1
|
Liu S, Wang L, Miller N, Waltje A, Abdelnabi M, Zhu HJ, Sun D, Rothberg AE, Pai MP. Examining the Impact of Diet-and-Exercise-Induced Weight Loss on Drug Metabolism and Gastric Emptying in Patients with Obesity. J Clin Pharmacol 2025. [PMID: 39840538 DOI: 10.1002/jcph.6192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/10/2025] [Indexed: 01/23/2025]
Abstract
Obesity significantly influences drug pharmacokinetics (PK), which challenges optimal dosing. This study examines the effects of diet-and-exercise-induced weight loss on key drug-metabolizing enzymes and gastric emptying in patients with obesity, who frequently require medications for comorbidities. Participants followed a structured weight management program promoting weight loss over 3-6 months and were not concomitantly on potential CYP inducers or inhibitors. Using a drug cocktail of acetaminophen, caffeine, omeprazole, and midazolam, we assessed UGT1A1, CYP1A2, CYP2C19, and CYP3A4 enzyme activities before and after weight loss, respectively, by measuring parent and metabolite concentrations. The time to maximum acetaminophen plasma concentrations reflected the gastric emptying time. PK profiles were compared across two phases: baseline (Phase 1) and post-weight loss (Phase 2). Twenty-four participants enrolled, 21 completed Phase 1 and 12 completed both phases. Statistically significant (N = 12, P < .05) gains in CYP2C19 and CYP3A4 activity were observed after weight loss of 7.6% to 26.2%, with a median [25th, 75th percentile] increase in activity of 90.5 [15.0, 194.3] % and 43.0 [7.5, 68.0] %, respectively. A 2- or 3-h single plasma sample-based ratio of the metabolite to parent concentration strongly correlated with the respective AUC ratio for the drug metabolism phenotype (N = 21). Our findings provide provisional data for evaluation of the effects of non-pharmacologically and non-surgically induced weight loss on gastric emptying and drug metabolism for future physiologically based PK models. Development of mechanistic models to optimize drug dosing in obesity are necessary since weight and body composition shifts are expected with emerging new treatments.
Collapse
Affiliation(s)
- Shuhan Liu
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Lu Wang
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Nicole Miller
- Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Andrea Waltje
- Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mohamed Abdelnabi
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Hao-Jie Zhu
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Duxin Sun
- Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Amy E Rothberg
- Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Manjunath P Pai
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Bower JE, Lacchetti C, Alici Y, Barton DL, Bruner D, Canin BE, Escalante CP, Ganz PA, Garland SN, Gupta S, Jim H, Ligibel JA, Loh KP, Peppone L, Tripathy D, Yennu S, Zick S, Mustian K. Management of Fatigue in Adult Survivors of Cancer: ASCO-Society for Integrative Oncology Guideline Update. J Clin Oncol 2024; 42:2456-2487. [PMID: 38754041 DOI: 10.1200/jco.24.00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 03/27/2024] [Indexed: 05/18/2024] Open
Abstract
PURPOSE To update the ASCO guideline on the management of cancer-related fatigue (CRF) in adult survivors of cancer. METHODS A multidisciplinary panel of medical oncology, geriatric oncology, internal medicine, psychology, psychiatry, exercise oncology, integrative medicine, behavioral oncology, nursing, and advocacy experts was convened. Guideline development involved a systematic literature review of randomized controlled trials (RCTs) published in 2013-2023. RESULTS The evidence base consisted of 113 RCTs. Exercise, cognitive behavioral therapy (CBT), and mindfulness-based programs led to improvements in CRF both during and after the completion of cancer treatment. Tai chi, qigong, and American ginseng showed benefits during treatment, whereas yoga, acupressure, and moxibustion helped to manage CRF after completion of treatment. Use of other dietary supplements did not improve CRF during or after cancer treatment. In patients at the end of life, CBT and corticosteroids showed benefits. Certainty and quality of evidence were low to moderate for CRF management interventions. RECOMMENDATIONS Clinicians should recommend exercise, CBT, mindfulness-based programs, and tai chi or qigong to reduce the severity of fatigue during cancer treatment. Psychoeducation and American ginseng may be recommended in adults undergoing cancer treatment. For survivors after completion of treatment, clinicians should recommend exercise, CBT, and mindfulness-based programs; in particular, CBT and mindfulness-based programs have shown efficacy for managing moderate to severe fatigue after treatment. Yoga, acupressure, and moxibustion may also be recommended. Patients at the end of life may be offered CBT and corticosteroids. Clinicians should not recommend L-carnitine, antidepressants, wakefulness agents, or routinely recommend psychostimulants to manage symptoms of CRF. There is insufficient evidence to make recommendations for or against other psychosocial, integrative, or pharmacological interventions for the management of fatigue.Additional information is available at www.asco.org/survivorship-guidelines.
Collapse
Affiliation(s)
| | | | - Yesne Alici
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Debra L Barton
- University of Tennessee, College of Nursing, Knoxville, TN
| | | | | | | | | | | | | | | | | | - Kah Poh Loh
- University of Rochester Medical Center, Rochester, NY
| | - Luke Peppone
- Wilmot Cancer Institute, University of Rochester, Rochester, NY
| | | | | | | | - Karen Mustian
- University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
3
|
Park JD. Metabolism and drug interactions of Korean ginseng based on the pharmacokinetic properties of ginsenosides: Current status and future perspectives. J Ginseng Res 2024; 48:253-265. [PMID: 38707645 PMCID: PMC11068998 DOI: 10.1016/j.jgr.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 05/07/2024] Open
Abstract
Orally administered ginsenosides, the major active components of ginseng, have been shown to be biotransformed into a number of metabolites by gastric juice, digestive and bacterial enzymes in the gastrointestinal tract and also in the liver. Attention is brought to pharmacokinetic studies of ginseng that need further clarification to better understand the safety and possible active mechanism for clinical application. Experimental results demonstrated that ginsenoside metabolites play an important role in the pharmacokinetic properties such as drug metabolizing enzymes and drug transporters, thereby can be applied as a metabolic modulator. Very few are known on the possibility of the consistency of detected ginsenosides with real active metabolites if taken the recommended dose of ginseng, but they have been found to act on the pharmacokinetic key factors in any clinical trial, affecting oral bioavailability. Since ginseng is increasingly being taken in a manner more often associated with prescription medicines, ginseng and drug interactions have been also reviewed. Considering the extensive oral administration of ginseng, the aim of this review is to provide a comprehensive overview and perspectives of recent studies on the pharmacokinetic properties of ginsenosides such as deglycosylation, absorption, metabolizing enzymes and transporters, together with ginsenoside and drug interactions.
Collapse
Affiliation(s)
- Jong Dae Park
- R&D Center, REBIO Co., Ltd., Seoul, Republic of Korea
| |
Collapse
|
4
|
Bernardo J, Valentão P. Herb-drug interactions: A short review on central and peripheral nervous system drugs. Phytother Res 2024; 38:1903-1931. [PMID: 38358734 DOI: 10.1002/ptr.8120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/24/2023] [Accepted: 12/27/2023] [Indexed: 02/16/2024]
Abstract
Herbal medicines are widely perceived as natural and safe remedies. However, their concomitant use with prescribed drugs is a common practice, often undertaken without full awareness of the potential risks and frequently without medical supervision. This practice introduces a tangible risk of herb-drug interactions, which can manifest as a spectrum of consequences, ranging from acute, self-limited reactions to unpredictable and potentially lethal scenarios. This review offers a comprehensive overview of herb-drug interactions, with a specific focus on medications targeting the Central and Peripheral Nervous Systems. Our work draws upon a broad range of evidence, encompassing preclinical data, animal studies, and clinical case reports. We delve into the intricate pharmacodynamics and pharmacokinetics underpinning each interaction, elucidating the mechanisms through which these interactions occur. One pressing issue that emerges from this analysis is the need for updated guidelines and sustained pharmacovigilance efforts. The topic of herb-drug interactions often escapes the attention of both consumers and healthcare professionals. To ensure patient safety and informed decision-making, it is imperative that we address this knowledge gap and establish a framework for continued monitoring and education. In conclusion, the use of herbal remedies alongside conventional medications is a practice replete with potential hazards. This review not only underscores the real and significant risks associated with herb-drug interactions but also underscores the necessity for greater awareness, research, and vigilant oversight in this often-overlooked domain of healthcare.
Collapse
Affiliation(s)
- João Bernardo
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
5
|
Kim JK, Choi MS, Park HS, Kee KH, Kim DH, Yoo HH. Pharmacokinetic Profiling of Ginsenosides, Rb1, Rd, and Rg3, in Mice with Antibiotic-Induced Gut Microbiota Alterations: Implications for Variability in the Therapeutic Efficacy of Red Ginseng Extracts. Foods 2023; 12:4342. [PMID: 38231867 DOI: 10.3390/foods12234342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Ginsenoside Rg3 is reported to contribute to the traditionally known diverse effects of red ginseng extracts. Significant individual variations in the therapeutic efficacy of red ginseng extracts have been reported. This study aimed to investigate the effect of amoxicillin on the pharmacokinetics of ginsenosides Rb1, Rd, and Rg3 in mice following the oral administration of red ginseng extracts. We examined the α-diversity and β-diversity of gut microbiota and conducted pharmacokinetic studies to measure systemic exposure to ginsenoside Rg3. We also analyzed the microbiome abundance and microbial metabolic activity involved in the biotransformation of ginsenoside Rb1. Amoxicillin treatment reduced both the α-diversity and β-diversity of the gut microbiota and decreased systemic exposure to ginsenoside Rg3 in mice. The area under the curve (AUC) values for Rg3 in control and amoxicillin-treated groups were 247.7 ± 96.6 ng·h/mL and 139.2 ± 32.9 ng·h/mL, respectively. The microbiome abundance and microbial metabolic activity involved in the biotransformation of ginsenoside Rb1 were also altered by amoxicillin treatment. The metabolizing activity was reduced from 0.13 to 0.05 pmol/min/mg on average. Our findings indicate that amoxicillin treatment potentially reduces the gut-microbiota-mediated metabolism of ginsenoside Rg3 in mice given red ginseng extracts, altering its pharmacokinetics. Gut microbiome variations may thus influence individual ginsenoside pharmacokinetics, impacting red ginseng extract's efficacy. Our results suggest that modulating the microbiome could enhance the efficacy of red ginseng.
Collapse
Affiliation(s)
- Jeon-Kyung Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Republic of Korea
- School of Pharmacy, Institute of New Drug Development, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Min Sun Choi
- Pharmacomicrobiomics Research Center, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
| | - Hee-Seo Park
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Kyung Hwa Kee
- Pharmacomicrobiomics Research Center, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
| | - Dong-Hyun Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hye Hyun Yoo
- Pharmacomicrobiomics Research Center, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
6
|
Ben-Eltriki M, Shankar G, Tomlinson Guns ES, Deb S. Pharmacokinetics and pharmacodynamics of Rh2 and aPPD ginsenosides in prostate cancer: a drug interaction perspective. Cancer Chemother Pharmacol 2023; 92:419-437. [PMID: 37709921 DOI: 10.1007/s00280-023-04583-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Ginsenoside Rh2 and its aglycon (aPPD) are one of the major metabolites from Panax ginseng. Preclinical studies suggest that Rh2 and aPPD have antitumor effects in prostate cancer (PCa). Our aims in this review are (1) to describe the pharmacokinetic (PK) properties of Rh2 and aPPD ginsenosides; 2) to provide an overview of the preclinical findings on the use of Rh2 and aPPD in the treatment of PCa; and (3) to highlight the mechanisms of its PK and pharmacodynamic (PD) drug interactions. Increasing evidence points to the potential efficacy of Rh2 or aPPD for PCa treatment. Based on the laboratory studies, Rh2 or aPPD combinations revealed an additive or synergistic interaction or enhanced sensitivity of anticancer drugs toward PCa. This review reveals that enhanced anticancer activities were demonstrated in preclinical studies through interactions of Rh2 and/or aPPD with the proteins related to PK (e.g., cytochrome P450 enzymes, transporters) or PD of the other anticancer drugs or PCa signaling pathways. In conclusion, combining Rh2 or aPPD with anti-prostate cancer drugs leads to PK or PD interactions which could facilitate either therapeutically beneficial or toxic effects.
Collapse
Affiliation(s)
- Mohamed Ben-Eltriki
- The Vancouver Prostate Centre at Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.
- Cochrane Hypertension Review Group, Therapeutic Initiative, University of British Columbia, Vancouver, BC, Canada.
- Community Pharmacist, Vancouver Area, BC, Canada.
- Department of Pharmacology and Therapeutics, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.
| | - Gehana Shankar
- The Vancouver Prostate Centre at Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Emma S Tomlinson Guns
- The Vancouver Prostate Centre at Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Subrata Deb
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL, 33169, USA.
| |
Collapse
|
7
|
Darnaud L, Delage C, Daali Y, Trouvin AP, Perrot S, Khoudour N, Merise N, Labat L, Etain B, Bellivier F, Lloret-Linares C, Bloch V, Curis E, Declèves X. Phenotyping Indices of CYP450 and P-Glycoprotein in Human Volunteers and in Patients Treated with Painkillers or Psychotropic Drugs. Pharmaceutics 2023; 15:pharmaceutics15030979. [PMID: 36986840 PMCID: PMC10054647 DOI: 10.3390/pharmaceutics15030979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/02/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Drug-metabolizing enzymes and drug transporters are key determinants of drug pharmacokinetics and response. The cocktail-based cytochrome P450 (CYP) and drug transporter phenotyping approach consists in the administration of multiple CYP or transporter-specific probe drugs to determine their activities simultaneously. Several drug cocktails have been developed over the past two decades in order to assess CYP450 activity in human subjects. However, phenotyping indices were mostly established for healthy volunteers. In this study, we first performed a literature review of 27 clinical pharmacokinetic studies using drug phenotypic cocktails in order to determine 95%,95% tolerance intervals of phenotyping indices in healthy volunteers. Then, we applied these phenotypic indices to 46 phenotypic assessments processed in patients having therapeutic issues when treated with painkillers or psychotropic drugs. Patients were given the complete phenotypic cocktail in order to explore the phenotypic activity of CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP3A, and P-glycoprotein (P-gp). P-gp activity was evaluated by determining AUC0-6h for plasma concentrations over time of fexofenadine, a well-known substrate of P-gp. CYP metabolic activities were assessed by measuring the CYP-specific metabolite/parent drug probe plasma concentrations, yielding single-point metabolic ratios at 2 h, 3 h, and 6 h or AUC0-6h ratio after oral administration of the cocktail. The amplitude of phenotyping indices observed in our patients was much wider than those observed in the literature for healthy volunteers. Our study helps define the range of phenotyping indices with "normal" activities in human volunteers and allows classification of patients for further clinical studies regarding CYP and P-gp activities.
Collapse
Affiliation(s)
- Léa Darnaud
- Biologie du Médicament-Toxicologie, AP-HP, Hôpital Cochin, 27 rue du Faubourg St. Jacques, 75679 Paris, France
| | - Clément Delage
- Faculty of Health, Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France
- Service de Pharmacie, Hôpital Lariboisière-Fernand Widal, AP-HP, 75010 Paris, France
| | - Youssef Daali
- Division of Clinical Pharmacology and Toxicology, Department of Anesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland
| | | | - Serge Perrot
- Centre de la Douleur, AP-HP, Hôpital Cochin, 75679 Paris, France
| | - Nihel Khoudour
- Biologie du Médicament-Toxicologie, AP-HP, Hôpital Cochin, 27 rue du Faubourg St. Jacques, 75679 Paris, France
| | - Nadia Merise
- Biologie du Médicament-Toxicologie, AP-HP, Hôpital Cochin, 27 rue du Faubourg St. Jacques, 75679 Paris, France
| | - Laurence Labat
- Faculty of Health, Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France
- Laboratoire de Toxicologie, Hôpital Lariboisière, AP-HP, 75010 Paris, France
| | - Bruno Etain
- Faculty of Health, Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France
- Département de Psychiatrie et de Médecine Addictologique, Hôpital GHU Lariboisière-Fernand Widal, AP-HP, 75010 Paris, France
| | - Frank Bellivier
- Faculty of Health, Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France
- Département de Psychiatrie et de Médecine Addictologique, Hôpital GHU Lariboisière-Fernand Widal, AP-HP, 75010 Paris, France
| | | | - Vanessa Bloch
- Faculty of Health, Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France
- Service de Pharmacie, Hôpital Lariboisière-Fernand Widal, AP-HP, 75010 Paris, France
| | - Emmanuel Curis
- Faculté de Pharmacie de Paris, Université Paris Cité, UR 7537 BioSTM, 75006 Paris, France
- Laboratoire d'hématologie, Hôpital Lariboisière, AP-HP, 75010 Paris, France
| | - Xavier Declèves
- Biologie du Médicament-Toxicologie, AP-HP, Hôpital Cochin, 27 rue du Faubourg St. Jacques, 75679 Paris, France
- Faculty of Health, Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France
| |
Collapse
|
8
|
Concomitant Administration of Red Ginseng Extract with Lactic Acid Bacteria Increases the Plasma Concentration of Deglycosylated Ginsenosides in Healthy Human Subjects. Biomolecules 2022; 12:biom12121896. [PMID: 36551324 PMCID: PMC9775652 DOI: 10.3390/biom12121896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
With the increased frequency of red ginseng extract (RGE) and lactic acid bacteria (LAB) co-administration, we aimed to investigate the interactions between RGE and LAB with regard to in vitro and in vivo deglycosylation metabolism and the pharmacokinetics of ginsenosides. As a proof-of-concept study, five healthy humans were administered RGE (104.1 mg of total ginsenosides/day) with or without co-administration of LAB (2 g, 1 billion CFU/day) for 2 weeks, and the plasma concentrations of ginsenosides in human plasma were monitored. The plasma exposure to compound K (CK), ginsenoside Rh2 (GRh2), protopanaxadiol (PPD), and protopanaxatriol (PPT) in the concomitant administration RGE and LAB groups increased by 2.7-, 2.1-, 1.6-, and 3.5-fold, respectively, compared to those in the RGE administration group, without a significant change in Tmax. The plasma concentrations of GRb1, GRb2, and GRc remained unchanged, whereas the AUC values of GRd and GRg3 significantly decreased in the concomitant administration RGE and LAB groups. To understand the underlying mechanism, the in vitro metabolic activity of ginsenosides was measured during the fermentation of RGE or individual ginsenosides in the presence of LAB for 1 week. Consistent with the in vivo results, co-incubation with RGE and LAB significantly increased the formation rate of GRh2, CK, PPD, and PPT. These results may be attributed to the facilitated deglycosylation of GRd and GRg3 and the increased production of GRh2, CK, PPD, and PPT by the co-administration of LAB and RGE. In conclusion, LAB supplementation increased the plasma concentrations of deglycosylated ginsenosides, such as GRh2, CK, PPD, and PPT, through facilitated deglycosylation metabolism of ginsenosides in the intestine.
Collapse
|
9
|
Liang RJ, Hsu SH, Chang TY, Chiang TY, Wang HJ, Ueng YF. Metabolism-involved drug interactions with traditional Chinese medicines in cardiovascular diseases. J Food Drug Anal 2022; 30:331-356. [PMID: 39666289 PMCID: PMC9635916 DOI: 10.38212/2224-6614.3421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/29/2022] [Accepted: 07/04/2022] [Indexed: 12/13/2024] Open
Abstract
Herbal medicines have been widely used for the past millennia. Traditional Chinese medicine (TCM) is a major modality in Chinese medical care and has garnered global attention owing to its pharmacological effects and multi-targeted actions. The increased incidence of sequential or concurrent use of herbs and drugs in patients forces us to consider herb-drug interactions (HDIs) in this modern era. One of the main causes of HDIs is modulation of drug metabolism, in which cytochrome P450 (CYP), UDP-glucuronosyltransferase (UGT), and transporters play primary roles. In this review, we focus on in vivo studies of HDIs, particularly in the treatment of cardiovascular disease (CVD), which is currently the leading cause of disease-related mortality worldwide. A total of 55 HDIs are summarized, and their potential underlying mechanisms are examined. The pharmacokinetic (PK) and pharmacodynamic (PD) effects of three single herbs (Danshen, Ginseng, and Ginkgo) and four compound prescriptions (Shenmai injection, Shengmai-San, Shu-Jing-Hwo-Shiee-Tang, and Wu-Chu-Yu-Tang) are discussed. Due to the complex compositions and PK/PD profiles of TCMs, the determinants of significant HDIs have been listed to further define the pros and cons of HDIs in medical care.
Collapse
Affiliation(s)
- Ren-Jong Liang
- Medical Supplies and Maintenance, Hualien Armed Forces General Hospital, Hualien, Taiwan,
Republic of China
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan,
Republic of China
| | - Shu-Hao Hsu
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan,
Republic of China
| | - Tien-Yu Chang
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan,
Republic of China
| | - Tzu-Yi Chiang
- Division of Basic Chinese Medicine, National Research Institute of Chinese Medicine, Taipei, Taiwan,
Republic of China
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan,
Republic of China
| | - Hong-Jaan Wang
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan,
Republic of China
| | - Yune-Fang Ueng
- Division of Basic Chinese Medicine, National Research Institute of Chinese Medicine, Taipei, Taiwan,
Republic of China
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan,
Republic of China
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan,
Republic of China
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan,
Republic of China
| |
Collapse
|
10
|
Zuo HL, Huang HY, Lin YCD, Cai XX, Kong XJ, Luo DL, Zhou YH, Huang HD. Enzyme Activity of Natural Products on Cytochrome P450. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020515. [PMID: 35056827 PMCID: PMC8779343 DOI: 10.3390/molecules27020515] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/27/2022]
Abstract
Drug-metabolizing enzymes, particularly the cytochrome P450 (CYP450) monooxygenases, play a pivotal role in pharmacokinetics. CYP450 enzymes can be affected by various xenobiotic substrates, which will eventually be responsible for most metabolism-based herb–herb or herb–drug interactions, usually involving competition with another drug for the same enzyme binding site. Compounds from herbal or natural products are involved in many scenarios in the context of such interactions. These interactions are decisive both in drug discovery regarding the synergistic effects, and drug application regarding unwanted side effects. Herein, this review was conducted as a comprehensive compilation of the effects of herbal ingredients on CYP450 enzymes. Nearly 500 publications reporting botanicals’ effects on CYP450s were collected and analyzed. The countries focusing on this topic were summarized, the identified herbal ingredients affecting enzyme activity of CYP450s, as well as methods identifying the inhibitory/inducing effects were reviewed. Inhibitory effects of botanicals on CYP450 enzymes may contribute to synergistic effects, such as herbal formulae/prescriptions, or lead to therapeutic failure, or even increase concentrations of conventional medicines causing serious adverse events. Conducting this review may help in metabolism-based drug combination discovery, and in the evaluation of the safety profile of natural products used therapeutically.
Collapse
Affiliation(s)
- Hua-Li Zuo
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-L.Z.); (H.-Y.H.); (Y.-C.-D.L.); (X.-X.C.); (D.-L.L.); (Y.-H.Z.)
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
- School of Computer Science and Technology, University of Science and Technology of China, Hefei 230027, China
| | - Hsi-Yuan Huang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-L.Z.); (H.-Y.H.); (Y.-C.-D.L.); (X.-X.C.); (D.-L.L.); (Y.-H.Z.)
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Yang-Chi-Dung Lin
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-L.Z.); (H.-Y.H.); (Y.-C.-D.L.); (X.-X.C.); (D.-L.L.); (Y.-H.Z.)
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Xiao-Xuan Cai
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-L.Z.); (H.-Y.H.); (Y.-C.-D.L.); (X.-X.C.); (D.-L.L.); (Y.-H.Z.)
| | - Xiang-Jun Kong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China;
| | - Dai-Lin Luo
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-L.Z.); (H.-Y.H.); (Y.-C.-D.L.); (X.-X.C.); (D.-L.L.); (Y.-H.Z.)
| | - Yu-Heng Zhou
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-L.Z.); (H.-Y.H.); (Y.-C.-D.L.); (X.-X.C.); (D.-L.L.); (Y.-H.Z.)
| | - Hsien-Da Huang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-L.Z.); (H.-Y.H.); (Y.-C.-D.L.); (X.-X.C.); (D.-L.L.); (Y.-H.Z.)
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
- Correspondence: ; Tel.: +86-0755-2351-9601
| |
Collapse
|
11
|
Miao L, Yang Y, Li Z, Fang Z, Zhang Y, Han CC. Ginsenoside Rb2: A review of pharmacokinetics and pharmacological effects. J Ginseng Res 2021; 46:206-213. [PMID: 35509822 PMCID: PMC9058830 DOI: 10.1016/j.jgr.2021.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 02/06/2023] Open
Abstract
Ginsenoside Rb2 is an active protopanaxadiol-type saponin, widely existing in the stem and leave of ginseng. Rb2 has recently been the focus of studies for pharmaceutical properties. This paper provides an overview of the preclinical and clinical pharmacokinetics for Rb2, which exhibit poor absorption, rapid tissue distribution and slow excretion through urine. Pharmacological studies indicate a beneficial role of Rb2 in the prevention and treatment of diabetes, obesity, tumor, photoaging, virus infection and cardiovascular problems. The underlying mechanism is involved in an inhibition of oxidative stress, ROS generation, inflammation and apoptosis via regulation of various cellular signaling pathways and molecules, including AKT/SHP, MAPK, EGFR/SOX2, TGF-β1/Smad, SIRT1, GPR120/AMPK/HO-1 and NF-κB. This work would provide a new insight into the understanding and application of Rb2. However, its therapeutic effects have not been clinically evaluated. Further studies should be aimed at the clinical treatment of Rb2.
