1
|
Huang JW, He WT, Zhang YT, Yang M, Jin NX, Leskinen A, Komppula M, Roponen M, Lin LZ, Gui ZH, Liu RQ, Dong GH, Jalava P. Chlorinated paraffins in particulate matter associated with asthma and its relative symptoms in school-aged children and adolescents: A cross-sectional survey in South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178112. [PMID: 39700980 DOI: 10.1016/j.scitotenv.2024.178112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/22/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
Particulate matter (PM) and contaminants attached to PM can increase the risk of respiratory diseases. However, the health risk assessment of chlorinated paraffins (CPs), an emerging pollutant occupying a high proportion of persistent organic pollutants (POPs) in PM, remains scarce. This study aimed to evaluate the association between PM2.5-bound CPs and asthma, along with relative symptoms, in school-aged children and adolescents. A large sample size cross-sectional study (n = 131,304) was conducted in the Pearl River Delta (PRD). The results showed that increased quantiles of ∑CPs were associated with odds ratios (ORs) of 1.22 (95%CI: 1.20-1.25), 1.38 (95%CI: 1.35-1.41), 1.17 (95%CI: 1.15-1.19), 1.52 (95%CI: 1.48-1.56), 1.66 (95%CI: 1.61-1.71), and 1.33 (95%CI: 1.30-1.37) for ever diagnosed asthma, current asthma, wheeze, current wheeze, persistent phlegm, and persistent cough, respectively. Additionally, C11-, C12-SCCPs and C14-, C17-MCCPs contributed the most positive weight to the risk of asthma and relative symptoms. These findings provide cutting-edged evidence for the health risk assessment of CPs, which is crucial for developing effective CPs management strategy.
Collapse
Affiliation(s)
- Jing-Wen Huang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China; Inhalation toxicology laboratory, Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Wan-Ting He
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yun-Ting Zhang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Mo Yang
- Inhalation toxicology laboratory, Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Nan-Xiang Jin
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70210 Kuopio, Finland
| | - Ari Leskinen
- Finnish Meteorological Institute, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland; Department of Technical Physics, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Mika Komppula
- Finnish Meteorological Institute, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Marjut Roponen
- Inhalation toxicology laboratory, Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Li-Zi Lin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhao-Huan Gui
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ru-Qing Liu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Guang-Hui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Pasi Jalava
- Inhalation toxicology laboratory, Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
2
|
Fu X, Wang X, Liu T, He Q, Zhang Z, Zhang Y, Song W, Dai Q, Chen S, Dong F. Secondary inorganic aerosols and aerosol acidity at different PM 2.5 pollution levels during winter haze episodes in the Sichuan Basin, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170512. [PMID: 38286278 DOI: 10.1016/j.scitotenv.2024.170512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024]
Abstract
Wintertime fine particle (PM2.5) pollution remains to be perplexing air quality problems in many parts of China. In this study, PM2.5 compositions and aerosol acidity at different pollution levels at an urban cite in the southwest China's Sichuan Basin were investigated during a sustained winter haze episode. Organic matter was the most abundant component of PM2.5, followed by nitrate, sulfate and ammonium. Shares of organic aerosol in PM2.5 mass decreased with the elevated PM2.5 levels, while the enhancements of sulfate and secondary organic aerosol were much less than that of nitrate and ammonium during heavy pollution with increased ratios of nitrate to sulfate, implying a significant role of nitrate in the haze formation. Results also suggest the nighttime chemistry might contribute substantially to the formation of nitrate under severe pollutions. The daily average aerosol pH showed a decreasing trend with the elevated levels of PM2.5, and this increased aerosl acidity was mainly due to the fast rising secondary inorganic aerosol (SIA) concentration, with the increase in hydronium ion concentration in air (Hair+) surpassing the dilution effect of elevated aerosol liquid water content (LWC). Thermodynamic model calculations revealed that the air environment was NH3-rich with total NHx (NH3 + NH4+) greater than required NHx, and the aerosol pH exponentially declined with the decreasing excess NHx (p < 0.01). This study demonstrated that under air stagnation and NH3-rich environment during winter, the raised relative humidity (RH) would lead to an increase in LWC and thereby facilitate the aqueous chemistry processes with the neutralization capacity of NH3 to form sulfate and nitrate, which would further increase the LWC and lower the pH. This self-amplifying SIA formation might be crucial to the severe PM2.5 pollution and haze events during winter, and therefore cutting both NOx and NH3 emissions would benefit stopping the self-amplification.
Collapse
Affiliation(s)
- Xiaoxin Fu
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Tengyu Liu
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Quanfu He
- Institute for Energy and Climate Research, IEK-8, Forschungszentrum Jülich, Jülich 52425, Germany
| | - Zhou Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yanli Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Wei Song
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Qunwei Dai
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Shu Chen
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Faqin Dong
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
3
|
Zeng Y, Ma HM, Zhang QY, Tao L, Wang T, Wan C, Chen SJ, Mai BX. Complex polycyclic aromatic compound mixtures in PM 2.5 in a Chinese megacity: Spatio-temporal variations, toxicity, and source apportionment. ENVIRONMENT INTERNATIONAL 2023; 179:108159. [PMID: 37607426 DOI: 10.1016/j.envint.2023.108159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/24/2023]
Abstract
Polycyclic aromatic compounds (PACs) are important toxic organic components in fine particulate matter (PM2.5), whereas the links between PM2.5 toxicity and associated PACs in ambient air are poorly understood. This study investigated the spatial-temporal variations of PACs in PM2.5 collected from 11 sampling sites across a Chinese megacity and characterized the reactive oxygen species (ROS) generation and cytotoxicity induced by organic extracts of PM2.5 based on cellular assays. The extra trees regression model based on machine learning and ridge regression were used to identify the key toxicants among complex PAC mixtures. The total concentrations of these PACs varied from 2.12 to 71.7 ng/m3 across the study city, and polycyclic aromatic hydrocarbons (PAHs) are the main PACs. The spatial variations of the toxicological indicators generally resembled those of the PAC concentrations, and the PM2.5 related to waste treatment facilities exhibited the strongest toxic potencies. The ROS generation was highly correlated with high molecular weight PAHs (MW302 PAHs), followed by PAHs with MW<302 amu and oxygenated PAHs, but not with nitrated PAHs and the plastics additives. The cell mortality showed weak correlations with these organic constituents. The associations between the biological endpoints and these PM2.5-bound contaminants were further confirmed by exposure to authentic chemicals. Four primary sources of PACs were identified, among which coal and biomass combustion sources (30.2% of the total PACs) and industrial sources (31.0%) were predominant. PACs emitted from industrial sources were highly associated with ROS generation in this city. Our findings highlight the potent ROS-generating potential of MW302 PAHs and the importance of industrial sources contributing to PM2.5 toxicity in this megacity, raising public concerns and further administration.
Collapse
Affiliation(s)
- Yuan Zeng
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Hui-Min Ma
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Qian-Yu Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Tao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Tao Wang
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Cong Wan
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - She-Jun Chen
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
4
|
Fu L, Sun Y, Li H, Chen Y, Du H, Liang SX. Distribution, sources, and ecological risk assessment of polycyclic aromatic hydrocarbons in sediments from Baiyang Lake, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1035. [PMID: 37572161 DOI: 10.1007/s10661-023-11607-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/14/2023] [Indexed: 08/14/2023]
Abstract
The issue of polycyclic aromatic hydrocarbons (PAHs) has been an environmental focus worldwide. In this study, the contents, sources, and ecological risks of sixteen PAHs in the sediment of Baiyang Lake were estimated, and a list of priority pollutants was established. The total PAH contents ranged from 114 to 1010 ng·g-1. The composition of PAHs indicated that 4- to 6-ring PAHs predominated in the sediment samples. The diagnostic ratio analysis showed that combustion sources were predominant for PAHs in Baiyang Lake. Specifically, the positive matrix factorization model indicated that diesel engine emissions, gasoline engine emissions, wood combustion sources, and coal combustion sources contributed 22, 32, 24, and 22% of ∑PAHs, respectively. Based on the sediment quality guidelines, mean effects range median quotient, ecological risk quotient, and toxicity equivalent quotient methods, the comprehensive assessment results of PAHs in Baiyang Lake sediments indicated that the ecological risks were at medium and low levels. The priority pollutant list showed that benzo[b]fluoranthene and benzo[a]pyrene were the highest-priority pollutants and thus should be given more attention.
Collapse
Affiliation(s)
- Liguo Fu
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, People's Republic of China
| | - Yaxue Sun
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, People's Republic of China
| | - Hongbo Li
- Baiyangdian Basin Eco-environmental Support Center, Shijiazhuang, 050056, China
| | - Yan Chen
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, People's Republic of China
| | - Hui Du
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, People's Republic of China
| | - Shu-Xuan Liang
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, People's Republic of China.
- Institute of Life Science and Green Development, Hebei University, Baoding, 071002, People's Republic of China.
| |
Collapse
|
5
|
Jiang G, Song X, Xie J, Shi T, Yang Q. Polycyclic aromatic hydrocarbons (PAHs) in ambient air of Guangzhou city: Exposure levels, health effects and cytotoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115308. [PMID: 37544068 DOI: 10.1016/j.ecoenv.2023.115308] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) in PM2.5 pose potentially serious threats to human health. In this study, the distribution characteristics of 16 priority controlled, fine PM (PM2.5)-bound PAHs in the ambient air of Guangzhou city were analysed from 2016 to 2019. Four high-molecular-weight PAHs with the highest annual average concentrations were benzo[ghi]perylene (BghiP; 0.757 ng/m3), indeno(1,2,3-cd)pyrene (IcdP; 0.627 ng/m3), benzo[b]fluoranthene (BbF, 0.519 ng/m3) and 3,4-benzopyrene (BaP; 0.426 ng/m3). Increasing concentrations of BghiP, IcdP, BbF and BaP were associated with increasing numbers of outpatient visits for respiratory diseases, indicating that exposure to these PAHs potentially causes acute respiratory injury in residents. Acute exposure of the human bronchial epithelial cell line BEAS-2B cells to BghiP, IcdP, BbF and BaP in vitro resulted in acute inflammation, DNA damage and apoptosis. Further bioinformatic analysis indicated that nuclear receptor subfamily 1 group D member 1 (NR1D1) may be a key target gene involved in mediating the toxic effects of BghiP. Collectively, our results suggest that BghiP and the other PAHs represented by it can damage the respiratory system and induce lung cancer. This study provides valuable evidence regarding the potential health risks posed by local ambient PAHs pollution.
Collapse
Affiliation(s)
- Guanqing Jiang
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, PR China
| | - Xu Song
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, PR China
| | - Jiaying Xie
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, PR China
| | - Tongxing Shi
- Guangzhou Center for Disease Control and Prevention, No. 1 Qide Road, Baiyun District, Guangzhou 510440, PR China
| | - Qiaoyuan Yang
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, PR China.
| |
Collapse
|
6
|
Lang X, Yu K, Zhao Z, Chen Y, Tian J, Zhang M, Wang Y. Vertical distribution, environmental occurrence, and risk assessment of organic pollutants in lacustrine sediments in southeast China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:51206-51216. [PMID: 36809627 DOI: 10.1007/s11356-023-25712-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/31/2023] [Indexed: 04/16/2023]
Abstract
To clarify the impact of human activities on the natural environment, as well as the current ecological risks to the environment surrounding Zhushan Bay in Taihu Lake, the characteristics of deposited organic materials, including elements and 16 polycyclic aromatic hydrocarbons (∑16PAHs), in a sediment core from Taihu Lake were determined. The nitrogen (N), carbon (C), hydrogen (H), and sulfur (S) contents ranged from 0.08 to 0.3%, 0.83 to 3.6%, 0.63 to 1.12%, and 0.02 to 0.24%, respectively. The most abundant element in the core was C followed by H, S, and N, while elemental C and the C/H ratio displayed a decreasing trend with depth. The ∑16PAH concentration was in the range of 1807.48-4674.83 ng g-1, showing a downward trend with depth, with some fluctuations. Three-ring PAHs dominated in surface sediment, while 5-ring PAHs dominated at a depth of 55-93 cm. Six-ring PAHs appeared in the 1830s and gradually increased over time before slowly decreasing from 2005 onward due to the establishment of environmental protection measures. The ratio of PAH monomers indicated that PAHs in samples from a depth of 0 to 55 cm were mainly derived from the combustion of liquid fossil fuels, while the PAHs in the deeper samples mainly originated from petroleum. The results of a principal component analysis (PCA) showed that the PAHs in the sediment core of Taihu Lake were mainly derived from the combustion of fossil fuels, such as diesel, petroleum, gasoline, and coal. The contributions of biomass combustion, liquid fossil fuel combustion, coal combustion, and unknown source were 8.99%, 52.68%, 1.65%, and 36.68%, respectively. The results of a toxicity analysis indicated that most of the PAH monomers had little impact on the ecology, and the annual increase of a small number of monomers might have toxic effects on the biological community, resulting in a serious ecological risks, that requires the imposition of control measures.
Collapse
Affiliation(s)
- Xiulu Lang
- School of Geography, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, Qixia, China
- Key Laboratory of Virtual Geographic Environment, Ministry of Education, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China
| | - Kangkang Yu
- School of Geography, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, Qixia, China
| | - Zihan Zhao
- School of Geography, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, Qixia, China
| | - Yan Chen
- School of Geography, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, Qixia, China
| | - Jiming Tian
- School of Geography, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, Qixia, China
| | - Mingli Zhang
- School of Geography, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, Qixia, China
| | - Yanhua Wang
- School of Geography, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, Qixia, China.
- Key Laboratory of Virtual Geographic Environment, Ministry of Education, Nanjing Normal University, Nanjing, 210023, China.
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China.
| |
Collapse
|
7
|
Source Apportionment and Toxic Potency of PM2.5-Bound Polycyclic Aromatic Hydrocarbons (PAHs) at an Island in the Middle of Bohai Sea, China. ATMOSPHERE 2022. [DOI: 10.3390/atmos13050699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have attracted more attention because of their high atmospheric concentration and toxicity in recent decades. In this study, a total of 60 PM2.5 samples were collected from Beihuangcheng Island in Bohai Sea, China, from August 2017 to March 2018 for analyzing 16 congeners of PAHs (Σ16PAHs). Sources of PAHs were apportioned by a positive matrix factorization (PMF) model and the carcinogenic risk due to exposure to the PAHs was estimated by the toxicity equivalent of BaP (BaPeq). The results showed that the average concentration of Σ16PAHs was 35.3 ± 41.8 ng/m3. The maximum concentration of Σ16PAHs occurred in winter, followed by spring and autumn, and summer. The PMF modeling apportioned the PAHs into four sources, coal combustion, biomass burning, vehicle exhaust, and petroleum release, contributing 43.1%, 25.8%, 24.7%, and 6.39%, respectively. The average ΣBaPeq concentration was 2.32 ± 4.95 ng/m3 during the sampling period, and vehicle exhaust was the largest contributor. The finding indicates that more attention should be paid to reduce the emissions from coal combustion and vehicle exhaust because they were the largest contributors to the PAH concentration in PM2.5 and ΣBaPeq concentration, respectively.
Collapse
|
8
|
Zhang N, Geng C, Xu J, Zhang L, Li P, Han J, Gao S, Wang X, Yang W, Bai Z, Zhang W, Han B. Characteristics, Source Contributions, and Source-Specific Health Risks of PM 2.5-Bound Polycyclic Aromatic Hydrocarbons for Senior Citizens during the Heating Season in Tianjin, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4440. [PMID: 35457316 PMCID: PMC9030979 DOI: 10.3390/ijerph19084440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have carcinogenic impacts on human health. However, limited studies are available on the characteristics, sources, and source-specific health risks of PM2.5-bound PAHs based on personal exposure data, and comparisons of the contributions of indoor and outdoor sources are also lacking. We recruited 101 senior citizens in the winter of 2011 for personal PM2.5 sample collection. Fourteen PAHs were analyzed, potential sources were apportioned using positive matrix factorization (PMF), and inhalational carcinogenic risks of each source were estimated. Six emission sources were identified, including coal combustion, gasoline emission, diesel emission, biomass burning, cooking, and environmental tobacco smoking (ETS). The contribution to carcinogenic risk of each source occurred in the following sequence: biomass burning > diesel emission > gasoline emission > ETS > coal combustion > cooking. Moreover, the contributions of biomass burning, diesel emission, ETS, and indoor sources (sum of cooking and ETS) to PAH-induced carcinogenic risk were higher than those to the PAH mass concentration, suggesting severe carcinogenic risk per unit contribution. This study revealed the contribution of indoor and outdoor sources to mass concentration and carcinogenic risk of PM2.5-bound PAHs, which could act as a guide to mitigate the exposure level and risk of PM2.5-bound PAHs.
Collapse
Affiliation(s)
- Nan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (N.Z.); (C.G.); (J.X.); (X.W.); (W.Y.); (Z.B.)
| | - Chunmei Geng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (N.Z.); (C.G.); (J.X.); (X.W.); (W.Y.); (Z.B.)
| | - Jia Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (N.Z.); (C.G.); (J.X.); (X.W.); (W.Y.); (Z.B.)
| | - Liwen Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China;
| | - Penghui Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China;
| | - Jinbao Han
- School of Quality and Technical Supervision, Hebei University, Baoding 071002, China;
| | - Shuang Gao
- School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin 300387, China;
| | - Xinhua Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (N.Z.); (C.G.); (J.X.); (X.W.); (W.Y.); (Z.B.)
| | - Wen Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (N.Z.); (C.G.); (J.X.); (X.W.); (W.Y.); (Z.B.)
| | - Zhipeng Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (N.Z.); (C.G.); (J.X.); (X.W.); (W.Y.); (Z.B.)
| | - Wenge Zhang
- Particle Laboratory, Center for Environmental Metrology, National Institute of Metrology, Beijing 100022, China
| | - Bin Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (N.Z.); (C.G.); (J.X.); (X.W.); (W.Y.); (Z.B.)
| |
Collapse
|
9
|
Wang XN, Wang HJ, Ma Y, Liu JR, Hao Y, Ma CQ, Liu N, Cui YX, Shi XM, Gong FL, Wu XL. Concentrations, seasonal trends, sources, health risk and subchronic toxicity to the respiratory and immune system of PAHs in PM 2.5 in Xi'an. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 58:276-283. [PMID: 35137675 DOI: 10.1080/10934529.2022.2033582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/11/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) have been proved to be hazardous to health. Previous studies have focused on the distribution and sources of PAHs, whereas there is little knowledge of the damage to organs. Here we sought to investigate the pollution level and seasonal variation characteristics of PAHs in PM2.5 in Xi'an and assess the health risk, to establish a PAHs exposure model, and investigate the toxicological effects of PAHs on the respiratory and immune functions. A sub-chronic exposure model of PAHs was established by inhalation. The pathological changes of lung tissues were observed with a light microscope. Inflammatory reactions in alveolar lavage fluid were determined using the corresponding kit. The levels of interleukin-6 (IL-6) and interleukin-8 (IL-8) were detected with enzyme linked immunosorbent assay (ELISA) kit; the proliferation of lymphocytes in spleen was detected with methyl tetrazolium (MTT); DNA immune damage was determined with DNA gel electrophoresis. The results showed that (1) the total concentration of 16 PAHs ranged from 41.1 to 387 ng/m3, with a mean value of 170 ng/m3, and the concentration of PAHs in PM2.5 was higher in winter than in other seasons. (2) The sources of PAHs in the atmosphere of Xi'an urban area were mainly coal combustion, and the equivalent carcinogenic concentration of PAHs in PM2.5 was 3.9 ng/m3. (3) Foreign body granuloma formation and inflammatory cell damage were observed in the lungs of rats infected with toxin; the levels of reactive oxygen species (ROS) and mobile device assistant (MDA) increased while nitric oxide synthase (NOS) decreased with the increase of dose; the expression levels of IL-6 and IL-8 elevated with the increase of toxin dose, showing an obvious dose-effect relationship; the level of PAHs damage to cells showed a dose-effect relationship. Sub-chronic exposure to PAHs could cause sustained inflammatory injury to the organism. Measures should be taken to counter the problems of PAHs in PM2.5 in Xi'an and relevant health promotion strategies should be developed.
Collapse
Affiliation(s)
- Xiang-Ni Wang
- School of Public Health, Medical Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Hui-Juan Wang
- Department of Dermatology, the Ninth Hospital of Xi'an, Xi'an, China
| | - Yan Ma
- School of Public Health, Medical Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jin-Ren Liu
- School of Public Health, Medical Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yue Hao
- School of Public Health, Medical Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Cai-Qin Ma
- School of Public Health, Medical Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Na Liu
- School of Public Health, Medical Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yi-Xin Cui
- School of Public Health, Medical Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xing-Min Shi
- School of Public Health, Medical Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Fu-Liang Gong
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xi-Li Wu
- Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
10
|
Huang F, Zhang Y, Lou Y, Li X, Zhang T, Yu H, Yuan C, Tong Q, Qi F, Shao F. Characterization, Sources and Excessive Cancer Risk of PM 2.5-Bound Polycyclic Aromatic Hydrocarbons in Different Green Spaces in Lin'an, Hangzhou, China. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:519-529. [PMID: 34230988 DOI: 10.1007/s00128-021-03304-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
PM2.5 samples were collected from residential, commercial, plaza and public green spaces in Lin'an, Hangzhou, in spring (March and April) and winter (February and December) in 2017. PAHs were detected by gas chromatography-mass spectrometry (GC-MS), and their sources were identified using the diagnostic ratio (DR) and principal component analysis-multiple linear regression (PCA-MLR). The average PAH concentration in winter was 1.3 times that in spring (p < 0.01). The PAH concentrations in the green spaces decreased as commercial > residential > plaza > public green space (p < 0.05). The sources of PAHs were vehicle emissions and coal combustion pollution transported by northern Chinese air masses. Slightly higher excessive cancer risks were determined in the commercial and residential green spaces than in the plaza and public green spaces. Green coverage, pedestrian volume, traffic flow and building density greatly influenced the decrease in the PAH concentration in the green spaces. Among the 4 types of green spaces, public green space had the most ecological benefits and should be fully utilized in urban green space planning to improve public health in urban spaces.
Collapse
Affiliation(s)
- Fang Huang
- College of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, China
| | - Yinke Zhang
- Hangzhou Botanical Garden (Hangzhou West Lake Academy of Landscape Science), Hangzhou, 310012, Zhejiang, China
| | - Yilei Lou
- College of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, China
| | - Xiaolu Li
- College of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, China
| | - Tianran Zhang
- College of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, China
| | - Hui Yu
- College of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, China
| | - Chuyang Yuan
- College of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, China
| | - Qun Tong
- Hangzhou Lin'an District Environmental Monitoring Station, Hangzhou, 311300, Zhejiang, China
| | - Feng Qi
- College of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, China
| | - Feng Shao
- College of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
11
|
Zhang L, Yang Z, Liu J, Zeng H, Fang B, Xu H, Wang Q. Indoor/outdoor relationships, signatures, sources, and carcinogenic risk assessment of polycyclic aromatic hydrocarbons-enriched PM 2.5 in an emerging port of northern China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:3067-3081. [PMID: 33501592 DOI: 10.1007/s10653-021-00819-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Humans spend most of their time in indoor environments, thus a thorough understanding of indoor and outdoor PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) origins for accurate assessment of health risks is required. In the present study, 84 pairs of PM2.5 samples from indoor (laboratory) and outdoor (campus) locations were collected from April to December 2018 in Caofeidian, China. The annual median concentration of PM2.5 outdoors was 90.80 µg/m3, 9.08 times higher than the annual standard of WHO guideline (10 µg/m3). Indoor PM2.5 annual median concentration (41.80 µg/m3) was also higher than the annual standard of ASHRAE guideline (15 µg/m3). The annual median concentrations of ∑18PAHs indoors (44.23 ng/m3) and outdoors (189.6 ng/m3) were highest in winter and descended in the order of autumn > spring > summer. Contrary to summer and autumn, indoor/outdoor concentration ratios were less than 1 in spring and winter, indicating that the contribution of outdoor particle infiltration was more significant than that of indoor sources. The positive matrix factorization model suggested that indoor PAHs came from three sources: vehicle emissions (43%), biomass burning (37%), industry emissions, and coal combustion (20%). Outdoor PAHs came from four sources: petroleum volatilization (39%), vehicle emissions (30%), coal combustion (18%), and biomass burning (13%). The incremental lifetime cancer risk values of indoor and outdoor PAHs in winter exceeded the acceptable level (10-6), and the carcinogenic risk of adults was higher than that of children and teenagers. These results indicated that simultaneous monitoring of indoor and outdoor PAHs is recommended for accurate assessment of health risk, and the analysis in the current work should be helpful to formulate policies to reduce PAHs emissions.
Collapse
Affiliation(s)
- Lei Zhang
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, People's Republic of China
| | - Ze Yang
- Department of Occupational and Environmental Health, Tianjin Medical University, Tianjin, 300041, People's Republic of China
| | - Jiajia Liu
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, People's Republic of China
| | - Hao Zeng
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, People's Republic of China
| | - Bo Fang
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, People's Republic of China
| | - Houjun Xu
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, People's Republic of China
| | - Qian Wang
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, People's Republic of China.
| |
Collapse
|
12
|
Zhang M, Tang Z, Yin H, Meng T. Concentrations, distribution and risk of polycyclic aromatic hydrocarbons in sediments from seven major river basins in China over the past 20 years. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111717. [PMID: 33277098 DOI: 10.1016/j.jenvman.2020.111717] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) in river sediments in China have been extensively investigated. However, most previous studies only reported information about specific locations. As a result, the distribution and changes of these chemicals in sediments nationwide remain unknown. Based on published data during 1997-2020, we conducted a systematic meta-analysis to understand the concentration, risk and the spatiotemporal variation of PAHs in river sediments from the seven major river systems in China. The report provides a national picture of PAHs in river sediments of China. Among the seven river systems, higher concentrations of sediment PAHs are found in the basins of Liaohe River and Haihe River. In the study sediments, high-molecular-mass (4-6-ring) PAHs were predominated, reflecting the widespread combustion of coal and fossil fuels across China. In addition, PAH source assessment also suggests that raw coal and crude oil are important contributors to PAH concentrations in the rivers in northeastern China. Over the past 20 years, there is no downward trend in the concentrations of Σ16PAHs in sediments in the seven river basins; but the contribution of high-temperature combustion to the pollution has declined. In addition, our calculated risks from sediment PAHs seem to decline between 1997-2006 and 2007-2017 periods, although the differences were not statistically significant (p > 0.05). Of note, the data collection and the risk assessment methods used in this preliminary survey may result in some uncertainty. Our results suggest that the PAHs in river sediments in China still need to be paid attention to due to the complexity of their sources and harms to aquatic organisms.
Collapse
Affiliation(s)
- Minna Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| | - Zhenwu Tang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Hongmin Yin
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Tong Meng
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
13
|
Liu Y, Zhao D, Peng W, Xue P, Jiang X, Chen S, Gao H, Wang X, Feng S. Atmospheric PM 2.5 blocking up autophagic flux in HUVECs via inhibiting Sntaxin-17 and LAMP2. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111450. [PMID: 33039871 DOI: 10.1016/j.ecoenv.2020.111450] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Despite of growing evidence linking PM2.5 exposure to autophagic activity in various human cells, the functional significance of PM2.5 exposure affecting autophagy in the pathogenesis of human cardiovascular disease and the underlying molecular mechanisms remain unclear. In this study, the effects of ambient PM2.5 (with final concentration 0, 1, 5, 25 µg/mL) on the autophagic activity in human umbilical vein endothelial cells (HUVECs) were systematically studied. The results showed that the internalized PM2.5 mainly localized in the membrane-surrounded vacuoles in the cytoplasm. Compared with the negative control, dose-dependent increase of autophagosomes, puncta and protein levels of LC3-II and p62, and both dose- and time-dependent increase of AKT phosphorylation, with inversely time-dependent reduction of Beclin 1, ATG3 and ATG5 proteins, were presented in the PM2.5-treated HUVECs, indicating a clear impairment of autophagic degradation in the PM2.5-exposed HUVECs. Meanwhile, increase in lysosomes, LAMP1, proteases of CTSB and CTSD, and protein phosphorylation of ERK1/2 and TFEB was identified in the PM2.5-treated HUVECs, showing a PM2.5-mediated enhancement in lysosomal activity. A novel finding in this study is that both Sntaxin-17 and LAMP2, two key proteins involved in the control of membrane fusion between autophagosome and lysosome, were significantly decreased in the PM2.5-exposed HUVECs, suggesting that the fusion of autophagosome-lysosome was blocked up. Collectively, ambient PM2.5 exposure may block up the autophagic flux in HUVECs through inhibiting the expression of Sntaxin-17 and LAMP2. Autophagic activity in HUVECs is a useful biomarker for assessing risks of environmental factors to human cardiovascular health.
Collapse
Affiliation(s)
- Yuanfeng Liu
- The Key Laboratory of Hengyang for Health Hazard Factors Inspection and Quarantine, School of Public Health, University of South China, Hengyang 421001, China; The Institute of Preventive Medicine, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Dongting Zhao
- The Key Laboratory of Hengyang for Health Hazard Factors Inspection and Quarantine, School of Public Health, University of South China, Hengyang 421001, China
| | - Wenyi Peng
- The Key Laboratory of Hengyang for Health Hazard Factors Inspection and Quarantine, School of Public Health, University of South China, Hengyang 421001, China
| | - Panpan Xue
- The Key Laboratory of Hengyang for Health Hazard Factors Inspection and Quarantine, School of Public Health, University of South China, Hengyang 421001, China
| | - Xiaojun Jiang
- The Key Laboratory of Hengyang for Health Hazard Factors Inspection and Quarantine, School of Public Health, University of South China, Hengyang 421001, China
| | - Shuting Chen
- The Key Laboratory of Hengyang for Health Hazard Factors Inspection and Quarantine, School of Public Health, University of South China, Hengyang 421001, China
| | - Huiqian Gao
- The Institute of Preventive Medicine, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Xinming Wang
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China; The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Shaolong Feng
- The Institute of Preventive Medicine, School of Public Health, Guilin Medical University, Guilin 541199, China; Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China; The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
14
|
Li J, Li J, Wang G, Ho KF, Dai W, Zhang T, Wang Q, Wu C, Li L, Li L, Zhang Q. Effects of atmospheric aging processes on in vitro induced oxidative stress and chemical composition of biomass burning aerosols. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123750. [PMID: 33113732 DOI: 10.1016/j.jhazmat.2020.123750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/30/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
Biomass burning (BB) has an important impact on local/regional air quality and human health in China, but most previous studies overlooked the influence of atmospheric aging processes on cytotoxicity and chemical composition of BB aerosols. In this study, we combined a combustion chamber and an oxidation flow reactor to generate fresh and aged BB PM2.5. Human bronchial epithelial BEAS-2B cells were exposed to PM2.5 preparation for 24 h, and then determined for particle-induced reactive oxygen species (ROS) in vitro. The particle-induced ROS production increased by 11 %-64 % after two days of aging, suggesting an enhancement of in vitro-induced oxidative stress (OS) of aged BB particles. Chemical analysis showed that organic matter (OM) was the dominant component with no changes in relative abundance for the fresh and aged BB particles. Organic polycyclic aromatic compounds and some metals showed strong correlations with ROS in fresh particles, indicating the important effects of these harmful components on the OS of fresh BB aerosols. However, such correlations were not found for the aged particles, which is possibly related to the loss of non- or low-toxic semivolatile compounds and the formation of secondary harmful OM (such as some N-containing organic compounds) during the atmospheric aging processes.
Collapse
Affiliation(s)
- Jianjun Li
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China.
| | - Jin Li
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Gehui Wang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, 200241, China; Institute of Eco-Chongming, 3663 N. Zhongshan Rd., Shanghai, 200062, China.
| | - Kin Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China; Shenzhen Municipal Key Laboratory for Health Risk Analysis, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Wenting Dai
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Ting Zhang
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Qiyuan Wang
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Can Wu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, 200241, China; Institute of Eco-Chongming, 3663 N. Zhongshan Rd., Shanghai, 200062, China
| | - Lijuan Li
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China; Department of Environmental Toxicology, University of California, Davis, CA 95616, USA
| | - Li Li
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Qi Zhang
- Department of Environmental Toxicology, University of California, Davis, CA 95616, USA
| |
Collapse
|
15
|
Xu C, Gao L, Zheng M, Qiao L, Wang K, Huang D, Wang S. Nontarget Screening of Polycyclic Aromatic Compounds in Atmospheric Particulate Matter Using Ultrahigh Resolution Mass Spectrometry and Comprehensive Two-Dimensional Gas Chromatography. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:109-119. [PMID: 33171047 DOI: 10.1021/acs.est.0c02290] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are mutagenic and carcinogenic. 16 PAHs as priority pollutants listed by the US Environmental Protection Agency were usually monitored. Therefore, multiple potentially toxic polycyclic aromatic compounds (PACs) are not monitored. In this study, atmospheric particulate matter samples from Beijing were analyzed using atmospheric pressure photoionization (APPI) Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry and comprehensive two-dimensional gas chromatography-time-of-flight (GC × GC-TOF) mass spectrometry. The FT-ICR data detected high molecular weight PAHs, alkylated PAHs (APAHs) and heteroatom PAHs. The GC × GC-TOF data tentatively identified 386 PACs in five categories of identification confidence. Twenty-one spectra in the unknown class were manually resolved. Eighty-two PACs with high identification confidence were proposed for further research. The identities of five PAHs and five APAHs that are currently not regulated were confirmed using available standards and quantified in some samples. Some of these PACs, such as dibenzo[a,e]pyrene (C22H14) and 1-methylpyrene (C17H12), should be of concern because of their contamination levels and the high toxicities of themselves and/or their derivatives. This study highlights the possibility of expanding the traditional lists of PAHs to improve pollution control and risk assessment accuracy.
Collapse
Affiliation(s)
- Chi Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lirong Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Qiao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kunran Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Di Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuang Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Zhang Y, Shen Z, Sun J, Zhang L, Zhang B, Zou H, Zhang T, Hang Ho SS, Chang X, Xu H, Wang T, Cao J. Parent, alkylated, oxygenated and nitrated polycyclic aromatic hydrocarbons in PM 2.5 emitted from residential biomass burning and coal combustion: A novel database of 14 heating scenarios. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115881. [PMID: 33120337 DOI: 10.1016/j.envpol.2020.115881] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
To characterize the emissions of polycyclic aromatic hydrocarbons (PAHs) from residential biomass burning and coal combustion in field environments, smoke samples were collected from the combustion of six types of biomass in heated kangs and four types of coal in traditional stoves and semi-gasifier stoves. The emission factors (EFs) of the total PAH were in the range of 84.5-344 mg/kg for biomass burning, with lower EFs for biomass with higher densities, and in the range of 38.0-206 mg/kg for coal combustion, with lower EFs for coals with higher maturity. Moreover, EFs were lower from high-density biomass fuels (wood trunk, 84.5 ± 11.3 mg/kg) than low-maturity coals (bituminous coal, 206 ± 16.5 mg/kg). Parent, oxygenated, alkylated, and nitrated PAHs accounted for 81.1%, 12.6%, 6.2%, and 0.1%, respectively, of the total-PAH EFs from biomass burning, and 84.7%, 13.8%, 1.4%, and 0.1%, respectively, of the total-PAH EFs from coal combustion. PAH source profiles differed negligibly between biomass fuels but differed significantly between bituminous coal and anthracite coal fuels. The characteristic species of sources were phenanthrene, 9-fluorenone, and 2-nitrobiphenyl for biomass burning, and were phenanthrene, benzo[ghi]perylene, 1,4-naphthoquinone, and 2-nitrobiphenyl for coal combustion. The ratios of benzo[b]fluoranthene/(benzo[b]fluoranthene + benzo[k]fluoranthene) were 0.40-0.45 for biomass burning and 0.89-0.91 for coal combustion, and these significantly different values constitute unique markers for distinguishing these fuels in source apportionment. Benzo[a]pyrene-equivalent factor emissions were 2.79-11.3 mg/kg for biomass and 7.49-41.9 mg/kg for coal, where parent PAHs contributed 92.0%-95.1% from biomass burning and 98.6%-98.8% from coal combustion. Total-PAH emissions from residential heating were 1552 t across Shaanxi province, to which wheat straw (445 t) in biomass burning and bituminous coal (438 t) in coal combustion were the highest contributors. Results from this study provide crucial knowledge for the source identification of PAHs as well as for the design of abatement strategies against pollutant emissions.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710049, China
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710049, China.
| | - Jian Sun
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Canada
| | - Bin Zhang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Haijiang Zou
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Tian Zhang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Steven Sai Hang Ho
- Division of Atmospheric Sciences, Desert Research Institute, Reno, NV, 89512, United States; Hong Kong Premium Services and Research Laboratory, Hong Kong, China
| | - Xiaojian Chang
- Agricultural Technology & Extension Central of Xi'an City, Xi'an, China
| | - Hongmei Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Tao Wang
- Agricultural Technology & Extension Central of Xi'an City, Xi'an, China
| | - Junji Cao
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710049, China
| |
Collapse
|
17
|
Liao K, Yu JZ. Abundance and sources of benzo[a]pyrene and other PAHs in ambient air in Hong Kong: A review of 20-year measurements (1997-2016). CHEMOSPHERE 2020; 259:127518. [PMID: 32650173 DOI: 10.1016/j.chemosphere.2020.127518] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
The polycyclic aromatic hydrocarbon (PAH) family is of environmental concern due to its toxicity, prompting the need of monitoring their long-term trends. Three monitoring programs in Hong Kong report concentrations of ambient PAHs, namely (1) respirable suspending particle (RSP) speciation program that monitored benzo[a]pyrene (BaP) (1997 to March 2000), (2) total suspended particle speciation program that monitored BaP (1997-1999), and (3) toxic air pollutant monitoring program that monitors BaP and 16 other PAHs in the combined gas and particulate phases at two general urban stations once or twice a month since January 1998. In this work, we review all the available PAH measurements in Hong Kong during 1997-2016, with emphasis on the temporal trends of BaP and the other 16 PAHs. PAHs of 5-6 rings exhibit an ambiguous decline trend since 1998, with a negative Sen's slope that is statistically significant. Specifically, BaP was reduced by 78% from 1998 to 2016, with a Sen's slope of -0.013 ng m-3 year-1. Correlations of BaP with RSP major species of high source specificity and PAH diagnostic ratios are employed to explore the source origins of PAHs. Our analysis reveals that PAHs mainly come from a combination of vehicular emissions and biomass/coal combustion. The decline trend of PAHs is further found in consistence with the declined particulate matter emissions from vehicular exhaust and biomass/coal combustion. This study fills the data vacancy in the long-term trends of ambient PAHs for the Pearl River Delta region, one of the economically more advanced regions in China.
Collapse
Affiliation(s)
- Kezheng Liao
- Department of Chemistry and Division of Environment, Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jian Zhen Yu
- Department of Chemistry and Division of Environment, Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China; Division of Environment, Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
18
|
Wang W, Ding X, Turap Y, Tursun Y, Abulizi A, Wang X, Shao L, Talifu D, An J, Zhang X, Zhang Y, Liu H. Distribution, sources, risks, and vitro DNA oxidative damage of PM 2.5-bound atmospheric polycyclic aromatic hydrocarbons in Urumqi, NW China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139518. [PMID: 32534306 DOI: 10.1016/j.scitotenv.2020.139518] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/11/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
Research has focused on the impacts of polycyclic aromatic hydrocarbons (PAHs) in the atmosphere due to their potential carcinogenicity. In this study, we investigated the seasonal variation, sources, incremental lifetime cancer risks (ILCRS), and vitro DNA oxidative damage of PAHs in Urumqi in NW China. A total of 72 atmospheric samples from Urumqi were collected over a year (September 2017-September 2018) and were analyzed for 16 PAHs that are specifically prioritized by the U.S Environmental Protection Agency (U·S EPA). The highest PAHs concentrations were in winter (1032.66 ng m-3) and lowest in spring (146.00 ng m-3). Middle molecular weight PAHs with four rings were the most abundant species (45.28-61.19% of the total). The results of the diagnostic ratio and positive matrix factorization inferred that the major sources of atmospheric PAHs in Urumqi were biomass burning, coking, and petrogenic sources (52.9%), traffic (30.1%), coal combustion (8.9%), and the plastics recycling industry (8.1%). ILCRS assessment and Monte Carlo simulations suggested that for all age groups PAHs cancer risks were mainly associated with ingestion and dermal contact and inhalation was negligible. The plasmid scission assay results showed a positive dose-response relationship between PAHs concentrations and DNA damage rates, demonstrating that toxic PAHs was the primary cause for PM2.5-induced DNA damage in the air of Urumqi.
Collapse
Affiliation(s)
- Wei Wang
- College of Chemistry and Chemical Engineer, Xinjiang University, Urumqi 830046, China
| | - Xiang Ding
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China.
| | - Yusan Turap
- College of Chemistry and Chemical Engineer, Xinjiang University, Urumqi 830046, China
| | - Yalkunjan Tursun
- College of Chemistry and Chemical Engineer, Xinjiang University, Urumqi 830046, China
| | - Abulikemu Abulizi
- College of Chemistry and Chemical Engineer, Xinjiang University, Urumqi 830046, China
| | - Xingming Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
| | - Longyi Shao
- College of Geosciences and Survey Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Dilinuer Talifu
- College of Chemistry and Chemical Engineer, Xinjiang University, Urumqi 830046, China.
| | - Juqin An
- College of Chemistry and Chemical Engineer, Xinjiang University, Urumqi 830046, China
| | - Xiaoxiao Zhang
- College of Chemistry and Chemical Engineer, Xinjiang University, Urumqi 830046, China
| | - Yuanyu Zhang
- College of Chemistry and Chemical Engineer, Xinjiang University, Urumqi 830046, China
| | - Huibin Liu
- College of Chemistry and Chemical Engineer, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
19
|
Sun H, Chen H, Yao L, Chen J, Zhu Z, Wei Y, Ding X, Chen J. Sources and health risks of PM 2.5-bound polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in a North China rural area. J Environ Sci (China) 2020; 95:240-247. [PMID: 32653186 DOI: 10.1016/j.jes.2020.03.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/21/2020] [Accepted: 03/22/2020] [Indexed: 06/11/2023]
Abstract
Polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) are typical persistent organic pollutants (POPs), which have high toxicity, bioaccumulation and long-distance transfer capability. Daily variation, sources of PCBs and OCPs in PM2.5 are rarely explored in polluted rural area. Here, the sources and health risks of the PCBs and OCPs were evaluated for 48 PM2.5 samples collected in winter 2017 in Wangdu, a heavy polluted rural area in the North China Plain. The average diurnal and nocturnal concentrations of Σ18PCBs and Σ15OCPs were 1.74-24.37 and 1.77-100.49, 11.67-408.81 and 16.89-865.60 pg/m3, respectively. Hexa-CBs and penta-CBs accounted for higher proportions (29.0% and 33.6%) of clean and polluted samples, respectively. Hexachlorobenzene (HCB) was the dominant contributor to OCPs with an average concentration of 116.17 pg/m3. Hexachlorocyclohexane (ΣHCHs) and dichlorodiphenyltrichloroethane (ΣDDTs) were the other two main classes in OCPs with the average concentrations of 4.33 and 15.89 pg/m3, respectively. β-HCH and p,p'-DDE were the main degradation products of HCHs and DDTs, respectively. The principal component analysis and characteristic ratio method indicated both waste incineration and industrial activities were the main sources of PCBs, contributing 76.8% and 12.7%, respectively. The loadings of OCPs were attributed to their application characteristics and the characteristic ratio method reflected a current or past use of OCPs. Health risk assessment showed that the respiratory exposure quantity of doxin-like PCBs (DL-PCBs) and the lifetime cancer risk from airborne OCPs exposure was negligible, while the other exposure modes may pose a risk to human bodies.
Collapse
Affiliation(s)
- Hao Sun
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Hui Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China.
| | - Lan Yao
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, China
| | - Jiping Chen
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhonghong Zhu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Yaqi Wei
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Xiang Ding
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China; Shanghai Institute of Eco-Chongming (SIEC), Shanghai 200062, China.
| |
Collapse
|
20
|
Huang YD, Hou J, Xu T, Yin WJ, Cheng J, Zheng HY, Yuan J. Non-linear relationships between seasonal exposure to polycyclic aromatic hydrocarbons and urinary 8-hydroxy-2'-deoxyguanosine levels among Chinese young students. CHEMOSPHERE 2020; 251:126352. [PMID: 32443248 DOI: 10.1016/j.chemosphere.2020.126352] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/12/2020] [Accepted: 02/25/2020] [Indexed: 06/11/2023]
Abstract
Limited data are available on seasonal associations of polycyclic aromatic hydrocarbons (PAHs) exposure with oxidative DNA damage. We conducted a pilot study with 20 postgraduates, and measured urinary levels of mono-hydroxyl PAHs (OH-PAHs) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) for 7 consecutive days in the four seasons. We assessed the relationships of urinary OH-PAHs with urinary 8-OHdG in the whole year as well as cold- and warm-seasons. Summed OH-PAHs (∑OH-PAHs) were higher in cold season than in warm season. Each ln-unit (ln-transformed unit) increase in ∑OH-PAHs in the whole year corresponded to a 34%, 16% or 23% increase in urinary 8-OHdG levels at lag0, lag1 or lag2 day as well as a 26% increase in urinary 8-OHdG levels at lag0-2 days (cumulative effects). Each ln-unit increase in ∑OH-PAHs corresponded to a 36%, 26% or 46% increase in urinary 8-OHdG levels in cold season at lag0 day, lag1 day or lag2 day as well as a 36% increase in urinary 8-OHdG in warm season at lag0 day. Distributed non-linear cumulative lag models (DLNMs) indicated that each ln-unit increase in ∑OH-PAHs within the range of 5.7-8.1 nmol/mmol Cr had a stronger effect (coefficient β: 1.11-2.97 nmol/mmol Cr) on urinary 8-OHdG rather than non-cumulative DLNMs (coefficient β: 1.08-1.43 nmol/mmol Cr) as well as the non-linear dose-response relationships of ∑OH-PAHs with urinary 8-OHdG. PAHs exposure exhibited the lagged and cumulative effects on urinary 8-OHdG levels.
Collapse
Affiliation(s)
- Yi-Dan Huang
- Department of Occupational and Environmental Health, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, PR China
| | - Jian Hou
- Department of Occupational and Environmental Health, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, PR China
| | - Tian Xu
- Department of Occupational and Environmental Health, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, PR China
| | - Wen-Jun Yin
- Department of Occupational and Environmental Health, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, PR China
| | - Juan Cheng
- Department of Occupational and Environmental Health, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, PR China
| | - Hong-Yan Zheng
- Department of Occupational and Environmental Health, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, PR China
| | - Jing Yuan
- Department of Occupational and Environmental Health, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, PR China.
| |
Collapse
|
21
|
Shen R, Wang Y, Gao W, Cong X, Cheng L, Li X. Size-segregated particulate matter bound polycyclic aromatic hydrocarbons (PAHs) over China: Size distribution, characteristics and health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 685:116-123. [PMID: 31174111 DOI: 10.1016/j.scitotenv.2019.05.436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/23/2019] [Accepted: 05/29/2019] [Indexed: 06/09/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) associated with size-segregated particulate matter at 10 sampling sites over China which can be grouped into North China and South China, including urban site, sub-urban site, farmland site and background site, from January 2013 to December 2014 were analyzed by Gas Chromatography - Mass Spectrometry. This is the first time for comprehensive studies on the size-segregated PAHs at the national level. The spatial variations of particulate PAHs showed that Xinaghe (XH), Yucheng (YC) and Shenyang (SHY) in North China had higher particulate PAHs mass concentrations than other sampling sites. The seasonal variations of PAHs exhibited the highest mass concentrations in winter, which could be caused by the increase in emission, lower temperatures and weaker solar radiation. Particulate PAHs were found to be dominant in fine size range of <1.1 μm, the same as individual PAH compounds. The dominant species in particulate PAHs are benzo[b + k]fluoranthene (BBKF), indeno[1,2,3-cd]pyrene (IP) and benzo[g,h,i]perylene (BghiP), indicating that fossil fuel combustion could be an important source for PAHs over China. BaP, a carcinogen to humans, also had much higher mass concentrations at XH, SHY and YC in North China than other sites. Toxicity equivalent quantities (TEQ) and the lifetime excess cancer risk (ECR) analysis showed that XH, SHY and YC in North China suffered more serious health risk from PAHs than other sites. In addition, higher TEQ and higher ECR were found in the size range of <1.1 μm, indicating that finer particles are associated with higher toxicity.
Collapse
Affiliation(s)
- Rongrong Shen
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yuesi Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wenkang Gao
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Xiaoguang Cong
- Department of Chemistry, Analytical and Testing Center, Capital Normal University, Beijing 100048, China
| | - Linglong Cheng
- Department of Chemistry, Analytical and Testing Center, Capital Normal University, Beijing 100048, China
| | - Xingru Li
- Department of Chemistry, Analytical and Testing Center, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
22
|
Yu H, Li T, Liu Y, Ma L. Spatial distribution of polycyclic aromatic hydrocarbon contamination in urban soil of China. CHEMOSPHERE 2019; 230:498-509. [PMID: 31125878 DOI: 10.1016/j.chemosphere.2019.05.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/16/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
Soil pollution is becoming increasingly prominent and polycyclic aromatic hydrocarbons (PAHs) are key pollutants in urban areas. Understanding the sources of PAH pollution is an effective step toward its control and reduction. The main purpose of this review was to collate the spatial distribution, pollution level, pollution sources, and potential risks of PAHs in urban soils of different regions of China. Relevant data of PAH soil contamination in Chinese provinces and cities were extracted from studies published from 2000 to 2018. The concentrations of total PAHs (Σ16PAHs) ranged from 65.01 to 23603.05 μg/kg for urban soils with a mean of 2801.98 μg/kg. According to the Maliszewska-Kordybach classification criteria, about 47% of the regions of China were heavily contaminated, 23% of the regions were contaminated, and 17% of the regions were weakly contaminated, while only 13% of regions were not contaminated. Based on the results of the total PAHs data from 30 provinces and cities and the results of individual compounds from 27 cities, 18 provinces and cities were classified as "severely" contaminated with a Nemero Comprehensive Index (PI) > 3.0. The results of this review indicate that the main sources of PAH pollution in urban soils of China are coal combustion and automobile exhaust emissions, followed by oil, biomass, and coke tar combustion. This review comprehensively collates the spatial distribution of PAH concentration, their composition, and dominant sources in urban soils of North and South China. Coal and oil combustion contribute more to total PAHs in North China while vehicle emissions and biomass combustion contribute more in South China. This regional difference suggests that PAH pollution in urban soils is a side-effect of a combination of regional development levels and human activities, which differ between North and South China. Risk assessment based on the benzo[a]pyrene toxicity equivalent factor indicates that the concentration of PAHs is low in most parts of China; however, several sensitive areas should receive increased attention. This review aims to provide improved decision-making support toward soil pollution control and monitoring based on the distribution and main pollution sources of PAHs in urban soil of China.
Collapse
Affiliation(s)
- Haiyan Yu
- School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Tiejun Li
- School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Ying Liu
- School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Limin Ma
- School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
23
|
Yan D, Wu S, Zhou S, Tong G, Li F, Wang Y, Li B. Characteristics, sources and health risk assessment of airborne particulate PAHs in Chinese cities: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:804-814. [PMID: 30851590 DOI: 10.1016/j.envpol.2019.02.068] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/23/2019] [Accepted: 02/21/2019] [Indexed: 05/02/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are organic compounds composed of at least two benzene rings. This paper reviews the characteristics, sources and health risk of airborne particulate PAHs in Chinese cities. The airborne particulate PAH concentrations varied from 3.35 to 910 ng m-3, with an average of 75.0 ng m-3, and the pollution level of PAHs in northern cities was generally higher than that in southern cities. The PAH concentrations in different cities underwent similar seasonal variations, with high concentrations in the winter and relatively low concentrations in the summer. Many factors, such as meteorological conditions and source emissions, influenced the spatiotemporal pattern of PAHs. High temperatures, frequent flow exchanges, abundant rainfall and strong solar radiation reduced the level of particulate PAHs in the atmosphere. The historical changes in the level of airborne particulate PAHs in four cities were analyzed. The PAH concentrations in Beijing and Taiyuan presented a trend of first increasing and then decreasing, while the level of particulate PAHs in Nanjing and Guangzhou had a decreasing tendency from year 2000-2015. The airborne particulate PAHs in cities were derived from several sources, including coal combustion, vehicle emissions, coking industries, biomass burning and petroleum volatilization. The results of a health risk assessment indicated that the incremental lifetime cancer risk (ILCR) for people in the northern cities was higher than that for people in the other regions, especially during the cold season. Moreover, adults were at greater risk than people in other age groups, and the health risk to females was slightly higher than that to males. The potential risk of airborne particulate PAH exposure was relatively high in some cities, and controlling PAH emissions at the source should be required to prevent pollution.
Collapse
Affiliation(s)
- Daohao Yan
- School of Geography and Ocean Science, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Shaohua Wu
- Institute of Land and Urban-Rural Development, Zhejiang University of Finance & Economics, 18 Xueyuan Road, Hangzhou, Zhejiang, 310018, China.
| | - Shenglu Zhou
- School of Geography and Ocean Science, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Guijie Tong
- School of Geography and Ocean Science, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Fufu Li
- School of Geography and Ocean Science, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Yuanmin Wang
- School of Geography and Ocean Science, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Baojie Li
- School of Geography and Ocean Science, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
24
|
Luo J, He W, Wu J, Gu XS, Ye L. Trace Elements and Polycyclic Aromatic Hydrocarbons Variation Along the Guang-Shen Expressway Before and After the 2016 Qingming Festival in Guangzhou. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 76:87-101. [PMID: 30443666 DOI: 10.1007/s00244-018-0582-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 11/10/2018] [Indexed: 06/09/2023]
Abstract
PM2.5 samples (particles with aerodynamic diameter < 2.5 μm) were collected along the Guang-Shen expressway around the Qingming Festival, one of the most congested periods in China, which started from April 2-4, in 2016. Twenty-five trace elements and 16 priority polycyclic aromatic hydrocarbons (PAHs) of the samples were analyzed. Their major sources at different periods were identified. The concentrations of PAHs distinctly increased with growing traffic flow 2 days before the Qingming Festival (March 31th and April 1st), decreased gradually on the first 2 days of the 3-day festival (April 2nd and 3rd) and rose again on the last day (April 4th). The proportion changing of higher molecular weight containing 5- and 6-ring PAHs (HMW PAHs) closely related to the traffic flow variation were consistent with the concentration variation of PAHs during the experimental period. Indicators of gasoline/diesel engines emission, i.e., Mo, Co, Mn, and Pb showed similar concentration variation with PAHs. The concentrations of trace elements, mainly derived from wear instead of combustion process, such as Cu, Zn, Ti, and Sb, raised significantly during the rainy days. Incremental lifetime cancer risk (ILCR) values were calculated to evaluate the health risk caused by PAH around the Qingming Festival. The ILCR values increased by 3-10 times 2 days before and on the last day of the festival comparing with other days, as a result of traffic related sources, including engine emission and wearing of tires. It concluded by recommending the necessity of traffic diversion to alleviate the health risk to drivers and nearby residents during important festivals.
Collapse
Affiliation(s)
- Jie Luo
- College of Resources and Environment, Yangtze University, 111 University Road, Wuhan, People's Republic of China.
- China University of Geosciences, 388 Lumo Road, Wuhan, 430074, People's Republic of China.
| | - Wenxiang He
- College of Resources and Environment, Yangtze University, 111 University Road, Wuhan, People's Republic of China
| | - Jian Wu
- College of Resources and Environment, Yangtze University, 111 University Road, Wuhan, People's Republic of China
- China University of Geosciences, 388 Lumo Road, Wuhan, 430074, People's Republic of China
| | - Xiaowen Sophie Gu
- The University of Melbourne, Grattan Street Parkville, Melbourne, VIC, 3010, Australia
| | - Lin Ye
- College of Resources and Environment, Yangtze University, 111 University Road, Wuhan, People's Republic of China
| |
Collapse
|
25
|
Wang T, Ding N, Wang T, Chen SJ, Luo XJ, Mai BX. Organophosphorus esters (OPEs) in PM 2.5 in urban and e-waste recycling regions in southern China: concentrations, sources, and emissions. ENVIRONMENTAL RESEARCH 2018; 167:437-444. [PMID: 30125762 DOI: 10.1016/j.envres.2018.08.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/06/2018] [Accepted: 08/10/2018] [Indexed: 06/08/2023]
Abstract
Organophosphate esters (OPEs) are novel ubiquitous contaminants that are attracting growing concern, but their emissions into the environment are still poorly understood. In this study, 12 OPEs were measured in fine particulate matter (PM2.5) at 20 industrial sites in an urban region and four e-waste recycling facilities in a rural region in southern China. There was no significant difference in the concentrations of ∑OPEs between the urban region (519-62,747 pg/m3, median = 2854 pg/m3) and the rural e-waste region (775-13,823 pg/m3, 3321 pg/m3). High OPE concentrations in urban PM2.5 were generally associated with the electrical, electronic, plastic, and chemical industries. There were no significant correlations between most OPEs in these two regions, suggesting different emission mechanisms. The average emissions of ∑OPEs estimated using a simplified dispersion model were 73.0 kg/yr from the urban industrial point sources and 33.2 kg/yr from the e-waste recycling facilities. The estimated emission inventory from industrial activities in the whole city (3228-4452 kg/yr) was approximately 30-fold higher than that from the e-waste recycling (133 kg/yr) facilities because urban region has a much larger industrial scale. To the best of our knowledge, this is the first effort to model the emissions of OPEs from industrial and e-waste recycling activities to the atmosphere.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Ding
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - She-Jun Chen
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
26
|
Li WD, Yu S, Luo SM, Shen W, Yin S, Sun QY. Melatonin defends mouse oocyte quality from benzo[ghi]perylene-induced deterioration. J Cell Physiol 2018; 234:6220-6229. [PMID: 30317565 DOI: 10.1002/jcp.27351] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 08/17/2018] [Indexed: 12/24/2022]
Abstract
Benzo[ghi]perylene (B[ghi]P) is a polycyclic aromatic hydrocarbon widely found in haze. Long-term exposure to humans or animals can cause serious damage to the respiratory system. Melatonin is an endogenous natural hormone synthesized and released by the pineal gland. In this study, we investigated the effects of melatonin on in vitro cultured B[ghi]P-exposed mouse oocytes and the protective roles of melatonin. Our data indicate that B[ghi]P exposure leads to meiotic maturation arrest and reduced ability of sperm binding and parthenogenetic activation. Also, B[ghi]P exposure disrupts actin filament dynamics, spindle assembly, and kinetochore-microtubule attachment stability, which results in oocyte aneuploidy. Simultaneously, B[ghi]P exposure disturbs the distribution of mitochondria, increases the level of oxidative stress, and induces apoptosis of oocytes. Whereas all of these toxic effects of B[ghi]P can be restored after melatonin supplement. In conclusion, our findings validate that melatonin has a certain protective effect on preventing the reduced oocyte quality caused by B[ghi]P exposure during meiotic maturation in mouse oocytes.
Collapse
Affiliation(s)
- Wei-Dong Li
- College of Animal Science and Technology, College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shuai Yu
- College of Animal Science and Technology, College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shi-Ming Luo
- College of Animal Science and Technology, College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Wei Shen
- College of Animal Science and Technology, College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shen Yin
- College of Animal Science and Technology, College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Qing-Yuan Sun
- College of Animal Science and Technology, College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
27
|
Turap Y, Talifu D, Wang X, Aierken T, Rekefu S, Shen H, Ding X, Maihemuti M, Tursun Y, Liu W. Concentration characteristics, source apportionment, and oxidative damage of PM 2.5-bound PAHs in petrochemical region in Xinjiang, NW China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:22629-22640. [PMID: 29846897 DOI: 10.1007/s11356-018-2082-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/19/2018] [Indexed: 06/08/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are of considerable concern due to their potential as human carcinogens. Thus, determining the characteristics, potential source, and examining the oxidative capacity of PAHs to protect human health is essential. This study investigated the PM2.5-bound PAHs at Dushanzi, a large petrochemical region in Xinjiang as well as northwest China. A total of 33 PM2.5 samples with 13 PAHs, together with molecular tracers (levoglucosan, and element carbon), were analyzed during the non-heating and heating periods. The results showed that the PM2.5 concentrations were 70.22 ± 22.30 and 95.47 ± 61.73 μg/m3, while that of total PAHs were 4.07 ± 2.03 and 60.33 ± 30.80 ng/m3 in sampling period, respectively. The fluoranthene, pyrene, chrysene, benzo[b]fluoranthene, and benzo[k]fluoranthene were the most abundant (top five) PAHs, accounting for 71.74 and 72.80% of total PAH mass during non-heating and heating periods. The BaP equivalent (BaPeq) concentration exceeded 1 ng/m3 as recommended by National Ambient Air Quality Standards during heating period. The diagnostic ratios and positive matrix factorization indicated that oil industry, biomass burning, coal combustion, and vehicle emissions are the primary sources. The coal combustion remarkably increased during heating period. The plasmid scission assay (PSA) results showed that higher DNA damage rate was observed during heating period. PAHs in PM2.5 such as Chr, BaP, and IcdP were found to have significantly positive correlations with the plasmid DNA damage rates. Additionally, the relationship among BaPeq and DNA damage rate suggested that synergistic reaction may modify the toxicity of PAHs.
Collapse
Affiliation(s)
- Yusan Turap
- Key Laboratory of Coal Clean Conversion & Chemical Engineering Process, College of Chemistry and Chemical Engineering, Xinjiang University, Ürümqi, 830046, China
| | - Dilinuer Talifu
- Key Laboratory of Coal Clean Conversion & Chemical Engineering Process, College of Chemistry and Chemical Engineering, Xinjiang University, Ürümqi, 830046, China.
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Tuergong Aierken
- Key Laboratory of Coal Clean Conversion & Chemical Engineering Process, College of Chemistry and Chemical Engineering, Xinjiang University, Ürümqi, 830046, China
| | - Suwubinuer Rekefu
- Key Laboratory of Coal Clean Conversion & Chemical Engineering Process, College of Chemistry and Chemical Engineering, Xinjiang University, Ürümqi, 830046, China
| | - Hao Shen
- Key Laboratory of Coal Clean Conversion & Chemical Engineering Process, College of Chemistry and Chemical Engineering, Xinjiang University, Ürümqi, 830046, China
| | - Xiang Ding
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Mailikezhati Maihemuti
- Key Laboratory of Coal Clean Conversion & Chemical Engineering Process, College of Chemistry and Chemical Engineering, Xinjiang University, Ürümqi, 830046, China
| | - Yalkunjan Tursun
- Key Laboratory of Coal Clean Conversion & Chemical Engineering Process, College of Chemistry and Chemical Engineering, Xinjiang University, Ürümqi, 830046, China
| | - Wei Liu
- Environmental Monitoring Station, Dushanzi, 838600, China
| |
Collapse
|
28
|
Zhou J, Ho SSH, Cao J, Zhao Z, Zhao S, Zhu C, Wang Q, Liu S, Zhang T, Zhao Y, Wang P, Tie X. Chemical characterization of PM 2.5 from a southern coastal city of China: applications of modeling and chemical tracers in demonstration of regional transport. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:20591-20605. [PMID: 29748814 DOI: 10.1007/s11356-018-2238-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 05/04/2018] [Indexed: 06/08/2023]
Abstract
An intensive sampling campaign of airborne fine particles (PM2.5) was conducted at Sanya, a coastal city in Southern China, from January to February 2012. Chemical analyses and mass reconstruction were used identify potential pollution sources and investigate atmospheric reaction mechanisms. A thermodynamic model indicated that low ammonia and high relative humidity caused the aerosols be acidic and that drove heterogeneous reactions which led to the formation of secondary inorganic aerosol. Relationships among neutralization ratios, free acidity, and air-mass trajectories suggest that the atmosphere at Sanya was impacted by both local and regional emissions. Three major transport pathways were identified, and flow from the northeast (from South China) typically brought the most polluted air to Sanya. A case study confirmed strong impact from South China (e.g., Pearl River Delta region) (contributed 76.8% to EC, and then this result can be extended to primary pollutants) when the northeast winds were dominant. The Weather Research Forecasting Black carbon model and trace organic markers were used to apportion local pollution versus regional contributions. Results of the study offer new insights into the atmospheric conditions and air pollution at this coastal city.
Collapse
Affiliation(s)
- Jiamao Zhou
- KLACP, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Steven Sai Hang Ho
- KLACP, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
- Division of Atmospheric Sciences, Desert Research Institute, Reno, NV, 89512, USA
| | - Junji Cao
- KLACP, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China.
| | - Zhuzi Zhao
- KLACP, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Shuyu Zhao
- KLACP, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Chongshu Zhu
- KLACP, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Qiyuan Wang
- KLACP, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Suixin Liu
- KLACP, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Ting Zhang
- KLACP, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Youzhi Zhao
- Hainan Tropical Ocean University, Sanya, 572022, China
| | - Ping Wang
- Hainan Tropical Ocean University, Sanya, 572022, China
| | - Xuexi Tie
- KLACP, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| |
Collapse
|
29
|
Galvão ES, Santos JM, Lima AT, Reis NC, Orlando MTD, Stuetz RM. Trends in analytical techniques applied to particulate matter characterization: A critical review of fundaments and applications. CHEMOSPHERE 2018; 199:546-568. [PMID: 29455125 DOI: 10.1016/j.chemosphere.2018.02.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/31/2018] [Accepted: 02/06/2018] [Indexed: 05/11/2023]
Abstract
Epidemiological studies have shown the association of airborne particulate matter (PM) size and chemical composition with health problems affecting the cardiorespiratory and central nervous systems. PM also act as cloud condensation nuclei (CNN) or ice nuclei (IN), taking part in the clouds formation process, and therefore can impact the climate. There are several works using different analytical techniques in PM chemical and physical characterization to supply information to source apportionment models that help environmental agencies to assess damages accountability. Despite the numerous analytical techniques described in the literature available for PM characterization, laboratories are normally limited to the in-house available techniques, which raises the question if a given technique is suitable for the purpose of a specific experimental work. The aim of this work consists of summarizing the main available technologies for PM characterization, serving as a guide for readers to find the most appropriate technique(s) for their investigation. Elemental analysis techniques like atomic spectrometry based and X-ray based techniques, organic and carbonaceous techniques and surface analysis techniques are discussed, illustrating their main features as well as their advantages and drawbacks. We also discuss the trends in analytical techniques used over the last two decades. The choice among all techniques is a function of a number of parameters such as: the relevant particles physical properties, sampling and measuring time, access to available facilities and the costs associated to equipment acquisition, among other considerations. An analytical guide map is presented as a guideline for choosing the most appropriated technique for a given analytical information required.
Collapse
Affiliation(s)
- Elson Silva Galvão
- Departamento de Engenharia Ambiental, Universidade Federal do Espírito Santo, Vitória, ES, Brazil.
| | - Jane Meri Santos
- Departamento de Engenharia Ambiental, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Ana Teresa Lima
- Departamento de Engenharia Ambiental, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Neyval Costa Reis
- Departamento de Engenharia Ambiental, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | | | - Richard Michael Stuetz
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
30
|
Zhang P, Chen Y. Polycyclic aromatic hydrocarbons contamination in surface soil of China: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 605-606:1011-1020. [PMID: 28693106 DOI: 10.1016/j.scitotenv.2017.06.247] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/27/2017] [Accepted: 06/27/2017] [Indexed: 05/27/2023]
Abstract
This paper reviews the concentration, distribution, source, and potential risk of polycyclic aromatic hydrocarbons (PAHs) in surface soils of China through analysis of data from >6000 surface soil samples in nearly 100 references. The mean value of total 16 PAHs was 730ng·g-1 in surface soil in China, a relatively lower or moderate level than other countries. Based on the Maliszewska-Kordybach classification criteria, the proportions of heavily contaminated, contaminated, weakly contaminated, and non-contaminated soil samples were 21.4%, 11.9%, 49.5%, and 17.2%, respectively. There was a clear geographical distribution, with concentrations of the total 16 PAHs descending in the following order: Northeast China (1467ng·g-1)>North China (911ng·g-1)>East China (737ng·g-1)>South China (349ng·g-1)>West China (209ng·g-1). Moreover, it was found that the PAH concentrations in surface soil in China descended along the urban-suburban-rural gradient. The concentration and distribution of PAHs were mainly related to the degree of economic development, population density, climatic conditions, and soil organic matter, and the divergence of regional economic patterns and climatic conditions was the main reason for the observed PAH distribution in the soils. Traffic emissions, coal and biomass combustion mainly contributed to the PAH contamination of surface soil in China during the process of urbanization and industrialization, and the average Benzo(a)pyrene equivalent concentration of ∑PAH7c (seven carcinogenic PAHs) was 99ng·g-1, which indicated the soil samples had a small potential carcinogenic risk. Despite soil pollution being generally low, PAH concentrations in some areas were relatively high, therefore it is necessary to produce strategies, such as establishing effective guidelines and developing environmental-friendly technology to reduce PAH emissions, and prevent further contamination.
Collapse
Affiliation(s)
- Pei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
31
|
Wang J, Cao J, Dong Z, Guinot B, Gao M, Huang R, Han Y, Huang Y, Ho SSH, Shen Z. Seasonal variation, spatial distribution and source apportionment for polycyclic aromatic hydrocarbons (PAHs) at nineteen communities in Xi'an, China: The effects of suburban scattered emissions in winter. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:1330-1343. [PMID: 28923340 DOI: 10.1016/j.envpol.2017.08.106] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/25/2017] [Accepted: 08/25/2017] [Indexed: 06/07/2023]
Abstract
Seasonal variation and spatial distribution of PM2.5 bound polycyclic aromatic hydrocarbons (PAHs) were investigated at urban residential, commercial area, university, suburban region, and industry in Xi'an, during summer and winter time at 2013. Much higher levels of total PAHs were obtained in winter. Spatial distributions by kriging interpolations principle showed that relative high PAHs were detected in western Xi'an in both summer and winter, with decreasing trends in winter from the old city wall to the 2nd-3rd ring road except for the suburban region and industry. Coefficients of diversity and statistics by SPSS method demonstrated that PAHs in suburban have significant differences (t < 0.05) with those in urban residential in both seasons. The positive Matrix Factorization (PMF) modeling indicated that biomass burning (31.1%) and vehicle emissions (35.9%) were main sources for PAHs in winter and summer in urban, which different with the suburban. The coal combustion was the main source for PAHs in suburban region, which accounted for 46.6% in winter and sharp decreased to 19.2% in summer. Scattered emissions from uncontrolled coal combustion represent an important source of PAHs in suburban in winter and there were about 135 persons in Xi'an will suffer from lung cancer for lifetime exposure at winter levels. Further studies are needed to specify the effluence of the scattered emission in suburban to the city and to develop a strategy for controlling those emissions and lighten possible health effects.
Collapse
Affiliation(s)
- Jingzhi Wang
- National Demonstration Center for Experimental Geography Education, School of Geography and Tourism, Shaanxi Normal University, Xi'an, China; Key Lab of Aerosol Chemistry & Physics, State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Junji Cao
- Key Lab of Aerosol Chemistry & Physics, State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an, China.
| | - Zhibao Dong
- National Demonstration Center for Experimental Geography Education, School of Geography and Tourism, Shaanxi Normal University, Xi'an, China; Laboratory of Blown Sand Physics and Desert Environments, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, China
| | - Benjamin Guinot
- Laboratoire d'Aerologie, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Meiling Gao
- Environmental Health Sciences Division, School of Public Health, University of California Berkeley, 50 University Hall 7360, Berkeley, CA 94720, USA
| | - Rujin Huang
- Key Lab of Aerosol Chemistry & Physics, State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), 5232 Villigen, Switzerland
| | - Yongming Han
- Key Lab of Aerosol Chemistry & Physics, State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Yu Huang
- Key Lab of Aerosol Chemistry & Physics, State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Steven Sai Hang Ho
- Key Lab of Aerosol Chemistry & Physics, State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; Division of Atmospheric Sciences, Desert Research Institute, Reno, NV, United States
| | - Zhenxing Shen
- Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
32
|
Lu H, Wang S, Li Y, Gong H, Han J, Wu Z, Yao S, Zhang X, Tang X, Jiang B. Seasonal variations and source apportionment of atmospheric PM 2.5-bound polycyclic aromatic hydrocarbons in a mixed multi-function area of Hangzhou, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:16195-16205. [PMID: 28540542 DOI: 10.1007/s11356-017-9265-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/11/2017] [Indexed: 06/07/2023]
Abstract
To reveal the seasonal variations and sources of PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) during haze and non-haze episodes, daily PM2.5 samples were collected from March 2015 to February 2016 in a mixed multi-function area in Hangzhou, China. Ambient concentrations of 16 priority-controlled PAHs were determined. The sums of PM2.5-bound PAH concentrations during the haze episodes were 4.52 ± 3.32 and 13.6 ± 6.29 ng m-3 in warm and cold seasons, respectively, which were 1.99 and 1.49 times those during the non-haze episodes. Four PAH sources were identified using the positive matrix factorization model and conditional probability function, which were vehicular emissions (45%), heavy oil combustion (23%), coal and natural gas combustion (22%), and biomass combustion (10%). The four source concentrations of PAHs consistently showed higher levels in the cold season, compared with those in the warm season. Vehicular emissions were the most considerable sources that result in the increase of PM2.5-bound PAH levels during the haze episodes, and heavy oil combustion played an important role in the aggravation of haze pollution. The analysis of air mass back trajectories indicated that air mass transport had an influence on the PM2.5-bound PAH pollution, especially on the increased contributions from coal combustion and vehicular emissions in the cold season.
Collapse
Affiliation(s)
- Hao Lu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China.
| | - Shengsheng Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Yun Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Hui Gong
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Jingyi Han
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Zuliang Wu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Shuiliang Yao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Xuming Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Xiujuan Tang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Boqiong Jiang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| |
Collapse
|
33
|
Wang W, Deng Z, Feng Y, Liao F, Zhou F, Feng S, Wang X. PM 2.5 induced apoptosis in endothelial cell through the activation of the p53-bax-caspase pathway. CHEMOSPHERE 2017; 177:135-143. [PMID: 28284960 DOI: 10.1016/j.chemosphere.2017.02.144] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/23/2017] [Accepted: 02/27/2017] [Indexed: 06/06/2023]
Abstract
Exposure to airborne fine particulate matter (PM2.5) is associated with cardiovascular diseases (CVDs). Nevertheless, a comprehensive understanding of the underlying biological mechanisms by which PM2.5 exposure induces or aggravates CVDs remain insufficiently clear. In the present study, the flow cytometry was employed to investigate the apoptosis of human umbilical vein endothelial cells (HUVECs) induced by PM2.5 in culture. The underlying apoptotic pathway was also studied through the determination of the protein expression and activation of p53, Bax, Bcl-2, caspases-9, -7, -3, and PARP by western blot. The results showed that PM2.5 could significantly induce the apoptosis of HUVECs at the tested concentrations (0.2, 1, 5, 25 μg mL-1), compared with the negative control (p < 0.05, p < 0.01). The apoptotic rate of HUVECs increased with the elevating levels of PM2.5 exposure, showing a clear dose-effect relationship. Moreover, the increasing phosphorylation of p53, decreasing ratio of Bcl-2/Bax, and enhancing activation of the downstream proteins caspase-9, -7, -3 and PARP, were also observed with the increasing concentrations of PM2.5 administration in the western blot, indicating that the intracellular approach of apoptosis, the p53-Bax-caspases pathway, is the major way of PM2.5-induced apoptosis in HUVECs. In conclusion, these results suggested that induction of EC apoptosis is an important mechanism by which ambient PM2.5 exposure poses adverse effects on the cardiovascular system.
Collapse
Affiliation(s)
- Wuxiang Wang
- The School of Public Health, University of South China, Hengyang 421001, China; The Library, University of South China, Hengyang 421001, China
| | - Ziyong Deng
- The School of Public Health, University of South China, Hengyang 421001, China
| | - Yuqin Feng
- The College of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Fen Liao
- The School of Public Health, University of South China, Hengyang 421001, China
| | - Furong Zhou
- The School of Public Health, University of South China, Hengyang 421001, China
| | - Shaolong Feng
- The School of Public Health, University of South China, Hengyang 421001, China.
| | - Xinming Wang
- The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
34
|
Zhang Y, Cai J, Wang S, He K, Zheng M. Review of receptor-based source apportionment research of fine particulate matter and its challenges in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 586:917-929. [PMID: 28237464 DOI: 10.1016/j.scitotenv.2017.02.071] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 01/17/2017] [Accepted: 02/08/2017] [Indexed: 05/10/2023]
Abstract
As the key for haze control, atmospheric fine particulate matter with aerodynamic diameter <2.5μm (or PM2.5) is of great concern lately in China. It is closely linked to fast pace of urbanization, industrialization and economic development, especially in eastern China. A good understanding of its sources is required for effective pollution abatement. Receptor models are one of the major methods for source apportionment used in China. The major objective of this study is to understand sources that contribute to fine particulate matter in China and key challenges in this area. Spatial distribution of fine particulate matter concentration, chemical composition and dominant sources in North and South China are summarized. Based on chemical speciation results from 31 cities and source apportionment results from 21 cities, it is found that secondary sources and traffic emission have higher contribution in South China while the percentage of coal combustion, dust and biomass burning to total PM2.5 are higher in North China. Source profiles established in China from 44 cities and areas are also summarized as references for future source apportionment studies. Suggestions for future research are also provided including methods for evaluating source apportionment results, ways for integrating multiple source apportionment methods, the need for standardizing protocols and developing tools for high-time resolution source apportionment.
Collapse
Affiliation(s)
- Yanjun Zhang
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jing Cai
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuxiao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Kebin He
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Mei Zheng
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
35
|
Chen SJ, Wang J, Wang T, Wang T, Mai BX, Simonich SLM. Seasonal variations and source apportionment of complex polycyclic aromatic hydrocarbon mixtures in particulate matter in an electronic waste and urban area in South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 573:115-122. [PMID: 27552735 DOI: 10.1016/j.scitotenv.2016.08.101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/09/2016] [Accepted: 08/15/2016] [Indexed: 05/24/2023]
Abstract
Complex polycyclic aromatic hydrocarbon (PAH) mixtures including parent PAHs, high molecular weight PAHs (MW 302 PAHs), and halogenated PAHs (HPAHs) were measured in particulate matter (PM) in an urban area and a rural electronic waste area in South China. The concentrations of MW < 302 PAHs at two sites were not significantly different with annual means of 23.2 ± 17.2 and 33.7 ± 29.0 ng/m3, respectively. However the concentrations of both MW 302 PAHs (5.35 ± 3.72 ng/m3) and HPAH (49.9 pg/m3) were significantly higher at the e-waste site than the urban site (2.81 ± 2.36 ng/m3 and 28.2 ± 28.5 pg/m3), suggesting e-waste recycling being a significant source of these PAHs. The majority of PAHs exhibited higher concentrations in winter and spring and lower concentrations in fall and summer. Meteorological conditions and increased emissions of PAHs in northern China due to domestic heating in colder seasons are important factors influencing the PAH seasonal variations. Source apportionment by the chemical mass balance (CMB) model indicated that residential stoves (coal combustion), industrial boilers (coal combustion), biomass burning, and vehicular emission accounted for 38 ± 14%, 30 ± 11%, 22 ± 22%, and 10 ± 7% of the PAHs in the urban PM, respectively. Comparable contributions from these sources were also observed for PM at the e-waste site. PAH emission factors are needed for primitive e-waste recycling to further understand the importance of this source to ambient air.
Collapse
Affiliation(s)
- She-Jun Chen
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Jing Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bi-Xian Mai
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Staci L Massey Simonich
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States.
| |
Collapse
|
36
|
Ma Y, Cheng Y, Qiu X, Lin Y, Cao J, Hu D. A quantitative assessment of source contributions to fine particulate matter (PM 2.5)-bound polycyclic aromatic hydrocarbons (PAHs) and their nitrated and hydroxylated derivatives in Hong Kong. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 219:742-749. [PMID: 27461752 DOI: 10.1016/j.envpol.2016.07.034] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 06/06/2023]
Abstract
Atmospheric polycyclic aromatic hydrocarbons (PAHs) and their derivatives are of great concern due to their adverse health effects. However, source identification and apportionment of these compounds, particularly their nitrated and hydroxylated derivatives (i.e., NPAHs and OHPAHs), in fine particulate matter (PM2.5) in Hong Kong are still lacking. In this study, we conducted a 1-year observation at an urban site in Hong Kong. PM2.5-bound PAHs and their derivatives were measured, with median concentrations of 4590, 44.4 and 31.6 pg m-3 for ∑21PAHs, ∑13NPAHs, and ∑12OHPAHs, respectively. Higher levels were observed on regional pollution days than on long regional transport (LRT) or local emission days. Based on positive matrix factorization analysis, four sources were determined: marine vessels, vehicle emissions, biomass burning, and a mixed source of coal combustion and NPAHs secondary formation. Coal combustion and biomass burning were the major sources of PAHs, contributing over 85% of PAHs on regional and LRT days. Biomass burning was the predominant source of OHPAHs throughout the year, while NPAHs mainly originated from secondary formation and fuel combustion. For benzo[a]pyrene (BaP)-based PM2.5 toxicity, the mixed source of coal combustion and NPAHs secondary formation was the major contributor, followed by biomass burning and vehicle emissions.
Collapse
Affiliation(s)
- Yiqiu Ma
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing, 100871, PR China; Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, PR China
| | - Yubo Cheng
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, PR China
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing, 100871, PR China.
| | - Yan Lin
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing, 100871, PR China; Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, CA, 90095, USA
| | - Jing Cao
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, PR China; HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, 518057, PR China
| | - Di Hu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, PR China; State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, PR China; HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, 518057, PR China.
| |
Collapse
|
37
|
Wang J, Ho SSH, Ma S, Cao J, Dai W, Liu S, Shen Z, Huang R, Wang G, Han Y. Characterization of PM2.5 in Guangzhou, China: uses of organic markers for supporting source apportionment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 550:961-971. [PMID: 26851882 DOI: 10.1016/j.scitotenv.2016.01.138] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 01/22/2016] [Accepted: 01/22/2016] [Indexed: 06/05/2023]
Abstract
Organic carbon (OC), elemental carbon (EC), and non-polar organic compounds including n-alkanes (n-C14-n-C40), polycyclic aromatic hydrocarbons (PAHs), phthalate esters (PAEs) and hopanes were quantified in fine particulate (PM2.5), which were collected in urban area of Guangzhou, China in winter and summer in 2012/2013. The pollutants levels were well comparable with the data obtained in previous studies in Pearl River Delta (PRD) region but much lower than most northern Chinese megacities. The contribution of EC to PM2.5 and OC/EC ratio suggest that the pollution sources were relatively consistent in GZ between the two seasons. Benzo[a]pyrene (BaP) was the most abundant PAHs, which were 4.9 and 1.0ng/m(3) on average, accounting for 10.7% and 9.1% to the total quantified PAHs in winter and summer, respectively. The total concentrations of PAEs ranged from 289.1 to 2435ng/m(3) and from 102.4 to 1437ng/m(3), respectively, in winter and summer. Di-n-butyl phthalate (DBP) was the most dominant PAEs. The ambient levels of PAEs could be partly attributed to the widespread uses of the household products, municipal garbage compressing, sewage, and external painting material on the building. Source apportionment for OC with chemical mass balance (CMB) model demonstrated coal combustion, vehicle emission, cooking, and secondary organic compounds (SOC) formation were the four major pollution sources. Both of the indices of n-alkanes and diagnostic PAHs ratios support that anthropogenic sources such as vehicle emission and coal combustion were the significant pollution sources with some extents from epicuticular waxes by terrestrial plants. The ratio of hopanes to EC proved the influences from vehicle emission, and displayed a certain degree of the air aging in the Guangzhou ambient air.
Collapse
Affiliation(s)
- Jingzhi Wang
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Steven Sai Hang Ho
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; Division of Atmospheric Sciences, Desert Research Institute, Reno, NV, United States
| | - Shexia Ma
- South China of Institute of Environmental Sciences, SCIES, Guangzhou, China
| | - Junji Cao
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an, China.
| | - Wenting Dai
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Suixin Liu
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Zhenxing Shen
- Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an, China
| | - Rujin Huang
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), 5232 Villigen, Switzerland
| | - Gehui Wang
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Yongming Han
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| |
Collapse
|
38
|
Wang J, Ho SSH, Cao J, Huang R, Zhou J, Zhao Y, Xu H, Liu S, Wang G, Shen Z, Han Y. Characteristics and major sources of carbonaceous aerosols in PM2.5 from Sanya, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 530-531:110-119. [PMID: 26026415 DOI: 10.1016/j.scitotenv.2015.05.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/29/2015] [Accepted: 05/03/2015] [Indexed: 06/04/2023]
Abstract
PM2.5 samples were collected in Sanya, China in summer and winter in 2012/2013. Organic carbon (OC), elemental carbon (EC), and non-polar organic compounds including n-alkanes (n-C14-n-C40) and polycyclic aromatic hydrocarbons (PAHs) were quantified. The concentrations of these carbonaceous matters were generally higher in winter than summer. The estimated secondary organic carbon (OCsec) accounted for 38% and 54% of the total organic carbon (TOC) in winter and summer, respectively. The higher value of OCsec in addition to the presences of photochemically-produced PAHs in summer supports that photochemical conversions of organics are much active at the higher air temperatures and with stronger intense solar radiation. Carbon preference index (CPI) and percent contribution of wax n-alkanes suggest that anthropogenic sources were more dominant than derivation from terrestrial plants in Sanya. Diagnostic ratios of atmospheric PAHs further indicate that there was a wide mix of pollution sources in winter while fossil fuel combustion was the most dominant in summer. Positive Matrix Factorization (PMF) analysis with 18 PAHs in the winter samples found that motor vehicle emissions and biomass burning were the two main pollution sources, contributing 37.5% and 24.6% of the total quantified PAHs, respectively.
Collapse
Affiliation(s)
- Jingzhi Wang
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Steven Sai Hang Ho
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; Division of Atmospheric Sciences, Desert Research Institute, Reno, NV, United States
| | - Junji Cao
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an, China.
| | - Rujin Huang
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), 5232 Villigen, Switzerland
| | - Jiamao Zhou
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Youzhi Zhao
- College of Science and Technology, Qiongzhou University, Sanya, China
| | - Hongmei Xu
- Department of Environmntal Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Suixin Liu
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Gehui Wang
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Zhenxing Shen
- Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an, China
| | - Yongming Han
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| |
Collapse
|
39
|
Han F, Cao J, Peng L, Bai H, Hu D, Mu L, Liu X. Characteristics of hopanoid hydrocarbons in ambient PM₁₀ and motor vehicle emissions and coal ash in Taiyuan, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2015; 37:813-829. [PMID: 26362677 DOI: 10.1007/s10653-015-9763-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 09/01/2015] [Indexed: 06/05/2023]
Abstract
Hopanoid hydrocarbon content in ambient particulate matter (PM) of less than or equal to 10 μm aerodynamic diameter (PM10) was sampled at seven sites representative of different functional districts, and measured by gas chromatography-mass spectrometry. 17α(H),21β(H)-hopane (C30αβ) and 17α(H),21β(H)-30-norhopane (C29αβ) were dominant in all samples. Hopanes in motor vehicle emissions from various fuel-type engines (gasoline, diesel and natural gas) and coal ash were qualitatively measured, and the amount of C30αβ was about two to three times greater than that of C29αβ. Distinct seasonal variations (winter/summer differences) were observed at higher concentrations (45.54-108.29 ng/m(3)) of total hopanes in winter and lower (2.59-28.26 ng/m(3)) in summer. There were also clear spatial variations of hopanes in Taiyuan, with samples with greater hopane concentrations in downtown areas, but less in summer. The spatial distribution reversed in winter. Distributions and relative abundances of selected hopanes from PM10 and source emissions indicated that in summer, vehicle exhaust was the dominant fossil fuel combustion source (C30αβ was >C29αβ), and that the contribution of coal combustion was slightly greater at suburban sites. However, the contribution of coal combustion sources increased significantly at all sites in winter, especially in suburban areas, where C29αβ exceeded C30αβ. Hopanoid indexes revealed a classification of vehicle exhaust and coal combustion emissions in PM10. The results imply that during rapid urbanization, it is crucial to strengthen the construction of infrastructure such as central heating in new city districts and to increase the use of natural gas instead of residential coal burning.
Collapse
Affiliation(s)
- Feng Han
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China.
| | - Junji Cao
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710075, People's Republic of China
| | - Lin Peng
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China.
| | - Huiling Bai
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| | - Dongmei Hu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| | - Ling Mu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| | - Xiaofeng Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| |
Collapse
|
40
|
Yan B, Li J, Guo J, Ma P, Wu Z, Ling Z, Guo H, Hiroshi Y, Yanagi U, Yang X, Zhu S, Chen M. The toxic effects of indoor atmospheric fine particulate matter collected from allergic and non-allergic families in Wuhan on mouse peritoneal macrophages. J Appl Toxicol 2015; 36:596-608. [DOI: 10.1002/jat.3217] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/19/2015] [Accepted: 06/22/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Biao Yan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences; Central China Normal University; Wuhan Hubei China
| | - Jinquan Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences; Central China Normal University; Wuhan Hubei China
| | - Junhui Guo
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences; Central China Normal University; Wuhan Hubei China
| | - Ping Ma
- College of Basic Medical Sciences; Hubei University of Science and Technology; Xianning Hubei China
| | - Zhuo Wu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences; Central China Normal University; Wuhan Hubei China
| | - ZhenHao Ling
- Air Quality Studies, Department of Civil and Environmental Engineering; The Hong Kong Polytechnic University; Hong Kong China
| | - Hai Guo
- Air Quality Studies, Department of Civil and Environmental Engineering; The Hong Kong Polytechnic University; Hong Kong China
| | - Yoshino Hiroshi
- Department of Architectural & Building Science; Tohoku University; Sendai Japan
| | - U. Yanagi
- Department of Architecture; Kogakuin University; Tokyo Japan
| | - Xu Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences; Central China Normal University; Wuhan Hubei China
| | - Shengwei Zhu
- School of Architecture and Urban Planning; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Mingqing Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences; Central China Normal University; Wuhan Hubei China
| |
Collapse
|
41
|
Zhang F, Wang ZW, Cheng HR, Lv XP, Gong W, Wang XM, Zhang G. Seasonal variations and chemical characteristics of PM(2.5) in Wuhan, central China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 518-519:97-105. [PMID: 25747369 DOI: 10.1016/j.scitotenv.2015.02.054] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/19/2015] [Accepted: 02/15/2015] [Indexed: 06/04/2023]
Abstract
PM2.5 samples were collected at an urban site (WD) and a suburban site (TH) in Wuhan from August 2012 to July 2013. The mass concentrations of water-soluble inorganic ions, carbonaceous species and elements of PM2.5 were measured. The annual mean concentrations of PM2.5 were 106.5 μg/m(3) and 114.9 μg/m(3) at WD and TH, respectively. The chemical compositions of PM2.5 at WD were similar to those at TH and the fractions of the major components of PM2.5 in Wuhan were in the following order of trace elements<chloride<EC (elemental carbon)<ammonium<nitrate<soil dust<sulfate<OM (organic matter). As the secondary ionic aerosols (SIA) and dominant ions, SO4(2-), NO3(-) and NH4(+) all exhibited strong seasonal distributions, consistently with the lowest values in summer and the highest in winter. OM was the most abundant component in PM2.5, the lowest concentrations of which were observed in summer at both sites, while the highest concentrations of OC (organic carbon) appeared in winter at WD and autumn at TH, respectively. The highest OC concentration observed in autumn was tightly related to the biomass burning near the suburban site. The crustal elements (Mg, K, Ca and Fe) dominated the 20 detected elements in PM2.5, with the highest concentrations in spring in Wuhan, which might be due to frequent sandstorm from north carrying abundant soil dusts in spring in China. Ten trace elements (Cu, Ga, Ag, Tl, Ca, As, Zn, Pb, Se and Cd) were enriched in PM2.5 and the higher EF for Ag, Pb, Se and Cd in PM2.5 indicated that the air pollution from vehicle exhaust emission and coal burning in Wuhan was serious and noteworthy.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Environmental Engineering, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Zu-wu Wang
- Department of Environmental Engineering, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Hai-rong Cheng
- Department of Environmental Engineering, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China.
| | - Xiao-pu Lv
- Department of Environmental Engineering, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Wei Gong
- State Key Laboratory for Information Engineering in Surveying, Mapping & Remote Sensing, Wuhan University, Wuhan 430079, China
| | - Xin-ming Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
42
|
Mauad CR, Wagener ADLR, Massone CG, Aniceto MDS, Lazzari L, Carreira RS, Farias CDO. Urban rivers as conveyors of hydrocarbons to sediments of estuarine areas: source characterization, flow rates and mass accumulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 506-507:656-666. [PMID: 25434473 DOI: 10.1016/j.scitotenv.2014.11.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/08/2014] [Accepted: 11/08/2014] [Indexed: 06/04/2023]
Abstract
Aliphatic (n-C12-n-C40, unresolved complex mixture, resolved peaks) and aromatic hydrocarbons (46 PAH) were investigated in suspended particulate matter (SPM) sampled over eleven months in six of the major rivers and two channels of the Guanabara Bay Basin. PAH flow rates of the most contaminated rivers, the contribution to the PAH sediment load of the receiving bay, and the main sources of hydrocarbons were determined. PAH (38) ranged from 28 ng L(-1) to 11,514 ng L(-1). Hydrocarbon typology and statistical evaluation demonstrated contribution of distinct sources in different regions and allowed quantification of these contributions. Total flow rate for the five major rivers amounts to 3 t year(-1) and responds for 30% of the total PAH annual input into the northern area of the Guanabara Bay. For the first time PAH mass deposited in the bay sediments has been estimated and shall serve as base for decision making and source abatement.
Collapse
Affiliation(s)
- Cristiane R Mauad
- LABMAM, Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ 20453-900, Brazil.
| | - Angela de L R Wagener
- LABMAM, Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ 20453-900, Brazil.
| | - Carlos G Massone
- LABMAM, Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ 20453-900, Brazil.
| | - Mayara da S Aniceto
- LABMAM, Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ 20453-900, