1
|
Zheng S, Huang Z, Dong L, Li D, Hu X, Chen F, Ma C. Sustainable Extraction Technology of Fruit and Vegetable Residues as Novel Food Ingredients. Foods 2025; 14:331. [PMID: 39856997 PMCID: PMC11765362 DOI: 10.3390/foods14020331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Fruit and vegetable waste (FVW) is a global waste issue with environmental impacts. It contains valuable compounds such as polysaccharides, polyphenols, proteins, vitamins, pigments, and fatty acids, which can be extracted for food applications. This study aims to review sustainable extraction methods for FVW and its potential in the food industry. METHODS This paper provides an overview of the sources and sustainable methods of high value-added compounds extracted from FVW. Sustainable techniques, including supercritical fluid extraction and ultrasound-assisted extraction, are compared with traditional methods, for their efficiency in extracting high-value compounds from FVW while minimizing environmental impact. DISCUSSIONS Sustainable extraction of FVW compounds is sustainable and beneficial for novel food ingredients. However, challenges in scalability and cost need to be addressed for wider adoption in the food sector. CONCLUSIONS Sustainable extraction techniques effectively extract phytochemicals from FVW, preserving bioactivity and reducing environmental load. These methods show promise for sustainable food ingredient development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chen Ma
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.Z.); (Z.H.); (L.D.); (D.L.); (X.H.); (F.C.)
| |
Collapse
|
2
|
Samuel OD, Patel GCM, Thomas L, Chandran D, Paramasivam P, Enweremadu CC. RSM integrated GWO, Driving Training, and Election-Based Algorithms for optimising ethylic biodiesel from ternary oil of neem, animal fat, and jatropha. Sci Rep 2024; 14:21289. [PMID: 39266667 PMCID: PMC11393316 DOI: 10.1038/s41598-024-72109-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024] Open
Abstract
The worldwide exploration of the ethanolysis protocol (EP) has decreased despite the multifaceted benefits of ethanol, such as lower toxicity, higher oxygen content, higher renewability, and fewer emission tail compared to methanol, and the enhanced fuel properties with improved engine characteristics of multiple-oily feedstocks (MOFs) compared to single-oily feedstocks. The study first proposed a strategy for the optimisation of ethylic biodiesel synthesis from MOFs: neem, animal fat, and jatropha oil (NFJO) on a batch reactor. The project's goals were to ensure environmental benignity and encourage the use of totally biobased products. This was made possible by the introduction of novel population based algorithms such as Driving Training-Based Optimization (DTBO) and Election-Based Optimization (EBOA), which were compared with the widely used Grey Wolf Optimizer (GWO) combined with Response Surface Methodology (RSM). The yield of NFJO ethyl ester (NFJOEE) was predicted using the RSM technique, and the ideal transesterification conditions were determined using the DTBO, EBOA, and GWO algorithms. Reaction time showed a strong linear relationship with ethylic biodiesel yield, while ethanol-to-NFJO molar ratio, catalyst dosage, and reaction temperature showed nonlinear effects. Reaction time was the most significant contributor to NFJOEE yield.The important fundamental characteristics of the fuel categories were investigated using the ASTM test procedures. The maximum NFJOEE yield (86.3%) was obtained at an ethanol/NFJO molar ratio of 5.99, KOH content of 0.915 wt.%, ethylic duration of 67.43 min, and reaction temperature of 61.55 °C. EBOA outperforms DTBO and GWO regarding iteration and computation time, converging towards a global fitness value equal to 7 for 4 s, 20 for 5 s and 985 for 34 s. The key fuel properties conformed to the standards outlined by ASTMD6751 and EN 14,214 specifications. The NFJOEE fuel processing cost is 0.9328 USD, and is comparatively lesser than that of conventional diesel. The new postulated population based algorithm models can be a prospective approach for enhancing biodiesel production from numerous MOFs and ensuring a balanced ecosystem and fulfilling enviromental benignity when adopted.
Collapse
Affiliation(s)
- Olusegun D Samuel
- Department of Mechanical Engineering, Federal University of Petroleum Resources, P.M.B 1221, Effurun, Delta State, Nigeria.
- Department of Mechanical, Bioresources and Biomedical Engineering, Science Campus, University of South Africa, Private Bag X6, Florida, 1709, South Africa.
| | - G C Manjunath Patel
- Department of Mechanical Engineering, PES Institute of Technology and Management, Visvesvaraya Technological University, Shivamogga, 577204, Karnataka, India.
| | - Likewin Thomas
- Department of Artificial Intelligence and Machine Learning, PES Institute of Technology and Management, Visvesvaraya Technological University, Shivamogga, 577204, Karnataka, India
| | - Davannendran Chandran
- Department of Mechanical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Prabhu Paramasivam
- Department of Research and Innovation, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, 602105, India.
- Department of Mechanical Engineering, College of Engineering and Technology, Mattu University, Mettu, Ethiopia.
| | - Christopher C Enweremadu
- Department of Mechanical, Bioresources and Biomedical Engineering, Science Campus, University of South Africa, Private Bag X6, Florida, 1709, South Africa
| |
Collapse
|
3
|
Tufail T, Ain HBU, Chen J, Virk MS, Ahmed Z, Ashraf J, Shahid NUA, Xu B. Contemporary Views of the Extraction, Health Benefits, and Industrial Integration of Rice Bran Oil: A Prominent Ingredient for Holistic Human Health. Foods 2024; 13:1305. [PMID: 38731675 PMCID: PMC11083700 DOI: 10.3390/foods13091305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Globally, 50% of people consume rice (Oryza sativa), which is among the most abundant and extensively ingested cereal grains. Rice bran is a by-product of the cereal industry and is also considered a beneficial waste product of the rice processing industry. Rice bran oil (RBO) is created from rice bran (20-25 wt% in rice bran), which is the outermost layer of the rice kernel; has a lipid content of up to 25%; and is a considerable source of a plethora of bioactive components. The main components of RBO include high levels of fiber and phytochemicals, including vitamins, oryzanols, fatty acids, and phenolic compounds, which are beneficial to human health and well-being. This article summarizes the stabilization and extraction processes of rice bran oil from rice bran using different techniques (including solvent extraction, microwaving, ohmic heating, supercritical fluid extraction, and ultrasonication). Some studies have elaborated the various biological activities linked with RBO, such as antioxidant, anti-platelet, analgesic, anti-inflammatory, anti-thrombotic, anti-mutagenic, aphrodisiac, anti-depressant, anti-emetic, fibrinolytic, and cytotoxic activities. Due to the broad spectrum of biological activities and economic benefits of RBO, the current review article focuses on the extraction process of RBO, its bioactive components, and the potential health benefits of RBO. Furthermore, the limitations of existing studies are highlighted, and suggestions are provided for future applications of RBO as a functional food ingredient.