Collapse
Affiliation(s)
- Longxing Miao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yijun Yang
- Department of Pharmacy, Shandong Medical College, Jinan, China
| | - Zhongwen Li
- Department of Pharmacy, Shandong Medical College, Jinan, China
| | - Zengjun Fang
- The Second Hospital, Cheeloo College of Medicine, Shandong University, China
| | - Yongqing Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, Shandong, China
- Corresponding author. School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| | - Chun-chao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, Shandong, China
- Corresponding author. School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China. Tel.: +86 531 82613129; Fax: +86 86 531 82613129.
| |
Collapse
|
12
|
Chen J, Li Z, Hua M, Sun Y. Protection by ginseng saponins against cyclophosphamide-induced liver injuries in rats by induction of cytochrome P450 expression and mediation of the l-arginine/nitric oxide pathway based on metabolomics. Phytother Res 2021; 35:3130-3144. [PMID: 33905145 DOI: 10.1002/ptr.6951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/26/2020] [Accepted: 11/01/2020] [Indexed: 12/29/2022]
Abstract
Ginseng saponins (GS) are the main active compounds in Panax ginseng and have been proven to be highly effective in attenuating the side effects of chemotherapy. However, there have been no reports on the mechanism of action of GS. Treatment with GS has certain benefits, including decreasing the toxicity levels in the liver [alanine aminotransferase (ALT), albumin (ALB), alkaline phosphatase (ALP), aspartate transaminase (AST)], reducing oxidative stress [malondialdehyde (MDA), nitric oxide (NO)], diminishing inflammatory factors [interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) levels], and augmenting the levels of glutathione (GSH) and superoxide dismutase (SOD). The pharmacokinetics study showed that the area under the curve from 0 to 24 hr (AUC 0-24 hr) of 4-ketocyclophosphamide (4-KetoCTX) and carboxyphosphamide (CPM) was significantly increased after GS treatment. This study found that GS treatment can reduce chloroacetaldehyde (CAA) production by affecting CYP3A4, CYP2B6, and CYP2C9 protein expression in the liver. For the metabolomics study, GS attenuated the abnormalities of amino acid metabolic pathways in CP-induced liver injuries of rats and significantly enhanced the l-arginine level while reducing the serum nitric oxide (NO) level. This outcome was confirmed by the inhibition of the activities of NO synthase in the liver of rats.
Collapse
Affiliation(s)
- Jianbo Chen
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agriculture Sciences, Changchun, China
| | - Zhiman Li
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agriculture Sciences, Changchun, China
| | - Mei Hua
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agriculture Sciences, Changchun, China
| | - Yinshi Sun
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agriculture Sciences, Changchun, China
| |
Collapse
|
13
|
Petersen MJ, Bergien SO, Staerk D. A systematic review of possible interactions for herbal medicines and dietary supplements used concomitantly with disease-modifying or symptom-alleviating multiple sclerosis drugs. Phytother Res 2021; 35:3610-3631. [PMID: 33624893 DOI: 10.1002/ptr.7050] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/18/2022]
Abstract
Multiple Sclerosis (MS) is a demyelinating disease affecting the central nervous system, with no curative medicine available. The use of herbal drugs and dietary supplements is increasing among people with MS (PwMS), raising a need for knowledge about potential interactions between conventional MS medicine and herbal drugs/dietary supplements. This systematic review provides information about the safety of simultaneous use of conventional MS-drugs and herbal drugs frequently used by PwMS. The study included 14 selected disease-modifying treatments and drugs frequently used for symptom-alleviation. A total of 129 published papers found via PubMed and Web of Science were reviewed according to defined inclusion- and exclusion criteria. Findings suggested that daily recommended doses of Panax ginseng and Ginkgo biloba should not be exceeded, and herbal preparations differing from standardized products should be avoided, especially when combined with anticoagulants or substrates of certain cytochrome P450 isoforms. Further studies are required regarding ginseng's ability to increase aspirin bioavailability. Combinations between chronic cannabis use and selective serotonin reuptake inhibitors or non-steroidal antiinflammatory drugs should be carefully monitored, whereas no significant evidence for drug-interactions between conventional MS-drugs and ginger, cranberry, vitamin D, fatty acids, turmeric, probiotics or glucosamine was found.
Collapse
Affiliation(s)
- Malene J Petersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Dan Staerk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Kwon M, Jeon JH, Choi MK, Song IS. The Development and Validation of a Novel "Dual Cocktail" Probe for Cytochrome P450s and Transporter Functions to Evaluate Pharmacokinetic Drug-Drug and Herb-Drug Interactions. Pharmaceutics 2020; 12:E938. [PMID: 33007943 PMCID: PMC7600799 DOI: 10.3390/pharmaceutics12100938] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 11/30/2022] Open
Abstract
This study was designed to develop and validate a 10 probe drug cocktail named "Dual Cocktail", composed of caffeine (Cyp1a2 in rat and CYP1A2 in human, 1 mg/kg), diclofenac (Cyp2c11 in rat and CYP2C9 in human, 2 mg/kg), omeprazole (Cyp2c11 in rat and CYP2C19 in human, 2 mg/kg), dextromethorphan (Cyp2d2 in rat and CYP2D6 in human, 10 mg/kg), nifedipine (Cyp3a1 in rat and CYP3A4 in human, 0.5 mg/kg), metformin (Oct1/2 in rat and OCT1/2 in human, 0.5 mg/kg), furosemide (Oat1/3 in rat and OAT1/3 in human, 0.1 mg/kg), valsartan (Oatp2 in rat and OATP1B1/1B3 in human, 0.2 mg/kg), digoxin (P-gp in rat and human, 2 mg/kg), and methotrexate (Mrp2 in rat and MRP2 in human, 0.5 mg/kg), for the evaluation of pharmacokinetic drug-drug and herb-drug interactions through the modulation of a representative panel of CYP enzymes or transporters in rats. To ensure no interaction among the ten probe substrates, we developed a 2-step evaluation protocol. In the first step, the pharmacokinetic properties of five individual CYP probe substrates and five individual transporter substrates were compared with the pharmacokinetics of five CYP cocktail or five transporters cocktails in two groups of randomly assigned rats. Next, a pharmacokinetic comparison was conducted between the CYP or transporter cocktail group and the dual cocktail group, respectively. None of the ten comparison groups was found to be statistically significant, indicating the CYP and transporter substrate sets or dual cocktail set could be concomitantly administered in rats. The "Dual Cocktail" was further validated by assessing the metabolism of nifedipine and omeprazole, which was significantly reduced by a single oral dose of ketoconazole (10 mg/kg); however, no changes were observed in the pharmacokinetic parameters of other probe substrates. Additionally, multiple oral doses of rifampin (20 mg/kg) reduced the plasma concentrations of nifedipine and digoxin, although not any of the other substrates. In conclusion, the dual cocktail can be used to characterize potential pharmacokinetic drug-drug interactions by simultaneously monitoring the activity of multiple CYP isoforms and transporters.
Collapse
Affiliation(s)
- Mihwa Kwon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (M.K.); (J.-H.J.)
| | - Ji-Hyeon Jeon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (M.K.); (J.-H.J.)
| | - Min-Koo Choi
- College of Pharmacy, Dankook University, Cheon-an 31116, Korea;
| | - Im-Sook Song
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (M.K.); (J.-H.J.)
- Vessel-Organ Interaction Research Center (VOICE), Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
15
|
Kim Y, Jo JJ, Cho P, Shrestha R, Kim KM, Ki SH, Song KS, Liu KH, Song IS, Kim JH, Lee JM, Lee S. Characterization of red ginseng-drug interaction by CYP3A activity increased in high dose administration in mice. Biopharm Drug Dispos 2020; 41:295-306. [PMID: 32557706 DOI: 10.1002/bdd.2246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/19/2020] [Accepted: 05/27/2020] [Indexed: 11/08/2022]
Abstract
Ginseng (Panax ginseng Meyer) is a popular traditional herbal medicine used worldwide. Patients often take ginseng preparations with other medicines where the ginseng dose could exceed the recommended dose during long-term administration. However, ginseng-drug interactions at high doses of ginseng are poorly understood. This study showed the possibility of herb-drug interactions between the Korean red ginseng (KRG) extract and cytochrome P450 (CYP) substrates in higher administration in mice. The CYP activities were determined in vivo after oral administration of KRG extract doses of 0.5, 1.0, and 2.0 g/kg for 2 or 4 weeks by monitoring the concentration of five CYP substrates/metabolites in the blood. The area under the curve for OH-midazolam/midazolam catalysed by CYP3A was increased significantly by the administration of 2.0 g/kg KRG extract for 2 and 4 weeks. CYP3A-catalysed midazolam 1'-hydroxylation also increased significantly in a dose- and time-dependent manner in the S9 fraction of mouse liver which was not related to induction by transcription. Whereas CYP2D-catalysed dextromethorphan O-deethylation decreased in a dose- and time-dependent manner in vivo. In conclusion, interactions were observed between KRG extract and CYP2D and CYP3A substrates at subchronic-high doses of KRG administration in mice.
Collapse
Affiliation(s)
- Younah Kim
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jung Jae Jo
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Piljoung Cho
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Riya Shrestha
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Kyu Min Kim
- College of Pharmacy, Chosun University, Gwangju, Republic of Korea
| | - Sung Hwan Ki
- College of Pharmacy, Chosun University, Gwangju, Republic of Korea
| | - Kyung-Sik Song
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Kwang-Hyeon Liu
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Im-Sook Song
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Ju-Hyun Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Jae-Mok Lee
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Sangkyu Lee
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
16
|
Yang L, Li CL, Tsai TH. Preclinical Herb-Drug Pharmacokinetic Interaction of Panax ginseng Extract and Selegiline in Freely Moving Rats. ACS OMEGA 2020; 5:4682-4688. [PMID: 32175515 PMCID: PMC7066651 DOI: 10.1021/acsomega.0c00123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/05/2020] [Indexed: 05/08/2023]
Abstract
Selegiline, an inhibitor of monoamine oxidase B, is prescribed during the early stages of Parkinson's disease. The nutritional herbal medicine Panax ginseng C.A. Meyer has been reported to show potential neuroprotective activity; however, the herb-drug pharmacokinetic interaction between selegiline and P. ginseng extract has not been characterized. Our hypothesis is that the ginseng extract and selegiline produce pharmacokinetic interactions at certain doses. To investigate this hypothesis, a validated ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed to monitor selegiline in rat plasma. Experimental rats were divided into groups treated with selegiline alone (10 mg/kg, i.v.; 30 mg/kg, p.o.), with the low-dose ginseng extract (1 g/kg, p.o., for 5 consecutive days) or with the high-dose ginseng extract (3 g/kg, p.o., for 5 consecutive days). The pharmacokinetic results demonstrated that the oral bioavailability of selegiline alone was approximately 18%; however, when rats were pretreated with low and high doses of the ginseng extract, the bioavailability of selegiline was 7.2 and 29%, respectively. These results suggested that the ginseng extract may produce a biphasic pharmacokinetic phenomenon. In summary, ginseng alters the oral bioavailability of selegiline, and these observations might provide preclinical information concerning the pharmacokinetic interactions between selegiline and herbal supplements.
Collapse
Affiliation(s)
- Ling Yang
- Institute
of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Chi-Lin Li
- Institute
of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Tung-Hu Tsai
- Institute
of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Faculty
of Medicine, School of Medicine, National
Yang-Ming University, Taipei 112, Taiwan
- Graduate
Institute of Acupuncture Science, China
Medical University, Taichung 40402, Taiwan
- Department
of Chemical Engineering, National United
University, Miaoli 36063, Taiwan
- E-mail: . Phone: (886-2) 2826 7115. Fax: (886-2) 2822
5044
| |
Collapse
|
17
|
Jung JH, Kang TK, Oh JH, Jeong JU, Ko KP, Kim ST. The Effect of Korean Red Ginseng on Symptoms and Inflammation in Patients With Allergic Rhinitis. EAR, NOSE & THROAT JOURNAL 2020; 100:712S-719S. [PMID: 32070136 DOI: 10.1177/0145561320907172] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Korean red ginseng (KRG) has been traditionally used in Korea for health improvement. However, the clinical effect of KRG intake on the symptoms in patients with allergic rhinitis remains unknown. Our study was performed to identify the clinical effects of KRG on patients with allergic rhinitis and to examine the effect of KRG on allergic inflammatory reaction. We evaluated 60 patients with allergic rhinitis. All the patients were treated for 4 weeks. The patients were divided into 3 groups, according to the medication. Twenty patients were treated with KRG, 20 patients with the placebo, and 20 patients with the antihistamine. The patients recorded their symptoms in a daily symptom diary card. The patients checked the peak nasal inspiratory flow rate 2 times a day. Total serum immunoglobulin E (IgE) and serum-specific IgE were measured by ImmunoCap method before and after 4-week medication. The Th2 cytokines interleukin-4 (IL-4), IL-5, and IL-10 were checked in the serum before and after the 4-week treatment. The eosinophil counts in the nasal smears were checked. Korean red ginseng group has shown the significant improvement in rhinorrhea, nasal itching, and eye itching. Both the antihistamine and KRG groups showed a significant decrease in total IgE level at the end of treatment. The serum IL-4 level and eosinophil counts in the nasal smears were significantly decreased both in the antihistamine and in the KRG groups. In conclusion, KRG might be a useful treatment modality for patients with allergic rhinitis.
Collapse
Affiliation(s)
- Joo Hyun Jung
- Department of Otolaryngology, Gil Medical Center, College of Medicine, 65437Gachon University, Incheon, Korea
| | - Tae Kyu Kang
- Department of Otolaryngology, Gil Medical Center, College of Medicine, 65437Gachon University, Incheon, Korea
| | - Jae Hwan Oh
- Department of Otolaryngology, Gil Medical Center, College of Medicine, 65437Gachon University, Incheon, Korea
| | - Jin Uk Jeong
- Department of Otolaryngology, Gil Medical Center, College of Medicine, 65437Gachon University, Incheon, Korea
| | - Kwang Pil Ko
- Department of Preventive Medicine, College of Medicine, 65437Gachon University, Incheon, Korea
| | - Seon Tae Kim
- Department of Otolaryngology, Gil Medical Center, College of Medicine, 65437Gachon University, Incheon, Korea
| |
Collapse
|
18
|
Jeon JH, Lee S, Lee W, Jin S, Kwon M, Shin CH, Choi MK, Song IS. Herb-Drug Interaction of Red Ginseng Extract and Ginsenoside Rc with Valsartan in Rats. Molecules 2020; 25:E622. [PMID: 32023909 PMCID: PMC7037682 DOI: 10.3390/molecules25030622] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/14/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
The purpose of this study was to investigate the herb-drug interactions involving red ginseng extract (RGE) or ginsenoside Rc with valsartan, a substrate for organic anion transporting polypeptide (OATP/Oatp) transporters. In HEK293 cells overexpressing drug transporters, the protopanaxadiol (PPD)-type ginsenosides- Rb1, Rb2, Rc, Rd, Rg3, compound K, and Rh2-inhibited human OATP1B1 and OATP1B3 transporters (IC50 values of 7.99-68.2 µM for OATP1B1; 1.36-30.8 µM for OATP1B3), suggesting the herb-drug interaction of PPD-type ginsenosides involving OATPs. Protopanaxatriol (PPT)-type ginsenosides-Re, Rg1, and Rh1-did not inhibit OATP1B1 and OATP1B3 and all ginsenosides tested didn't inhibit OCT and OAT transporters. However, in rats, neither RGE nor Rc, a potent OATP inhibitor among PPD-type ginsenoside, changed in vivo pharmacokinetics of valsartan following repeated oral administration of RGE (1.5 g/kg/day for 7 days) or repeated intravenous injection of Rc (3 mg/kg for 5 days). The lack of in vivo herb-drug interaction between orally administered RGE and valsartan could be attributed to the low plasma concentration of PPD-type ginsenosides (5.3-48.4 nM). Even high plasma concentration of Rc did not effectively alter the pharmacokinetics of valsartan because of high protein binding and the limited liver distribution of Rc. The results, in conclusion, would provide useful information for herb-drug interaction between RGE or PPD-type ginsenosides and Oatp substrate drugs.
