequential analysis. PLoS One 2021; 16:e0256992. [PMID: 34473789 PMCID: PMC8412316 DOI: 10.1371/journal.pone.0256992] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/19/2021] [Indexed: 11/18/2022] Open
Abstract
The efficacy of cranberry (Vaccinium spp.) as adjuvant therapy in preventing urinary tract infections (UTIs) remains controversial. This study aims to update and determine cranberry effects as adjuvant therapy on the recurrence rate of UTIs in susceptible groups. According to PRISMA guidelines, we conducted a literature search in Web of Science, PubMed, Embase, Scopus, and the Cochrane Library from their inception dates to June 2021. We included articles with data on the incidence of UTIs in susceptible populations using cranberry-containing products. We then conducted a trial sequential analysis to control the risk of type I and type II errors. This meta-analysis included 23 trials with 3979 participants. We found that cranberry-based products intake can significantly reduce the incidence of UTIs in susceptible populations (risk ratio (RR) = 0.70; 95% confidence interval(CI): 0.59 ~ 0.83; P<0.01). We identified a relative risk reduction of 32%, 45% and 51% in women with recurrent UTIs (RR = 0.68; 95% CI: 0.56 ~ 0.81), children (RR = 0.55; 95% CI: 0.31 ~ 0.97) and patients using indwelling catheters (RR = 0.49; 95% CI: 0.33 ~ 0.73). Meanwhile, a relative risk reduction of 35% in people who use cranberry juice compared with those who use cranberry capsule or tablet was observed in the subgroup analysis (RR = 0.65; 95% CI: 0.54 ~ 0.77). The TSA result for the effects of cranberry intake and the decreased risk of UTIs in susceptible groups indicated that the effects were conclusive. In conclusion, our meta-analysis demonstrates that cranberry supplementation significantly reduced the risk of developing UTIs in susceptible populations. Cranberry can be considered as adjuvant therapy for preventing UTIs in susceptible populations. However, given the limitations of the included studies in this meta-analysis, the conclusion should be interpreted with caution.
Collapse
Affiliation(s)
- Jia-yue Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, P.R. China
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, P.R. China
| | - Chao Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, P.R. China
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, P.R. China
| | - Deng-feng Xu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, P.R. China
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, P.R. China
| | - Hui Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, P.R. China
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, P.R. China
| | - Li-gang Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, P.R. China
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, P.R. China
| | - Gui-ju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, P.R. China
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, P.R. China
- * E-mail:
| |
Collapse
|
18
|
Highly Active Cranberry's Polyphenolic Fraction: New Advances in Processing and Clinical Applications. Nutrients 2021; 13:nu13082546. [PMID: 34444706 PMCID: PMC8399388 DOI: 10.3390/nu13082546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
Cranberry is a fruit originally from New England and currently growing throughout the east and northeast parts of the USA and Canada. The supplementation of cranberry extracts as nutraceuticals showed to contribute to the prevention of urinary tract infections, and most likely it may help to prevent cardiovascular and gastroenteric diseases, as highlighted by several clinical trials. However, aiming to validate the efficacy and safety of clinical applications as long-term randomized clinical trials (RCTs), further investigations of the mechanisms of action are required. In addition, a real challenge for next years is the standardization of cranberry’s polyphenolic fractions. In this context, the optimization of the extraction process and downstream processing represent a key point for a reliable active principle for the formulation of a food supplement. For this reason, new non-conventional extraction methods have been developed to improve the quality of the extracts and reduce the overall costs. The aim of this survey is to describe both technologies and processes for highly active cranberry extracts as well as the effects observed in clinical studies and the respective tolerability notes.
Collapse
|
19
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
20
|
Spadoni Andreani E, Karboune S, Liu L. Structural Characterization of Pectic Polysaccharides in the Cell Wall of Stevens Variety Cranberry Using Highly Specific Pectin-Hydrolyzing Enzymes. Polymers (Basel) 2021; 13:1842. [PMID: 34199419 PMCID: PMC8199606 DOI: 10.3390/polym13111842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 11/20/2022] Open
Abstract
The potential of poly- and oligosaccharides as functional ingredients depends on the type and glycosidic linkages of their monosaccharide residues, which determine their techno-functional properties, their digestibility and their fermentability. To isolate the pectic polysaccharides of cranberry, alcohol insoluble solids were first obtained from pomace. A sequential extraction with hot phosphate buffer, chelating agents (CH), diluted (DA) and concentrated sodium hydroxide was then carried out. Pectic polysaccharides present in CH and DA extracts were purified by anion exchange and gel filtration chromatography, then sequentially exposed to commercially available pectin-degrading enzymes (endo-polygalacturonase, pectin lyase and endo-arabinanase/endo-galactanase/both). The composition and linkages of the generated fragments revealed important characteristic features, including the presence of homogalacturonan with varied methyl esterification extent, branched type I arabinogalactan and pectic galactan. The presence of arabinan with galactose branches was suggested upon the analysis of the fragments by LC-MS.
Collapse
Affiliation(s)
| | - Salwa Karboune
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, S.te-Anne-de-Bellevue, QC H9X 3V9, Canada; (E.S.A.); (L.L.)
| | | |
Collapse
|
21
|
Tsukatani T, Sakata F, Kuroda R. A rapid and simple measurement method for biofilm formation inhibitory activity using 96-pin microtiter plate lids. World J Microbiol Biotechnol 2020; 36:189. [PMID: 33242145 DOI: 10.1007/s11274-020-02964-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/16/2020] [Indexed: 12/30/2022]
Abstract
The purpose of this study was to develop a rapid and simple measurement method for biofilm formation inhibitory activity, and to screen food additives and foodstuffs that inhibit biofilm formation. The measurement method for biofilm formation inhibitory activity was developed by combining biofilm formation on pins of microtiter plate lids and staining using crystal violet. The optimum conditions for biofilm formation on the pins were established for seven Gram-positive and six Gram-negative bacteria by investigations of media, incubation time, and pin materials. Minimum concentrations of food additives required to inhibit biofilm formation were determined using the proposed method. The values obtained by the proposed and conventional methods agreed well. In addition, by sequential measurements of minimum inhibitory concentrations and minimum bactericidal concentrations using the proposed method, mechanisms of inhibition of biofilm formation were assessed. Furthermore, inhibitory activities of the water extracts of 498 different plant foodstuffs on biofilm formation by Streptococcus mutans were measured; five of the extracts showed potent inhibitory activities. The method proposed here circumvents the tedious and time-consuming conventional method in which biofilms are cultivated on the bottom of wells of microtiter plates.
Collapse
Affiliation(s)
- Tadayuki Tsukatani
- Biotechnology and Food Research Institute, Fukuoka Industrial Technology Center, 1465-5 Aikawamachi, Kurume, 839-0861, Japan.
| | - Fumihiko Sakata
- Biotechnology and Food Research Institute, Fukuoka Industrial Technology Center, 1465-5 Aikawamachi, Kurume, 839-0861, Japan
| | - Rieko Kuroda
- Biotechnology and Food Research Institute, Fukuoka Industrial Technology Center, 1465-5 Aikawamachi, Kurume, 839-0861, Japan
| |
Collapse
|
22
|
Zhao S, Liu H, Gu L. American cranberries and health benefits - an evolving story of 25 years. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:5111-5116. [PMID: 29315597 DOI: 10.1002/jsfa.8882] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 06/07/2023]
Abstract
Cranberries contain various types of bioactive components. Scientists have been studying cranberries' beneficial effects on urinary tract health since the 20th century. In the 21st century, the protection provided by cranberry phytochemicals against cancer and vascular diseases has drawn more attention from researchers. Anthocyanins, procyanidins, and flavonols in cranberries were all documented to have potential effects on cancer prevention. The cardiometabolic effects of cranberries have been investigated in several clinical trials. It was found that cranberries positively affect atherosclerotic cholesterol profiles and that they reduced several cardiometabolic risk factors. Nowadays, growing evidence suggests other important roles of cranberries in maintaining digestive health. Cranberry juice or cranberries have been shown to inhibit the colonization of H. pylori in stomach, and protect against intestinal inflammation. For future research, clinical trials with improved study design are urgently needed to demonstrate cranberries' benefits on urinary tract health and cardiometabolic diseases. Hypothesis-driven studies using animals or cell culture are needed to elucidate the mechanisms of cranberries' effects on digestive health. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shaomin Zhao
- Department of Food Science and Human Nutrition, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Haiyan Liu
- Ocean Spray Cranberries, Inc., Lakeville, -Middleboro, MA, USA
| | - Liwei Gu
- Department of Food Science and Human Nutrition, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
23
|
Gato E, Rosalowska A, Martínez-Guitián M, Lores M, Bou G, Pérez A. Anti-adhesive activity of a Vaccinium corymbosum polyphenolic extract targeting intestinal colonization by Klebsiella pneumoniae. Biomed Pharmacother 2020; 132:110885. [PMID: 33113420 DOI: 10.1016/j.biopha.2020.110885] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 11/26/2022] Open
Abstract
The therapeutic effect of Vaccinium polyphenols against uropathogens has been widely studied. Most attention has focused on the antimicrobial activity against P-fimbriated Escherichia coli strains. The present study investigated the anti-adhesive and anti-biofilm activity of a saline extract of blueberry (Vaccinium corymbosum) targeting intestinal colonization by a highly adherent Klebsiella pneumoniae strain. This strain, responsible for a large outbreak of infection in Spain, was selected on the basis of its remarkable capacity to colonize the gastrointestinal tract of patients. The blueberry extract was obtained using a medium scale ambient temperature system (MSAT) in a novel approach based on the use of an aqueous solvent and addition of mineral salts. The polyphenolic content was determined by liquid chromatography coupled to tandem mass-spectrometry (LC-MS/MS). The findings confirmed that the blueberry extract is a rich source of phenolic compounds, including the most polar polyphenols (mostly non-flavonoids), intermediate polarity compounds (flavan-3-ols and most procyanidins) and low polarity compounds (flavonols and anthocyanins). The extract significantly inhibited biofilm formation and bacterial adhesion to HT-29 colorectal cells by a highly adherent multidrug-resistant K. pneumoniae. Although some individual anthocyanidins (malvidin, delphinidin and cyanidin) and one hydroxycinnamic acid (caffeic acid) proved capable of reducing bacterial adhesion, the unfractionated extract was more active than any of the individual polyphenolic compounds. In addition, the extract displayed considerable potential as an intestinal decolonization treatment in a murine model. The study findings demonstrate the potential value of the V. corymbosum extract as an alternative treatment for K. pneumoniae infections.
