1
|
Zou Y, Yang Y, Pei J, Sun P, Wang Y. Ganoderma lucidum Polysaccharide/carboxymethyl Chitosan Hydrogels Modulate Macrophage Polarization for Wound Healing. Biomacromolecules 2025; 26:2675-2689. [PMID: 40153544 DOI: 10.1021/acs.biomac.5c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2025]
Abstract
Wound healing remains a global challenge for clinical and experimental research. Hydrogels prepared from natural polysaccharides show great potential in the wound healing process. In this study, novel hydrogels (G-GLP) were prepared using oxidized Ganoderma lucidum polysaccharides (OGLPs) and carboxymethyl chitosan via the Schiff base reaction, which did not require the addition of any chemical cross-linking agent. The hydrogels showed excellent mechanical properties and biocompatibility. Moreover, the hydrogels showed superior hemostatic performance in mouse liver trauma and tail amputation models. Importantly, G-GLP improved inflammation by promoting the polarization of the macrophage M2 subtype, inhibiting the M1 subtype and reducing intracellular levels of reactive oxygen species. In vivo experiments demonstrated that G-GLP accelerated healing in a total defect wound model by reducing inflammation and promoting blood vessel repair and collagen deposition. These results demonstrate that G-GLP has potential as an effective wound repair dressing.
Collapse
Affiliation(s)
- Yu Zou
- College of Food Science and Technology, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, China
| | - Yuheng Yang
- College of Food Science and Technology, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, China
| | - Jingying Pei
- College of Food Science and Technology, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, China
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China
| | - Yan Wang
- College of Food Science and Technology, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China
| |
Collapse
|
2
|
Shi D, Xu X, Wang J, Bu T, Sun P, Yang K, Cai M. Synergistic anti-inflammatory effects of Ganoderma lucidum polysaccharide and ganoderic acid A on LPS-induced RAW264.7 cells by inhibition of TLR4/NF-κB activation. Int J Biol Macromol 2025; 309:143074. [PMID: 40220822 DOI: 10.1016/j.ijbiomac.2025.143074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 03/17/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
Ganoderma lucidum, a food-grade medicinal mushroom, is rich in biologically active components that offer significant health benefits. This study investigated the synergistic anti-inflammatory effects of Ganoderma lucidum polysaccharide (GLP-1) and ganoderic acid A (GAA) in RAW264.7 cells. GLP-1 was a low molecular weight β-D-glucan with an alternating backbone structure formed by →3)-β-D-Glcp-(1 → and →4)-β-D-Glcp-(1 → linkages. Notably, significant synergistic effects were observed at a mass concentration ratio of GAA: GLP-1 of 1:4. The combination of GLP-1 and GAA more effectively inhibited the production of NO, pro-inflammatory cytokines (IL-6, IL-1β and TNF-α) and reactive oxygen species (ROS) compared to each component alone. Additionally, the combination increased anti-inflammatory cytokine levels (IL-10) and restored mitochondrial membrane potential. RT-qPCR and Western blot results suggested that GLP-1 and GAA may co-target the TLR4/NF-κB signaling pathways to achieve their synergistic anti-inflammatory effects. These findings provide valuable insights for future synergistic application of active ingredients from natural products.
Collapse
Affiliation(s)
- Dongcheng Shi
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
| | - Xinhui Xu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
| | - Jian Wang
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
| | - Tingting Bu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
| | - Peilong Sun
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
| | - Kai Yang
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
| | - Ming Cai
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China.