Collapse
Affiliation(s)
- Tabussam Tufail
- School of Food, Biological Engineering Jiangsu University, Zhenjiang 212013, China; (T.T.); (J.C.); (M.S.V.); (Z.A.); (J.A.)
- University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore 54590, Pakistan; (H.B.U.A.); (N.U.A.S.)
| | - Huma Bader Ul Ain
- University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore 54590, Pakistan; (H.B.U.A.); (N.U.A.S.)
| | - Jin Chen
- School of Food, Biological Engineering Jiangsu University, Zhenjiang 212013, China; (T.T.); (J.C.); (M.S.V.); (Z.A.); (J.A.)
| | - Muhammad Safiullah Virk
- School of Food, Biological Engineering Jiangsu University, Zhenjiang 212013, China; (T.T.); (J.C.); (M.S.V.); (Z.A.); (J.A.)
| | - Zahoor Ahmed
- School of Food, Biological Engineering Jiangsu University, Zhenjiang 212013, China; (T.T.); (J.C.); (M.S.V.); (Z.A.); (J.A.)
| | - Jawad Ashraf
- School of Food, Biological Engineering Jiangsu University, Zhenjiang 212013, China; (T.T.); (J.C.); (M.S.V.); (Z.A.); (J.A.)
| | - Noor Ul Ain Shahid
- University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore 54590, Pakistan; (H.B.U.A.); (N.U.A.S.)
| | - Bin Xu
- School of Food, Biological Engineering Jiangsu University, Zhenjiang 212013, China; (T.T.); (J.C.); (M.S.V.); (Z.A.); (J.A.)
| |
Collapse
|
4
|
Negi A, Nimbkar S, Thirukumaran R, Moses JA, Sinija VR. Impact of thermal and nonthermal process intensification techniques on yield and quality of virgin coconut oil. Food Chem 2024; 434:137415. [PMID: 37774639 DOI: 10.1016/j.foodchem.2023.137415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 10/01/2023]
Abstract
Virgin coconut oil (VCO) is valued for its nutraceutical potential. The focus of this research was to assess the effect of selected thermal and nonthermal pre-treatments on the yield and quality of subsequently wet-extracted VCO. The fresh coconut cream was subjected to microwave heating (450 W, 2 min), ohmic heating (180 V, 5 min), ultrasonication (350 W, 10 min), or a pulsed electric field (40 kV cm-1, 12.32 min). The thick cream was separated, and VCO was obtained after a freeze-thaw process. The highest VCO yields (>93%) were observed in the cases of ultrasonicated and pulsed electric field-treated samples. A range of oil quality parameters, total phenolic content, and antioxidants were evaluated. Further, the fatty acid composition of all oils was studied. Observations from this research indicate that ultrasonication pre-treatment resulted in the best VCO yield and quality.
Collapse
Affiliation(s)
- Aditi Negi
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Govt. of India, Thanjavur - 613005, Tamil Nadu, India
| | - Shubham Nimbkar
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Govt. of India, Thanjavur - 613005, Tamil Nadu, India
| | - R Thirukumaran
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Govt. of India, Thanjavur - 613005, Tamil Nadu, India
| | - J A Moses
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Govt. of India, Thanjavur - 613005, Tamil Nadu, India.
| | - V R Sinija
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Govt. of India, Thanjavur - 613005, Tamil Nadu, India
| |
Collapse
|
5
|
Aulia R, Amanah HZ, Lee H, Kim MS, Baek I, Qin J, Cho BK. Protein and lipid content estimation in soybeans using Raman hyperspectral imaging. FRONTIERS IN PLANT SCIENCE 2023; 14:1167139. [PMID: 37600204 PMCID: PMC10436576 DOI: 10.3389/fpls.2023.1167139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/13/2023] [Indexed: 08/22/2023]
Abstract
Unlike standard chemical analysis methods involving time-consuming, labor-intensive, and invasive pretreatment procedures, Raman hyperspectral imaging (HSI) can rapidly and non-destructively detect components without professional supervision. Generally, the Kjeldahl methods and Soxhlet extraction are used to chemically determine the protein and lipid content of soybeans. This study is aimed at developing a high-performance model for estimating soybean protein and lipid content using a non-destructive Raman HSI. Partial least squares regression (PLSR) techniques were used to develop the model using a calibration model based on 70% spectral data, and the remaining 30% of the data were used for validation. The results indicate that the Raman HSI, combined with PLSR, resulted in a protein and lipid model Rp2 of 0.90 and 0.82 with Root Mean Squared Error Prediction (RMSEP) 1.27 and 0.79, respectively. Additionally, this study successfully used the Raman HSI approach to create a prediction image showing the distribution of the targeted components, and could predict protein and lipid based on a single seeds.
Collapse
Affiliation(s)
- Rizkiana Aulia
- Department of Smart Agricultural System, Chungnam National University, Daejeon, Republic of Korea
| | - Hanim Z. Amanah
- Department of Agricultural and Biosystem Engineering, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Hongseok Lee
- National Institute of Crop Science, Rural Development Administration, Miryang, Republic of Korea
| | - Moon S. Kim
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Insuck Baek
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Jianwei Qin
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Byoung-Kwan Cho
- Department of Smart Agricultural System, Chungnam National University, Daejeon, Republic of Korea
- Department of Biosystems Machinery Engineering, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
6
|
Rachpirom M, Pichayakorn W, Puttarak P. Preparation, development, and scale-up of standardized pentacyclic triterpenoid-rich extract from Centella asiatica (L.) Urb. and study of its wound healing activity. Heliyon 2023; 9:e17807. [PMID: 37539271 PMCID: PMC10395139 DOI: 10.1016/j.heliyon.2023.e17807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 08/05/2023] Open
Abstract
This pilot-scale study of an innovative green extraction method shows increased biomarker content in plant extracts. Moreover, green extraction methods decrease the effects on the environment and human health and promote industrial growth. This study optimized the process conditions to obtain a pentacyclic triterpenoid-rich extract (PRE) from Centella asiatica (L.) Urb., which contains asiatic acid, madecassic acid, asiaticoside, and madecassoside, and evaluated its biological activities. PRE preparation was scaled up from laboratory to pilot scale. In the pilot scale, a combination of microwave-assisted extraction with an irradiation power of 4 kW and an ultrasonic-assisted extraction at 0.55 kW was used for C. asiatica extraction. The total pentacyclic triterpene content was 106.02 mg/g of crude extract. Then, the C. asiatica extract was fractionated by a macroporous resin (Diaion® HP-20). The PRE preparation method used 50% and 75% EtOH fractions. This PRE produced a high content of pentacyclic triterpenoids at 681.12 mg/g of crude extract. It presented a high anti-inflammatory effect with an IC50 value of 23.88 μg/mL for nitric oxide inhibition and induced wound healing processes (proliferation, migration, and collagen synthesis) in human dermal fibroblast cells. The information gained from this study can advance the industrial extraction of physiologically active substances from various plant sources for use as medicines or components of supplemental food and cosmeceutical products.
Collapse
Affiliation(s)
- Mingkwan Rachpirom
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla, 90112, Thailand
- Phytomedicine and Pharmaceutical Biotechnology Research Center, Prince of Songkla University, Hat-Yai, Songkhla, 90112, Thailand
| | - Wiwat Pichayakorn
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla, 90112, Thailand
| | - Panupong Puttarak
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla, 90112, Thailand
- Phytomedicine and Pharmaceutical Biotechnology Research Center, Prince of Songkla University, Hat-Yai, Songkhla, 90112, Thailand
| |
Collapse
|
7
|
Teixeira RF, Balbinot Filho CA, Oliveira DD, Zielinski AAF. Prospects on emerging eco-friendly and innovative technologies to add value to dry bean proteins. Crit Rev Food Sci Nutr 2023; 64:10256-10280. [PMID: 37341113 DOI: 10.1080/10408398.2023.2222179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
The world's growing population and evolving food habits have created a need for alternative plant protein sources, with pulses playing a crucial role as healthy staple foods. Dry beans are high-protein pulses rich in essential amino acids like lysine and bioactive peptides. They have gathered attention for their nutritional quality and potential health benefits concerning metabolic syndrome. This review highlights dry bean proteins' nutritional quality, health benefits, and limitations, focusing on recent eco-friendly emerging technologies for their obtaining and functionalization. Antinutritional factors (ANFs) in bean proteins can affect their in vitro protein digestibility (IVPD), and lectins have been identified as potential allergens. Recently, eco-friendly emerging technologies such as ultrasound, microwaves, subcritical fluids, high-hydrostatic pressure, enzyme technology, and dry fractionation methods have been explored for extracting and functionalizing dry bean proteins. These technologies have shown promise in reducing ANFs, improving IVPD, and modifying allergen epitopes. Additionally, they enhance the techno-functional properties of bean proteins, making them more soluble, emulsifying, foaming, and gel-forming, with enhanced water and oil-holding capacities. By utilizing emerging innovative technologies, protein recovery from dry beans and the development of protein isolates can meet the demand for alternative protein sources while being eco-friendly, safe, and efficient.
Collapse
Affiliation(s)
- Renata Fialho Teixeira
- Department of Chemical Engineering and Food Engineering, UFSC, Florianópolis, SC, Brazil
| | | | - Débora de Oliveira
- Department of Chemical Engineering and Food Engineering, UFSC, Florianópolis, SC, Brazil
| | | |
Collapse
|
8
|
Modupalli N, Krisshnan A, C K S, D V C, Natarajan V, Koidis A, Rawson A. Effect of novel combination processing technologies on extraction and quality of rice bran oil. Crit Rev Food Sci Nutr 2022; 64:1911-1933. [PMID: 36106441 DOI: 10.1080/10408398.2022.2119367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Rice bran, a primary by-product from the rice processing industries, containing 10-15% oil, attracts significant attention from consumers due to its many health-promoting effects. The extraction methodology used is one of the most critical factors affecting the quality and yield of oil from rice bran. Using solvents is the current commercial process for rice bran oil extraction, which has its setbacks. It is challenging and expensive, and there is a risk of traces of solvent residue in the oil. Emerging combination extraction technologies offer zero to minimal solvent residues or chemical deformation while considering increasing environmental and energy footprint. Emerging combination processing technologies include new-age methods like supercritical fluid extraction, sub-critical fluid extraction, ultrasound-assisted enzymatic extraction, ohmic heating, and microwave-assisted extraction. These techniques have been reported to extract oil from rice bran, improving extraction efficiency and quality. These techniques demonstrate solid prospects for future applications. The present review discusses and compares these emerging technologies for oil extraction from rice bran commercially.
Collapse
Affiliation(s)
- Nikitha Modupalli
- National Institute of Food Technology Entrepreneurship and Management, Thanjavur, India
| | - Anitha Krisshnan
- National Institute of Food Technology Entrepreneurship and Management, Thanjavur, India
| | - Sunil C K
- National Institute of Food Technology Entrepreneurship and Management, Thanjavur, India
| | - Chidanand D V
- National Institute of Food Technology Entrepreneurship and Management, Thanjavur, India
| | | | - Anastasios Koidis
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Ashish Rawson
- National Institute of Food Technology Entrepreneurship and Management, Thanjavur, India
| |
Collapse
|
9
|
Pizzo JS, Cruz VH, Santos PD, Silva GR, Souza PM, Manin LP, Santos OO, Visentainer JV. Instantaneous characterization of crude vegetable oils via triacylglycerols fingerprint by atmospheric solids analysis probe tandem mass spectrometry with multiple neutral loss scans. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
10
|
Khwaldia K, Attour N, Matthes J, Beck L, Schmid M. Olive byproducts and their bioactive compounds as a valuable source for food packaging applications. Compr Rev Food Sci Food Saf 2022; 21:1218-1253. [DOI: 10.1111/1541-4337.12882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/25/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Khaoula Khwaldia
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico‐chimique (INRAP) BiotechPole Sidi Thabet Ariana Tunisia
| | - Nouha Attour
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico‐chimique (INRAP) BiotechPole Sidi Thabet Ariana Tunisia
| | - Julia Matthes
- Faculty of Life Sciences Albstadt‐Sigmaringen University Sigmaringen Germany
| | - Luisa Beck
- Faculty of Life Sciences Albstadt‐Sigmaringen University Sigmaringen Germany
| | - Markus Schmid
- Faculty of Life Sciences Albstadt‐Sigmaringen University Sigmaringen Germany
| |
Collapse
|
11
|
Effects of Acid-fermented Food Wastewater in Microwave-based Direct Lipid Extraction from Wet Microalgae. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0312-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Sapwarobol S, Saphyakhajorn W, Astina J. Biological Functions and Activities of Rice Bran as a Functional Ingredient: A Review. Nutr Metab Insights 2021; 14:11786388211058559. [PMID: 34898989 PMCID: PMC8655829 DOI: 10.1177/11786388211058559] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
Rice bran (RB) is a nutrient-rich by-product of the rice milling process. It consists of pericarp, seed coat, nucellus, and aleurone layer. RB is a rich source of a protein, fat, dietary fibers, vitamins, minerals, and phytochemicals (mainly oryzanols and tocopherols), and is currently mostly used as animal feed. Various studies have revealed the beneficial health effects of RB, which result from its functional components including dietary fiber, rice bran protein, and gamma-oryzanol. The health effects of RB including antidiabetic, lipid-lowering, hypotensive, antioxidant, and anti-inflammatory effects, while its consumption also improves bowel function. These health benefits have drawn increasing attention to RB in food applications and as a nutraceutical product to mitigate metabolic risk factors in humans. This review therefore focuses on RB and its health benefits.