Collapse
Affiliation(s)
- Eva Gato
- Departamento de Microbiología, Complejo Hospitalario Universitario A Coruña (HUAC), Instituto de Investigación Biomédica A Coruña (INIBIC), Universidad de A Coruña (UDC), A Coruña, Spain
| | - Alicja Rosalowska
- Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Marta Martínez-Guitián
- Departamento de Microbiología, Complejo Hospitalario Universitario A Coruña (HUAC), Instituto de Investigación Biomédica A Coruña (INIBIC), Universidad de A Coruña (UDC), A Coruña, Spain
| | - Marta Lores
- Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - German Bou
- Departamento de Microbiología, Complejo Hospitalario Universitario A Coruña (HUAC), Instituto de Investigación Biomédica A Coruña (INIBIC), Universidad de A Coruña (UDC), A Coruña, Spain
| | - Astrid Pérez
- Departamento de Microbiología, Complejo Hospitalario Universitario A Coruña (HUAC), Instituto de Investigación Biomédica A Coruña (INIBIC), Universidad de A Coruña (UDC), A Coruña, Spain.
| |
Collapse
|
24
|
Das S. Natural therapeutics for urinary tract infections-a review. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020; 6:64. [PMID: 33215041 PMCID: PMC7498302 DOI: 10.1186/s43094-020-00086-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 08/18/2020] [Indexed: 12/15/2022] Open
Abstract
Background The recurrence of the urinary tract infections (UTI), following the antibiotic treatments suggests the pathogen’s resistance to conventional antibiotics. This calls for the exploration of an alternative therapy. Main body The anti-uropathogenic and bactericidal activity of many plant extracts was reported by many researchers, which involves only preliminary antibacterial studies using different basic techniques like disk diffusion, agar well diffusion, or minimum inhibitory concentration (MIC) of the crude plant extracts, but reports on the specific action of the phytoconstituents against uropathogens are limited. Vaccinium macrocarpon Aiton (cranberry) is the best-studied home remedy for UTI. Some evidences suggest that proanthocyanins present in cranberry, prevent bacteria from adhering to the walls of the urinary tract, subsequently blocking the further steps of uropathogenesis. Probiotics such as Lactobacillus and Bifidobacterium are beneficial microorganisms that may act by the competitive exclusion principle to defend against infections in the urogenital tracts. Reports on potential vaccine agents and antibodies targeting the different toxins and effecter proteins are still obscure except uropathogenic E. coli. Conclusion This review highlights some of the medicinal herbs used by aborigines to prevent or treat acute or chronic urinary tract infections, botanicals with established urobactericidal activity, clinical trials undertaken to compare the efficacy of cranberry products in UTI prevention, and other natural therapeutics reported for UTI.
Collapse
Affiliation(s)
- Sarita Das
- Department of Botany, Berhampur University, Bhanja Bihar, Berhampur, Orissa 760007 India
| |
Collapse
|
25
|
Rodríguez-Daza MC, Roquim M, Dudonné S, Pilon G, Levy E, Marette A, Roy D, Desjardins Y. Berry Polyphenols and Fibers Modulate Distinct Microbial Metabolic Functions and Gut Microbiota Enterotype-Like Clustering in Obese Mice. Front Microbiol 2020; 11:2032. [PMID: 32983031 PMCID: PMC7479096 DOI: 10.3389/fmicb.2020.02032] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022] Open
Abstract
Berries are rich in polyphenols and plant cell wall polysaccharides (fibers), including cellulose, hemicellulose, arabinans and arabino-xyloglucans rich pectin. Most of polyphenols and fibers are known to be poorly absorbed in the small intestine and reach the colon where they interact with the gut microbiota, conferring health benefits to the host. This study assessed the contribution of polyphenol-rich whole cranberry and blueberry fruit powders (CP and BP), and that of their fibrous fractions (CF and BF) on modulating the gut microbiota, the microbial functional profile and influencing metabolic disorders induced by high-fat high-sucrose (HFHS) diet for 8 weeks. Lean mice-associated taxa, including Akkermansia muciniphila, Dubosiella newyorkensis, and Angelakisella, were selectively induced by diet supplementation with polyphenol-rich CP and BP. Fiber-rich CF also triggered polyphenols-degrading families Coriobacteriaceae and Eggerthellaceae. Diet supplementation with polyphenol-rich CP, but not with its fiber-rich CF, reduced fat mass depots, body weight and energy efficiency in HFHS-fed mice. However, CF reduced liver triglycerides in HFHS-fed mice. Importantly, polyphenol-rich CP-diet normalized microbial functions to a level comparable to that of Chow-fed controls. Using multivariate association modeling, taxa and predicted functions distinguishing an obese phenotype from healthy controls and berry-treated mice were identified. The enterotype-like clustering analysis underlined the link between a long-term diet intake and the functional stratification of the gut microbiota. The supplementation of a HFHS-diet with polyphenol-rich CP drove mice gut microbiota from Firmicutes/Ruminococcus enterotype into an enterotype linked to healthier host status, which is Prevotella/Akkermansiaceae. This study highlights the prebiotic role of polyphenols, and their contribution to the compositional and functional modulation of the gut microbiota, counteracting obesity.
Collapse
Affiliation(s)
- Maria-Carolina Rodríguez-Daza
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Marcela Roquim
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Stéphanie Dudonné
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Geneviève Pilon
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Cardiology Axis of Quebec Heart and Lung Institute, Laval University, Québec, QC, Canada
| | - Emile Levy
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - André Marette
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Cardiology Axis of Quebec Heart and Lung Institute, Laval University, Québec, QC, Canada
| | - Denis Roy
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| |
Collapse
|
26
|
AlSheikh HMA, Sultan I, Kumar V, Rather IA, Al-Sheikh H, Tasleem Jan A, Haq QMR. Plant-Based Phytochemicals as Possible Alternative to Antibiotics in Combating Bacterial Drug Resistance. Antibiotics (Basel) 2020; 9:E480. [PMID: 32759771 PMCID: PMC7460449 DOI: 10.3390/antibiotics9080480] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/26/2020] [Accepted: 08/01/2020] [Indexed: 12/30/2022] Open
Abstract
The unprecedented use of antibiotics that led to development of resistance affect human health worldwide. Prescription of antibiotics imprudently and irrationally in different diseases progressed with the acquisition and as such development of antibiotic resistant microbes that led to the resurgence of pathogenic strains harboring enhanced armors against existing therapeutics. Compromised the treatment regime of a broad range of antibiotics, rise in resistance has threatened human health and increased the treatment cost of diseases. Diverse on metabolic, genetic and physiological fronts, rapid progression of resistant microbes and the lack of a strategic management plan have led researchers to consider plant-derived substances (PDS) as alternative or in complementing antibiotics against the diseases. Considering the quantitative characteristics of plant constituents that attribute health beneficial effects, analytical procedures for their isolation, characterization and phytochemical testing for elucidating ethnopharmacological effects has being worked out for employment in the treatment of different diseases. With an immense potential to combat bacterial infections, PDSs such as polyphenols, alkaloids and tannins, present a great potential for use, either as antimicrobials or as antibiotic resistance modifiers. The present study focuses on the mechanisms by which PDSs help overcome the surge in resistance, approaches for screening different phytochemicals, methods employed in the identification of bioactive components and their testing and strategies that could be adopted for counteracting the lethal consequences of multidrug resistance.
Collapse
Affiliation(s)
- Hana Mohammed Al AlSheikh
- Department of Prosthetic Dental Sciences, College of Dentistry, Kind Saud University, Riyadh P.O. BOX 145111, Saudi Arabia;
| | - Insha Sultan
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Vijay Kumar
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea;
| | - Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdul Aziz University, Jeddah P.O. BOX 80200, Saudi Arabia;
| | - Hashem Al-Sheikh
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India
| | | |
Collapse
|
27
|
Spadoni Andreani E, Karboune S. Comparison of enzymatic and microwave-assisted alkaline extraction approaches for the generation of oligosaccharides from American Cranberry (Vaccinium macrocarpon) Pomace. J Food Sci 2020; 85:2443-2451. [PMID: 32691432 DOI: 10.1111/1750-3841.15352] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/24/2020] [Accepted: 06/05/2020] [Indexed: 01/28/2023]
Abstract
Cranberry pomace obtained from industrial juice production was characterized by proximate composition analysis and monosaccharide profile of the dietary fiber. Extraction of carbohydrates from pomace was investigated using microwave-assisted alkaline method and five commercial biocatalysts (pure endo-galactanase and four multienzyme biocatalysts). The extracts obtained from microwave-assisted approach had average total sugars yield of 21.3% and contained mostly oligosaccharides in the degree of polymerization range of 7 to 10. All multienzyme biocatalysts led to yields similar or higher than microwave-assisted approach (23.4% to 42.0%), but mainly generated shorter oligosaccharides with a degree of polymerization of 2 to 5. Compared to cranberry pomace dietary fiber, microwave-assisted extracts were enriched in pectic oligosaccharides, whereas the enzymatic extracts were enriched in glucans and had less rhamnose and galactose. Pomace ground for 5 min or more by ball mill assumed a powdery consistence. Longer milling did not affect particle size but increased their roughness. Such physical changes had no effect on the efficiency of multienzymatic treatment. PRACTICAL APPLICATION: The increased production of cranberries and cranberry products will continuously generate more pomace, a potentially valuable material for the generation of added-value products. Up to 60% to 70% of cranberry pomace is composed of plant cell wall material. The properties of naturally occurring plant cell wall polysaccharides and their corresponding oligosaccharides have been of a great interest, and many of them find application as functional food ingredients. Despite the fact that the cranberry pomace is rich in plant cell polysaccharides, it has been mainly explored as a source of phenolic antioxidants. This study reveals the efficiency of cranberry pomace as a source of nondigestible oligosaccharides. The use of microwave-assisted extraction and different biocatalysts for the enzymatic extraction led to oligosaccharides with well-defined monosaccharide composition and molecular weight distribution. The study of the effects of these extraction techniques on the yield and the characteristics of generated oligosaccharides would allow the modulation of their properties. As an overall, the findings of this study would contribute to lay the scientific ground for the development of innovative process for the isolation of nondigestible oligosaccharides as functional ingredients from cranberry pomace by products.
Collapse
Affiliation(s)
- Eugenio Spadoni Andreani
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University 21111 Lakeshore, Sainte Anne de Bellevue, Quebec, H9 × 3V9, Canada
| | - Salwa Karboune
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University 21111 Lakeshore, Sainte Anne de Bellevue, Quebec, H9 × 3V9, Canada
| |
Collapse
|
28
|
Renaud V, Faucher M, Perreault V, Serre E, Dubé P, Boutin Y, Bazinet L. Evolution of cranberry juice compounds during in vitro digestion and identification of the organic acid responsible for the disruption of in vitro intestinal cell barrier integrity. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2020; 57:2329-2342. [PMID: 32431359 PMCID: PMC7230080 DOI: 10.1007/s13197-020-04271-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/14/2020] [Accepted: 01/21/2020] [Indexed: 01/02/2023]
Abstract
Cranberry juice is increasingly consumed for its richness in polyphenols having a positive impact on human health. Unfortunately, when regularly consumed, its high concentration in organic acids may cause some intestinal discomforts. In the present study, its organic acid content was reduced of 41% by electrodialysis with bipolar membrane (EDBM), and the resulted deacidified juice was divided in five different juices readjusted or not with different concentrations of citric and/or malic acid(s) corresponding to the concentration of this/these acid(s) recovered during EDBM or at the titratable acidity (TA) of the non-deacidified cranberry juice. The evolution of the cranberry juice main interesting compounds (organic acids and polyphenols), according to the concentration and nature of the organic acids present, was studied for the first time at each specific stages of the digestion. After digestion, Caco-2 cells were exposed to all digested juices to identify the organic acid(s) responsible for the loss of integrity of the epithelial barrier. It appeared that organic acid contents did not change during the different steps of the digestion while polyphenolic compounds decreased starting from the gastric phase. Whatever the organic acid concentration or nature, the concentration of PACs significantly decreased between the salivary and the gastric steps but was different according to their structure when the concentration of most of anthocyanins significantly decreased at the gastric step. Also, to the best of our knowledge, it was the first time that citric acid was demonstrated as the organic acid responsible for the loss of integrity of Caco-2 cell monolayers.
Collapse
Affiliation(s)
- Valentine Renaud
- Institute of Nutrition and Functional Foods (INAF), Department of Food Sciences, Paul Comtois Pavillion, Laval University, Quebec, QC G1V 0A6 Canada
- Laboratory of Food Processing and ElectroMembrane Processes (LTAPEM), Paul Comtois Pavillion, Laval University, Quebec, QC G1V 0A6 Canada
| | - Mélanie Faucher
- Institute of Nutrition and Functional Foods (INAF), Department of Food Sciences, Paul Comtois Pavillion, Laval University, Quebec, QC G1V 0A6 Canada
- Laboratory of Food Processing and ElectroMembrane Processes (LTAPEM), Paul Comtois Pavillion, Laval University, Quebec, QC G1V 0A6 Canada
| | - Véronique Perreault
- Institute of Nutrition and Functional Foods (INAF), Department of Food Sciences, Paul Comtois Pavillion, Laval University, Quebec, QC G1V 0A6 Canada
- Laboratory of Food Processing and ElectroMembrane Processes (LTAPEM), Paul Comtois Pavillion, Laval University, Quebec, QC G1V 0A6 Canada
| | - Elodie Serre
- Institute of Nutrition and Functional Foods (INAF), Department of Food Sciences, Paul Comtois Pavillion, Laval University, Quebec, QC G1V 0A6 Canada
- Laboratory of Food Processing and ElectroMembrane Processes (LTAPEM), Paul Comtois Pavillion, Laval University, Quebec, QC G1V 0A6 Canada
| | - Pascal Dubé
- Industrial Research Center of Quebec (CRIQ), Quebec, QC G1P 4C7 Canada
| | | | - Laurent Bazinet
- Institute of Nutrition and Functional Foods (INAF), Department of Food Sciences, Paul Comtois Pavillion, Laval University, Quebec, QC G1V 0A6 Canada
- Laboratory of Food Processing and ElectroMembrane Processes (LTAPEM), Paul Comtois Pavillion, Laval University, Quebec, QC G1V 0A6 Canada
| |
Collapse
|
29
|
Sánchez MC, Ribeiro-Vidal H, Bartolomé B, Figuero E, Moreno-Arribas MV, Sanz M, Herrera D. New Evidences of Antibacterial Effects of Cranberry Against Periodontal Pathogens. Foods 2020; 9:E246. [PMID: 32102416 PMCID: PMC7074180 DOI: 10.3390/foods9020246] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 01/01/2023] Open
Abstract
The worrying rise in antibiotic resistances emphasizes the need to seek new approaches for treating and preventing periodontal diseases. The purpose of this study was to evaluate the antibacterial and anti-biofilm activity of cranberry in a validated in vitro biofilm model. After chemical characterization of a selected phenolic-rich cranberry extract, its values for minimum inhibitory concentration and minimum bactericidal concentration were calculated for the six bacteria forming the biofilm (Streptococcus oralis, Actinomyces naeslundii, Veillonella parvula, Fusobacterium nucleatum, Porphyromonas gingivalis, and Aggregatibacter actinomycetemcomitans). Antibacterial activity of the cranberry extract in the formed biofilm was evaluated by assessing the reduction in bacteria viability, using quantitative polymerase chain reaction (qPCR) combined with propidium monoazide (PMA), and by confocal laser scanning microscopy (CLSM), and anti-biofilm activity by studying the inhibition of the incorporation of different bacteria species in biofilms formed in the presence of the cranberry extract, using qPCR and CLSM. In planktonic state, bacteria viability was significantly reduced by cranberry (p < 0.05). When growing in biofilms, a significant effect was observed against initial and early colonizers (S. oralis (p ≤ 0.017), A. naeslundii (p = 0.006) and V. parvula (p = 0.010)) after 30 or 60 s of exposure, while no significant effects were detected against periodontal pathogens (F. nucleatum, P. gingivalis or A. actinomycetemcomitans (p > 0.05)). Conversely, cranberry significantly (p < 0.001 in all cases) interfered with the incorporation of five of the six bacteria species during the development of 6 h-biofilms, including P. gingivalis, A. actinomycetemcomitans, and F. nucleatum. It was concluded that cranberry had a moderate antibacterial effect against periodontal pathogens in biofilms, but relevant anti-biofilm properties, by affecting bacteria adhesion in the first 6 h of development of biofilms.