| |
Collapse
|
3
|
Tsai MY, Lu CK, Shu LH, Liu HT, Wu YH, Lin YS, Yang YH, Shih WT, Lee IY, Wu YH, Wu CY. Antrodia cinnamomea Formula Suppresses Prostate Cancer Progression via Immune Modulation and PD-1/PD-L1 Pathway Inhibition. Int J Mol Sci 2025; 26:2684. [PMID: 40141325 PMCID: PMC11942070 DOI: 10.3390/ijms26062684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Prostate cancer remains a significant global health challenge, necessitating the development of novel therapeutic approaches. This study investigated the therapeutic potential of the Antrodia cinnamomea formula (XIANZHIFANG formula, XZF), comprising Antrodia cinnamomea, Sanghuangporus sanghuang, Ganoderma lucidum, Ganoderma sinense, and Inonotus obliquus, in prostate cancer treatment. HPLC analysis confirmed the presence of key triterpenoids, including Antcin A, B, C, K, and Zhankuic acid B, C, and 4,7-dimethoxy-5-methyl-1,3-benzodioxole. Cytotoxicity assays demonstrated that XZF (50-200 μg/mL) exhibited selective activity, maintaining viability in non-cancerous 293T-cells while enhancing the viability of activated CD8+ and CD4+ T-cells in a dose-dependent manner. XZF significantly reduced PD-1 expression in CD8+ T-cells but not in CD4+ T-cells and inhibited the PD-L1/PD-1 interaction, achieving 93% inhibition at 200 μg/mL. Furthermore, when combined with atezolizumab (1 μg/mL), XZF demonstrated complete blockade of PD-L1/PD-1 interaction. In prostate cancer cells, XZF exhibited differential antiproliferative effects. In PC-3 cells, XZF significantly reduced viability across a concentration range of 25-200 μg/mL, whereas DU145 cells showed only partial inhibition at higher concentrations (100-200 μg/mL). LNCaP cells exhibited a dose-dependent reduction in viability, mirroring the response pattern of PC-3 cells. Conditioned medium from XZF-treated macrophages, particularly human THP-1 cells, significantly suppressed the viability and migration of prostate cancer cells in a dose-dependent manner. Notably, the conditioned medium from XZF-treated THP-1 cells exhibited a stronger inhibitory effect on prostate cancer cell viability and migration compared to murine RAW 264.7 macrophages. These findings indicate that XZF exerts its therapeutic potential through multiple mechanisms, including direct antiproliferative effects on cancer cells, enhancement of T-cell responses, modulation of immune checkpoint pathways, and macrophage-mediated suppression of prostate cancer cell survival and migration. The pronounced effects observed in human macrophage models suggest a promising avenue for further investigation in clinical settings, particularly in combination with existing immunotherapies.
Collapse
Affiliation(s)
- Ming-Yen Tsai
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Chung-Kuang Lu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 613016, Taiwan; (C.-K.L.); (L.-H.S.); (H.-T.L.); (Y.-H.W.); (Y.-H.Y.); (W.-T.S.); (I.-Y.L.)
| | - Li-Hsin Shu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 613016, Taiwan; (C.-K.L.); (L.-H.S.); (H.-T.L.); (Y.-H.W.); (Y.-H.Y.); (W.-T.S.); (I.-Y.L.)
| | - Hung-Te Liu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 613016, Taiwan; (C.-K.L.); (L.-H.S.); (H.-T.L.); (Y.-H.W.); (Y.-H.Y.); (W.-T.S.); (I.-Y.L.)
| | - Yu-Huei Wu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 613016, Taiwan; (C.-K.L.); (L.-H.S.); (H.-T.L.); (Y.-H.W.); (Y.-H.Y.); (W.-T.S.); (I.-Y.L.)
| | - Yu-Shih Lin
- Department of Pharmacy, Chiayi Chang Gung Memorial Hospital, Chiayi 613016, Taiwan;
| | - Yao-Hsu Yang
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 613016, Taiwan; (C.-K.L.); (L.-H.S.); (H.-T.L.); (Y.-H.W.); (Y.-H.Y.); (W.-T.S.); (I.-Y.L.)