Collapse
Affiliation(s)
- Suwimol Sapwarobol
- The Medical Food Research Group, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Weeraya Saphyakhajorn
- Graduate Program in Food and Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Junaida Astina
- Graduate Program in Food and Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
13
|
Rani H, Sharma S, Bala M. Technologies for extraction of oil from oilseeds and other plant sources in retrospect and prospects: A review. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Heena Rani
- Oilseeds Section, Department of Plant Breeding and Genetics Punjab Agricultural University Ludhiana Punjab India
| | - Sanjula Sharma
- Oilseeds Section, Department of Plant Breeding and Genetics Punjab Agricultural University Ludhiana Punjab India
| | - Manju Bala
- FG & OP Division ICAR‐Central Institute of Post‐Harvest Engineering and Technology Ludhiana Punjab India
| |
Collapse
|
14
|
Supercritical Carbon Dioxide Extraction, Antioxidant Activity, and Fatty Acid Composition of Bran Oil from Rice Varieties Cultivated in Portugal. SEPARATIONS 2021. [DOI: 10.3390/separations8080115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bran of different rice cultivars produced in Portugal were used to study supercritical carbon dioxide extraction conditions of rice bran oil (RBO) and evaluate and compare antioxidant activity and fatty acid composition of the different rice bran varieties. The effect of plant loading (10–20 g), CO2 flow rate (0.5–1.5 L/min), pressure (20–60 MPa), and temperature (40–80 °C) was studied. The amount of oil extracted ranged from 11.72%, for Ariete cultivar, to 15.60%, for Sirio cultivar. The main fatty acids components obtained were palmitic (13.37%–16.32%), oleic (44.60%–52.56%), and linoleic (29.90%–38.51%). Excellent parameters of the susceptibility to oxidation of the oils were obtained and compare. RBO of Ariete and Gladio varieties presented superior DPPH and ABTS radical scavenging activities, whereas, Minima, Ellebi, and Sirio varieties had the lowest scavenging activities. Moreover, the oil obtained towards the final stages of extraction presented increased antioxidant activity.
Collapse
|
15
|
Quaisie J, Ma H, Golly MK, Tuly JA, Amaglo NK, Jiaqi Z. Effect of ultrasound-microwave irradiation hybrid technique on extraction, physicochemical, antioxidative, and structural properties of stearic acid-rich Allanblackia parviflora seed oil. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01666-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
16
|
Punia S, Kumar M, Sandhu KS, Whiteside WS. Rice‐bran oil: An emerging source of functional oil. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Sneh Punia
- Department of Food Science and Technology Chaudhary Devi Lal University Sirsa India
- Department of Food, Nutrition and Packaging Sciences Clemson University Clemson SC USA
| | - Manoj Kumar
- Chemical and Biochemical Processing Division ICAR – Central Institute for Research on Cotton Technology Mumbai India
| | - Kawaljit Singh Sandhu
- Department of Food Science & Technology Maharaja Ranjit Singh Punjab Technical University Bathinda India
| | | |
Collapse
|
17
|
Geow CH, Tan MC, Yeap SP, Chin NL. A Review on Extraction Techniques and Its Future Applications in Industry. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202000302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Chin Hong Geow
- Department of Chemical and Petroleum Engineering Faculty of Engineering Technology and Built Environment UCSI University 56000 Cheras, Kuala Lumpur Malaysia
| | - Mei Ching Tan
- Department of Chemical and Petroleum Engineering Faculty of Engineering Technology and Built Environment UCSI University 56000 Cheras, Kuala Lumpur Malaysia
| | - Swee Pin Yeap
- Department of Chemical and Petroleum Engineering Faculty of Engineering Technology and Built Environment UCSI University 56000 Cheras, Kuala Lumpur Malaysia
| | - Nyuk Ling Chin
- Department of Process and Food Engineering Faculty of Engineering Universiti Putra Malaysia 43000 UPM Serdang, Selangor Malaysia
| |
Collapse
|
18
|
Improved canola oil expeller extraction using a pilot-scale continuous flow microwave system for pre-treatment of seeds and flaked seeds. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2020.110053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
19
|
Kate A, Singh A, Shahi N, Pandey JP, Prakash O. Modeling and kinetics of microwave assisted leaching based oil extraction from
Bhat. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Adinath Kate
- ICAR‐Central Institute of Agricultural Engineering Bhopal India
| | - Anupama Singh
- G. B. Pant University of Agriculture and Technology Pantnagar India
| | - Navin Shahi
- G. B. Pant University of Agriculture and Technology Pantnagar India
| | | | - Om Prakash
- G. B. Pant University of Agriculture and Technology Pantnagar India
| |
Collapse
|
20
|
Goszkiewicz A, Kołodziejczyk E, Ratajczyk F. Comparison of microwave and convection method of roasting sunflower seeds and its effect on sensory quality, texture and physicochemical characteristics. FOOD STRUCTURE-NETHERLANDS 2020. [DOI: 10.1016/j.foostr.2020.100144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
He R, Wang Y, Zou Y, Wang Z, Ding C, Wu Y, Ju X. Storage characteristics of infrared radiation stabilized rice bran and its shelf-life evaluation by prediction modeling. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2638-2647. [PMID: 31994185 DOI: 10.1002/jsfa.10293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/22/2019] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Rice bran is a nutrient-dense and resource-rich byproduct produced from the rice milling. The limitation of rice bran utilization is mainly caused by oxidative deterioration. Improvement of stability to prolong rice bran shelf-life has thus become an urgent requirement. RESULTS The present study aimed to determine the characteristics of infrared radiation heat treatment of rice bran (IRRB) and raw rice bran stored under different temperatures. The effects of heating and storage time on physicochemical, microbial, storage stability and structural properties were investigated. Additionally, the prediction model for the shelf-life of rice bran was established based on free fatty acids and the peroxide value by fitting the curve of bran lipid oxidation. The results obtained demonstrated that infrared radiation heating at 300 °C for 210 s resulted in decreased lipase activity and peroxidase activity of 73.05% and 81.50%, respectively. The free fatty acids and peroxide value of IRRB stored at 4 and 25 °C for 8 weeks were only reached at 2.35% and 3.17% and 2.53 and 3.64 meq kg-1 , respectively. The shelf-life prediction model showed the the shelf-life of infrared radiation-treated samples increased to 71.6 and 25.8 weeks under storage at 4 and 25 °C, respectively. CONCLUSION The stabilizing process could effectively suppress microbial growth and had no prominent effect on the physicochemical and microstructure properties of rice bran and, simultaneously, storage life was greatly extended. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rong He
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Yujiao Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Yucheng Zou
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Zhigao Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Chao Ding
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Ying Wu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Xingrong Ju
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| |
Collapse
|
22
|
Mohseni NM, Mirzaei H, Moghimi M. Optimized extraction and quality evaluation of Niger seed oil via microwave-pulsed electric field pretreatments. Food Sci Nutr 2020; 8:1383-1393. [PMID: 32180948 PMCID: PMC7063364 DOI: 10.1002/fsn3.1396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/14/2019] [Accepted: 11/17/2019] [Indexed: 11/10/2022] Open
Abstract
In this study, oil extraction from Niger seeds was evaluated with different microwave irradiation times (0-200 s) and pulsed electric fields (PEF) intensities (0-5 kV/cm) as pretreatments. Then, oil extraction was completed with a screw press at different rotation speeds (11-57 rpm). Quality parameters including extraction efficiency, acidity and peroxide values (PVs), chlorophyll, and phenolic contents along with fatty acid profiles and tocopherol levels of the extracted oils were determined as responses. With enhancements in microwave time, PEF intensity and press rotation, the chlorophyll contents, acidity/PVs, and total phenolics of oils increased similar to oil extraction efficiency although it was reduced later. The optimized conditions selected by response surface methodology were determined as 156.23 s, 1.18 kV/cm, and 20 rpm for microwave time, PEF intensity and press speed, respectively. Fatty acid analysis revealed that linoleic acid was the most predominant fatty acid in the extracted oil. Application of the mentioned pretreatments may lead to a reduction in unsaturated fatty acids and escalation of saturated ones (p < .05). High-performance liquid chromatography results indicated that α-tocopherols are the most common tocopherols in Niger seed oil and microwave-PEF pretreatments may lead to 2.79% increase in tocopherols content.
Collapse
Affiliation(s)
| | - Habibollah Mirzaei
- Department of Food Materials and Process Design EngineeringUniversity of Agricultural Sciences and Natural ResourcesGorganIran
| | - Masoumeh Moghimi
- Department of ChemistryGonbad Kavoos BranchIslamic Azad UniversityGonbad KavoosIran
| |
Collapse
|
23
|
Ersan P, Sönmez Ö, Gözmen B. Microwave-assisted d-pinitol extraction from carob: application of Box–Behnken design. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01824-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
González Mera IF, González Falconí DE, Morera Córdova V. Secondary metabolites in plants: main classes, phytochemical analysis and pharmacological activities. BIONATURA 2019. [DOI: 10.21931/rb/2019.04.04.11] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Plants are an essential source of chemical compounds with different biological properties that man can use to his advantage. These substances are mainly produced as a result of chemical conversions of secondary metabolism. This article reviews the main classes of secondary metabolites that synthesize plants as well as their characteristics and their biological functions. Examples are provided for each of the classes. Emphasis is placed on the methods of extracting secondary metabolites and phytochemical screening, as well as on the main pharmacological activities described for the MS.
Collapse
Affiliation(s)
- Irina Francesca González Mera
- Yachay Experimental Technology Research University. School of Chemical Sciences and Engineering. San Miguel de Urcuquí. Hacienda San José s/n. Imbabura, Ecuador
| | - Daniela Estefanía González Falconí
- Yachay Experimental Technology Research University. School of Chemical Sciences and Engineering. San Miguel de Urcuquí. Hacienda San José s/n. Imbabura, Ecuador
| | - Vivian Morera Córdova
- Yachay Experimental Technology Research University. School of Chemical Sciences and Engineering. San Miguel de Urcuquí. Hacienda San José s/n. Imbabura, Ecuador
| |
Collapse
|
25
|
Contreras MDM, Lama-Muñoz A, Manuel Gutiérrez-Pérez J, Espínola F, Moya M, Castro E. Protein extraction from agri-food residues for integration in biorefinery: Potential techniques and current status. BIORESOURCE TECHNOLOGY 2019; 280:459-477. [PMID: 30777702 DOI: 10.1016/j.biortech.2019.02.040] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 06/09/2023]
Abstract
The biorefinery concept is attracting scientific and policy attention as a promising option for enhancing the benefits of agri-food biomass along with a reduction of the environmental impact. Obtaining bioproducts based on proteins from agri-food residues could help to diversify the revenue stream in a biorefinery. In fact, the extracted proteins can be applied as such or in the form of hydrolyzates due to their nutritional, bioactive and techno-functional properties. In this context, the present review summarizes, exemplifies and discusses conventional extraction methods and current trends to extract proteins from residues of the harvesting, post-harvesting and/or processing of important crops worldwide. Moreover, those extraction methods just integrated in a biorefinery scheme are also described. In conclusion, a plethora of methods exits but only some of them have been applied in biorefinery designs, mostly at laboratory scale. Their economic and technical feasibility at large scale requires further study.
Collapse
Affiliation(s)
- María Del Mar Contreras
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Antonio Lama-Muñoz
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - José Manuel Gutiérrez-Pérez
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain; Center for Advanced Studies in Energy and Environment, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Francisco Espínola
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain; Center for Advanced Studies in Energy and Environment, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Manuel Moya
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain; Center for Advanced Studies in Energy and Environment, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Eulogio Castro
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain; Center for Advanced Studies in Energy and Environment, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain.
| |
Collapse
|
26
|
Hu H, Liu H, Shi A, Liu L, Fauconnier ML, Wang Q. The Effect of Microwave Pretreatment on Micronutrient Contents, Oxidative Stability and Flavor Quality of Peanut Oil. Molecules 2018. [PMID: 30585177 DOI: 10.3390/molecules2401006224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023] Open
Abstract
The purpose of the present study is to investigate the changes in extraction yield, physicochemical properties, micronutrients content, oxidative stability and flavor quality of cold pressed peanut oil extracted from microwave (MW) treated seeds (0, 1, 2, 3, 4, 5 min, 700 W). The acid value and peroxide value of extracted oil from MW-treated peanuts were slightly increased but far below the limit in the Codex standard. Compared with the untreated sample, a significant (p < 0.05) increase in extraction yield (by 33.75%), free phytosterols content (by 32.83%), free tocopherols content (by 51.36%) and induction period (by 168.93%) of oil extracted from 5 min MW-treated peanut were observed. MW pretreatment formed pyrazines which contribute to improving the nutty and roasty flavor of oil. In conclusion, MW pretreatment is a feasible method to improve the oil extraction yield and obtain the cold pressed peanut oil with longer shelf life and better flavor.
Collapse
Affiliation(s)
- Hui Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, P.O. Box 5109, Beijing 100193, China.
- Laboratory of General and Organic Chemistry, University of Liege, Gembloux Agro-Bio Tech, Passage des Déportés, 2-5030 Gembloux, Belgium.
| | - Hongzhi Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, P.O. Box 5109, Beijing 100193, China.
| | - Aimin Shi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, P.O. Box 5109, Beijing 100193, China.
| | - Li Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, P.O. Box 5109, Beijing 100193, China.
| | - Marie Laure Fauconnier
- Laboratory of General and Organic Chemistry, University of Liege, Gembloux Agro-Bio Tech, Passage des Déportés, 2-5030 Gembloux, Belgium.
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, P.O. Box 5109, Beijing 100193, China.
| |
Collapse
|
27
|
The Effect of Microwave Pretreatment on Micronutrient Contents, Oxidative Stability and Flavor Quality of Peanut Oil. Molecules 2018; 24:molecules24010062. [PMID: 30585177 PMCID: PMC6337082 DOI: 10.3390/molecules24010062] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 11/16/2022] Open
Abstract
The purpose of the present study is to investigate the changes in extraction yield, physicochemical properties, micronutrients content, oxidative stability and flavor quality of cold pressed peanut oil extracted from microwave (MW) treated seeds (0, 1, 2, 3, 4, 5 min, 700 W). The acid value and peroxide value of extracted oil from MW-treated peanuts were slightly increased but far below the limit in the Codex standard. Compared with the untreated sample, a significant (p < 0.05) increase in extraction yield (by 33.75%), free phytosterols content (by 32.83%), free tocopherols content (by 51.36%) and induction period (by 168.93%) of oil extracted from 5 min MW-treated peanut were observed. MW pretreatment formed pyrazines which contribute to improving the nutty and roasty flavor of oil. In conclusion, MW pretreatment is a feasible method to improve the oil extraction yield and obtain the cold pressed peanut oil with longer shelf life and better flavor.
Collapse
|
28
|
Ibrahim NA, Zaini MAA. Microwave-assisted solvent extraction of castor oil from castor seeds. Chin J Chem Eng 2018. [DOI: 10.1016/j.cjche.2018.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
29
|
Improving Oil Extraction from Canola Seeds by Conventional and Advanced Methods. FOOD ENGINEERING REVIEWS 2018. [DOI: 10.1007/s12393-018-9182-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Ibrahim NA, Zaini MAA. Dielectric properties in microwave-assisted solvent extraction-Present trends and future outlook. ASIA-PAC J CHEM ENG 2018. [DOI: 10.1002/apj.2230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nur Atirah Ibrahim
- Centre of Lipids Engineering & Applied Research (CLEAR); Ibnu-Sina Institute for Scientific & Industrial Research (ISI-SIR), Universiti Teknologi Malaysia; Johor Bahru Johor Malaysia
- Department of Chemical Engineering, Faculty of Chemical & Energy Engineering; Universiti Teknologi Malaysia; Johor Bahru Johor Malaysia
| | - Muhammad Abbas Ahmad Zaini
- Centre of Lipids Engineering & Applied Research (CLEAR); Ibnu-Sina Institute for Scientific & Industrial Research (ISI-SIR), Universiti Teknologi Malaysia; Johor Bahru Johor Malaysia
- Department of Chemical Engineering, Faculty of Chemical & Energy Engineering; Universiti Teknologi Malaysia; Johor Bahru Johor Malaysia
| |
Collapse
|
31
|
Gharib-Bibalan S. High Value-added Products Recovery from Sugar Processing By-products and Residuals by Green Technologies: Opportunities, Challenges, and Prospects. FOOD ENGINEERING REVIEWS 2018. [DOI: 10.1007/s12393-018-9174-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
32
|
Kapoore RV, Butler TO, Pandhal J, Vaidyanathan S. Microwave-Assisted Extraction for Microalgae: From Biofuels to Biorefinery. BIOLOGY 2018; 7:E18. [PMID: 29462888 PMCID: PMC5872044 DOI: 10.3390/biology7010018] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 01/25/2018] [Accepted: 02/12/2018] [Indexed: 11/21/2022]
Abstract
The commercial reality of bioactive compounds and oil production from microalgal species is constrained by the high cost of production. Downstream processing, which includes harvesting and extraction, can account for 70-80% of the total cost of production. Consequently, from an economic perspective extraction technologies need to be improved. Microalgal cells are difficult to disrupt due to polymers within their cell wall such as algaenan and sporopollenin. Consequently, solvents and disruption devices are required to obtain products of interest from within the cells. Conventional techniques used for cell disruption and extraction are expensive and are often hindered by low efficiencies. Microwave-assisted extraction offers a possibility for extraction of biochemical components including lipids, pigments, carbohydrates, vitamins and proteins, individually and as part of a biorefinery. Microwave technology has advanced since its use in the 1970s. It can cut down working times and result in higher yields and purity of products. In this review, the ability and challenges in using microwave technology are discussed for the extraction of bioactive products individually and as part of a biorefinery approach.
Collapse
Affiliation(s)
- Rahul Vijay Kapoore
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK.
| | - Thomas O Butler
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK.
| | - Jagroop Pandhal
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK.
| | - Seetharaman Vaidyanathan
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK.
| |
Collapse
|
33
|
Comparative evaluation of rice bran oil obtained with two-step microwave assisted extraction and conventional solvent extraction. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2017.09.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Sohail M, Rakha A, Butt MS, Iqbal MJ, Rashid S. Rice bran nutraceutics: A comprehensive review. Crit Rev Food Sci Nutr 2018; 57:3771-3780. [PMID: 27015585 DOI: 10.1080/10408398.2016.1164120] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Agro-industry yields ample quantity of several byproducts with considerable importance. These byproducts are mostly under-utilized, often used as animal feed or rejected as waste; hence their true potential is not harnessed. The use of such superfluous resources is of not only economic significance but also a form of commercial recycling. Rice bran is an important byproduct of rice milling industry with a global potential of 29.3 million tons annually. It is gaining great attention of the researchers due to its nutrient-rich composition, easy availability, low cost, high antioxidant potential, and promising effects against several metabolic ailments. Bioactive components of rice bran, mainly γ-oryzanol, have been reported to possess antioxidant, anti-inflammatory, hypocholesterolemic, anti-diabetic, and anti-cancer activities. Rice bran oil contains appreciable quantities of bioactive components and has attained the status of "Heart oil" due to its cardiac-friendly chemical profile. Nutraceutics have successfully been extracted from rice bran using several extraction techniques such as solvent extraction, supercritical fluid extraction, microwave-, and ultrasonic-assisted extraction. Current paper is an attempt to highlight bioactive moieties of rice bran along with their extraction technologies and health benefits.
Collapse
Affiliation(s)
- Muhammad Sohail
- a National Institute of Food Science & Technology, University of Agriculture , Faisalabad , Pakistan
| | - Allah Rakha
- a National Institute of Food Science & Technology, University of Agriculture , Faisalabad , Pakistan
| | - Masood Sadiq Butt
- a National Institute of Food Science & Technology, University of Agriculture , Faisalabad , Pakistan
| | - Muhammad Jawad Iqbal
- a National Institute of Food Science & Technology, University of Agriculture , Faisalabad , Pakistan
| | - Summer Rashid
- a National Institute of Food Science & Technology, University of Agriculture , Faisalabad , Pakistan
| |
Collapse
|
35
|
Shukla HS, Pratap A. Comparative Studies between Conventional and Microwave Assisted Extraction for Rice Bran Oil. J Oleo Sci 2017; 66:973-979. [PMID: 28794313 DOI: 10.5650/jos.ess17067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The present work deals with comparison of microwave assisted extraction to that of conventional solvent extraction for the extraction of rice bran oil (RBO); focusing on extraction yield and oil composition. Microwave assisted extraction act as a green process over other method and proved that it is effective method for extraction of oil. The investigation also focuses on the study of functional group and component present in oil. Natural antioxidant component; its activity was confirmed by DPPH assay. The oryzanol content was also determined by measuring the optical density of the sample at 315 nm in n-heptane using UV visible spectrophotometer.
Collapse
Affiliation(s)
- Himanshu S Shukla
- Department of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology
| | - Amit Pratap
- Department of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology
| |
Collapse
|
36
|
de Menezes Rodrigues G, Cardozo-Filho L, da Silva C. Pressurized liquid extraction of oil from soybean seeds. CAN J CHEM ENG 2017. [DOI: 10.1002/cjce.22922] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Giovana de Menezes Rodrigues
- Department of Technology; Maringá State University (UEM); Av. Angelo Moreira da Fonseca 180 Umuarama, Paraná, 87506-370 Brazil
- Programa de Pós-graduação em Engenharia Química; Universidade Estadual de Maringá (UEM); Av. Colombo 5790, 87020-900 Maringá-PR Brazil
| | - Lúcio Cardozo-Filho
- Programa de Pós-graduação em Engenharia Química; Universidade Estadual de Maringá (UEM); Av. Colombo 5790, 87020-900 Maringá-PR Brazil
- Departamento de Agronomia; Centro Universitário da Fundação de Ensino Octávio Bastos (UNIFEOB); Av. Dr. Otávio Bastos, 2439, 13874-149 São João da Boa Vista - SP Brazil
| | - Camila da Silva
- Department of Technology; Maringá State University (UEM); Av. Angelo Moreira da Fonseca 180 Umuarama, Paraná, 87506-370 Brazil
- Programa de Pós-graduação em Engenharia Química; Universidade Estadual de Maringá (UEM); Av. Colombo 5790, 87020-900 Maringá-PR Brazil
| |
Collapse
|
37
|
|
38
|
Total phenolics, antioxidant, antitumor, and enzyme inhibitory activity of Indian medicinal and aromatic plants extracted with different extraction methods. 3 Biotech 2017; 7:76. [PMID: 28452024 DOI: 10.1007/s13205-017-0706-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 03/23/2017] [Indexed: 10/19/2022] Open
Abstract
The phenolic content, antioxidant, antitumor, and enzyme inhibitory activities of commonly used medicinal herbs from a Unani system of medicine were investigated using four different extraction methods. Among the plants studied, the Hyssopus officinalis L, Origanum vulgare L, and Portulaca oleracea L. extracts showed the highest amount of total phenolics (64.40, 60.35, and 58.81 mg GAE/g) and revealed significant antioxidant activities. The plants also showed a maximum cytotoxic activity as indicated by H. officinalis (82%), O. vulgare (75%), and P. oleracea (72%) showed more than 70% cytotoxicity for breast cancer cells, 82% of the cells were dead at the concentration of 500 mg/mL. The plants H. officinalis, P. oleracea, O. vulgare, and Rubia cordifolia L. revealed more than 80% inhibition towards xanthine oxidase and comprising maximum 70% of inhibition for superoxide dismutase. From results we conclude that there is a strong correlation between phenolic content, antioxidant, and enzyme inhibitory activity among these plants, indicating phenolics are the major compounds for these biological activities. Furthermore, this study provides the basis for the therapeutic importance of studied plants as latent inhibitors of oxidative stress and antitumor cell proliferation which correlate with the ethnobotanical data contained in the Unani system of medicine.
Collapse
|
39
|
Kamimura JAAM, Aracava KK, Rodrigues CEC. Experimental data and modeling of rice bran oil extraction kinetics using ethanol as solvent. SEP SCI TECHNOL 2017. [DOI: 10.1080/01496395.2017.1307224] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Juliane A. A. M. Kamimura
- Separation Engineering Laboratory (LES), Food Engineering Department, University of São Paulo (USP), Pirassununga, São Paulo, Brazil
| | - Keila K. Aracava
- Separation Engineering Laboratory (LES), Food Engineering Department, University of São Paulo (USP), Pirassununga, São Paulo, Brazil
| | - Christianne E. C. Rodrigues
- Separation Engineering Laboratory (LES), Food Engineering Department, University of São Paulo (USP), Pirassununga, São Paulo, Brazil
| |
Collapse
|
40
|
Effect of extraction methods on yield, phytochemical constituents and antioxidant activity of Withania somnifera. ARAB J CHEM 2017. [DOI: 10.1016/j.arabjc.2013.02.015] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
41
|
|
42
|
Oil extraction from sheanut (Vitellaria paradoxa Gaertn C.F.) kernels assisted by microwaves. Journal of Food Science and Technology 2016; 53:1424-34. [PMID: 27570267 DOI: 10.1007/s13197-015-2160-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/18/2015] [Accepted: 12/22/2015] [Indexed: 10/22/2022]
Abstract
Shea butter, is highly solicited in cosmetics, pharmaceuticals, chocolates and biodiesel formulations. Microwave assisted extraction (MAE) of butter from sheanut kernels was carried using the Doehlert's experimental design. Factors studied were microwave heating time, temperature and solvent/solute ratio while the responses were the quantity of oil extracted and the acid number. Second order models were established to describe the influence of experimental parameters on the responses studied. Under optimum MAE conditions of heating time 23 min, temperature 75 °C and solvent/solute ratio 4:1 more than 88 % of the oil with a free fatty acid (FFA) value less than 2, was extracted compared to the 10 h and solvent/solute ratio of 10:1 required for soxhlet extraction. Scanning electron microscopy was used to elucidate the effect of microwave heating on the kernels' microstructure. Substantial reduction in extraction time and volumes of solvent used and oil of suitable quality are the main benefits derived from the MAE process.
Collapse
|
43
|
Kate AE, Singh A, Shahi NC, Pandey JP, Singh TP, Prakash O. Impact of polar bio-solvent, particle size and soaking time on microwave-assisted extraction of edible oil from black soybean. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2016. [DOI: 10.1007/s11694-016-9394-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Oilseed treatment by ultrasounds and microwaves to improve oil yield and quality: An overview. Food Res Int 2016; 85:59-66. [DOI: 10.1016/j.foodres.2016.04.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/30/2016] [Accepted: 04/09/2016] [Indexed: 01/07/2023]
|
45
|
Patil SS, Kar A, Mohapatra D. Stabilization of rice bran using microwave: Process optimization and storage studies. FOOD AND BIOPRODUCTS PROCESSING 2016. [DOI: 10.1016/j.fbp.2016.05.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
46
|
The ultrasound-assisted aqueous extraction of rice bran oil. Food Chem 2016; 194:503-7. [DOI: 10.1016/j.foodchem.2015.08.068] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 08/15/2015] [Accepted: 08/18/2015] [Indexed: 11/23/2022]
|
47
|
Barekati-Goudarzi M, Boldor D, Nde DB. In-situ transesterification of seeds of invasive Chinese tallow trees (Triadica sebifera L.) in a microwave batch system (GREEN(3)) using hexane as co-solvent: Biodiesel production and process optimization. BIORESOURCE TECHNOLOGY 2016; 201:97-104. [PMID: 26638139 DOI: 10.1016/j.biortech.2015.11.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/11/2015] [Accepted: 11/12/2015] [Indexed: 06/05/2023]
Abstract
In-situ transesterification (simultaneous extraction and transesterification) of Chinese tallow tree seeds into methyl esters using a batch microwave system was investigated in this study. A high degree of oil extraction and efficient conversion of oil to biodiesel were found in the proposed range. The process was further optimized in terms of product yields and conversion rates using Doehlert optimization methodology. Based on the experimental results and statistical analysis, the optimal production yield conditions for this process were determined as: catalyst concentration of 1.74wt.%, solvent ratio about 3 (v/w), reaction time of 20min and temperature of 58.1°C. H(+)NMR was used to calculate reaction conversion. All methyl esters produced using this method met ASTM biodiesel quality specifications.
Collapse
Affiliation(s)
- Mohamad Barekati-Goudarzi
- Louisiana State University Agricultural Center, BAE Department, Baton Rouge, LA 70803, United States
| | - Dorin Boldor
- Louisiana State University Agricultural Center, BAE Department, Baton Rouge, LA 70803, United States.
| | - Divine B Nde
- Louisiana State University Agricultural Center, BAE Department, Baton Rouge, LA 70803, United States; University of Bamenda, Department of Food Science and Bio-resource Technology, College of Technology, P.O. Box 39, Bamenda, Cameroon
| |
Collapse
|
48
|
Soares JF, Dal Prá V, de Souza M, Lunelli FC, Abaide E, da Silva JR, Kuhn RC, Martínez J, Mazutti MA. Extraction of rice bran oil using supercritical CO 2 and compressed liquefied petroleum gas. J FOOD ENG 2016. [DOI: 10.1016/j.jfoodeng.2015.09.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Patil A, Singh AK. Effect of Enzyme and Microwave Pretreatment on Oil Recovery from Canola. J FOOD PROCESS ENG 2016. [DOI: 10.1111/jfpe.12340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aniket Patil
- Department of Processing and Food Engineering; Punjab Agricultural University; Ludhiana Punjab 141004 India
| | - A. K. Singh
- Department of Processing and Food Engineering; Punjab Agricultural University; Ludhiana Punjab 141004 India
| |
Collapse
|
50
|
Angiolillo L, Del Nobile MA, Conte A. The extraction of bioactive compounds from food residues using microwaves. Curr Opin Food Sci 2015. [DOI: 10.1016/j.cofs.2015.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|