1
|
Fan W, Fan L, Wang Z, Mei Y, Liu L, Li L, Yang L, Wang Z. Rare ginsenosides: A unique perspective of ginseng research. J Adv Res 2024; 66:303-328. [PMID: 38195040 PMCID: PMC11674801 DOI: 10.1016/j.jare.2024.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Rare ginsenosides (Rg3, Rh2, C-K, etc.) refer to a group of dammarane triterpenoids that exist in low natural abundance, mostly produced by deglycosylation or side chain modification via physicochemical processing or metabolic transformation in gut, and last but not least, exhibited potent biological activity comparing to the primary ginsenosides, which lead to a high concern in both the research and development of ginseng and ginsenoside-related nutraceutical and natural products. Nevertheless, a comprehensive review on these promising compounds is not available yet. AIM OF REVIEW In this review, recent advances of Rare ginsenosides (RGs) were summarized dealing with the structurally diverse characteristics, traditional usage, drug discovery situation, clinical application, pharmacological effects and the underlying mechanisms, structure-activity relationship, toxicity, the stereochemistry properties, and production strategies. KEY SCIENTIFIC CONCEPTS OF REVIEW A total of 144 RGs with diverse skeletons and bioactivities were isolated from Panax species. RGs acted as natural ligands on some specific receptors, such as bile acid receptors, steroid hormone receptors, and adenosine diphosphate (ADP) receptors. The RGs showed promising bioactivities including immunoregulatory and adaptogen-like effect, anti-aging effect, anti-tumor effect, as well as their effects on cardiovascular and cerebrovascular system, central nervous system, obesity and diabetes, and interaction with gut microbiota. Clinical trials indicated the potential of RGs, while high quality data remains inadequate, and no obvious side effects was found. The stereochemistry properties induced by deglycosylation at C (20) were also addressed including pharmacodynamics behaviors, together with the state-of-art analytical strategies for the identification of saponin stereoisomers. Finally, the batch preparation of targeted RGs by designated strategies including heating or acid/ alkaline-assisted processes, and enzymatic biotransformation and biosynthesis were discussed. Hopefully, the present review can provide more clues for the extensive understanding and future in-depth research and development of RGs, originated from the worldwide well recognized ginseng plants.
Collapse
Affiliation(s)
- Wenxiang Fan
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Linhong Fan
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ziying Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuqi Mei
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Longchan Liu
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Linnan Li
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Bhati FK, Bhat MK. An anti-neoplastic tale of metformin through its transport. Life Sci 2024; 357:123060. [PMID: 39278619 DOI: 10.1016/j.lfs.2024.123060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/31/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Metformin is an attractive candidate drug among all the repurposed drugs for cancer. Extensive preclinical and clinical research has evaluated its efficacy in cancer therapy, revealing a mixed outcome in clinical settings. To fully exploit metformin's therapeutic potential, understanding cellular factors relevant to its transport and accumulation in cancer cells needs to be understood. This review highlights the relevance of metformin transporter status towards its anti-cancer potential. Metformin transporters are regulated at pre-transcriptional, transcriptional, and post-translational levels. Moreover, the tumour microenvironment can also influence metformin accumulation in cancer cells. Also, Metformin treatment can regulate its transporters by altering global DNA methylation, protein acetylation, and transcription factors. Importantly, metformin transporters not only influence chemotherapeutic drug toxicity but are also associated with the prognosis and survival of individuals having cancer. Strategic decisions based on the expression and regulation of metformin transporters holds promise for its therapeutic implications and relevance.
Collapse
Affiliation(s)
- Firoz Khan Bhati
- Biotechnology Research and Innovation Council - National Centre for Cell Science (BRIC- NCCS), Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007, India
| | - Manoj Kumar Bhat
- Biotechnology Research and Innovation Council - National Centre for Cell Science (BRIC- NCCS), Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007, India.
| |
Collapse
|
3
|
Huang S, Ziros PG, Chartoumpekis DV, Psarias G, Duntas L, Zuo X, Li X, Ding Z, Sykiotis GP. Traditional Chinese Medicine for Hashimoto's Thyroiditis: Focus on Selenium and Antioxidant Phytochemicals. Antioxidants (Basel) 2024; 13:868. [PMID: 39061936 PMCID: PMC11274136 DOI: 10.3390/antiox13070868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Hashimoto's thyroiditis (HT) is not only the most frequent autoimmune thyroid disease (AITD), but it also has a significant impact on patients' health-related quality of life (HRQoL), and it has been variably associated with differentiated thyroid carcinoma. Even though its pathogenesis is still incompletely understood, oxidative stress is believed to play an important role. Hypothyroidism related to later stages of HT can be treated with levothyroxine substitution therapy; various approaches such as selenium supplementation and iodine-restricted diets have been proposed as disease-modifying treatments for earlier stages, and even thyroidectomy has been suggested for refractory cases of painful HT. Nevertheless, many patients still report suboptimal HRQoL, highlighting an unmet medical need in this area. The concepts and approaches of traditional Chinese medicine (TCM) in treating HT are not broadly known in the West. Here, we provide an overview of TCM for HT, including combinations of TCM with selenium. We encompass evidence from clinical trials and other studies related to complex TCM prescriptions, single herbs used in TCM, and phytochemicals; wherever possible, we delineate the probable underlying molecular mechanisms. The findings show that the main active components of TCM for HT have commonly known or presumed antioxidant and anti-inflammatory activities, which may account for their potential utility in HT. Further exploring the practices of TCM for HT and combining them with evidence- and mechanism-based approaches according to Western standards may help to identify new strategies to alter the clinical course of the disease and/or to treat patients' symptoms better and improve their HRQoL.
Collapse
Affiliation(s)
- Sheng Huang
- Department of Thyropathy, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China;
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (P.G.Z.); (D.V.C.); (G.P.)
| | - Panos G. Ziros
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (P.G.Z.); (D.V.C.); (G.P.)
| | - Dionysios V. Chartoumpekis
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (P.G.Z.); (D.V.C.); (G.P.)
| | - Georgios Psarias
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (P.G.Z.); (D.V.C.); (G.P.)
| | - Leonidas Duntas
- Unit of Endocrinology, Metabolism and Diabetes, Evgenideion Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Xinhe Zuo
- Thyroid Disease Diagnosis and Treatment Center, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430074, China;
| | - Xinyi Li
- Department of Traditional Chinese Medicine and Rehabilitation, Beijing Health Vocational College, Beijing 101101, China;
| | - Zhiguo Ding
- Department of Thyropathy, Sunsimiao Hospital, Beijing University of Chinese Medicine, Tongchuan 727100, China
| | - Gerasimos P. Sykiotis
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (P.G.Z.); (D.V.C.); (G.P.)
| |
Collapse
|
4
|
Alghareeb SA, Alsughayyir J, Alfhili MA. Ginsenoside Rh2 Regulates the Calcium/ROS/CK1α/MLKL Pathway to Promote Premature Eryptosis and Hemolysis in Red Blood Cells. Toxicol Pathol 2024; 52:284-294. [PMID: 39148410 DOI: 10.1177/01926233241268846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Ginsenoside Rh2 (GRh2) exhibits significant potential as an anticancer agent; however, progress in developing chemotherapeutic drugs is impeded by their toxicity toward off-target tissues. Specifically, anemia caused by chemotherapy is a debilitating side effect and can be caused by red blood cell (RBC) hemolysis and eryptosis. Cells were exposed to GRh2 in the antitumor range and hemolytic and eryptotic markers were examined under different experimental conditions using photometric and cytofluorimetric methods. GRh2 caused Ca2+-independent, concentration-responsive hemolysis in addition to disrupted ion trafficking with K+ and Cl- leakage. Significant increases in cells positive for annexin-V-fluorescein isothiocyanate, Fluo4, and 2,7-dichlorofluorescein were noted upon GRh2 treatment coupled with a decrease in forward scatter and acetylcholinesterase activity. Importantly, the cytotoxic effects of GRh2 were mitigated by ascorbic acid and by blocking casein kinase 1α (CK1α) and mixed lineage kinase domain-like (MLKL) signaling. In contrast, Ca2+ omission, inhibition of KCl efflux, and isosmotic sucrose aggravated GRh2-induced RBC death. In whole blood, GRh2 selectively targeted reticulocytes and lymphocytes. Altogether, this study identified novel mechanisms underlying GRh2-induced RBC death involving Ca2+ buildup, loss of membrane phospholipid asymmetry and cellular volume, anticholinesterase activity, and oxidative stress. These findings shed light on the hematologic toxicity of GRh2 which is crucial for optimizing its utilization in cancer treatment.
Collapse
Affiliation(s)
- Sumiah A Alghareeb
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Jawaher Alsughayyir
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad A Alfhili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Nguyen DT, Kim MH, Baek MJ, Kang NW, Kim DD. Preparation and evaluation of proliposomes formulation for enhancing the oral bioavailability of ginsenosides. J Ginseng Res 2024; 48:417-424. [PMID: 39036737 PMCID: PMC11259707 DOI: 10.1016/j.jgr.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/22/2024] [Accepted: 03/10/2024] [Indexed: 07/23/2024] Open
Abstract
Background This research main objective was to evaluate a proliposomes (PLs) formulation for the enhancement of oral bioavailability of ginsenosides, using ginsenoside Rg3 (Rg3) as a marker. Methods A novel PLs formulation was prepared using a modified evaporation-on-matrix method. Soy phosphatidylcholine, Rg3-enriched extract, poloxamer 188 (Lutrol® F 68) and sorbitol were mixed and dissolved using a aqueous ethanolic solution, followed by the removal of ethanol and lyophilization. The characterization of Rg3-PLs formulations was performed by powder X-ray diffractometry (PXRD), transmission electron microscopy (TEM) and in vitro release. The enhancement of oral bioavailability was investigated and analyzed by non-compartmental parameters after oral administration of the formulations. Results PXRD of Rg3-PLs indicated that Rg3 was transformed from crystalline into its amorphous form during the preparation process. The Rg3-encapsulated liposomes with vesicular-shaped morphology were generated after the reconstitution by gentle hand-shaking in water; they had a mean diameter of approximately 350 nm, a negative zeta potential (-28.6 mV) and a high entrapment efficiency (97.3%). The results of the in vitro release study exhibited that significantly more amount of Rg3 was released from the PLs formulation in comparison with that from the suspension of Rg3-enriched extract (control group). The pharmacokinetic parameters after oral administration of PLs formulation in rats showed an approximately 11.8-fold increase in the bioavailability of Rg3, compared to that of the control group. Conclusion The developed PLs formulation could be a favorable delivery system to improve the oral bioavailability of ginsenosides, including Rg3.