- School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Health Information and Epidemiology Laboratory, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
| | - Wei-Tai Shih
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 613016, Taiwan; (C.-K.L.); (L.-H.S.); (H.-T.L.); (Y.-H.W.); (Y.-H.Y.); (W.-T.S.); (I.-Y.L.)
| | - I-Yun Lee
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 613016, Taiwan; (C.-K.L.); (L.-H.S.); (H.-T.L.); (Y.-H.W.); (Y.-H.Y.); (W.-T.S.); (I.-Y.L.)
| | - Yu-Heng Wu
- Institute of Communications Engineering, The National Yang Ming Chiao Tung University, Hsinchu City 300093, Taiwan;
| | - Ching-Yuan Wu
- Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 613016, Taiwan; (C.-K.L.); (L.-H.S.); (H.-T.L.); (Y.-H.W.); (Y.-H.Y.); (W.-T.S.); (I.-Y.L.)
- School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Center for Drug Research and Development, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
| |
Collapse
|
4
|
Wang K, Liu Y, Zhang Z, Zheng Z, Tang W, Teng W, Mu X, Wang J, Zhang Y. Insights into oral lentinan immunomodulation: Dectin-1-mediated lymphatic transport from Peyer's patch M cells to mononuclear phagocytes. Carbohydr Polym 2024; 346:122586. [PMID: 39245482 DOI: 10.1016/j.carbpol.2024.122586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024]
Abstract
Lentinan (LNT), a natural polysaccharide, has been reported to exhibit immunomodulatory effects in the intestine after oral administration. Herein, we aimed to investigate the lymphatic transport of LNT in Peyer's patches (PPs) by traceable fluorescent labeling and to explore whether/how LNT contacts related immune cells. Near-infrared imaging confirmed the absorption of LNT in the small intestinal segment and its accumulation within PPs after oral administration. Subsequently, tissue imaging confirmed that M cells are the main cells responsible for transporting LNT to PPs, and an M cell model was established to explore the involvement of Dectin-1 in the absorption process. Systematic in vitro and in vivo studies revealed that the Dectin-1 further mediates the uptake of LNT by mononuclear phagocytes in PPs. Moreover, LNT can promote the proliferation and differentiation of mononuclear phagocytes, thereby activating immune responses. In summary, this study elucidates the pharmacokinetic mechanisms by which LNT exerts oral immunomodulatory effects, providing a theoretical basis for the development and application of other polysaccharides.
Collapse
Affiliation(s)
- Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Yuxuan Liu
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Zeming Zhang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Ziming Zheng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Wenqi Tang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Wangtianzi Teng
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Xu Mu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Jinglin Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China.
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China.
| |
Collapse
|
5
|
Yang K, Han HS, An SH, Park KH, Nam K, Hwang S, Lee Y, Cho SY, Kim T, Choe D, Kim SW, Yu W, Lee H, Park J, You S, Jo DG, Choi KY, Roh YH, Park JH. Mucoadhesive chitosan microcapsules for controlled gastrointestinal delivery and oral bioavailability enhancement of low molecular weight peptides. J Control Release 2024; 365:422-434. [PMID: 37863357 DOI: 10.1016/j.jconrel.2023.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/21/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
A bioactive compound, collagen peptide (CP), is widely used for biological activities such as anti-photoaging and antioxidant effects, with increased oral bioavailability because of its low molecular weight and high hydrophilicity. However, controlling release time and increasing retention time in the digestive tract for a more convenient oral administration is still a challenge. We developed CP-loaded chitosan (CS) microcapsules via strong and rapid ionic gelation using a highly negative phytic acid (PA) crosslinker. The platform enhanced the oral bioavailability of CP with controlled gastrointestinal delivery by utilizing the mucoadhesiveness and tight junction-opening properties of CS. CS and CP concentrations varied from 1.5 to 3.5% and 0-30%, respectively, for optimal and stable microcapsule synthesis. The physicochemical properties, in vitro release profile with intestinal permeability, in vivo oral bioavailability, in vivo biodistribution, anti-photoaging effect, and antioxidant effect of optimized CS microcapsules were analyzed to investigate the impact of controlling parameters. The structure of CS microcapsules was tuned by PA diffused gradient ionic cross-linking degree, resulting in a controlled CP release region in the gastrointestinal tract. The optimized microcapsules increased Cmax, AUC, and tmax by 1.5-, 3.4-, and 8.0-fold, respectively. Furthermore, CP in microcapsules showed anti-photoaging effects by downregulating matrix metalloproteinases-1 via antioxidant effects. According to our knowledge, this is the first study to microencapsulate CP for oral bioavailability enhancement. The peptide delivery method employed is simple, economical, and can be applied to customize bioactive compound administration.
