1
|
He F, Liu F, Li S, Mu X, Han Q, Song L, Huang JH. A critical review of soil pollution sources and advances in the remediation of arsenic-contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 302:118504. [PMID: 40540893 DOI: 10.1016/j.ecoenv.2025.118504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 05/14/2025] [Accepted: 06/09/2025] [Indexed: 06/22/2025]
Abstract
Arsenic (As) is a hazardous, non-essential semi-metal detrimental to animals, people, and plants. Its environmental levels have risen globally due to increased mining, industrial activities, vehicle emissions, and other human actions, posing significant environmental and health concerns. Hence, the remediation of As-contaminated soils requires urgent attention to ensure the provision of safe and healthy food for humans. This paper delineates the origins of soil As pollution, its environmental ramifications, the complex dynamics of As contamination, contemporary advancements in remediation methods, and suggestions for addressing soil As pollution. The discussion also encompassed success stories and the possibilities of various approaches for remediating As-contaminated soils. The discussion focused on several mechanisms, such as bioaccumulation, bio-sorption, electrostatic attraction and complexation, that mitigate the toxicity of As by transforming As (V) into As (III). Furthermore, it delineated the research gaps that require addressing in subsequent studies. Various techniques are employed globally to remediate As-contaminated soils, categorized into physical, chemical, biological, and other innovative strategies. Physical methods include soil washing and replacement, excavation, containment and encapsulation, vitrification, and soil blending. Chemical treatments include lime application, phosphate amendments, iron oxides and biochar, inorganic additives, and redox manipulation. Biological strategies encompass phytoremediation, bioremediation, microbial detoxification, microbial volatilization, and rhizoremediation. Lastly, other techniques incorporate innovative methods like phytovolatilization, phytostabilization, and electrokinetic remediation. Consequently, the present review will assist in formulating suitable and new techniques to mitigate As bioavailability and toxicity, as well as to sustainably manage As-contaminated soils, thereby diminishing the harmful impacts of As on the surrounding and human health.
Collapse
Affiliation(s)
- Fei He
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fukang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shehong Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou 550081, China.
| | - Xiaomin Mu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Qiao Han
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo 454003, China
| | - Lian Song
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou 550081, China
| | - Jen-How Huang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou 550081, China.
| |
Collapse
|
2
|
Walls D, Rodríguez-Oroz D, Root RA, Chukwuonye GN, Alqattan ZA, Kinchy A, Ureta S, Engel-Di Mauro S, Ramírez-Andreotta MD. Low-cost screening method for estimating inorganic arsenic in soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:6027-6040. [PMID: 39969710 DOI: 10.1007/s11356-025-36086-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025]
Abstract
People facing pollution do not always have the resources needed to investigate their environment for harmful contaminants. In this paper, we report on a low-cost, accessible method to screen soil for inorganic arsenic, a substance associated with a growing list of acute and chronic diseases. The method adapts a commercial water test kit, which measures inorganic arsenic between 0 and 500 µg L-1 on a quantitative, discrete color scale. We evaluated two extraction solutions in determining bioaccessible and total inorganic arsenic. We characterized soil samples and standards containing total arsenic between 0.8 and 3240 mg kg-1 (n = 151) with the screening methodology and established laboratory methods. While the total screening method requires additional investigation, we propose the bioaccessible screening method for two purposes. First, it estimates in vitro bioaccessible assay (IVBA) arsenic ( y = 0.0972 x ,R 2 = 0.576 ) to provide physiological insight. Second, it estimates a predicted minimum amount of total arsenic to compare to regulatory soil levels. Screening measurements above 82.5 and 132.0 µg L-1 are predicted to exceed the Arizona Department of Environmental Quality (AZDEQ) and New York Department of Environmental Conservation (NYDEC) regulatory soil levels: 10 and 16 mg kg-1, respectively. False positives are almost entirely avoided, while the occurrence of false negatives increases approaching the predicted thresholds. Screening measurements in the ranges [0, 10), [10, 25), and [25, threshold] µg L-1 were false negatives (false omission rate) 0, 18.8, and 81.4% (AZDEQ) and 0, 8.7, and 68.5% (NYDEC) of the time, respectively. Our analysis supports screening total arsenic to at least as low as 8.5 mg kg-1.
Collapse
Affiliation(s)
- Dan Walls
- Department of Science and Technology Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA.
- Bureau of Laboratory Services, Philadelphia Water Department, Philadelphia, PA, USA.
| | - Delia Rodríguez-Oroz
- Centro de Investigación en Tecnologías Para La Sociedad, Facultad de Ingeniería, Universidad del Desarrollo, Santiago, Chile
| | - Robert A Root
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA
| | | | | | - Abby Kinchy
- Department of Science and Technology Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Sebastián Ureta
- College & Instituto Para El Desarrollo Sustentable, Universidad Católica de Chile, Santiago, Chile
- Solar Energy Research Center, Santiago, Chile
| | | | - Mónica D Ramírez-Andreotta
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA
- Division of Community, Environment & Policy, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
3
|
Dai W, Shi R, Li X, Zhao Z, Xia Z, Li D, Li Y, Cui G, Ding S. Factors and Mechanisms Affecting Arsenic Migration in Cultivated Soils Irrigated with Contained Arsenic Brackish Groundwater. Microorganisms 2024; 12:2385. [PMID: 39770588 PMCID: PMC11677285 DOI: 10.3390/microorganisms12122385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Contained arsenic (As) and unsafe brackish groundwater irrigation can lead to serious As pollution and increase the ecological risk in cultivated soils. However, little is known about how Fe oxides and microbes affect As migration during soil irrigation processes involving arsenic-contaminated brackish groundwater. In this study, the samples (porewater and soil) were collected through the dynamic soil column experiments to explore the As migration process and its effect factors during soil irrigation. The results showed that the As concentration in porewater samples from the topsoil was enriched compared to that in the subsoil, and the main solid As fractions were strongly adsorbed or bound to amorphous and crystalline Fe oxides. The aqueous As concentration and the solid As fractions indicated that reductive dissolution and desorption from amorphous Fe oxides were the primary mechanisms of As release at the topsoil and subsoil, respectively. Meanwhile, Sphingomonas_sp., Microvirga_ossetica and Acidobacteriota_bacterium were the dominant microbes affecting As biotransformation by arsenate reductase gene (arsC) expression. Accompanied by the Eh and competitive ions concentration change, amorphous Fe oxide dissolution increased to facilitate the As release, and the changes in the microbial community structure related to As reduction may have enhanced As mobilization in soils irrigated by As-containing brackish groundwater.
Collapse
Affiliation(s)
- Wenjing Dai
- School of Earth System Science, Tianjin University, Tianjin 300072, China
- School of Earth Science and Resource, Chang’an University, Xi’an 710054, China
| | - Rongguang Shi
- Agri-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300072, China
| | - Xiaodong Li
- School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Zhiqi Zhao
- School of Earth Science and Resource, Chang’an University, Xi’an 710054, China
| | - Zihan Xia
- School of Earth Science and Resource, Chang’an University, Xi’an 710054, China
| | - Dongli Li
- School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Yan Li
- School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Gaoyang Cui
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
| | - Shiyuan Ding
- School of Earth System Science, Tianjin University, Tianjin 300072, China
| |
Collapse
|
4
|
Zhang J, Xu X, Liang J, Huang W, Zhao L, Qiu H, Cao X. Natural Attenuation of 2,4-Dichlorophenol in Fe-Rich Soil during Redox Oscillations: Anoxic-Oxic Coupling Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39028924 DOI: 10.1021/acs.est.4c03244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Natural attenuation of organic contaminants can occur under anoxic or oxic conditions. However, the effect of the coupling anoxic-oxic process, which often happens in subsurface soil, on contaminant transformation remains poorly understood. Here, we investigated 2,4-dichlorophenol (2,4-DCP) transformation in Fe-rich soil under anoxic-oxic alternation. The anoxic and oxic periods in the alternating system showed faster 2,4-DCP transformation than the corresponding control single anoxic and oxic systems; therefore, a higher transformation rate (63.4%) was obtained in the alternating system relative to control systems (27.9-42.4%). Compared to stable pH in the alternating system, the control systems presented clear OH- accumulation, caused by more Fe(II) regeneration in the control anoxic system and longer oxygenation in the control oxic system. Since 2,4-DCP was transformed by ion exchangeable Fe(II) in soil via direct reduction in the anoxic process and induced ·OH oxidation in the oxic process, OH- accumulation was unbeneficial because it competed for proton with direct reduction and inhibited •OH generation via complexing with Fe(II). However, the alternating system exhibited OH--buffering capacity via anoxic-oxic coupling processes because the subsequent oxic periods intercepted Fe(II) regeneration in anoxic periods, while shorter exposure to O2 in oxic periods avoided excessive OH- generation. These findings highlight the significant role of anoxic-oxic alternation in contaminant attenuation persistently.
Collapse
Affiliation(s)
- Jingyi Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jun Liang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenfeng Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
- National Field Observation and Research Station of Erhai Lake Ecosystem, Yunnan 671000, China
| |
Collapse
|
5
|
González-Martínez F, Johnson-Restrepo B, Quiñones LA. Arsenic inorganic exposure, metabolism, genetic biomarkers and its impact on human health: A mini-review. Toxicol Lett 2024; 398:105-117. [PMID: 38901734 DOI: 10.1016/j.toxlet.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 04/14/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Inorganic arsenic species exist in the environment as a result of both natural sources, such as volcanic and geothermal activities, and geological formations, as well as anthropogenic activities, including smelting, exploration of fossil fuels, coal burning, mining, and the use of pesticides. These species deposit in water, rocks, soil, sediments, and the atmosphere. Arsenic-contaminated drinking water is a global public health issue because of its natural prevalence and toxicity. Therefore, chronic exposure to arsenic can have deleterious effect on humans, including cancer and other diseases. This work describes the mechanisms of environmental exposure to arsenic, molecular regulatory factors involved in its metabolism, genetic polymorphisms affecting individual susceptibility and the toxic effects of arsenic on human health (oxidative stress, DNA damage and cancer). We conclude that the role of single nucleotide variants affecting urinary excretion of arsenic metabolites are highly relevant and can be used as biomarkers of the intracellular retention rates of arsenic, showing new avenues of research in this field.
Collapse
Affiliation(s)
- Farith González-Martínez
- Faculty of Dentistry and Faculty of Exact Sciences, University of Cartagena, Colombia; Public Health Research Group, University of Cartagena, Colombia; Latin American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile.
| | | | - Luis A Quiñones
- Latin American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile; Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Department of Basic-Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Chile; Department of Pharmaceutical Science and Technology, School of Chemical and Pharmaceutical Sciences, University of Chile, Chile.
| |
Collapse
|
6
|
Bakshe P, Jugade R. Influence of Fe/Al oxyhydroxides and soil organic matter on the adsorption of Pb onto natural stream sediment. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:271-279. [PMID: 38887755 PMCID: PMC11180037 DOI: 10.1007/s40201-024-00894-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 01/21/2024] [Indexed: 06/20/2024]
Abstract
Adsorption of heavy metals on stream sediments has important implications for the fate and transport of contaminants in subsurface ecosystems. Lead (Pb) is a potentially hazardous heavy metal that is found in high amounts in anthropogenic environments, especially aquatic ecosystems. The key mechanisms for distributing this metal in the environment are adsorption and desorption in stream to sediment, and vice versa. Therefore, this work is mainly focused on the study of the influence of amorphous Fe/Al-oxyhydroxides and soil organic matter (SOM) on the adsorption of Pb onto natural stream sediment. Spiking adsorption experiments were carried out with four types of samples namely, untreated dried sediment, Fe/Al-oxyhydroxides depleted sediment, SOM depleted sediment and both Fe/Al as well as SOM depleted sediment in the pH range of 3.0 to 8.0. The results showed that Pb adsorption was reduced by up to 45% in amorphous Fe/Al-oxyhydroxide depleted sediment at pH 4.0 to 6.0, whereas a similar adsorption reduction was observed in SOM depleted sediment at pH 6.5 to 7.5. Maximum Pb adsorption was reduced by up to 75% in both amorphous Fe/Al-oxyhydroxides and SOM depleted sediment samples at pH ranges ranging from 3.0 to 7.0. Furthermore, it was shown that SOM was most significant at pH 6.5, while Fe/Al-oxyhydroxides were more important when pH was > 6.5 for the Pb adsorption in natural stream sediment.
Collapse
Affiliation(s)
- Pankaj Bakshe
- Department of Chemistry, RTM Nagpur University, Nagpur, 33003 India
| | - Ravin Jugade
- Department of Chemistry, RTM Nagpur University, Nagpur, 33003 India
| |
Collapse
|
7
|
Wang X, Wang L, Zhang Y, Zhang M, Zhang D, Zhou L. Efficient co-stabilization of arsenic and cadmium in farmland soil by schwertmannite under long-term flooding-drying condition. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:124005. [PMID: 38648965 DOI: 10.1016/j.envpol.2024.124005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/16/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Simultaneously stabilizing of arsenic (As) and cadmium (Cd) in co-contaminated soil presents substantial challenges due to their contrasting chemical properties. Schwertmannite (Sch) is recognized as a potent adsorbent for As pollution, with alkali modification showing promising results in the simultaneous immobilization of both As and Cd. This study systematically investigated the long-term stabilization efficacy of alkali-modified Sch in Cd-As co-contaminated farmland soil over a 200-day flooding-drying period. The results revealed that As showed significant mobility in flooded conditions, whereas Cd exhibited increased soil availability under drying phases. The addition of Sch did not affect the trends in soil pH and Eh fluctuations; nonetheless, it led to an augmentation in the levels of amorphous iron oxides and SO42- concentration in soil pore water. At a dosage of 0.5% Sch, there was a notable decrease in the mobility and soil availability of As and Cd under both flooding (34.5% and 53.6% at Day 50) and drying conditions (27.0% and 29.4% at Day 130), primarily promoting the transformation of labile metal(loid) fraction into amorphous iron oxide-bound forms. Throughout the flooding-drying treatment period, Sch maintained stable mineral morphology and mineralogical phase, highlighting its long-term stabilization effect. The findings of this study emphasize the promising application of Sch-based soil remediation agents in mitigating the challenges arising from As-Cd co-contamination. Further research is warranted to explore their application in real farmland settings and their impact on the uptake of toxic metal(loid)s by plants.