Collapse
Affiliation(s)
- Ji-Hyeon Jeon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (J.-H.J.); (S.L.); (M.K.); (C.H.S.)
| | - Sowon Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (J.-H.J.); (S.L.); (M.K.); (C.H.S.)
| | - Wonpyo Lee
- College of Pharmacy, Dankook University, Cheon-an 31116, Korea; (W.L.); (S.J.)
| | - Sojeong Jin
- College of Pharmacy, Dankook University, Cheon-an 31116, Korea; (W.L.); (S.J.)
| | - Mihwa Kwon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (J.-H.J.); (S.L.); (M.K.); (C.H.S.)
| | - Chul Hwi Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (J.-H.J.); (S.L.); (M.K.); (C.H.S.)
| | - Min-Koo Choi
- College of Pharmacy, Dankook University, Cheon-an 31116, Korea; (W.L.); (S.J.)
| | - Im-Sook Song
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (J.-H.J.); (S.L.); (M.K.); (C.H.S.)
| |
Collapse
|
19
|
Giri P, Patel H, Srinivas NR. Use of Cocktail Probe Drugs for Indexing Cytochrome P450 Enzymes in Clinical Pharmacology Studies - Review of Case Studies. Drug Metab Lett 2020; 13:3-18. [PMID: 30451124 DOI: 10.2174/1872312812666181119154734] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/02/2018] [Accepted: 11/07/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND The cocktail approach of probing drug metabolizing enzymes, in particular cytochrome P450 (CYP) enzymes, is a cornerstone in clinical pharmacology studies. The first report of the famous "Pittsburg cocktail" has led the way for the availability of numerous cocktail substrate mixtures that provide options for indexing of CYP enzymes and/or evaluating the perpetrator capacity of the drug. OBJECTIVE The key objectives were: 1) To collate, tabulate, and discuss the various cocktail substrates to determine specific CYP enzyme activity in clinical pharmacology studies with specific case studies; 2) To introspect on how the cocktail approach has withstood the test of time and evolved for enabling key decision(s); 3) To provide some futuristic views on the use of cocktail in drug discovery and development. METHOD The review was compiled after consultation with databases such as PubMed (NCBI database) and Google scholar to source various published literature on cocktail approaches in drug development. RESULTS In the reviewed case studies, CYP indexing was achieved using a single time point (differing for specific CYP enzyme) plasma determination of the metabolite to parent ratio for all CYP enzymes with the exception of CYP3A4/5, where multiple time points were required for exposure measurement of midazolam and its metabolite. Likewise, a single void of urine, for a specific time duration, has been utilized for the recovery measurements of parent and metabolite for CYP indexing purposes. CONCLUSION The review provides a comprehensive list of various types of cocktail approaches and discusses some key considerations including the evolution of the cocktail approaches over time, perspectives and futuristic views for the use of probe drugs to aid the execution of clinical pharmacology studies and data interpretation.
Collapse
Affiliation(s)
- Poonam Giri
- Department of Drug Metabolism and Pharmacokinetics, Zydus Research Centre, Sarkhej-Bavla N.H. No. 8A, Moraiya. Tal: Sanand, Ahmedabad-382 210, India
| | - Harilal Patel
- Department of Drug Metabolism and Pharmacokinetics, Zydus Research Centre, Sarkhej-Bavla N.H. No. 8A, Moraiya. Tal: Sanand, Ahmedabad-382 210, India
| | - Nuggehally R Srinivas
- Department of Drug Metabolism and Pharmacokinetics, Zydus Research Centre, Sarkhej-Bavla N.H. No. 8A, Moraiya. Tal: Sanand, Ahmedabad-382 210, India.,Suramus Bio, Drug Development, J.P. Nagar First Phase, Bangalore 560078, India
| |
Collapse
|
20
|
Panaxadiol saponins treatment caused the subtle variations in the global transcriptional state of Asiatic corn borer, Ostrinia furnacalis. J Ginseng Res 2020; 44:123-134. [PMID: 32148395 PMCID: PMC7033338 DOI: 10.1016/j.jgr.2017.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/28/2017] [Accepted: 12/05/2017] [Indexed: 11/22/2022] Open
Abstract
Background Methods Results Conclusion
Collapse
|
21
|
Cusinato DAC, Martinez EZ, Cintra MTC, Filgueira GCO, Berretta AA, Lanchote VL, Coelho EB. Evaluation of potential herbal-drug interactions of a standardized propolis extract (EPP-AF®) using an in vivo cocktail approach. JOURNAL OF ETHNOPHARMACOLOGY 2019; 245:112174. [PMID: 31442620 DOI: 10.1016/j.jep.2019.112174] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/14/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Propolis has been employed extensively in many cultures since ancient times as antiseptic, wound healing, anti-pyretic and others due to its biological and pharmacological properties, such as immunomodulatory, antitumor, anti-inflammatory, antioxidant, antibacterial, antiviral, antifungal, antiparasite activities. But despite its broad and traditional use, there is little knowledge about its potential interaction with prescription drugs. AIM OF THE STUDY The main objective of this work was to study the potential herbal-drug interactions (HDIs) of EPP-AF® using an in vivo assay with a cocktail approach. MATERIALS AND METHODS Subtherapeutic doses of caffeine, losartan, omeprazole, metoprolol, midazolam and fexofenadine were used. Sixteen healthy adult volunteers were investigated before and after exposure to orally administered 125 mg/8 h (375 mg/day) EPP-AF® for 15 days. Pharmacokinetic parameters were calculated based on plasma concentration versus time (AUC) curves. RESULTS After exposure to EPP-AF®, it was observed decrease in the AUC0-∞ of fexofenadine, caffeine and losartan of approximately 18% (62.20 × 51.00 h.ng/mL), 8% (1085 × 999 h.ng/mL) and 13% (9.01 × 7.86 h.ng/mL), respectively, with all 90% CIs within the equivalence range of 0.80-1.25. On the other hand, omeprazole and midazolam exhibited an increase in AUC0-∞ of, respectively, approximately 18% (18.90 × 22.30 h.ng/mL) and 14% (1.25 × 1.43 h.ng/mL), with the upper bounds of 90% CIs slightly above 1.25. Changes in pharmacokinetics of metoprolol or its metabolite α-hydroxymetoprolol were not statistically significant and their 90% CIs were within the equivalence range of 0.80-1.25. CONCLUSIONS In conclusion, our study shows that EPP-AF® does not clinically change CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A activities, once, despite statistical significant, the magnitude of the changes in AUC values after EPP-AF® were all below 20% and therefore may be considered safe regarding potential interactions involving these enzymes. Besides, to the best of our knowledge this is the first study to assess potential HDIs with propolis.
Collapse
Affiliation(s)
- Diego A C Cusinato
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Clinical Analysis, Toxicology and Food Science, University of São Paulo, Brazil
| | - Edson Z Martinez
- Ribeirão Preto Medical School, Department of Social Medicine, University of São Paulo Ribeirão Preto, Brazil
| | - Mônica T C Cintra
- General Clinical Research Center, Teaching Hospital Ribeirão Preto, Brazil
| | - Gabriela C O Filgueira
- Medical School, University of São Paulo Medical School, Department of Obstetrics and Gynecology, University of São Paulo, Brazil
| | - Andresa A Berretta
- Laboratório de Pesquisa, Desenvolvimento & Inovação, Apis Flora Indl. Coml. Ltda., Ribeirão Preto, SP, Brazil
| | - Vera L Lanchote
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Clinical Analysis, Toxicology and Food Science, University of São Paulo, Brazil
| | - Eduardo B Coelho
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Clinical Analysis, Toxicology and Food Science, University of São Paulo, Brazil; Ribeirão Preto Medical School, Department of Internal Medicine, University of São Paulo, Brazil.
| |
Collapse
|
22
|
Zhang L, Chen X, Cheng Y, Chen Q, Tan H, Son D, Chang D, Bian Z, Fang H, Xu H. Safety and antifatigue effect of Korean Red Ginseng: a randomized, double-blind, and placebo-controlled clinical trial. J Ginseng Res 2019; 43:676-683. [PMID: 31695571 PMCID: PMC6823766 DOI: 10.1016/j.jgr.2019.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/25/2019] [Accepted: 05/15/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Korean Red Ginseng (KRG) is widely used for strengthening the immune system and fighting fatigue, especially in people with deficiency syndrome. However, there is concern that the long-term application or a high dose of KRG can cause "fireness" ( in Chinese) because of its "dryness" ( in Chinese). The aim of this study was to assess the safety and efficacy of a 4-week treatment with KRG in participants with deficiency syndrome. METHODS This was a 4-week, randomized, double-blind, placebo-controlled clinical trial. A total of 180 Chinese participants were randomly allocated to three groups: placebo control group, participants were given a placebo, 3.6 g/d; KRG 1.8 g and 3.6 g groups. The primary outcomes were the changes in fireness and safety evaluation (adverse events, laboratory tests, and electrocardiogram). The secondary outcomes were the efficacy of KRG on fatigue, which include the following: traditional Chinese medicine (TCM) symptom scale and fatigue self-assessment scale. RESULTS Of the 180 patients, 174 completed the full study. After 4 weeks of KRG treatment, the Fire-heat symptoms score including Excess fire-heat score and Deficient fire-heat score showed no significant change as compared with placebo treatment, and no clinically significant changes in any safety parameter were observed. Based on the TCM syndrome score and fatigue self-assessment score, TCM symptoms and fatigue were greatly improved after treatment with KRG, which showed a dose- and time-dependent effect. The total effective rate was also significantly increased in the KRG groups. CONCLUSION Our study revealed that KRG has a potent antifatigue effect without significant adverse effects in people with deficiency syndrome. Although a larger sample size and longer treatment may be required for a more definite conclusion, this clinical trial is the first to disprove the common conception of "fireness" related to KRG.
Collapse
Affiliation(s)
- Li Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoyun Chen
- Department of Rheumatology, LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanqi Cheng
- Prevention and Health Care Department of Traditional Chinese Medicine, Department of Rheumatology, LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qilong Chen
- Research Center for TCM Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongsheng Tan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongwook Son
- Korea Ginseng Corporation, Daejeon, Republic of Korea
| | | | - Zhaoxiang Bian
- Hong Kong Chinese Medicine Clinical Study Centre, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Hong Fang
- Prevention and Health Care Department of Traditional Chinese Medicine, Department of Rheumatology, LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
23
|
Interactions of ginseng with therapeutic drugs. Arch Pharm Res 2019; 42:862-878. [PMID: 31493264 DOI: 10.1007/s12272-019-01184-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/26/2019] [Indexed: 02/08/2023]
Abstract
Ginseng is the most frequently used herbal medicine for immune system stimulation and as an adjuvant with prescribed drugs owing to its numerous pharmacologic activities. It is important to investigate the beneficial effects and interaction of ginseng with therapeutic drugs. This review comprehensively discusses drug metabolizing enzyme- and transporter-mediated ginseng-drug interaction by analyzing in vitro and clinical results with a focus on ginsenoside, a pharmacologically active marker of ginseng. Impact of ginseng therapy or ginseng combination therapy on diabetic patients and of ginseng interaction with antiplatelets and anticoagulants were evaluated based on ginseng origin and ginsenoside content. Daily administration of Korean red ginseng (0.5-3 g extract; dried ginseng > 60%) did not cause significant herb-drug interaction with drug metabolizing enzymes and transporters. Among various therapeutic drugs administered in combination with ginseng, adjuvant chemotherapy, comprising ginseng (1-3 g extract) and anticancer drugs, was effective for reducing cancer-related fatigue and improving the quality of life and emotional scores. Limited information regarding ginsenoside content in each ginseng product and plasma ginsenoside concentration among patients necessitates standardization of ginseng product and establishment of pharmacokinetic-pharmacodynamic correlation to further understand beneficial effects of ginseng-therapeutic drug interactions in future clinical studies.
Collapse
|
24
|
Lee S, Kwon M, Choi MK, Song IS. Effects of Red Ginseng Extract on the Pharmacokinetics and Elimination of Methotrexate via Mrp2 Regulation. Molecules 2018; 23:molecules23112948. [PMID: 30424502 PMCID: PMC6278279 DOI: 10.3390/molecules23112948] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 12/18/2022] Open
Abstract
We aimed to investigate the effects of red ginseng extract (RGE) on the expression of efflux transporters and to study the pharmacokinetics of representative substrate. For this, rats received single or repeated administration of RGE (1.5 g/kg/day) for 1 and 2 weeks via oral gavage. mRNA and protein levels of multidrug resistance-associated protein2 (Mrp2), bile salt export pump (Bsep), and P-glycoprotein (P-gp) in the rat liver were measured via real-time polymerase chain reaction and Western blot analysis. Ginsenosides concentrations from the rat plasma were also monitored using a liquid chromatography–tandem mass spectrometry (LC–MS/MS) system. Plasma concentrations of ginsenoside Rb1, Rb2, Rc, and Rd following repeated administration of RGE for 1 and 2 weeks were comparable but significantly higher than those after single administration of RGE. These dosing regimens did not induce significant biochemical abnormalities in the liver, kidneys, and lipid homeostasis. In the RGE repeated oral administration groups, the mRNA and protein levels of Mrp2 significantly decreased. Accordingly, we investigated the changes in the pharmacokinetics of methotrexate, a probe substrate for Mrp2, following intravenous administration of 3 mg/kg methotrexate to rats in the RGE 1-week repeated oral administration group, compared to that in the control group. Biliary excretion, but not urinary excretion, of methotrexate decreased in the RGE repeated administration group, compared to that in the control group. Consequently, the plasma concentrations of methotrexate slightly increased in the RGE repeated administration group. In conclusion, repeated administration of RGE for 1 week resulted in a decrease in Mrp2 expression without inducing significant liver or kidney damage. Pharmacokinetic herb–drug interaction between RGE and methotrexate might occur owing to the decrease in the mRNA and protein levels of Mrp2.
Collapse
Affiliation(s)
- Sowon Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Mihwa Kwon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Min-Koo Choi
- College of Pharmacy, Dankook University, Cheon-an 31116, Korea.
| | - Im-Sook Song
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea.
| |
Collapse
|
25
|
Choi MK, Jin S, Jeon JH, Kang WY, Seong SJ, Yoon YR, Han YH, Song IS. Tolerability and pharmacokinetics of ginsenosides Rb1, Rb2, Rc, Rd, and compound K after single or multiple administration of red ginseng extract in human beings. J Ginseng Res 2018; 44:229-237. [PMID: 32148404 PMCID: PMC7031742 DOI: 10.1016/j.jgr.2018.10.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/07/2018] [Accepted: 10/18/2018] [Indexed: 02/07/2023] Open
Abstract
Background We investigated the tolerability and pharmacokinetic properties of various ginsenosides, including Rb1, Rb2, Rc, Rd, and compound K, after single or multiple administrations of red ginseng extract in human beings. Methods Red ginseng extract (dried ginseng > 60%) was administered once and repeatedly for 15 days to 15 healthy Korean people. After single and repeated administration of red ginsengextract, blood sample collection, measurement of blood pressure and body temperature, and routine laboratory test were conducted over 48-h test periods. Results Repeated administration of high-dose red ginseng for 15 days was well tolerated and did not produce significant changes in body temperature or blood pressure. The plasma concentrations of Rb1, Rb2, and Rc were stable and showed similar area under the plasma concentration-time curve (AUC) values after 15 days of repeated administration. Their AUC values after repeated administration of red ginseng extract for 15 days accumulated 4.5- to 6.7-fold compared with single-dose AUC. However, the plasma concentrations of Rd and compound K showed large interindividual variations but correlated well between AUC of Rd and compound K. Compound K did not accumulate after 15 days of repeated administration of red ginseng extract. Conclusion A good correlation between the AUC values of Rd and compound K might be the result of intestinal biotransformation of Rb1, Rb2, and Rc to Rd and subsequently to compound K, rather than the intestinal permeability of these ginsenosides. A strategy to increase biotransformation or reduce metabolic intersubject variability may increase the plasma concentrations of Rd and compound K.