Collapse
Affiliation(s)
- Duy-Thuc Nguyen
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Min-Hwan Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Min-Jun Baek
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Nae-Won Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Dae-Duk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
- Natural Products Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Elsaman T, Muddathir AM, Mohieldin EAM, Batubara I, Rahminiwati M, Yamauchi K, Mohamed MA, Asoka SF, Büsselberg D, Habtemariam S, Sharifi-Rad J. Ginsenoside Rg5 as an anticancer drug: a comprehensive review on mechanisms, structure-activity relationship, and prospects for clinical advancement. Pharmacol Rep 2024; 76:287-306. [PMID: 38526651 DOI: 10.1007/s43440-024-00586-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/27/2024]
Abstract
Cancer remains one of the leading causes of death in the world. Despite the considerable success of conventional treatment strategies, the incidence and mortality rates are still high, making developing new effective anticancer therapies an urgent priority. Ginsenoside Rg5 (Rg5) is a minor ginsenoside constituent obtained exclusively from ginseng species and is known for its broad spectrum of pharmacological activities. This article aimed to comprehensively review the anticancer properties of Rg5, focusing on action mechanisms, structure-activity relationship (SAR), and pharmacokinetics attributes. The in vitro and in vivo activities of Rg5 have been proven against several cancer types, such as breast, liver, lung, bone, and gastrointestinal (GI) cancers. The modulation of multiple signaling pathways critical for cancer growth and survival mediates these activities. Nevertheless, human clinical studies of Rg5 have not been addressed before, and there is still considerable ambiguity regarding its pharmacokinetics properties. In addition, a significant shortage in the structure-activity relationship (SAR) of Rg5 has been identified. Therefore, future efforts should focus on further optimization by performing extensive SAR studies to uncover the structural features essential for the potent anticancer activity of Rg5. Thus, this review highlights the value of Rg5 as a potential anticancer drug candidate and identifies the research areas requiring more investigation.
Collapse
Affiliation(s)
- Tilal Elsaman
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf, Saudi Arabia
| | - Ali Mahmoud Muddathir
- Department of Horticulture, Faculty of Agriculture, University of Khartoum, Shambat, 13314, Khartoum North, Sudan
| | | | - Irmanida Batubara
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University (Bogor Agricultural University), Bogor, Indonesia
- Tropical Biopharmaca Research Center, IPB University (Bogor Agricultural University), Bogor, Indonesia
| | - Min Rahminiwati
- Division of Pharmacology, School of Veterinary Medicine and Biomedical Science, IPB University, Jln Agathis Dramaga, Bogor, West Java, 16680, Indonesia
- Tropical Biopharmaca Research Center, IPB University, Jl. Taman Kencana No. 3, Bogor, West Java, 16128, Indonesia
| | - Kosei Yamauchi
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Magdi Awadalla Mohamed
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf, Saudi Arabia
| | - Shadila Fira Asoka
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University (Bogor Agricultural University), Bogor, Indonesia
- Tropical Biopharmaca Research Center, IPB University (Bogor Agricultural University), Bogor, Indonesia
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha, Qatar
| | - Solomon Habtemariam
- Pharmacognosy Research and Herbal Analysis Services UK, Central Avenue , Chatham, Kent, ME4 4TB, UK
| | | |
Collapse
|
7
|
Shuvalov O, Kirdeeva Y, Daks A, Fedorova O, Parfenyev S, Simon HU, Barlev NA. Phytochemicals Target Multiple Metabolic Pathways in Cancer. Antioxidants (Basel) 2023; 12:2012. [PMID: 38001865 PMCID: PMC10669507 DOI: 10.3390/antiox12112012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer metabolic reprogramming is a complex process that provides malignant cells with selective advantages to grow and propagate in the hostile environment created by the immune surveillance of the human organism. This process underpins cancer proliferation, invasion, antioxidant defense, and resistance to anticancer immunity and therapeutics. Perhaps not surprisingly, metabolic rewiring is considered to be one of the "Hallmarks of cancer". Notably, this process often comprises various complementary and overlapping pathways. Today, it is well known that highly selective inhibition of only one of the pathways in a tumor cell often leads to a limited response and, subsequently, to the emergence of resistance. Therefore, to increase the overall effectiveness of antitumor drugs, it is advisable to use multitarget agents that can simultaneously suppress several key processes in the tumor cell. This review is focused on a group of plant-derived natural compounds that simultaneously target different pathways of cancer-associated metabolism, including aerobic glycolysis, respiration, glutaminolysis, one-carbon metabolism, de novo lipogenesis, and β-oxidation of fatty acids. We discuss only those compounds that display inhibitory activity against several metabolic pathways as well as a number of important signaling pathways in cancer. Information about their pharmacokinetics in animals and humans is also presented. Taken together, a number of known plant-derived compounds may target multiple metabolic and signaling pathways in various malignancies, something that bears great potential for the further improvement of antineoplastic therapy.
Collapse
Affiliation(s)
- Oleg Shuvalov
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Yulia Kirdeeva
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Alexandra Daks
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Olga Fedorova
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Sergey Parfenyev
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland;
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Nickolai A. Barlev
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana 20000, Kazakhstan
| |
Collapse
|
8
|
K P, Prasanth DSNBK, Shadakshara MKR, Ahmad SF, Seemaladinne R, Rudrapal M, Pasala PK. Citronellal as a Promising Candidate for Alzheimer's Disease Treatment: A Comprehensive Study on In Silico and In Vivo Anti-Acetylcholine Esterase Activity. Metabolites 2023; 13:1133. [PMID: 37999229 PMCID: PMC10672888 DOI: 10.3390/metabo13111133] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023] Open
Abstract
One of the primary therapeutic approaches for managing Alzheimer's disease (AD) involves the modulation of Acetylcholine esterase (AChE) activity to elevate acetylcholine (ACh) levels inside the brain. The current study employed computational chemistry approaches to evaluate the inhibitory effects of CTN on AChE. The docking results showed that Citronellal (CTN) and standard Donepezil (DON) have a binding affinity of -6.5 and -9.2 Kcal/mol, respectively, towards AChE. Further studies using molecular dynamics (MD) simulations were carried out on these two compounds. Binding free energy calculations and ligand-protein binding patterns suggested that CTN has a binding affinity of -12.2078. In contrast, DON has a much stronger binding relationship of -47.9969, indicating that the standard DON has a much higher binding affinity than CTN for AChE. In an in vivo study, Alzheimer-type dementia was induced in mice by scopolamine (1.5 mg/kg/day i.p) for 14 days. CTN was administered (25 and 50 mg/kg. i.p) along with scopolamine (SCO) administration. DON (0.5 mg/kg orally) was used as a reference drug. CTN administration significantly improved the mice's behavior as evaluated by the Morris water maze test, evident from decreased escape latency to 65.4%, and in the CPS test, apparent from reduced escape latency to 69.8% compared to the positive control mice. Moreover, CTN significantly increased the activities of antioxidant enzymes such as catalase and superoxide dismutase (SOD) compared to SCO. Furthermore, CTN administration significantly decreased SCO-induced elevated AChE levels in mice. These results were supported by histopathological and in silico molecular docking studies. CTN may be a potential antioxidant and neuroprotective supplement.
Collapse
Affiliation(s)
- Pavani K
- Department of Pharmacology, Santhiram College of Pharmacy, Jawaharlal Nehru Technological University Anantapur, Nandyal 518112, Andhra Pradesh, India;
| | - D S. N. B. K. Prasanth
- Department of Pharmacognosy, KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada 520010, Andhra Pradesh, India;
| | - Murthy K. R. Shadakshara
- Department of Chemical Engineering, Siddaganga Institute of Technology, Tumkur 572103, Karnataka, India;
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Mithun Rudrapal
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical Sciences, Vignan’s Foundation for Science, Technology & Research (Deemed to be University), Guntur 522213, Andhra Pradesh, India;
| | - Praveen Kumar Pasala
- Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research, JNTUA, Anantapuramu 515721, Andhra Pradesh, India
| |
Collapse
|
9
|
Tian T, Ko CN, Luo W, Li D, Yang C. The anti-aging mechanism of ginsenosides with medicine and food homology. Food Funct 2023; 14:9123-9136. [PMID: 37766674 DOI: 10.1039/d3fo02580b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
With the acceleration of global aging and the rise in living standards, the achievement of healthy aging is becoming an imperative issue globally. Ginseng, a medicinal plant that has a long history of dietary intake and remarkable medicinal value, has become a research hotspot in the field of food and medicine. Ginsenosides, especially protopanaxadiol-type saponins and protopanaxatriol-type saponins, are among the most important active ingredients in ginseng. Ginsenosides have been found to exhibit powerful and diverse pharmacological activities, such as antiaging, antitumor, antifatigue and immunity enhancement activities. Their effects in antiaging mainly include (1) promotion of metabolism and stem cell proliferation, (2) protection of skin and nerves, (3) modulation of intestinal flora, (4) maintenance of mitochondrial function, and (5) enhancement of telomerase activity. The underlying mechanisms are primarily associated with the intervention of the signaling pathways in apoptosis, inflammation and oxidative stress. In this review, the mechanism of action of ginsenosides in antiaging as well as the potential values of developing ginsenoside-based functional foods and antiaging drugs are discussed.
Collapse
Affiliation(s)
- Tiantian Tian
- Center for Biological Science and Technology, Beijing Normal University, Zhuhai, Guangdong Province, 519087, China
| | - Chung-Nga Ko
- C-MER Dennis Lam and Partners Eye Center, Hong Kong International Eye Care Group, Hong Kong, China
| | - Wenya Luo
- Haikou Orthopedics and Diabetes Hospital, Haikou, Hainan, 570206, China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Chao Yang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, Zhejiang Province, 316022, China.
| |
Collapse
|
10
|
Hwang SJ, Bang HJ, Lee HJ. Ginsenoside Re inhibits melanogenesis and melanoma growth by downregulating microphthalmia-associated transcription factor. Biomed Pharmacother 2023; 165:115037. [PMID: 37393867 DOI: 10.1016/j.biopha.2023.115037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 07/04/2023] Open
Abstract
Panax ginseng, also known as Korean ginseng, is a traditional remedy widely used in Asian countries. Its major active compounds are ginsenosides, specifically triterpenoid saponins. Among them, one notable ginsenoside called Re has shown various biological effects, including anti-cancer and anti-inflammatory properties. However, the potential beneficial effects of Re on melanogenesis and skin cancer remain poorly understood. To investigate this, we conducted a comprehensive study using biochemical assays, cell-based models, a zebrafish pigment formation model, and a tumor xenograft model. Our results revealed that Re effectively inhibited melanin biosynthesis in a dose-dependent manner by competitively inhibiting the activity of tyrosinase, an enzyme involved in melanin production. Moreover, Re significantly reduced the mRNA expression levels of microphthalmia-associated transcription factor (MITF), a key regulator of melanin biosynthesis and melanoma growth. Furthermore, Re decreased the protein expression of MITF and its target genes, including tyrosinase, TRP-1, and TRP-2, through a partially ubiquitin-dependent proteasomal degradation mechanism, mediated by the AKT and ERK signaling pathways. These findings indicate that Re exerts its hypopigmentary effects by directly inhibiting tyrosinase activity and suppressing its expression via MITF. Additionally, Re demonstrated inhibitory effects on skin melanoma growth and induced tumor vascular normalization in our in vivo experiments. This study represents the first evidence of Re-mediated inhibition of melanogenesis and skin melanoma, shedding light on the underlying mechanisms. These promising preclinical findings warrant further investigation to determine the suitability of Re as a natural agent for treating hyperpigmentation disorders and skin cancer.
Collapse
Affiliation(s)
- Su Jung Hwang
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, South Korea
| | - Hye Jung Bang
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, South Korea
| | - Hyo-Jong Lee
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, South Korea.
| |
Collapse
|
11
|
Lee MJ, Choi JH, Kwon TW, Jo HS, Ha Y, Nah SY, Cho IH. Korean Red Ginseng extract ameliorates demyelination by inhibiting infiltration and activation of immune cells in cuprizone-administrated mice. J Ginseng Res 2023; 47:672-680. [PMID: 37720568 PMCID: PMC10499591 DOI: 10.1016/j.jgr.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 04/16/2023] [Accepted: 05/09/2023] [Indexed: 09/19/2023] Open
Abstract
Background Korean Red Ginseng (KRG), the steamed root of Panax ginseng, has pharmacological activities for immunological and neurodegenerative disorders. But, the role of KRGE in multiple sclerosis (MS) remains unclear. Purpose To determine whether KRG extract (KRGE) could inhibit demyelination in corpus callosum (CC) of cuprizone (CPZ)-induced murine model of MS. Methods Male adult mice were fed with a standard chow diet or a chow diet supplemented with 0.2% (w/w) CPZ ad libitum for six weeks to induce demyelination while were simultaneously administered with distilled water (DW) alone or KRGE-DW (0.004%, 0.02 and 0.1% of KRGE) by drinking. Results Administration with KRGE-DW alleviated demyelination and oligodendrocyte degeneration associated with inhibition of infiltration and activation of resident microglia and monocyte-derived macrophages as well as downregulation of proinflammatory mediators in the CC of CPZ-fed mice. KRGE-DW also attenuated the level of infiltration of Th1 and Th17) cells, in line with inhibited mRNA expression of IFN-γ and IL-17, respectively, in the CC. These positive effects of KRGE-DW mitigated behavioral dysfunction based on elevated plus maze and the rotarod tests. Conclusion The results strongly suggest that KRGE-DW may inhibit CPZ-induced demyelination due to its oligodendroglial protective and anti-inflammatory activities by inhibiting infiltration/activation of immune cells. Thus, KRGE might have potential in therapeutic intervention for MS.
Collapse
Affiliation(s)
- Min Jung Lee
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, USA
| | - Jong Hee Choi
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Tae Woo Kwon
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Hyo-Sung Jo
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Yujeong Ha
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Lu W, Lin Y, Haider N, Moly P, Wang L, Zhou W. Ginsenoside Rb1 protects human vascular smooth muscle cells against resistin-induced oxidative stress and dysfunction. Front Cardiovasc Med 2023; 10:1164547. [PMID: 37304947 PMCID: PMC10248054 DOI: 10.3389/fcvm.2023.1164547] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/05/2023] [Indexed: 06/13/2023] Open
Abstract
Resistin has been shown to play a key role in inducing vascular smooth muscle cells (VSMCs) malfunction in the atherosclerosis progression. Ginsenoside Rb1 is the main component of ginseng, which has been used for thousands of years and has been reported to have a powerful vascular protective effect. The aim of this study was to explore the protective effect of Rb1 on VSMCs dysfunction induced by resistin. In the presence or absence of Rb1, human coronary artery smooth muscle cells (HCASMC) were treated at different time points with or without 40 ng/ml resistin and acetylated low-density lipoprotein (acetylated LDL). Cell migration and proliferation were analyzed using wound healing test and CellTiter Aqueous Cell Proliferation Assay (MTS) test, respectively. Intracellular reactive oxygen species (ROS) (H2DCFDA as a dye probe) and superoxide dismutase (SOD) activities were measured by a microplate reader and the differences between groups were compared. Rb1 significantly reduced resistin-induced HCASMC proliferation. Resistin increased HCASMC migration time-dependently. At 20 µM, Rb1 could significantly reduce HCASMC migration. Resistin and Act-LDL increased ROS production to a similar level in HCASMCs, while Rb1 pretreated group reversed the effects of resistin and acetyl-LDL. Besides, the mitochondrial SOD activity was significantly reduced by resistin but was restored when pretreated with Rb1. We confirmed the protection of Rb1 on HCASMC and suggested that the mechanisms involved might be related to the reduction of ROS generation and increased activity of SOD. Our study clarified the potential clinical applications of Rb1 in the control of resistin-related vascular injury and in the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Weifeng Lu
- Department of Vascular Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Yue Lin
- Department of Vascular Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Nezam Haider
- Division of Vascular Surgery, Department of Surgery, University of Arizona, Tucson, AZ, United States
| | - Pricila Moly
- Division of Vascular Surgery, Department of Surgery, University of Arizona, Tucson, AZ, United States
| | - Lixin Wang
- Department of Vascular Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Zhou
- Division of Vascular Surgery, Department of Surgery, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
13
|
Bian XB, Yu PC, Yang XH, Han L, Wang QY, Zhang L, Zhang LX, Sun X. The effect of ginsenosides on liver injury in preclinical studies: a systematic review and meta-analysis. Front Pharmacol 2023; 14:1184774. [PMID: 37251340 PMCID: PMC10213882 DOI: 10.3389/fphar.2023.1184774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
Background: Liver injury is a severe liver lesion caused by various etiologies and is one of the main areas of medical research. Panax ginseng C.A. Meyer has traditionally been used as medicine to treat diseases and regulate body functions. Ginsenosides are the main active components of ginseng, and their effects on liver injury have been extensively reported. Methods: Preclinical studies meeting the inclusion criteria were retrieved from PubMed, Web of Science, Embase, China National Knowledge Infrastructure (CNKI), and Wan Fang Data Knowledge Service Platforms. The Stata 17.0 was used to perform the meta-analysis, meta-regression, and subgroup analysis. Results: This meta-analysis included ginsenosides Rb1, Rg1, Rg3, and compound K (CK), in 43 articles. The overall results showed that multiple ginsenosides significantly reduced alanine aminotransferase (ALT) and aspartate aminotransferase (AST), affected oxidative stress-related indicators, such as superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), glutathione peroxidase (GSH-Px), and catalase (CAT), and reduced levels of inflammatory factor, such as factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6). Additionally, there was a large amount of heterogeneity in the meta-analysis results. Our predefined subgroup analysis shows that the animal species, the type of liver injury model, the duration of treatment, and the administration route may be the sources of some of the heterogeneity. Conclusion: In a word, ginsenosides have good efficacy against liver injury, and their potential mechanisms of action target antioxidant, anti-inflammatory and apoptotic-related pathways. However, the overall methodological quality of our current included studies was low, and more high-quality studies are needed to confirm their effects and mechanisms further.
Collapse
Affiliation(s)
- Xing-Bo Bian
- College of Pharmacy, Jilin Medical University, Jilin, Jilin, China
| | - Peng-Cheng Yu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiao-Hang Yang
- College of Pharmacy, Jilin Medical University, Jilin, Jilin, China
| | - Liu Han
- College of Pharmacy, Jilin Medical University, Jilin, Jilin, China
| | - Qi-Yao Wang
- College of Pharmacy, Jilin Medical University, Jilin, Jilin, China
| | - Li Zhang
- College of Pharmacy, Jilin Medical University, Jilin, Jilin, China
| | - Lian-Xue Zhang
- College of Chinese Medicinal Materials, Jilin Agriculture University, Changchun, Jilin, China
| | - Xin Sun
- College of Pharmacy, Jilin Medical University, Jilin, Jilin, China
| |
Collapse
|
14
|
Jang WY, Hwang JY, Cho JY. Ginsenosides from Panax ginseng as Key Modulators of NF-κB Signaling Are Powerful Anti-Inflammatory and Anticancer Agents. Int J Mol Sci 2023; 24:6119. [PMID: 37047092 PMCID: PMC10093821 DOI: 10.3390/ijms24076119] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Nuclear factor kappa B (NF-κB) signaling pathways progress inflammation and immune cell differentiation in the host immune response; however, the uncontrollable stimulation of NF-κB signaling is responsible for several inflammatory illnesses regardless of whether the conditions are acute or chronic. Innate immune cells, such as macrophages, microglia, and Kupffer cells, secrete pro-inflammatory cytokines, such as TNF-α, IL-6, and IL-1β, via the activation of NF-κB subunits, which may lead to the damage of normal cells, including neurons, cardiomyocytes, hepatocytes, and alveolar cells. This results in the occurrence of neurodegenerative disorders, cardiac infarction, or liver injury, which may eventually lead to systemic inflammation or cancer. Recently, ginsenosides from Panax ginseng, a historical herbal plant used in East Asia, have been used as possible options for curing inflammatory diseases. All of the ginsenosides tested target different steps of the NF-κB signaling pathway, ameliorating the symptoms of severe illnesses. Moreover, ginsenosides inhibit the NF-κB-mediated activation of cancer metastasis and immune resistance, significantly attenuating the expression of MMPs, Snail, Slug, TWIST1, and PD-L1. This review introduces current studies on the therapeutic efficacy of ginsenosides in alleviating NF-κB responses and emphasizes the critical role of ginsenosides in severe inflammatory diseases as well as cancers.
Collapse
Affiliation(s)
| | | | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
15
|
Chen XM, Liu YH, Ji SF, Xue XM, Wang LL, Zhang M, Chang YM, Wang XC. Protective effect of ginsenoside Rd on military aviation noise-induced cochlear hair cell damage in guinea pigs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:23965-23981. [PMID: 36331733 DOI: 10.1007/s11356-022-23504-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Noise pollution has become one of the important social hazards that endanger the auditory system of residents, causing noise-induced hearing loss (NIHL). Oxidative stress has a significant role in the pathogenesis of NIHL, in which the silent information regulator 1(SIRT1)/proliferator-activated receptor-gamma coactivator 1α (PGC-1α) signaling pathway is closely engaged. Ginsenoside Rd (GSRd), a main monomer extract from ginseng plants, has been confirmed to suppress oxidative stress. Therefore, the hypothesis that GSRd may attenuate noise-induced cochlear hair cell loss seemed promising. Forty-eight male guinea pigs were randomly divided into four groups: control, noise exposure, GSRd treatment (30 mg/kg Rd for 10d + noise), and experimental control (30 mg/kg glycerol + noise). The experimental groups received military helicopter noise exposure at 115 dB (A) for 4 h daily for five consecutive days. Hair cell damage was evaluated by using inner ear basilar membrane preparation and scanning electron microscopy. Terminal dUTP nick end labeling (TUNEL) and immunofluorescence staining were conducted. Changes in the SIRT1/PGC-1α signaling pathway and other apoptosis-related markers in the cochleae, as well as oxidative stress parameters, were used as readouts. Loss of outer hair cells, more disordered cilia, prominent apoptosis, and elevated free radical levels were observed in the experimental groups. GSRd treatment markedly mitigated hearing threshold shifts, ameliorated outer hair cell loss and lodging or loss of cilia, and improved apoptosis through decreasing Bcl-2 associated X protein (Bax) expression and increasing Bcl-2 expression. In addition, GSRd alleviated the noise-induced cochlear redox injury by upregulating superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) levels, decreasing malondialdehyde (MDA) levels, and enhancing the activity of SIRT1 and PGC-1α messenger ribonucleic acid (mRNA) and protein expression. In conclusion, GSRd can improve structural and oxidative damage to the cochleae caused by noise. The underlying mechanisms may be associated with the SIRT1/PGC-1α signaling pathway.
Collapse
Affiliation(s)
- Xue-Min Chen
- Department of Aerospace Hygiene, School of Aerospace Medicine, Air Force Medical University, Xi'an, China
- Medical School of Chinese PLA, Beijing, China
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese PLA General Hospital; National Clinical Research Center for Otolaryngologic Diseases; State Key Lab of Hearing Science, Ministry of Education; Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Yu-Hui Liu
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi'an, China
- Department of Aviation Medicine, The First Affiliated Hospital of Air Force Military Medical University, Xi'an, China
- Air Force Health Care Center for Special Services, Hangzhou, China
| | - Shuai-Fei Ji
- Medical School of Chinese PLA, Beijing, China
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and 4th Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xin-Miao Xue
- Medical School of Chinese PLA, Beijing, China
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese PLA General Hospital; National Clinical Research Center for Otolaryngologic Diseases; State Key Lab of Hearing Science, Ministry of Education; Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Lin-Lin Wang
- Senior Department of Otolaryngology-Head & Neck Surgery, Chinese PLA General Hospital; National Clinical Research Center for Otolaryngologic Diseases; State Key Lab of Hearing Science, Ministry of Education; Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Min Zhang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi'an, China
- Department of Aviation Medicine, The First Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Yao-Ming Chang
- Department of Aerospace Hygiene, School of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Xiao-Cheng Wang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Key Laboratory of Aerospace Medicine of Ministry of Education, Air Force Medical University, Xi'an, China.
- Department of Aviation Medicine, The First Affiliated Hospital of Air Force Military Medical University, Xi'an, China.
| |
Collapse
|
16
|
Jin W, Li C, Yang S, Song S, Hou W, Song Y, Du Q. Hypolipidemic effect and molecular mechanism of ginsenosides: a review based on oxidative stress. Front Pharmacol 2023; 14:1166898. [PMID: 37188264 PMCID: PMC10175615 DOI: 10.3389/fphar.2023.1166898] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Hyperlipidemia is considered a risk factor for cardiovascular and endocrine diseases. However, effective approaches for treating this common metabolic disorder remain limited. Ginseng has traditionally been used as a natural medicine for invigorating energy or "Qi" and has been demonstrated to possess antioxidative, anti-apoptotic, and anti-inflammatory properties. A large number of studies have shown that ginsenosides, the main active ingredient of ginseng, have lipid-lowering effects. However, there remains a lack of systematic reviews detailing the molecular mechanisms by which ginsenosides reduce blood lipid levels, especially in relation to oxidative stress. For this article, research studies detailing the molecular mechanisms through which ginsenosides regulate oxidative stress and lower blood lipids in the treatment of hyperlipidemia and its related diseases (diabetes, nonalcoholic fatty liver disease, and atherosclerosis) were comprehensively reviewed. The relevant papers were search on seven literature databases. According to the studies reviewed, ginsenosides Rb1, Rb2, Rb3, Re, Rg1, Rg3, Rh2, Rh4, and F2 inhibit oxidative stress by increasing the activity of antioxidant enzymes, promoting fatty acid β-oxidation and autophagy, and regulating the intestinal flora to alleviate high blood pressure and improve the body's lipid status. These effects are related to the regulation of various signaling pathways, such as those of PPARα, Nrf2, mitogen-activated protein kinases, SIRT3/FOXO3/SOD, and AMPK/SIRT1. These findings suggest that ginseng is a natural medicine with lipid-lowering effects.
Collapse
Affiliation(s)
- Wei Jin
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunrun Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Shihui Yang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Shiyi Song
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Weiwei Hou
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yang Song
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yang Song, ; Quanyu Du,
| | - Quanyu Du
- Endocrinology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yang Song, ; Quanyu Du,
| |
Collapse
|
17
|
Klang V, Schweiger EM, Strohmaier S, Walter VI, Dekic Z, Tahir A. Dermal Delivery of Korean Red Ginseng Extract: Impact on Storage Stability of Different Carrier Systems and Evaluation of Rg1 and Rb1 Skin Permeation Ex Vivo. Pharmaceutics 2022; 15:pharmaceutics15010056. [PMID: 36678685 PMCID: PMC9864683 DOI: 10.3390/pharmaceutics15010056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
The root extract of Panax ginseng C.A. Meyer (Korean red ginseng/KRG extract) is a traditional Asian remedy introduced to dermal products for its antioxidative potential. However, little is known about technological aspects or skin penetration of main ginsenosides. Thus, stable oil-in-water nanoemulsions (NEs) and hydrogels for dermal delivery of KRG extract were developed and characterised using light scattering methods, analysis of flow properties and pH measurements. In addition, Rg1 and Rb1 contents were monitored by UHPLC/MS. Different surfactants (phosphatidylcholine, monoacylphosphatidylcholine and polysorbate 80) and polymers (polyacrylic acid and hydroxyethylcellulose) were tested and compared for their compatibility with KRG extract. The results showed that incorporation of KRG extract led to a significantly reduced formulation pH in hydroxyethylcellulose gels (-22%), NEs (-15%) and carbomer gels (-4-5%). The dynamic viscosity was in the range of 24-28 Pas at 10 s-1 for carbomer gels. The highest storage stability and skin permeation were observed for a hydroalcoholic gel with carbomer 50,000 and TRIS buffer (each of 1% w/w), containing ethanol (20% w/w) and KRG extract (2% w/w). Ex vivo diffusion cell studies confirmed skin permeation of the moderately lipophilic Rg1, but not the more hydrophilic Rb1 with a larger molecular weight.
Collapse
Affiliation(s)
- Victoria Klang
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- Correspondence: ; Tel.: +43-1427755403
| | - Eva-Maria Schweiger
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Simone Strohmaier
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Verena Ina Walter
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Zorana Dekic
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Ammar Tahir
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| |
Collapse
|
18
|
Synergistic Effects of Ginsenoside Rb3 and Ferruginol in Ischemia-Induced Myocardial Infarction. Int J Mol Sci 2022; 23:ijms232415935. [PMID: 36555577 PMCID: PMC9785845 DOI: 10.3390/ijms232415935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Previous research shows that ginsenoside Rb3 (G-Rb3) exhibit significant protective effects on cardiomyocytes and is considered a promising treatment for myocardial infraction (MI). However, how to improve its oral bioavailability and reduce its dosage remains to be studied. Previous studies suggest that Ferruginol (FGL) may have synergistic effects with G-Rb3. However, the underlying mechanisms remain to be explored. In this study, left anterior descending branch (LAD) coronary artery ligation or oxygen-glucose deprivation-reperfusion (OGD/R) were used to establish MI models in vivo and in vitro. Subsequently, the pharmacological effects and mechanisms of G-Rb3-FGL were explored by in vitro studies. The results showed that the G-Rb3-FGL co-treatment improved heart functions better than the G-Rb3 treatment alone in MI mice models. Meanwhile, the G-Rb3-FGL co-treatment can upregulate fatty acids oxidation (FAO) and suppress oxidative stress in the heart tissues of MI mice. In vitro studies demonstrated that the synergistic effect of G-Rb3-FGL on FAO, oxidation and inflammation was abolished by RXRα inhibitor HX531 in the H9C2 cell model. In summary, we revealed that G-Rb3 and FGL have a synergistic effect against MI. They protected cardiomyocytes by promoting FAO, inhibiting oxidative stress, and suppressing inflammation through the RXRα-Nrf2 signaling pathway.
Collapse
|
19
|
Abstract
As a steroid skeleton-based saponin, ginsenoside Rh2 (G-Rh2) is one of the major bioactive ginsenosides from the plants of genus Panax L. Many studies have reported the notable pharmacological activities of G-Rh2 such as anticancer, antiinflammatory, antiviral, antiallergic, antidiabetic, and anti-Alzheimer's activities. Numerous preclinical studies have demonstrated the great potential of G-Rh2 in the treatment of a wide range of carcinomatous diseases in vitro and in vivo. G-Rh2 is able to inhibit proliferation, induce apoptosis and cell cycle arrest, retard metastasis, promote differentiation, enhance chemotherapy and reverse multi-drug resistance against multiple tumor cells. The present review mainly summarizes the anticancer effects and related mechanisms of G-Rh2 in various models as well as the recent advances in G-Rh2 delivery systems and structural modification to ameliorate its anticancer activity and pharmacokinetics characteristics.
Collapse
|
20
|
Lee N, Lee JH, Won JE, Lee YJ, Hyun SH, Yi YD, In G, Han HD, Lee Y. KRG and its major ginsenosides do not show distinct steroidogenic activities examined by the OECD test guideline 440 and 456 assays. J Ginseng Res 2022; 47:385-389. [DOI: 10.1016/j.jgr.2022.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 03/12/2023] Open
|
21
|
Oxidative Stress and Ginsenosides: An Update on the Molecular Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9299574. [PMID: 35498130 PMCID: PMC9045968 DOI: 10.1155/2022/9299574] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 12/18/2022]
Abstract
Ginsenosides are a class of active components extracted from ginseng plants (such as Panax ginseng, Panax quinquefolium, and Panax notoginseng). Ginsenosides have significant protective effects on the nervous system, cardiovascular system, and immune system, so they have been widely used in the treatment of related diseases. Entry of a variety of endogenous or exogenous harmful substances into the body can lead to an imbalance between the antioxidant defense system and reactive oxygen species, thus producing toxic effects on a variety of tissues and cells. In addition, oxidative stress can alter multiple signaling pathways, including the Keap1/Nrf2/ARE, PI3K/AKT, Wnt/β-catenin, and NF-κB pathways. With the deepening of research in this field, various ginsenoside monomers have been reported to exert antioxidant effects through multiple signaling pathways and thus have good application prospects. This article summarized the research advancements regarding the antioxidative effects and related mechanisms of ginsenosides, providing a theoretical basis for experimental research on and clinical treatment with ginsenosides.
Collapse
|
22
|
GPR30 Activation Promotes the Progression of Gastric Cancer and Plays a Significant Role in the Anti-GC Effect of Huaier. JOURNAL OF ONCOLOGY 2022; 2022:2410530. [PMID: 35096058 PMCID: PMC8791733 DOI: 10.1155/2022/2410530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/23/2021] [Indexed: 12/09/2022]
Abstract
Gastric cancer (GC) is one of the most common types of cancer. The n-butanol extract of Huaier (NEH) is the alcohol-soluble part extracted by the systematic solvent method, which is effective against gastric cancer (GC). However, the mechanism of action of NEH remains unclear. In this study, we aim to evaluate the clinical relevance of GPR30 expression in GC patients and the role of the GPR30/PI3K/AKT signalling pathway in the anti-GC effect of NEH. The expression of GPR30 was examined using immunohistochemistry. Cell counting kit 8 (CCK-8) assay, wound healing, and transwell experiments were used to investigate the viability, migration, and invasion of gastric cancer cells. Western blotting was used to detect the expression of GPR30 and its downstream signalling molecules of the PI3K/AKT signalling pathway. Gastric cancer patient-derived xenografts (PDX) mouse model was used to evaluate the antitumor effect of NEH in vivo. In addition, the graded doses and the maximum tolerated dose of NEH were administered intraperitoneally into the mice for acute toxicity test. We demonstrate that GPR30 expression in GC tissues was significantly higher than that in corresponding adjacent noncancerous tissues and the expression of GPR30 was correlated with a poor prognosis in GC patients. Moreover, GPR30 expression was involved in the migration and invasion of GC cells in vitro. Additionally, we found that NEH can suppress the growth of GC in patient-derived xenograft tumors in vivo. Furthermore, NEH inhibited the proliferation, migration, and invasion in GC cells in a concentration-dependent manner through inhibiting the GPR30-mediated PI3K/AKT signalling pathway in vitro. Acute toxicity test showed that NEH caused no toxic reaction or death and the maximum tolerated dose of NEH in mice was greater than 1600 mg/kg. Our results demonstrate that the high expression of GPR30 is an independent factor of poor prognosis in patients with GC and NEH could be a new agent for the treatment of gastric cancer.
Collapse
|
23
|
The Study of Steaming Durations and Temperatures on the Chemical Characterization, Neuroprotective, and Antioxidant Activities of Panax notoginseng. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3698518. [PMID: 35035502 PMCID: PMC8758266 DOI: 10.1155/2022/3698518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/02/2021] [Accepted: 12/02/2021] [Indexed: 11/17/2022]
Abstract
Panax notoginseng (PN) is one of the most valuable traditional Chinese medicines and has extensive pharmacological effects. Recent studies demonstrated that PN exhibited pharmacological effect related to Alzheimer's disease (AD). However, whether steaming process can boost its anti-AD activity is still unexplored. To fill this gap, effects of steaming durations and temperatures on the chemical characterization, neuroprotective and antioxidant activities of PN were systematically investigated in this study. HPLC fingerprint coupled with quantitative analysis demonstrated striking conversion of original saponins to less polar ones with the increase in the steaming time and temperature. In the viewpoint of anti-AD activity on neuroprotective and antioxidant effects, several steamed PN samples (110°C-6/8/10 h, 120°C ‐4/6 h samples) displayed a significant increase both in cell viability and oxygen radical absorption capacity (ORAC) values compared with the no steamed one (P < 0.01 or P < 0.005). Steaming temperature had the greater impact on the change of chemical composition and anti-AD activity of PN. Moreover, the spectrum-effect relationship analysis revealed that the transformed saponins were partially responsible for the increased neuroprotective and antioxidant effects of steamed PN. Therefore, steamed PN could be used as a potential crude drug for prevention and treatment of AD.
Collapse
|
24
|
Ramli FF, Ali A, Ibrahim N'I. Molecular-Signaling Pathways of Ginsenosides Rb in Myocardial Ischemia-Reperfusion Injury: A Mini Review. Int J Med Sci 2022; 19:65-73. [PMID: 34975299 PMCID: PMC8692112 DOI: 10.7150/ijms.64984] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/04/2021] [Indexed: 12/28/2022] Open
Abstract
Reperfusion injury following myocardial ischemia remained a challenge for optimal treatment of myocardial infarction. Ginsenosides Rb (G-Rb), the primary components of ginsenoside, have been reported to exert cardioprotective effects via numerous mechanisms. G-Rb1 mediate cardioprotective effects via various signaling pathways, including mitochondrial apoptotic pathway, PI3K/Akt/mTOR, HIF-1α and GRF91, RhoA, p38α MAPK, and eNOS. G-Rb2 activates the SIRT-1 pathway, while G-Rb3 promotes both JNK-mediated NF-κB and PERK/Nrf2/HMOX1. Generally, ginsenosides Rb1, 2, and 3 modulates oxidative stress, inflammation, and apoptosis, contributing to the improvement of structural, functional and biochemical parameters. In conclusion, G-Rb, particularly G-Rb1, have vast potential as a supplement in attenuating reperfusion injury. Translation into a clinical trial is warranted to confirm the beneficial effects of G-Rb.
Collapse
Affiliation(s)
- Fitri Fareez Ramli
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia.,Cardiovascular Health Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Adli Ali
- Department of Pediatrics, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia.,Infection and Immunology Health and Advanced Medicine Cluster, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Nurul 'Izzah Ibrahim
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia.,Cardiovascular Health Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
25
|
Yang F, Yang MY, Le JQ, Luo BY, Yin MD, Chao-Li, Jiang JL, Fang YF, Shao JW. Protective Effects and Therapeutics of Ginsenosides for Improving Endothelial Dysfunction: From Therapeutic Potentials, Pharmaceutical Developments to Clinical Trials. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:749-772. [PMID: 35450513 DOI: 10.1142/s0192415x22500318] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The endothelium covers the internal lumen of the entire circulatory system and plays an important modulatory role in vascular homeostasis. Endothelium dysfunction, characterized by a vasoconstrictive, pro-inflammatory, and pro-coagulant state, usually manifests as a significant pathological process of vascular diseases, including hypertension, atherosclerosis (AS), stroke, diabetes mellitus, coronary artery disease, and cancer. Therefore, there is an urgent necessity to seek promising therapeutic drugs or remedies to ameliorate endothelial dysfunction-induced vascular ailments and complications. Recently, much attention has been attached to ginsenosides, the most significant active components of ginseng, which have always been referred to as "all-healing" and widely used for its extensively medicinal value. Surprisingly, ginsenosides have diverse biological activity which might be related to inflammation, apoptosis, oxidative stress, and angiogenesis. In this review, a brief introduction about endothelial dysfunction and ginsenosides was demonstrated, and the emphasis was put on summarizing multi-faceted pharmacological effects and underlying molecular mechanisms of ginsenosides on the endothelium, including vasorelaxation, anti-oxidation, anti-inflammation, and angio-modulation. Beyond that, nanotechnology to improve efficacy and the existing clinical trials of ginsenosides were concluded. Hopefully, our work will give suggestions for promoting clinical application of traditional Chinese medicine, e.g., hypertension, AS, diabetes, ischemic stroke, and cancer. This review provides a comprehensive base of knowledge for ginsenosides to prevention and treatment of vascular injury- related diseases with clinical significance.