Collapse
Affiliation(s)
- Xiaomeng Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Lijie Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yiming Zhang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Mingjiang Zhang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Dejin Zhang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
8
|
Kaur N, Paikaray S. Enhanced attenuation of arsenic by Quaternary agricultural soils of Eastern Punjab, India upon anionic clays and gypsum amendment. ENVIRONMENTAL TECHNOLOGY 2024; 45:1708-1720. [PMID: 36416765 DOI: 10.1080/09593330.2022.2151940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Agricultural soil of the Sutlej River basin was evaluated for its natural attenuation efficacy for arsenic (As) under the field variables of pH, competitive anions, contact time and varied As contents. The role of layered double hydroxides (HTLDH) and gypsum on uptake efficiency and long-term stability of entrapped As demonstrates rapid As uptake by both geosorbents without mineral structure altering. Arsenic retention by gypsum is poorer than that by HTLDH and greater uptake (∼100% within 2 h) was achieved in the co-precipitation process than adsorption on HTLDH. Freundlich isotherm and pseudo-second-order kinetic model fits of the data demonstrate the multilayer rate-limiting sorption process. NO3- and PO43- hardly affected As retention capacity of HTLDH and gypsum with greater retention at pH 6 and high sorbate concentrations. Studied soil shows a strong potential for As (0.68 g kg-1) which enhanced upon adding HTLDH, while gypsum lowered As retention efficiency of soil except at pH 6.0. Gypsum exhibited relatively greater desorption than HTLDH where almost no As was desorbed in the latter case within seven days of exposure, but ∼30% sorbed As gets desorbed from gypsum which was further enhanced by NO3-+PO43- and soil mixing. Identical behaviour was observed from the soil and HTLDH/gypsum mixture at variable ratios as well. This study shows that MgFe-based HTLDH can efficiently retard arsenic mobilization from the soil with competitive anions and wide pH ultimately limiting As bioavailability in the environment and can be successfully used as a potential scavenger for As remediation purposes.
Collapse
Affiliation(s)
- Navjot Kaur
- Environmental Geochemistry Lab, Department of Geology, Panjab University, Chandigarh, India
| | - Susanta Paikaray
- Environmental Geochemistry Lab, Department of Geology, Panjab University, Chandigarh, India
| |
Collapse
|
9
|
Di Caprio F, Altimari P, Astolfi ML, Pagnanelli F. Optimization of two-phase synthesis of Fe-hydrochar for arsenic removal from drinking water: Effect of temperature and Fe concentration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119834. [PMID: 38128206 DOI: 10.1016/j.jenvman.2023.119834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Arsenic-contaminated water is a global concern that demands the development of cost-effective treatments to ensure a safe drinking water supply for people worldwide. In this paper, we report the optimization of a two-phase synthesis for producing a hydrochar core from olive pomace to serve as support for the deposition of Fe-hydroxide, which is the active component in As(V) removal. The operating conditions considered were the initial concentration of Fe in solution in the hydrothermal treatment (phase I) and the temperature of Fe precipitation (phase II). The obtained samples were characterized for their elemental composition, solid yield, mineral content (Fe and K), phenol release, As(V) sorption capacity, and sorbent stability. Correlation analysis revealed that higher Fe concentrations (26.8 g/L) ensured better carbonization during hydrothermal treatment, increased arsenic removal, reduced concentrations of phenols in the final liquid, and improved stability of the sorbent composite. On the other hand, the temperature during Fe precipitation (phase II) can be maintained at lower levels (25-80 °C) since higher temperatures yielded lower adsorption capacity. Regression analysis demonstrated the significance of the main effects of the parameters on sorption capacity and provided a model for selecting operating conditions (Fe concentration and phase II temperature) to obtain composite sorbents with tailored sorption properties.
Collapse
Affiliation(s)
- Fabrizio Di Caprio
- Dipartimento di Chimica, Università Sapienza di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Pietro Altimari
- Dipartimento di Chimica, Università Sapienza di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Maria Luisa Astolfi
- Dipartimento di Chimica, Università Sapienza di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy; CIABC, Università Sapienza di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Francesca Pagnanelli
- Dipartimento di Chimica, Università Sapienza di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
10
|
Du X, Inui T, Ogata S. Scaling effects on arsenic release from excavated hydrothermally altered rocks in column experiments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:122024-122037. [PMID: 37964149 PMCID: PMC10724340 DOI: 10.1007/s11356-023-30594-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023]
Abstract
The excavation of hydrothermally altered rocks from construction sites in Japan has raised concerns over environmental pollution due to the arsenic (As) release beyond the regulatory limit. An accurate assessment of As leaching from these rocks is imperative to understanding potential environmental implications and formulating efficient containment measures. However, the conduction of column leaching experiments to evaluate As leaching from these rocks encounters a lack of well-established protocols primarily due to the ambiguity surrounding scaling effects resulting from alterations in particle sizes and the corresponding column dimensions. Our study aimed to address this critical issue by conducting column percolation experiments on hydrothermally altered rocks of two distinct particle size ranges and rock layer thicknesses. The pH value was found to be proportional to the specific surface area (SSA) of rocks and the rock layer thickness in terms of H+ concentrations. Furthermore, the concentration and leachability of As showed a similar proportionality with the SSA. In contrast, the concentration of As remained relatively unaffected by the increased rock layer thickness, while the leachability of As was noticeably diminished in the column with a thicker rock layer. The absence of elevated As concentration and the decrease in leachability can be attributed to the enhanced As onto Fe/Al oxyhydroxides/oxides within the half-bottom part of the column with a thicker rock layer. Our findings underscore the importance of considering the SSA of rocks and rock layer thickness in the column experiments and help in the design of effective strategies to mitigate environmental contamination.
Collapse
Affiliation(s)
- Xun Du
- Department of Civil Engineering, Division of Global Architecture, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Toru Inui
- Department of Civil Engineering, Division of Global Architecture, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Sho Ogata
- Department of Civil Engineering, Division of Global Architecture, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
11
|
Yeo KFH, Dong Y, Xue T, Chen Z, Zhang N, Yang Y, Han L, Liu M, Nsilani Kouediatouka A, Mouguegue HPPL, Wang W. Characterisation of kapok fibre's biochar for arsenate adsorption removal from aqueous solution. ENVIRONMENTAL RESEARCH 2023; 228:115822. [PMID: 37028542 DOI: 10.1016/j.envres.2023.115822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 03/17/2023] [Accepted: 03/30/2023] [Indexed: 05/16/2023]
Abstract
Al-KBC was produced through the simple pyrolysis of Al-modified kapok fibres at high temperatures. Using the N2 adsorption Brunauer Emmett Teller (BET) process, Fourier transforms infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), the energy-dispersive X-ray spectroscopy (EDS) spectroscopy, and X-ray photoelectron spectroscopy (XPS), the sorbent changes and characteristics were analysed. As a result of Al's addition to the fibre's surface, Al-KBC exhibited superior As(V) adsorption performance compared to KBC due to better pore structures. Experiments on the kinetics of As(V) adsorption revealed that the adsorption followed the pseudo-second-order model and that intradiffusion was not the only factor governing the adsorption. Experiments with isotherms indicated that the adsorption mechanism corresponded to the Langmuir model, and the adsorption capacity Qm of Al-KBC at 25 °C was 483 μg/g. The thermodynamic experiments suggested that the adsorption reactions were spontaneous endothermic with a random approach at the adsorption interface. 25 mg/L of coexisting ions such as sulphate and phosphate reduced the sorbent As(V) removal ability to 65% and 39%. After seven cycles of adsorption/desorption, Al-KBC demonstrated satisfactory performance in terms of reusability, adsorbing 53% of 100 μg/L As(V) from the water. This novel BC can probably be used as a filter to purify groundwater with high As(V) concentration in the rural zone.
Collapse
Affiliation(s)
- Kanfolo Franck Herve Yeo
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi, 710049, PR China
| | - Yingying Dong
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi, 710049, PR China
| | - Tongxuan Xue
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi, 710049, PR China
| | - Zhiwen Chen
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi, 710049, PR China
| | - Nan Zhang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi, 710049, PR China
| | - Ye Yang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi, 710049, PR China
| | - Liu Han
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi, 710049, PR China
| | - Meiling Liu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi, 710049, PR China
| | - Ange Nsilani Kouediatouka
- Key Laboratory of Education Ministry for Modern Design and Rotor Bearing Systems, Department of Mechanical Engineering, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi, 710049, PR China
| | | | - Wendong Wang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, Shaanxi, 710049, PR China; Loess Plateau Eco-environment Restoration & Livable Villages Research Center, Xi'an, Shaanxi, 710000, PR China.
| |
Collapse
|
12
|
Li X, Wu Y, Wang H, Wen J, Zhu M. Effects of microorganisms on the migration and transformation of typical heavy metal (loid)s in mercury-thallium mining waste slag during the combined application of fish manure and natural minerals. CHEMOSPHERE 2023:139385. [PMID: 37394189 DOI: 10.1016/j.chemosphere.2023.139385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/05/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
Mercury-thallium mining waste slag has the characteristics of extremely acidic, low fertility and highly toxic polymetallic composite pollution, making it difficult to be treated. We use nitrogen- and phosphorus-rich natural organic matter (fish manure) and calcium- and phosphorus-rich natural minerals (carbonate and phosphate tailings) individually or in combination to amend the slag, analyze their effects on the migration and transformation of potentially toxic elements (Tl and As) in the waste slag. We set up sterile and non-sterile treatments specifically to further investigate the direct or indirect effect of microorganisms attached to added organic matter on Tl and As. The results showed that addition of fish manure and natural minerals to the non-sterile treatments promoted the release of As and Tl, resulting in an increase in As and Tl concentrations in the tailing lixiviums from 0.57 to 2.38-6.37 μg/L and from 69.92 to 107.51-157.21 μg/L, respectively. Sterile treatments promoted the release of As (from 0.28 to 49.88-104.18 μg/L) and inhibited the release of Tl (from 94.53 to 27.60-34.50 μg/L). Use of fish manure and natural minerals alone or in combination significantly reduced the biotoxicity of the mining waste slag, in which the combination was more efficient. XRD analysis showed that microorganisms in the medium promoted the dissolution of jarosite and other minerals, which indicated that the release and migration of As and Tl in Hg-Tl mining waste slag were closely related to microbial activities. Furthermore, metagenomic sequencing revealed that microorganisms such as Prevotella, Bacteroides, Geobacter, and Azospira, which were abundant in the non-sterile treatments, had remarkable resistance to a variety of highly toxic heavy metals and could affect the dissolution of minerals and the release and migration of heavy metals through redox reactions. Our results may aid in the rapid soilless ecological restoration of related large multi-metal waste slag dumps.
Collapse
Affiliation(s)
- Xingying Li
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Yonggui Wu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang, 550025, China; Guizhou Hostile Environment Ecological Restoration Technology Engineering Research Centre, Guizhou University, Guiyang, 550025, China.
| | - Hui Wang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Jichang Wen
- New Rural Development Research Institute, Guizhou University, Guiyang, 550025, China
| | - Mei Zhu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
13
|
Kanel SR, Das TK, Varma RS, Kurwadkar S, Chakraborty S, Joshi TP, Bezbaruah AN, Nadagouda MN. Arsenic Contamination in Groundwater: Geochemical Basis of Treatment Technologies. ACS ENVIRONMENTAL AU 2023; 3:135-152. [PMID: 37215436 PMCID: PMC10197174 DOI: 10.1021/acsenvironau.2c00053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 05/24/2023]
Abstract
Arsenic (As) is abundant in the environment and can be found in both organic (e.g., methylated) and inorganic (e.g., arsenate and arsenite) forms. The source of As in the environment is attributed to both natural reactions and anthropogenic activities. As can also be released naturally to groundwater through As-bearing minerals including arsenopyrites, realgar, and orpiment. Similarly, agricultural and industrial activities have elevated As levels in groundwater. High levels of As in groundwater pose serious health risks and have been regulated in many developed and developing countries. In particular, the presence of inorganic forms of As in drinking water sources gained widespread attention due to their cellular and enzyme disruption activities. The research community has primarily focused on reviewing the natural occurrence and mobilization of As. Yet, As originating from anthropogenic activities, its mobility, and potential treatment techniques have not been covered. This review summarizes the origin, geochemistry, occurrence, mobilization, microbial interaction of natural and anthropogenic-As, and common remediation technologies for As removal from groundwater. In addition, As remediation methods are critically evaluated in terms of practical applicability at drinking water treatment plants, knowledge gaps, and future research needs. Finally, perspectives on As removal technologies and associated implementation limitations in developing countries and small communities are discussed.
Collapse
Affiliation(s)
- Sushil R. Kanel
- Department
of Chemistry, Wright State University, Dayton, Ohio 45435, United States
| | - Tonoy K. Das
- Nanoenvirology
Research Group, Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Rajender S. Varma
- Office
of Research & Development, Center for Environmental Solutions
and Emergency Response (CESER), United States
Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - Sudarshan Kurwadkar
- Department
of Civil and Environmental Engineering, California State University, Fullerton, California 92831, United States
| | - Sudip Chakraborty
- Laboratory
of Transport Phenomena & Biotechnology, Department of DIMES, Universita della Calabria, Via Pietro Bucci, Cubo 42/a, Rende 87036, (CS), Italy
| | - Tista Prasai Joshi
- Environment
and Climate Study Laboratory, Faculty of Science, Nepal Academy of Science and Technology, Lalitpur 44700, Khumaltar, Nepal
| | - Achintya N. Bezbaruah
- Nanoenvirology
Research Group, Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Mallikarjuna N. Nadagouda
- Office
of Research & Development, Center for Environmental Solutions
and Emergency Response (CESER), United States
Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| |
Collapse
|
14
|
Huang X, Li T, Yang G. Immobilization of As(III) by gibbsite and catalytic oxidation to As(V): Profound impacts of doping and unraveling of associated mechanisms. CHEMOSPHERE 2023; 313:137583. [PMID: 36529173 DOI: 10.1016/j.chemosphere.2022.137583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
As(III) is highly toxic, and its adsorption and oxidation to As(V) by minerals represent two effective approaches to remediate As(III)-contaminated sites. Gibbsite, one of the most abundant natural minerals, shows decent adsorption for As(III), and in this study, mechanisms of As(III) immobilization and oxidation by gibbsite with different dopants (M = Fe(III), Mn(III), Mn(IV)) are addressed by periodic DFT calculations. Influences of Fe(III) content and Mn oxidation state are also inspected. Although a majority remain structurally similar to those of pristine gibbsite, new adsorption configurations emerge due to doping: Inner-sphere complexes with M - As bonds for all doping, bidentate binuclear complexes for double Fe(III) doping, and physisorption with weak OMn-As interactions for Mn(IV) doping. As(III) adsorption affinities are significantly altered by doping and rely on dopants, while inner-sphere complexes with M-OAs bonds are always lowest-energy except doping Mn(III) that prefers trigonal bipyramidal coordination and impedes As(III) chemisorption. Doping causes strong M-3d and OAs-2p orbital interactions that facilitate As(III) adsorption whereas disappear for pristine gibbsite. Double Fe(III)- and Mn(IV)-doped gibbsite materials are effective for As(III) oxidation to As(V), and mechanisms differ significantly although all are characterized by dual electron transfers. Activation barriers for the most favorable reaction paths amount to 1.02 and 1.26-1.31 eV, respectively. Physisorbed and outer-sphere As(III) complexes exhibit comparable reactivities as chemisorbed complexes that become focus of literature reports, and may also be involved during interfacial and environmental reactions. Results rationalize experimental observations available, and provide significantly new insights that conduce to manage As-associated pollution and design efficient As(III) scavengers and oxidation catalysts.
