1
|
Rico-Medina A, Laibach N, Fontanet-Manzaneque JB, Blasco-Escámez D, Lozano-Elena F, Martignago D, Caño-Delgado AI. Molecular and physiological characterization of brassinosteroid receptor BRI1 mutants in Sorghum bicolor. THE NEW PHYTOLOGIST 2025; 246:1113-1127. [PMID: 40078107 DOI: 10.1111/nph.20443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/07/2025] [Indexed: 03/14/2025]
Abstract
The high sequence and structural similarities between BRASSINOSTEROID INSENSITIVE 1 (BRI1) brassinosteroid (BR) receptors of Arabidopsis (AtBRI1) and sorghum (SbBRI1) prompted us to study the functionally conserved roles of BRI1 in both organisms. Introducing sorghum SbBRI1 in Arabidopsis bri1 mutants restores defective growth and developmental phenotypes to wild-type levels. Sorghum mutants for SbBRI1 show defective BR sensitivity and impaired plant growth and development throughout the entire sorghum life cycle. Embryonic analysis of sorghum primary root techniques permits to trace back root growth and development to early stages in an unprecedented way, revealing the functionally conserved roles of the SbBRI1 receptor in BR perception during meristem development. RNA-seq analysis uncovers the downstream regulation of the SbBRI1 pathway in cell wall biogenesis during cell growth. Together, these results uncover that the sorghum SbBRI1 protein plays functionally conserved roles in plant growth and development, while encouraging the study of BR pathways in sorghum and its implications for improving resilience in cereal crops.
Collapse
Affiliation(s)
- Andrés Rico-Medina
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB (Cerdanyola del Vallès), 08193, Barcelona, Spain
| | - Natalie Laibach
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB (Cerdanyola del Vallès), 08193, Barcelona, Spain
| | - Juan B Fontanet-Manzaneque
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB (Cerdanyola del Vallès), 08193, Barcelona, Spain
| | - David Blasco-Escámez
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB (Cerdanyola del Vallès), 08193, Barcelona, Spain
| | - Fidel Lozano-Elena
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB (Cerdanyola del Vallès), 08193, Barcelona, Spain
| | - Damiano Martignago
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB (Cerdanyola del Vallès), 08193, Barcelona, Spain
| | - Ana I Caño-Delgado
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB (Cerdanyola del Vallès), 08193, Barcelona, Spain
| |
Collapse
|
2
|
Yin W, Dong N, Li X, Yang Y, Lu Z, Zhou W, Qian Q, Chu C, Tong H. Understanding brassinosteroid-centric phytohormone interactions for crop improvement. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:563-581. [PMID: 39927447 DOI: 10.1111/jipb.13849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/07/2025] [Indexed: 02/11/2025]
Abstract
Brassinosteroids (BRs) play a crucial role in regulating multiple biological processes in plants, particularly those related to crop productivity and stress tolerance. During their functioning, BRs engage in extensive and intricate interactions with other phytohormones, including auxin, cytokinins, gibberellins, abscisic acid, ethylene, jasmonates, salicylic acid, and strigolactones. These interactions facilitate the integration of internal and external signals, ultimately shaping the physiological status of the plant. In this review, we introduce BR metabolism and signaling and discuss their role in modulating agronomic traits that directly contribute to grain yield in rice (Oryza sativa), the model plant for crops. We also summarize recent advances in the crosstalk between BRs and other phytohormones in regulating agronomic traits in crops. Furthermore, we highlight significant research that provides insights into developing high-yielding and stress-resistant crop varieties from the perspective of hormone crosstalk. Understanding the genetic and molecular mechanisms through which BRs and other phytohormones collaboratively control agronomic traits offers new approaches for crop improvement.
Collapse
Affiliation(s)
- Wenchao Yin
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Nana Dong
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xicheng Li
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yanzhao Yang
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zefu Lu
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenbin Zhou
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qian Qian
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chengcai Chu
- Guangdong Laboratory for Lingnan Modern Agriculture, and the State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Hongning Tong
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
3
|
Li H, He X, Lv H, Zhang H, Peng F, Song J, Liu W, Zhang J. Epibrassinolide Regulates Lhcb5 Expression Though the Transcription Factor of MYBR17 in Maize. Biomolecules 2025; 15:94. [PMID: 39858488 PMCID: PMC11763093 DOI: 10.3390/biom15010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Photosynthesis, which is the foundation of crop growth and development, is accompanied by complex transcriptional regulatory mechanisms. Research has established that brassinosteroids (BRs) play a role in regulating plant photosynthesis, with the majority of research focusing on the physiological level and regulation of rate-limiting enzymes in the dark reactions of photosynthesis. However, studies on their effects on maize photosynthesis, specifically on light-harvesting antenna proteins, have yet to be conducted. The peripheral light-harvesting antenna protein Lhcb5 is crucial for capturing and dissipating light energy. Herein, by analyzing the transcriptomic data of maize seedling leaves treated with 24-epibrassinolide (EBR) and verifying them using qPCR experiments, we found that the MYBR17 transcription factor may regulate the expression of the photosynthetic light-harvesting antenna protein gene. Further experiments using protoplast transient expression and yeast one-hybrid tests showed that the maize transcription factor MYBR17 responds to EBR signals and binds to the promoter of the light-harvesting antenna protein Lhcb5, thereby upregulating its expression. These results were validated using an Arabidopsis mybr17 mutant. Our results offer a theoretical foundation for the application of BRs to enhance the photosynthetic efficiency of maize.
Collapse
Affiliation(s)
- Hui Li
- Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu 611130, China; (H.L.); (J.S.)
| | - Xuewu He
- College of Life Science, Sichuan Agricultural University, Ya’an 625000, China; (X.H.); (H.L.); (H.Z.); (F.P.)
| | - Huayang Lv
- College of Life Science, Sichuan Agricultural University, Ya’an 625000, China; (X.H.); (H.L.); (H.Z.); (F.P.)
| | - Hongyu Zhang
- College of Life Science, Sichuan Agricultural University, Ya’an 625000, China; (X.H.); (H.L.); (H.Z.); (F.P.)
| | - Fuhai Peng
- College of Life Science, Sichuan Agricultural University, Ya’an 625000, China; (X.H.); (H.L.); (H.Z.); (F.P.)
| | - Jun Song
- Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu 611130, China; (H.L.); (J.S.)
| | - Wenjuan Liu
- Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu 611130, China; (H.L.); (J.S.)
| | - Junjie Zhang
- College of Life Science, Sichuan Agricultural University, Ya’an 625000, China; (X.H.); (H.L.); (H.Z.); (F.P.)
| |
Collapse
|
4
|
Wang T, Jin Y, Deng L, Li F, Wang Z, Zhu Y, Wu Y, Qu H, Zhang S, Liu Y, Mei H, Luo L, Yan M, Gu M, Xu G. The transcription factor MYB110 regulates plant height, lodging resistance, and grain yield in rice. THE PLANT CELL 2024; 36:298-323. [PMID: 37847093 PMCID: PMC10827323 DOI: 10.1093/plcell/koad268] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/04/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023]
Abstract
The high-yielding Green Revolution varieties of cereal crops are characterized by a semidwarf architecture and lodging resistance. Plant height is tightly regulated by the availability of phosphate (Pi), yet the underlying mechanism remains obscure. Here, we report that rice (Oryza sativa) R2R3-type Myeloblastosis (MYB) transcription factor MYB110 is a Pi-dependent negative regulator of plant height. MYB110 is a direct target of PHOSPHATE STARVATION RESPONSE 2 (OsPHR2) and regulates OsPHR2-mediated inhibition of rice height. Inactivation of MYB110 increased culm diameter and bending resistance, leading to enhanced lodging resistance despite increased plant height. Strikingly, the grain yield of myb110 mutants was elevated under both high- and low-Pi regimes. Two divergent haplotypes based on single nucleotide polymorphisms in the putative promoter of MYB110 corresponded with its transcript levels and plant height in response to Pi availability. Thus, fine-tuning MYB110 expression may be a potent strategy for further increasing the yield of Green Revolution cereal crop varieties.
Collapse
Affiliation(s)
- Tingting Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi Jin
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Lixiao Deng
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Li
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyuan Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanyuan Zhu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yufeng Wu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongye Qu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Shunan Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Liu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Hanwei Mei
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Lijun Luo
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Ming Yan
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Mian Gu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Guohua Xu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| |
Collapse
|
5
|
Zou T, Zhang K, Zhang J, Liu S, Liang J, Liu J, Zhu J, Liang Y, Wang S, Deng Q, Liu H, Jin J, Li P, Li S. DWARF AND LOW-TILLERING 2 functions in brassinosteroid signaling and controls plant architecture and grain size in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1766-1783. [PMID: 37699038 DOI: 10.1111/tpj.16464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/22/2023] [Accepted: 09/01/2023] [Indexed: 09/14/2023]
Abstract
Brassinosteroids (BRs) are a class of steroid phytohormones that control various aspects of plant growth and development. Several transcriptional factors (TFs) have been suggested to play roles in BR signaling. However, their possible relationship remains largely unknown. Here, we identified a rice mutant dwarf and low-tillering 2 (dlt2) with altered plant architecture, increased grain width, and reduced BR sensitivity. DLT2 encodes a GIBBERELLIN INSENSITIVE (GAI)-REPRESSOR OF GAI (RGA)-SCARECROW (GRAS) TF that is mainly localized in the nucleus and has weak transcriptional activity. Our further genetic and biochemical analyses indicate that DLT2 interacts with two BR-signaling-related TFs, DLT and BRASSINAZOLE-RESISTANT 1, and probably modulates their transcriptional activity. These findings imply that DLT2 is implicated in a potentially transcriptional complex that mediates BR signaling and rice development and suggests that DLT2 could be a potential target for improving rice architecture and grain morphology. This work also sheds light on the role of rice GRAS members in regulating numerous developmental processes.