Collapse
Affiliation(s)
- Fang Yang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Ming-Yue Yang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jing-Qing Le
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Bang-Yue Luo
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Meng-Die Yin
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Chao-Li
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jia-Li Jiang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Yi-Fan Fang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jing-Wei Shao
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
26
|
Ginsenoside Rg1 Prevents Cognitive Impairment and Hippocampal Neuronal Apoptosis in Experimental Vascular Dementia Mice by Promoting GPR30 Expression. Neural Plast 2021; 2021:2412220. [PMID: 34899899 PMCID: PMC8664545 DOI: 10.1155/2021/2412220] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/19/2021] [Indexed: 01/02/2023] Open
Abstract
This study is aimed at investigating the potential roles of G protein-coupled estrogen receptor 1 (GPER, also known as GPR30) in the preventive effect of ginsenoside Rg1 against cognitive impairment and hippocampal cell apoptosis in experimental vascular dementia (VD) in mice. The effects of bilateral common carotid artery stenosis (BCAS) on GPR30 expression at mRNA level were evaluated. Thereafter, the BCAS mouse model was utilized to evaluate the protection of Rg1 (0.1, 1, 10 mg/kg, 14 days, ip). Spatial memory was evaluated by water Morris Maze 7 days post BCAS. After behavioral tests, neuronal apoptosis was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay, and potential mechanisms were determined using western blotting and quantitative real-time PCR. Our results showed that GPR30 expression in the hippocampal region at mRNA level was promoted 30 min, 3 h, 6 h, and 24 h following BCAS. Ginsenoside Rg1 (1 or 10 mg/kg, 14 days, ip) promoted GPR30 expression in the hippocampus of model mice (after behavioral tests) but did not alter GPR30 expression in the hippocampus of control mice. Moreover, treatment of ginsenoside Rg1 (10 mg/kg) or G1 (5 μg/kg), a GPR30 agonist, prevented BCAS-induced memory impairment and hippocampal neuronal loss and apoptosis and promoted the ratio of Bcl-2 to Bax expression in the hippocampus (after behavioral tests). On the contrary, G15 (185 μg/kg), an antagonist of GPR30, aggravated BCAS-induced hippocampal neuronal loss and apoptosis. Finally, drug-target molecular docking pointed that Rg1 had a lower binding energy with GPR30 compared with Bax and Bcl-2. Together, our data implicate that ginsenoside Rg1 prevents cognitive impairment and hippocampal neuronal apoptosis in VD mice, likely through promoting GPR30 expression. These results would provide important implications for the application of Rg1 in the treatment of VD.
Collapse
|
27
|
Truong VL, Jeong WS. Red ginseng (Panax ginseng C.A. Meyer) oil: A comprehensive review of extraction technologies, chemical composition, health benefits, molecular mechanisms, and safety. J Ginseng Res 2021; 46:214-224. [PMID: 35509821 PMCID: PMC9058829 DOI: 10.1016/j.jgr.2021.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/26/2021] [Accepted: 12/14/2021] [Indexed: 11/25/2022] Open
Abstract
Red ginseng oil (RGO), rather than the conventional aqueous extract of red ginseng, has been receiving much attention due to accumulating evidence of its functional and pharmacological potential. In this review, we describe the key extraction technologies, chemical composition, potential health benefits, and safety of RGO. This review emphasizes the proposed molecular mechanisms by which RGO is involved in various bioactivities. RGO is mainly produced using organic solvents or supercritical fluid extraction, with the choice of method greatly affecting the yield and quality of the end products. RGO contains a high unsaturated fatty acid levels along with considerable amounts of lipophilic components such as phytosterols, tocopherols, and polyacetylenes. The beneficial health properties of RGO include cellular defense, antioxidation, anti-inflammation, anti-apoptosis, chemoprevention, hair growth promotion, and skin health improvement. We propose several molecular mechanisms and signaling pathways that underlie the bioactivity of RGO. In addition, RGO is regarded as safe and nontoxic. Further studies on RGO must focus on a deeper understanding of the underlying molecular mechanisms, composition–functionality relationship, and verification of the bioactivities of RGO in clinical models. This review may provide useful information in the development of RGO-based products in nutraceuticals, functional foods, and functional cosmetics.
Collapse
|
28
|
Kim M, Mok H, Yeo WS, Ahn JH, Choi YK. Role of ginseng in the neurovascular unit of neuroinflammatory diseases focused on the blood-brain barrier. J Ginseng Res 2021; 45:599-609. [PMID: 34803430 PMCID: PMC8587512 DOI: 10.1016/j.jgr.2021.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/28/2020] [Accepted: 02/17/2021] [Indexed: 12/18/2022] Open
Abstract
Ginseng has long been considered as an herbal medicine. Recent data suggest that ginseng has anti-inflammatory properties and can improve learning- and memory-related function in the central nervous system (CNS) following the development of CNS neuroinflammatory diseases such as Alzheimer's disease, cerebral ischemia, and other neurological disorders. In this review, we discuss the role of ginseng in the neurovascular unit, which is composed of endothelial cells surrounded by astrocytes, pericytes, microglia, neural stem cells, oligodendrocytes, and neurons, especially their blood-brain barrier maintenance, anti-inflammatory effects and regenerative functions. In addition, cell-cell communication enhanced by ginseng may be attributed to regeneration via induction of neurogenesis and angiogenesis in CNS diseases. Thus, ginseng may have therapeutic potential to exert cognitive improvement in neuroinflammatory diseases such as stroke, traumatic brain injury, multiple sclerosis, Parkinson's disease, and Alzheimer's disease.
Collapse
Affiliation(s)
- Minsu Kim
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| | - Hyejung Mok
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| | - Woon-Seok Yeo
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| | - Joong-Hoon Ahn
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| | - Yoon Kyung Choi
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
29
|
Mungan Durankaya S, Olgun Y, Aktaş S, Eskicioğlu HE, Gürkan S, Altun Z, Mutlu B, Kolatan E, Doğan E, Yılmaz O, Kırkım G. Effect of Korean Red Ginseng on Noise-Induced Hearing Loss. Turk Arch Otorhinolaryngol 2021; 59:111-117. [PMID: 34386797 PMCID: PMC8329393 DOI: 10.4274/tao.2021.2021-1-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023] Open
Abstract
Objective: Noise-induced hearing loss (NIHL) is one of the most important problems affecting both social and professional life of patients. There is no treatment method considered to be successful on the hearing loss that has become a permanent nature. Aim of this study is to evaluate protective effect of Korean Red Ginseng (KRG) against NIHL in an animal model. Methods: Twenty-eight rats were separated into four groups [control saline (group I), control KRG (group II), saline + noise (group III), KRG + noise (group IV)]. Rats in the saline and KRG groups were fed via oral gavage with a dose of 200 mg/kg/day throughout for 10 days. Fourteen rats (group III and IV) were exposed to 4 kHz octave band noise at 120 dB SPL for 5 hours. Hearing levels of rats were evaluated by distortion product otoacoustic emissions (DPOAE) and auditory brainstem responses (ABR) at 4, 8, 12, 16 and 32 kHz frequencies prior to and on days 1, 7 and 10 after the noise exposure. Rats were sacrificed on 10th day, after the last audiological test. Cochlea and spiral ganglion tissues were evaluated by light microscopy. Results: Audiological and histological results demonstrated that after noise the group IV showed better results than group III. In the noise exposed groups, the most prominent damage was seen at the 8 kHz frequency region than other regions. After the noise exposure, DPOAE responses were lost in 1st, 7th and 10th measurements in both group III and IV. Thus, we were not able to perform any statistical analyses for DPOAE results. Conclusion: Our findings suggest that KRG seems to be an efficient agent against NIHL. There is need for additional research to find out about the mechanisms of KRG’s protective effect.
Collapse
Affiliation(s)
- Serpil Mungan Durankaya
- Department of Otorhinolaryngology, Audiology Programme, Institute of Health Sciences, Dokuz Eylül University, İzmir, Turkey.,Department of Audiometry, Vocational School of Health Services, Dokuz Eylül University, İzmir, Turkey
| | - Yüksel Olgun
- Department of Otorhinolaryngology, School of Medicine, Dokuz Eylül University İzmir, Turkey
| | - Safiye Aktaş
- Department of Basic Oncology, Institute of Oncology, Dokuz Eylül University, İzmir, Turkey
| | - Hande Evin Eskicioğlu
- Department of Audiometry, Vocational School of Health Services, Dokuz Eylül University, İzmir, Turkey.,Department of Otorhinolaryngology, School of Medicine, Dokuz Eylül University İzmir, Turkey
| | - Selhan Gürkan
- Department of Audiometry, Vocational School of Health Services, Dokuz Eylül University, İzmir, Turkey.,Department of Otorhinolaryngology, School of Medicine, Dokuz Eylül University İzmir, Turkey
| | - Zekiye Altun
- Department of Basic Oncology, Institute of Oncology, Dokuz Eylül University, İzmir, Turkey
| | - Başak Mutlu
- Department of Audiology, School of Health Sciences, Medeniyet University, İstanbul, Turkey
| | - Efsun Kolatan
- Department of Laboratory Animal Sciences, Dokuz Eylül University, İzmir, Turkey
| | - Ersoy Doğan
- Department of Otorhinolaryngology, School of Medicine, Dokuz Eylül University İzmir, Turkey
| | - Osman Yılmaz
- Department of Laboratory Animal Sciences, Dokuz Eylül University, İzmir, Turkey
| | - Günay Kırkım
- Department of Audiometry, Vocational School of Health Services, Dokuz Eylül University, İzmir, Turkey.,Department of Otorhinolaryngology, School of Medicine, Dokuz Eylül University İzmir, Turkey
| |
Collapse
|
30
|
Kim Y, Cho SH. The effect of ginsenosides on depression in preclinical studies: A systematic review and meta-analysis. J Ginseng Res 2021; 45:420-432. [PMID: 34025135 PMCID: PMC8134838 DOI: 10.1016/j.jgr.2020.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/15/2020] [Accepted: 08/31/2020] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Many ginsenosides have been shown to be efficacious for major depressive disorder (MDD), which is a highly recurrent disorder, through several preclinical studies. We aimed to review the literature assessing the antidepressant effects of ginsenosides on MDD animal models, to establish systematic scientific evidence in a rigorous manner. METHODS We performed a systematic review on the antidepressant effects of ginsenoside evaluated in in vivo studies. We searched for preclinical trials from inception to July 2019 in electronic databases such as Pubmed and Embase. In vivo studies examining the effect of a single ginsenoside on animal models of primary depression were included. Items of each study were evaluated by two independent reviewers. A meta-analysis was conducted to assess behavioral changes induced by ginsenoside Rg1, which was the most studied ginsenoside. Data were pooled using the random-effects models. RESULTS A total of 517 studies were identified, and 23 studies were included in the final analysis. They reported on many ginsenosides with different antidepressant effects and biological mechanisms of action. Of the 12 included articles assessing ginsenoside Rg1, pooled results of forced swimming test from 9 articles (mean difference (MD): 20.50, 95% CI: 16.13-24.87), and sucrose preference test from 11 articles (MD: 28.29, 95% CI: 22.90-33.69) showed significant differences compared with vehicle treatment. The risk of bias of each study was moderate, but there was significant heterogeneity across studies. CONCLUSION These estimates suggest that ginsenosides, including ginsenoside Rg1, reduces symptoms of depression, modulates underlying mechanisms, and can be a promising antidepressant.
Collapse
Affiliation(s)
- Yunna Kim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Research group of Neuroscience, East-West Medical Research Institute, WHO Collaborating Center, Kyung Hee University, Seoul, Republic of Korea
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Seung-Hun Cho
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Research group of Neuroscience, East-West Medical Research Institute, WHO Collaborating Center, Kyung Hee University, Seoul, Republic of Korea
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
31
|
Choi JH, Oh J, Lee MJ, Ko SG, Nah SY, Cho IH. Gintonin mitigates experimental autoimmune encephalomyelitis by stabilization of Nrf2 signaling via stimulation of lysophosphatidic acid receptors. Brain Behav Immun 2021; 93:384-398. [PMID: 33309911 DOI: 10.1016/j.bbi.2020.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 11/28/2020] [Accepted: 12/04/2020] [Indexed: 12/25/2022] Open
Abstract
Gintonin (GT), a glycolipoprotein fraction isolated from ginseng, exerts neuroprotective effects in models of neurodegenerative diseases such as Alzheimer's disease. However, the in vivo role of GT in multiple sclerosis (MS) has not been clearly resolved. We investigated the effect of GT in myelin oligodendrocyte glycoprotein (MOG35-55)-induced experimental autoimmune encephalomyelitis (EAE), an animal model of MS. GT alleviated behavioral symptoms of EAE associated with reduced demyelination, diminished infiltration and activation of immune cells (microglia and macrophage), and decreased expression of inflammatory mediators in the spinal cord of the EAE group compared to that of the sham group. GT reduced the percentages of CD4+/IFN-γ+ (Th1) and CD4+/IL-17+ (Th17) cells but increased the population of CD4+/CD25+/Foxp3+ (Treg) cells in the spinal cord, in agreement with altered mRNA expression of IFN-γ, IL-17, and TGF-ß in the spinal cord in concordance with mitigated blood-brain barrier disruption. The underlying mechanism is related to inhibition of the ERK and p38 mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB) pathways and the stabilization of nuclear factor erythroid 2-related factor 2 (Nrf2) via increased expression of lysophosphatidic acid receptor (LPAR) 1-3. Impressively, these beneficial effects of GT were completely neutralized by inhibiting LPARs with Ki16425, a LPAR1/3 antagonist. Our results strongly suggest that GT may be able to alleviate EAE due to its anti-inflammatory and antioxidant activities through LPARs. Therefore, GT is a potential therapeutic option for treating autoimmune disorders including MS.
Collapse
Affiliation(s)
- Jong Hee Choi
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jinhee Oh
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Min Jung Lee
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seong-Gyu Ko
- Korean Medicine-based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; Institute of Convergence Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
32
|
Anti-Metastatic and Anti-Inflammatory Effects of Matrix Metalloproteinase Inhibition by Ginsenosides. Biomedicines 2021; 9:biomedicines9020198. [PMID: 33671187 PMCID: PMC7921986 DOI: 10.3390/biomedicines9020198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 12/12/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are proteolytic enzymes which cleave extracellular matrix (ECM) and other substrates. They are deeply involved in both cancer metastasis and human chronic inflammatory diseases such as osteoarthritis and Crohn’s disease. Regulation of MMPs is closely associated with signaling molecules, especially mitogen-activated protein kinases (MAPKs), including three representative kinases, extracellular signal regulated kinases (ERK), p38 and c-Jun N-terminal kinases (JNK). Ginseng (Panax sp.) is a plant which has been traditionally used for medicinal applications. Ginsenosides are major metabolites which have potentials to treat various human diseases. In this review, the pharmacological effects of ginsenosides have been rigorously investigated; these include anti-metastatic and anti-inflammatory activities of ginsenosides associated with suppression of MMPs via regulation of various signaling pathways. This will highlight the importance of MMPs as therapeutic targets for anti-metastatic and anti-inflammatory drug development based on ginsenosides.
Collapse
|
33
|
Innok W, Hiranrat A, Chana N, Rungrotmongkol T, Kongsune P. In silico and in vitro anti-AChE activity investigations of constituents from Mytragyna speciosa for Alzheimer's disease treatment. J Comput Aided Mol Des 2021; 35:325-336. [PMID: 33439402 DOI: 10.1007/s10822-020-00372-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/30/2020] [Indexed: 12/20/2022]
Abstract
Acetylcholinesterase (AChE), one of the major therapeutic strategies for the treatment of Alzheimer's disease (AD) is to increase the acetylcholine (ACh) level in the brain by inhibiting the biological activity of AChE. In this present work, a set of alkaloids and flavonoids against AChE enzyme were screened by computational chemistry techniques. The docking results showed that among alkaloid compounds the oxindole alkaloid namely mitragynine oxidole B (MITOB) and the indole alkaloids namely mitragynine (MIT) exhibited a good binding affinity towards AChE. These two compounds were then studied by molecular dynamics (MD) simulations. The binding free energy calculation and ligand-protein binding pattern suggested that both alkaloids could interact with AChE very well. Since MIT is the main alkaloid constituent of Mytragyna speciose leaves, this compound was isolated from M. speciose leaves and tested for anti-AChE activity. As a result, the isolated MIT had an inhibitory activity with pIC50 value of 3.57. This finding provided that the mitragynine compound has the potential to be as a therapeutic agent for further anti-AChE drug development in treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Wansiri Innok
- Department of Chemistry, Faculty of Science, Thaksin University, Phattalung, 93210, Thailand
| | - Asadhawut Hiranrat
- Department of Chemistry, Faculty of Science, Thaksin University, Phattalung, 93210, Thailand
| | - Netnapa Chana
- Department of Chemistry, Faculty of Science, Thaksin University, Phattalung, 93210, Thailand
| | - Thanyada Rungrotmongkol
- Biocatalyst and Environmental Biotechnology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.,Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Panita Kongsune
- Department of Chemistry, Faculty of Science, Thaksin University, Phattalung, 93210, Thailand.
| |
Collapse
|
34
|
Wang XJ, Xie Q, Liu Y, Jiang S, Li W, Li B, Wang W, Liu CX. Panax japonicus and chikusetsusaponins: A review of diverse biological activities and pharmacology mechanism. CHINESE HERBAL MEDICINES 2021; 13:64-77. [PMID: 36117758 PMCID: PMC9476776 DOI: 10.1016/j.chmed.2020.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/13/2020] [Accepted: 07/10/2020] [Indexed: 12/18/2022] Open
Abstract
Panax japonicus, which in the Tujia dialect is known as “Baisan Qi” and “Zhujieshen”, is a classic “qi” drug of Tujia ethnomedicine and it has unique effects on disease caused by “qi” stagnation and blood stasis. This paper serves as the basis of further scientific research and development of Panax japonicus. The pharmacology effects of molecular pharmacology were discussed and summarized. P. japonicus plays an important role on several diseases, such as rheumatic arthritis, cancer, cardiovascular agents, and this review provides new insights into P. japonicus as promising agents to substitute ginseng and notoginseng.
Collapse
|
35
|
Kouipou Toghueo RM, Youmbi DY, Boyom FF. Endophytes from Panax species. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2020.101882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
36
|
Desjarlais M, Wirth M, Lahaie I, Ruknudin P, Hardy P, Rivard A, Chemtob S. Nutraceutical Targeting of Inflammation-Modulating microRNAs in Severe Forms of COVID-19: A Novel Approach to Prevent the Cytokine Storm. Front Pharmacol 2020; 11:602999. [PMID: 33362557 PMCID: PMC7759543 DOI: 10.3389/fphar.2020.602999] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has become the number one health problem worldwide. As of August 2020, it has affected more than 18 million humans and caused over 700,000 deaths worldwide. COVID-19 is an infectious disease that can lead to severe acute respiratory syndrome. Under certain circumstances, the viral infection leads to excessive and uncontrolled inflammatory response, which is associated with the massive release of inflammatory cytokines in pulmonary alveolar structures. This phenomenon has been referred to as the “cytokine storm,” and it is closely linked to lung injury, acute respiratory syndrome and mortality. Unfortunately, there is currently no vaccine available to prevent the infection, and no effective treatment is available to reduce the mortality associated with the severe form of the disease. The cytokine storm associate with COVID-19 shows similarities with those observed in other pathologies such as sepsis, acute respiratory distress syndrome, acute lung injury and other viral infection including severe cases of influenza. However, the specific mechanisms that cause and modulate the cytokine storm in the different conditions remain to be determined. micro-RNAs are important regulators of gene expression, including key inflammatory cytokines involved in the massive recruitment of immune cells to the lungs such as IL1β, IL6, and TNFα. In recent years, it has been shown that nutraceutical agents can modulate the expression of miRs involved in the regulation of cytokines in various inflammatory diseases. Here we review the potential role of inflammatory-regulating-miRs in the cytokine storm associated with COVID-19, and propose that nutraceutical agents may represent a supportive therapeutic approach to modulate dysregulated miRs in this condition, providing benefits in severe respiratory diseases.