Collapse
Affiliation(s)
- Xiaoxiao Huang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Tingting Li
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Gang Yang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
15
|
Varner TS, Kulkarni HV, Nguyen W, Kwak K, Cardenas MB, Knappett PSK, Ojeda AS, Malina N, Bhuiyan MU, Ahmed KM, Datta S. Contribution of sedimentary organic matter to arsenic mobilization along a potential natural reactive barrier (NRB) near a river: The Meghna river, Bangladesh. CHEMOSPHERE 2022; 308:136289. [PMID: 36058378 DOI: 10.1016/j.chemosphere.2022.136289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/24/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Elevated dissolved arsenic (As) concentrations in the shallow aquifers of Bangladesh are primarily caused by microbially-mediated reduction of As-bearing iron (Fe) (oxy)hydroxides in organic matter (OM) rich, reducing environments. Along the Meghna River in Bangladesh, interactions between the river and groundwater within the hyporheic zone cause fluctuating redox conditions responsible for the formation of a Fe-rich natural reactive barrier (NRB) capable of sequestering As. To understand the NRB's impact on As mobility, the geochemistry of riverbank sediment (<3 m depth) and the underlying aquifer sediment (up to 37 m depth) was analyzed. A 24-hr sediment-water extraction experiment was performed to simulate interactions of these sediments with oxic river water. The sediment and the sediment-water extracts were analyzed for inorganic and organic chemical parameters. Results revealed no differences between the elemental composition of riverbank and aquifer sediments, which contained 40 ± 12 g/kg of Fe and 7 ± 2 mg/kg of As, respectively. Yet the amounts of inorganic and organic constituents extracted were substantially different between riverbank and aquifer sediments. The water extracted 6.4 ± 16.1 mg/kg of Fe and 0.03 ± 0.02 mg/kg of As from riverbank sediments, compared to 154.0 ± 98.1 mg/kg of Fe and 0.55 ± 0.40 mg/kg of As from aquifer sediments. The riverbank and aquifer sands contained similar amounts of sedimentary organic matter (SOM) (17,705.2 ± 5157.6 mg/kg). However, the water-extractable fraction of SOM varied substantially, i.e., 67.4 ± 72.3 mg/kg in riverbank sands, and 1330.3 ± 226.6 mg/kg in aquifer sands. Detailed characterization showed that the riverbank SOM was protein-like, fresh, low molecular weight, and labile, whereas SOM in aquifer sands was humic-like, older, high molecular weight, and recalcitrant. During the dry season, oxic conditions in the riverbank may promote aerobic metabolisms, limiting As mobility within the NRB.
Collapse
Affiliation(s)
- Thomas S Varner
- Department of Earth and Planetary Sciences, University of Texas at San Antonio, San Antonio, TX, 78249, USA.
| | - Harshad V Kulkarni
- Department of Earth and Planetary Sciences, University of Texas at San Antonio, San Antonio, TX, 78249, USA.
| | - William Nguyen
- Department of Geological Sciences, The University of Texas at Austin, TX, 78712, USA
| | - Kyungwon Kwak
- Department of Geology and Geophysics, Texas A&M University, College Station, TX, 77843, USA
| | - M Bayani Cardenas
- Department of Geological Sciences, The University of Texas at Austin, TX, 78712, USA
| | - Peter S K Knappett
- Department of Geology and Geophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Ann S Ojeda
- Department of Geosciences, Auburn University, Auburn, AL, 36849, USA
| | - Natalia Malina
- Department of Geosciences, Auburn University, Auburn, AL, 36849, USA
| | | | - Kazi M Ahmed
- Department Geology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Saugata Datta
- Department of Earth and Planetary Sciences, University of Texas at San Antonio, San Antonio, TX, 78249, USA.
| |
Collapse
|
16
|
Nguyen KT, Navidpour AH, Ahmed MB, Mojiri A, Huang Y, Zhou JL. Adsorption and desorption behavior of arsenite and arsenate at river sediment-water interface. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115497. [PMID: 35751289 DOI: 10.1016/j.jenvman.2022.115497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/05/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
The adsorption of inorganic arsenic (As) plays an important role in the mobility and transport of As in the river environment. In this work, the adsorption and desorption of arsenite [As(III)] and arsenate [As(V)] on river sediment were conducted under different pH, initial As concentrations, river water and sediment composition to assess As adsorption behavior and mechanism. Both adsorption kinetics and equilibrium results showed higher adsorption capacity of sediment for As(V) than As(III). Adsorption of As(III) and As(V) on river sediment was favored in acidic to neutral conditions and on finer sediment particles, while sediment organic matter marginally reduced adsorption capacity. In addition, higher adsorption affinity of As(III) and As(V) in river sediment was observed in deionised water than in river water. For the release process, the desorption of both As(III) and As(V) followed nonlinear kinetic models well, showing higher amount of As(III) release from sediment than As(V). Adsorption isotherm was well described by both Langmuir and Freundlich models, demonstrating higher maximum adsorption capacity of As(V) at 298.7 mg/kg than As(III) at 263.3 mg/kg in deionised water, and higher maximum adsorption capacity of As(III) of 234.3 mg/kg than As(V) of 206.2 mg/kg in river water. The XRD showed the changes in the peaks of mineral groups of sediment whilst FTIR results revealed the changes related to surface functional groups before and after adsorption, indicating that Fe-O/Fe-OH, Si(Al)-O, hydroxyl and carboxyl functional groups were predominantly involved in As(III) and As(V) adsorption on sediment surface. XPS analysis evidenced the transformation between these As species in river sediment after adsorption, whilst SEM-EDS revealed higher amount of As(V) in river sediment than As(III) due to the lower signal of Al.
Collapse
Affiliation(s)
- Kien Thanh Nguyen
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| | - Amir Hossein Navidpour
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| | - Mohammad Boshir Ahmed
- School of Material Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Amin Mojiri
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527, Hiroshima, Japan
| | - Yuhan Huang
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| | - John L Zhou
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia.
| |
Collapse
|
17
|
Álvarez-Ayuso E, Murciego A, Rodríguez MA, Fernández-Pozo L, Cabezas J, Naranjo-Gómez JM, Mosser-Ruck R. Antimony distribution and mobility in different types of waste derived from the exploitation of stibnite ore deposits. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151566. [PMID: 34758344 DOI: 10.1016/j.scitotenv.2021.151566] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Wastes derived from the exploitation of stibnite ore deposits were studied to determine their mineralogical, chemical, and environmental characteristics and establish the Sb distribution and the current and long-term risks of Sb mobilization. Representative samples of mine waste rocks, mine tailings, and smelting waste were studied by X-ray powder diffraction, polarized light microscopy, electron microprobe analysis, and digestion, leaching, and extraction procedures. The main Sb-bearing minerals and phases identified in the smelting waste were natrojarosite, iron (oxyhydr)oxides, mixtures of iron and antimony (oxyhydr)oxides, and tripuhyite; those in the mine tailings and mine waste rocks were iron (oxyhydr)oxides and/or mixtures of iron and antimony (oxyhydr)oxides. Iron (oxyhydr)oxides and natrojarosite had high Sb contents, with maximum values of 16.51 and 9.63 wt% Sb2O5, respectively. All three types of waste were characterized as toxic; the mine waste rocks and mine tailings would require pretreatment to decrease their leachable Sb content before they would be acceptable at hazardous waste landfills. Relatively little of the Sb was in desorbable forms, which accounted for <0.01 and <0.8% of the total Sb content in the smelting waste and mine waste rocks/mine tailings, respectively. Under reducing conditions, further Sb mobilization from mine waste rocks and mine tailings could occur (up to 4.6 and 3.3% of the total content, respectively), considerably increasing the risk that Sb will be introduced into the surroundings. Although the smelting waste had the highest total Sb content, it showed the lowest risk of Sb release under different environmental conditions. The significant Fe levels in the smelting waste facilitated the formation of various Fe compounds that greatly decreased the Sb mobilization from these wastes.
Collapse
Affiliation(s)
- E Álvarez-Ayuso
- Department of Environmental Geochemistry, IRNASA (CSIC), C/ Cordel de Merinas 40-52, 37008 Salamanca, Spain.
| | - A Murciego
- Department of Geology, Salamanca University, Plza. de los Caídos s/n, 37008 Salamanca, Spain
| | - M A Rodríguez
- Department of Environmental Resources Analysis, Extremadura University, Avda. Elvas s/n, 06071 Badajoz, Spain
| | - L Fernández-Pozo
- Department of Environmental Resources Analysis, Extremadura University, Avda. Elvas s/n, 06071 Badajoz, Spain
| | - J Cabezas
- Department of Environmental Resources Analysis, Extremadura University, Avda. Elvas s/n, 06071 Badajoz, Spain
| | - J M Naranjo-Gómez
- Agricultural School, Extremadura University, Avda. de Adolfo Suárez s/n, 06007 Badajoz, Spain
| | - R Mosser-Ruck
- Georessources UMR 7359 CNRS-UL, Université de Lorraine, BP 70239, Vandœuvre-lès-Nancy 54506 Cedex, France
| |
Collapse
|
18
|
Wang D, Zhang J, Cao R, Zhang Y, Li J. The detection and characterization techniques for the interaction between graphene oxide and natural colloids: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:151906. [PMID: 34838546 DOI: 10.1016/j.scitotenv.2021.151906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
The high dispersibility of graphene oxide (GO) and the universality of natural colloids (clay minerals, (hydr)oxides of Al, Fe, silica, etc.) make them interact easily. Many kinds of analytical methods have been used to study the interaction between GO and natural colloids. This review provides a comprehensive overview of analytical methods for the detection and quantification of interaction process. We highlighted the influence of the most relevant environmental factors (ionic strength, pH, etc.) on batch experiment, quartz crystal microbalance with dissipation monitoring measurements, and column experiments. Besides, the benefits and drawbacks of spectroscopic, microscopic techniques, theoretical models, calculation and time-resolved dynamic light scattering methods also have discussed in this work. This review can give some guidance to researchers in their selection and combination of the technique for the research of the interaction between GO and natural colloids.
Collapse
Affiliation(s)
- De Wang
- CAS Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Jianfeng Zhang
- CAS Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Ruya Cao
- CAS Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Yingzi Zhang
- CAS Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Jiaxing Li
- CAS Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, PR China.
| |
Collapse
|
19
|
Adsorption and Its Mechanism of Arsenate in Aqueous Solutions by Red Soil. WATER 2022. [DOI: 10.3390/w14040579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
The removal, and its mechanism, of arsenate from aqueous solutions was investigated using Yunnan red soil. A series of adsorption experiments was designed to disclose the effect of key factors (soil types, soil/solution rates, initial arsenate concentrations, and shaking speeds) on the adsorption capacity of Yunnan red soil for arsenate. The soil/solution ratio was optimized as 0.05 g/100 mL to balance the adsorption capacity and removal efficiency. The optimal shaking speed (225 rpm) not only ensured enough contact frequency between the Yunnan red soil and the arsenate, but also reduced the mass transfer resistance. The results from applying an orthogonal array method showed that the most significant factor affecting arsenate removal efficiency was soil type, followed by the soil/solution ratio, contact time, and shaking speed. The IR spectra of the precipitates further confirmed that the metal arsenide was settled by the Yunnan red soil, indicating that the arsenate ion existed on the red soil surface in the form of protonated bidentate surface complexation of –FeO2As(O)(OH)− and FeO2As(O)2−. These results indicate that Yunnan red soil is promising for the removal of arsenate from aqueous solutions; it may thus be suitable as a new adsorbent for arsenate removal during water treatment.
Collapse
|
20
|
Tum S, Toda K, Matsui T, Kikuchi R, Kong S, Meas P, Ear U, Ohtomo Y, Otake T, Sato T. Seasonal effects of natural attenuation on drainage contamination from artisanal gold mining, Cambodia: Implication for passive treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150398. [PMID: 34563902 DOI: 10.1016/j.scitotenv.2021.150398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
In Mondulkiri province, Cambodia, artisanal gold miners dump tailings and wastewater from gold processing into a tributary of the Prek Te River. In the rainy season, heavy metal concentrations in the tributary decrease below the WHO drinking water standard levels through natural attenuation; however, this does not occur in the dry season. To further understand the natural attenuation mechanism, detailed analyses of the wastewater from tailing and tributary water, tributary sediments, waste rock, and ore minerals were undertaken in both seasons. The high concentration of dissolved Fe in the contaminated tributary plays a significant role in As removal during the rainy season, whereas other elements such as Ni, Se, and Cu concentration decrease due to dilution. Schwertmannite formation, controlled by iron-oxidizing bacteria, was only found at the bottom of the tributary during the rainy season. In the dry season, As, Ni, Se, and Cu concentrations remained at their original levels because there was no formation of schwertmannite or dilution by rainwater. The existing schwertmannite also starts to dissolve as the pH decreases. Seasonal dynamics cause the failure of natural attenuation; thus, methods for maintaining its effectiveness in the dry season are needed. In addition, geochemical modeling was conducted to determine the significant roles of schwertmannite formation and dilution of rainwater in the tributary. Schwertmannite is a potential adsorbent for As removal from drainage. However, dilution provided indirect and direct impacts on the tributary, such as increasing the pH and diluting the concentration of toxic elements.
Collapse
Affiliation(s)
- Sereyroith Tum
- Graduate School of Engineering, Hokkaido University, N13W8, Kita-Ku, Sapporo 060-8628, Japan.
| | - Kanako Toda
- Nuclear Professional School, School of Engineering, University of Tokyo, 2-22 Shirakata, Tokai, Ibaraki 319-1188, Japan
| | - Tatsuya Matsui
- Graduate School of Engineering, Hokkaido University, N13W8, Kita-Ku, Sapporo 060-8628, Japan
| | - Ryosuke Kikuchi
- Faculty of Engineering, Hokkaido University, N13W8, Kita-Ku, Sapporo 060-8628, Japan
| | - Sitha Kong
- Geology Department, Ministry of Mine and Energy, Pasteur Street 51, Phnom Penh 12210, Cambodia
| | - Panha Meas
- Geology Department, Ministry of Mine and Energy, Pasteur Street 51, Phnom Penh 12210, Cambodia
| | - Unsovath Ear
- Geology Department, Ministry of Mine and Energy, Pasteur Street 51, Phnom Penh 12210, Cambodia
| | - Yoko Ohtomo
- Faculty of Engineering, Hokkaido University, N13W8, Kita-Ku, Sapporo 060-8628, Japan
| | - Tsubasa Otake
- Faculty of Engineering, Hokkaido University, N13W8, Kita-Ku, Sapporo 060-8628, Japan
| | - Tsutomu Sato
- Faculty of Engineering, Hokkaido University, N13W8, Kita-Ku, Sapporo 060-8628, Japan
| |
Collapse
|
21
|
Das TK, Poater A. Review on the Use of Heavy Metal Deposits from Water Treatment Waste towards Catalytic Chemical Syntheses. Int J Mol Sci 2021; 22:13383. [PMID: 34948184 PMCID: PMC8706456 DOI: 10.3390/ijms222413383] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/27/2022] Open
Abstract
The toxicity and persistence of heavy metals has become a serious problem for humans. These heavy metals accumulate mainly in wastewater from various industries' discharged effluents. The recent trends in research are now focused not only on the removal efficiency of toxic metal particles, but also on their effective reuse as catalysts. This review discusses the types of heavy metals obtained from wastewater and their recovery through commonly practiced physico-chemical pathways. In addition, it covers the advantages of the new system for capturing heavy metals from wastewater, as compared to older conventional technologies. The discussion also includes the various structural aspects of trapping systems and their hypothesized mechanistic approaches to immobilization and further rejuvenation of catalysts. Finally, it concludes with the challenges and future prospects of this research to help protect the ecosystem.
Collapse
Affiliation(s)
- Tushar Kanti Das
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India;
| | - Albert Poater
- Institute of Computational Chemistry and Catalysis, Department of Chemistry, University of Girona, c/Maria Aurèlia Capmany 69, 17003 Girona, Spain
| |
Collapse
|
22
|
Velli P, Manolikaki I, Diamadopoulos E. Effect of biochar produced from sewage sludge on tomato (Solanum lycopersicum L.) growth, soil chemical properties and heavy metal concentrations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113325. [PMID: 34325369 DOI: 10.1016/j.jenvman.2021.113325] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/09/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
The addition of biochar, as shown in the literature, improves significantly the chemical and physical soil properties and plant growth. This study examined the effect of biochar, compost and the combination of them on growth, nutrient and heavy metal concentrations of tomato. Biochar (BC) was produced from sewage sludge by pyrolysis at the temperature of 300 °C. The pot trials were carried out under an open-side greenhouse for a total of four months and under four treatments. The treatments applied were: Untreated soil (Control); soil with 2% w/w biochar (BC-SS); soil with 2% w/w compost (Compost); a mixture of biochar and compost at a 2% w/w level (BC-SS + Compost). The application of biochar exhibited substantial improvement on several soil properties. Total organic carbon (TOC) of soil increased (67%-85%), as did the nitrate nitrogen (55%) and ammonium nitrogen (145%). Additionally, available phosphorus significantly increased (45.5%-54.5%) by the application of biochar with/without compost. Dry weight of the aboveground (stems) and belowground (roots) plant tissues increased as well, although tomato yield was not increased significantly. Concentration of heavy metals and trace elements in tomato tissues was quite low. Traces of chromium (Cr), nickel (Ni), and cobalt (Co) were found only in roots of those treated, while silicon (Si) was present in the roots and stems. Arsenic (As), molybdenum (Mo) and lead (Pb) were detected in all plant tissues, but their concentrations did not exceed the permissible levels established for vegetables. Furthermore, the concentration of arsenic (As) and lead (Pb) in fruits decreased by the addition of the amendments (12%-65%). In conclusion, the addition of sewage sludge biochar improved soil characteristics and plant growth. Yet, prior to its general use, factors such as the type of biomass, soil, rate of application and crop must always be taken into consideration.
Collapse
Affiliation(s)
- Paraskevi Velli
- School of Environmental Engineering, Technical University of Crete, Chania, 73100, Greece
| | - Ioanna Manolikaki
- School of Environmental Engineering, Technical University of Crete, Chania, 73100, Greece; Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization ''DIMITRA'', Chania, 73100, Greece
| | - Evan Diamadopoulos
- School of Environmental Engineering, Technical University of Crete, Chania, 73100, Greece.
| |
Collapse
|
23
|
Nguyen KT, Ahmed MB, Mojiri A, Huang Y, Zhou JL, Li D. Advances in As contamination and adsorption in soil for effective management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113274. [PMID: 34271355 DOI: 10.1016/j.jenvman.2021.113274] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) is a heavy metal that causes widespread contamination and toxicity in the soil environment. This article reviewed the levels of As contamination in soils worldwide, and evaluated how soil properties (pH, clay mineral, organic matter, texture) and environmental conditions (ionic strength, anions, bacteria) affected the adsorption of As species on soils. The application of the adsorption isotherm models for estimating the adsorption capacities of As(III) and As(V) on soils was assessed. The results indicated that As concentrations in contaminated soil varying significantly from 1 mg/kg to 116,000 mg/kg, with the highest concentrations being reported in Mexico with mining being the dominating source. Regarding the controlling factors of As adsorption, soil pH, clay mineral and texture had demonstrated the most significant impacts. Both Langmuir and Freundlich isotherm models can be well fitted with As(III) and As(V) adsorption on soils. The Langmuir adsorption capacity varied in the range of 22-42400 mg/kg for As(V), which is greater than 45-8901 mg/kg for As(III). The research findings have enhanced our knowledge of As contamination in soil and its underlying controls, which are critical for the effective management and remediation of As-contaminated soil.
Collapse
Affiliation(s)
- Kien Thanh Nguyen
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - Mohammad Boshir Ahmed
- School of Material Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Amin Mojiri
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527, Hiroshima, Japan
| | - Yuhan Huang
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - John L Zhou
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia.
| | - Donghao Li
- Department of Chemistry, MOE Key Laboratory of Biological Resources of Changbai Mountain & Functional Molecules, Yanbian University, Ministry of Education, Park Road 977, Yanji, 133002, Jilin Province, PR China
| |
Collapse
|
24
|
Luo T, Xu J, Li J, Wu F, Zhou D. Strengthening arsenite oxidation in water using metal-free ultrasonic activation of sulfite. CHEMOSPHERE 2021; 281:130860. [PMID: 34020199 DOI: 10.1016/j.chemosphere.2021.130860] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/20/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
Although sulfite-based advanced oxidation processes (AOPs) have received renewed attention due to the production of oxysulfur radicals, the feasibility of using ultrasound (US) to activate sulfite remains unknown. In this work, low frequency ultrasound has been applied for the first time to develop a novel sulfite activation process (US-S(IV)) for enhanced oxidation of arsenite (As(III)). Our results showed that the US-S(IV) process with 1 mM sulfite addition and 20 kHz 650 W ultrasound can achieve approximately 2.9-fold increase in As(III) oxidation rate compared to the US process at pH 7. The mechanisms underpinning the US-S(IV) process have been probed through radical-scavenging experiments and electron spin resonance (ESR) spectrometry. Direct ultrasonolysis of sulfite has been demonstrated to be the predominant pathway producing the primary sulfite radical (SO3⁻) in the US-S(IV) process. Besides, the US-S(IV) process also works well in the treatment process of natural water, suggesting that this process could be promising in commercial scale application. This work not only provides a new application of ultrasound in sulfite-based AOP, but also provides further insights into how sulfite impacts the US process.
Collapse
Affiliation(s)
- Tao Luo
- School of Resources and Environmental Science, Wuhan University, Wuhan, 430079, PR China
| | - Jing Xu
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China; Hubei Key Laboratory of Water System Science for Sponge City Construction, Wuhan University, Wuhan, 430072, China.
| | - Jinjun Li
- School of Resources and Environmental Science, Wuhan University, Wuhan, 430079, PR China
| | - Feng Wu
- School of Resources and Environmental Science, Wuhan University, Wuhan, 430079, PR China
| | - Danna Zhou
- Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074, PR China.
| |
Collapse
|
25
|
Khan FSA, Mubarak NM, Tan YH, Khalid M, Karri RR, Walvekar R, Abdullah EC, Nizamuddin S, Mazari SA. A comprehensive review on magnetic carbon nanotubes and carbon nanotube-based buckypaper for removal of heavy metals and dyes. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125375. [PMID: 33930951 DOI: 10.1016/j.jhazmat.2021.125375] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/01/2021] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
Industrial effluents contain several organic and inorganic contaminants. Among others, dyes and heavy metals introduce a serious threat to drinking waterbodies. These pollutants can be noxious or carcinogenic in nature, and harmful to humans and different aquatic species. Therefore, it is of high importance to remove heavy metals and dyes to reduce their environmental toxicity. This has led to an extensive research for the development of novel materials and techniques for the removal of heavy metals and dyes. One route to the removal of these pollutants is the utilization of magnetic carbon nanotubes (CNT) as adsorbents. Magnetic carbon nanotubes hold remarkable properties such as surface-volume ratio, higher surface area, convenient separation methods, etc. The suitable characteristics of magnetic carbon nanotubes have led them to an extensive search for their utilization in water purification. Along with magnetic carbon nanotubes, the buckypaper (BP) membranes are also favorable due to their unique strength, high porosity, and adsorption capability. However, BP membranes are mostly used for salt removal from the aqueous phase and limited literature shows their applications for removal of heavy metals and dyes. This study focuses on the existence of heavy metal ions and dyes in the aquatic environment, and methods for their removal. Various fabrication approaches for the development of magnetic-CNTs and CNT-based BP membranes are also discussed. With the remarkable separation performance and ultra-high-water flux, magnetic-CNTs, and CNT-based BP membranes have a great potential to be the leading technologies for water treatment in future.
Collapse
Affiliation(s)
- Fahad Saleem Ahmed Khan
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, 98009 Miri, Sarawak, Malaysia
| | - Nabisab Mujawar Mubarak
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, 98009 Miri, Sarawak, Malaysia.
| | - Yie Hua Tan
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, 98009 Miri, Sarawak, Malaysia
| | - Mohammad Khalid
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Science and Technology, Sunway University, No. 5, Jalan University, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia
| | - Rama Rao Karri
- Petroleum, and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Brunei Darussalam
| | - Rashmi Walvekar
- Department of Chemical Engineering, School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor, Malaysia
| | - Ezzat Chan Abdullah
- Department of Chemical Process Engineering, Malaysia-Japan International Institute of Technology (MJIIT) Universiti Teknologi Malaysia (UTM), Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
| | | | - Shaukat Ali Mazari
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi 74800, Pakistan
| |
Collapse
|
26
|
Screening of Pioneer Metallophyte Plant Species with Phytoremediation Potential at a Severely Contaminated Hg and As Mining Site. ENVIRONMENTS 2021. [DOI: 10.3390/environments8070063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Phytoremediation of mine soils contaminated by potentially toxic elements (PTEs) requires the use of tolerant plants given the specific conditions of toxicity in the altered soil ecosystems. In this sense, a survey was conducted in an ancient Hg-mining area named “El Terronal” (Asturias, Spain) which is severely affected by PTE contamination (As, Hg, Pb) to obtain an inventory of the spontaneous natural vegetation. A detailed habitat classification was performed and a specific index of coverage was applied after a one-year quadrat study in various sampling stations; seven species were finally selected (Agrostis tenuis, Betula celtiberica, Calluna vulgaris, Dactylis glomerata, Plantago lanceolata, Salix atrocinerea and Trifolium repens). A total of 21 samples (3 per plant) of the soil–plant system were collected and analyzed for the available and total concentrations of contaminants in soil and plants (roots and aerial parts). Most of the studied plant species were classified as non-accumulating plants, with particular exceptions as Calluna vulgaris for Pb and Dactylis glomerata for As. Overall, the results revealed interest for phytoremediation treatments, especially phytostabilization, as most of the plants studied were classified as excluder metallophytes.
Collapse
|
27
|
Ji J, Huang W, Wang L, Chen L, Wei Y, Liu R, Cheng J, Wu H. Synthetic Iowaite Can Effectively Remove Inorganic Arsenic from Marine Extract. Molecules 2021; 26:molecules26103052. [PMID: 34065389 PMCID: PMC8160602 DOI: 10.3390/molecules26103052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 11/16/2022] Open
Abstract
For the removal of arsenic from marine products, iowaite was prepared and investigated to determine the optimal adsorption process of arsenic. Different chemical forms of arsenic (As(III), As(V)) with varying concentrations (0.15, 1.5, 5, 10, 15, and 20 mg/L) under various conditions including pH (3, 5, 7, 9, 11) and contact time (1, 2, 5, 10, 15, 30, 60, 120, 180 min) were exposed to iowaite. Adsorption isotherms and metal ions kinetic modeling onto the adsorbent were determined based on Langmuir, Freundlich, first- and second-order kinetic models. The adsorption onto iowaite varied depending on the conditions. The adsorption rates of standard solution, As(III) and As(V) exceeded 95% under proper conditions, while high complexity was noted with marine samples. As(III) and As(V) from Mactra veneriformis extraction all decreased when exposed to iowaite. The inclusion morphology and interconversion of organic arsenic limit adsorption. Iowaite can be efficiently used for inorganic arsenic removal from wastewater and different marine food products, which maybe other adsorbent or further performance of iowaite needs to be investigated for organic arsenic.