Collapse
Affiliation(s)
- Ting Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Kaixuan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jing Zhang
- Technical Center of Chengdu Customs, Chengdu, 610041, Sichuan, China
| | - Sijing Liu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jing Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jiaxu Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jun Zhu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yueyang Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shiquan Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qiming Deng
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Huainian Liu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jinghua Jin
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ping Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shuangcheng Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| |
Collapse
|
6
|
Tong H, Chu C. Coordinating gibberellin and brassinosteroid signaling beyond Green Revolution. J Genet Genomics 2023; 50:459-461. [PMID: 37121378 DOI: 10.1016/j.jgg.2023.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023]
Affiliation(s)
- Hongning Tong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Chengcai Chu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
7
|
Huang J, Shen B, Rao X, Cao X, Zhang J, Liu L, Li J, Mao J. Assessment of Biological Activity of 28-Homobrassinolide via a Multi-Level Comparative Analysis. Int J Mol Sci 2023; 24:ijms24119377. [PMID: 37298328 DOI: 10.3390/ijms24119377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Brassinosteroids (BRs) play vital roles in the plant life cycle and synthetic BRs are widely used to increase crop yield and plant stress tolerance. Among them are 24R-methyl-epibrassinolide (24-EBL) and 24S-ethyl-28-homobrassinolide (28-HBL), which differ from brassinolide (BL, the most active BR) at the C-24 position. Although it is well known that 24-EBL is 10% active as BL, there is no consensus on the bioactivity of 28-HBL. A recent outpouring of research interest in 28-HBL on major crops accompanied with a surge of industrial-scale synthesis that produces mixtures of active (22R,23R)-28-HBL and inactive (22S,23S)-28HBL, demands a standardized assay system capable of analyzing different synthetic "28-HBL" products. In this study, the relative bioactivity of 28-HBL to BL and 24-EBL, including its capacity to induce the well-established BR responses at molecular, biochemical, and physiological levels, was systematically analyzed using the whole seedlings of the wild-type and BR-deficient mutant of Arabidopsis thaliana. These multi-level bioassays consistently showed that 28-HBL exhibits a much stronger bioactivity than 24-EBL and is almost as active as BL in rescuing the short hypocotyl phenotype of the dark-grown det2 mutant. These results are consistent with the previously established structure-activity relationship of BRs, proving that this multi-level whole seedling bioassay system could be used to analyze different batches of industrially produced 28-HBL or other BL analogs to ensure the full potential of BRs in modern agriculture.
Collapse
Affiliation(s)
- Junpeng Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Biaodi Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Xiao Rao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Xuehua Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Jianjun Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Linchuan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Jianming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Juan Mao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
8
|
Li B, Liu X, Guo Y, Deng L, Qu L, Yan M, Li M, Wang T. BnaC01.BIN2, a GSK3-like kinase, modulates plant height and yield potential in Brassica napus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:29. [PMID: 36867248 DOI: 10.1007/s00122-023-04325-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Using map-based cloning and transgenic transformation, we revealed that glycogen kinase synthase 3-like kinase, BnaC01.BIN2, modulates plant height and yield in rapeseed. The modification of plant height is one of the most important goals in rapeseed breeding. Although several genes that regulate rapeseed plant height have been identified, the genetics mechanisms underlying rapeseed plant height regulation remain poorly understood, and desirable genetic resources for rapeseed ideotype breeding are scarce. Here, we map-based cloned and functionally verified that the rapeseed semi-dominant gene, BnDF4, greatly affects rapeseed plant height. Specifically, BnDF4 encodes brassinosteroid (BR)-insensitive 2, a glycogen synthase kinase 3 primarily expressed in the lower internodes to modulate rapeseed plant height by blocking basal internode-cell elongation. Transcriptome data showed that several cell expansion-related genes involving auxin and BRs pathways were significantly downregulated in the semi-dwarf mutant. Heterozygosity in the BnDF4 allele results in small stature with no marked differences in other agronomic traits. Using BnDF4 in the heterozygous condition, the hybrid displayed strong yield heterosis through optimum intermediate plant height. Our results provide a desirable genetic resource for breeding semi-dwarf rapeseed phenotypes and support an effective strategy for breeding rapeseed hybrid varieties with strong yield heterosis.
Collapse
Affiliation(s)
- Bao Li
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- Hunan Hybrid Rapeseed Engineering and Technology Research Center, Changsha, 410125, China
| | - Xinhong Liu
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- Hunan Hybrid Rapeseed Engineering and Technology Research Center, Changsha, 410125, China
| | - Yiming Guo
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- Hunan Hybrid Rapeseed Engineering and Technology Research Center, Changsha, 410125, China
| | - Lichao Deng
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- Hunan Hybrid Rapeseed Engineering and Technology Research Center, Changsha, 410125, China
| | - Liang Qu
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- Hunan Hybrid Rapeseed Engineering and Technology Research Center, Changsha, 410125, China
| | - Mingli Yan
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- Hunan Hybrid Rapeseed Engineering and Technology Research Center, Changsha, 410125, China
| | - Mei Li
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
- Hunan Hybrid Rapeseed Engineering and Technology Research Center, Changsha, 410125, China.
| | - Tonghua Wang
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
- Hunan Hybrid Rapeseed Engineering and Technology Research Center, Changsha, 410125, China.
| |
Collapse
|
9
|
Cheng X, Huang Y, Tan Y, Tan L, Yin J, Zou G. Potentially Useful Dwarfing or Semi-dwarfing Genes in Rice Breeding in Addition to the sd1 Gene. RICE (NEW YORK, N.Y.) 2022; 15:66. [PMID: 36542176 PMCID: PMC9772376 DOI: 10.1186/s12284-022-00615-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
The "Green revolution" gene sd1 has been used widely in the breeding of modern rice varieties for over half a century. The application of this gene has increased rice yields and thereby supported a significant proportion of the global population. The use of a single gene, however, has raised concerns in the scientific community regarding its durability, especially given the bottleneck in genetic background and the need for large input of fertilizer. New dwarfing or semi-dwarfing genes are needed to alleviate our dependence on the sole "Green revolution" gene. In the past few years, several new dwarfing and semi-dwarfing genes as well as their mutants have been reported. Here, we provide an extensive review of the recent discoveries concerning newly identified genes that are potentially useful in rice breeding, including methods employed to create and effectively screen new rice mutants, the phenotypic characteristics of the new dwarfing and semi-dwarfing mutants, potential values of the new dwarfing and semi-dwarfing genes in rice breeding, and potential molecular mechanisms associated with the newly identified genes.
Collapse
Affiliation(s)
- Xiaoyan Cheng
- National Engineering Research Center of Rice (Nanchang), Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, People's Republic of China
- Jiangxi Tiandao Liangan Seed Industry Co., Ltd., 568 South Huancheng Rd., Yuanzhou Dist., Yi Chun, 336000, Jiangxi, People's Republic of China
| | - Yongping Huang
- National Engineering Research Center of Rice (Nanchang), Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, People's Republic of China
| | - Yong Tan
- Jiangxi Tiandao Liangan Seed Industry Co., Ltd., 568 South Huancheng Rd., Yuanzhou Dist., Yi Chun, 336000, Jiangxi, People's Republic of China
| | - Lin Tan
- Jiangxi Tiandao Liangan Seed Industry Co., Ltd., 568 South Huancheng Rd., Yuanzhou Dist., Yi Chun, 336000, Jiangxi, People's Republic of China
| | - Jianhua Yin
- National Engineering Research Center of Rice (Nanchang), Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, People's Republic of China
| | - Guoxing Zou
- National Engineering Research Center of Rice (Nanchang), Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, People's Republic of China.
| |
Collapse
|
10
|
Chen Q, Hou S, Pu X, Li X, Li R, Yang Q, Wang X, Guan M, Rengel Z. Dark secrets of phytomelatonin. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5828-5839. [PMID: 35522068 DOI: 10.1093/jxb/erac168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Phytomelatonin is a newly identified plant hormone, and its primary functions in plant growth and development remain relatively poorly appraised. Phytomelatonin is a master regulator of reactive oxygen species (ROS) signaling and acts as a darkness signal in circadian stomatal closure. Plants exhibit at least three interrelated patterns of interaction between phytomelatonin and ROS production. Exogenous melatonin can induce flavonoid biosynthesis, which might be required for maintenance of antioxidant capacity under stress, after harvest, and in leaf senescence conditions. However, several genetic studies have provided direct evidence that phytomelatonin plays a negative role in the biosynthesis of flavonoids under non-stress conditions. Phytomelatonin delays flowering time in both dicot and monocot plants, probably via its receptor PMTR1 and interactions with the gibberellin, strigolactone, and ROS signaling pathways. Furthermore, phytomelatonin signaling also functions in hypocotyl and shoot growth in skotomorphogenesis and ultraviolet B (UV-B) exposure; the G protein α-subunit (Arabidopsis GPA1 and rice RGA1) and constitutive photomorphogenic1 (COP1) are important signal components during this process. Taken together, these findings indicate that phytomelatonin acts as a darkness signal with important regulatory roles in circadian stomatal closure, flavonoid biosynthesis, flowering, and hypocotyl and shoot growth.
Collapse
Affiliation(s)
- Qi Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Suying Hou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiaojun Pu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiaomin Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Rongrong Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Qian Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xinjia Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Miao Guan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Zed Rengel
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Perth WA, Australia
- Institute for Adriatic Crops and Karst Reclamation, Split, Croatia
| |
Collapse
|
11
|
Dong G, Xiong H, Zeng W, Li J, Du D. Ectopic Expression of the Rice Grain-Size-Affecting Gene GS5 in Maize Affects Kernel Size by Regulating Endosperm Starch Synthesis. Genes (Basel) 2022; 13:1542. [PMID: 36140710 PMCID: PMC9498353 DOI: 10.3390/genes13091542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Maize is one of the most important food crops, and maize kernel is one of the important components of maize yield. Studies have shown that the rice grain-size affecting gene GS5 increases the thousand-kernel weight by positively regulating the rice grain width and grain grouting rate. In this study, based on the GS5 transgenic maize obtained through transgenic technology with specific expression in the endosperm, molecular assays were performed on the transformed plants. Southern blotting results showed that the GS5 gene was integrated into the maize genome in a low copy number, and RT-PCR analysis showed that the exogenous GS5 gene was normally and highly expressed in maize. The agronomic traits of two successive generations showed that certain lines were significantly improved in yield-related traits, and the most significant changes were observed in the OE-34 line, where the kernel width increased significantly by 8.99% and 10.96%, the 100-kernel weight increased by 14.10% and 10.82%, and the ear weight increased by 13.96% and 15.71%, respectively; however, no significant differences were observed in the plant height, ear height, kernel length, kernel row number, or kernel number. In addition, the overexpression of the GS5 gene increased the grain grouting rate and affected starch synthesis in the rice grains. The kernels' starch content in OE-25, OE-34, and OE-57 increased by 10.30%, 7.39%, and 6.39%, respectively. Scanning electron microscopy was performed to observe changes in the starch granule size, and the starch granule diameter of the transgenic line(s) was significantly reduced. RT-PCR was performed to detect the expression levels of related genes in starch synthesis, and the expression of these genes was generally upregulated. It was speculated that the exogenous GS5 gene changed the size of the starch granules by regulating the expression of related genes in the starch synthesis pathway, thus increasing the starch content. The trans-GS5 gene was able to be stably expressed in the hybrids with the genetic backgrounds of the four materials, with significant increases in the kernel width, 100-kernel weight, and ear weight. In this study, the maize kernel size was significantly increased through the endosperm-specific expression of the rice GS5 gene, and good material for the functional analysis of the GS5 gene was created, which was of great importance in theory and application.
