1
|
Zhao X, Guo J, Wang Y, Yi X. High-tannin food enhances spatial memory and scatter-hoarding in rodents via the microbiota-gut-brain axis. MICROBIOME 2024; 12:140. [PMID: 39075602 DOI: 10.1186/s40168-024-01849-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 05/29/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND The mutually beneficial coevolutionary relationships between rodents and plant seeds have been a theme of research in plant-animal relationships. Seed tannins are important secondary metabolites of plants that regulate the food-hoarding behavior of rodents; however, the underlying molecular mechanisms are not yet clear. In this study, we investigated whether and how seed tannins improve spatial memory and regulate the hoarding behavior of Tamias sibiricus by altering their gut microbiota. RESULTS We showed that acorn tannins not only improved spatial memory but also enhanced scatter-hoarding in T. sibiricus. Changes in the composition and function of the gut microbiota in response to tannins from acorns are closely related to these improvements. Metabonomic analyses revealed the role of gut isovaleric acid and isobutyric acid as well as serum L-tryptophan in mediating the spatial memory of T. sibiricus via the gut microbiota. The hippocampal proteome provides further evidence that the microbiota-gut-brain axis regulates spatial memory and scatter-hoarding in animals. Our study is likely the first to report that plant secondary metabolites improve hippocampal function and spatial memory and ultimately modulate food-hoarding behavior via the microbiota-gut-brain axis. CONCLUSION Our findings may have resolved the long-standing puzzle about the hidden role of plant secondary metabolites in manipulating food-hoarding behavior in rodents via the microbiota-gut-brain axis. Our study is important for better understanding the mutualistic coevolution between plants and animals. Video Abstract.
Collapse
Affiliation(s)
- Xiangyu Zhao
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Jiawei Guo
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
- Present address: Huxi Middle School, Dongchangfu District, Liaocheng, 252000, China
| | - Yiming Wang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Xianfeng Yi
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China.
| |
Collapse
|
2
|
Berrios-Henríquez B, Venegas-Toloza M, Reyes-Fuentes M, Zúñiga-Arbalti F, Bustamante L, García-Cancino A, Alarcón-Enos J, Pastene-Navarrete E. Synthesis and Isolation of Phenol- and Thiol-Derived Epicatechin Adducts Prepared from Avocado Peel Procyanidins Using Centrifugal Partition Chromatography and the Evaluation of Their Antimicrobial and Antioxidant Activity. Molecules 2024; 29:2872. [PMID: 38930937 PMCID: PMC11206461 DOI: 10.3390/molecules29122872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/17/2024] [Accepted: 02/23/2024] [Indexed: 06/28/2024] Open
Abstract
Polyphenols from agro-food waste represent a valuable source of bioactive molecules that can be recovered to be used for their functional properties. Another option is to use them as starting material to generate molecules with new and better properties through semi-synthesis. A proanthocyanidin-rich (PACs) extract from avocado peels was used to prepare several semi-synthetic derivatives of epicatechin by acid cleavage in the presence of phenol and thiol nucleophiles. The adducts formed by this reaction were successfully purified using one-step centrifugal partition chromatography (CPC) and identified by chromatographic and spectroscopic methods. The nine derivatives showed a concentration-dependent free radical scavenging activity in the DPPH assay. All compounds were also tested against a panel of pathogenic bacterial strains formed by Listeria monocytogenes (ATCC 7644 and 19115), Staphylococcus aureus (ATCC 9144), Escherichia coli (ATCC 11775 and 25922), and Salmonella enterica (ATCC 13076). In addition, adducts were tested against two no-pathogenic strains, Limosilactobacillus fermentum UCO-979C and Lacticaseibacillus rhamnosus UCO-25A. Overall, thiol-derived adducts displayed antimicrobial properties and, in some specific cases, inhibited biofilm formation, particularly in Listeria monocytogenes (ATCC 7644). Interestingly, phenolic adducts were inactive against all the strains and could not inhibit its biofilm formation. Moreover, depending on the structure, in specific cases, biofilm formation was strongly promoted. These findings contribute to demonstrating that CPC is a powerful tool to isolate new semi-synthetic molecules using avocado peels as starting material for PACc extraction. These compounds represent new lead molecules with antioxidant and antimicrobial activity.
Collapse
Affiliation(s)
- Barbara Berrios-Henríquez
- Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (B.B.-H.); (M.V.-T.); (A.G.-C.)
| | - Matías Venegas-Toloza
- Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (B.B.-H.); (M.V.-T.); (A.G.-C.)
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Avenida Andrés Bello 720, Chillán 3800708, Chile;
| | - María Reyes-Fuentes
- Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Dr. Carlos Lorca Tobar 964, Independencia, Santiago 8380494, Chile;
| | - Felipe Zúñiga-Arbalti
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile;
| | - Luis Bustamante
- Department of Instrumental Analysis, Faculty of Pharmacy, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile;
| | - Apolinaria García-Cancino
- Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile; (B.B.-H.); (M.V.-T.); (A.G.-C.)
| | - Julio Alarcón-Enos
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Avenida Andrés Bello 720, Chillán 3800708, Chile;
| | - Edgar Pastene-Navarrete
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Avenida Andrés Bello 720, Chillán 3800708, Chile;
| |
Collapse
|
3
|
Láng L, McArthur S, Lazar AS, Pourtau L, Gaudout D, Pontifex MG, Müller M, Vauzour D. Dietary (Poly)phenols and the Gut-Brain Axis in Ageing. Nutrients 2024; 16:1500. [PMID: 38794738 PMCID: PMC11124177 DOI: 10.3390/nu16101500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
As the population ages, the incidence of age-related neurodegenerative diseases is rapidly increasing, and novel approaches to mitigate this soaring prevalence are sorely needed. Recent studies have highlighted the importance of gut microbial homeostasis and its impact on brain functions, commonly referred to as the gut-brain axis, in maintaining overall health and wellbeing. Nonetheless, the mechanisms by which this system acts remains poorly defined. In this review, we will explore how (poly)phenols, a class of natural compounds found in many plant-based foods and beverages, can modulate the gut-brain axis, and thereby promote neural health. While evidence indicates a beneficial role of (poly)phenol consumption as part of a balanced diet, human studies are scarce and mechanistic insight is still lacking. In this regard, we make the case that dietary (poly)phenols should be further explored to establish their therapeutic efficacy on brain health through modulation of the gut-brain axis, with much greater emphasis on carefully designed human interventions.
Collapse
Affiliation(s)
- Léonie Láng
- Norwich Medical School, Biomedical Research Centre, University of East Anglia, Norwich NR4 7TJ, UK; (L.L.); (M.M.)
| | - Simon McArthur
- Faculty of Medicine & Dentistry, Queen Mary, University of London, Blizard Institute, London E1 2AT, UK;
| | - Alpar S. Lazar
- Faculty of Medicine and Health Sciences, The Queen’s Building, University of East Anglia, Norwich NR4 7TJ, UK; (A.S.L.); (M.G.P.)
| | - Line Pourtau
- Activ’Inside, 33750 Beychac et Caillau, France; (L.P.); (D.G.)
| | - David Gaudout
- Activ’Inside, 33750 Beychac et Caillau, France; (L.P.); (D.G.)
| | - Matthew G. Pontifex
- Faculty of Medicine and Health Sciences, The Queen’s Building, University of East Anglia, Norwich NR4 7TJ, UK; (A.S.L.); (M.G.P.)
| | - Michael Müller
- Norwich Medical School, Biomedical Research Centre, University of East Anglia, Norwich NR4 7TJ, UK; (L.L.); (M.M.)
| | - David Vauzour
- Norwich Medical School, Biomedical Research Centre, University of East Anglia, Norwich NR4 7TJ, UK; (L.L.); (M.M.)
| |
Collapse
|
4
|
Najjar RS. The Impacts of Animal-Based Diets in Cardiovascular Disease Development: A Cellular and Physiological Overview. J Cardiovasc Dev Dis 2023; 10:282. [PMID: 37504538 PMCID: PMC10380617 DOI: 10.3390/jcdd10070282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the United States, and diet plays an instrumental role in CVD development. Plant-based diets have been strongly tied to a reduction in CVD incidence. In contrast, animal food consumption may increase CVD risk. While increased serum low-density lipoprotein (LDL) cholesterol concentrations are an established risk factor which may partially explain the positive association with animal foods and CVD, numerous other biochemical factors are also at play. Thus, the aim of this review is to summarize the major cellular and molecular effects of animal food consumption in relation to CVD development. Animal-food-centered diets may (1) increase cardiovascular toll-like receptor (TLR) signaling, due to increased serum endotoxins and oxidized LDL cholesterol, (2) increase cardiovascular lipotoxicity, (3) increase renin-angiotensin system components and subsequent angiotensin II type-1 receptor (AT1R) signaling and (4) increase serum trimethylamine-N-oxide concentrations. These nutritionally mediated factors independently increase cardiovascular oxidative stress and inflammation and are all independently tied to CVD development. Public policy efforts should continue to advocate for the consumption of a mostly plant-based diet, with the minimization of animal-based foods.
Collapse
Affiliation(s)
- Rami Salim Najjar
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
5
|
Chlorogenic acid rich in coffee pulp extract suppresses inflammatory status by inhibiting the p38, MAPK, and NF-κB pathways. Heliyon 2023; 9:e13917. [PMID: 36873494 PMCID: PMC9982044 DOI: 10.1016/j.heliyon.2023.e13917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/08/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Coffee pulp (CP) is a coffee byproduct that contains various active ingredients, namely, chlorogenic acid (CGA) and caffeine. These active compounds show several benefits, including antihyperlipidemia, antioxidants, and anti-inflammation. However, the anti-inflammatory properties of Coffea pulp extract (CPE) are unknown. This work determined the impact of CPE on lipopolysaccharide (LPS)-activated murine macrophage cells and the molecular mechanism behind this action. RAW 264.7 cells were exposed to varying doses of CPE with or without LPS. Inflammatory markers and their mechanism were studied. CPE therapy has been shown to suppress the synthesis of inflammatory cytokines and mediators, namely, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), IL-1β, cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and nitric oxide (NO), as well as prostaglandin E2 (PGE2). Finally, CPE inactivated the nuclear factor-kappa B (NF-κB) and MAPK signaling pathways. Consequently, CPE might be used as a nutraceutical to treat inflammation and its related disorders.