Collapse
Affiliation(s)
- Jing Ji
- College of Pharmacology, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.J.); (L.W.); (L.C.); (Y.W.); (R.L.)
- Jiangsu Key Laboratory of Research and Development in Marnie Bio-resource Pharmaceutics, Nanjing 201123, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing 210023, China
| | - Wenwen Huang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China;
| | - Lingchong Wang
- College of Pharmacology, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.J.); (L.W.); (L.C.); (Y.W.); (R.L.)
| | - Lu Chen
- College of Pharmacology, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.J.); (L.W.); (L.C.); (Y.W.); (R.L.)
| | - Yuanqing Wei
- College of Pharmacology, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.J.); (L.W.); (L.C.); (Y.W.); (R.L.)
- Jiangsu Key Laboratory of Research and Development in Marnie Bio-resource Pharmaceutics, Nanjing 201123, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing 210023, China
| | - Rui Liu
- College of Pharmacology, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.J.); (L.W.); (L.C.); (Y.W.); (R.L.)
- Jiangsu Key Laboratory of Research and Development in Marnie Bio-resource Pharmaceutics, Nanjing 201123, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing 210023, China
| | - Jianming Cheng
- College of Pharmacology, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.J.); (L.W.); (L.C.); (Y.W.); (R.L.)
- Jiangsu Key Laboratory of Research and Development in Marnie Bio-resource Pharmaceutics, Nanjing 201123, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing 210023, China
- Correspondence: (J.C.); (H.W.)
| | - Hao Wu
- College of Pharmacology, Nanjing University of Chinese Medicine, Nanjing 210023, China; (J.J.); (L.W.); (L.C.); (Y.W.); (R.L.)
- Jiangsu Key Laboratory of Research and Development in Marnie Bio-resource Pharmaceutics, Nanjing 201123, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing 210023, China
- Correspondence: (J.C.); (H.W.)
| |
Collapse
|
28
|
Gil-Díaz M, Luchsinger-Heitmann A, García-Gonzalo P, Alonso J, Lobo MC. Selecting efficient methodologies for estimation of As and Hg availability in a brownfield. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116290. [PMID: 33385854 DOI: 10.1016/j.envpol.2020.116290] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/30/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
The determination of soil metal(loid) availability presents controversy and there is no consensus or uniformity on used analytical methods. In this study nine single extraction methods (H2O, CaCl2, NaNO3, NH4NO3, DTPA, EDTA, HCl, LMWOA, TCLP) and four sequential extraction procedures (Tessier, BCR, Wenzel and Fernández-Martínez) have been compared to estimate the availability of As and Hg in two soils from a highly polluted brownfield, especially with As. The metal(loid) concentrations were also determined in three native plant species (Lotus corniculatus, Betula celtiberica and Dactylis glomerata) collected in the habitat under study. Each single extractant showed a particular capacity of As/Hg extraction because they do not extract the same forms of each element. The availability of As and Hg depended on the element characteristics, soil properties, type of extractant and degree of pollution, thus the use of a single extraction procedure provides limited information of metal(loid) availability and to reach general conclusions is difficult. Regarding the sequential extractions, each procedure showed a specific pattern for As and Hg regardless of the soil. Thus, the choice of one or other method depends on the environmental conditions, metal(loid) and soil properties. In risk assessment studies it would be recommendable to select one of the more aggressive extractants, so as not to underestimate the environmental risk. In this regard, the sequential extraction procedures render more detailed information about metal(loid) potential availability in relation to soil properties. The analysis of native plant species showed higher metal(loid) concentrations in roots than in aerial parts and differences were observed depending on the metal(loid) and the species. In general, plants showed a higher BCFs for Hg than As even though the total and available As concentrations were higher than those found for Hg, which highlights the influence of plant species on the metal(loid) uptake.
Collapse
Affiliation(s)
- M Gil-Díaz
- IMIDRA, Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario, Finca "El Encín", Alcalá de Henares, 28805, Madrid, Spain.
| | - A Luchsinger-Heitmann
- IMIDRA, Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario, Finca "El Encín", Alcalá de Henares, 28805, Madrid, Spain
| | - P García-Gonzalo
- IMIDRA, Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario, Finca "El Encín", Alcalá de Henares, 28805, Madrid, Spain
| | - J Alonso
- IMIDRA, Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario, Finca "El Encín", Alcalá de Henares, 28805, Madrid, Spain
| | - M C Lobo
- IMIDRA, Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario, Finca "El Encín", Alcalá de Henares, 28805, Madrid, Spain
| |
Collapse
|
29
|
Perez JPH, Schiefler AA, Rubio SN, Reischer M, Overheu ND, Benning LG, Tobler DJ. Arsenic removal from natural groundwater using 'green rust': Solid phase stability and contaminant fate. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123327. [PMID: 32645539 DOI: 10.1016/j.jhazmat.2020.123327] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/13/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
Arsenic (As) contamination in groundwater remains a pressing global challenge. In this study, we evaluated the potential of green rust (GR), a redox-active iron phase frequently occurring in anoxic environments, to treat As contamination at a former wood preservation site. We performed long-term batch experiments by exposing synthetic GR sulfate (GRSO4) to As-free and As-spiked (6 mg L-1) natural groundwater at both 25 and 4 °C. At 25 °C, GRSO4 was metastable in As-free groundwater and transformed to GRCO3, and then fully to magnetite within 120 days; however, GRSO4 stability increased 7-fold by lowering the temperature to 4 °C, and 8-fold by adding As to the groundwater at 25 °C. Highest GRSO4 stability was observed when As was added to the groundwater at 4 °C. This stabilizing effect is explained by GR solubility being lowered by adsorbed As and/or lower temperatures, inhibiting partial GR dissolution required for transformation to GRCO3, and ultimately to magnetite. Despite these mineral transformations, all added As was removed from As-spiked samples within 120 days at 25 °C, while uptake was 2 times slower at 4 °C. Overall, we have successfully documented that GR is an important mineral substrate for As immobilization in anoxic subsurface environments.
Collapse
Affiliation(s)
- Jeffrey Paulo H Perez
- GFZ German Research Center for Geosciences, Telegrafenberg, 14473 Potsdam, Germany; Department of Earth Sciences, Freie Universität Berlin, Malteserstr. 74-100, 12249 Berlin, Germany.
| | - Adrian Alexander Schiefler
- Nano-Science Center, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark; Capital Region of Denmark, Kongens Vænge 2, 3400 Hillerød, Denmark
| | - Sandra Navaz Rubio
- GFZ German Research Center for Geosciences, Telegrafenberg, 14473 Potsdam, Germany; Department of Earth Sciences, Freie Universität Berlin, Malteserstr. 74-100, 12249 Berlin, Germany
| | - Markus Reischer
- Nano-Science Center, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark; NIRAS A/S, Sortemosevej 19, 3450 Allerød, Denmark
| | | | - Liane G Benning
- GFZ German Research Center for Geosciences, Telegrafenberg, 14473 Potsdam, Germany; Department of Earth Sciences, Freie Universität Berlin, Malteserstr. 74-100, 12249 Berlin, Germany
| | - Dominique J Tobler
- Nano-Science Center, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| |
Collapse
|
30
|
Han YS, Park JH, Ahn JS. Aging effects on fractionation and speciation of redox-sensitive metals in artificially contaminated soil. CHEMOSPHERE 2021; 263:127931. [PMID: 33297015 DOI: 10.1016/j.chemosphere.2020.127931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/16/2020] [Accepted: 08/05/2020] [Indexed: 06/12/2023]
Abstract
Artificially contaminated soil is often used in laboratory experiments as a substitute for actual field contaminated soils. In the preparation and use of laboratory contaminated soils, questions remain as to how much and how long metals remain in labile form and in their oxidation state during the contamination process. Therefore, the objectives of this study were to determine if the speciation of added contaminants can be retained in the original form and to observe the change in lability of each element with aging time. In this study, natural soil was artificially polluted with five redox-sensitive toxic elements in their oxidized or reduced forms, i.e., As(III)/As(V), Sb(III)/Sb(V), Cr(III)/Cr(VI), Mo(VI), and W(V). Metal distribution was measured in progressive chemical fractionation using sequential extraction methods in contaminated soils after 3, 100, and 300 days of aging. The results indicated that the more strongly bound fraction of metals increased by day 100; whereas the fractions were not significantly different from those in the 300-day-aged soil. Among five metals, the ratio of weakly-bound fractions remained highest in As- and lowest in Cr-contaminated soils. The W(VI)-contaminated soil showed strong sorption without changes in speciation during aging. The oxidized or reduced metal species converged to occur as a single species under given soil conditions, regardless of the initial form of metal used to spike the soil. Both As and Sb existed as their oxidized form while Cr existed as its reduced form. The results of this study may provide a useful and practical guideline for artificial soil contamination.
Collapse
Affiliation(s)
- Young-Soo Han
- Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Republic of Korea; Department of Environmental Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jin Hee Park
- Department of Environmental & Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| | - Joo Sung Ahn
- Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Republic of Korea
| |
Collapse
|
31
|
Tabelin CB, Silwamba M, Paglinawan FC, Mondejar AJS, Duc HG, Resabal VJ, Opiso EM, Igarashi T, Tomiyama S, Ito M, Hiroyoshi N, Villacorte-Tabelin M. Solid-phase partitioning and release-retention mechanisms of copper, lead, zinc and arsenic in soils impacted by artisanal and small-scale gold mining (ASGM) activities. CHEMOSPHERE 2020; 260:127574. [PMID: 32688316 PMCID: PMC7351430 DOI: 10.1016/j.chemosphere.2020.127574] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 05/28/2023]
Abstract
Artisanal and small-scale gold mining (ASGM) operations are major contributors to the Philippines' annual gold (Au) output (at least 60%). Unfortunately, these ASGM activities lacked adequate tailings management strategies, so contamination of the environment is prevalent. In this study, soil contamination with copper (Cu), lead (Pb), zinc (Zn) and arsenic (As) due to ASGM activities in Nabunturan, Davao de Oro, Philippines was investigated. The results showed that ASGM-impacted soils had Cu, Pb, Zn and As up to 3.6, 83, 73 and 68 times higher than background levels, respectively and were classified as 'extremely' polluted (CD = 30-228; PLI = 5.5-34.8). Minerals typically found in porphyry copper-gold ores like pyrite, chalcopyrite, malachite, galena, sphalerite and goethite were identified by XRD and SEM-EDS analyses. Furthermore, sequential extraction results indicate substantial Cu (up to 90%), Pb (up to 50%), Zn (up to 65%) and As (up to 48%) partitioned with strongly adsorbed, weak acid soluble, reducible and oxidisable fractions, which are considered as 'geochemically mobile' phases in the environment. Although very high Pb and Zn were found in ASGM-impacted soils, they were relatively immobile under oxidising conditions around pH 8.5 because of their retention via adsorption to hydrous ferric oxides (HFOs), montmorillonite and kaolinite. In contrast, Cu and As release from the historic ASGM site samples exceeded the environmental limits for Class A and Class C effluents, which could be attributed to the removal of calcite and dolomite by weathering. The enhanced desorption of As at around pH 8.5 also likely contributed to its release from these soils.
Collapse
Affiliation(s)
- Carlito Baltazar Tabelin
- School of Minerals and Energy Resources Engineering, The University of New South Wales, Sydney, NSW, Australia.
| | - Marthias Silwamba
- Division of Sustainable Resources Engineering, Graduate School of Engineering, Hokkaido University, Sapporo, Japan
| | - Florifern C Paglinawan
- Developmental Biology Laboratory, PRISM, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
| | - Alissa Jane S Mondejar
- Developmental Biology Laboratory, PRISM, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
| | - Ho Gia Duc
- Division of Sustainable Resources Engineering, Graduate School of Engineering, Hokkaido University, Sapporo, Japan
| | - Vannie Joy Resabal
- Department of Materials and Resources Engineering and Technology, College of Engineering and Technology, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
| | - Einstine M Opiso
- Geo-environmental Engineering Research Group, Civil Engineering Department, Central Mindanao University, Bukidnon, Philippines
| | - Toshifumi Igarashi
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Shingo Tomiyama
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Mayumi Ito
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Naoki Hiroyoshi
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Mylah Villacorte-Tabelin
- Developmental Biology Laboratory, PRISM, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines; Department of Biological Sciences, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines.
| |
Collapse
|
32
|
Baragaño D, Forján R, Fernández B, Ayala J, Afif E, Gallego JLR. Application of biochar, compost and ZVI nanoparticles for the remediation of As, Cu, Pb and Zn polluted soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:33681-33691. [PMID: 32533482 DOI: 10.1007/s11356-020-09586-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Here we tested the capacity of zero valent iron nanoparticles (nZVI) combined with two organic amendments, namely, compost and biochar, to immobilize metal(oid)s such as As, Cu, Pb, and Zn. In addition, the effects of the amendments on the development of Brassica juncea L., a plant widely used for phytoremediation purposes, were also examined. To perform the experiments, pots containing polluted soil were treated with nZVI, compost-biochar, or a blend of compost-biochar-nZVI. Metal(oid)s availability and soil properties were evaluated after 15 and 75 days, and the height and weight of the plants were measured to determine development. The compost-biochar amendment showed excellent capacity to immobilize metals, but As availability was considerably increased. However, the addition of nZVI to the mixture corrected this effect considerably. In addition, soil treatment with nZVI alone led to a slight increase in Cu availability, which was not observed for the mixture with organic amendments. With respect to soil properties, the CEC and pH were enhanced by the compost-biochar amendment, thereby favoring plant growth. Nevertheless, the nanoparticles reduced the concentration of available P, which impaired plant growth to a certain extent. In conclusion, Fe-based nanoparticles combined with organic amendments emerge as powerful approaches to remediate soils contaminated by metals and metalloids.
Collapse
Affiliation(s)
- Diego Baragaño
- INDUROT and Environmental Technology, Biotechnology and Geochemistry Group, Campus de Mieres, Universidad de Oviedo, Mieres, Asturias, Spain.
| | - Rubén Forján
- INDUROT and Environmental Technology, Biotechnology and Geochemistry Group, Campus de Mieres, Universidad de Oviedo, Mieres, Asturias, Spain
| | - Begoña Fernández
- Departamento de Ciencia de Materiales e Ingeniería Metalúrgica and Environmental Technology, Biotechnology and Geochemistry Group, Universidad de Oviedo, Oviedo, Spain
| | - Julia Ayala
- Departamento de Ciencia de Materiales e Ingeniería Metalúrgica and Environmental Technology, Biotechnology and Geochemistry Group, Universidad de Oviedo, Oviedo, Spain
| | - Elias Afif
- Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, C/Gonzalo Gutiérrez Quirós s/n. 33600, Mieres, España
| | - José Luis R Gallego
- INDUROT and Environmental Technology, Biotechnology and Geochemistry Group, Campus de Mieres, Universidad de Oviedo, Mieres, Asturias, Spain
| |
Collapse
|
33
|
Nano-Scale Drinking Water Treatment Residuals Affect Arsenic Fractionation and Speciation in Biosolids-Amended Agricultural Soil. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10165633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An incubation experiment was conducted to determine the effects of nanoscale drinking water treatment residuals (nWTRs) on arsenic (As) fractionation and speciation in agricultural soil amended with biosolids. The soils were treated with biosolids of 3% (w/w), along with nWTR application rates of 0, 0.25, 0.50, or 1.00% (w/w). The results revealed that the As adsorption rate increased with increasing the As treatment level from 50 to 800 mg/L. The maximum efficiency of As adsorption was 95%–98% in the soil treated with nWTRs of 1%, while the least As adsorption was 53%–91% in the soil treated with nWTRs of 0.25%. The overall As bioavailability in the biosolids-amended soil followed a descending order of nWTRs treatment: (0%) > 0.25% nWTRs, >0.50% nWTRs, and >1% nWTRs. The addition of nWTRs significantly changed As speciation in biosolids-amended soil. The X-ray absorption near-edge structure spectroscopy (XANES) and MINEQL+4.6 analyses showed that most of As was in a oxidized form of As5+ that likely incorporated in As pentoxide, and thus, with low mobility, bioavailability, and toxicity. This study demonstrated that nWTRs were effective in adsorbing and immobilizing As in biosolids-amended agricultural soils by forming stable As-nWTR surface complexes.
Collapse
|
34
|
Rahman Z, Singh VP. Bioremediation of toxic heavy metals (THMs) contaminated sites: concepts, applications and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:27563-27581. [PMID: 32418096 DOI: 10.1007/s11356-020-08903-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Heavy metal contamination is a global issue, where the prevalent contaminants are arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb). More often, they are collectively known as "most problematic heavy metals" and "toxic heavy metals" (THMs). Their treatment through a variety of biological processes is one of the prime interests in remediation studies, where heavy metal-microbe interaction approaches receive high interest for their cost effective and ecofriendly solutions. In this review, we provide an up to date information on different microbial processes (bioremediation) for the removal of THMs. For the same, emphasis is put on oxidation-reduction, biomineralization, bioprecipitation, bioleaching, biosurfactant technology, biovolatilization, biosorption, bioaccumulation, and microbe-assisted phytoremediation with their selective advantages and disadvantages. Further, the literature briefly discusses about the various setups of cleaning processes of THMs in environment under ex situ and in situ applications. Lately, the study sheds light on the manipulation of microorganisms through genetic engineering and nanotechnology for their advanced treatment approaches.
Collapse
Affiliation(s)
- Zeeshanur Rahman
- Department of Botany, Zakir Husain Delhi College, University of Delhi, Delhi, India.
- Department of Botany, University of Delhi, Delhi, India.
| | - Ved Pal Singh
- Department of Botany, University of Delhi, Delhi, India
| |
Collapse
|
35
|
Simiele M, Lebrun M, Miard F, Trupiano D, Poupart P, Forestier O, Scippa GS, Bourgerie S, Morabito D. Assisted phytoremediation of a former mine soil using biochar and iron sulphate: Effects on As soil immobilization and accumulation in three Salicaceae species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:136203. [PMID: 31926409 DOI: 10.1016/j.scitotenv.2019.136203] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Metal(loid) accumulation in soils, is of increasing concern because of the potential human health risks. Therefore, metal(loid) contaminated sites need rehabilitation. It is becoming increasingly popular to use phytoremediation methods for the reclamation of sites containing metal(loid)s. However, plant establishment and growth on contaminated soils can be difficult due to high metal(loid) concentrations and poor fertility conditions. Consequently, amendments, like biochar and iron sulphate, must be applied. Biochar, obtained from plant biomass or animal wastes pyrolyzed under minimal oxygen supply, showed beneficial effects on soil properties and plant growth. Iron sulphate can effectively immobilize anions, thus mitigating metal(loid) toxicity and hence promoting plant development. This study aimed to assess the effect of two different modalities of biochar amendment application (top third of the tube and all tube height) combined with iron sulphate addition on the physico-chemical properties of a mining polluted soil and the growth and metal(loid) uptake of three Salicaceae species. A 1.5 year mesocosm experiment under field condition was conducted using a former tin mine contaminated by arsenic, amended with biochar and iron sulphate and vegetated with three Salicaceae species. Results showed that the combination of biochar and iron sulphate improved soil characteristics by increasing pH and electrical conductivity and reducing soil pore water metal(loid) concentrations. Between the two biochar application methods, the addition of biochar on the all tube height showed better results. But for such contaminated soil, biochar, in combination with iron sulphate, had no positive effect on plant growth, for all species tested and especially when incorporating on the top third of the tube. Finally, S. purpurea presented high root metal(loid) concentrations associated to the better growth compared to P. euramericana and S. viminalis, making it a better candidate for phytostabilization of the studied soil.
Collapse
Affiliation(s)
- Melissa Simiele
- Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, 86090 Pesche, Italy
| | - Manhattan Lebrun
- Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, 86090 Pesche, Italy; INRA USC1328, LBLGC EA1207, rue de Chartres, University of Orleans, BP 6759, 45067 Orléans Cedex 2, France
| | - Florie Miard
- INRA USC1328, LBLGC EA1207, rue de Chartres, University of Orleans, BP 6759, 45067 Orléans Cedex 2, France
| | - Dalila Trupiano
- Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, 86090 Pesche, Italy
| | - Philippe Poupart
- Office Nationale des Forêts, Pôle national des ressources génétiques forestières, 44290 Guéméné-Penfao, France
| | - Olivier Forestier
- Office Nationale des Forêts, Pôle national des ressources génétiques forestières, 44290 Guéméné-Penfao, France
| | - Gabriella S Scippa
- Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, 86090 Pesche, Italy
| | - Sylvain Bourgerie
- INRA USC1328, LBLGC EA1207, rue de Chartres, University of Orleans, BP 6759, 45067 Orléans Cedex 2, France
| | - Domenico Morabito
- INRA USC1328, LBLGC EA1207, rue de Chartres, University of Orleans, BP 6759, 45067 Orléans Cedex 2, France.
| |
Collapse
|
36
|
Gómez-Hernández A, Rodríguez R, Lara Del Río A, Ruiz-Huerta EA, Armienta MA, Dávila-Harris P, Sen-Gupta B, Delgado-Rodríguez O, Del Angel Ríos A, Martínez-Villegas N. Alluvial and gypsum karst geological transition favors spreading arsenic contamination in Matehuala, Mexico. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:135340. [PMID: 31869613 DOI: 10.1016/j.scitotenv.2019.135340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/19/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
Arsenic transport in alluvial aquifers is usually constrained due to arsenic adsorption on iron oxides. In karstic aquifers, however, arsenic contamination may spread to further extensions mainly due to favorable hydrogeochemical conditions. In this study, we i) determined the spatial and temporal behavior of arsenic in water in an alluvial-karstic geological setting using field and literature data, ii) established whether a contaminated aquifer exists using field and literature piezometric data and geophysical analysis, iii) studied the local geology and associated arsenic contaminated water sources to specific aquifers, iv) revealed and modeled subsoil stratigraphy, and v) established the extent of arsenic exposure to the population. We found arsenic contamination (up to 91.51 mg/l) in surface and shallow groundwater (<15 m), where water flows from west to east through a shallow aquifer, paleochannels and a qanat within an alluvial-karst transition that favors the spreading and transport of arsenic along 8 km as well as the increase of arsenic exposure to the population (up to 3.6 mgAs/kghair). Results from this study contribute to understanding arsenic transport in semi-arid, mining-metallurgical, and urban environments, where the presence of karst could favor arsenic transport to remote places and exacerbate arsenic exposure and impact in the future.
Collapse
Affiliation(s)
- Andrea Gómez-Hernández
- IPICYT, Instituto Potosino de Investigación Científica y Tecnológica, División de Geociencias Aplicadas, Camino a la Presa San José No. 2055, Col. Lomas 4(a) Sec., C.P. 78216 San Luis Potosí, SLP, Mexico
| | - Rodrigo Rodríguez
- IPICYT, Instituto Potosino de Investigación Científica y Tecnológica, División de Geociencias Aplicadas, Camino a la Presa San José No. 2055, Col. Lomas 4(a) Sec., C.P. 78216 San Luis Potosí, SLP, Mexico
| | - Antonio Lara Del Río
- CIACYT, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnológica, Universidad Autónoma de San Luis Potosí, Ave. Sierra Leona 550, Col. Lomas 2a. Sec, C.P. 78210 San Luis Potosí, Mexico
| | - Esther Aurora Ruiz-Huerta
- Instituto de Geofísica, Universidad Nacional Autónoma de México, Circuito de la investigación Científica s/n, Ciudad Universitaria, Delegación Coyoacán, Ciudad de México C.P. 04150, Mexico
| | - María Aurora Armienta
- IPICYT, Instituto Potosino de Investigación Científica y Tecnológica, División de Geociencias Aplicadas, Camino a la Presa San José No. 2055, Col. Lomas 4(a) Sec., C.P. 78216 San Luis Potosí, SLP, Mexico
| | - Pablo Dávila-Harris
- IPICYT, Instituto Potosino de Investigación Científica y Tecnológica, División de Geociencias Aplicadas, Camino a la Presa San José No. 2055, Col. Lomas 4(a) Sec., C.P. 78216 San Luis Potosí, SLP, Mexico
| | - Bhaskar Sen-Gupta
- Room 2.02A, William Arrol Building, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Omar Delgado-Rodríguez
- IPICYT, Instituto Potosino de Investigación Científica y Tecnológica, División de Geociencias Aplicadas, Camino a la Presa San José No. 2055, Col. Lomas 4(a) Sec., C.P. 78216 San Luis Potosí, SLP, Mexico
| | - Andrés Del Angel Ríos
- IPICYT, Instituto Potosino de Investigación Científica y Tecnológica, División de Geociencias Aplicadas, Camino a la Presa San José No. 2055, Col. Lomas 4(a) Sec., C.P. 78216 San Luis Potosí, SLP, Mexico
| | - Nadia Martínez-Villegas
- IPICYT, Instituto Potosino de Investigación Científica y Tecnológica, División de Geociencias Aplicadas, Camino a la Presa San José No. 2055, Col. Lomas 4(a) Sec., C.P. 78216 San Luis Potosí, SLP, Mexico.
| |
Collapse
|
37
|
Allevato E, Stazi SR, Marabottini R, D'Annibale A. Mechanisms of arsenic assimilation by plants and countermeasures to attenuate its accumulation in crops other than rice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 185:109701. [PMID: 31562999 DOI: 10.1016/j.ecoenv.2019.109701] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 05/27/2023]
Abstract
Arsenic is a ubiquitous metalloid in the biosphere, and its origin can be either geogenic or anthropic. Four oxidation states (-3, 0, +3 and + 5) characterize organic and inorganic As- compounds. Although arsenic is reportedly a toxicant, its harmful effects are closely related to its chemical form: inorganic compounds are most toxic, followed by organic ones and finally by arsine gas. Although drinking water is the primary source of arsenic exposure to humans, the metalloid enters the food chain through its uptake by crops, the extent of which is tightly dependent on its phytoavailability. Arsenate is taken up by roots via phosphate carriers, while arsenite is taken up by a subclass of aquaporins (NIP), some of which involved in silicon (Si) transport. NIP and Si transporters are also involved in the uptake of methylated forms of As. Once taken up, its distribution is regulated by the same type of transporters albeit with mobility efficiencies depending on As forms and its accumulation generally occurs in the following decreasing order: roots > stems > leaves > fruits (seeds). Besides providing a survey on the uptake and transport mechanisms in higher plants, this review reports on measures able to reducing plant uptake and the ensuing transfer into edible parts. On the one hand, these measures include a variety of plant-based approaches including breeding, genetic engineering of transport systems, graft/rootstock combinations, and mycorrhization. On the other hand, they include agronomic practices with a particular focus on the use of inorganic and organic amendments, treatment of irrigation water, and fertilization.
Collapse
Affiliation(s)
- Enrica Allevato
- Dipartimento per la Innovazione nei Sistemi Biologici, Agroalimentari e Forestali (DIBAF) Università Degli Studi Della Tuscia, Via San Camillo de Lellis Snc I, 1100 Viterbo Italy
| | - Silvia Rita Stazi
- Dipartimento per la Innovazione nei Sistemi Biologici, Agroalimentari e Forestali (DIBAF) Università Degli Studi Della Tuscia, Via San Camillo de Lellis Snc I, 1100 Viterbo Italy.
| | - Rosita Marabottini
- Dipartimento per la Innovazione nei Sistemi Biologici, Agroalimentari e Forestali (DIBAF) Università Degli Studi Della Tuscia, Via San Camillo de Lellis Snc I, 1100 Viterbo Italy
| | - Alessandro D'Annibale
- Dipartimento per la Innovazione nei Sistemi Biologici, Agroalimentari e Forestali (DIBAF) Università Degli Studi Della Tuscia, Via San Camillo de Lellis Snc I, 1100 Viterbo Italy
| |
Collapse
|
38
|
Past, Present, and Future of Groundwater Remediation Research: A Scientometric Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16203975. [PMID: 31635235 PMCID: PMC6843360 DOI: 10.3390/ijerph16203975] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 11/17/2022]
Abstract
In this study, we characterize the body of knowledge of groundwater remediation from 1950 to 2018 by employing scientometric techniques and CiteSpace software, based on the Science Citation Index Expanded (SCI-E) databases. The results indicate that the United States and China contributed 56.4% of the total publications and were the major powers in groundwater remediation research. In addition, the United States, Canada, and China have considerable capabilities and expertise in groundwater remediation research. Groundwater remediation research is a multidisciplinary field, covering water resources, environmental sciences and ecology, environmental sciences, and engineering, among other fields. Journals such as Environmental Science and Technology, Journal of Contaminant Hydrology, and Water Research were the major sources of cited works. The research fronts of groundwater remediation were transitioning from the pump-and-treat method to permeable reactive barriers and nanoscale zero‑valent iron particles. The combination of new persulfate ion‑activation technology and nanotechnology is receiving much attention. Based on the visualized networks, the intelligence base was verified using a variety of metrics. Through landscape portrayal and developmental trajectory identification of groundwater remediation research, this study provides insight into the characteristics of, and global trends in, groundwater remediation, which will facilitate the identification of future research directions.
Collapse
|
39
|
Huyen DT, Tabelin CB, Thuan HM, Dang DH, Truong PT, Vongphuthone B, Kobayashi M, Igarashi T. The solid-phase partitioning of arsenic in unconsolidated sediments of the Mekong Delta, Vietnam and its modes of release under various conditions. CHEMOSPHERE 2019; 233:512-523. [PMID: 31185335 DOI: 10.1016/j.chemosphere.2019.05.235] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 06/09/2023]
Abstract
Arsenic (As) contamination of the groundwater in the Mekong Delta is a serious problem affecting millions of people who rely on this important resource for drinking and agriculture. In this study, borehole cores up to a depth of 40 m were collected in the Vietnamese-side of the delta, and the solid-phase partitioning of As with depth was investigated to understand the factors and processes controlling the release of this toxic element under oxic, acidic and reducing conditions. The results showed that in most of the sediments, substantial amounts of As are partitioned with exchangeable phases that are easily released into solution. Two borehole cores obtained between the Hau and Tien Rivers also had significantly high As partitioned with organic/sulfide phases and one of these cores had abundant As-bearing pyrite in 1-m thick peat layers. Leaching experiments in deionized (DI) water coupled with principal component analysis suggest that As release was controlled by sorption-desorption reactions with clays/phyllosilicates (i.e., kaolinite, muscovite and clinochlore), proton-promoted dissolution of iron-oxyhydroxides, and oxidation of pyrite/organic matter. The mobility of As was further promoted under acidic conditions in the presence of chloride (Cl-), which suggests that seasonal drying/flooding episodes generating acid sulfate soils, as well as salt water intrusion due to excessive groundwater abstraction may exacerbate this problem in the future.
Collapse
Affiliation(s)
- Dang Thuong Huyen
- Environmental Geology Department, Faculty of Geology and Petroleum Engineering, Ho Chi Minh City University of Technology, 168 Ly Thuong Kiet, Dist. 10, HCMC, Viet Nam
| | - Carlito Baltazar Tabelin
- School of Minerals and Energy Resources Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Huynh Minh Thuan
- Environmental Geology Department, Faculty of Geology and Petroleum Engineering, Ho Chi Minh City University of Technology, 168 Ly Thuong Kiet, Dist. 10, HCMC, Viet Nam
| | - Dang Hai Dang
- Environmental Geology Department, Faculty of Geology and Petroleum Engineering, Ho Chi Minh City University of Technology, 168 Ly Thuong Kiet, Dist. 10, HCMC, Viet Nam
| | - Phan Thi Truong
- Environmental Geology Department, Faculty of Geology and Petroleum Engineering, Ho Chi Minh City University of Technology, 168 Ly Thuong Kiet, Dist. 10, HCMC, Viet Nam
| | - Banthasith Vongphuthone
- Division of Sustainable Resources Engineering, Graduate School of Engineering, Hokkaido University, Japan
| | - Masato Kobayashi
- Division of Sustainable Resources Engineering, Graduate School of Engineering, Hokkaido University, Japan
| | - Toshifumi Igarashi
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Japan
| |
Collapse
|
40
|
Joseph L, Jun BM, Flora JRV, Park CM, Yoon Y. Removal of heavy metals from water sources in the developing world using low-cost materials: A review. CHEMOSPHERE 2019; 229:142-159. [PMID: 31078029 DOI: 10.1016/j.chemosphere.2019.04.198] [Citation(s) in RCA: 286] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 05/19/2023]
Abstract
Heavy metal contamination is a growing concern in the developing world. Inadequate water and wastewater treatment, coupled with increased industrial activity, have led to increased heavy metal contamination in rivers, lakes, and other water sources in developing countries. However, common methods for removing heavy metals from water sources, including membrane filtration, activated carbon adsorption, and electrocoagulation, are not feasible for developing countries. As a result, a significant amount of research has been conducted on low-cost adsorbents to evaluate their ability to remove heavy metals. In this review article, we summarize the current state of research on the removal of heavy metals with an emphasis on low-cost adsorbents that are feasible in the context of the developing world. This review evaluates the use of adsorbents from four major categories: agricultural waste; naturally-occurring soil and mineral deposits; aquatic and terrestrial biomass; and other locally-available waste materials. Along with a summary of the use of these adsorbents in the removal of heavy metals, this article provides a summary of the influence of various water-quality parameters on heavy metals and these adsorbents. The proposed adsorption mechanisms for heavy metal removal are also discussed.
Collapse
Affiliation(s)
- Lesley Joseph
- Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC, 29208, USA
| | - Byung-Moon Jun
- Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC, 29208, USA
| | - Joseph R V Flora
- Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC, 29208, USA
| | - Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| | - Yeomin Yoon
- Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC, 29208, USA.
| |
Collapse
|
41
|
Huyen DT, Tabelin CB, Thuan HM, Dang DH, Truong PT, Vongphuthone B, Kobayashi M, Igarashi T. Geological and geochemical characterizations of sediments in six borehole cores from the arsenic-contaminated aquifer of the Mekong Delta, Vietnam. Data Brief 2019; 25:104230. [PMID: 31384642 PMCID: PMC6661390 DOI: 10.1016/j.dib.2019.104230] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/06/2019] [Accepted: 07/01/2019] [Indexed: 11/29/2022] Open
Abstract
The Mekong Delta, situated between Cambodia and Vietnam, is one of the most productive aquifer systems in the region. In recent years, however, several studies have shown that groundwater in several areas of the delta is highly contaminated with arsenic (As). Although more than 80% of the total area of the Mekong Delta is situated in Vietnam, most of the studies have been conducted on the Cambodian-side of the delta. In this study, borehole core samples were collected around the Tien and Hau Rivers, the two main branches of the Mekong River as it enters Vietnam. We present a raw data collection of the chemical and mineralogical composition of distinct lithological features from six borehole core samples drilled up to a depth of 40 m. The data also include the pH, Eh, EC, As, Si, Al, DOC, dissolved heavy metals (Fe and Mn) and major coexisting ions of leachates obtained by leaching the 34 selected sediment samples in deionized water. The information provided in this paper would be useful as a baseline for reactive transport or geochemical modeling to understand and predict As migration in naturally contaminated aquifers under various conditions. For more insights, the reader is referred to our paper entitled “The solid-phase partitioning of arsenic in unconsolidated sediments of the Mekong Delta, Vietnam and its modes of release under various conditions” Huyen et al., 2019.
Collapse
Affiliation(s)
- Dang Thuong Huyen
- Earth Resources and Environment, Faculty of Geology and Petroleum Engineering, Ho Chi Minh City University of Technology, 168 Ly Thuong Kiet, Dist. 10, HCMC, Viet Nam
| | - Carlito Baltazar Tabelin
- School of Minerals and Energy Resources Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Huynh Minh Thuan
- Earth Resources and Environment, Faculty of Geology and Petroleum Engineering, Ho Chi Minh City University of Technology, 168 Ly Thuong Kiet, Dist. 10, HCMC, Viet Nam
| | - Dang Hai Dang
- Earth Resources and Environment, Faculty of Geology and Petroleum Engineering, Ho Chi Minh City University of Technology, 168 Ly Thuong Kiet, Dist. 10, HCMC, Viet Nam
| | - Phan Thi Truong
- Earth Resources and Environment, Faculty of Geology and Petroleum Engineering, Ho Chi Minh City University of Technology, 168 Ly Thuong Kiet, Dist. 10, HCMC, Viet Nam
| | - Banthasith Vongphuthone
- Division of Sustainable Resources Engineering, Graduate School of Engineering, Hokkaido University, Japan
| | - Masato Kobayashi
- Division of Sustainable Resources Engineering, Graduate School of Engineering, Hokkaido University, Japan
| | - Toshifumi Igarashi
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Japan
| |
Collapse
|
42
|
Tao C, Wang Y, Cui W, Zou B, Zou Z, Tu Y. A transferable spectroscopic diagnosis model for predicting arsenic contamination in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:964-972. [PMID: 30970463 DOI: 10.1016/j.scitotenv.2019.03.186] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/11/2018] [Accepted: 03/13/2019] [Indexed: 05/24/2023]
Abstract
Visible and near-infrared reflectance (VNIR) spectroscopy is considered to be a potential and efficient means for monitoring soil arsenic (As) contamination. While current studies mainly focus on the evaluation of models' performance when training and verification samples are collected from the same region, whether the model developed at a specific region can be transferred to other regions is still unclear. To answer this question, this study collected a total of 247 samples for training and verification from regions with different geographical conditions, which are Yuanping and Baoding in northern China, Chenzhou and Hengyang in southern China. Afterward, we proposed a transfer component analysis (TCA) based spectroscopic diagnosis model, which aims at adapting a model learned from one region to other regions. This model was compared with the traditional modeling method in terms of the prediction accuracy by four experiments. The results show that: (1) The traditional modeling method trained by specific regional samples has no transfer capability to different regions, since the coefficient of determination (R2) and the ratio of prediction to deviation (RPD) were 0.02 and 0.65 for the first pair of study areas, 0.01 and 1.01 for the second pair of study areas; (2) A transfer model with favorable predictability can be constructed with the aid of TCA spectral transformation and a small amount off-site samples (R2 and RPD were improved to 0.68 and 1.54 for the first pair of study areas, 0.64 and 1.66 for the second pair of study areas). Results suggest that it is promising to develop potential implementations of transferable spectroscopic diagnosis models for estimating soil As concentrations in large area with lower cost.
Collapse
Affiliation(s)
- Chao Tao
- The Key Laboratory of Metalorganic Prediction of Nonferrous Metals and Geological Environment Monitoring, School of Geosciences and Info-Physic Central South University, Changsha, Hunan 410083, China
| | - Yajin Wang
- The Key Laboratory of Metalorganic Prediction of Nonferrous Metals and Geological Environment Monitoring, School of Geosciences and Info-Physic Central South University, Changsha, Hunan 410083, China
| | - Wenbo Cui
- The Key Laboratory of Metalorganic Prediction of Nonferrous Metals and Geological Environment Monitoring, School of Geosciences and Info-Physic Central South University, Changsha, Hunan 410083, China
| | - Bin Zou
- The Key Laboratory of Metalorganic Prediction of Nonferrous Metals and Geological Environment Monitoring, School of Geosciences and Info-Physic Central South University, Changsha, Hunan 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, Hunan 410083, China.
| | - Zhengrong Zou
- The Key Laboratory of Metalorganic Prediction of Nonferrous Metals and Geological Environment Monitoring, School of Geosciences and Info-Physic Central South University, Changsha, Hunan 410083, China
| | - Yulong Tu
- The Key Laboratory of Metalorganic Prediction of Nonferrous Metals and Geological Environment Monitoring, School of Geosciences and Info-Physic Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
43
|
Uddh Söderberg T, Berggren Kleja D, Åström M, Jarsjö J, Fröberg M, Svensson A, Augustsson A. Metal solubility and transport at a contaminated landfill site - From the source zone into the groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 668:1064-1076. [PMID: 31018448 DOI: 10.1016/j.scitotenv.2019.03.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/25/2019] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
Risks associated with metal contaminated sites are tightly linked to material leachability and contaminant mobility. In this study, metal solubility and transport were characterized within a glass waste landfill through i) lysimeter-collection of pore water and standardized batch leaching tests, ii) soil profiles extending from the landfill surface, through unsaturated soil underneath, and into the groundwater zone, and iii) groundwater samples upstream, at, and downstream of the landfill. The soil analyzes targeted both pseudo-total and geochemically active concentrations of contaminant metals (As, Cd, Pb, Sb) and basic soil geochemistry (pH, org. C, Fe, Mn). Water samples were analyzed for dissolved, colloid-bound and particulate metals, and speciation modelling of the aqueous phase was conducted. The results revealed a highly contaminated system, with mean metal concentrations in the waste zone between 90 and 250 times the regional background levels. Despite severe contamination of the waste zone and high geochemically active fractions (80-100%) of all contaminant metals as well as elevated concentrations in landfill pore water, the concentrations of Cd and Pb decrease abruptly at the transition between landfill and underlying natural soil and no indication of groundwater contamination was found. The efficient cation retention is likely due to the high pH. However, the sorption of As and Sb is weaker at such high pH, which explains their higher mobility from the pore water zone into groundwater. The field soil:solution partitioning (Kd) displayed a high spatial variability within the waste zone (the highest Kd variability was seen for Pb, ranging from 140 to 2,900,000 l kg-1), despite little variability in basic geochemical variables, which we suggest is due to waste material heterogeneity.
Collapse
Affiliation(s)
- T Uddh Söderberg
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden.
| | - D Berggren Kleja
- Swedish Geotechnical Institute, Olaus Magnus väg 35, Linköping, Sweden; Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, Uppsala, Sweden
| | - M Åström
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - J Jarsjö
- Department of Physical Geography, Stockholm University, Stockholm, Sweden
| | - M Fröberg
- Swedish Geotechnical Institute, Olaus Magnus väg 35, Linköping, Sweden
| | - A Svensson
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - A Augustsson
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
44
|
Fuller ME, Hedman PC, Lippincott DR, Hatzinger PB. Passive in situ biobarrier for treatment of comingled nitramine explosives and perchlorate in groundwater on an active range. JOURNAL OF HAZARDOUS MATERIALS 2019; 365:827-834. [PMID: 30481733 DOI: 10.1016/j.jhazmat.2018.11.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), and perchlorate (ClO4-) are common, and often co-mingled, contaminants at military ranges worldwide. This project investigated the feasibility of using a passive emulsified oil biobarrier plus a slow release pH buffering reagent to remediate RDX, HMX, and ClO4- in a low pH aquifer at an active range. A 33 m biobarrier was emplaced perpendicular to the contaminant plumes, and dissolved explosives, perchlorate, and other relevant parameters were monitored. The pH increased and the DO and ORP decreased after emulsified oil injection, leading to >90% reductions in perchlorate, RDX, and HMX compared to upgradient groundwater. Some nitroso breakdown products were observed immediately downstream of the barrier, but generally decreased to below detection limits farther downgradient. First-order rate constants of approximately 0.1/d were obtained for all three contaminants. Dissolved metals (including As) also increased in the wells immediately adjacent to the barrier, but attenuated as the plume re-aerated in downgradient areas. Biobarrier installation and sampling were performed during scheduled range downtime and had no impacts to ongoing range activities. The field trial suggests that an emulsified oil biobarrier with pH buffering can be a viable alternative to remove explosives and perchlorate from shallow groundwater on active ranges.
Collapse
Affiliation(s)
- Mark E Fuller
- Aptim Federal Services, 17 Princess Road, Lawrenceville, NJ 08648, United States.
| | - Paul C Hedman
- Aptim Federal Services, 17 Princess Road, Lawrenceville, NJ 08648, United States
| | - David R Lippincott
- Aptim Federal Services, 17 Princess Road, Lawrenceville, NJ 08648, United States
| | - Paul B Hatzinger
- Aptim Federal Services, 17 Princess Road, Lawrenceville, NJ 08648, United States
| |
Collapse
|
45
|
Tabelin CB, Igarashi T, Villacorte-Tabelin M, Park I, Opiso EM, Ito M, Hiroyoshi N. Arsenic, selenium, boron, lead, cadmium, copper, and zinc in naturally contaminated rocks: A review of their sources, modes of enrichment, mechanisms of release, and mitigation strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:1522-1553. [PMID: 30248873 DOI: 10.1016/j.scitotenv.2018.07.103] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/01/2018] [Accepted: 07/05/2018] [Indexed: 05/28/2023]
Abstract
Massive and ambitious underground space development projects are being undertaken by many countries around the world to decongest megacities, improve the urban landscapes, upgrade outdated transportation networks, and expand modern railway and road systems. A number of these projects, however, reported that substantial portions of the excavated debris are oftentimes naturally contaminated with hazardous elements, which are readily released in substantial amounts once exposed to the environment. These contaminated excavation debris/spoils/mucks, loosely referred to as "naturally contaminated rocks", contain various hazardous and toxic inorganic elements like arsenic (As), selenium (Se), boron (B), and heavy metals like lead (Pb), cadmium (Cd), copper (Cu), and zinc (Zn). If left untreated, these naturally contaminated rocks could pose very serious problems not only to the surrounding ecosystem but also to people living around the construction and disposal sites. Several incidents of soil and ground/surface water contamination, for example, have been documented due to the false assumption that excavated materials are non-hazardous because they only contain background levels of environmentally regulated elements. Naturally contaminated rocks are hazardous wastes, but they still remain largely unregulated. In fact, standard leaching tests for their evaluation and classification are not yet established. In this review, we summarized all available studies in the literature about the factors and processes crucial in the enrichment, release, and migration of the most commonly encountered hazardous and toxic elements in naturally contaminated geological materials. Although our focus is on naturally contaminated rocks, analogue systems like contaminated soils, sediments, and other hazardous wastes that have been more widely studied will also be discussed. Classification schemes and leaching tests to properly identify and regulate excavated rocks that may potentially pose environmental problems will be examined. Finally, management and mitigation strategies to limit the negative effects of these hazardous wastes are introduced.
Collapse
Affiliation(s)
- Carlito Baltazar Tabelin
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| | - Toshifumi Igarashi
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Mylah Villacorte-Tabelin
- Department of Biological Sciences, College of Science and Mathematics, Mindanao State University - Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Ilhwan Park
- Division of Sustainable Resources Engineering, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Einstine M Opiso
- Geoenvironmental Engineering Group, Central Mindanao University, Maramag 8710, Bukidnon, Philippines
| | - Mayumi Ito
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Naoki Hiroyoshi
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| |
Collapse
|
46
|
Leiva E, Leiva-Aravena E, Rodríguez C, Serrano J, Vargas I. Arsenic removal mediated by acidic pH neutralization and iron precipitation in microbial fuel cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:471-481. [PMID: 30029122 DOI: 10.1016/j.scitotenv.2018.06.378] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 06/22/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Eduardo Leiva
- Departamento de Química Inorgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, 7820436, Santiago, Chile; Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, 7820436, Santiago, Chile.
| | - Enzo Leiva-Aravena
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, 7820436, Santiago, Chile; CEDEUS, Centro de Desarrollo Urbano Sustentable, El Comendador 1916, Providencia, Santiago 7520245, Chile
| | - Carolina Rodríguez
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, 7820436, Santiago, Chile
| | - Jennyfer Serrano
- Escuela de Biotecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, 8580745, Santiago, Chile
| | - Ignacio Vargas
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, 7820436, Santiago, Chile; CEDEUS, Centro de Desarrollo Urbano Sustentable, El Comendador 1916, Providencia, Santiago 7520245, Chile
| |
Collapse
|
47
|
Xue W, Huang D, Zeng G, Wan J, Cheng M, Zhang C, Hu C, Li J. Performance and toxicity assessment of nanoscale zero valent iron particles in the remediation of contaminated soil: A review. CHEMOSPHERE 2018; 210:1145-1156. [PMID: 30208540 DOI: 10.1016/j.chemosphere.2018.07.118] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 07/20/2018] [Accepted: 07/21/2018] [Indexed: 06/08/2023]
Abstract
Nanoscale zero valent iron (nZVI) particles have been studied in recent years as a promising technology for the remediation of contaminated soil. Although the potential benefits of nZVI are considerable, there is a distinct need to identify possible risks after environmental exposure to nZVI. This work firstly introduced the remediation of nZVI for heavy metals and chlorinated organic compounds in contaminated soil. And the corresponding stabilization mechanisms were discussed. We also highlighted the factors affecting nZVI reactivity, including nZVI surface area, nZVI stabilizers, soil pH, soil organic matter and soil types. In addition, this review shows a critical overview of the current understanding of toxicity of nZVI particles to soil bacteria and fungi. The toxicity mechanisms, cellular defenses behaviors and the factors affecting the toxicity of nZVI were summarized. Finally, the remaining barriers to be overcome in materials development for environment application are also discussed.
Collapse
Affiliation(s)
- Wenjing Xue
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha 410082, PR China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha 410082, PR China.
| | - Jia Wan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Chen Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Chanjuan Hu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha 410082, PR China
| | - Jing Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha 410082, PR China
| |
Collapse
|
48
|
Lipczynska-Kochany E. Effect of climate change on humic substances and associated impacts on the quality of surface water and groundwater: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:1548-1565. [PMID: 30021320 DOI: 10.1016/j.scitotenv.2018.05.376] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 05/30/2018] [Accepted: 05/30/2018] [Indexed: 06/08/2023]
Abstract
Humic substances (HS), a highly transformed part of non-living natural organic matter (NOM), comprise up to 70% of the soil organic matter (SOM), 50-80% of dissolved organic matter (DOM) in surface water, and 25% of DOM in groundwater. They considerably contribute to climate change (CC) by generating greenhouse gases (GHG). On the other hand, CC affects HS, their structure and reactivity. HS important role in global warming has been recognized and extensively studied. However, much less attention has been paid so far to effects on the freshwater quality, which may result from the climate induced impact on HS, and HS interactions with contaminants in soil, surface water and groundwater. It is expected that an increased temperature and enhanced biodegradation of SOM will lead to an increase in the production of DOM, while the flooding and runoff will export it from soil to rivers, lakes, and groundwater. Microbial growth will be stimulated and biodegradation of pollutants in water can be enhanced. However, there may be also negative effects, including an inhibition of solar disinfection in brown lakes. The CC induced desorption from soil and sediments, as well as re-mobilization of metals and organic pollutants are anticipated. In-situ treatment of surface water and groundwater may be affected. Quality of the source freshwater is expected to deteriorate and drinking water production may become more expensive. Many of the possible effects of CC described in this article have yet to be explored and understood. Enormous potential for interesting, multidisciplinary studies in the important research areas has been presented.
Collapse
|
49
|
Montero JIZ, Monteiro ASC, Gontijo ESJ, Bueno CC, de Moraes MA, Rosa AH. High efficiency removal of As(III) from waters using a new and friendly adsorbent based on sugarcane bagasse and corncob husk Fe-coated biochars. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:616-624. [PMID: 30031910 DOI: 10.1016/j.ecoenv.2018.07.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
Water contamination of As is a big issue in many areas around the globe. Therefore, cheap and efficient techniques are essential facing traditional treatment methods. Then, biochars (BC) emerged recently as material that can be used for As removal. However, research about efficiency of BC produced from local feedstock is still needed. The purpose of this study is to assess the efficiency of BC produced from sugarcane bagasse (SB) together with corncob husk (CH) with and without Fe(III) (BCFe) modification to be used for removal of As(III) from waters. The BC and BCFe produced at different pyrolysis temperatures were characterised using FTIR and SEM/EDS. Adsorption capacities of BC and BCFe were evaluated via batch adsorption, desorption and column tests and their performance was compared with adsorption using activated carbon. The results showed that Fe modification improve substantially the As(III) adsorption in a way that both BCFe-SB and BCFe-CH removed from 85% to 99.9% from 1000 µg/L As(III) solutions. Both materials fitted well in Langmuir model and the maximum adsorption capacity was 20 mg/g for BCFe-SB and 50 mg/g for BCFe-CH. The adsorption kinetics of BCFe was fast (≤ 30 min) and it had a better performance than activated carbon. The column tests showed that the process is efficient even at high As(III) concentrations. The fast removal process and good removal results make the BCFe-SB and BCFe-CH attractive for in situ and commercial (filters) use, since time and efficiency are required in new technologies.
Collapse
Affiliation(s)
- José Ignácio Z Montero
- Sao Paulo State University (UNESP), Institute of Science and Technology, Av. Tres de Marco, 511, Alto da Boa Vista, CEP: 18087-180, Sorocaba, SP, Brazil
| | - Adnívia S C Monteiro
- Sao Paulo State University (UNESP), Institute of Science and Technology, Av. Tres de Marco, 511, Alto da Boa Vista, CEP: 18087-180, Sorocaba, SP, Brazil; Federal University of Sergipe (UFS), Postgraduate Program in Water Resources, Av. Marechal Rondon, s/n - Jd. Rosa Elze, 49100-000, Sao Cristovao, SE, Brazil
| | - Erik S J Gontijo
- Sao Paulo State University (UNESP), Institute of Science and Technology, Av. Tres de Marco, 511, Alto da Boa Vista, CEP: 18087-180, Sorocaba, SP, Brazil; UFZ-Helmholtz Centre for Environmental Research, Department Lake Research, Brueckstr 3a, 39114 Magdeburg, Germany
| | - Carolina C Bueno
- Sao Paulo State University (UNESP), Institute of Science and Technology, Av. Tres de Marco, 511, Alto da Boa Vista, CEP: 18087-180, Sorocaba, SP, Brazil
| | - Minéia A de Moraes
- Sao Paulo State University (UNESP), Institute of Science and Technology, Av. Tres de Marco, 511, Alto da Boa Vista, CEP: 18087-180, Sorocaba, SP, Brazil
| | - André H Rosa
- Sao Paulo State University (UNESP), Institute of Science and Technology, Av. Tres de Marco, 511, Alto da Boa Vista, CEP: 18087-180, Sorocaba, SP, Brazil.
| |
Collapse
|
50
|
Mahamoud Ahmed A, Lyautey E, Bonnineau C, Dabrin A, Pesce S. Environmental Concentrations of Copper, Alone or in Mixture With Arsenic, Can Impact River Sediment Microbial Community Structure and Functions. Front Microbiol 2018; 9:1852. [PMID: 30158909 PMCID: PMC6104476 DOI: 10.3389/fmicb.2018.01852] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/24/2018] [Indexed: 12/03/2022] Open
Abstract
In many aquatic ecosystems, sediments are an essential compartment, which supports high levels of specific and functional biodiversity thus contributing to ecological functioning. Sediments are exposed to inputs from ground or surface waters and from surrounding watershed that can lead to the accumulation of toxic and persistent contaminants potentially harmful for benthic sediment-living communities, including microbial assemblages. As benthic microbial communities play crucial roles in ecological processes such as organic matter recycling and biomass production, we performed a 21-day laboratory channel experiment to assess the structural and functional impact of metals on natural microbial communities chronically exposed to sediments spiked with copper (Cu) and/or arsenic (As) alone or mixed at environmentally relevant concentrations (40 mg kg-1 for each metal). Heterotrophic microbial community responses to metals were evaluated both in terms of genetic structure (using ARISA analysis) and functional potential (using exoenzymatic, metabolic and functional genes analyses). Exposure to Cu had rapid marked effects on the structure and most of the functions of the exposed communities. Exposure to As had almost undetectable effects, possibly due to both lack of As bioavailability or toxicity toward the exposed communities. However, when the two metals were combined, certain functional responses suggested a possible interaction between Cu and As toxicity on heterotrophic communities. We also observed temporal dynamics in the functional response of sediment communities to chronic Cu exposure, alone or in mixture, with some functions being resilient and others being impacted throughout the experiment or only after several weeks of exposure. Taken together, these findings reveal that metal contamination of sediment could impact both the genetic structure and the functional potential of chronically exposed microbial communities. Given their functional role in aquatic ecosystems, it poses an ecological risk as it may impact ecosystem functioning.
Collapse
Affiliation(s)
- Ayanleh Mahamoud Ahmed
- Irstea, UR RiverLy, Centre de Lyon-Villeurbanne, Villeurbanne, France
- CARRTEL, Univ. Savoie Mont Blanc, INRA, Chambéry, France
- Centre de Recherche, Université de Djibouti, Djibouti, Djibouti
| | - Emilie Lyautey
- CARRTEL, Univ. Savoie Mont Blanc, INRA, Chambéry, France
| | - Chloé Bonnineau
- Irstea, UR RiverLy, Centre de Lyon-Villeurbanne, Villeurbanne, France
| | - Aymeric Dabrin
- Irstea, UR RiverLy, Centre de Lyon-Villeurbanne, Villeurbanne, France
| | - Stéphane Pesce
- Irstea, UR RiverLy, Centre de Lyon-Villeurbanne, Villeurbanne, France
| |
Collapse
|