Collapse
Affiliation(s)
- Guoqing Dong
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hanxian Xiong
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wanyong Zeng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jinhua Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Dengxiang Du
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
12
|
Zhang Y, Dong G, Chen F, Xiong E, Liu H, Jiang Y, Xiong G, Ruan B, Qian Q, Zeng D, Ma D, Yu Y, Wu L. The kinesin-13 protein BR HYPERSENSITIVE 1 is a negative brassinosteroid signaling component regulating rice growth and development. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1751-1766. [PMID: 35258682 DOI: 10.1007/s00122-022-04067-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Phytohormones performed critical roles in regulating plant architecture and thus determine grain yield in rice. However, the roles of brassinosteroids (BRs) compared to other phytohormones in shaping rice architecture are less studied. In this study, we report that BR hypersensitive1 (BHS1) plays a negative role in BR signaling and regulate rice architecture. BHS1 encodes the kinesin-13a protein and regulates grain length. We found that bhs1 was hypersensitive to BR, while BHS1-overexpression was less sensitive to BR compare to WT. BHS1 was down-regulated at RNA and protein level upon exogenous BR treatment, and proteasome inhibitor MG132 delayed the BHS1 degradation, indicating that both the transcriptional and posttranscriptional regulation machineries are involved in BHS1-mediated regulation of plant growth and development. Furthermore, we found that the BR-induced degradation of BHS1 was attenuated in Osbri1 and Osbak1 mutants, but not in Osbzr1 and Oslic mutants. Together, these results suggest that BHS1 is a novel component which is involved in negative regulation of the BR signaling downstream player of BRI1.
Collapse
Affiliation(s)
- Yanli Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Guojun Dong
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Fei Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Erhui Xiong
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Huijie Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Yaohuang Jiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Guosheng Xiong
- Plant Phenomics Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Banpu Ruan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Qian Qian
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Dali Zeng
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Dianrong Ma
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yanchun Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China.
| | - Limin Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China.
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou, 310036, China.
| |
Collapse
|
13
|
Roh J, Moon J, Lee YE, Park CH, Kim SK. Seed-Specific Expression of Arabidopsis AtCYP85A2 Produces Biologically Active Brassinosteroids Such as Castasterone and Brassinolide to Improve Grain Yield and Quality in Seeds of Brachypodium Distachyon. FRONTIERS IN PLANT SCIENCE 2021; 12:639508. [PMID: 33868337 PMCID: PMC8047465 DOI: 10.3389/fpls.2021.639508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Brachypodium distachyon is a monocotyledonous model plant that contains castasterone (CS) but no brassinolide (BL) as the end product of brassinosteroids (BR) biosynthesis, indicating dysfunction of BL synthase, which catalyzes the conversion of CS to BL. To increase BR activity, Arabidopsis cytochrome P450 85A2 (AtCYP85A2) encoding BR 6-oxidase/BL synthase was introduced into B. distachyon with the seed-specific promoters pBSU1, pAt5g10120, and pAt5g54000. RT-PCR analysis and GUS activity revealed that AtCYP85A2 was only expressed in the seeds of the transgenic plants pBSU1-AtCYP85A2::Bd21-3, pAt5g10120-AtCYP85A2::Bd21-3, and pAt5g54000-AtCYP85A2::Bd21-3. The crude enzyme prepared from the seeds of these three transgenic plants catalyzed the conversion of 6-deoxoCS to CS. The transgenic plants showed greater specific enzyme activity than the wild-type plant for the conversion of 6-deoxoCS to CS, indicating enhanced BR 6-oxidase activity in the transgenic plants. The enzyme solution also catalyzed the conversion of CS into BL. Additionally, BL was identified from the seeds of transgenic plants, verifying that seed-specific AtCYP85A2 encodes a functional BL synthase to increase BR activity in the seeds of transgenic Brachypodium. In comparison with wild-type Brachypodium, the transgenic plants showed better growth and development during the vegetative growing stage. The flowers of the transgenic plants were remarkably larger, resulting in increments in the number, size, and height of seeds. The total starch, protein, and lipid contents in transgenic plants were higher than those in wild-type plants, indicating that seed-specific expression of AtCYP85A2 improves both grain yield and quality in B. distachyon.
Collapse
Affiliation(s)
- Jeehee Roh
- Department of Life Science, Chung-Ang University, Seoul, South Korea
| | - Jinyoung Moon
- Department of Life Science, Chung-Ang University, Seoul, South Korea
| | - Ye Eun Lee
- Department of Life Science, Chung-Ang University, Seoul, South Korea
| | - Chan Ho Park
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, United States
| | - Seong-Ki Kim
- Department of Life Science, Chung-Ang University, Seoul, South Korea
| |
Collapse
|
14
|
Mohanty B. Promoter Architecture and Transcriptional Regulation of Genes Upregulated in Germination and Coleoptile Elongation of Diverse Rice Genotypes Tolerant to Submergence. Front Genet 2021; 12:639654. [PMID: 33796132 PMCID: PMC8008075 DOI: 10.3389/fgene.2021.639654] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/08/2021] [Indexed: 12/24/2022] Open
Abstract
Rice has the natural morphological adaptation to germinate and elongate its coleoptile under submerged flooding conditions. The phenotypic deviation associated with the tolerance to submergence at the germination stage could be due to natural variation. However, the molecular basis of this variation is still largely unknown. A comprehensive understanding of gene regulation of different genotypes that have diverse rates of coleoptile elongation can provide significant insights into improved rice varieties. To do so, publicly available transcriptome data of five rice genotypes, which have different lengths of coleoptile elongation under submergence tolerance, were analyzed. The aim was to identify the correlation between promoter architecture, associated with transcriptional and hormonal regulation, in diverse genotype groups of rice that have different rates of coleoptile elongation. This was achieved by identifying the putative cis-elements present in the promoter sequences of genes upregulated in each group of genotypes (tolerant, highly tolerant, and extremely tolerant genotypes). Promoter analysis identified transcription factors (TFs) that are common and unique to each group of genotypes. The candidate TFs that are common in all genotypes are MYB, bZIP, AP2/ERF, ARF, WRKY, ZnF, MADS-box, NAC, AS2, DOF, E2F, ARR-B, and HSF. However, the highly tolerant genotypes interestingly possess binding sites associated with HY5 (bZIP), GBF3, GBF4 and GBF5 (bZIP), DPBF-3 (bZIP), ABF2, ABI5, bHLH, and BES/BZR, in addition to the common TFs. Besides, the extremely tolerant genotypes possess binding sites associated with bHLH TFs such as BEE2, BIM1, BIM3, BM8 and BAM8, and ABF1, in addition to the TFs identified in the tolerant and highly tolerant genotypes. The transcriptional regulation of these TFs could be linked to phenotypic variation in coleoptile elongation in response to submergence tolerance. Moreover, the results indicate a cross-talk between the key TFs and phytohormones such as gibberellic acid, abscisic acid, ethylene, auxin, jasmonic acid, and brassinosteroids, for an altered transcriptional regulation leading to differences in germination and coleoptile elongation under submergence. The information derived from the current in silico analysis can potentially assist in developing new rice breeding targets for direct seeding.
Collapse
Affiliation(s)
- Bijayalaxmi Mohanty
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
15
|
Chen H, Yu H, Jiang W, Li H, Wu T, Chu J, Xin P, Li Z, Wang R, Zhou T, Huang K, Lu L, Bian M, Du X. Overexpression of ovate family protein 22 confers multiple morphological changes and represses gibberellin and brassinosteroid signalings in transgenic rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 304:110734. [PMID: 33568286 DOI: 10.1016/j.plantsci.2020.110734] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/21/2020] [Accepted: 10/18/2020] [Indexed: 05/27/2023]
Abstract
OVATE family proteins (OFPs) are plant-specific transcription factors that regulate plant growth and development. OFPs interact with 3-aa loop extension (TALE) homeodomain proteins and brassinosteroid (BR) signaling components to modulate gibberellic acid (GA) biosynthesis and BR responses. Bioactive GAs are essential in regulating plant organogenesis and organ growth by promoting cell differentiation and elongation. DELLA proteins act as the central repressors of GA-regulated processes and are targeted to be degraded by the 26S proteasome in the presence of GA. We discovered that the rice OFP22 negatively regulates GA and BR signal transduction. OsOFP22 expression was rapidly up-regulated by exogenous GA and BR application, detected predominantly in the calli and spikelets. Overexpression of OsOFP22 conferred multiple morphological phenotypes, including reduced plant height, dark green leaves, and shortened and widened leaves, floral organs and grains. The GA-induced elongation of the second leaf sheath in the seedlings, and α-amylase activity in the endosperms were attenuated in transgenic lines overexpressing OsOFP22, while GA-biosynthesis gene transcripts and bioactive GA3 and GA4 contents were increased in the transgenic plants. OsOFP22 promotes the protein accumulation of SLR1, the single DELLA in rice protein. Furthermore, Overexpression of OsOFP22 suppresses BR response and the expression of BR-related genes. OsOFP22 is thus involved in the repression of GA and BR signal transduction and integrates GA with BR to regulate plant growth and development.
Collapse
Affiliation(s)
- Haoyuan Chen
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China
| | - Hui Yu
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Wenzhu Jiang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China
| | - Hongyu Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tao Wu
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Innovation Academy for Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Peiyong Xin
- National Centre for Plant Gene Research (Beijing), Innovation Academy for Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhao Li
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China
| | - Rui Wang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China
| | - Tie Zhou
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China
| | - Kai Huang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China
| | - Lin Lu
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China
| | - Mingdi Bian
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China.
| | - Xinglin Du
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China.
| |
Collapse
|
16
|
Wang H, Jiao X, Kong X, Liu Y, Chen X, Fang R, Yan Y. The histone deacetylase HDA703 interacts with OsBZR1 to regulate rice brassinosteroid signaling, growth and heading date through repression of Ghd7 expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:447-459. [PMID: 33617099 DOI: 10.1111/tpj.14936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/08/2020] [Indexed: 06/12/2023]
Abstract
The plant steroid hormones brassinosteroids (BRs) play crucial roles in plant growth and development. The BR signal transduction pathway from perception to the key transcription factors has been well understood in Arabidopsis thaliana and in rice (Oryza sativa); however, the mechanisms conferring BR-mediated growth and flowering remain largely unknown, especially in rice. In this study, we show that HDA703 is a histone H4K8 and H4K12 deacetylase in rice. Hda703 mutants display a typical BR loss-of-function phenotype and reduced sensitivity to brassinolide, the most active BR. Rice plants overexpressing HDA703 exhibit some BR gain-of-function phenotypes dependent on BR biosynthesis and signaling. We also show that HDA703 is a direct target of BRASSINAZOLE-RESISTANT1 (OsBZR1), a primary regulator of rice BR signaling, and HDA703 interacts with OsBZR1 in rice. We further show that GRAIN NUMBER, PLANT HEIGHT, and HEADING DATE 7 (Ghd7), a central regulator of growth, development, and the stress response, is a direct target of OsBZR1. HDA703 directly targets Ghd7 and represses its expression through histone H4 deacetylation. HDA703-overexpressing rice plants phenocopy Ghd7-silencing rice plants in both growth and heading date. Together, our study suggests that HDA703, a histone H4 deacetylase, interacts with OsBZR1 to regulate rice BR signaling, growth, and heading date through epigenetic regulation of Ghd7.