Collapse
Affiliation(s)
- Michel Desjarlais
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, Université de Montréal, Montréal, QC, Canada.,Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Maëlle Wirth
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, Université de Montréal, Montréal, QC, Canada.,Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Isabelle Lahaie
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, Université de Montréal, Montréal, QC, Canada
| | - Pakiza Ruknudin
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, Université de Montréal, Montréal, QC, Canada
| | - Pierre Hardy
- Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Alain Rivard
- Department of Medicine, Centre Hospitalier de l'Université de Montréal (CHUM) Research Center, Montréal, QC, Canada
| | - Sylvain Chemtob
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, Université de Montréal, Montréal, QC, Canada.,Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| |
Collapse
|
37
|
Liu C, Ma X, Zhuang J, Liu L, Sun C. Cardiotoxicity of doxorubicin-based cancer treatment: What is the protective cognition that phytochemicals provide us? Pharmacol Res 2020; 160:105062. [DOI: 10.1016/j.phrs.2020.105062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022]
|
38
|
Saba E, Lee YS, Yang WK, Lee YY, Kim M, Woo SM, Kim K, Kwon YS, Kim TH, Kwak D, Park YC, Shin HJ, Han CK, Oh JW, Lee YC, Kang HS, Rhee MH, Kim SH. Effects of a herbal formulation, KGC3P, and its individual component, nepetin, on coal fly dust-induced airway inflammation. Sci Rep 2020; 10:14036. [PMID: 32820197 PMCID: PMC7441173 DOI: 10.1038/s41598-020-68965-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/25/2020] [Indexed: 02/08/2023] Open
Abstract
Coal fly dust (CFD)-induced asthma model is used as an ambient particulate matter model of serious pulmonary damage. We aimed to evaluate the effects of a combination of ginseng and Salvia plebeia R. Br extract (KGC-03-PS; KG3P) and its individual components (hispidulin, nepetin and rosmarinic acid) in a CFD-induced mouse model of airway inflammation (asthma). We also evaluated signal transduction by KG3P and its individual components in the alveolar macrophage cell line, MH-S cells. In vitro, KG3P and its individual components inhibited nitric oxide production and expression of pro-inflammatory mediators and cytokines (iNOS, COX-2, IL-1β, IL-6 and TNF-α) through the NF-κB and MAPK pathways in coal fly ash (CFA)-induced inflammation in MH-S cells. Moreover, in the CFD-induced asthma model in mice, KG3P and its predominant individual component, nepetin, inhibited Asymmetric Dimethyl arginine (ADMA) and Symmetric Dimethyl arginine (SDMA) in serum, and decreased the histopathologic score in the lungs. A significant reduction in the neutrophils and immune cells in BALF and lung tissue was demonstrated, with significant reduction in the expression of the pro-inflammatory cytokines. Finally, IRAK-1 localization was also potently inhibited by KG3P and nepetin. Thus, KG3P extract can be considered as a potent candidate for amelioration of airway inflammation.
Collapse
Affiliation(s)
- Evelyn Saba
- Laboratory of Physiology and Cell Signalling, Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Young-Sil Lee
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Dajeon, 34054, Republic of Korea
| | - Won-Kyung Yang
- Division of Respiratory Systems, Department of Internal Medicine, College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea.,Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon, 34520, Republic of Korea
| | - Yuan Yee Lee
- Laboratory of Physiology and Cell Signalling, Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - MinKi Kim
- Laboratory of Physiology and Cell Signalling, Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Su-Min Woo
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 500-757, Republic of Korea
| | - KilSoo Kim
- Laboratory of Physiology and Cell Signalling, Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Young-Sam Kwon
- Laboratory of Physiology and Cell Signalling, Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Tae-Hwan Kim
- Laboratory of Physiology and Cell Signalling, Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Dongmi Kwak
- Laboratory of Physiology and Cell Signalling, Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Yang-Chun Park
- Division of Respiratory Systems, Department of Internal Medicine, College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Han Jae Shin
- KT&G Research Institute, Daejeon, 34128, Republic of Korea
| | - Chang Kyun Han
- KGC Research Institute, Daejeon, 34128, Republic of Korea
| | - Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Young Cheol Lee
- Department of Herbology, College of Korean Medicine, Sangji University, 83 Sangjidae-gil, Wonju, Gangwon-do, 26339, Republic of Korea
| | - Hyung-Sik Kang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 500-757, Republic of Korea
| | - Man Hee Rhee
- Laboratory of Physiology and Cell Signalling, Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Seung-Hyung Kim
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon, 34520, Republic of Korea.
| |
Collapse
|
39
|
ROS-Mediated Therapeutic Strategy in Chemo-/Radiotherapy of Head and Neck Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5047987. [PMID: 32774675 PMCID: PMC7396055 DOI: 10.1155/2020/5047987] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/26/2020] [Indexed: 12/24/2022]
Abstract
Head and neck cancer is a highly genetic and metabolic heterogeneous collection of malignancies of the lip, oral cavity, salivary glands, pharynx, esophagus, paranasal sinuses, and larynx with five-year survival rates ranging from 12% to 93%. Patients with head and neck cancer typically present with advanced stage III, IVa, or IVb disease and are treated with comprehensive modality including chemotherapy, radiotherapy, and surgery. Despite advancements in treatment modality and technique, noisome recurrence, invasiveness, and resistance as well as posttreatment complications severely influence survival rate and quality of life. Thus, new therapeutic strategies are urgently needed that offer enhanced efficacy with less toxicity. ROS in cancer cells plays a vital role in regulating cell death, DNA repair, stemness maintenance, metabolic reprogramming, and tumor microenvironment, all of which have been implicated in resistance to chemo-/radiotherapy of head and neck cancer. Adjusting ROS generation and elimination to reverse the resistance of cancer cells without impairing normal cells show great hope in improving the therapeutic efficacy of chemo-/radiotherapy of head and neck cancer. In the current review, we discuss the pivotal and targetable redox-regulating system including superoxide dismutases (SODs), tripeptide glutathione (GSH), thioredoxin (Trxs), peroxiredoxins (PRXs), nuclear factor erythroid 2-related factor 2/Kelch-like ECH-associated protein 1 (Nrf2/keap1), and mitochondria electron transporter chain (ETC) complexes and their roles in regulating ROS levels and their clinical significance implicated in chemo-/radiotherapy of head and neck cancer. We also summarize several old drugs (referred to as the non-anti-cancer drugs used in other diseases for a long time) and small molecular compounds as well as natural herbs which effectively modulate cellular ROS of head and neck cancer to synergize the efficacy of conventional chemo-/radiotherapy. Emerging interdisciplinary techniques including photodynamic, nanoparticle system, and Bio-Electro-Magnetic-Energy-Regulation (BEMER) therapy are promising measures to broaden the potency of ROS modulation for the benefit of chemo-/radiotherapy in head and neck cancer.
Collapse
|
40
|
Calabrese EJ. Hormesis and Ginseng: Ginseng Mixtures and Individual Constituents Commonly Display Hormesis Dose Responses, Especially for Neuroprotective Effects. Molecules 2020; 25:E2719. [PMID: 32545419 PMCID: PMC7321326 DOI: 10.3390/molecules25112719] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
This paper demonstrates that ginseng mixtures and individual ginseng chemical constituents commonly induce hormetic dose responses in numerous biological models for endpoints of biomedical and clinical relevance, typically providing a mechanistic framework. The principal focus of ginseng hormesis-related research has been directed toward enhancing neuroprotection against conditions such as Alzheimer's and Parkinson's Diseases, stroke damage, as well as enhancing spinal cord and peripheral neuronal damage repair and reducing pain. Ginseng was also shown to reduce symptoms of diabetes, prevent cardiovascular system damage, protect the kidney from toxicities due to immune suppressant drugs, and prevent corneal damage, amongst other examples. These findings complement similar hormetic-based chemoprotective reports for other widely used dietary-type supplements such as curcumin, ginkgo biloba, and green tea. These findings, which provide further support for the generality of the hormetic dose response in the biomedical literature, have potentially important public health and clinical implications.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
41
|
Shi YH, Li Y, Wang Y, Xu Z, Fu H, Zheng GQ. Ginsenoside-Rb1 for Ischemic Stroke: A Systematic Review and Meta-analysis of Preclinical Evidence and Possible Mechanisms. Front Pharmacol 2020; 11:285. [PMID: 32296332 PMCID: PMC7137731 DOI: 10.3389/fphar.2020.00285] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 02/27/2020] [Indexed: 12/13/2022] Open
Abstract
Background Ischemic stroke is the most common type of stroke, while pharmacological therapy options are limited. Ginsenosides are the major bioactive compounds in Ginseng and have been found to have various pharmacological effects in the nervous system. In the present study, we sought to evaluate the effects of Ginsenoside-Rb1 (G-Rb1), an important ingredient of ginsenosides, and the probable neuroprotective mechanisms in experimental ischemic strokes. Methods Studies of G-Rb1 on ischemic stroke animal models were identified from 7 databases. No clinical trials were included in the analysis. The primary outcome measures were neurological function scores, infarct volume, evans blue content and/or brain water content (BWC). The second outcome measures were the possible neuroprotective mechanisms. All the data were analyzed by Rev Man 5.3. Result Pooled preclinical data showed that compared with the controls, G-Rb1 could improve neurological function (Zea Longa (n = 367, P < 0.01); mNSS (n = 70, P < 0.01); Water maze test (n = 48, P < 0.01); Bederson (n = 16, P < 0.01)), infarct area (TTC (n = 211, P < 0.01); HE (n = 26, P < 0.01)), as well as blood-brain barrier function (BWC (n = 64, P < 0.01); Evans blue content (n=26, P < 0.05)). It also can increase BDNF (n = 26, P < 0.01), Gap-43 (n = 16, P < 0.01), SOD (n = 30, P < 0.01), GSH (n = 16, P < 0.01), Nissl-positive cells (n = 12, P < 0.01), Nestin-positive cells (n = 10, P < 0.05), and reduce Caspase-3 (n = 36, P < 0.01), IL-1 (n = 32, P < 0.01), TNF-α (n = 72, P < 0.01), MDA (n = 18, P < 0.01), NO (n = 44, P < 0.01), NOX (n = 32, P < 0.05), ROS (n = 6, P < 0.05), NF-κB (P < 0.05) and TUNEL-positive cells (n = 52, P < 0.01). Conclusion Available findings demonstrated the preclinical evidence that G-Rb1 has a potential neuroprotective effect, largely through attenuating brain water content, promoting the bioactivities of neurogenesis, anti-apoptosis, anti-oxidative, anti-inflammatory, energy supplement and cerebral circulation.
Collapse
Affiliation(s)
- Yi-Hua Shi
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Li
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yong Wang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhen Xu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huan Fu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guo-Qing Zheng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
42
|
Therapeutic potential of ginsenosides on diabetes: From hypoglycemic mechanism to clinical trials. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103630] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|