Collapse
|
6
|
Ferreira YAM, Jamar G, Estadella D, Pisani LP. Proanthocyanidins in grape seeds and their role in gut microbiota-white adipose tissue axis. Food Chem 2022; 404:134405. [DOI: 10.1016/j.foodchem.2022.134405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/25/2022] [Accepted: 09/22/2022] [Indexed: 11/27/2022]
|
7
|
Medina-Larqué AS, Rodríguez-Daza MC, Roquim M, Dudonné S, Pilon G, Levy É, Marette A, Roy D, Jacques H, Desjardins Y. Cranberry polyphenols and agave agavins impact gut immune response and microbiota composition while improving gut barrier function, inflammation, and glucose metabolism in mice fed an obesogenic diet. Front Immunol 2022; 13:871080. [PMID: 36052065 PMCID: PMC9424773 DOI: 10.3389/fimmu.2022.871080] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022] Open
Abstract
The consumption of plant-based bioactive compounds modulates the gut microbiota and interacts with the innate and adaptive immune responses associated with metabolic disorders. The present study aimed to evaluate the effect of cranberry polyphenols (CP), rich in flavonoids, and agavins (AG), a highly branched agave-derived neo-fructans, on cardiometabolic response, gut microbiota composition, metabolic endotoxemia, and mucosal immunomodulation of C57BL6 male mice fed an obesogenic high-fat and high-sucrose (HFHS) diet for 9 weeks. Interestingly, CP+AG-fed mice had improved glucose homeostasis. Oral supplementation with CP selectively and robustly (five-fold) increases the relative abundance of Akkermansia muciniphila, a beneficial bacteria associated with metabolic health. AG, either alone or combined with CP (CP+AG), mainly stimulated the glycan-degrading bacteria Muribaculum intestinale, Faecalibaculum rodentium, Bacteroides uniformis, and Bacteroides acidifaciens. This increase of glycan-degrading bacteria was consistent with a significantly increased level of butyrate in obese mice receiving AG, as compared to untreated counterparts. CP+AG-supplemented HFHS-fed mice had significantly lower levels of plasma LBP than HFHS-fed controls, suggesting blunted metabolic endotoxemia and improved intestinal barrier function. Gut microbiota and derived metabolites interact with the immunological factors to improve intestinal epithelium barrier function. Oral administration of CP and AG to obese mice contributed to dampen the pro-inflammatory immune response through different signaling pathways. CP and AG, alone or combined, increased toll-like receptor (TLR)-2 (Tlr2) expression, while decreasing the expression of interleukin 1ß (ILß1) in obese mice. Moreover, AG selectively promoted the anti-inflammatory marker Foxp3, while CP increased the expression of NOD-like receptor family pyrin domain containing 6 (Nlrp6) inflammasome. The intestinal immune system was also shaped by dietary factor recognition. Indeed, the combination of CP+AG significantly increased the expression of aryl hydrocarbon receptors (Ahr). Altogether, both CP and AG can shape gut microbiota composition and regulate key mucosal markers involved in the repair of epithelial barrier integrity, thereby attenuating obesity-associated gut dysbiosis and metabolic inflammation and improving glucose homeostasis.
Collapse
Affiliation(s)
- Ana-Sofía Medina-Larqué
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada
- School of Nutrition, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - María-Carolina Rodríguez-Daza
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada
- Department of Food Science, Faculté des sciences de l’agriculture et de l’alimentation (FSAA), Laval University, Québec, QC, Canada
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Marcela Roquim
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada
| | - Stéphanie Dudonné
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada
- Department of Plant Science, FSAA, Laval University, Québec, QC, Canada
| | - Geneviève Pilon
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Cardiology Axis of Quebec Heart and Lung Institute, Laval University, Québec, QC, Canada
| | - Émile Levy
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada
- Research Centre, Sainte- Justine Hospital, Montreal, QC, Canada
| | - André Marette
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Cardiology Axis of Quebec Heart and Lung Institute, Laval University, Québec, QC, Canada
| | - Denis Roy
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada
- Department of Food Science, Faculté des sciences de l’agriculture et de l’alimentation (FSAA), Laval University, Québec, QC, Canada
| | - Hélène Jacques
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada
- School of Nutrition, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada
- Department of Plant Science, FSAA, Laval University, Québec, QC, Canada
- *Correspondence: Yves Desjardins,
| |
Collapse
|
8
|
Chen Y, Wang J, Zou L, Cao H, Ni X, Xiao J. Dietary proanthocyanidins on gastrointestinal health and the interactions with gut microbiota. Crit Rev Food Sci Nutr 2022; 63:6285-6308. [PMID: 35114875 DOI: 10.1080/10408398.2022.2030296] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Many epidemiological and experimental studies have consistently reported the beneficial effects of dietary proanthocyanidins (PAC) on improving gastrointestinal physiological functions. This review aims to present a comprehensive perspective by focusing on structural properties, interactions and gastrointestinal protection of PAC. In brief, the main findings of this review are summarized as follows: (1) Structural features are critical factors in determining the bioavailability and subsequent pharmacology of PAC; (2) PAC and/or their bacterial metabolites can play a direct role in the gastrointestinal tract through their antioxidant, antibacterial, anti-inflammatory, and anti-proliferative properties; (3) PAC can reduce the digestion, absorption, and bioavailability of carbohydrates, proteins, and lipids by interacting with them or their according enzymes and transporters in the gastrointestinal tract; (4). PAC showed a prebiotic-like effect by interacting with the microflora in the intestinal tract, and the enhancement of PAC on a variety of probiotics, such as Bifidobacterium spp. and Lactobacillus spp. could be associated with potential benefits to human health. In conclusion, the potential effects of PAC in prevention and alleviation of gastrointestinal diseases are remarkable but clinical evidence is urgently needed.
Collapse
Affiliation(s)
- Yong Chen
- Laboratory of Food Oral Processing, School of Food Science & Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jing Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
- Ningbo Research Institute, Zhejiang University, Ningbo, Zhejiang, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Hui Cao
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Ourense, Spain
| | - Xiaoling Ni
- Pancreatic Cancer Group, General Surgery Department, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianbo Xiao
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| |
Collapse
|
9
|
Interference of dietary polyphenols with potentially toxic amino acid metabolites derived from the colonic microbiota. Amino Acids 2021; 54:311-324. [PMID: 34235577 DOI: 10.1007/s00726-021-03034-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023]
Abstract
Each day, varying amounts of undigested or partially digested proteins reach the colon where they are metabolized by the microbiota, resulting in the formation of compounds such as ammonia, p-cresol, skatole, phenol, indole, and hydrogen sulfide (H2S). In farm animals, the excessive production of these metabolites can affect the quality of meat and milk and is a source of contaminating emissions from animal manure. In humans, their accumulation is potentially harmful, and it has been proposed that they could be involved in the development of pathologies such as colorectal cancer and ulcerative colitis, among others. This review assesses the evidence supporting the use of dietary polyphenols to reduce the production of these metabolites. Most studies have used condensed (proanthocyanidins) or hydrolyzable (ellagitannins and gallotannins) tannins, and have been carried out in farm animals. Several show that the administration of tannins in pigs, chicken, and ruminants decreases the levels of ammonia, p-cresol, skatole, and/or H2S, improving meat/milk quality and reducing manure odor. Direct application of tannins to manure also decreases ammonia emissions. Few studies were carried out in rats and humans and their results confirm, to a lesser extent, those reported in farm animals. These effects would be due to the capacity of tannins to trap ammonia and H2S, and to modify the composition of the microbiota, reducing the bacterial populations producing metabolites. In addition, PACs prevent p-cresol and H2S-induced alterations on intestinal cells in vitro. Tannins, therefore, appear as an interesting tool for improving the quality of animal products, human health, and the harmful emissions associated with breeding.
Collapse
|
10
|
Ontawong A, Srimaroeng C, Boonphang O, Phatsara M, Amornlerdpison D, Duangjai A. Spirogyra neglecta Aqueous Extract Attenuates LPS-Induced Renal Inflammation. Biol Pharm Bull 2020; 42:1814-1822. [PMID: 31685765 DOI: 10.1248/bpb.b19-00199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Spirogyra neglecta (SN), commonly named "Tao" in Thai, is a genus of filamentous green macroalgae. SN contains polyphenols such as isoquercetin, catechin, hydroquinone and kaempferol. These constituents exhibit beneficial effects including anti-oxidant, anti-gastric ulcer, anti-hyperglycaemia and anti-hyperlipidaemia in both in vitro and in vivo models. Whether SN extract (SNE) has an anti-inflammatory effect in vivo remains unclear. This study examined the effect of SNE on renal function and renal organic transport in lipopolysaccharide (LPS)-induced renal inflammation in rats. Rats were randomised and divided into normal saline (NS), NS supplemented with 1000 mg/kg body weight (BW) of SNE (NS + SNE), intraperitoneally injected with 12 mg/kg BW of LPS and LPS treated with 1000 mg/kg BW of SNE (LPS + SNE). Biochemical parameters in serum and urine, lipid peroxidation concentration, kidney function and renal organic anion and cation transports were determined. LPS-injected rats developed renal injury and inflammation by increasing urine microalbumin, total malondialdehyde (MDA) and inflammatory cytokines, tumor necrosis factor (TNF)-α and interleukin (IL)-1β protein expression, respectively. In addition, uptake of renal organic anion, [3H]-oestrone sulphate (ES), was reduced in LPS-injected rats together with increased expression of organic anion transporter 3 (Oat3). However, the renal injury and inflammation, as well as impaired Oat3 function and protein expression, were restored in LPS + SNE rats. Accordingly, SNE could be developed as nutraceutical product to prevent inflammation-induced nephrotoxicity.
Collapse
|
11
|
Phytopharmacological Strategies in the Management of Type 2 Diabetes Mellitus. Foods 2020; 9:foods9030271. [PMID: 32131470 PMCID: PMC7143818 DOI: 10.3390/foods9030271] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 01/10/2023] Open
Abstract
Type 2 Diabetes Mellitus (T2DM) is a chronic disease which corresponds to 90% of the worldwide cases of diabetes, mainly due to epigenetic factors such as unhealthy lifestyles. First line therapeutic approaches are based on lifestyle changes, most of the time complemented with medication mostly associated with several side effects and high costs. As a result, the scientific community is constantly working for the discovery and development of natural therapeutic strategies that provide lower financial impact and minimize side effects. This review focus on these nature-based therapeutic strategies for prevention and control of T2DM, with a special emphasis on natural compounds that present pharmacological activity as dipeptidyl peptidase-4 (DPP4), alpha-amylase, alpha-glucosidase, lipase, and protein tyrosine phosphatase 1B (PTP1B) inhibitors.
Collapse
|
12
|
Wine pomace product ameliorates hypertensive and diabetic aorta vascular remodeling through antioxidant and anti-inflammatory actions. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
13
|
Cires MJ, Navarrete P, Pastene E, Carrasco-Pozo C, Valenzuela R, Medina DA, Andriamihaja M, Beaumont M, Blachier F, Gotteland M. Effect of a proanthocyanidin-rich polyphenol extract from avocado on the production of amino acid-derived bacterial metabolites and the microbiota composition in rats fed a high-protein diet. Food Funct 2020; 10:4022-4035. [PMID: 31218325 DOI: 10.1039/c9fo00700h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The consumption of high-protein diets (HPDs) increases the flux of undigested proteins moving to the colon. These proteins are hydrolyzed by bacterial proteases and peptidases, releasing amino acids, which in turn are metabolized by the intestinal microbiota (IM) for protein synthesis and production of various metabolites that can exert positive or deleterious effects, depending on their concentrations, at the colonic or systemic level. On the other hand, proanthocyanidins are polymers of flavan-3-ols which cannot be absorbed at the intestinal level, accumulating in the colon where they are fermented by the IM producing metabolites that appear beneficial for colonocytes and also at the peripheral level. This study evaluated the effect of an avocado peel polyphenol extract (AvPPE) rich in proanthocyanidins on the production of cecal bacterial metabolites and microbiota composition in rats fed a HPD. Compared with the normal-protein (NP) group, HPD did not markedly affect the body weight gain of the animals, but increased the kidney weight. Additionally, the HPD induced a higher cecal concentration of ammonia (NH4+/NH3), hydrogen sulfide (H2S) and branched-chain fatty acids (BCFAs). The supplementation with AvPPE attenuated the production of H2S and increased the production of indole. On the other hand, the HPD affected the composition of the cecal microbiota, increasing the relative abundance of the genera Bacteroides and Lactobacillus, while decreasing Prevotella. The AvPPE counteracted the increase induced by the HPD on the genus Lactobacillus, and increased the relative abundance of [Prevotella]. Our results contribute towards explaining the health-promoting effects of proanthocyanidin-rich dietary foodstuffs including fruits and vegetables.
Collapse
Affiliation(s)
- María José Cires
- Department of Nutrition, Faculty of Medicine, University of Chile, Chile.
| | - Paola Navarrete
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, Chile and Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
| | - Edgar Pastene
- Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Concepción, Chile
| | - Catalina Carrasco-Pozo
- Department of Nutrition, Faculty of Medicine, University of Chile, Chile. and Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Chile.
| | - Daniel A Medina
- Applied Biotechnology Laboratory, Faculty of Veterinary Medicine, San Sebastian University, Lago Panguipulli 1390, Puerto Montt 5501842, Chile
| | | | - Martin Beaumont
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, France and GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Toulouse, France
| | | | - Martin Gotteland
- Department of Nutrition, Faculty of Medicine, University of Chile, Chile. and Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, Chile and Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
| |
Collapse
|
14
|
González-Quilen C, Rodríguez-Gallego E, Beltrán-Debón R, Pinent M, Ardévol A, Blay MT, Terra X. Health-Promoting Properties of Proanthocyanidins for Intestinal Dysfunction. Nutrients 2020; 12:E130. [PMID: 31906505 PMCID: PMC7019584 DOI: 10.3390/nu12010130] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/20/2019] [Accepted: 12/31/2019] [Indexed: 12/22/2022] Open
Abstract
The intestinal barrier is constantly exposed to potentially harmful environmental factors, including food components and bacterial endotoxins. When intestinal barrier function and immune homeostasis are compromised (intestinal dysfunction), inflammatory conditions may develop and impact overall health. Evidence from experimental animal and cell culture studies suggests that exposure of intestinal mucosa to proanthocyanidin (PAC)-rich plant products, such as grape seeds, may contribute to maintaining the barrier function and to ameliorating the pathological inflammation present in diet-induced obesity and inflammatory bowel disease. In this review, we aim to update the current knowledge on the bioactivity of PACs in experimental models of intestinal dysfunction and in humans, and to provide insights into the underlying biochemical and molecular mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | - M Teresa Blay
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (C.G.-Q.); (E.R.-G.); (R.B.-D.); (M.P.); (A.A.); (X.T.)