Collapse
Affiliation(s)
- Huacai Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoming Jiao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoyu Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yawen Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoying Chen
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Rongxiang Fang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- National Plant Gene Research Center, Beijing, 100101, China
| | - Yongsheng Yan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
17
|
Roh J, Moon J, Youn JH, Seo C, Park YJ, Kim SK. Establishment of Biosynthetic Pathways To Generate Castasterone as the Biologically Active Brassinosteroid in Brachypodium distachyon. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3912-3923. [PMID: 32146811 DOI: 10.1021/acs.jafc.9b07963] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Gas chromatography-mass spectrometry (GC-MS) analysis revealed that castasterone and its biosynthetic precursors are found in Brachypodium distachyon. In vitro conversion experiments with crude enzyme solutions prepared from B. distachyon demonstrated the presence of the following biosynthetic sequences: campesterol → campesta-4-en-3-one → campesta-3-one → campestanol → 6-deoxocathasterone → 6-deoxoteasterone → teasterone ↔ 3-dehydroteasterone ↔ typhasterol → castasterone. campesterol → 22-hydroxycampesterol → 22-hydroxy-campesta-4-en-3-one → 22-hydroxy-campesta-3-one → 6-deoxo-3-dehydroteasterone → 3-dehydroteasterone. 6-deoxoteasterone ↔ 6-deoxo-3-dehydroteasterone ↔ 6-deoxotyphasterol → 6-deoxocastasterone → castasterone. This shows that there are campestanol-dependent and campestanol-independent pathway in B. distachyon that synthesize 24-methylated brassinosteroids (BRs). Biochemical analysis of BRs biosynthetic enzymes confirmed that BdDET2, BdCYP90B1, BdCYP90A1, BdCYP90D2, and BdCYP85A1 are orthologous to BR 5α-reductase, BR C-22 hydroxylase, BR C-3 oxidase, BR C-23 hydroxylase, and BR C-6 oxidase, respectively. Brassinolide was not identified in B. distachyon. Additionally, B. distachyon crude enzyme solutions could not catalyze the conversion of castasterone to brassinolide, and the gene encoding an ortholog of CYP85A2 (a brassinolide synthase) was not found in B. distachyon. These results strongly suggest that the end product for brassinosteroid biosynthesis which controls the growth and development of B. distachyon is not brassinolide but rather castasterone.
Collapse
Affiliation(s)
- Jeehee Roh
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jinyoung Moon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ji-Hyun Youn
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Chaiweon Seo
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yeon Ju Park
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Seong-Ki Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
18
|
Exploring the Brassinosteroid Signaling in Monocots Reveals Novel Components of the Pathway and Implications for Plant Breeding. Int J Mol Sci 2020; 21:ijms21010354. [PMID: 31948086 PMCID: PMC6982108 DOI: 10.3390/ijms21010354] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/28/2019] [Accepted: 01/03/2020] [Indexed: 01/30/2023] Open
Abstract
Brassinosteroids (BRs) are a class of steroidal phytohormones which are key regulators of diverse processes during whole life cycle of plants. Studies conducted in the dicot model species Arabidopsis thaliana have allowed identification and characterization of various components of the BR signaling. It is currently known that the BR signaling is interconnected at various stages with other phytohormonal and stress signaling pathways. It enables a rapid and efficient adaptation of plant metabolism to constantly changing environmental conditions. However, our knowledge about mechanism of the BR signaling in the monocot species is rather limited. Thus, identification of new components of the BR signaling in monocots, including cereals, is an ongoing process and has already led to identification of some monocot-specific components of the BR signaling. It is of great importance as disturbances in the BR signaling influence architecture of mutant plants, and as a consequence, the reaction to environmental conditions. Currently, the modulation of the BR signaling is considered as a target to enhance yield and stress tolerance in cereals, which is of particular importance in the face of global climate change.
Collapse
|
19
|
Li Y, Li X, Fu D, Wu C. Panicle Morphology Mutant 1 (PMM1) determines the inflorescence architecture of rice by controlling brassinosteroid biosynthesis. BMC PLANT BIOLOGY 2018; 18:348. [PMID: 30541444 PMCID: PMC6291947 DOI: 10.1186/s12870-018-1577-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/28/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND Panicle architecture is one of the main important agronomical traits that determine branch number and grain number in rice. Although a large number of genes involved in panicle development have been identified in recent years, the complex processes of inflorescence patterning need to be further characterized in rice. Brassinosteroids (BRs) are a class of steroid phytohormones. A great understanding of how BRs contribute to plant height and leaf erectness have been reported, however, the molecular and genetic mechanisms of panicle architecture influenced by BRs remain unclear. RESULTS Here, we identified PMM1, encoding a cytochrome P450 protein involved in BRs biosynthesis, and characterized its role in panicle architecture in rice. Three alleles of pmm1 were identified from our T-DNA insertional mutant library. Map-based cloning revealed that a large fragment deletion from the 2nd to 9th exons of PMM1 was responsible for the clustered primary branch morphology in pmm1-1. PMM1 is a new allele of DWARF11 (D11) PMM1 transcripts are preferentially expressed in young panicles, particularly expressed in the primordia of branches and spikelets during inflorescence development. Furthermore, overexpression of OsDWARF4 (D4), another gene encoding cytochrome P450, completely rescued the abnormal panicle phenotype of pmm1-1. Overall, it can be concluded that PMM1 is an important gene involved in BRs biosynthesis and affecting the differentiation of spikelet primordia and patterns of panicle branches in rice. CONCLUSIONS PMM1 is a new allele of D11, which encodes a cytochrome P450 protein involved in BRs biosynthesis pathway. Overexpression of D4 could successfully rescue the abnormal panicle architecture of pmm1 plants, indicating that PMM1/D11 and D4 function redundantly in BRs biosynthesis. Thus, our results demonstrated that PMM1 determines the inflorescence architecture by controlling brassinosteroid biosynthesis in rice.
Collapse
Affiliation(s)
- Yan Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070 China
| | - Xuemei Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070 China
| | - Debao Fu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070 China
| | - Changyin Wu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
20
|
Tong H, Chu C. Functional Specificities of Brassinosteroid and Potential Utilization for Crop Improvement. TRENDS IN PLANT SCIENCE 2018; 23:1016-1028. [PMID: 30220494 DOI: 10.1016/j.tplants.2018.08.007] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 08/10/2018] [Accepted: 08/21/2018] [Indexed: 05/20/2023]
Abstract
Brassinosteroid (BR) regulates many important agronomic traits and thus has great potential in agriculture. However, BR application is limited due to its complex effects on plants. The identification of specific downstream BR components and pathways in the crop plant rice (Oryza sativa) further demonstrates the feasibility of modulating BR responses to obtain desirable traits for breeding. Here, we review advances on how BR regulates various biological processes or agronomic traits such as plant architecture and grain yield in rice. We discuss how these functional specificities of BR can and could be utilized to enhance plant performance and productivity. We propose that unraveling the mechanisms underlying the diverse BR functions will favor BR application in molecular design for crop improvement.
Collapse
Affiliation(s)
- Hongning Tong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
21
|
Gruszka D. Crosstalk of the Brassinosteroid Signalosome with Phytohormonal and Stress Signaling Components Maintains a Balance between the Processes of Growth and Stress Tolerance. Int J Mol Sci 2018; 19:ijms19092675. [PMID: 30205610 PMCID: PMC6163518 DOI: 10.3390/ijms19092675] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/22/2018] [Accepted: 09/07/2018] [Indexed: 12/25/2022] Open
Abstract
Brassinosteroids (BRs) are a class of phytohormones, which regulate various processes during plant life cycle. Intensive studies conducted with genetic, physiological and molecular approaches allowed identification of various components participating in the BR signaling—from the ligand perception, through cytoplasmic signal transduction, up to the BR-dependent gene expression, which is regulated by transcription factors and chromatin modifying enzymes. The identification of new components of the BR signaling is an ongoing process, however an emerging view of the BR signalosome indicates that this process is interconnected at various stages with other metabolic pathways. The signaling crosstalk is mediated by the BR signaling proteins, which function as components of the transmembrane BR receptor, by a cytoplasmic kinase playing a role of the major negative regulator of the BR signaling, and by the transcription factors, which regulate the BR-dependent gene expression and form a complicated regulatory system. This molecular network of interdependencies allows a balance in homeostasis of various phytohormones to be maintained. Moreover, the components of the BR signalosome interact with factors regulating plant reactions to environmental cues and stress conditions. This intricate network of interactions enables a rapid adaptation of plant metabolism to constantly changing environmental conditions.
Collapse
Affiliation(s)
- Damian Gruszka
- Department of Genetics, Faculty of Biology and Environment Protection, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland.
| |
Collapse
|
22
|
Pan G, Liu Y, Ji L, Zhang X, He J, Huang J, Qiu Z, Liu D, Sun Z, Xu T, Liu L, Wang C, Jiang L, Cheng X, Wan J. Brassinosteroids mediate susceptibility to brown planthopper by integrating with the salicylic acid and jasmonic acid pathways in rice. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4433-4442. [PMID: 29893903 PMCID: PMC6093477 DOI: 10.1093/jxb/ery223] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/08/2018] [Indexed: 05/03/2023]
Abstract
Improved knowledge of the interactions between plants and insects will facilitate better insect control in crops. Brassinosteroids (BRs) play a vital role in plant growth, developmental processes, and responses to pathogen infection, but the role of BRs in interactions between plants and insects remain largely unknown. In this study, we characterized a negative role of BRs in rice defense against brown planthopper (BPH, Nilaparvata lugens) and examined its underlying mechanisms. We found that BPH infestation suppressed the BR pathway while successively activating the salicylic acid (SA) and jasmonic acid (JA) pathways. In addition, BR-overproducing mutants and plants treated with 24-epibrassinolide (BL) showed increased susceptibility to BPH, whereas BR-deficient mutants were more resistant than the wild-type. BRs down-regulated the expression of genes related to the SA pathway and reduced SA content while genes related to the JA pathway were up-regulated and JA content increased after BPH infestation. Furthermore, BR-mediated suppression of the SA pathway was impaired both in JA-deficient and JA-insensitive mutants. Our results demonstrate that BRs promote the susceptibility of rice plants to BPH by modulating the SA and JA pathways.
Collapse
Affiliation(s)
- Gen Pan
- State Key Laboratory for Crop Genetics & Germplasm Enhancement, Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Weigang, Nanjing, China
| | - Yuqiang Liu
- State Key Laboratory for Crop Genetics & Germplasm Enhancement, Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Weigang, Nanjing, China
| | - Linshan Ji
- State Key Laboratory for Crop Genetics & Germplasm Enhancement, Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Weigang, Nanjing, China
| | - Xiao Zhang
- State Key Laboratory for Crop Genetics & Germplasm Enhancement, Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Weigang, Nanjing, China
| | - Jun He
- State Key Laboratory for Crop Genetics & Germplasm Enhancement, Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Weigang, Nanjing, China
| | - Jie Huang
- State Key Laboratory for Crop Genetics & Germplasm Enhancement, Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Weigang, Nanjing, China
| | - Zeyu Qiu
- State Key Laboratory for Crop Genetics & Germplasm Enhancement, Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Weigang, Nanjing, China
| | - Daoming Liu
- State Key Laboratory for Crop Genetics & Germplasm Enhancement, Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Weigang, Nanjing, China
| | - Zhiguang Sun
- State Key Laboratory for Crop Genetics & Germplasm Enhancement, Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Weigang, Nanjing, China
| | - Tingting Xu
- State Key Laboratory for Crop Genetics & Germplasm Enhancement, Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Weigang, Nanjing, China
| | - Linglong Liu
- State Key Laboratory for Crop Genetics & Germplasm Enhancement, Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Weigang, Nanjing, China
| | - Chunming Wang
- State Key Laboratory for Crop Genetics & Germplasm Enhancement, Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Weigang, Nanjing, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics & Germplasm Enhancement, Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Weigang, Nanjing, China
| | - Xianian Cheng
- State Key Laboratory for Crop Genetics & Germplasm Enhancement, Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Weigang, Nanjing, China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics & Germplasm Enhancement, Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Weigang, Nanjing, China
- Institute of Crop Science, the National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
23
|
Li QF, Yu JW, Lu J, Fei HY, Luo M, Cao BW, Huang LC, Zhang CQ, Liu QQ. Seed-Specific Expression of OsDWF4, a Rate-Limiting Gene Involved in Brassinosteroids Biosynthesis, Improves Both Grain Yield and Quality in Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3759-3772. [PMID: 29613784 DOI: 10.1021/acs.jafc.8b00077] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Brassinosteroids (BRs) are essential plant-specific steroidal hormones that regulate diverse growth and developmental processes in plants. We evaluated the effects of OsDWF4, a gene that encodes a rate-limiting enzyme in BR biosynthesis, on both rice yield and quality when driven by the Gt1 or Ubi promoter, which correspond to seed-specific or constitutive expression, respectively. Generally, transgenic plants expressing OsDWF4 showed increased grain yield with more tillers and longer and heavier seeds. Moreover, the starch physicochemical properties of the transgenic rice were also improved. Interestingly, OsDWF4 was found to exert different effects on either rice yield or quality when driven by the different promoters. The overall performance of the pGt1::OsDWF4 lines was better than that of the pUbi::OsDWF4 lines. Our data not only demonstrate the effects of OsDWF4 overexpression on both rice yield and quality but also suggest that a seed-specific promoter is a good choice in BR-mediated rice breeding programs.
Collapse
Affiliation(s)
- Qian-Feng Li
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture , Yangzhou University , Yangzhou 225009 , China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education , Yangzhou University , Yangzhou 225009 , China
| | - Jia-Wen Yu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture , Yangzhou University , Yangzhou 225009 , China
| | - Jun Lu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture , Yangzhou University , Yangzhou 225009 , China
| | - Hong-Yuan Fei
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture , Yangzhou University , Yangzhou 225009 , China
| | - Ming Luo
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden , Chinese Academy of Sciences , Guangzhou 510650 , China
| | - Bu-Wei Cao
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture , Yangzhou University , Yangzhou 225009 , China
| | - Li-Chun Huang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture , Yangzhou University , Yangzhou 225009 , China
| | - Chang-Quan Zhang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture , Yangzhou University , Yangzhou 225009 , China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education , Yangzhou University , Yangzhou 225009 , China
| | - Qiao-Quan Liu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture , Yangzhou University , Yangzhou 225009 , China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education , Yangzhou University , Yangzhou 225009 , China
| |
Collapse
|
24
|
Liu F, Wang P, Zhang X, Li X, Yan X, Fu D, Wu G. The genetic and molecular basis of crop height based on a rice model. PLANTA 2018; 247:1-26. [PMID: 29110072 DOI: 10.1007/s00425-017-2798-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/15/2017] [Indexed: 05/04/2023]
Abstract
This review presents genetic and molecular basis of crop height using a rice crop model. Height is controlled by multiple genes with potential to be manipulated through breeding strategies to improve productivity. Height is an important factor affecting crop architecture, apical dominance, biomass, resistance to lodging, tolerance to crowding and mechanical harvesting. The impressive increase in wheat and rice yield during the 'green revolution' benefited from a combination of breeding for high-yielding dwarf varieties together with advances in agricultural mechanization, irrigation and agrochemical/fertilizer use. To maximize yield under irrigation and high fertilizer use, semi-dwarfing is optimal, whereas extreme dwarfing leads to decreased yield. Rice plant height is controlled by genes that lie in a complex regulatory network, mainly involved in the biosynthesis or signal transduction of phytohormones such as gibberellins, brassinosteroids and strigolactones. Additional dwarfing genes have been discovered that are involved in other pathways, some of which are uncharacterized. This review discusses our current understanding of the regulation of plant height using rice as a well-characterized model and highlights some of the most promising research that could lead to the development of new, high-yielding varieties. This knowledge underpins future work towards the genetic improvement of plant height in rice and other crops.
Collapse
Affiliation(s)
- Fang Liu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Pandi Wang
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaobo Zhang
- State Key Laboratory of Crop Breeding Technology Innovation and Integration, China National Seed Group Co., Ltd., Wuhan, 430206, China
| | - Xiaofei Li
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaohong Yan
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Donghui Fu
- The Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, China.
| | - Gang Wu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China.
| |
Collapse
|
25
|
Hu S, Sanchez DL, Wang C, Lipka AE, Yin Y, Gardner CAC, Lübberstedt T. Brassinosteroid and gibberellin control of seedling traits in maize (Zea mays L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 263:132-141. [PMID: 28818369 DOI: 10.1016/j.plantsci.2017.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/09/2017] [Accepted: 07/11/2017] [Indexed: 05/24/2023]
Abstract
In this study, we established two doubled haploid (DH) libraries with a total of 207 DH lines. We applied BR and GA inhibitors to all DH lines at seedling stage and measured seedling BR and GA inhibitor responses. Moreover, we evaluated field traits for each DH line (untreated). We conducted genome-wide association studies (GWAS) with 62,049 genome wide SNPs to explore the genetic control of seedling traits by BR and GA. In addition, we correlate seedling stage hormone inhibitor response with field traits. Large variation for BR and GA inhibitor response and field traits was observed across these DH lines. Seedling stage BR and GA inhibitor response was significantly correlate with yield and flowering time. Using three different GWAS approaches to balance false positive/negatives, multiple SNPs were discovered to be significantly associated with BR/GA inhibitor responses with some localized within gene models. SNPs from gene model GRMZM2G013391 were associated with GA inhibitor response across all three GWAS models. This gene is expressed in roots and shoots and was shown to regulate GA signaling. These results show that BRs and GAs have a great impact for controlling seedling growth. Gene models from GWAS results could be targets for seeding traits improvement.
Collapse
Affiliation(s)
- Songlin Hu
- Department of Agronomy, Iowa State University, 100 Osborn Drive, Ames, IA 50011, USA.
| | - Darlene L Sanchez
- Department of Agronomy, Iowa State University, 100 Osborn Drive, Ames, IA 50011, USA
| | - Cuiling Wang
- Department of Agronomy, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, Henan 471023, China
| | - Alexander E Lipka
- Department of Crop Sciences, University of Illinois, Champaign, IL 61801, USA
| | - Yanhai Yin
- Department of Genetics, Development and Cell Biology, Iowa State University, 100 Osborn Drive, Ames, IA 50011, USA
| | - Candice A C Gardner
- Department of Agronomy, Iowa State University, 100 Osborn Drive, Ames, IA 50011, USA; U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), 100 Osborn Drive, Ames, IA 50011, USA
| | - Thomas Lübberstedt
- Department of Agronomy, Iowa State University, 100 Osborn Drive, Ames, IA 50011, USA
| |
Collapse
|
26
|
Que F, Wang GL, Xu ZS, Wang F, Xiong AS. Transcriptional Regulation of Brassinosteroid Accumulation during Carrot Development and the Potential Role of Brassinosteroids in Petiole Elongation. FRONTIERS IN PLANT SCIENCE 2017; 8:1356. [PMID: 28848570 PMCID: PMC5554516 DOI: 10.3389/fpls.2017.01356] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 07/20/2017] [Indexed: 05/17/2023]
Abstract
It is widely known that brassinosteroids (BRs) are involved in various physiological processes during plant growth and development. Roles of BRs have been reported in many plants. However, relevant report is yet not found in carrot. Carrot is a nutrient-rich vegetable from the Apiaceae family. Here, we measured the bioactive contents of BRs at five successive stages and analyzed the expression profiles of genes involved in BR biosynthesis, signaling pathway and catabolism. We found that most biosynthesis regulated genes had higher expression level at the first development stage of carrot and the catabolism gene BAS1/CYP734A1 had significantly high expression level at the first stage in carrot roots and petioles. In addition, we treated carrot plants with exogenous 24-epibrassinolide (24-EBL) and examined the morphological changes after treating. Compared with control plants, carrot plants treated with 24-EBL had higher plant height, more number of petioles and heavier aboveground weight. The expression levels of DcBRI1, DcBZR1, and DcBSU1 in the petioles were significantly up-regulated by treating with exogenous 24-EBL. The expression profiles of DcCYP734A1 were all significantly up-regulated in the three organs when treated with 0.5 mg/L 24-EBL. The elongation of carrot petioles can be promoted by treating with exogenous 24-EBL. These results indicate that BRs playing potential roles during the growth and development of carrot.
Collapse
Affiliation(s)
- Feng Que
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Guang-Long Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Feng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
27
|
Sakaguchi J, Watanabe Y. Light perception in aerial tissues enhances DWF4 accumulation in root tips and induces root growth. Sci Rep 2017; 7:1808. [PMID: 28500288 PMCID: PMC5431926 DOI: 10.1038/s41598-017-01872-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/05/2017] [Indexed: 02/02/2023] Open
Abstract
Many attempts have been made to characterize the activities of brassinosteroids (BRs), which are important plant hormones. The crosstalk between light perception and the BR signalling pathway has been extensively studied regarding its effects on photomorphogenesis, especially in elongating etiolated hypocotyls. In contrast, how and where the light induces BR biosynthesis remain uncharacterized. DWF4 is one of the main enzymes involved in the BR biosynthesis pathway in Arabidopsis thaliana. We established DWF4-GUS A. thaliana lines in a homozygous dwf4-102 genetic background, but functionally complemented with a genomic DWF4 sequence fused in-frame with a β-glucuronidase (GUS) marker gene. The DWF4-GUS plants enabled the visualization of the accumulation of DWF4 under different conditions. We investigated the effects of aboveground light on root and hypocotyl growth. We observed that root length increased when shoots were maintained under light irrespective of whether roots were exposed to light. We also determined that light perception in aerial tissues enhanced DWF4 accumulation in the root tips. Overall, our data indicate that BR biosynthesis is promoted in the root tip regions by an unknown mechanism in distantly located shoot tissues exposed to light, leading to increased root growth.
Collapse
Affiliation(s)
- Jun Sakaguchi
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Yuichiro Watanabe
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
28
|
Corvalán C, Choe S. Identification of brassinosteroid genes in Brachypodium distachyon. BMC PLANT BIOLOGY 2017; 17:5. [PMID: 28061864 PMCID: PMC5217202 DOI: 10.1186/s12870-016-0965-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/23/2016] [Indexed: 05/11/2023]
Abstract
BACKGROUND Brassinosteroids (BRs) are steroidal phytohormones that are involved in diverse physiological processes and affect many important traits, such as plant stature, stress tolerance, leaf angle, fertility, and grain filling. BR signaling and biosynthetic pathways have been studied in various plants, such as the model dicot Arabidopsis thaliana; however, relatively little is known about these pathways in monocots. RESULTS To characterize BR-related processes in the model grass Brachypodium distachyon, we studied the response of these plants to the specific BR biosynthesis inhibitor, propiconazole (Pcz). We found that treatments with Pcz produced a dwarf phenotype in B. distachyon seedlings, similar to that observed in Pcz-treated Arabidopsis plants and in characterized BR-deficient mutants. Through bioinformatics analysis, we identified a list of putative homologs of genes known to be involved in BR biosynthesis and signaling in Arabidopsis, such as DWF4, BR6OX2, CPD, BRI1, and BIN2. Evaluating the response of these genes to Pcz treatments revealed that candidates for BdDWF4, BR6OX2 and, CPD were under feedback regulation. In addition, Arabidopsis plants heterologously expressing BdDWF4 displayed tall statures and elongated petioles, as would be expected in plants with elevated levels of BRs. Moreover, heterologous expression of BdBIN2 in Arabidopsis resulted in dwarfism, suggesting that BdBIN2 functions as a negative regulator of BR signaling. However, the dwarf phenotypes of Arabidopsis bri1-5, a weak BRI1 mutant allele, were not complemented by overexpression of BdBRI1, indicating that BdBRI1 and BRI1 are not functionally equivalent. CONCLUSION We identified components of the BR biosynthetic and signaling pathways in Brachypodium, and provided examples of both similarities and differences in the BR biology of these two plants. Our results suggest a framework for understanding BR biology in monocot crop plants such as Zea mays (maize) and Oryza sativa (rice).
Collapse
Affiliation(s)
- Claudia Corvalán
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826 South Korea
| | - Sunghwa Choe
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826 South Korea
- Convergence Research Lab for Plant Functional Products, Advanced Institutes of Convergence Technology, Suwon, 16229 Gyeonggi-do South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826 South Korea
| |
Collapse
|
29
|
Xiao Y, Liu D, Zhang G, Tong H, Chu C. Brassinosteroids Regulate OFP1, a DLT Interacting Protein, to Modulate Plant Architecture and Grain Morphology in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:1698. [PMID: 29021808 PMCID: PMC5623909 DOI: 10.3389/fpls.2017.01698] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 09/15/2017] [Indexed: 05/19/2023]
Abstract
Brassinosteroids (BRs) regulate important agronomic traits in rice, including plant height, leaf angle, and grain size. However, the underlying mechanisms remain not fully understood. We previously showed that GSK2, the central negative regulator of BR signaling, targets DLT, the GRAS family protein, to regulate BR responses. Here, we identified Ovate Family Protein 1 (OFP1) as a DLT interacting protein. OFP1 was ubiquitously expressed and the protein was localized in both cytoplasm and nucleus. Overexpression of OFP1 led to enlarged leaf angles, reduced plant height, and altered grain shape, largely resembled DLT overexpression plants. Genetic analysis showed that the regulation of plant architecture by OFP1 depends on DLT function. In addition, we found OFP1 was greatly induced by BR treatment, and OsBZR1, the critical transcription factor of BR signaling, was physically associated with the OFP1 promoter. Moreover, we showed that gibberellin synthesis was greatly repressed in OFP1 overexpression plants, suggesting OFP1 participates in the inhibition of plant growth by high BR or elevated BR signaling. Furthermore, we revealed that OFP1 directly interacts with GSK2 kinase, and inhibition of the kinase activity significantly promotes OFP1 protein accumulation in plant. Taken together, we identified OFP1 as an additional regulator of BR responses and revealed how BRs promote OFP1 at both transcription and protein levels to modulate plant architecture and grain morphology in rice.
Collapse
Affiliation(s)
- Yunhua Xiao
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dapu Liu
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guoxia Zhang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongning Tong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Hongning Tong, Chengcai Chu,
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Hongning Tong, Chengcai Chu,
| |
Collapse
|
30
|
Wang J, Shi H, Zhou L, Peng C, Liu D, Zhou X, Wu W, Yin J, Qin H, Ma W, He M, Li W, Wang J, Li S, Chen X. OsBSK1-2, an Orthologous of AtBSK1, Is Involved in Rice Immunity. FRONTIERS IN PLANT SCIENCE 2017; 8:908. [PMID: 28680425 PMCID: PMC5478731 DOI: 10.3389/fpls.2017.00908] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/15/2017] [Indexed: 05/20/2023]
Abstract
The brassinosteroid-SIGNALING KINASE (BSK) belongs to the receptor-like cytoplasmic kinase XII subgroup. BSK1 regulates development and immunity in Arabidopsis. However, the function of rice (Oryza sativa) BSK1 is largely unknown. Here, we report that the expression level of OsBSK1-2 is induced after a chitin or fagellin22 (flg22) treatment. Silencing OsBSK1-2 in rice results in compromised responses to chitin- or flg22-triggered immunity and resistance to Magnaporthe oryzae, but does not alter the plant's architecture nor reduce plant responses to brassinosteroid signaling. Our study reveals that OsBSK1-2 functions as a major regulator in rice plant immunity.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Sichuan Agricultural University at Wenjiang, ChengduChina
| | - Hui Shi
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Sichuan Agricultural University at Wenjiang, ChengduChina
| | - Lian Zhou
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Sichuan Agricultural University at Wenjiang, ChengduChina
| | - Chunfang Peng
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Sichuan Agricultural University at Wenjiang, ChengduChina
| | - Dingyou Liu
- Rice Research Institute, Agricultural Academy of Sciences at Mianyang, MianyangChina
| | - Xiaogang Zhou
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Sichuan Agricultural University at Wenjiang, ChengduChina
| | - Wenguan Wu
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Sichuan Agricultural University at Wenjiang, ChengduChina
| | - Junjie Yin
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Sichuan Agricultural University at Wenjiang, ChengduChina
| | - Hai Qin
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Sichuan Agricultural University at Wenjiang, ChengduChina
| | - Weiwei Ma
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Sichuan Agricultural University at Wenjiang, ChengduChina
| | - Min He
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Sichuan Agricultural University at Wenjiang, ChengduChina
| | - Weitao Li
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Sichuan Agricultural University at Wenjiang, ChengduChina
| | - Jichun Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Sichuan Agricultural University at Wenjiang, ChengduChina
| | - Shigui Li
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Sichuan Agricultural University at Wenjiang, ChengduChina
| | - Xuewei Chen
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Sichuan Agricultural University at Wenjiang, ChengduChina
- *Correspondence: Xuewei Chen,
| |
Collapse
|
31
|
Yang C, Shen W, He Y, Tian Z, Li J. OVATE Family Protein 8 Positively Mediates Brassinosteroid Signaling through Interacting with the GSK3-like Kinase in Rice. PLoS Genet 2016; 12:e1006118. [PMID: 27332964 PMCID: PMC4917237 DOI: 10.1371/journal.pgen.1006118] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/20/2016] [Indexed: 11/18/2022] Open
Abstract
OVATE gene was first identified as a key regulator of fruit shape in tomato. OVATE family proteins (OFPs) are characterized as plant-specific transcription factors and conserved in Arabidopsis, tomato, and rice. Roles of OFPs involved in plant development and growth are largely unknown. Brassinosteroids (BRs) are a class of steroid hormones involved in diverse biological functions. OsGKS2 plays a critical role in BR signaling by phosphorylating downstream components such as OsBZR1 and DLT. Here we report in rice that OsOFP8 plays a positive role in BR signaling pathway. BL treatment induced the expression of OsOFP8 and led to enhanced accumulation of OsOFP8 protein. The gain-of-function mutant Osofp8 and OsOFP8 overexpression lines showed enhanced lamina joint inclination, whereas OsOFP8 RNAi transgenic lines showed more upright leaf phenotype, which suggest that OsOFP8 is involved in BR responses. Further analyses indicated that OsGSK2 interacts with and phosphorylates OsOFP8. BRZ treatment resulted in the cytoplasmic distribution of OsOFP8, and bikinin treatment reduced the cytoplasmic accumulation of OsOFP8. Phosphorylation of OsOFP8 by OsGSK2 is needed for its nuclear export. The phospphorylated OsOFP8 shuttles to the cytoplasm and is targeted for proteasomal degradation. These results indicate that OsOFP8 is a substrate of OsGSK2 and the function of OsOFP8 in plant growth and development is at least partly through the BR signaling pathway.
Collapse
Affiliation(s)
- Chao Yang
- University of Chinese Academy of Sciences, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Wenjin Shen
- University of Chinese Academy of Sciences, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yong He
- College of Life Science, Yangtze University, Jingzhou, China
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, China
| | - Zhihong Tian
- College of Life Science, Yangtze University, Jingzhou, China
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, China
- * E-mail: (ZT); (JL)
| | - Jianxiong Li
- University of Chinese Academy of Sciences, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Science, Yangtze University, Jingzhou, China
- * E-mail: (ZT); (JL)
| |
Collapse
|
32
|
Che R, Tong H, Shi B, Liu Y, Fang S, Liu D, Xiao Y, Hu B, Liu L, Wang H, Zhao M, Chu C. Control of grain size and rice yield by GL2-mediated brassinosteroid responses. NATURE PLANTS 2015; 2:15195. [PMID: 27250747 DOI: 10.1038/nplants.2015.195] [Citation(s) in RCA: 278] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/12/2015] [Indexed: 05/20/2023]
Abstract
Given the continuously growing population and decreasing arable land, food shortage is becoming one of the most serious global problems in this century(1). Grain size is one of the determining factors for grain yield and thus is a prime target for genetic breeding(2,3). Although a number of quantitative trait loci (QTLs) associated with rice grain size have been identified in the past decade, mechanisms underlying their functions remain largely unknown(4,5). Here we show that a grain-length-associated QTL, GL2, has the potential to improve grain weight and grain yield up to 27.1% and 16.6%, respectively. We also show that GL2 is allelic to OsGRF4 and that it contains mutations in the miR396 targeting sequence. Because of the mutation, GL2 has a moderately increased expression level, which consequently activates brassinosteroid responses by upregulating a large number of brassinosteroid-induced genes to promote grain development. Furthermore, we found that GSK2, the central negative regulator of rice brassinosteroid signalling, directly interacts with OsGRF4 and inhibits its transcription activation activity to mediate the specific regulation of grain length by the hormone. Thus, this work demonstrates the feasibility of modulating specific brassinosteroid responses to improve plant productivity.
Collapse
Affiliation(s)
- Ronghui Che
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongning Tong
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bihong Shi
- College of Life Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Yuqin Liu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China
| | - Shanru Fang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China
| | - Dapu Liu
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yunhua Xiao
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Hu
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Linchuan Liu
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongru Wang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mingfu Zhao
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
33
|
Zhang X, Sun J, Cao X, Song X. Epigenetic Mutation of RAV6 Affects Leaf Angle and Seed Size in Rice. PLANT PHYSIOLOGY 2015; 169:2118-28. [PMID: 26351308 PMCID: PMC4634063 DOI: 10.1104/pp.15.00836] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/06/2015] [Indexed: 05/18/2023]
Abstract
Heritable epigenetic variants of genes, termed epialleles, can broaden genetic and phenotypic diversity in eukaryotes. Epialleles may also provide a new source of beneficial traits for crop breeding, but very few epialleles related to agricultural traits have been identified in crops. Here, we identified Epi-rav6, a gain-of-function epiallele of rice (Oryza sativa) RELATED TO ABSCISIC ACID INSENSITIVE3 (ABI3)/VIVIPAROUS1 (VP1) 6 (RAV6), which encodes a B3 DNA-binding domain-containing protein. The Epi-rav6 plants show larger lamina inclination and smaller grain size; these agronomically important phenotypes are inherited in a semidominant manner. We did not find nucleotide sequence variation of RAV6. Instead, we found hypomethylation in the promoter region of RAV6, which caused ectopic expression of RAV6 in Epi-rav6 plants. Bisulfite analysis revealed that cytosine methylation of four CG and two CNG loci within a continuous 96-bp region plays essential roles in regulating RAV6 expression; this region contains a conserved miniature inverted repeat transposable element transposon insertion in cultivated rice genomes. Overexpression of RAV6 in the wild type phenocopied the Epi-rav6 phenotype. The brassinosteroid (BR) receptor BR INSENSITIVE1 and BR biosynthetic genes EBISU DWARF, DWARF11, and BR-DEFICIENT DWARF1 were ectopically expressed in Epi-rav6 plants. Also, treatment with a BR biosynthesis inhibitor restored the leaf angle defects of Epi-rav6 plants. This indicates that RAV6 affects rice leaf angle by modulating BR homeostasis and demonstrates an essential regulatory role of epigenetic modification on a key gene controlling important agricultural traits. Thus, our work identifies a unique rice epiallele, which may represent a common phenomenon in complex crop genomes.
Collapse
Affiliation(s)
- Xiangqian Zhang
- Guangdong Engineering Research Center of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (X.Z.);State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (J.S., X.C., X.S.); andCollaborative Innovation Center of Genetics and Development, Shanghai 200433, China (X.C.)
| | - Jing Sun
- Guangdong Engineering Research Center of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (X.Z.);State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (J.S., X.C., X.S.); andCollaborative Innovation Center of Genetics and Development, Shanghai 200433, China (X.C.)
| | - Xiaofeng Cao
- Guangdong Engineering Research Center of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (X.Z.);State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (J.S., X.C., X.S.); andCollaborative Innovation Center of Genetics and Development, Shanghai 200433, China (X.C.)
| | - Xianwei Song
- Guangdong Engineering Research Center of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (X.Z.);State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (J.S., X.C., X.S.); andCollaborative Innovation Center of Genetics and Development, Shanghai 200433, China (X.C.)
| |
Collapse
|
34
|
Sun S, Chen D, Li X, Qiao S, Shi C, Li C, Shen H, Wang X. Brassinosteroid Signaling Regulates Leaf Erectness in Oryza sativa via the Control of a Specific U-Type Cyclin and Cell Proliferation. Dev Cell 2015; 34:220-8. [DOI: 10.1016/j.devcel.2015.05.019] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 04/06/2015] [Accepted: 05/20/2015] [Indexed: 10/23/2022]
|
35
|
Wu Q, Li D, Li D, Liu X, Zhao X, Li X, Li S, Zhu L. Overexpression of OsDof12 affects plant architecture in rice (Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2015; 6:833. [PMID: 26500670 PMCID: PMC4597119 DOI: 10.3389/fpls.2015.00833] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 09/23/2015] [Indexed: 05/05/2023]
Abstract
Dof (DNA binding with one finger) proteins, a class of plant-specific transcription factors, are involved in plant growth and developmental processes and stress responses. However, their biological functions remain to be elucidated, especially in rice (Oryza sativa L.). Previously, we have reported that OsDof12 can promote rice flowering under long-day conditions. Here, we further investigated the other important agronomical traits of the transgenic plants overexpressing OsDof12 and found that overexpressing OsDof12 could lead to reduced plant height, erected leaf, shortened leaf blade, and smaller panicle resulted from decreased primary and secondary branches number. These results implied that OsDof12 is involved in rice plant architecture formation. Furthermore, we performed a series of Brassinosteroid (BR)-responsive tests and found that overexpression of OsDof12 could also result in BR hyposensitivity. Of note, in WT plants the expression of OsDof12 was found up-regulated by BR treatment while in OsDof12 overexpression plants two positive BR signaling regulators, OsBRI1 and OsBZR1, were significantly down-regulated, indicating that OsDof12 may act as a negative BR regulator in rice. Taken together, our results suggested that overexpression of OsDof12 could lead to altered plant architecture by suppressing BR signaling. Thus, OsDof12 might be used as a new potential genetic regulator for future rice molecular breeding.
Collapse
Affiliation(s)
- Qi Wu
- Rice Research Institute, Sichuan Agricultural UniversityChengdu, China
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Dayong Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Dejun Li
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural SciencesDanzhou, China
| | - Xue Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of SciencesBeijing, China
| | - Xianfeng Zhao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Xiaobing Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Shigui Li
- Rice Research Institute, Sichuan Agricultural UniversityChengdu, China
- *Correspondence: Shigui Li, Rice Research Institute, Sichuan Agricultural University, No. 211 Huimin Road, Chengdu 611130, China
| | - Lihuang Zhu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
- Lihuang Zhu, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, China
| |
Collapse
|
36
|
Mantilla Perez MB, Zhao J, Yin Y, Hu J, Salas Fernandez MG. Association mapping of brassinosteroid candidate genes and plant architecture in a diverse panel of Sorghum bicolor. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:2645-62. [PMID: 25326721 DOI: 10.1007/s00122-014-2405-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 09/27/2014] [Indexed: 05/09/2023]
Abstract
This first association analysis between plant architecture and BR candidate genes in sorghum suggests that natural allelic variation has significant and pleiotropic effects on plant architecture phenotypes. Sorghum bicolor (L) Moench is a self-pollinated species traditionally used as a staple crop for human consumption and as a forage crop for livestock feed. Recently, sorghum has received attention as a bioenergy crop due to its water use efficiency and biomass yield potential. Breeding for superior bioenergy-type lines requires knowledge of the genetic mechanisms controlling plant architecture. Brassinosteroids (BRs) are a group of hormones that determine plant growth, development, and architecture. Biochemical and genetic information on BRs are available from model species but the application of that knowledge to crop species has been very limited. A candidate gene association mapping approach and a diverse sorghum collection of 315 accessions were used to assess marker-trait associations between BR biosynthesis and signaling genes and six plant architecture traits. A total of 263 single nucleotide polymorphisms (SNPs) from 26 BR genes were tested, 73 SNPs were significantly associated with the phenotypes of interest and 18 of those were associated with more than one trait. An analysis of the phenotypic variation explained by each BR pathway revealed that the signaling pathway had a larger effect for most phenotypes (R (2) = 0.05-0.23). This study constitutes the first association analysis between plant architecture and BR genes in sorghum and the first LD mapping for leaf angle, stem circumference, panicle exsertion and panicle length. Markers on or close to BKI1 associated with all phenotypes and thus, they are the most important outcomes of this study and will be further validated for their future application in breeding programs.
Collapse
|
37
|
Tong H, Xiao Y, Liu D, Gao S, Liu L, Yin Y, Jin Y, Qian Q, Chu C. Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice. THE PLANT CELL 2014; 26:4376-93. [PMID: 25371548 PMCID: PMC4277228 DOI: 10.1105/tpc.114.132092] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 09/14/2014] [Accepted: 10/15/2014] [Indexed: 05/18/2023]
Abstract
Brassinosteroid (BR) and gibberellin (GA) are two predominant hormones regulating plant cell elongation. A defect in either of these leads to reduced plant growth and dwarfism. However, their relationship remains unknown in rice (Oryza sativa). Here, we demonstrated that BR regulates cell elongation by modulating GA metabolism in rice. Under physiological conditions, BR promotes GA accumulation by regulating the expression of GA metabolic genes to stimulate cell elongation. BR greatly induces the expression of D18/GA3ox-2, one of the GA biosynthetic genes, leading to increased GA1 levels, the bioactive GA in rice seedlings. Consequently, both d18 and loss-of-function GA-signaling mutants have decreased BR sensitivity. When excessive active BR is applied, the hormone mostly induces GA inactivation through upregulation of the GA inactivation gene GA2ox-3 and also represses BR biosynthesis, resulting in decreased hormone levels and growth inhibition. As a feedback mechanism, GA extensively inhibits BR biosynthesis and the BR response. GA treatment decreases the enlarged leaf angles in plants with enhanced BR biosynthesis or signaling. Our results revealed a previously unknown mechanism underlying BR and GA crosstalk depending on tissues and hormone levels, which greatly advances our understanding of hormone actions in crop plants and appears much different from that in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Hongning Tong
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yunhua Xiao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dapu Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shaopei Gao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Linchuan Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanhai Yin
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Yun Jin
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
38
|
De Bruyne L, Höfte M, De Vleesschauwer D. Connecting growth and defense: the emerging roles of brassinosteroids and gibberellins in plant innate immunity. MOLECULAR PLANT 2014; 7:943-959. [PMID: 24777987 DOI: 10.1093/mp/ssu050] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Brassinosteroids (BRs) and gibberellins (GAs) are two groups of phytohormones that regulate many common developmental processes throughout the plant life cycle. Fueled by large-scale 'omics' technologies and the burgeoning field of plant computational biology, the past few years have witnessed paradigm-shifting advances in our understanding of how BRs and GA are perceived and their signals transduced. Accumulating evidence also implicates BR and GA in the coordination and integration of plant immune responses. Similarly to other growth regulators, BR and GA play ambiguous roles in molding pathological outcomes, the effects of which may depend not only on the pathogen's lifestyle and infection strategy, but also on specialized features of each interaction. Analysis of the underpinning molecular mechanisms points to a crucial role of GA-inhibiting DELLA proteins and the BR-regulated transcription factor BZR1. Acting at the interface of developmental and defense signaling, these proteins likely serve as central hubs for pathway crosstalk and signal integration, allowing appropriate modulation of plant growth and defense in response to various stimuli. In this review, we outline the latest discoveries dealing with BR and GA modulation of plant innate immunity and highlight interactions between BR and GA signaling, plant defense, and microbial virulence.
Collapse
Affiliation(s)
- Lieselotte De Bruyne
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
| | - Monica Höfte
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
| | - David De Vleesschauwer
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium.
| |
Collapse
|
39
|
Zhang C, Bai MY, Chong K. Brassinosteroid-mediated regulation of agronomic traits in rice. PLANT CELL REPORTS 2014; 33:683-96. [PMID: 24667992 PMCID: PMC3988522 DOI: 10.1007/s00299-014-1578-7] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 01/29/2014] [Indexed: 05/18/2023]
Abstract
Brassinosteroids (BRs) are a group of steroid phytohormones with wide-ranging biological activity. Genetic, genomic and proteomic studies have greatly advanced our understanding of BR signaling in Arabidopsis and revealed a connected signal transduction pathway from the cell surface receptor kinase BRASSINOSTEROID-INSENSITIVE1 (BRI1) and BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1) to the BRASSINAZOLE-RESISTANT1 (BZR1) family of transcription factors and their targets mediating physiological functions. However, compared with the dicot model plant Arabidopsis, much less is known about BR signaling in rice, which is a monocot. In this review, we provide an update on the progress made by BR studies in rice and discuss how BR regulates various important agronomic traits to determine rice grain yield. Specifically, we discuss the function of novel components including LEAF AND TILLER ANGLE INCREASED CONTROLLER (LIC), DWARF and LOW-TILLERING (DLT), DWARF1 (D1) and TAIHU DWARF1 (TUD1) in rice BR signaling, and provide a rice BR-signaling pathway model that involves a BRI1-dependent pathway as well as a G-protein α subunit-mediated signaling pathway. The recent significant advances in our understanding of BR-mediated molecular mechanisms underlying agronomic traits will be of great help for rice molecular breeding.
Collapse
Affiliation(s)
- Cui Zhang
- Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Ming-yi Bai
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100 China
| | - Kang Chong
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| |
Collapse
|
40
|
Xin P, Yan J, Fan J, Chu J, Yan C. An improved simplified high-sensitivity quantification method for determining brassinosteroids in different tissues of rice and Arabidopsis. PLANT PHYSIOLOGY 2013; 162:2056-66. [PMID: 23800992 PMCID: PMC3729782 DOI: 10.1104/pp.113.221952] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 06/21/2013] [Indexed: 05/20/2023]
Abstract
Quantification of brassinosteroids is essential and extremely important to study the molecular mechanisms of their physiological roles in plant growth and development. Herein, we present a simple, material and cost-saving high-performance method for determining endogenous brassinosteroids (BRs) in model plants. This new method enables simultaneous enrichment of a wide range of bioactive BRs such as brassinolide, castasterone, teasterone, and typhasterol with ion exchange solid-phase extraction and high-sensitivity quantitation of these BRs based on isotope dilution combined with internal standard approach. For routine analysis, the consumption of plant materials was reduced to one-twentieth of previously reported and the overall process could be completed within 1 day compared with previous 3 to 4 days. The strategy was validated by profiling BRs in different ecotypes and mutants of rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana), and the BR distributions in different model plants tissues were determined with the new method. The method allows plant physiologists to monitor the dynamics and distributions of BRs with 1 gram fresh weight of model plant tissues, which will speed up the process for the molecular mechanism research of BRs with these model plants in future work.
Collapse
|
41
|
Hao J, Yin Y, Fei SZ. Brassinosteroid signaling network: implications on yield and stress tolerance. PLANT CELL REPORTS 2013; 32:1017-30. [PMID: 23568410 DOI: 10.1007/s00299-013-1438-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/19/2013] [Accepted: 03/25/2013] [Indexed: 05/03/2023]
Abstract
The steroidal hormone brassinosteroids (BRs) play important roles in plant growth and development. Genetic, genomic and proteomic studies in Arabidopsis have identified major BR signaling components and elucidated the signal transduction pathway from the cell surface receptor kinase BRI1 to the BES1/BZR1 family of transcription factors. BRs interact with other plant hormones in coordinating gene expression and plant growth and development. In this review, we provide an update on the latest progress in characterizing the BR signaling network and discuss its interactions with other hormone pathways in determining yield component traits and in regulating stress responses.
Collapse
|
42
|
Chen L, Xiong G, Cui X, Yan M, Xu T, Qian Q, Xue Y, Li J, Wang Y. OsGRAS19 may be a novel component involved in the brassinosteroid signaling pathway in rice. MOLECULAR PLANT 2013; 6:988-91. [PMID: 23389891 DOI: 10.1093/mp/sst027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
43
|
Gruszka D. The brassinosteroid signaling pathway-new key players and interconnections with other signaling networks crucial for plant development and stress tolerance. Int J Mol Sci 2013; 14:8740-74. [PMID: 23615468 PMCID: PMC3676754 DOI: 10.3390/ijms14058740] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/01/2013] [Accepted: 04/02/2013] [Indexed: 12/15/2022] Open
Abstract
Brassinosteroids (BRs) are a class of steroid hormones regulating a wide range of physiological processes during the plant life cycle from seed development to the modulation of flowering and senescence. The last decades, and recent years in particular, have witnessed a significant advance in the elucidation of the molecular mechanisms of BR signaling from perception by the transmembrane receptor complex to the regulation of transcription factors influencing expression of the target genes. Application of the new approaches shed light on the molecular functions of the key players regulating the BR signaling cascade and allowed identification of new factors. Recent studies clearly indicated that some of the components of BR signaling pathway act as multifunctional proteins involved in other signaling networks regulating diverse physiological processes, such as photomorphogenesis, cell death control, stomatal development, flowering, plant immunity to pathogens and metabolic responses to stress conditions, including salinity. Regulation of some of these processes is mediated through a crosstalk between BR signalosome and the signaling cascades of other hormones, including auxin, abscisic acid, ethylene and salicylic acid. Unravelling the complicated mechanisms of BR signaling and its interconnections with other molecular networks may be of great importance for future practical applications in agriculture.
Collapse
Affiliation(s)
- Damian Gruszka
- Department of Genetics, Faculty of Biology and Environment Protection, University of Silesia, Jagiellonska 28, Katowice 40-032, Poland.
| |
Collapse
|
44
|
The U-box E3 ubiquitin ligase TUD1 functions with a heterotrimeric G α subunit to regulate Brassinosteroid-mediated growth in rice. PLoS Genet 2013; 9:e1003391. [PMID: 23526892 PMCID: PMC3597501 DOI: 10.1371/journal.pgen.1003391] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 01/31/2013] [Indexed: 11/19/2022] Open
Abstract
Heterotrimeric G proteins are an important group of signaling molecules found in eukaryotes. They function with G-protein-coupled-receptors (GPCRs) to transduce various signals such as steroid hormones in animals. Nevertheless, their functions in plants are not well-defined. Previous studies suggested that the heterotrimeric G protein α subunit known as D1/RGA1 in rice is involved in a phytohormone gibberellin-mediated signaling pathway. Evidence also implicates D1 in the action of a second phytohormone Brassinosteroid (BR) and its pathway. However, it is unclear how D1 functions in this pathway, because so far no partner has been identified to act with D1. In this study, we report a D1 genetic interactor Taihu Dwarf1 (TUD1) that encodes a functional U-box E3 ubiquitin ligase. Genetic, phenotypic, and physiological analyses have shown that tud1 is epistatic to d1 and is less sensitive to BR treatment. Histological observations showed that the dwarf phenotype of tud1 is mainly due to decreased cell proliferation and disorganized cell files in aerial organs. Furthermore, we found that D1 directly interacts with TUD1. Taken together, these results demonstrate that D1 and TUD1 act together to mediate a BR-signaling pathway. This supports the idea that a D1-mediated BR signaling pathway occurs in rice to affect plant growth and development.
Collapse
|