1
|
Li M, Liu S, Wang Z, Liu F, Dong H, Qiao X, Wang X. Comparing the Drying Characteristics, Phytochemicals, and Antioxidant Characterization of Panax quinquefolium L. Treated by Different Processing Techniques. Foods 2025; 14:815. [PMID: 40077518 PMCID: PMC11899330 DOI: 10.3390/foods14050815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
American ginseng (AG) has long been used as an ingredient in the food and pharmaceutical industries because of its nutritional and economic value. AG is rich in nutrients, and its quality is greatly affected by how it is processed. However, there is a relative paucity of research on the comprehensive evaluation of different processing techniques of AG. This study evaluated the differences in quality formation and properties of low-temperature softened, blanched, steamed followed by hot air drying, and vacuum freeze-dried AG (LTS-HAD, BL-HAD, ST-HAD, and VFD, respectively). The results demonstrated that AGs treated with VFD had the fastest drying time (85 h) and succeeded in preserving the color and microstructure of fresh ginseng. The contents of ginsenoside Rg1 and Rb1 in LTS-HAD samples were 2.81 ± 0.01 mg/g and 10.68 ± 0.66 mg/g, respectively, which were significantly higher than those in VFD samples (p < 0.05). Moreover, ST-HAD samples had an attractive reddish-brown appearance and higher antioxidant activity. Simultaneously, the formation of the ginsenosides Rg6, (S) Rg3, (R) Rg3, Rk1, and Rg5 was discovered. BL-HAD samples had an intermediate quality among the above samples. A total of 58 volatile compounds were identified, including aldehydes (14), alcohols (13), ketones (10), esters (6), terpenes (6), acids (5), and heterocyclic compounds (4). PCA of ginsenosides and volatile components, as well as correlation analysis with color and antioxidant activity, resulted in the identification of different processed products and potential bioactive components.
Collapse
Affiliation(s)
- Meng Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (M.L.)
- Shandong Academy of Chinese Medicine, Jinan 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Shuang Liu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (M.L.)
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Zhenqiang Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (M.L.)
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Feng Liu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (M.L.)
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Hongjing Dong
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (M.L.)
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xuguang Qiao
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, No. 61, Daizong Road, Tai’an 271018, China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (M.L.)
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| |
Collapse
|
2
|
Fan W, Fan L, Wang Z, Mei Y, Liu L, Li L, Yang L, Wang Z. Rare ginsenosides: A unique perspective of ginseng research. J Adv Res 2024; 66:303-328. [PMID: 38195040 PMCID: PMC11674801 DOI: 10.1016/j.jare.2024.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Rare ginsenosides (Rg3, Rh2, C-K, etc.) refer to a group of dammarane triterpenoids that exist in low natural abundance, mostly produced by deglycosylation or side chain modification via physicochemical processing or metabolic transformation in gut, and last but not least, exhibited potent biological activity comparing to the primary ginsenosides, which lead to a high concern in both the research and development of ginseng and ginsenoside-related nutraceutical and natural products. Nevertheless, a comprehensive review on these promising compounds is not available yet. AIM OF REVIEW In this review, recent advances of Rare ginsenosides (RGs) were summarized dealing with the structurally diverse characteristics, traditional usage, drug discovery situation, clinical application, pharmacological effects and the underlying mechanisms, structure-activity relationship, toxicity, the stereochemistry properties, and production strategies. KEY SCIENTIFIC CONCEPTS OF REVIEW A total of 144 RGs with diverse skeletons and bioactivities were isolated from Panax species. RGs acted as natural ligands on some specific receptors, such as bile acid receptors, steroid hormone receptors, and adenosine diphosphate (ADP) receptors. The RGs showed promising bioactivities including immunoregulatory and adaptogen-like effect, anti-aging effect, anti-tumor effect, as well as their effects on cardiovascular and cerebrovascular system, central nervous system, obesity and diabetes, and interaction with gut microbiota. Clinical trials indicated the potential of RGs, while high quality data remains inadequate, and no obvious side effects was found. The stereochemistry properties induced by deglycosylation at C (20) were also addressed including pharmacodynamics behaviors, together with the state-of-art analytical strategies for the identification of saponin stereoisomers. Finally, the batch preparation of targeted RGs by designated strategies including heating or acid/ alkaline-assisted processes, and enzymatic biotransformation and biosynthesis were discussed. Hopefully, the present review can provide more clues for the extensive understanding and future in-depth research and development of RGs, originated from the worldwide well recognized ginseng plants.
Collapse
Affiliation(s)
- Wenxiang Fan
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Linhong Fan
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ziying Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuqi Mei
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Longchan Liu
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Linnan Li
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
3
|
Kim SJ, Lee HK, Kang KS, Lee MG, Shin MS. Korean Red Ginseng Polysaccharides Enhance Intestinal IgA Production and Barrier Function via Peyer's Patch Activation in Mice. Nutrients 2024; 16:3816. [PMID: 39599603 PMCID: PMC11597691 DOI: 10.3390/nu16223816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Natural products are gaining attention for their potential benefits in gastrointestinal health. Plant-derived polysaccharides are essential for boosting intestinal immunity and maintaining gut homeostasis. This study investigated the effects of Korean red ginseng polysaccharides (KRG-P) on intestinal homeostasis including IgA and SCFA production and mucosal barrier integrity. Methods: Mice were orally administered KRG-P at doses of 50 mg/kg or 200 mg/kg for 10 days. Fecal IgA levels were measured on days 3, 5, and 11 and IgA from cultured Peyer's patch cells from KRG-P-treated mice were analyzed. Additionally, mRNA and protein expression levels of α-defensin, lysozyme, and E-cadherin in the small intestine were examined. Short-chain fatty acids (SCFAs) content in the cecum was also assessed. Results: KRG-P-treated groups showed a significant increase in fecal IgA levels on days 5 and 11, with no notable change on day 3. Cultured Peyer's patch cells from mice demonstrated heightened IgA production. Additionally, KRG-P administration upregulated α-defensin and lysozyme mRNA expression, along with elevated protein expression of E-cadherin, α-defensin, and lysozyme, in the small intestine. KRG-P treatment also led to increased cecal SCFA levels, including acetate, butyrate, and propionate. Conclusions: KRG-P may promote intestinal homeostasis and host defense mechanisms by activating immune cells in Peyer's patches, stimulating IgA production, enhancing antimicrobial peptide expression, and modulating gut microbiota metabolism through increased SCFA production.
Collapse
Affiliation(s)
- Sung Jin Kim
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea; (S.J.K.); (K.S.K.)
| | - Hae-Kyung Lee
- Avison Biomedical Research Center, Yonsei University, Seoul 03722, Republic of Korea;
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea; (S.J.K.); (K.S.K.)
| | - Mi-Gi Lee
- Bio-Center, Gyeonggi-do Business and Science Accelerator, Suwon 16229, Republic of Korea
| | - Myoung-Sook Shin
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea; (S.J.K.); (K.S.K.)
| |
Collapse
|
4
|
Wu Y, Zheng H, Zheng T, Jiang J, Xu Y, Jia F, He K, Yang Y. Quantitative Changes and Transformation Mechanisms of Saponin Components in Chinese Herbal Medicines during Storage and Processing: A Review. Molecules 2024; 29:4486. [PMID: 39339481 PMCID: PMC11434432 DOI: 10.3390/molecules29184486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Saponins are an important class of active components in Chinese herbal medicines (CHMs), which are present in large quantities in Ginseng Radix et Rhizoma, Notoginseng Radix et Rhizoma, Polygonati Rhizoma, etc., and have immune regulation, anti-tumor, anti-inflammatory, anti-cardiovascular disease, and hypoglycemic activities. Storage and processing are essential processes in the production process of CHMs which affect the stability of saponin components and then reduce the medicinal and economic value. Therefore, it is of great importance to investigate the effects of storage and processing conditions on the content of saponin components in CHMs. In this paper, the effects of various storage and processing factors, including temperature, pH, enzymes, meta lions, extraction methods, etc., on the saponin content of CHMs are investigated and the underlying mechanisms for the quantitative changes of saponin are summarized. These findings may provide technical guidance for the production and processing of saponin-rich CHMs.
Collapse
Affiliation(s)
- Yuhang Wu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410000, China
| | - Hui Zheng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410000, China
| | - Tao Zheng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410000, China
| | - Jiani Jiang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410000, China
| | - Yao Xu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410000, China
| | - Fan Jia
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410000, China
| | - Kai He
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua 418000, China
| | - Yong Yang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410000, China
| |
Collapse
|
5
|
Guo B, Liang Y, Fu B, Luo J, Zhou X, Ji R, He X. Integrated Analysis of Ginsenoside Content and Biomarker Changes in Processed Ginseng: Implications for Anti-Cancer Mechanisms. Foods 2024; 13:2497. [PMID: 39200424 PMCID: PMC11353654 DOI: 10.3390/foods13162497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Black ginseng is the processed product of ginseng, and it has been found that the content and types of rare ginsenosides increased after processing. However, there is limited research on the ginsenoside differences between cultivated and forest ginseng before and after processing and among various plant parts. This study investigated the effects of processing on ginsenosides in different parts of cultivated and forest ginseng. After processing, the contents of Re, Rg1, S-Rg3, Rg5, R-Rh1, Rk1, Rk3, and F4 were significantly increased or decreased, the growth age of forest ginseng was not proportional to the content of ginsenosides, and the differences in ginsenoside content in ginseng from different cultivation methods were relatively small. Chemometric analysis identified processing biomarkers showing varying percentage changes in different parts. Network pharmacology predicted the EGFR/PI3K/Akt/mTOR pathway as a potential key pathway for the anti-cancer effect of black ginseng.