Collapse
Affiliation(s)
- Kyungjik Yang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hwa Seung Han
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung 120, Republic of Korea
| | - Seung Hwan An
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kyung Hoon Park
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Keonwook Nam
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Shinha Hwang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Yuyeon Lee
- Graduate Program in Bioindustrial Engineering, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sung Yeon Cho
- Graduate Program in Bioindustrial Engineering, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Taehyung Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Deokyeong Choe
- School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sang Won Kim
- Yonsei University Dairy R&D Center, Asan, Republic of Korea
| | - Wonkyu Yu
- Yonsei University Dairy R&D Center, Asan, Republic of Korea
| | - Hyunah Lee
- Department of Bio-Convergence Engineering, Dongyang Mirae University, 445-8, Gyeongin-ro, Guro-gu, Seoul 02841, Republic of Korea
| | - Jiyong Park
- Nutrex Technology, 670 Daewangpangyo-ro, Seongnam 13494, Republic of Korea
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung 120, Republic of Korea; East Coast Research Institute of Life Science, Gangneung-Wonju National University, 120 Gangneung, Gangwon 210-702, Republic of Korea
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Ki Young Choi
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung 120, Republic of Korea.
| | - Young Hoon Roh
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea; Graduate Program in Bioindustrial Engineering, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Jae Hyung Park
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea; School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
6
|
Li J, Zhang Y, Yu F, Pan Y, Zhang Z, He Y, Yang H, Zhou P. Proteoglycan Extracted from Ganoderma lucidum Ameliorated Diabetes-Induced Muscle Atrophy via the AMPK/SIRT1 Pathway In Vivo and In Vitro. ACS OMEGA 2023; 8:30359-30373. [PMID: 37636971 PMCID: PMC10448640 DOI: 10.1021/acsomega.3c03513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023]
Abstract
Muscle atrophy often occurs in type 2 diabetes (T2D) and leads to an increase in physical disability and insulin resistance. However, there are very few studies that have investigated potential natural products used for this condition. In this study, we demonstrated that FYGL (Fudan-Yueyang-G. lucidum), a proteoglycan extracted from Ganoderma lucidum, ameliorated muscle atrophy in rat and mouse models of diabetes. Histopathological analysis of muscle revealed that oral administration of FYGL significantly prevented reduction of the cross-sectional area of muscle fibers and overexpression of muscle atrophic factors in diabetic rats and mice. Muscle RNA-seq analysis in vivo indicated that FYGL regulated genes related to myogenesis, muscle atrophy, and oxidative phosphorylation. Also, FYGL activated AMPK in vivo. Furthermore, the underlying molecular mechanisms were studied in palmitate-induced C2C12 muscle cells using immunofluorescence staining and Western blotting, which revealed that FYGL inhibited muscle atrophy by stimulating ATP production and activating the AMPK/SIRT1 pathway, thus promoting oxidative metabolism. This result rationalized the in vivo findings. These results suggest FYGL as a promising functional food ingredient for the prevention of T2D-induced muscle atrophy.