Collapse
Affiliation(s)
- María C. Sánchez
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, University Complutense of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (M.C.S.); (H.R.-V.); (E.F.); (M.S.)
| | - Honorato Ribeiro-Vidal
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, University Complutense of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (M.C.S.); (H.R.-V.); (E.F.); (M.S.)
| | - Begoña Bartolomé
- Institute of Food Science Research (CIAL), CSIC-UAM, c/ Nicolás Cabrera 9, 28049 Madrid, Spain; (B.B.); (M.V.M.-A.)
| | - Elena Figuero
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, University Complutense of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (M.C.S.); (H.R.-V.); (E.F.); (M.S.)
| | - M. Victoria Moreno-Arribas
- Institute of Food Science Research (CIAL), CSIC-UAM, c/ Nicolás Cabrera 9, 28049 Madrid, Spain; (B.B.); (M.V.M.-A.)
| | - Mariano Sanz
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, University Complutense of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (M.C.S.); (H.R.-V.); (E.F.); (M.S.)
| | - David Herrera
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, University Complutense of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (M.C.S.); (H.R.-V.); (E.F.); (M.S.)
| |
Collapse
|
30
|
Coleman CM, Ferreira D. Oligosaccharides and Complex Carbohydrates: A New Paradigm for Cranberry Bioactivity. Molecules 2020; 25:E881. [PMID: 32079271 PMCID: PMC7070526 DOI: 10.3390/molecules25040881] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/04/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
Cranberry is a well-known functional food, but the compounds directly responsible for many of its reported health benefits remain unidentified. Complex carbohydrates, specifically xyloglucan and pectic oligosaccharides, are the newest recognized class of biologically active compounds identified in cranberry materials. Cranberry oligosaccharides have shown similar biological properties as other dietary oligosaccharides, including effects on bacterial adhesion, biofilm formation, and microbial growth. Immunomodulatory and anti-inflammatory activity has also been observed. Oligosaccharides may therefore be significant contributors to many of the health benefits associated with cranberry products. Soluble oligosaccharides are present at relatively high concentrations (~20% w/w or greater) in many cranberry materials, and yet their possible contributions to biological activity have remained unrecognized. This is partly due to the inherent difficulty of detecting these compounds without intentionally seeking them. Inconsistencies in product descriptions and terminology have led to additional confusion regarding cranberry product composition and the possible presence of oligosaccharides. This review will present our current understanding of cranberry oligosaccharides and will discuss their occurrence, structures, ADME, biological properties, and possible prebiotic effects for both gut and urinary tract microbiota. Our hope is that future investigators will consider these compounds as possible significant contributors to the observed biological effects of cranberry.
Collapse
Affiliation(s)
- Christina M. Coleman
- Department of BioMolecular Sciences, Division of Pharmacognosy, and the Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | | |
Collapse
|
31
|
Sun J, Deering RW, Peng Z, Najia L, Khoo C, Cohen PS, Seeram NP, Rowley DC. Pectic Oligosaccharides from Cranberry Prevent Quiescence and Persistence in the Uropathogenic Escherichia coli CFT073. Sci Rep 2019; 9:19590. [PMID: 31862919 PMCID: PMC6925298 DOI: 10.1038/s41598-019-56005-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 12/04/2019] [Indexed: 11/26/2022] Open
Abstract
Urinary tract infections (UTIs) caused by Escherichia coli create a large burden on healthcare and frequently lead to recurrent infections. Part of the success of E. coli as an uropathogenic bacterium can be attributed to its ability to form quiescent intracellular reservoirs in bladder cells and its persistence after antibiotic treatment. Cranberry juice and related products have been used for the prevention of UTIs with varying degrees of success. In this study, a group of cranberry pectic oligosaccharides (cPOS) were found to both inhibit quiescence and reduce the population of persister cells formed by the uropathogenic strain, CFT073. This is the first report detailing constituents of cranberry with the ability to modulate these important physiological aspects of uropathogenic E. coli. Further studies investigating cranberry should be keen to include oligosaccharides as part of the ‘active’ cocktail of chemical compounds.
Collapse
Affiliation(s)
- Jiadong Sun
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA.,Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Robert W Deering
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Zhiyuan Peng
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Laila Najia
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Christina Khoo
- Ocean Spray Cranberries, Inc., One Ocean Spray Drive, Lakeville-Middleboro, MA, 02349, USA
| | - Paul S Cohen
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, 02881, USA
| | - Navindra P Seeram
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - David C Rowley
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA.
| |
Collapse
|
32
|
Gajdács M, Spengler G. The Role of Drug Repurposing in the Development of Novel Antimicrobial Drugs: Non-Antibiotic Pharmacological Agents as Quorum Sensing-Inhibitors. Antibiotics (Basel) 2019; 8:E270. [PMID: 31861228 PMCID: PMC6963710 DOI: 10.3390/antibiotics8040270] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023] Open
Abstract
Background: The emergence of multidrug-resistant organisms (MDROs) is a global public health issue, severely hindering clinicians in administering appropriate antimicrobial therapy. Drug repurposing is a drug development strategy, during which new pharmacological applications are identified for already approved drugs. From the viewpoint of the development of virulence inhibitors, inhibition of quorum sensing (QS) is a promising route because various important features in bacterial physiology and virulence are mediated by QS-dependent gene expression. Methods: Forty-five pharmacological agents, encompassing a wide variety of different chemical structures and mechanisms of action, were tested during our experiments. The antibacterial activity of the compounds was tested using the broth microdilution method. Screening and semi-quantitative assessment of QS-inhibition by the compounds was performed using QS-signal molecule-producing and indicator strains. Results: Fourteen pharmaceutical agents showed antibacterial activity in the tested concentration range, while eight drugs (namely 5-fluorouracil, metamizole-sodium, cisplatin, methotrexate, bleomycin, promethazine, chlorpromazine, and thioridazine) showed dose-dependent QS-inhibitory activity in the in vitro model systems applied during the experiments. Conclusions: Virulence inhibitors represent an attractive alternative strategy to combat bacterial pathogens more efficiently. Some of the tested compounds could be considered potential QS-inhibitory agents, warranting further experiments involving additional model systems to establish the extent of their efficacy.
Collapse
Affiliation(s)
- Márió Gajdács
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Dóm tér 10, 6720 Szeged, Hungary
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös utca 6, 6720 Szeged, Hungary;
| | - Gabriella Spengler
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös utca 6, 6720 Szeged, Hungary;
| |
Collapse
|
33
|
Kokoska L, Kloucek P, Leuner O, Novy P. Plant-Derived Products as Antibacterial and Antifungal Agents in Human Health Care. Curr Med Chem 2019; 26:5501-5541. [PMID: 30182844 DOI: 10.2174/0929867325666180831144344] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/02/2018] [Accepted: 07/19/2018] [Indexed: 01/10/2023]
Abstract
A number of papers reporting antimicrobial properties of extracts, essential oils, resins and various classes of compounds isolated from higher plants have been published in recent years; however, a comprehensive analysis of plant-derived antimicrobial agents currently applied in practice for the improvement of human health is still lacking. This review summarizes data on clinical efficacy, antimicrobial effects and the chemistry of commercially available antibacterial and antifungal agents of plant origin currently used in the prevention and treatment of gastrointestinal, oral, respiratory, skin, and urinary infections. As a result of an analysis of the literature, more than 40 plant-derived over-the-counter pharmaceuticals, dietary supplements, cosmetics, herbal medicines, and functional foods containing complex mixtures (e.g. Glycyrrhiza glabra extract, Melaleuca alternifolia essential oil, and Pistacia lentiscus resin), pure compounds (e.g. benzoic acid, berberine, eucalyptol, salicylic acid and thymol) as well as their derivatives and complexes (e.g. bismuth subsalicylate and zinc pyrithione) have been identified. The effectiveness of many of these products is illustrated by results of clinical trials and supported by data on there in vitro antimicrobial activity. A broad spectrum of various commercial products currently available on the market and their welldocumented clinical efficacy suggests that plants are prospective sources for the identification of new types of antimicrobial agents in future. Innovative approaches and methodologies for effective proof-of-concept research and the development of new types of plant-derived products effective against recently emerging problems related to human microbial diseases (e.g. antimicrobial resistance) are also proposed in this review.