Collapse
Affiliation(s)
- Biyu Guo
- School of Traditional Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; (B.G.); (Y.L.); (B.F.); (J.L.); (R.J.)
| | - Yingli Liang
- School of Traditional Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; (B.G.); (Y.L.); (B.F.); (J.L.); (R.J.)
| | - Biru Fu
- School of Traditional Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; (B.G.); (Y.L.); (B.F.); (J.L.); (R.J.)
| | - Jiayi Luo
- School of Traditional Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; (B.G.); (Y.L.); (B.F.); (J.L.); (R.J.)
| | - Xingchen Zhou
- Jingji (Guangzhou) Biotechnology Co., Ltd., Guangzhou 510006, China;
| | - Ruifeng Ji
- School of Traditional Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; (B.G.); (Y.L.); (B.F.); (J.L.); (R.J.)
| | - Xin He
- School of Traditional Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; (B.G.); (Y.L.); (B.F.); (J.L.); (R.J.)
| |
Collapse
|
6
|
Wang YD, Zhang HE, Han LS, Li GY, Yang KL, Zhao Y, Wang JQ, Lai YB, Chen CB, Wang EP. Analysis of the Variation in Antioxidant Activity and Chemical Composition upon the Repeated Thermal Treatment of the By-Product of the Red Ginseng Manufacturing Process. Molecules 2024; 29:3092. [PMID: 38999042 PMCID: PMC11243613 DOI: 10.3390/molecules29133092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Steamed ginseng water (SGW) is a by-product of the repeated thermal processing of red ginseng, which is characterized by a high bioactive content, better skin care activity, and a large output. However, its value has been ignored, resulting in environmental pollution and resource waste. In this study, UHPLC-Q-Exactive-MS/MS liquid chromatography-mass spectrometry and multivariate statistical analysis were conducted to characterize the compositional features of the repeated thermal-treated SGW. The antioxidant activity (DPPH, ABTS, FRAP, and OH) and chemical composition (total sugars, total saponins, and reducing and non-reducing sugars) were comprehensively evaluated based on the entropy weighting method. Four comparison groups (groups 1 and 3, groups 1 and 5, groups 1 and 7, and groups 1 and 9) were screened for 37 important common difference markers using OPLS-DA analysis. The entropy weight method was used to analyze the weights of the indicators; the seventh SGW sample was reported to have a significant weight. The results of this study suggest that heat treatment time and frequency can be an important indicator value for the quality control of SGW cycling operations, which have great potential in antioxidant products.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Chang-Bao Chen
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - En-Peng Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|
7
|
Yan X, Zhang A, Guan Y, Jiao J, Ghanim M, Zhang Y, He X, Shi R. Comparative Metabolome and Transcriptome Analyses Reveal Differential Enrichment of Metabolites with Age in Panax notoginseng Roots. PLANTS (BASEL, SWITZERLAND) 2024; 13:1441. [PMID: 38891250 PMCID: PMC11175106 DOI: 10.3390/plants13111441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/05/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024]
Abstract
Panax notoginseng is a perennial plant well known for its versatile medicinal properties, including hepatoprotective, antioxidant, anti-inflammatory, anti-tumor, estrogen-like, and antidepressant characteristics. It has been reported that plant age affects the quality of P. notoginseng. This study aimed to explore the differential metabolome and transcriptome of 2-year (PN2) and 3-year-old (PN3) P. notoginseng plant root samples. Principal component analysis of metabolome and transcriptome data revealed major differences between the two groups (PN2 vs. PN3). A total of 1813 metabolites and 28,587 genes were detected in this study, of which 255 metabolites and 3141 genes were found to be differential (p < 0.05) between PN2 vs. PN3, respectively. Among differential metabolites and genes, 155 metabolites and 1217 genes were up-regulated, while 100 metabolites and 1924 genes were down-regulated. The KEGG pathway analysis revealed differentially enriched metabolites belonging to class lipids ("13S-hydroperoxy-9Z, 11E-octadecadionic acid", "9S-hydroxy-10E, 12Z-octadecadionic acid", "9S-oxo-10E, 12Z-octadecadionic acid", and "9,10,13-trihydroxy-11-octadecadionic acid"), nucleotides and derivatives (guanine and cytidine), and phenolic acids (chlorogenic acid) were found to be enriched (p < 0.05) in PN3 compared to PN2. Further, these differentially enriched metabolites were found to be significantly (p < 0.05) regulated via linoleic acid metabolism, nucleotide metabolism, plant hormone signal transduction, and arachidonic acid metabolism pathways. Furthermore, the transcriptome analysis showed the up-regulation of key genes MAT, DMAS, SDH, gallate 1-beta-glucosyltransferase, and beta-D-glucosidase in various plants' secondary metabolic pathways and SAUR, GID1, PP2C, ETR, CTR1, EBF1/2, and ERF1/2 genes observed in phytohormone signal transduction pathway that is involved in plant growth and development, and protection against the various stressors. This study concluded that the roots of a 3-year-old P. notoginseng plant have better metabolome and transcriptome profiles compared to a 2-year-old plant with importantly enriched metabolites and genes in pathways related to metabolism, plant hormone signal transduction, and various biological processes. These findings provide insights into the plant's dynamic biochemical and molecular changes during its growth that have several implications regarding its therapeutic use.
Collapse
Affiliation(s)
- Xinru Yan
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-Forest Resource, International Ecological Forestry Research Center of Kunming, Southwest Forestry University, Kunming 650224, China; (X.Y.); (A.Z.); (J.J.)
| | - Ao Zhang
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-Forest Resource, International Ecological Forestry Research Center of Kunming, Southwest Forestry University, Kunming 650224, China; (X.Y.); (A.Z.); (J.J.)
| | - Yiming Guan
- Institute of Special Wild Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun 130112, China;
| | - Jinlong Jiao
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-Forest Resource, International Ecological Forestry Research Center of Kunming, Southwest Forestry University, Kunming 650224, China; (X.Y.); (A.Z.); (J.J.)
| | - Murad Ghanim
- Department of Entomology, Institute of Plant Protection, 68 Hamaccabim Road, Rishon LeZion 7505101, Israel;
| | - Yayu Zhang
- Institute of Special Wild Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun 130112, China;
| | - Xiahong He
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-Forest Resource, International Ecological Forestry Research Center of Kunming, Southwest Forestry University, Kunming 650224, China; (X.Y.); (A.Z.); (J.J.)
| | - Rui Shi
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-Forest Resource, International Ecological Forestry Research Center of Kunming, Southwest Forestry University, Kunming 650224, China; (X.Y.); (A.Z.); (J.J.)
| |
Collapse
|
8
|
Zhou J, Zhang J, Jing P, Lan Y, Cao X, Feng H, Liu X, Liu Q. Ginseng in white and red processed forms: Ginsenosides and cardiac side effects. Food Sci Nutr 2024; 12:1857-1868. [PMID: 38455159 PMCID: PMC10916586 DOI: 10.1002/fsn3.3879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 03/09/2024] Open
Abstract
Ginseng (Panax ginseng Meyer) has long been consumed as a medicinal or functional food in East Asia. It is available as dried white ginseng (WG) and steamed red ginseng (RG), which might differ in ginsenoside profiles. We compared ginsenoside types of RG and WG using UPLC-MS/MS and evaluated how they biologically affected heart of healthy rats by recording electrocardiography, measuring biochemical indicators, analyzing cardiac tissue slides, and Ca2+ signaling pathways. About 25 and 29 ginsenosides were detected in WG and RG, respectively, and the total ginsenoside content of RG contained was nearly 1.8 times higher than that of WG. Among them, ginsenoside Rg4, ginsenoside Rg6, ginsenoside Rh4, ginsenoside Rk1, ginsenoside Rg5, and protopanaxadiol were detected only in RG, while 20(R)-ginsenoside Rg2 was detected only in WG. Male SD rats treated by intraperitoneal injection of WG or RG extracts were similar to the control in terms of electrocardiography and heart histology, indicating that both may not significantly affect the rats' myocardial function. However, WG and RG may induce mild cardiac injury resulting in increased cardiac collagen and creatine kinase levels. In addition, upregulated p-CaMKII and PPARδ and downregulated SERCA2a for WG and RG treatments were further associated with increased cardiac contractility. In general, RG had less effect on the heart of healthy rats than WG, which may be due to RG having a high proportion of low-polar ginsenosides.
Collapse
Affiliation(s)
- Jiexin Zhou
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture Ministry of Agriculture, School of Agriculture & BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Jiarui Zhang
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture Ministry of Agriculture, School of Agriculture & BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Pu Jing
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture Ministry of Agriculture, School of Agriculture & BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Yu Lan
- Luzhou Laojiao Co., Ltd.LuzhouSichuanChina
| | | | | | | | | |
Collapse
|
9
|
Fan W, Liao Q, Fan L, Li Q, Liu L, Wang Z, Mei Y, Li L, Yang L, Wang Z. An innovative processing driven efficient transformation of rare ginsenosides enhances anti-platelet aggregation potency of notoginseng by integrated analyses of processing-(chemical) profiling-pharmacodynamics. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117126. [PMID: 37716488 DOI: 10.1016/j.jep.2023.117126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/29/2023] [Accepted: 09/03/2023] [Indexed: 09/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax notoginseng (Burk.) F. H. Chen, a valuable Chinese herb medicine, shows a characteristic bi-directional regulation of hemostasis and activating blood circulation with ginsenosides as the predominant bioactive compounds and is a typical representative of "processing triggered heteropotency". AIM OF THE STUDY Processing triggered heteropotency, one of the unique theories and practices in traditional Chinese medicine, refers to that the processing will lead to change in physical and chemical properties, and eventually disparate efficacy of the crude drugs, yet the optimum process and underlying mechanism remains unclear. In this study, using Panax notoginseng (PN) as a representative sample, a processing-(chemical) profiling-pharmacodynamics (3-P) relationship was proposed to investigate the processing mechanism of PN. MATERIALS AND METHODS Firstly, a temperature programmed steaming process was designed to evaluate the steaming triggered chemical transformation of triterpene saponins and the corresponding enhancement in anti-platelet aggregation activity. The steaming process was programed from the conventional 100 °C-150 °C in a time course of 0-12 h, aiming to achieve the maximized conversion of rare ginsenosides (RGs), and dynamic profile of ginsenosides were constructed by a UPLC-Q-TOF-MS/MS analysis. Then, a processing-(chemical) profiling-pharmacodynamics (3-P) relationship was assessed by using the grey relational analysis (GRA) and orthogonal projections to latent structures (OPLS), and validated by bioactive fraction of 140 °C steamed PN. Subsequently, the P2Y12-ligand binding affinity of potential candidates was analyzed by molecular docking. Finally, the dynamic changes of ginsenosides during steaming of SPN were quantitatively detected by UPLC-QQQ-MS/MS. RESULTS A total of 48 differential ginsenosides were characterized and monitored including the primary and secondarily transformed saponins. The higher temperature steaming especially at 140 °C induces not only the predominant production of the RGs, but also the stronger anti-platelet aggregation activity. The 3-P relationship showed the fraction (3) of 140 °C steamed PN rich in RGs exhibits the most predominant efficacy, in which, a series of RGs including ginsenosides Rg5, Rk1, 20(S/R)-Rg3 were proven to be potent components. Molecular docking analysis suggested that ginsenosides Rg5 and Rk1 showed more strong interaction with the platelet P2Y12 receptor. Quantitative analysis found 140 °C-2h PN possessed highest contents of Rk1 and Rg5 and total RGs. CONCLUSIONS The integrated 3-P strategy uncovered the promising ginsenosides with anti-platelet effect, thereby revealing the material basis of PN steaming, which could provide a new enlightenment for the investigation of processing mechanism of traditional Chinese medicines.