Collapse
Affiliation(s)
- Jiaqi Li
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Ying Zhang
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Fanzhen Yu
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yanna Pan
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Zeng Zhang
- Yueyang
Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yanming He
- Yueyang
Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Hongjie Yang
- Yueyang
Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Ping Zhou
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
7
|
Wang Y, Yu F, Zheng X, Li J, Zhang Z, Zhang Q, Chen J, He Y, Yang H, Zhou P. Balancing adipocyte production and lipid metabolism to treat obesity-induced diabetes with a novel proteoglycan from Ganoderma lucidum. Lipids Health Dis 2023; 22:120. [PMID: 37553709 PMCID: PMC10408226 DOI: 10.1186/s12944-023-01880-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/21/2023] [Indexed: 08/10/2023] Open
Abstract
Obesity is often accompanied by metabolic disorder and insulin resistance, resulting in type 2 diabetes. Based on previous findings, FYGL, a natural hyperbranched proteoglycan extracted from the G. lucidum fruiting body, can decrease blood glucose and reduce body weight in diabetic mice. In this article, the underlying mechanism of FYGL in ameliorating obesity-induced diabetes was further investigated both in vivo and in vitro. FYGL upregulated expression of metabolic genes related to fatty acid biosynthesis, fatty acid β-oxidation and thermogenesis; downregulated the expression of insulin resistance-related genes; and significantly increased the number of beige adipocytes in db/db mice. In addition, FYGL inhibited preadipocyte differentiation of 3T3-L1 cells by increasing the expression of FABP-4. FYGL not only promoted fatty acid synthesis but also more significantly promoted triglyceride degradation and metabolism by activating the AMPK signalling pathway, therefore preventing fat accumulation, balancing adipocyte production and lipid metabolism, and regulating metabolic disorders and unhealthy obesity. FYGL could be used as a promising pharmacological agent for the treatment of metabolic disorder-related obesity.
Collapse
Affiliation(s)
- YingXin Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Fanzhen Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Xinru Zheng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Jiaqi Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Zeng Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Qianqian Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Jieying Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Yanming He
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Hongjie Yang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Ping Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
8
|
Kou F, Ge Y, Wang W, Mei Y, Cao L, Wei X, Xiao H, Wu X. A review of Ganoderma lucidum polysaccharides: Health benefit, structure-activity relationship, modification, and nanoparticle encapsulation. Int J Biol Macromol 2023:125199. [PMID: 37285888 DOI: 10.1016/j.ijbiomac.2023.125199] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/12/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
Ganoderma lucidum polysaccharides possess unique functional properties. Various processing technologies have been used to produce and modify G. lucidum polysaccharides to improve their yield and utilization. In this review, the structure and health benefits were summarized, and the factors that may affect the quality of G. lucidum polysaccharides were discussed, including the use of chemical modifications such as sulfation, carboxymethylation, and selenization. Those modifications improve the physicochemical characteristics and utilization of G. lucidum polysaccharides, and make them more stable that could be used as functional biomaterials to encapsulate active substances. Ultimate, G. lucidum polysaccharide-based nanoparticles were designed to deliver various functional ingredients to achieve better health-promoting effects. Overall, this review presents an in-depth summary of current modification strategies and offers new insights into the effective processing techniques to develop G. lucidum polysaccharide-rich functional foods or nutraceuticals.
Collapse
Affiliation(s)
- Fang Kou
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China; Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, South Korea
| | - Yunfei Ge
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, South Korea
| | - Weihao Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yuxia Mei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Longkui Cao
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China.
| | - Xuetuan Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, United States of America
| | - Xian Wu
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, OH, United States of America
| |
Collapse
|
9
|
Zhang JJ, Wang DW, Peng YL, Cai D, Cheng YX. Spiroganodermaines A-G from Ganoderma species and their activities against insulin resistance and renal fibrosis. PHYTOCHEMISTRY 2022; 202:113324. [PMID: 35931232 DOI: 10.1016/j.phytochem.2022.113324] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Ganoderma mushrooms are a renowned Chinese medicine and functional food used worldwide. Seven undescribed spiro Ganoderma meroterpenoids spiroganodermaines A-G were isolated from Ganoderma species. Their structures were characterized by using spectroscopic, computational and X-ray diffraction methods. Biological studies showed that (+)-spiroganodermaine G significantly activates glucose uptake and IRS1 phosphorylation in insulin resistance C2C12 cells. Furthermore, (-)-spiroganodermaine G inhibits the expressions of fibronectin and α-SMA in TGF-β1 induced NRK-52E cells. These findings demonstrate the potential of Ganoderma meroterpenoids as medicines and dietary supplements.
Collapse
Affiliation(s)
- Jiao-Jiao Zhang
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Dai-Wei Wang
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Yun-Li Peng
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Dan Cai
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Yong-Xian Cheng
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China; Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, 521041, People's Republic of China.
| |
Collapse
|
10
|
Wu Z, Zhang Y, Nie G, Liu J, Mei H, He Z, Dou P, Wang K. Tracking the gastrointestinal digestive and metabolic behaviour of Dendrobium officinale polysaccharides by fluorescent labelling. Food Funct 2022; 13:7274-7286. [PMID: 35726749 DOI: 10.1039/d2fo01506d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, Dendrobium officinale polysaccharide (DOP), a typical acetylated glucomannan, has been widely applied in functional foods owing to its excellent bioactivity. However, the insufficiency of studies on in vivo process severely limits the further utilization of DOP. The aim of this study was to systematically investigate the gastrointestinal digestive behaviour of DOP after oral administration by labelling it with two fluorescein aminopyrene-1,3,6-trisulfonic acids, trisodium salt (APTS) and cyanine 7.5 (Cy7.5). Combining the results of NIR imaging and HPGPC, we found that DOP was poorly absorbed directly in the prototype form; instead, DOP moved with the intestinal contents to the distal part of the intestine, where Bacteroides aggregated for a prolonged time and was metabolized to oligosaccharide-like substances. In contrast, the digestive degradation of DOP in pseudo-sterile mice with a targeted clearance of Bacteroides significantly weakened, which provided the basis and direction for the subsequent search for more specific metabolic pathways of DOP in vivo.
Collapse
Affiliation(s)
- Zhijing Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Gang Nie
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China.
| | - Junxi Liu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Hao Mei
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Zihao He
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Pengfei Dou
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China.
| | - Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China.
| |
Collapse
|
11
|
Fu F, Pan X, Huang R, Luo L, Huang F, Li W, Zhang H, Zheng M, Lei B. Immunoregulatory Activity of Herbal Tea-Derived Carbon Dots. ACS APPLIED BIO MATERIALS 2022; 5:1604-1609. [PMID: 35275634 DOI: 10.1021/acsabm.2c00016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The activation of immune cells by immunoregulatory active substances can improve the body immunity. Carbon dots (CDs) with immunoregulatory activity are rarely reported. In this study, transmission electron microscopy results demonstrate the existence of CDs in herbal tea, while Fourier transform infrared and X-ray photoelectron spectroscopy results suggest the participation of polyphenol in herbal tea CD (H-CD) formation. The photoluminescence spectrum has shown that H-CDs have fluorescence emission at 565 nm and exhibit an excitation-dependent property. The toxicity and immunostimulatory activity of H-CDs on mouse macrophage RAW264.7 suggested that H-CDs had no toxicity to RAW264.7 cells. Meanwhile, compared with herbal tea, H-CDs have more obvious effect of promoting the expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase. In addition, the secretion of nitric oxide (NO) was promoted by H-CDs. This work suggests that H-CDs have stronger immunoregulatory function than that of original herbal tea, which provides a direction for the application of phenolic hydroxyl-modified CDs in the biomedical field.
Collapse
Affiliation(s)
- Fangmei Fu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Xiaoqin Pan
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Riming Huang
- College of Food Science, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang 524023, P. R. China
| | - Fanfan Huang
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang 524023, P. R. China
| | - Wei Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China.,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, Guangdong 525100, P. R. China
| | - Haoran Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China.,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, Guangdong 525100, P. R. China
| | - Mingtao Zheng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China.,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, Guangdong 525100, P. R. China
| | - Bingfu Lei
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China.,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, Guangdong 525100, P. R. China
| |
Collapse
|
12
|
Pan Y, Yuan S, Teng Y, Zhang Z, He Y, Zhang Y, Liang H, Wu X, Li J, Yang H, Zhou P. Antioxidation of a proteoglycan from Ganoderma lucidum protects pancreatic β-cells against oxidative stress-induced apoptosis in vitro and in vivo. Int J Biol Macromol 2022; 200:470-486. [PMID: 35063486 DOI: 10.1016/j.ijbiomac.2022.01.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/22/2021] [Accepted: 01/08/2022] [Indexed: 12/18/2022]
Abstract
Oxidative stress is one of the major factors in induction of pancreatic β-cell apoptosis and diabetes. Here, we investigated systematically the roles of a proteoglycan (namely, FYGL) from Ganoderma lucidum in protection and repair of pancreatic β-cells against oxidative stress-induced injury and apoptosis on molecular, cellular and animal basis. FYGL in vitro had antioxidant activity in terms of scavenging of free radicals and reduction power. FYGL improved cells viability, insulin secretion, redox indicator expressions, and mitochondrial membrane potential in H2O2-induced INS-1 cell via regulating the activations of apoptosis-related mitogen-activated protein kinases (MAPK) and nuclear factor kappa B (NF-κB) pathways as well as the insulin secretion-related pathway. Thrillingly in vivo, FYGL repaired the injured pancreas, reduced the pancreatic β-cells apoptosis, and improved insulin secretion because of regulating the balance of oxidation-reduction, therefore well managed blood glucose in db/db diabetic mice. These results demonstrated that FYGL is promising to be used as a novel natural remedy for protection of pancreatic β-cells against oxidative stress in diabetes treatment.
Collapse
Affiliation(s)
- Yanna Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, PR China
| | - Shilin Yuan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, PR China
| | - Yilong Teng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, PR China
| | - Zeng Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, PR China
| | - Yanming He
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, PR China
| | - Ying Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, PR China
| | - Haohui Liang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, PR China
| | - Xiao Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, PR China
| | - Jiaqi Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, PR China
| | - Hongjie Yang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, PR China.
| | - Ping Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, PR China.
| |
Collapse
|
13
|
Ahmad R, Riaz M, Khan A, Aljamea A, Algheryafi M, Sewaket D, Alqathama A. Ganoderma lucidum (Reishi) an edible mushroom; a comprehensive and critical review of its nutritional, cosmeceutical, mycochemical, pharmacological, clinical, and toxicological properties. Phytother Res 2021; 35:6030-6062. [PMID: 34411377 DOI: 10.1002/ptr.7215] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022]
Abstract
Reishi owes an exceptional value in nutritional, cosmeceutical, and medical treatments; however, none of the studies has provided its future-driven critical assessment. This study documents an up-to-date review (2015-2020, wherever applicable) and provide valuable insights (preclinical and clinical evidence-based) with comprehensive and critical assessments. Various databases 'Google scholar', 'Web of Science', 'ScienceDirect', 'PubMed', 'Springer Link', books, theses, and library resources were used. The taxonomic chaos of G. lucidum and its related species was discussed in detail with solution-oriented emphasis. Reishi contains polysaccharides (α/β-D-glucans), alkaloids, triterpenoids (ganoderic acids, ganoderenic acids, ganoderol, ganoderiol, lucidenic acids), sterols/ergosterol, proteins (LZ-8, LZ-9), nucleosides (adenosine, inosine, uridine), and nucleotides (guanine, adenine). Some active drugs are explored at an optimum level to make them potential drug candidates. The pharmacological potential was observed in diabetes, inflammation, epilepsy, neurodegeneration, cancer, anxiety, sedation, cardiac diseases, depression, hepatic diseases, and immune disorders; however, most of the studies are preclinical with a number of drawbacks. In particular, quality clinical data are intensely needed to support pharmacological activities for human use. The presence of numerous micro-, macro, and trace elements imparts an essential nutritional and cosmeceutical value to Reishi, and various marketed products are available already, but the clinical studies regarding safety and efficacy, interactions with foods/drinks, chronic use, teratogenicity, mutagenicity, and genotoxicity are missing for Reishi. Reishi possesses many valuable pharmacological activities, and the number of patents and clinical trials is increasing for Reishi. Yet, a gap in research exists for Reishi, which is discussed in detail in the forthcoming sections.