Collapse
Affiliation(s)
- Ladislav Kokoska
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, Prague - Suchdol, 165 00, Czech Republic
| | - Pavel Kloucek
- Department of Quality of Agricultural Products, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague - Suchdol, 165 00, Czech Republic
| | - Olga Leuner
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, Prague - Suchdol, 165 00, Czech Republic
| | - Pavel Novy
- Department of Quality of Agricultural Products, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Prague - Suchdol, 165 00, Czech Republic
| |
Collapse
|
34
|
Gill CM, Hughes MSA, LaPlante KL. A Review of Nonantibiotic Agents to Prevent Urinary Tract Infections in Older Women. J Am Med Dir Assoc 2019; 21:46-54. [PMID: 31227473 DOI: 10.1016/j.jamda.2019.04.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 01/01/2023]
Abstract
OBJECTIVE This article provides a comprehensive literature review on nonantibiotic agents used for the prevention of urinary tract infections (UTIs) in women ≥45 years of age. DESIGN A structured review was performed by conducting a literature search to identify relevant studies pertaining to the use of nonantibiotic agents to prevent UTIs in women who were perimenopausal through postmenopausal. Recommendations were made for or against the use of each nonantibiotic agent, unless data were unavailable. Levels of evidence were assigned to each recommendation made. SETTING AND PARTICIPANTS Studies on the prevention of UTIs with women subjects ≥45 years of age in the community, inpatient, and long-term care settings were considered for inclusion. MEASURE The efficacy and safety of using ascorbic acid, cranberry products, d-mannose, estrogens, lactobacilli, and methenamine hippurate for prevention of UTIs was assessed. RESULTS There is evidence to support use of estrogens (A-I) in postmenopausal women, and cranberry capsules (C-I) in women ≥45 years of age for the prevention of UTIs. There was a lack of evidence to make recommendations for or against the use of ascorbic acid, cranberry juice, cranberry capsules with high proanthocyanidin (PAC) content, d-mannose, lactobacillus, and methenamine hippurate in this population. CONCLUSIONS/IMPLICATIONS Current studies support that estrogens and cranberry capsules may have a role in preventing UTIs in women ≥45 years of age. Further research is needed to elucidate the role of these nonantibiotic agents and how they may be used to decrease antibiotic use.
Collapse
Affiliation(s)
| | - Maria-Stephanie A Hughes
- University of Rhode Island, Department of Pharmacy Practice, College of Pharmacy, Kingston, RI; Veterans Affairs Medical Center, Infectious Diseases Research Program, Providence, RI
| | - Kerry L LaPlante
- University of Rhode Island, Department of Pharmacy Practice, College of Pharmacy, Kingston, RI; Veterans Affairs Medical Center, Infectious Diseases Research Program, Providence, RI; Warren Alpert Medical School of Brown University, Division of Infectious Diseases, Providence, RI.
| |
Collapse
|
35
|
Auker KM, Coleman CM, Wang M, Avula B, Bonnet SL, Kimble LL, Mathison BD, Chew BP, Ferreira D. Structural Characterization of Cranberry Arabinoxyloglucan Oligosaccharides. JOURNAL OF NATURAL PRODUCTS 2019; 82:606-620. [PMID: 30839212 DOI: 10.1021/acs.jnatprod.8b01044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cranberry ( Vaccinium macrocarpon) products are widely available in North American food, juice, and dietary supplement markets. The use of cranberry is popular for the prevention of urinary tract infections (UTIs) and other reported health benefits. Preliminary findings by our research group indicate that arabinoxyloglucan oligosaccharides are present in cranberry products and may contribute to the antiadhesion properties of urine produced after cranberry consumption, but relatively little is known regarding the oligosaccharide components of cranberry. This report describes the isolation from two cranberry sources and the complete structure elucidation of two arabinoxyloglucan oligosaccharides through the use of carbohydrate-specific NMR spectroscopic and chemical derivatization methods. These compounds were identified as the heptasaccharide β-d-glucopyranosyl-(1→4)-[α-d-xylopyranosyl-(1→6)]-β-d-glucopyranosyl-(1→4)-β-d-glucopyranosyl-(1→4)-[α-l-arabinofuranosyl-(1→2)-α-d-xylopyranosyl-(1→6)]-β-d-glucopyranose (1) and the octasaccharide β-d-glucopyranosyl-(1→4)-[α-l-arabinofuranosyl-(1→2)-α-d-xylopyranosyl-(1→6)]-β-d-glucopyranosyl-(1→4)-β-d-glucopyranosyl-(1→4)-[α-l-arabinofuranosyl-(1→2)-α-d-xylopyranosyl-(1→6)]-β-d-glucopyranose (2). Selected fractions and the isolated compounds were subjected to antimicrobial, cell viability, and E. coli antiadhesion assays. Results indicated that enriched fractions and purified compounds lacked antimicrobial and cytotoxic effects, supporting the potential use of such compounds for disease prevention without the risk for resistance development. Preliminary antiadhesion results indicated that mixtures of oligosaccharides exhibited greater antiadhesion properties than purified fractions or pure compounds. The potential use of cranberry oligosaccharides for the prevention of UTIs warrants continued investigations of this complex compound series.
Collapse
Affiliation(s)
- Kimberly M Auker
- Department of BioMolecular Sciences, Division of Pharmacognosy, and the Research Institute of Pharmaceutical Sciences, School of Pharmacy , University of Mississippi , University , Mississippi 38677 , United States
| | - Christina M Coleman
- Department of BioMolecular Sciences, Division of Pharmacognosy, and the Research Institute of Pharmaceutical Sciences, School of Pharmacy , University of Mississippi , University , Mississippi 38677 , United States
| | - Mei Wang
- National Center for Natural Products Research and the Research Institute for Pharmaceutical Sciences, School of Pharmacy , University of Mississippi , University , Mississippi 38677 , United States
| | - Bharathi Avula
- National Center for Natural Products Research and the Research Institute for Pharmaceutical Sciences, School of Pharmacy , University of Mississippi , University , Mississippi 38677 , United States
| | - Susanna L Bonnet
- Department of Chemistry , University of the Free State , 205 Nelson Mandela Drive , Bloemfontein , 9301 , South Africa
| | - Lindsey L Kimble
- School of Food Science , Washington State University , Pullman , Washington 99164-6376 , United States
| | - Bridget D Mathison
- School of Food Science , Washington State University , Pullman , Washington 99164-6376 , United States
| | - Boon P Chew
- School of Food Science , Washington State University , Pullman , Washington 99164-6376 , United States
| | - Daneel Ferreira
- Department of BioMolecular Sciences, Division of Pharmacognosy, and the Research Institute of Pharmaceutical Sciences, School of Pharmacy , University of Mississippi , University , Mississippi 38677 , United States
| |
Collapse
|
36
|
Coleman CM, Auker KM, Killday KB, Azadi P, Black I, Ferreira D. Arabinoxyloglucan Oligosaccharides May Contribute to the Antiadhesive Properties of Porcine Urine after Cranberry Consumption. JOURNAL OF NATURAL PRODUCTS 2019; 82:589-605. [PMID: 30873836 DOI: 10.1021/acs.jnatprod.8b01043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cranberry ( Vaccinium macrocarpon) juice is traditionally used for the prevention of urinary tract infections. Human urine produced after cranberry juice consumption can prevent Escherichia coli adhesion, but the antiadhesive urinary metabolites responsible have not been conclusively identified. Adult female sows were therefore fed spray-dried cranberry powder (5 g/kg/day), and urine was collected via catheter. Urine fractions were tested for antiadhesion activity using a human red blood cell (A+) anti-hemagglutination assay with uropathogenic P-fimbriated E. coli. Components were isolated from fractions of interest using Sephadex LH-20 gel filtration chromatography followed by HPLC on normal and reversed-phase sorbents with evaporative light scattering detection. Active urine fractions were found to contain a complex series of oligosaccharides but not proanthocyanidins, and a single representative arabinoxyloglucan octasaccharide was isolated in sufficient quantity and purity for full structural characterization by chemical derivatization and NMR spectroscopic methods. Analogous cranberry material contained a similar complex series of arabinoxyloglucan oligosaccharides that exhibited antiadhesion properties in preliminary testing. These results indicate that oligosaccharides structurally related to those found in cranberry may contribute to the antiadhesion properties of urine after cranberry consumption.
Collapse
Affiliation(s)
- Christina M Coleman
- Department of BioMolecular Sciences, Division of Pharmacognosy, and the Research Institute of Pharmaceutical Sciences, School of Pharmacy , University of Mississippi , University , Mississippi 38677 , United States
| | - Kimberly M Auker
- Department of BioMolecular Sciences, Division of Pharmacognosy, and the Research Institute of Pharmaceutical Sciences, School of Pharmacy , University of Mississippi , University , Mississippi 38677 , United States
| | - K Brian Killday
- Bruker BioSpin Corporation , Billerica , Massachusetts 01821 , United States
| | - Parastoo Azadi
- Complex Carbohydrate Research Center , University of Georgia , Athens , Georgia 30602 , United States
| | - Ian Black
- Complex Carbohydrate Research Center , University of Georgia , Athens , Georgia 30602 , United States
| | - Daneel Ferreira
- Department of BioMolecular Sciences, Division of Pharmacognosy, and the Research Institute of Pharmaceutical Sciences, School of Pharmacy , University of Mississippi , University , Mississippi 38677 , United States
| |
Collapse
|
37
|
Wu X, Song M, Cai X, Neto C, Tata A, Han Y, Wang Q, Tang Z, Xiao H. Chemopreventive Effects of Whole Cranberry (Vaccinium macrocarpon) on Colitis-Associated Colon Tumorigenesis. Mol Nutr Food Res 2018; 62:e1800942. [PMID: 30353672 DOI: 10.1002/mnfr.201800942] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/26/2018] [Indexed: 12/11/2022]
Abstract
SCOPE There are growing interests in using a whole-food-based approach to prevent chronic diseases due to potential synergistic interactions among different bioactive components within the whole foods. North American cranberry (Vaccinium macrocarpon), a polyphenol-rich fruit, has been shown to exert multiple beneficial health effects. METHODS AND RESULTS For the first time, the protective effects of whole cranberry powder (WCP) are determined against colitis-associated mouse colon tumorigenesis induced by azoxymethane (AOM) and dextran sulfate sodium (DSS). The results show that dietary administration of WCP (1.5%, w/w in the diet) significantly suppresses colon tumorigenesis as indicated by the reduced tumor incidence, multiplicity, burden, and average tumor size in WCP-fed mice compared to the positive control mice. Both gene and protein expression levels of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α are markedly attenuated by WCP treatment in the colon of AOM/DSS-treated mice. Moreover, WCP profoundly modulates multiple signaling pathways/proteins related to inflammation, cell proliferation, apoptosis, angiogenesis, and metastasis in the colon, which is closely associated with the inhibitory effects of WCP on colon tumorigenesis. CONCLUSION Overall, the results demonstrate chemopreventive effects of WCP on colon tumorigenesis in mice, providing a scientific basis for using the whole cranberry as a functional food to promote colon health in humans.
Collapse
Affiliation(s)
- Xian Wu
- Department of Food Science, University of Massachusetts, Amherst, Massachussets, USA
| | - Mingyue Song
- Department of Food Science, University of Massachusetts, Amherst, Massachussets, USA.,College of Food Science, South China Agricultural University, Guangzhou, P. R. China
| | - Xiaokun Cai
- Department of Food Science, University of Massachusetts, Amherst, Massachussets, USA
| | - Catherine Neto
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, Dartmouth, Massachussets, USA
| | - Anuradha Tata
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, Dartmouth, Massachussets, USA
| | - Yanhui Han
- Department of Food Science, University of Massachusetts, Amherst, Massachussets, USA
| | - Qi Wang
- Department of Food Science, University of Massachusetts, Amherst, Massachussets, USA
| | - Zhonghai Tang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, P. R. China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachussets, USA
| |
Collapse
|
38
|
Ranfaing J, Dunyach-Remy C, Lavigne JP, Sotto A. Propolis potentiates the effect of cranberry (Vaccinium macrocarpon) in reducing the motility and the biofilm formation of uropathogenic Escherichia coli. PLoS One 2018; 13:e0202609. [PMID: 30138443 PMCID: PMC6107218 DOI: 10.1371/journal.pone.0202609] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 08/06/2018] [Indexed: 12/28/2022] Open
Abstract
One strategy to prevent urinary tract infections is the use of natural products such as cranberry (Vaccinium macrocarpon) and propolis. The objective of this study was to evaluate the impact of these products alone and combined on the motility and biofilm formation of a collection of representative uropathogenic Escherichia coli (UPEC). Motility was evaluated by the swarming and swimming capacity of the isolates in presence/absence of cranberry ± propolis. Early and late biofilm formation was observed with the Biofilm Ring test (BioFilm Control) and the crystal violet method. Cranberry alone was seen to have a variable effect on motility and biofilm formation unrelated to bacterial characteristics, but a reduced motility and biofilm formation was observed for all the isolates in the presence of cranberry + propolis. These results suggest that cranberry alone doesn’t work on all the E. coli strains and propolis potentiates the effect of cranberry on UPEC, representing a new strategy to prevent recurrent urinary tract infections.
Collapse
Affiliation(s)
- Jérémy Ranfaing
- French National Institute of Health and Medical Research Unit 1047, University Montpellier, Faculty of Medicine, Nîmes, France
| | - Catherine Dunyach-Remy
- French National Institute of Health and Medical Research Unit 1047, University Montpellier, Faculty of Medicine, Nîmes, France
- Department of Microbiology, Nîmes University Hospital, Nîmes, France
| | - Jean-Philippe Lavigne
- French National Institute of Health and Medical Research Unit 1047, University Montpellier, Faculty of Medicine, Nîmes, France
- Department of Microbiology, Nîmes University Hospital, Nîmes, France
- * E-mail:
| | - Albert Sotto
- French National Institute of Health and Medical Research Unit 1047, University Montpellier, Faculty of Medicine, Nîmes, France
- Department of Infectious Diseases, Nîmes University Hospital, Nîmes, France
| |
Collapse
|
39
|
Abstract
Urinary tract infections (UTIs) caused by uropathogenic Escherichia coli (UPEC) are among the most common infectious diseases in humans. Due to their frequent occurrence in the community and nosocomial settings, as well as the development of resistance to the commonly prescribed antimicrobial agents, an enormous financial burden is placed on healthcare systems around the world. Therefore, novel approaches to the prevention and treatment of UTIs are needed. Although UPEC may harbour a plethora of virulence factors, type I fimbriae and P pili are two of the most studied adhesive organelles, since the attachment to host cells in the urinary tract is a crucial step towards infection. Design of receptor analogues that competitively bind to UPEC surface adhesins placed at the top of pili organelles led to the development of anti-adhesive drugs that are increasingly recognized as important and promising alternatives to antibiotic treatment of UTIs.
Collapse
|
40
|
Propolis potentiates the effect of cranberry (Vaccinium macrocarpon) against the virulence of uropathogenic Escherichia coli. Sci Rep 2018; 8:10706. [PMID: 30013052 PMCID: PMC6048107 DOI: 10.1038/s41598-018-29082-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 06/29/2018] [Indexed: 01/08/2023] Open
Abstract
Uropathogenic Escherichia coli (UPEC), the most prevalent bacteria isolated in urinary tract infections (UTI), is now frequently resistant to antibiotics used to treat this pathology. The antibacterial properties of cranberry and propolis could reduce the frequency of UTIs and thus the use of antibiotics, helping in the fight against the emergence of antibiotic resistance. Transcriptomic profiles of a clinical UPEC strain exposed to cranberry proanthocyanidins alone (190 µg/mL), propolis alone (102.4 µg/mL) and a combination of both were determined. Cranberry alone, but more so cranberry + propolis combined, modified the expression of genes involved in different essential pathways: down-expression of genes involved in adhesion, motility, and biofilm formation, and up-regulation of genes involved in iron metabolism and stress response. Phenotypic assays confirmed the decrease of motility (swarming and swimming) and biofilm formation (early formation and formed biofilm). This study showed for the first time that propolis potentiated the effect of cranberry proanthocyanidins on adhesion, motility, biofilm formation, iron metabolism and stress response of UPEC. Cranberry + propolis treatment could represent an interesting new strategy to prevent recurrent UTI.