Collapse
Affiliation(s)
- Wenxiang Fan
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qi Liao
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Linhong Fan
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qi Li
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Guangxi Wuzhou Pharmaceutical (Group) Co., Ltd, Wuzhou, 543000, China
| | - Longchan Liu
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ziying Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuqi Mei
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Linnan Li
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
10
|
Fan J, Liu F, Ji W, Wang X, Li L. Comprehensive Investigation of Ginsenosides in the Steamed Panax quinquefolius with Different Processing Conditions Using LC-MS. Molecules 2024; 29:623. [PMID: 38338369 PMCID: PMC10856252 DOI: 10.3390/molecules29030623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Panax quinquefolius (PQ) has been widely used in traditional Chinese medicine and functional food. Ginsenosides are the important functional components of PQ. The ginsenosides' diversity is deeply affected by the processing conditions. The ginsenosides in the steamed PQ have been not well-characterized yet because of the complexity of their structure. In the study, the comprehensive investigation of ginsenosides was performed on the steamed PQ with different steaming times and temperatures by UPLC-Q-TOF-MS. Based on the molecular weight, retention time and characterized fragment ions, 175 ginsenosides were unambiguously identified or tentatively characterized, including 45 protopanaxatriol type, 49 protopanaxadiol type, 19 octillol type, 6 oleanolic acid type ginsenosides, and 56 other ginsenosides. Ten new ginsenosides and three new aglycones were discovered in the steamed PQ samples through searching the database of CAS SciFindern. Principal component analysis showed the significant influence on the chemical components of PQ through different processing conditions. The steaming temperature was found to promote the transformation of ginsenosides more than the steaming time. The protoginsenosides were found to transform into the rare ginsenosides by elimination reactions. The malonyl ginsenosides were degraded into acetyl ginsenosides, and then degraded into neutral ginsenosides. The sugar chain experienced degradation, with position changes and configuration inversions. Furthermore, 20 (S/R)-ginsenoside Rh1, Rh2, Rg2, and Rh12 were found to transform from the S-configuration to the R-configuration significantly. This study could present a comprehensive ginsenosides profile of PQ with different steaming conditions, and provide technical support for the development and utilization of PQ.
Collapse
Affiliation(s)
- Jiali Fan
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (J.F.); (F.L.); (W.J.); (X.W.)
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Feng Liu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (J.F.); (F.L.); (W.J.); (X.W.)
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Wenhua Ji
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (J.F.); (F.L.); (W.J.); (X.W.)
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (J.F.); (F.L.); (W.J.); (X.W.)
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Lili Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (J.F.); (F.L.); (W.J.); (X.W.)
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| |
Collapse
|
11
|
Ye X, Zhang H, Li Q, Ren H, Xu X, Li X. Structural-Activity Relationship of Rare Ginsenosides from Red Ginseng in the Treatment of Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24108625. [PMID: 37239965 DOI: 10.3390/ijms24108625] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Rare ginsenosides are the major components of red ginseng. However, there has been little research into the relationship between the structure of ginsenosides and their anti-inflammatory activity. In this work, BV-2 cells induced by lipopolysaccharide (LPS) or nigericin, the anti-inflammatory activity of eight rare ginsenosides, and the target proteins expression of AD were compared. In addition, the Morris water maze test, HE staining, thioflavins staining, and urine metabonomics were used to evaluate the effect of Rh4 on AD mice. Our results showed that their configuration influences the anti-inflammatory activity of ginsenosides. Ginsenosides Rk1, Rg5, Rk3, and Rh4 have significant anti-inflammatory activity compared to ginsenosides S-Rh1, R-Rh1, S-Rg3, and R-Rg3. Ginsenosides S-Rh1 and S-Rg3 have more pronounced anti-inflammatory activity than ginsenosides R-Rh1 and R-Rg3, respectively. Furthermore, the two pairs of stereoisomeric ginsenosides can significantly reduce the level of NLRP3, caspase-1, and ASC in BV-2 cells. Interestingly, Rh4 can improve the learning ability of AD mice, improve cognitive impairment, reduce hippocampal neuronal apoptosis and Aβ deposition, and regulate AD-related pathways such as the tricarboxylic acid cycle and the sphingolipid metabolism. Our findings conclude that rare ginsenosides with a double bond have more anti-inflammatory activity than those without, and 20(S)-ginsenosides have more excellent anti-inflammatory activity than 20(R)-ginsenosides.
Collapse
Affiliation(s)
- Xianwen Ye
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing 102488, China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
- Institute of Regulatory Science for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Haixia Zhang
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing 102488, China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Qian Li
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing 102488, China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Hongmin Ren
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing 102488, China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xinfang Xu
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing 102488, China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
- Institute of Regulatory Science for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiangri Li
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing 102488, China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
- Institute of Regulatory Science for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
12
|
Huang L, Li HJ, Wu YC. Processing technologies, phytochemistry, bioactivities and applications of black ginseng-a novel manufactured ginseng product: A comprehensive review. Food Chem 2023; 407:134714. [PMID: 36495746 DOI: 10.1016/j.foodchem.2022.134714] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/29/2022]
Abstract
Black ginseng is a novel manufactured ginseng product, and the application of black ginseng products in market is increasing in recent years. Black ginseng is prepared by steaming and fermentation, but not as mature as processing red ginseng. Therefore, complete proposals for preparation techniques are firstly presented. Additionally, there are also abundant chemical components in black ginseng, including ginsenosides, polysaccharides, amino acids, polyphenols, flavonoids, etc. Among them, ginsenosides, polysaccharides and phenolic compounds are the main ingredients, making health benefits of black ginseng stronger than other ginseng products. Therefore, black ginseng as a functional food has come to the market in various forms, such as candies, tea, porridge, soup, etc. The improvement in nutrition, flavor, and safety has exhibited a broad prospect for black ginseng products in food industry. Accordingly, preparation technologies, phytochemistry, health benefits and application of black ginseng are comprehensively evaluated.
Collapse
Affiliation(s)
- Li Huang
- Weihai Marine Organism & Medical Technology Research Institute, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150006, PR China
| | - Hui-Jing Li
- Weihai Marine Organism & Medical Technology Research Institute, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150006, PR China
| | - Yan-Chao Wu
- Weihai Jinyiyang Pharmaceutical Co., Ltd, Wendeng District, Weihai 264400, PR China.
| |
Collapse
|
13
|
Lee HY, Kim EJ, Cho DY, Jung JG, Kim MJ, Lee JH, Kim W, Kang SS, Cho KM, Kang D. Photoprotective Effect of Fermented and Aged Mountain-Cultivated Ginseng Sprout (Panax ginseng) on Ultraviolet Radiation-Induced Skin Aging in a Hairless Mouse Model. Nutrients 2023; 15:nu15071715. [PMID: 37049554 PMCID: PMC10097383 DOI: 10.3390/nu15071715] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Interest in foods that promote inner beauty increases with increases in exposure to ultraviolet (UV) rays and with improvements in quality of life. This study was performed to evaluate the efficacy of fermented and aged mountain-cultivated ginseng sprouts (FAMCGSs), which have higher anti-inflammatory and antioxidant effects compared to mountain-cultivated ginseng sprouts (MCGSs), as an inner beauty enhancing food. The effect of orally administered FAMCGSs on UV type B (UVB) radiation-induced skin aging was investigated in a hairless mouse model through analyzing skin parameters including epidermal thickness, transepidermal water loss (TEWL), roughness, moisture, elasticity, and collagen contents. The mice exposed to UVB had markedly greater epidermal thickness, TEWL, and skin roughness than those of the normal control (NC) group. In addition, the levels of collagen, skin moisture, and dermal elasticity were lower in the UVB radiation group than the NC group. These UVB-induced skin aging parameters were significantly lower in the groups administered FAMCGSs than in the groups not administered FAMCGSs (p < 0.05). These results show that FAMCGSs exhibit a photoprotective effect in mice exposed to UVB and suggest that FAMCGSs can be used as a food that promotes inner beauty and protects skin from UVB-induced photoaging.
Collapse
Affiliation(s)
- Hee Yul Lee
- Department of GreenBio Science and Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Eun-Jin Kim
- Departments of Physiology and Convergence Medical Science and Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Du Yong Cho
- Department of GreenBio Science and Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jea Gack Jung
- Department of GreenBio Science and Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Min Ju Kim
- Department of GreenBio Science and Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jin Hwan Lee
- Department of Life Resource Industry, Dong-A University, Busan 49315, Republic of Korea
| | - Wanil Kim
- Department of Biochemistry, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Sang Soo Kang
- Department of Anatomy and Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Kye Man Cho
- Department of GreenBio Science and Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju 52727, Republic of Korea
- Correspondence: (K.M.C.); (D.K.)
| | - Dawon Kang
- Departments of Physiology and Convergence Medical Science and Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Correspondence: (K.M.C.); (D.K.)
| |
Collapse
|
14
|
Ye XW, Li CS, Zhang HX, Li Q, Cheng SQ, Wen J, Wang X, Ren HM, Xia LJ, Wang XX, Xu XF, Li XR. Saponins of ginseng products: a review of their transformation in processing. Front Pharmacol 2023; 14:1177819. [PMID: 37188270 PMCID: PMC10175582 DOI: 10.3389/fphar.2023.1177819] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
The primary processed product of Panax ginseng C.A. Meyer (P. ginseng) is red ginseng. As technology advances, new products of red ginseng have arisen. Red ginseng products, e.g., traditional red ginseng, sun ginseng, black ginseng, fermented red ginseng, and puffed red ginseng, are commonly used in herbal medicine. Ginsenosides are the major secondary metabolites of P. ginseng. The constituents of P. ginseng are significantly changed during processing, and several pharmacological activities of red ginseng products are dramatically increased compared to white ginseng. In this paper, we aimed to review the ginsenosides and pharmacological activities of various red ginseng products, the transformation law of ginsenosides in processing, and some clinical trials of red ginseng products. This article will help to highlight the diverse pharmacological properties of red ginseng products and aid in the future development of red ginseng industrialization.