| | | |
Collapse
|
15
|
Pedro AC, Maciel GM, Rampazzo Ribeiro V, Haminiuk CWI. Fundamental and applied aspects of catechins from different sources: a review. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14371] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Alessandra Cristina Pedro
- Programa de Pós‐Graduação em Engenharia de Alimentos (PPGEAL) Universidade Federal do Paraná Curitiba CEP (81531‐980) PR Brasil
| | - Giselle Maria Maciel
- Departamento de Química e Biologia (DAQBi) Programa de Pós‐Graduação em Ciência e Tecnologia Ambiental (PPGCTA) Universidade Tecnológica Federal do Paraná Câmpus Curitiba CEP (81280‐340) PR Brasil
| | - Valéria Rampazzo Ribeiro
- Programa de Pós‐Graduação em Engenharia de Alimentos (PPGEAL) Universidade Federal do Paraná Curitiba CEP (81531‐980) PR Brasil
| | - Charles Windson Isidoro Haminiuk
- Departamento de Química e Biologia (DAQBi) Programa de Pós‐Graduação em Ciência e Tecnologia Ambiental (PPGCTA) Universidade Tecnológica Federal do Paraná Câmpus Curitiba CEP (81280‐340) PR Brasil
| |
Collapse
|
16
|
González-Quilen C, Gil-Cardoso K, Ginés I, Beltrán-Debón R, Pinent M, Ardévol A, Terra X, Blay MT. Grape-Seed Proanthocyanidins are Able to Reverse Intestinal Dysfunction and Metabolic Endotoxemia Induced by a Cafeteria Diet in Wistar Rats. Nutrients 2019; 11:nu11050979. [PMID: 31035432 PMCID: PMC6567002 DOI: 10.3390/nu11050979] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/12/2019] [Accepted: 04/26/2019] [Indexed: 02/06/2023] Open
Abstract
We evaluated the effectiveness of pharmacological doses of grape-seed proanthocyanidin extract (GSPE) in reversing intestinal barrier alterations and local inflammation in female Wistar rats fed a long-term obesogenic diet. Animals were fed a 17-week cafeteria diet (CAF diet), supplemented with daily GSPE doses (100 or 500 mg kg−1 body weight) during the final two weeks. CAF diet enhanced the intestinal permeation of an orally administered marker (ovalbumin, OVA) and increased the plasma levels of tumor necrosis factor-α (TNF-α) and lipopolysaccharides (LPS) in 2–3-fold. Ex vivo Ussing chamber assays showed a 55–70% reduction in transepithelial electrical resistance (TEER) and increased the TNF-α secretions in both small and large intestinal sections with a 25-fold increment in the ileum. Ileal tissues also presented a 4-fold increase of myeloperoxidase (MPO) activity. Both GSPE-treatments were able to restitute TEER values in the ileum and colon and to reduce plasma LPS to basal levels without a dose-dependent effect. However, effects on the OVA permeation and TNF-α secretion were dose and section-specific. GSPE also reduced ileal MPO activity and upregulated claudin 1 gene expression. This study provides evidence of the efficacy of GSPE-supplementation ameliorating diet-induced intestinal dysfunction and metabolic endotoxemia when administered at the end of a long-term obesogenic diet.
Collapse
Affiliation(s)
- Carlos González-Quilen
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Katherine Gil-Cardoso
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Iris Ginés
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Raúl Beltrán-Debón
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Montserrat Pinent
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Anna Ardévol
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Ximena Terra
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - M Teresa Blay
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| |
Collapse
|
17
|
Lin S, Wang Z, Lam KL, Zeng S, Tan BK, Hu J. Role of intestinal microecology in the regulation of energy metabolism by dietary polyphenols and their metabolites. Food Nutr Res 2019; 63:1518. [PMID: 30814920 PMCID: PMC6385797 DOI: 10.29219/fnr.v63.1518] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 12/01/2018] [Accepted: 12/18/2018] [Indexed: 12/24/2022] Open
Abstract
Background Polyphenols are a class of plant secondary metabolites with a variety of physiological functions. Polyphenols and their intestinal metabolites could greatly affect host energy metabolism via multiple mechanisms. Objective The objective of this review was to elaborate the role of intestinal microecology in the regulatory effects of dietary polyphenols and their metabolites on energy metabolism. Methods In this review, we illustrated the potential mechanisms of energy metabolism regulated by the crosstalk between polyphenols and intestinal microecology including intestinal microbiota, intestinal epithelial cells, and mucosal immune system. Results Polyphenols can selectively regulate the growth of susceptible microorganisms (eg. reducing the ratio of Firmicutes to Bacteroides, promoting the growth of beneficial bacteria and inhibiting pathogenic bacteria) as well as alter bacterial enzyme activity. Moreover, polyphenols can influence the absorption and secretion of intestinal epithelial cells, and alter the intestinal mucosal immune system. Conclusion The intestinal microecology play a crucial role for the regulation of energy metabolism by dietary polyphenols.
Collapse
Affiliation(s)
- Shaoling Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhengyu Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ka-Lung Lam
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Shaoxiao Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bee K Tan
- Departments of Cardiovascular Sciences, Health Sciences and Leicester Diabetes Centre, College of Life Sciences, University of Leicester, University Road, Leicester, United Kingdom
| | - Jiamiao Hu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
18
|
Macho-González A, Garcimartín A, Naes F, López-Oliva ME, Amores-Arrojo A, González-Muñoz MJ, Bastida S, Benedí J, Sánchez-Muniz FJ. Effects of Fiber Purified Extract of Carob Fruit on Fat Digestion and Postprandial Lipemia in Healthy Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6734-6741. [PMID: 29877081 DOI: 10.1021/acs.jafc.8b01476] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Increased postprandial lipemia is a cardiovascular disease (CVD) risk factor. Carob fruit extract (CFE) contains condensed tannins, and their intake has been inversely related to CVD. The objective was to evaluate the in vitro pancreatic lipase activity in the presence of CFE and the in vivo effect of CFE on postprandial lipemia of healthy Wistar rats in acute and subchronic digestibility studies and to relate it with changes in fat digestion and absorption. CFE significantly reduced pancreatic lipase activity. A peak delay and a dose-dependent decrease in plasma triglyceride and cholesterol areas under the curve were observed, effects that increased after the subchronic treatment. The levels of nondigested, nonabsorbed triglycerides of the remaining intestinal lumen fat were significantly higher in the maximum dose of CFE administrated versus the control ( P < 0.05). This study demonstrates for the first time the hypolipemic properties of CFE from the first administration, modifying postprandial lipemia by reducing the extents of fat digestion and absorption.
Collapse
Affiliation(s)
- A Macho-González
- Nutrition and Food Science Department (Nutrition), Pharmacy School , Complutense University of Madrid , 28040 Madrid , Spain
- AFUSAN Group , Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC) , 28040 Madrid , Spain
- Nutrition and Cardiovascular Disease Group , Complutense University of Madrid , 28040 Madrid , Spain
| | - A Garcimartín
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School , Complutense University of Madrid , 28040 Madrid , Spain
- AFUSAN Group , Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC) , 28040 Madrid , Spain
- Nutrition and Cardiovascular Disease Group , Complutense University of Madrid , 28040 Madrid , Spain
| | - F Naes
- Nutrition and Food Science Department (Nutrition), Pharmacy School , Complutense University of Madrid , 28040 Madrid , Spain
- AFUSAN Group , Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC) , 28040 Madrid , Spain
- Nutrition and Cardiovascular Disease Group , Complutense University of Madrid , 28040 Madrid , Spain
| | - M E López-Oliva
- Departmental Section of Physiology, Pharmacy School , Complutense University of Madrid , 28040 Madrid , Spain
- AFUSAN Group , Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC) , 28040 Madrid , Spain
- Nutrition and Cardiovascular Disease Group , Complutense University of Madrid , 28040 Madrid , Spain
| | - A Amores-Arrojo
- Nutrition and Food Science Department (Nutrition), Pharmacy School , Complutense University of Madrid , 28040 Madrid , Spain
| | - M J González-Muñoz
- Biomedical Sciences Department, Toxicology Teaching Unit, Pharmacy School , Alcala University , 28801 Alcalá de Henares , Spain
- AFUSAN Group , Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC) , 28040 Madrid , Spain
- Nutrition and Cardiovascular Disease Group , Complutense University of Madrid , 28040 Madrid , Spain
| | - S Bastida
- Nutrition and Food Science Department (Nutrition), Pharmacy School , Complutense University of Madrid , 28040 Madrid , Spain
- AFUSAN Group , Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC) , 28040 Madrid , Spain
- Nutrition and Cardiovascular Disease Group , Complutense University of Madrid , 28040 Madrid , Spain
| | - J Benedí
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School , Complutense University of Madrid , 28040 Madrid , Spain
- AFUSAN Group , Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC) , 28040 Madrid , Spain
- Nutrition and Cardiovascular Disease Group , Complutense University of Madrid , 28040 Madrid , Spain
| | - F J Sánchez-Muniz
- Nutrition and Food Science Department (Nutrition), Pharmacy School , Complutense University of Madrid , 28040 Madrid , Spain
- AFUSAN Group , Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC) , 28040 Madrid , Spain
- Nutrition and Cardiovascular Disease Group , Complutense University of Madrid , 28040 Madrid , Spain
| |
Collapse
|
19
|
Bailey MA, Holscher HD. Microbiome-Mediated Effects of the Mediterranean Diet on Inflammation. Adv Nutr 2018; 9:193-206. [PMID: 29767701 PMCID: PMC5952955 DOI: 10.1093/advances/nmy013] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/07/2017] [Accepted: 03/01/2018] [Indexed: 12/11/2022] Open
Abstract
The Mediterranean diet pattern is increasingly associated with improved metabolic health. Two mechanisms by which consuming a Mediterranean diet pattern may contribute to improved metabolic health are modulation of the gastrointestinal (GI) microbiota and reduction of metabolic endotoxemia. Metabolic endotoxemia, defined as a 2- to 3-fold increase in circulating levels of bacterial endotoxin, has been proposed as a cause of inflammation during metabolic dysfunction. As the largest source of endotoxins in the human body, the GI microbiota represents a crucial area for research on strategies for reducing endotoxemia. Diets high in saturated fat and low in fiber contribute to metabolic endotoxemia through several mechanisms, including changes in the GI microbiome and bacterial fermentation end products, intestinal physiology and barrier function, and enterohepatic circulation of bile acids. Thus, the Mediterranean diet pattern, rich in unsaturated fats and fiber, may be one dietary strategy to reduce metabolic endotoxemia. Preclinical studies have demonstrated the differential effects of dietary saturated and unsaturated fats on the microbiota and metabolic health, but human studies are lacking. The role of dietary fiber and the GI microbiome in metabolic endotoxemia is underinvestigated. Clinical research on the effects of different types of dietary fat and fiber on the GI microbiota and GI and systemic inflammation is necessary to determine efficacious dietary strategies for reducing metabolic endotoxemia, inflammation, and subsequent metabolic disease.
Collapse
Affiliation(s)
| | - Hannah D Holscher
- Division of Nutritional Sciences
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
20
|
Andriamihaja M, Lan A, Beaumont M, Grauso M, Gotteland M, Pastene E, Cires MJ, Carrasco-Pozo C, Tomé D, Blachier F. Proanthocyanidin-containing polyphenol extracts from fruits prevent the inhibitory effect of hydrogen sulfide on human colonocyte oxygen consumption. Amino Acids 2018; 50:755-763. [DOI: 10.1007/s00726-018-2558-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/24/2018] [Indexed: 12/15/2022]
|
21
|
Cires MJ, Wong X, Carrasco-Pozo C, Gotteland M. The Gastrointestinal Tract as a Key Target Organ for the Health-Promoting Effects of Dietary Proanthocyanidins. Front Nutr 2017; 3:57. [PMID: 28097121 PMCID: PMC5206694 DOI: 10.3389/fnut.2016.00057] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 12/13/2016] [Indexed: 12/11/2022] Open
Abstract
Proanthocyanidins (PACs) are polymers of flavan-3-ols abundant in many vegetable foods and beverages widely consumed in the human diet. There is increasing evidence supporting the beneficial impact of dietary PACs in the prevention and nutritional management of non-communicable chronic diseases. It is considered that PACs with a degree of polymerization >3 remain unabsorbed in the gastrointestinal (GI) tract and accumulate in the colonic lumen. Accordingly, the GI tract may be considered as a key organ for the healthy-promoting effects of dietary PACs. PACs form non-specific complexes with salivary proteins in mouth, originating the sensation of astringency, and with dietary proteins, pancreatic enzymes, and nutrient transporters in the intestinal lumen, decreasing the digestion and absorption of carbohydrates, proteins, and lipids. They also exert antimicrobial activities, interfering with cariogenic or ulcerogenic pathogens in the mouth (Streptococcus mutans) and stomach (Helicobacter pylori), respectively. Through their antioxidant and antiinflammatory properties, PACs decrease inflammatory processes in animal model of gastric and colonic inflammation. Interestingly, they exert prebiotic activities, stimulating the growth of Lactobacillus spp. and Bifidobacterium spp. as well as some butyrate-producing bacteria in the colon. Finally, PACs are also metabolized by the gut microbiota, producing metabolites, mainly aromatic acids and valerolactones, which accumulate in the colon and/or are absorbed into the bloodstream. Accordingly, these compounds could display biological activities on the colonic epithelium or in extra-intestinal tissues and, therefore, contribute to part of the beneficial effects of dietary PACs.
Collapse
Affiliation(s)
- María José Cires
- Faculty of Medicine, Department of Nutrition, University of Chile , Santiago , Chile
| | - Ximena Wong
- Faculty of Medicine, Department of Nutrition, University of Chile , Santiago , Chile
| | | | - Martin Gotteland
- Faculty of Medicine, Department of Nutrition, University of Chile, Santiago, Chile; Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| |
Collapse
|