Collapse
|
41
|
Peron G, Sut S, Pellizzaro A, Brun P, Voinovich D, Castagliuolo I, Dall'Acqua S. The antiadhesive activity of cranberry phytocomplex studied by metabolomics: Intestinal PAC-A metabolites but not intact PAC-A are identified as markers in active urines against uropathogenic Escherichia coli. Fitoterapia 2017; 122:67-75. [DOI: 10.1016/j.fitote.2017.08.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 12/22/2022]
|
42
|
Neto CC, Penndorf KA, Feldman M, Meron-Sudai S, Zakay-Rones Z, Steinberg D, Fridman M, Kashman Y, Ginsburg I, Ofek I, Weiss EI. Characterization of non-dialyzable constituents from cranberry juice that inhibit adhesion, co-aggregation and biofilm formation by oral bacteria. Food Funct 2017; 8:1955-1965. [PMID: 28470309 DOI: 10.1039/c7fo00109f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An extract prepared from cranberry juice by dialysis known as nondialyzable material (NDM) has been shown previously to possess anti-adhesion activity toward microbial species including oral bacteria, uropathogenic Escherichia coli and Helicobacter pylori. Bioassay-guided fractionation of cranberry NDM was therefore undertaken to identify the anti-adhesive constituents. An aqueous acetone-soluble fraction (NDMac) obtained from Sephadex LH-20 inhibited adhesion-linked activities by oral bacteria, including co-aggregation of oral bacteria Fusobacterium nucleatum with Streptococcus sanguinis or Porphyromonas gingivalis, and biofilm formation by Streptococcus mutans. Analysis of NDMac and subsequent subfractions by MALDI-TOF MS and 1H NMR revealed the presence of A-type proanthocyanidin oligomers (PACs) of 3-6 degrees of polymerization composed of (epi)catechin units, with some (epi)gallocatechin and anthocyanin units also present, as well as quercetin derivatives. Subfractions containing putative xyloglucans in addition to the mixed polyphenols also inhibit biofilm formation by S. mutans (MIC = 125-250 μg mL-1). These studies suggest that the anti-adhesion activities of cranberry NDM on oral bacteria may arise from a combination of mixed polyphenol and non-polyphenol constituents.
Collapse
Affiliation(s)
- C C Neto
- Department of Chemistry and Biochemistry, Cranberry Health Research Center, University of Massachusetts-Dartmouth, North Dartmouth, MA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
A Human Gut Commensal Ferments Cranberry Carbohydrates To Produce Formate. Appl Environ Microbiol 2017; 83:AEM.01097-17. [PMID: 28667113 DOI: 10.1128/aem.01097-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/22/2017] [Indexed: 02/07/2023] Open
Abstract
Commensal bifidobacteria colonize the human gastrointestinal tract and catabolize glycans that are impervious to host digestion. Accordingly, Bifidobacterium longum typically secretes acetate and lactate as fermentative end products. This study tested the hypothesis that B. longum utilizes cranberry-derived xyloglucans in a strain-dependent manner. Interestingly, the B. longum strain that efficiently utilizes cranberry xyloglucans secretes 2.0 to 2.5 mol of acetate-lactate. The 1.5 acetate:lactate ratio theoretical yield obtained in hexose fermentations shifts during xyloglucan metabolism. Accordingly, this metabolic shift is characterized by increased acetate and formate production at the expense of lactate. α-l-Arabinofuranosidase, an arabinan endo-1,5-α-l-arabinosidase, and a β-xylosidase with a carbohydrate substrate-binding protein and carbohydrate ABC transporter membrane proteins are upregulated (>2-fold change), which suggests carbon flux through this catabolic pathway. Finally, syntrophic interactions occurred with strains that utilize carbohydrate products derived from initial degradation from heterologous bacteria.IMPORTANCE This was a study of bacterial metabolism of complex cranberry carbohydrates termed xyloglucans that are likely not digested prior to reaching the colon. This is significant, as bifidobacteria interact with this dietary compound to potentially impact human host health through energy and metabolite production by utilizing these substrates. Specific bacterial strains utilize cranberry xyloglucans as a nutritive source, indicating unknown mechanisms that are not universal in bifidobacteria. In addition, xyloglucan metabolism proceeds by using an alternative pathway that could lead to further research to investigate mechanisms underlying this interaction. Finally, we observed cross-feeding between bacteria in which one strain degrades the cranberry xyloglucan to make it available to a second strain. Similar nutritive strategies are known to occur within the gut. In aggregate, this study may lead to novel foods or supplements used to impact human health through rational manipulation of the human microbiome.
Collapse
|
44
|
Das Q, Islam MR, Marcone MF, Warriner K, Diarra MS. Potential of berry extracts to control foodborne pathogens. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.09.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
45
|
Mohanty S, Kamolvit W, Zambrana S, Sandström C, Gonzales E, Östenson CG, Brauner A. Extract of Clinopodium bolivianum protects against E. coli invasion of uroepithelial cells. JOURNAL OF ETHNOPHARMACOLOGY 2017; 198:214-220. [PMID: 28087472 DOI: 10.1016/j.jep.2017.01.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/19/2016] [Accepted: 01/09/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Clinopodium bolivianum is a South American plant with anti-inflammatory and anti-infective activities. The increasing antibiotic resistance urges for alternative therapy. Based on its use in traditional medicine, we investigated the effect of C. bolivianum on the ability to defend bladder epithelial cells from E. coli infection. MATERIALS AND METHODS The extract was analyzed by LC-MS. Bladder epithelial cell lines T24 and 5637 and uropathogenic E. coli No. 12, its isogenic mutant WE16 csgBA bscA::Cm and CFT073 were used to investigate the effect of C. bolivianum on uroepithelial infection. Bacterial adherence and invasion to cells treated with C. bolivianum were analyzed. Expression of uroplakin 1a, β1 integrin, caveolin-1, IL-8 and antimicrobial peptides in response to C. bolivianum treatment was assessed using RT-PCR. Protein expression was confirmed by Western blot analysis or ELISA. The antimicrobial effects of C. bolivianum on bacteria and fungus were investigated using minimum inhibitory concentration. Furthermore, the formation of biofilm was investigated with crystal violet assay. RESULTS C. bolivianum extract consisted of more than 70 different types of phytochemicals including sugars and phenolic compounds. The extract decreased the uroplakin 1a expression and E. coli adhesion and invasion of uroepithelial cells while up-regulated caveolin-1. In uninfected C. bolivianum treated cells, IL-8 was lower than in non-treated cells. In infected cells, however, no difference was observed between treated and non-treated cells. Further, C. bolivianum treatment reduced uropathogenic E. coli (UPEC) biofilms but did not inhibit bacterial growth. CONCLUSIONS Our results show that C. bolivianum has a protective role on bladder epithelial cells against UPEC infection by decreasing the bacterial adhesion, invasion and biofilm formation.
Collapse
Affiliation(s)
- Soumitra Mohanty
- Department of Microbiology, Tumour and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Witchuda Kamolvit
- Department of Microbiology, Tumour and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Silvia Zambrana
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Karolinska University Hospital, 17176 Stockholm, Sweden; Area de Farmacologia, Instituto de Investigaciones Farmaco Bioquimicas, Facultad de Ciencias Farmacéuticas y Bioquimicas, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Corine Sandström
- Department of Chemistry and Biotechnology, Uppsala BioCenter, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Eduardo Gonzales
- Area de Farmacologia, Instituto de Investigaciones Farmaco Bioquimicas, Facultad de Ciencias Farmacéuticas y Bioquimicas, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Claes-Göran Östenson
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Annelie Brauner
- Department of Microbiology, Tumour and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, 17176 Stockholm, Sweden.
| |
Collapse
|
46
|
Sun J, Ma H, Seeram NP, Rowley DC. Detection of Inulin, a Prebiotic Polysaccharide, in Maple Syrup. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7142-7. [PMID: 27612524 PMCID: PMC5819732 DOI: 10.1021/acs.jafc.6b03139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Maple syrup is a widely consumed plant-derived natural sweetener produced by concentrating xylem sap collected from certain maple (Acer) species. During thermal evaporation of water, natural phytochemical components are concentrated in maple syrup. The polymeric components from maple syrup were isolated by ethanol precipitation, dialysis, and anion exchange chromatography and structurally characterized by glycosyl composition analysis, glycosyl linkage analysis, and nuclear magnetic resonance spectroscopy. Among the maple syrup polysaccharides, one neutral polysaccharide was characterized as inulin with a broad molecular weight distribution, representing the first isolation of this prebiotic carbohydrate from a xylem sap. In addition, two acidic polysaccharides with structural similarity were identified as arabinogalactans derived from rhamnogalacturonan type I pectic polysaccharides.
Collapse
Affiliation(s)
- Jiadong Sun
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Hang Ma
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Navindra P. Seeram
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - David C. Rowley
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
47
|
Blumberg JB, Basu A, Krueger CG, Lila MA, Neto CC, Novotny JA, Reed JD, Rodriguez-Mateos A, Toner CD. Impact of Cranberries on Gut Microbiota and Cardiometabolic Health: Proceedings of the Cranberry Health Research Conference 2015. Adv Nutr 2016; 7:759S-70S. [PMID: 27422512 PMCID: PMC4942875 DOI: 10.3945/an.116.012583] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recent advances in cranberry research have expanded the evidence for the role of this Vaccinium berry fruit in modulating gut microbiota function and cardiometabolic risk factors. The A-type structure of cranberry proanthocyanidins seems to be responsible for much of this fruit's efficacy as a natural antimicrobial. Cranberry proanthocyanidins interfere with colonization of the gut by extraintestinal pathogenic Escherichia coli in vitro and attenuate gut barrier dysfunction caused by dietary insults in vivo. Furthermore, new studies indicate synergy between these proanthocyanidins, other cranberry components such as isoprenoids and xyloglucans, and gut microbiota. Together, cranberry constituents and their bioactive catabolites have been found to contribute to mechanisms affecting bacterial adhesion, coaggregation, and biofilm formation that may underlie potential clinical benefits on gastrointestinal and urinary tract infections, as well as on systemic anti-inflammatory actions mediated via the gut microbiome. A limited but growing body of evidence from randomized clinical trials reveals favorable effects of cranberry consumption on measures of cardiometabolic health, including serum lipid profiles, blood pressure, endothelial function, glucoregulation, and a variety of biomarkers of inflammation and oxidative stress. These results warrant further research, particularly studies dedicated to the elucidation of dose-response relations, pharmacokinetic/metabolomics profiles, and relevant biomarkers of action with the use of fully characterized cranberry products. Freeze-dried whole cranberry powder and a matched placebo were recently made available to investigators to facilitate such work, including interlaboratory comparability.
Collapse
Affiliation(s)
- Jeffrey B Blumberg
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA;
| | | | - Christian G Krueger
- Complete Phytochemical Solutions, LLC, Cambridge, WI; University of Wisconsin-Madison, Madison, WI
| | | | | | - Janet A Novotny
- USDA Beltsville Human Nutrition Research Center, Beltsville, MD
| | - Jess D Reed
- Complete Phytochemical Solutions, LLC, Cambridge, WI; University of Wisconsin-Madison, Madison, WI
| | | | - Cheryl D Toner
- The Cranberry Institute, Carver, MA; and CDT Consulting, LLC, Herndon, VA
| |
Collapse
|
48
|
Sun J, Liu W, Ma H, Marais JPJ, Khoo C, Dain JA, Rowley DC, Seeram NP. Effect of cranberry ( Vaccinium macrocarpon) oligosaccharides on the formation of advanced glycation end-products. JOURNAL OF BERRY RESEARCH 2016; 6:149-158. [PMID: 28649289 PMCID: PMC5467715 DOI: 10.3233/jbr-160126] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 03/11/2016] [Indexed: 06/09/2023]
Abstract
BACKGROUND: The formation and accumulation of advanced glycation end-products (AGEs) are implicated in several chronic human illnesses including type-2 diabetes, renal failure, and neurodegenerative diseases. The cranberry (Vaccinium macrocarpon) fruit has been previously reported to show anti-AGEs effects, attributed primarily to its phenolic constituents. However, there is lack of similar data on the non-phenolic constituents found in the cranberry fruit, in particular, its carbohydrate constituents. Herein, a chemically characterized oligosaccharide-enriched fraction purified from the cranberry fruit was evaluated for its potential anti-AGEs and free radical scavenging effects. OBJECTIVE: The aim of this study was to evaluate the in vitro anti-AGEs and free radical scavenging effects of a chemically characterized oligosaccharide-enriched fraction purified from the North American cranberry (Vaccinium macrocarpon) fruit. METHOD: The cranberry oligosaccharide-enriched fraction was purified from cranberry hull powder and characterized based on spectroscopic and spectrometric (NMR, MALDI-TOF-MS, and HPAEC-PAD) data. The oligosaccharide-enriched fraction was evaluated for its anti-AGEs and free radical scavenging effects by the bovine serum albumin-fructose, and DPPH assays, respectively. RESULTS: Fractionation of cranberry hull material yielded an oligosaccharide-enriched fraction named Cranf1b-CL. The 1H NMR and MALDI-TOF-MS revealed that Cranf1b-CL consists of oligosaccharides ranging primarily from 6-mers to 9-mers. The monosaccharide composition of Cranf1b-CL was arabinose (25%), galactose (5%), glucose (47%) and xylose (23%). In the bovine serum albumin-fructose assay, Cranf1b-CL inhibited AGEs formation in a concentration-dependent manner with comparable activity to the synthetic antiglycating agent, aminoguanidine, used as the positive control (57 vs. 75%; both at 500μg/mL). In the DPPH free radical scavenging assay, Cranf1b-CL showed superior activity to the synthetic commercial antioxidant, butylated hydroxytoluene, used as the positive control (IC50 = 680 vs. 2200μg/mL, respectively). CONCLUSION: The in vitro anti-AGEs and free radical scavenging effects of cranberry oligosaccharides support previous data suggesting that these constituents may also contribute to biological effects of the whole fruit beyond its phenolic constituents alone. Also, this is the first study to evaluate a chemically characterized oligosaccharide fraction purified from the North American cranberry fruit for anti-AGEs and free radical scavenging properties.
Collapse
Affiliation(s)
- Jiadong Sun
- Alex and Ani Positive Impact Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Weixi Liu
- Department of Chemistry, University of Rhode Island, Kingston, RI, USA
| | - Hang Ma
- Alex and Ani Positive Impact Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | | | | | - Joel A. Dain
- Department of Chemistry, University of Rhode Island, Kingston, RI, USA
| | - David C. Rowley
- Alex and Ani Positive Impact Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Navindra P. Seeram
- Alex and Ani Positive Impact Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
49
|
Gupta P, Song B, Neto C, Camesano TA. Atomic force microscopy-guided fractionation reveals the influence of cranberry phytochemicals on adhesion of Escherichia coli. Food Funct 2016; 7:2655-66. [DOI: 10.1039/c6fo00109b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Characterization of cranberry juice fractions for their role in anti-adhesive properties against pathogenicE. coliusing Atomic Force Microscopy (AFM).
Collapse
Affiliation(s)
- Prachi Gupta
- Department of Chemical Engineering
- Worcester Polytechnic Institute
- Worcester
- USA
| | - Biqin Song
- Department of Chemistry and Biochemistry
- University of Massachusetts-Dartmouth
- North Dartmouth
- USA
| | - Catherine Neto
- Department of Chemistry and Biochemistry
- University of Massachusetts-Dartmouth
- North Dartmouth
- USA
| | - Terri A. Camesano
- Department of Chemical Engineering
- Worcester Polytechnic Institute
- Worcester
- USA
| |
Collapse
|
50
|
Skrovankova S, Sumczynski D, Mlcek J, Jurikova T, Sochor J. Bioactive Compounds and Antioxidant Activity in Different Types of Berries. Int J Mol Sci 2015; 16:24673-706. [PMID: 26501271 PMCID: PMC4632771 DOI: 10.3390/ijms161024673] [Citation(s) in RCA: 466] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/12/2015] [Accepted: 09/23/2015] [Indexed: 12/31/2022] Open
Abstract
Berries, especially members of several families, such as Rosaceae (strawberry, raspberry, blackberry), and Ericaceae (blueberry, cranberry), belong to the best dietary sources of bioactive compounds (BAC). They have delicious taste and flavor, have economic importance, and because of the antioxidant properties of BAC, they are of great interest also for nutritionists and food technologists due to the opportunity to use BAC as functional foods ingredients. The bioactive compounds in berries contain mainly phenolic compounds (phenolic acids, flavonoids, such as anthocyanins and flavonols, and tannins) and ascorbic acid. These compounds, either individually or combined, are responsible for various health benefits of berries, such as prevention of inflammation disorders, cardiovascular diseases, or protective effects to lower the risk of various cancers. In this review bioactive compounds of commonly consumed berries are described, as well as the factors influencing their antioxidant capacity and their health benefits.
Collapse
Affiliation(s)
- Sona Skrovankova
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, nam. T.G. Masaryka 5555, CZ-760 01 Zlin, Czech Republic.
| | - Daniela Sumczynski
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, nam. T.G. Masaryka 5555, CZ-760 01 Zlin, Czech Republic.
| | - Jiri Mlcek
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlin, nam. T.G. Masaryka 5555, CZ-760 01 Zlin, Czech Republic.
| | - Tunde Jurikova
- Institut for Teacher Training, Faculty of Central European Studies, Constantine the Philosopher University in Nitra, Drazovska 4, Nitra SK-949 74, Slovakia.
| | - Jiri Sochor
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valticka 337, CZ-691 44 Lednice, Czech Republic.
| |
Collapse
|