Collapse
Affiliation(s)
- Xian-Wen Ye
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Institute of Regulatory Science for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chun-Shuai Li
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
| | - Hai-Xia Zhang
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
| | - Qian Li
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
| | - Shui-Qing Cheng
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
| | - Jia Wen
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
| | - Xuan Wang
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
| | - Hong-Min Ren
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
| | - Liang-Jing Xia
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
| | - Xu-Xing Wang
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
| | - Xin-Fang Xu
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Institute of Regulatory Science for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Xin-Fang Xu, ; Xiang-Ri Li,
| | - Xiang-Ri Li
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Xin-Fang Xu, ; Xiang-Ri Li,
| |
Collapse
|
15
|
Yang M, Hou CY, Hsu HY, Hazeena SH, Santoso SP, Yu CC, Chang CK, Gavahian M, Hsieh CW. Enhancing Bioactive Saponin Content of Raphanus sativus Extract by Thermal Processing at Various Conditions. Molecules 2022; 27:8125. [PMID: 36500218 PMCID: PMC9735865 DOI: 10.3390/molecules27238125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Pickled radish (Raphanus sativus) is a traditional Asian ingredient, but the traditional method takes decades to make this product. To optimize such a process, this study compared the saponin content of pickled radishes with different thermal processing and traditional processes (production time of 7 days, 10 years, and 20 years) and evaluated the effects of different thermal processes on the formation of radish saponin through kinetics study and mass spectrometry. The results showed that increasing the pickling time enhanced the formation of saponin in commercial pickled radishes (25 °C, 7 days, 6.50 ± 1.46 mg g-1; 3650 days, 23.11 ± 1.22 mg g-1), but these increases were lower than those induced by thermal processing (70 °C 30 days 24.24 ± 1.01 mg g-1). However, it was found that the pickling time of more than 10 years and the processing temperature of more than 80 °C reduce the saponin content. Liquid chromatography-mass spectrometry (LC-MS) analysis showed that the major saponin in untreated radish was Tupistroside G, whereas treated samples contained Asparagoside A and Timosaponin A1. Moreover, this study elucidated the chemical structure of saponins in TPR. The findings indicated that thermal treatment could induce functional saponin conversion in plants, and such a mechanism can also be used to improve the health efficacy of plant-based crops.
Collapse
Affiliation(s)
- Min Yang
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung 40227, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, 142, Haizhuan Rd., Nanzi Dist., Kaohsiung 81157, Taiwan
| | - Hsien-Yi Hsu
- Department of Materials Science and Engineering, School of Energy and Environment, City University of Hong Kong, Hong Kong 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| | - Sulfath Hakkim Hazeena
- Department of Seafood Science, National Kaohsiung University of Science and Technology, 142, Haizhuan Rd., Nanzi Dist., Kaohsiung 81157, Taiwan
| | - Shella Permatasari Santoso
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Surabaya 60114, Indonesia
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Daan Dist., Taipei 10607, Taiwan
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, No.110, Sec.1, Jianguo N. Rd., Taichung 40201, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, No.110, Sec.1, Jianguo N. Rd., Taichung 40201, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, No.110, Sec.1, Jianguo N. Rd., Taichung 40201, Taiwan
| | - Chao-Kai Chang
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung 40227, Taiwan
| | - Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung 40227, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 404333, Taiwan
| |
Collapse
|
16
|
Zhang J, Ai Z, Hu Y, Wang Y, Liu S, Liu Y, Nan B, Wang Y. Remarkable impact of commercial sterilizing on ginsenosides transformation in fresh ginseng pulp based on widely targeted metabolomics analysis. Food Chem X 2022; 15:100415. [PMID: 36211783 PMCID: PMC9532786 DOI: 10.1016/j.fochx.2022.100415] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
Terpenoids such as ginsenosides are the most important phytochemicals and functional components in ginseng. Commercial sterilizing with high temperature and high pressure is also one of the common methods of ginseng food processing. However, the changes of terpenoids in fresh ginsengs commercially sterilized are unclear. In this study, fresh ginseng pulp (FGP) was commercially sterilized at 121℃ for 30 min, and terpenoid compounds were analyzed by widely targeted metabolomics based on UPLC-ESI-MS/MS system. The commercial sterilization induced the changes of 88 terpenoid compounds including 30 types of ginsenosides, and many minor ginsenoside Rh4, Rg6, Rk2, F4, Rs3, Rk3, Rk1, Rg5, Rg3, Rg4 were remarkably increased in fresh ginseng pulp. Importantly, the ginsenoside ST3 was detected and F4, Rg3, and Rg5 were also found in fresh ginseng pulp. Commercial sterilizing at 121℃ for 30 min will remarkably affect the species and number of ginsenosides in ginseng food.
Collapse
Affiliation(s)
- Junshun Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Zhiyi Ai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Yue Hu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Yonghong Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Sitong Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Yongzhe Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Bo Nan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Yuhua Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
- National Processing Laboratory for Soybean Industry and Technology, Changchun, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China
| |
Collapse
|
17
|
Li W, Wu X, Wu M, Yin J, Ding H, Wu T, Bie S, Li F, He Y, Han L, Yang W, Song X, Yu H, Li Z. Ultrahigh-performance liquid chromatography coupled to ion mobility quadrupole time-of-flight mass spectrometry profiling and unveiling the transformation of ginsenosides by the dual conditions of citric acid and high-pressure steaming. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9363. [PMID: 35902380 DOI: 10.1002/rcm.9363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
RATIONALE Many methods have been reported for the production of rare ginsenosides, including heat treatment, acid hydrolysis, alkaline hydrolysis, enzymatic hydrolysis, and microbial transformation. However, the conversion of original ginsenosides to rare ginsenosides under the dual conditions of citric acid and high-pressure steam sterilization has rarely been reported. METHODS In this study, a method involving ultrahigh-performance liquid chromatography coupled to ion mobility quadrupole time-of-flight mass spectrometry was developed for analysis of chemical transformation of protopanaxatriol (PPT)-type ginsenosides Rg1 and Re, protopanaxadiol (PPD)-type ginsenoside Rb1 , and total ginsenosides in the dual conditions of citric acid and high-pressure steam sterilization. An internal ginsenoside database containing 126 known ginsenosides and 18 ginsenoside reference compounds was established to identify the transformation products and explore possible transformation pathways and mechanisms. RESULTS A total of 54 ginsenosides have been preliminarily identified in the transformation products of PPD-type ginsenosides Rg1 and Re, PPD-type ginsenoside Rb1 , and total ginsenosides, and the possible transformation pathways were as follows: Rg1 , Re → 20(S)-Rh12 , 20(R)-Rh12 ; Rg1 , Re → 20(S)-Rh1 , 20(R)-Rh1 → Rk3 , Rh4 , Rh5 ; Rb1 → gypenoside LXXV; Rb1 → 20(S)-Rg3 , 20(R)-Rg3 → Rk1 , Rg5 ; Re → 20(S)-Rg2 , 20(R)-Rg2 → 20(S)-Rf2 , 20(R)-Rf2 , Rg4 , F4 . CONCLUSIONS The results elucidated the possible transformation pathways and mechanisms of ginsenosides in the dual conditions of citric acid and high-pressure steam sterilization, which were helpful for revealing the mechanisms of ginsenosides and enhanced safety and quality control of pharmaceuticals and nutraceuticals. Meanwhile, a simple, efficient, and practical method was developed for the production of rare ginsenosides, which has the potential to produce diverse rare ginsenosides on an industrial scale.
Collapse
Affiliation(s)
- Wei Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, China
| | - Xinlong Wu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, China
| | - Mengfan Wu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, China
| | - Jiaxin Yin
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, China
| | - Hui Ding
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, China
| | - Tong Wu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, China
| | - Songtao Bie
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, China
| | - Fangyi Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, China
| | - Yongzhi He
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, China
| | - Wenzhi Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, China
| | - Xinbo Song
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, China
| | - Heshui Yu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine Tianjin, China
| |
Collapse
|
18
|
Changes in Chemical Compositions and Antioxidant Activities from Fresh to Fermented Red Mountain-Cultivated Ginseng. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144550. [PMID: 35889423 PMCID: PMC9322814 DOI: 10.3390/molecules27144550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 12/02/2022]
Abstract
This study investigated changes in nutrients (fatty acids, amino acids, and minerals), ginsenosides, and volatile flavors, and antioxidant activities during food processing of mountain-cultivated ginseng (MCG) with the cocktail lactic acid bacteria. Fatty acid content increased, but the free amino acid content decreased, and minerals were practically unaffected during processing. Total phenolic and flavonoid contents and maillard reaction products increased markedly according to processing stage. The total ginsenosides levels increased from 31.25 mg/g (DMCG) to 32.36 mg/g (red MCG, RMCG) and then decreased (27.27 mg/g, at fermented RMCG) during processing. Particularly, the contents of F2 (0.31 → 1.02 → 2.27 mg/g), Rg3 (0.36 → 0.77 → 1.93 mg/g), and compound K (0.5 → 1.68 → 4.13 mg/g) of ginsenosides and β-panasinsene (17.28 → 22.69 → 31.61%), biocycloelemene (0.11 → 0.84 → 0.92%), δ-cadinene (0.39 → 0.5 → 0.94%), and alloaromadendrene (1.64 → 1.39 → 2.6%) of volatile flavor compounds increased during processing, along with to the antioxidant effects (such as DPPH, ABTS, and hydroxyl radical scavenging activities, and FRAP). This study may provide several choices for the use of ginseng in functional foods and functional cosmetics.