Collapse
Key Words
- Hank's balanced salt solution, HBSS
- MRT, mean residence time
- apical to basal, A to B
- apparent permeability, Papp
- area under the plasma concentration-time curve, AUC
- basal to apical, B to A
- ginsenosides
- liquid chromatography-tandem mass spectrometry, LC-MS/MS
- maximum plasma concentration, Cmax
- multiple reaction monitoring, MRM
- pharmacokinetics
- red ginseng
- single and repeated administration
- t1/2, elimination half-life
- time to reach Cmax, Tmax
- tolerability
Collapse
Affiliation(s)
- Min-Koo Choi
- College of Pharmacy, Dankook University, Cheon-an, Republic of Korea
| | - Sojeong Jin
- College of Pharmacy, Dankook University, Cheon-an, Republic of Korea
| | - Ji-Hyeon Jeon
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Woo Youl Kang
- Clinical Trial Center, Kyungpook National University Hospital, Daegu, Republic of Korea
- Department of Biomedical Science, BK21 Plus KNU Bio-Medical Convergence Program for Creative Talent, Graduate School, Kyungpook National University, Daegu, Republic of Korea
| | - Sook Jin Seong
- Department of Biomedical Science, BK21 Plus KNU Bio-Medical Convergence Program for Creative Talent, Graduate School, Kyungpook National University, Daegu, Republic of Korea
| | - Young-Ran Yoon
- Clinical Trial Center, Kyungpook National University Hospital, Daegu, Republic of Korea
- Department of Biomedical Science, BK21 Plus KNU Bio-Medical Convergence Program for Creative Talent, Graduate School, Kyungpook National University, Daegu, Republic of Korea
| | - Yong-Hae Han
- Life Science Institute, Daewoong Pharmaceutical, Yongin, Gyeonggi-do, Republic of Korea
| | - Im-Sook Song
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
- Corresponding author. College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
26
|
A Comprehensive In Vivo and In Vitro Assessment of the Drug Interaction Potential of Red Ginseng. Clin Ther 2018; 40:1322-1337. [PMID: 30078466 DOI: 10.1016/j.clinthera.2018.06.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 11/20/2022]
Abstract
Purpose: Red ginseng is one of the world's most popular herbal medicines; it exhibits a wide range of pharmacologic activities and is often co-ingested with other herbal and conventional medicines. This open-label, randomized, 3-period study investigated the in vivo herb-drug interaction potential for red ginseng extract with cytochrome P-450 (CYP) enzymes and organic anion-transporting polypeptide (OATP) 1B1. METHODS Fifteen healthy male volunteers (22-28 years; 57.1-80.8 kg) were administered a single dose of cocktail probe substrates (caffeine 100 mg, losartan 50 mg, omeprazole 20 mg, dextromethorphan 30 mg, midazolam 2 mg, and pitavastatin 2 mg) and single or multiple doses of red ginseng extract for 15 days. FINDINGS The pharmacokinetic profiles of the probe substrates and metabolites after single- or multiple-dose administration of red ginseng extracts were comparable to the corresponding profiles of the control group. The geometric mean ratio of AUC0-t and 90% CIs for the probe substrate drugs between the control and multiple doses of red ginseng for 15 days were within 0.8 to 1.25 (CYP2C9, CYP3A4, and OATP1B1 probe substrates) or slightly higher (CYP1A2, CYP2C19, and CYP2D6 probe substrates). Additional assessments of the in vitro drug interaction potential of red ginseng extracts and the ginsenoside Rb1 on drug-metabolizing enzymes and transporters using human liver microsomes, cryopreserved human hepatocytes, and transporter-overexpressed cells were negative. IMPLICATIONS Red ginseng poses minimal risks for clinically relevant CYP- or OATP-mediated drug interactions and is well tolerated. Clinical Research Information Service registry no.
Collapse
|
27
|
So SH, Lee JW, Kim YS, Hyun SH, Han CK. Red ginseng monograph. J Ginseng Res 2018; 42:549-561. [PMID: 30337816 PMCID: PMC6190493 DOI: 10.1016/j.jgr.2018.05.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/12/2018] [Accepted: 05/08/2018] [Indexed: 12/22/2022] Open
Abstract
Ginseng has been traditionally used for several millennia in Asian countries, including Korea, China, and Japan, not only as a nourishing and tonifying agent but also as a therapeutic agent for a variety of diseases. In recent years, the various effects of red ginseng including immunity improvement, fatigue relief, memory improvement, blood circulation improvement, antioxidation, mitigation of menopausal women's symptoms, and anticancer an effect have been reported in clinical as well as basic research. Around the world, there is a trend of the rising consumption of health functional foods on the level of disease prevention along with increased interest in maintaining health because of population aging and the awareness of lifestyle diseases and chronic diseases. Red ginseng occupies an important position as a health functional food. But till now, international ginseng monographs including those of the World Health Organization have been based on data on white ginseng and have mentioned red ginseng only partly. Therefore, the red ginseng monograph is needed for component of red ginseng, functionality certified as a health functional food in the Korea Food and Drug Administration, major efficacy, action mechanism, and safety. The present red ginseng monograph will contribute to providing accurate information on red ginseng to agencies, businesses, and consumers both in South Korea and abroad.
Collapse
Affiliation(s)
- Seung-Ho So
- Laboratory of Fundamental Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Jong Won Lee
- Laboratory of Fundamental Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Young-Sook Kim
- Laboratory of Fundamental Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Sun Hee Hyun
- Laboratory of Fundamental Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Chang-Kyun Han
- Laboratory of Fundamental Research, Korea Ginseng Corporation, Daejeon, Republic of Korea
| |
Collapse
|
28
|
Kim SJ, Choi S, Kim M, Park C, Kim GL, Lee SO, Kang W, Rhee DK. Effect of Korean Red Ginseng extracts on drug-drug interactions. J Ginseng Res 2017; 42:370-378. [PMID: 29989018 PMCID: PMC6035379 DOI: 10.1016/j.jgr.2017.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/18/2017] [Indexed: 11/24/2022] Open
Abstract
Background Ginseng has been the subject of many experimental and clinical studies to uncover the diverse biological activities of its constituent compounds. It is a traditional medicine that has been used for its immunostimulatory, antithrombotic, antioxidative, anti-inflammatory, and anticancer effects. Ginseng may interact with concomitant medications and alter metabolism and/or drug transport, which may alter the known efficacy and safety of a drug; thus, the role of ginseng may be controversial when taken with other medications. Methods We extensively assessed the effects of Korean Red Ginseng (KRG) in rats on the expression of enzymes responsible for drug metabolism [cytochrome p450 (CYP)] and transporters [multiple drug resistance (MDR) and organic anion transporter (OAT)] in vitro and on the pharmacokinetics of two probe drugs, midazolam and fexofenadine, after a 2-wk repeated administration of KRG at different doses. Results The results showed that 30 mg/kg KRG significantly increased the expression level of CYP3A11 protein in the liver and 100 mg/kg KRG increased both the mRNA and protein expression of OAT1 in the kidney. Additionally, KRG significantly increased the mRNA and protein expression of OAT1, OAT3, and MDR1 in the liver. Although there were no significant changes in the metabolism of midazolam to its major metabolite, 1′-hydroxymidazolam, KRG significantly decreased the systemic exposure of fexofenadine in a dose-dependent manner. Conclusion Because KRG is used as a health supplement, there is a risk of KRG overdose; thus, a clinical trial of high doses would be useful. The use of KRG in combination with P-glycoprotein substrate drugs should also be carefully monitored.
Collapse
Affiliation(s)
- Se-Jin Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seungmok Choi
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Minsoo Kim
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Changmin Park
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Gyu-Lee Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Si-On Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Wonku Kang
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Dong-Kwon Rhee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
29
|
Lee SJ, Ha N, Kim Y, Kim MG. Changes in the Ginsenoside Content During Fermentation Using an Appliance for the Preparation of Red Ginseng. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:1595-1606. [DOI: 10.1142/s0192415x16500890] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The total amount of ginsenoside in fermented red ginseng (FRG) is increased by microbial fermentation. The aim of this study was to evaluate whether fermentation time and temperature affect the ginsenoside content during fermentation using an appliance for the preparation of red ginseng. The FRG and fermented red ginseng extracts (FRG-e) were prepared using an appliance for the preparation of red ginseng. The temperature was recorded and time points for sampling were scheduled at pre-fermentation (0[Formula: see text]h) and 18, 36, 48, 60 and 72[Formula: see text]h after the addition of the microbial strains. Samples of FRG and FRG-e were collected to identify changes in the ginsenoside contents at each time point during the fermentation process. The ginsenoside content was analyzed using high performance liquid chromatography (HPLC). The levels of ginsenoside Rh1, Rg3, and compound Y, which are known to have effective pharmacological properties, increased more than three-fold in the final products of FRG relative to samples prior to fermentation. Although the ginsenoside constituents of FRG-e decreased or increased and then decreased during fermentation, the total amount of ginsenoside in FRG-e was even higher than those in FRG; the total amounts of ginsenoside in FRG-e and FRG were 8282.8 and 738.0[Formula: see text]mg, respectively. This study examined the changes in composition of ginsenosides and suggests a method to manufacture high-content total ginsenosides according to the fermentation temperature and process time. Reducing the extraction time is expected to improve the decrease of ginsenosides in FRG-e as a function of the fermentation time.
Collapse
Affiliation(s)
- So Jin Lee
- Clinical Pharmacology Unit and Biomedical Research Institute, Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - Na Ha
- Clinical Pharmacology Unit and Biomedical Research Institute, Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - Yunjeong Kim
- Clinical Pharmacology Unit and Biomedical Research Institute, Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - Min-Gul Kim
- Clinical Pharmacology Unit and Biomedical Research Institute, Chonbuk National University Hospital, Jeonju, Republic of Korea
- Department of Pharmacology, School of Medicine, Chonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|