Collapse
Affiliation(s)
- Rizwan Ahmad
- Department of Natural Products and Alternative Medicines, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Muhammad Riaz
- Department of Pharmacy, Shaheed Benazir, Bhutto University, Sheringal Dir (U), Pakistan
| | - Aslam Khan
- Basic Sciences Department, College of Science and Health Professions, Ministry of National Guard Health Affairs, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Ahmed Aljamea
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammad Algheryafi
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Deya Sewaket
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Aljawharah Alqathama
- Department of Pharmacognosy, Pharmacy College, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
14
|
Oral absorption characteristics and mechanisms of a pectin-type polysaccharide from Smilax china L. across the intestinal epithelium. Carbohydr Polym 2021; 270:118383. [PMID: 34364625 DOI: 10.1016/j.carbpol.2021.118383] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/15/2022]
Abstract
The elucidation of the oral absorption of natural polysaccharides contributes to their further research and utilization. Herein, to explore the absorption of a pectin-type polysaccharide from Smilax china L. (SCLP), SCLP was respectively fluorescently labeled with fluorescein-5-thioicarbazide (FSCLP) and Cyanine7 amine (Cy7-SCLP) for in vitro and in vivo tracking. The near-infrared imaging demonstrated that Cy7-SCLP was absorbable in the small intestine and distributed in the liver and kidney after oral administration. Subsequently, in vitro intestinal epithelial tissue experiments showed that the jejunum was the dominant site of FSCLP transport. Further transport studies in the Caco-2 cell monolayer illustrated that FSCLP was delivered across the monolayer via transcellular transport by caveolae-mediated endocytosis and macropinocytosis together with paracellular transport by reversibly affecting tight junctions. In summary, this work presents the oral absorption characteristics and mechanisms of SCLP through the intestinal epithelium, which will facilitate the further development of SCLP and pectin polysaccharides.
Collapse
|
15
|
Meng XH, Qin FY, Jiang XT, Li Y, Cheng YX. (±)-Gancochlearols J - N, renoprotective meroterpenoids from Ganoderma cochlear. Bioorg Chem 2021; 112:104950. [PMID: 33962091 DOI: 10.1016/j.bioorg.2021.104950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 01/28/2023]
Abstract
Five pairs of meroterpenoid enantiomers, (±)-gancochlearols J - N (1-5), were isolated from the fruiting bodies of Ganoderma cochlear. Their structures were elucidated on the basis of 1D and 2D NMR and HRESIMS data. The absolute configurations of gancochlearols J - M (1-4) were assigned by electronic circular dichroism (ECD) calculations. Biological evaluation showed that (-)-1 and (-)-2 could inhibit renal fibrosis in TGF-β1-induced rat kidney proximal tubular cells (NRK-52e).
Collapse
Affiliation(s)
- Xiao-Hui Meng
- School of Medicine, Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China; School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, People's Republic of China
| | - Fu-Ying Qin
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, People's Republic of China
| | - Xiao-Ting Jiang
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, People's Republic of China
| | - Yu Li
- School of Medicine, Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China.
| | - Yong-Xian Cheng
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, People's Republic of China; Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou 521041, People's Republic of China.
| |
Collapse
|