Collapse
|
19
|
Comparative assessment of compositional constituents and antioxidant effects in ginseng sprouts (Panax ginseng) through aging and fermentation processes. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
20
|
Tran THM, Puja AM, Kim H, Kim YJ. Nanoemulsions prepared from mountain ginseng-mediated gold nanoparticles and silydianin increase the anti-inflammatory effects by regulating NF-κB and MAPK signaling pathways. BIOMATERIALS ADVANCES 2022; 137:212814. [PMID: 35929253 DOI: 10.1016/j.bioadv.2022.212814] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/18/2022] [Accepted: 04/16/2022] [Indexed: 06/15/2023]
Abstract
In order to increase the bioavailability of mountain ginseng (MG), gold nanoparticles (MG-AuNPs) were biologically synthesized from MG extract, and an oil-in-water (O/W) nanoemulsion (SMG-AuNEs) was prepared from MG-AuNPs and a phytochemical silydianin. The physical stability of SMG-AuNEs were monitored and optimized in terms of particle size, pH value, zeta potential, and polydispersity index. The chemicostructural properties of the prepared MG-AuNPs and SMG-AuNEs were characterized using various spectrometric and microscopic analyses, such as EDX spectroscopy, FT-IR spectroscopy, and TEM. The effect of both nanomaterial samples on the anti-inflammatory activity and their underlying mechanism was compared in LPS-stimulated RAW 264.7 cells. SMG-AuNEs did not show toxic effects against RAW 264.7 macrophages, HaCaT keratinocytes, and normal dermal fibroblasts. SMG-AuNEs exhibited significantly higher inhibition of pro-inflammatory genes and proteins, including IL-1β, IL-6, and TNF-α, compared with those of MG-AuNPs and silydianin. Western blotting analysis revealed that the MAPK and NF-κB signalings were highly inhibited by SMG-AuNEs treatment. Hence, this study shows that nano-emulsification of gold nanoparticles prepared from MG is a useful method for augmenting the anti-inflammatory potential of MG. This study may serve as a foundation for using MG as a functional ingredient in anti-inflammatory agents. Our results may implicate the use of nanoemulsions to develop new anti-inflammatory products using MG.
Collapse
Affiliation(s)
- Thi Hoa My Tran
- Department of Oriental Medicine Biotechnology, Kyung Hee University, Yongin 17104, Gyeonggi, Republic of Korea
| | - Aditi Mitra Puja
- Department of Oriental Medicine Biotechnology, Kyung Hee University, Yongin 17104, Gyeonggi, Republic of Korea
| | - Hoon Kim
- Department of Oriental Medicine Biotechnology, Kyung Hee University, Yongin 17104, Gyeonggi, Republic of Korea.
| | - Yeon-Ju Kim
- Department of Oriental Medicine Biotechnology, Kyung Hee University, Yongin 17104, Gyeonggi, Republic of Korea.
| |
Collapse
|
21
|
Ikeuchi S, Minamida M, Nakamura T, Konishi M, Kamioka H. Exploratory Systematic Review and Meta-Analysis of Panax Genus Plant Ingestion Evaluation in Exercise Endurance. Nutrients 2022; 14:nu14061185. [PMID: 35334841 PMCID: PMC8950061 DOI: 10.3390/nu14061185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Many studies that use food containing Panax genus plants (PGPs) have been conducted but most of them have not mentioned the effective compounds ginsenosides and their composition. Therefore, we conducted a systematic review and meta-analysis of time to exhaustion as an index of exercise endurance with ingestion of PGPs or ginsenosides to reveal their effects. Methods: We performed a systematic review with a comprehensive and structured literature search using seven literature databases, four clinical trial databases, and three general web search engines during 15–22 March 2021. A random-effects model was applied to calculate the standardized mean difference (SMD) and 95% confidence interval (CI) as the difference between the mean in the treatment and placebo groups. We evaluated the risk of bias of individual studies along with the risk of bias tool in the Cochrane handbook. This study was funded by Maruzen Pharmaceuticals Co., Ltd. (Hiroshima, Japan). The protocol for this study was registered with the UMIN-CTR (No. UMIN000043341). Results: Five studies met the inclusion criteria. The number of total participants was 90, with 59 in the ingestion-PGPs group and 64 in the control group, because three studies were crossover-design trials. We found that ingestion of PGPs or ginsenosides significantly improved exercise endurance (SMD [95% CI]: 0.58 [0.22–0.95], I2 = 0%). It was suggested that ginsenoside Rg1 (Rg1) and PGPs extract containing Rg1 were significantly effective in improving exercise endurance (SMD [95% CI]: 0.70 [0.14–1.27], I2 = 30%) by additional analysis. Conclusions: This systematic review suggests that the ingestion of PGPs or ginsenosides, especially Rg1, is effective in improving exercise endurance in healthy adults. However, further high-quality randomized controlled trials are required because imprecision and publication bias cannot be ignored in this systematic review.
Collapse
Affiliation(s)
- Shingo Ikeuchi
- Research & Development Division, Maruzen Pharmaceuticals Co., Ltd., 1089-8 Sagata, Shinnichi-cho, Hiroshima 729-3102, Japan; (M.M.); (T.N.); (M.K.)
- Faculty of Regional Environment Science, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan;
- Correspondence: ; Tel.: +81-847-52-6262
| | - Mika Minamida
- Research & Development Division, Maruzen Pharmaceuticals Co., Ltd., 1089-8 Sagata, Shinnichi-cho, Hiroshima 729-3102, Japan; (M.M.); (T.N.); (M.K.)
| | - Touma Nakamura
- Research & Development Division, Maruzen Pharmaceuticals Co., Ltd., 1089-8 Sagata, Shinnichi-cho, Hiroshima 729-3102, Japan; (M.M.); (T.N.); (M.K.)
| | - Masatoshi Konishi
- Research & Development Division, Maruzen Pharmaceuticals Co., Ltd., 1089-8 Sagata, Shinnichi-cho, Hiroshima 729-3102, Japan; (M.M.); (T.N.); (M.K.)
| | - Hiroharu Kamioka
- Faculty of Regional Environment Science, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan;
| |
Collapse
|
22
|
Li X, Liu J, Zuo TT, Hu Y, Li Z, Wang HD, Xu XY, Yang WZ, Guo DA. Advances and challenges in ginseng research from 2011 to 2020: the phytochemistry, quality control, metabolism, and biosynthesis. Nat Prod Rep 2022; 39:875-909. [PMID: 35128553 DOI: 10.1039/d1np00071c] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 2011 to the end of 2020Panax species (Araliaceae), particularly P. ginseng, P. quinquefolius, and P. notoginseng, have a long history of medicinal use because of their remarkable tonifying effects, and currently serve as crucial sources for various healthcare products, functional foods, and cosmetics, aside from their vast clinical preparations. The huge market demand on a global scale prompts the continuous prosperity in ginseng research concerning the discovery of new compounds, precise quality control, ADME (absorption/disposition/metabolism/excretion), and biosynthesis pathways. Benefitting from the ongoing rapid development of analytical technologies, e.g. multi-dimensional chromatography (MDC), personalized mass spectrometry (MS) scan strategies, and multi-omics, highly recognized progress has been made in driving ginseng analysis towards "systematicness, integrity, personalization, and intelligentization". Herein, we review the advances in the phytochemistry, quality control, metabolism, and biosynthesis pathway of ginseng over the past decade (2011-2020), with 410 citations. Emphasis is placed on the introduction of new compounds isolated (saponins and polysaccharides), and the emerging novel analytical technologies and analytical strategies that favor ginseng's authentic use and global consumption. Perspectives on the challenges and future trends in ginseng analysis are also presented.
Collapse
Affiliation(s)
- Xue Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Jie Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Tian-Tian Zuo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Ying Hu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Zheng Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China. .,College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin 301617, China
| | - Hong-da Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Xiao-Yan Xu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Wen-Zhi Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - De-An Guo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China. .,Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| |
Collapse
|
23
|
Lee HR, Jung JM, Seo JY, Chang SE, Song Y. Anti-melanogenic property of ginsenoside Rf from Panax ginseng via inhibition of CREB/MITF pathway in melanocytes and ex vivo human skin. J Ginseng Res 2021; 45:555-564. [PMID: 34803425 PMCID: PMC8587488 DOI: 10.1016/j.jgr.2020.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
Background Ginsenosides of Panax ginseng are used to enhance skin health and beauty. The present study aimed to investigate the potential use of ginsenoside Rf (Rf) from Panax ginseng as a new anti-pigmentation agent. Methods The anti-melanogenic effects of Rf were explored. The transcriptional activity of the cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) and the expression levels of tyrosinase, microphthalmia-associated transcription factor (MITF), and tyrosinase-related proteins (Tyrps) were evaluated in melanocytes and UV-irradiated ex vivo human skin. Results Rf significantly inhibited Forskolin (FSK) or UV-stimulated melanogenesis. Consistently, cellular tyrosinase activity and levels of MITF, tyrosinase, and Tyrps were downregulated. Furthermore, Rf suppressed MITF promoter activity, which was stimulated by FSK or CREB-regulated transcription coactivator 3 (CRTC3) overexpression. Increased CREB phosphorylation and protein kinase A (PKA) activity induced by FSK were also mitigated in the presence of Rf. Conclusion Rf can be used as a reliable anti-pigmentation agent, which has a scientifically confirmed and reproducible action mechanism, via inhibition of CREB/MITF pathway.
Collapse
Affiliation(s)
- Ha-Ri Lee
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Republic of Korea.,Asan Institute for Life Sciences, Asan Medical Center, Republic of Korea
| | - Joon Min Jung
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Republic of Korea
| | - Ji-Yeon Seo
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Republic of Korea.,Asan Institute for Life Sciences, Asan Medical Center, Republic of Korea
| | - Sung Eun Chang
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Republic of Korea.,Asan Institute for Life Sciences, Asan Medical Center, Republic of Korea
| | - Youngsup Song
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Republic of Korea.,Asan Institute for Life Sciences, Asan Medical Center, Republic of Korea
| |
Collapse
|
24
|
Changes in nutritional compositions of processed mountain-cultivated ginseng sprouts (Panax ginseng) and screening for their antioxidant and anti-inflammatory properties. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104668] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
25
|
Li W, Yang X, Chen B, Zhao D, Wang H, Sun M, Li X, Xu X, Liu J, Wang S, Mi Y, Wang H, Yang W. Ultra-high performance liquid chromatography/ion mobility time-of-flight mass spectrometry-based untargeted metabolomics combined with quantitative assay unveiled the metabolic difference among the root, leaf, and flower bud of Panax notoginseng. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
26
|
Lee M, Ban JJ, Won BH, Im W, Kim M. Therapeutic potential of ginsenoside Rg3 and Rf for Huntington's disease. In Vitro Cell Dev Biol Anim 2021; 57:641-648. [PMID: 34128157 DOI: 10.1007/s11626-021-00595-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/23/2021] [Indexed: 11/30/2022]
Abstract
Ginseng is a popular herbal medicine and known to have protective and therapeutic effects in various diseases. Ginsenosides are active gradients representing the diverse pharmacological efficacy of ginseng. Huntington's disease (HD) is incurable genetic disorder associated with mutant huntingtin (mHtt) aggregation in the central nervous system. This study was conducted to investigate the effects of ginsenoside Rg3 and Rf on mHtt aggregation, cell viability, mitochondrial function, and apoptotic molecules on HD model. To investigate the effect of ginsenosides on HD, neural stem cells were isolated from the R6/2 mouse brain and used as a cellular model of HD. Nuclear aggregation of mHtt was measured by immunocytochemistry, and expressions of mitochondrial biogenesis and apoptotic molecules were investigated by western blot. As a result, the number of mHtt aggregates positive cells has decreased by ginsenoside Rg3 and Rf treatment in cellular model of HD. Mitochondrial biogenesis-related molecules such as PGC-1α and phosphorylated CREB were increased or showed increased tendency by ginsenoside Rg3 and Rf. Apoptotic molecules, p53, Bax, and cleaved caspase-3, were down-regulated by treatment of ginsenoside Rg3 and Rf. In addition, Lysotracker staining result showed that cellular lysosomal content was reduced by ginsenoside Rg3 and Rf. Given that ginsenoside Rg3 and Rf have the potential to reduce mHtt aggregation and cellular apoptosis, these ginsenosides can be possible therapeutic candidates for treating HD phenotypes.
Collapse
Affiliation(s)
- Mijung Lee
- Department of Neurology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea
| | - Jae-Jun Ban
- Department of Neurology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea
| | - Bo Hee Won
- Department of Neurology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea
| | - Wooseok Im
- Department of Neurology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea. .,Institute of Women's Life Medical Science, Gangnam Severance Hospital, Seoul, South Korea.
| | - Manho Kim
- Department of Neurology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, South Korea. .,Neuroscience Research Institute, College of Medicine, Seoul National University , Seoul, South Korea. .,Protein Metabolism and Neuroscience Dementia Research Center, College of Medicine, Seoul National University, Seoul, South Korea.
| |
Collapse
|
27
|
Kim CJ, Ryu HY, Lee S, Lee HJ, Chun YS, Kim JK, Yu CY, Ghimire BK, Lee JG. Neuroprotective Effect and Antioxidant Potency of Fermented Cultured Wild Ginseng Root Extracts of Panax ginseng C.A. Meyer in Mice. Molecules 2021; 26:3001. [PMID: 34070099 PMCID: PMC8158381 DOI: 10.3390/molecules26103001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/22/2022] Open
Abstract
Wild ginseng has better pharmacological effects than cultivated ginseng. However, its industrialization is limited by the inability to grow wild ginseng on a large scale. Herein, we demonstrate how to optimize ginseng production through cultivation, and how to enhance the concentrations of specific ginsenosides through fermentation. In the study, we also evaluated the ability of fermented cultured wild ginseng root extract (HLJG0701-β) to inhibit acetylcholinesterase (AChE), as well as its neuroprotective effects and antioxidant activity. In invitro tests, HLJG0701-β inhibited AChE activity and exerted neuroprotective and antioxidant effects (showing increased catalyst activity but decreased reactive oxygen species concentration). In invivo tests, after HLJG0701-β was orally administered at doses of 0, 125, 250, and 500 mg/kg in an animal model of memory impairment, behavioral evaluation (Morris water maze test and Y-maze task test) was performed. The levels of AChE, acetylcholine (ACh), blood catalase (CAT), and malondialdehyde (MDA) in brain tissues were measured. The results showed that HLJG0701-β produced the best results at a dose of 250 mg/kg or more. The neuroprotective mechanism of HLJG0701-β was determined to involve the inhibition of AChE activity and a decrease in oxidative stress. In summary, both invitro and invivo tests confirmed that HJG0701-β administration can lead to memory improvement.
Collapse
Affiliation(s)
- Chul-Joong Kim
- Research Institute of Biotechnology, HwajinBioCosmetics CO., LTD, Chuncheon 24232, Korea;
| | - Hyeon-Yeol Ryu
- Korea Conformity Laboratories, Yeonsu, Incheon 21999, Korea; (H.-Y.R.); (S.L.)
| | - Somin Lee
- Korea Conformity Laboratories, Yeonsu, Incheon 21999, Korea; (H.-Y.R.); (S.L.)
| | - Han-Joo Lee
- Aribio H&B CO.LTD, Yongin 16914, Korea; (H.-J.L.); (Y.-S.C.); (J.-K.K.)
| | - Yoon-Soek Chun
- Aribio H&B CO.LTD, Yongin 16914, Korea; (H.-J.L.); (Y.-S.C.); (J.-K.K.)
| | - Jong-Kyu Kim
- Aribio H&B CO.LTD, Yongin 16914, Korea; (H.-J.L.); (Y.-S.C.); (J.-K.K.)
| | - Chang-Yeon Yu
- Department of Bio-Resource Sciences, Kangwon National University, Chuncheon 21341, Korea;
| | - Bimal Kumar Ghimire
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Gwangjin, Seoul 05029, Korea;
| | - Jae-Geun Lee
- Research Institute of Biotechnology, HwajinBioCosmetics CO., LTD, Chuncheon 24232, Korea;
| |
Collapse
|
28
|
DURHAN A, KOŞMAZ K, ŞENLİKCİ A, ERGÜDER E, SÜLEYMAN M, DUYMUŞ ME, BAĞ YM, PEKCİCİ MR, ŞENEŞ M, ALKAN KUŞABBİ İ, ESER EP, HÜCÜMENOĞLU S. Does red ginseng ameliorate liver damage caused by obstructive jaundice? : an experimental study. JOURNAL OF HEALTH SCIENCES AND MEDICINE 2021. [DOI: 10.32322/jhsm.900023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
29
|
Xu XF, Qu WJ, Jia Z, Han T, Liu MN, Bai YY, Wang M, Lin RC, Hua Q, Li XR. Effect of cultivation ages on anti-inflammatory activity of a new type of red ginseng. Biomed Pharmacother 2021; 136:111280. [PMID: 33485063 DOI: 10.1016/j.biopha.2021.111280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 12/29/2022] Open
Abstract
Ginseng has been widely applied in clinical practice, but the cultivation age cannot be ignored as it influences the quality of ginseng and its products. In this work, different cultivation ages of fresh ginseng (FG) from four to seven years were analysed by UPLC-Q-TOF-MS/MS. Principal component analysis and supervised orthogonal partial least squared discrimination analysis, which belong to the normal method of multivariate statistical analysis, were applied to discover the characteristic components of FG at different cultivation ages. The components of new type of red ginseng (NRG) derived from FG at different cultivation ages were compared by HPLC analysis. The pharmacological anti-inflammatory activity was evaluated by ELISA and qPCR. The result showed that the characteristic components of both 6- and 7-year-old ginseng were ginsenoside Rb1, mal-ginsenoside Rb1, ginsenoside Rc, mal-ginsenoside Rc, mal-ginsenoside Rb1 isomer, and mal-ginsenoside Rb2. Moreover, the characteristic components of both 4- and 5-year-old ginseng were ADP-glucose and 3-hydroxyhexanoyl CoA. In addition, 6-year-old NRG has higher rare ginsenosides than 4-year-old NRG, which possesses great anti-inflammatory activity in vitro. The results reveal the ginsenoside transformation law of NRG processing and suggest that the cultivation age of FG influences the content of ginsenosides in NRG. Therefore, 6-year-old ginseng is more suitable for red ginseng processing and clinical use.
Collapse
Affiliation(s)
- Xin-Fang Xu
- Center of TCM Processing Research, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China; School of Life Sciences, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China
| | - Wen-Jia Qu
- Center of TCM Processing Research, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China
| | - Zhe Jia
- Center of TCM Processing Research, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China
| | - Ting Han
- Center of TCM Processing Research, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China
| | - Meng-Nan Liu
- Center of TCM Processing Research, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China
| | - Yu-Ying Bai
- Center of TCM Processing Research, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China
| | - Min Wang
- Center of TCM Processing Research, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China
| | - Rui-Chao Lin
- Center of TCM Processing Research, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China
| | - Qian Hua
- School of Life Sciences, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China.
| | - Xiang-Ri Li
- Center of TCM Processing Research, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Higher Education Park, Fangshan District, Beijing, 102488, China.
| |
Collapse
|
30
|
Thermal transformation of polar into less-polar ginsenosides through demalonylation and deglycosylation in extracts from ginseng pulp. Sci Rep 2021; 11:1513. [PMID: 33452317 PMCID: PMC7810680 DOI: 10.1038/s41598-021-81079-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 12/30/2020] [Indexed: 12/23/2022] Open
Abstract
The present study was conducted to qualitatively and quantitatively elucidate dynamic changes of ginsenosides in ginseng pulp steamed under different temperatures (100 or 120 °C) for different durations (1-6 h) through UPLC-QTOF-MS/MS and HPLC with the aid of as numerous as 18 authentic standards of ginsenosides. Results show that levels of eight polar ginsenosides (i.e., Rg1, Re, Rb1, Rc, Rb2, Rb3, F1, and Rd) declined but those of 10 less-polar ginsenosides [i.e., Rf, Rg2, 20(S)-Rh1, 20(R)-Rg2, F4, 20(S)-Rg3, 20(R)-Rg3, PPT, Rg5, and 20(R)-Rh2] elevated with increases of both steaming temperature and duration; the optimum steaming conditions for achieving the highest total ginsenosides were 100 °C for 1 h. Particular, 20(R)-Rg3, a representative less-polar ginsenoside with high bioactivity such as potent anti-cancer effect, increased sharply but Re, the most abundant polar ginsenoside in fresh ginseng pulp, decreased dramatically. More importantly, ginsenoside species enhanced from 18 to 42 after steaming, mainly due to transformation of polar into less-polar ginsenosides. Furthermore, four malonyl-ginsenosides were detected in fresh ginseng pulps and ten acetyl-ginsenosides were formed during steaming, demonstrating that demalonylation and acetylation of ginsenosides were the dominant underling mechanisms for transformation of polar into less-polar ginsenosides.
Collapse
|
31
|
Zhang H, Xu C, Tian Q, Zhang Y, Zhang G, Guan Y, Tong S, Yan J. Screening and characterization of aldose reductase inhibitors from Traditional Chinese medicine based on ultrafiltration-liquid chromatography mass spectrometry and in silico molecular docking. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113282. [PMID: 32890716 DOI: 10.1016/j.jep.2020.113282] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 07/02/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shenqi Jiangtang granule (SJG) is an ancient Chinese herbal formula used for treatment of Diabetes mellitus and its complications. AIM OF THE STUDY To establish an integrated approach for discovery of effective Aldose reductase inhibitors (ARIs) from SJG. MATERIALS AND METHODS An integrated approach combining ultrafiltration-liquid chromatography-mass spectrometry (UF-LC-MS) with in silico molecular docking was established for development of ARIs. AR enzyme was separated from the rabbit's crystalline lens. The inhibitory activities of these compounds were detected by UV spectrophotometry with DL-glyceraldehyde as a substrate. Furthermore, molecular docking was used to understand the binding mechanism of these screened compounds interacting with AR. RESULTS After optimization of AR reaction system and ultrafiltration incubation system, 17 active ingredients were screened from SJG by UF-LC-MS technique. Among these potential AR inhibitors, ginsenoside Rd exhibited the strongest activity with IC50 value of 45.77 μM. Three of them, calycosin, gomisin J and schisandrin A were demonstrated to be potential inhibitors for the first time, with IC50 at 447.34 μM, 181.73 μM, and 429.00 μM, respectively. Most of the active compounds exhibited competitive inhibition against AR. The docking scores of saponins were higher than that of lignans, which was consistent with the verification results. CONCLUSION The results indicated that TCM formula with clinical efficacy was indeed hopeful source for screening active ingredients, and the combination of UF-LC-MS and in silico molecular docking was a universal and promising approach for development of effective enzyme inhibitors.
Collapse
Affiliation(s)
- Hui Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014, China
| | - Cong Xu
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014, China
| | - Qinghua Tian
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014, China
| | - Ya Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014, China
| | - Guimin Zhang
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Shandong, 276006, China; Lunan Pharmaceutical Group Co., Ltd., Shandong, 276006, China
| | - Yongxia Guan
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Shandong, 276006, China; Lunan Pharmaceutical Group Co., Ltd., Shandong, 276006, China
| | - Shengqiang Tong
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014, China
| | - Jizhong Yan
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014, China.
| |
Collapse
|
32
|
Holistic quality evaluation of Saposhnikoviae Radix (Saposhnikovia divaricata) by reversed-phase ultra-high performance liquid chromatography and hydrophilic interaction chromatography coupled with ion mobility quadrupole time-of-flight mass spectrometry-based untargeted metabolomics. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
33
|
Karmazyn M, Gan XT. Chemical components of ginseng, their biotransformation products and their potential as treatment of hypertension. Mol Cell Biochem 2020; 476:333-347. [PMID: 32940821 DOI: 10.1007/s11010-020-03910-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023]
Abstract
Ginseng is an ancient perennial herb belonging to the family Araliaceae and genus Panax which has been used for medical therapeutics for thousands of years, particularly in China and other Asian cultures although increasing interest in ginseng has recently emerged in western societies. Ginseng is a complex substance containing dozens of bioactive and potentially effective therapeutic compounds. Among the most studied are the ginsenosides, which are triterpene saponins possessing a wide array of potential therapeutic effects for many conditions. The quantity and type of ginsenoside vary greatly depending on ginseng species and their relative quantity in a given ginseng species is greatly affected by extraction processes as well as by subjecting ginseng to various procedures such as heating. Adding to the complexity of ginsenosides is their ability to undergo biotransformation to bioactive metabolites such as compound K by enteric bacteria following ingestion. Many ginsenosides exert vasodilatating effects making them potential candidates for the treatment of hypertension. Their vascular effects are likely dependent on eNOS activation resulting in the increased production of NO. One proposed end-mechanism involves the activation of calcium-activated potassium channels in vascular smooth cells resulting in reduced calcium influx and a vasodilatating effect, although other mechanisms have been proposed as discussed in this review.
Collapse
|
34
|
Zhang X, Gao Y, Zang P, Zhao Y, Zhu H, He Z. Effects of four new processing technologies on pesticide residues and saponins content in ginseng. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xue Zhang
- College of Traditional Chinese Medicine Jilin Agricultural University Chang Chun China
| | - Yugang Gao
- College of Traditional Chinese Medicine Jilin Agricultural University Chang Chun China
| | - Pu Zang
- College of Traditional Chinese Medicine Jilin Agricultural University Chang Chun China
| | - Yan Zhao
- College of Traditional Chinese Medicine Jilin Agricultural University Chang Chun China
| | - Hongyan Zhu
- College of Traditional Chinese Medicine Jilin Agricultural University Chang Chun China
| | - Zhongmei He
- College of Traditional Chinese Medicine Jilin Agricultural University Chang Chun China
| |
Collapse
|
35
|
Zhang F, Tang S, Zhao L, Yang X, Yao Y, Hou Z, Xue P. Stem-leaves of Panax as a rich and sustainable source of less-polar ginsenosides: comparison of ginsenosides from Panax ginseng, American ginseng and Panax notoginseng prepared by heating and acid treatment. J Ginseng Res 2020; 45:163-175. [PMID: 33437168 PMCID: PMC7790872 DOI: 10.1016/j.jgr.2020.01.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 11/28/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
Background Ginsenosides, which have strong biological activities, can be divided into polar or less-polar ginsenosides. Methods This study evaluated the phytochemical diversity of the saponins in Panax ginseng (PG) root, American ginseng (AG) root, and Panax notoginseng (NG) root; the stem-leaves from Panax ginseng (SPG) root, American ginseng (SAG) root, and Panax notoginseng (SNG) root as well as the saponins obtained following heating and acidification [transformed Panax ginseng (TPG), transformed American ginseng (TAG), transformed Panax notoginseng (TNG), transformed stem-leaves from Panax ginseng (TSPG), transformed stem-leaves from American ginseng (TSAG), and transformed stem-leaves from Panax notoginseng (TSNG)]. The diversity was determined through the simultaneous quantification of the 16 major ginsenosides. Results The content of ginsenosides in NG was found to be higher than those in AG and PG, and the content in SPG was greater than those in SNG and SAG. After transformation, the contents of polar ginsenosides in the raw saponins decreased, and contents of less-polar compounds increased. TNG had the highest levels of ginsenosides, which is consistent with the transformation of ginseng root. The contents of saponins in the stem-leaves were higher than those in the roots. The transformation rate of SNG was higher than those of the other samples, and the loss ratios of total ginsenosides from NG (6%) and SNG (4%) were the lowest among the tested materials. In addition to the conversion temperature, time, and pH, the crude protein content also affects the conversion to rare saponins. The proteins in Panax notoginseng allowed the highest conversion rate. Conclusion Thus, the industrial preparation of less-polar ginsenosides from SNG is more efficient and cheaper.
Collapse
Key Words
- AG, American ginseng
- NG, Panax notoginseng
- PG, Panax ginseng
- SAG, the stem-leaves from American ginseng
- SNG, the stem-leaves from Panax notoginseng
- SPG, the stem-leaves from Panax ginseng
- TAG, transformed American ginseng
- TNG, transformed Panax notoginseng
- TPG, transformed Panax ginseng
- TSAG, transformed stem-leaves from American ginseng
- TSNG, transformed stem-leaves from Panax notoginseng
- TSPG, transformed stem-leaves from Panax ginseng
- acid transformation
- less-polar ginsenosides
- root ginsenosides
- stem-leaf ginsenosides
Collapse
Affiliation(s)
- Fengxiang Zhang
- School of Public Health and Management, Weifang Medical University, Weifang, China
| | - Shaojian Tang
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Lei Zhao
- School of Public Health and Management, Weifang Medical University, Weifang, China
| | - Xiushi Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yang Yao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaohua Hou
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Peng Xue
- School of Public Health and Management, Weifang Medical University, Weifang, China
| |
Collapse
|
36
|
Kim EH, Kim SW, Park SJ, Kim S, Yu KM, Kim SG, Lee SH, Seo YK, Cho NH, Kang K, Soung DY, Choi YK. Greater Efficacy of Black Ginseng (CJ EnerG) over Red Ginseng against Lethal Influenza A Virus Infection. Nutrients 2019; 11:nu11081879. [PMID: 31412594 PMCID: PMC6723933 DOI: 10.3390/nu11081879] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 01/28/2023] Open
Abstract
Black ginseng (BG, CJ EnerG), prepared via nine repeated cycles of steaming and drying of fresh ginseng, contains more accessible acid polysaccharides and smaller and less polar ginsenosides than red ginseng (RG) processed only once. Because RG exhibits the ability to increase host protection against viral respiratory infections, we investigated the antiviral effects of BG. Mice were orally administered either BG or RG extract at 10 mg/kg bw daily for two weeks. Mice were then infected with a A(H1N1) pdm09 (A/California/04/2009) virus and fed extracts for an additional week. Untreated, infected mice were assigned to either the negative control, without treatments, or the positive control, treated with Tamiflu. Infected mice were monitored for 14 days to determine the survival rate. Lung tissues were evaluated for virus titer and by histological analyses. Cytokine levels were measured in bronchoalveolar lavage fluid. Mice treated with BG displayed a 100% survival rate against infection, while mice treated with RG had a 50% survival rate. Further, mice treated with BG had fewer accumulated inflammatory cells in bronchioles following viral infection than did mice treated with RG. BG also enhanced the levels of GM-CSF and IL-10 during the early and late stages of infection, respectively, compared to RG. Thus, BG may be useful as an alternative antiviral adjuvant to modulate immune responses to influenza A virus.
Collapse
Affiliation(s)
- Eun-Ha Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea
| | - Son-Woo Kim
- The Institutes of Food, CJ CheilJedang, Suwon 16495, Korea
| | - Su-Jin Park
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea
| | - Semi Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea
| | - Kwang-Min Yu
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea
| | | | - Seung Hun Lee
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea
| | - Yong-Ki Seo
- The Institutes of Food, CJ CheilJedang, Suwon 16495, Korea
| | - Nam-Hoon Cho
- The Institutes of Food, CJ CheilJedang, Suwon 16495, Korea
| | - Kimoon Kang
- The Institutes of Food, CJ CheilJedang, Suwon 16495, Korea
| | - Do Y Soung
- The Institutes of Food, CJ CheilJedang, Suwon 16495, Korea.
| | - Young-Ki Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea.
- ID Bio Corporation, Cheongju 28370, Korea.
| |
Collapse
|
37
|
Abdelfattah-Hassan A, Shalaby SI, Khater SI, El-Shetry ES, Abd El Fadil H, Elsayed SA. Panax ginseng is superior to vitamin E as a hepatoprotector against cyclophosphamide-induced liver damage. Complement Ther Med 2019; 46:95-102. [PMID: 31519295 DOI: 10.1016/j.ctim.2019.08.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/03/2019] [Accepted: 08/06/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND AIMS Cyclophosphamide (CPh) is a frequently used drug, in human and animals for its immunosuppressive and anticancer potential. However, it is metabolized by the liver yielding damaging toxicants (to the liver itself and other non-target vital organs) via oxidative stress, apoptosis induction and finally necrosis. Since there is no escaping of using such harmful medications, we focused on alleviating its side-effects. Panax ginseng Meyer is a potent candidate, and we still lack adequate information on its hepatoprotective role against cyclophosphamide-induced liver-damage. METHODS Here, we used P. ginseng (Korean Red Ginseng) compared to vitamin-E (natural antioxidant) in combating CPh-induced liver damage. Forty-eight albino rats were divided into 6 groups, Control, Ginseng, Vitamin E, Cyclophosphamide (CPh), CPh + Ginseng or CPh + Vitamin-E. Blood samples were taken for biochemical analyses and liver samples were collected for histopathology, oxidative stress evaluation, and gene expression analyses. RESULTS In CPh group, typical CPh-liver damage was evident (higher levels of AST, ALT, ALP; lower albumin and total proteins levels; lower liver tissue concentrations of SOD, GPX and CAT and higher MDA; injured liver histopathological picture; and finally increased TNF-α, IL-1β and Caspase3 and decreased BCL-2 genes expression). All these were abolished with either P. ginseng or vitamin-E administration. However, P. ginseng was overall superior to vitamin-E, especially in restoring blood biochemical findings and damaged histopathological picture. CONCLUSIONS Therefore, P. ginseng is a potent hepatoprotector (vitamin-E to a lesser extent) and should be considered where liver damage is expected secondary to damaging medications; as cyclophosphamide.
Collapse
Affiliation(s)
- Ahmed Abdelfattah-Hassan
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig University, 44519, Zagazig, Egypt; Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza 12578, Egypt.
| | - Shimaa I Shalaby
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, 44519, Zagazig, Egypt
| | - Safaa I Khater
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, 44519, Zagazig, Egypt
| | - Eman S El-Shetry
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, 44519, Zagazig, Egypt
| | - Hosny Abd El Fadil
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, 44519, Zagazig, Egypt
| | - Shafika A Elsayed
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, 44519, Zagazig, Egypt
| |
Collapse
|
38
|
Chen Y, Li J, Schmitz OJ. Development of an At-Column Dilution Modulator for Flexible and Precise Control of Dilution Factors to Overcome Mobile Phase Incompatibility in Comprehensive Two-Dimensional Liquid Chromatography. Anal Chem 2019; 91:10251-10257. [DOI: 10.1021/acs.analchem.9b02391] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yingzhuang Chen
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Hunan Normal University, Changsha 410081, China
| | | | | |
Collapse
|
39
|
Yao F, Xue Q, Li K, Cao X, Sun L, Liu Y. Phenolic Compounds and Ginsenosides in Ginseng Shoots and Their Antioxidant and Anti-Inflammatory Capacities in LPS-Induced RAW264.7 Mouse Macrophages. Int J Mol Sci 2019; 20:E2951. [PMID: 31212928 PMCID: PMC6627944 DOI: 10.3390/ijms20122951] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/08/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
We conducted this study for the first time to evaluate changes in the composition and contents of phenolic compounds and ginsenosides in ginseng shoot extracts (GSEs) prepared with different steaming times (2, 4, and 6 h) at 120 °C, as well as their antioxidant and anti-inflammatory activities in lipopolysaccharide (LPS)-induced RAW264.7 mouse macrophages (RAW264.7 cells). The results show that total phenol and flavonoid contents were both significantly higher in steamed versus raw GSEs, and the same trend was found for 2,2'-diphenyl-1-picrylhydrazyl (DPPH•) and 2,2'-azobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS•+) scavenging capacities. Among the 18 ginsenosides quantified using high-performance liquid chromatography (HPLC) with the aid of pure standards, polar ginsenosides were abundant in raw GSEs, whereas less-polar or rare ginsenosides appeared after steaming at 120 °C and increased with steaming time. Furthermore, steamed GSEs exhibited a greater ability to inhibit the production of inflammatory mediators and pro-inflammatory cytokines, such as nitric oxide (NO), interleukin (IL)-6, and tumor necrosis factor (TNF)-α in LPS-induced RAW264.7 cells at the same concentration. Relative expression levels of inducible nitric oxide synthase (iNOS), IL-6, TNF-α, and cyclooxygenase-2 (COX-2) mRNAs were attenuated by the GSEs, probably due to the enrichment of less-polar ginsenosides and enhanced antioxidant activity in steamed GSEs. These findings, combined with correlation analysis, showed that less-polar ginsenosides were major contributors to the inhibition of the overproduction of various inflammatory factors, while the inhibitory effects of total phenols and total flavonoids, and their antioxidant abilities, are also important.
Collapse
Affiliation(s)
- Fan Yao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghuadonglu No. 35, Haidian District, Beijing 100083, China.
| | - Qiang Xue
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghuadonglu No. 35, Haidian District, Beijing 100083, China.
- Beijing Beilin Advanced Eco-Environmental Protection Technology Institute Co. Ltd., Qinghuadonglu No. 35, Haidian District, Beijing 100083, China.
| | - Ke Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghuadonglu No. 35, Haidian District, Beijing 100083, China.
| | - Xinxin Cao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghuadonglu No. 35, Haidian District, Beijing 100083, China.
- Beijing Beilin Advanced Eco-Environmental Protection Technology Institute Co. Ltd., Qinghuadonglu No. 35, Haidian District, Beijing 100083, China.
| | - Liwei Sun
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghuadonglu No. 35, Haidian District, Beijing 100083, China.
| | - Yujun Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghuadonglu No. 35, Haidian District, Beijing 100083, China.
| |
Collapse
|
40
|
Li X, Yao F, Fan H, Li K, Sun L, Liu Y. Intraconversion of Polar Ginsenosides, Their Transformation into Less-Polar Ginsenosides, and Ginsenoside Acetylation in Ginseng Flowers upon Baking and Steaming. Molecules 2018; 23:E759. [PMID: 29587462 PMCID: PMC6017459 DOI: 10.3390/molecules23040759] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 03/17/2018] [Accepted: 03/20/2018] [Indexed: 01/31/2023] Open
Abstract
Heating is a traditional method used in ginseng root processing, however, there aren't reports on differences resulting from baking and steaming. Moreover, ginseng flowers, with 5.06 times more total saponins than ginseng root, are not fully taken advantage of for their ginsenosides. Transformation mechanisms of ginsenosides in ginseng flowers upon baking and steaming were thus explored. HPLC using authentic standards of 20 ginsenosides and UPLC-QTOF-MS/MS were used to quantify and identify ginsenosides, respectively, in ginseng flowers baked or steamed at different temperatures and durations. Results show that baking and steaming caused a 3.2-fold increase in ginsenoside species existed in unheated ginseng flowers (20/64 ginsenosides) and transformation of a certain amount of polar ginsenosides into numerous less polar ginsenosides. Among the 20 ginsenosides with standards, polar ginsenosides were abundant in ginseng flowers baked or steamed at lower temperatures, whereas less polar ginsenosides occurred and were enriched at higher temperatures. Furthermore, the two types of heating treatments could generate mostly similar ginsenosides, but steaming was much efficient than baking in transforming polar- into less polar ginsenosides, with steaming at 120 °C being comparably equivalent to baking at 150 °C. Moreover, both the two heating methods triggered ginsenoside acetylation and thus caused formation of 16 acetylginsenosides. Finally, a new transformation mechanism concerning acetyl-ginsenosides formation was proposed.
Collapse
Affiliation(s)
- Xiang Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghuadonglu No. 35, Haidian District, Beijing 100083, China.
| | - Fan Yao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghuadonglu No. 35, Haidian District, Beijing 100083, China.
- Beijing Beilin Advanced Eco-environmental Protection Technology Institute Co. Ltd., Qinghuadonglu No. 35, Haidian District, Beijing 100083, China.
| | - Hang Fan
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghuadonglu No. 35, Haidian District, Beijing 100083, China.
- Beijing Beilin Advanced Eco-environmental Protection Technology Institute Co. Ltd., Qinghuadonglu No. 35, Haidian District, Beijing 100083, China.
| | - Ke Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghuadonglu No. 35, Haidian District, Beijing 100083, China.
| | - Liwei Sun
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghuadonglu No. 35, Haidian District, Beijing 100083, China.
| | - Yujun Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghuadonglu No. 35, Haidian District, Beijing 100083, China.
| |
Collapse
|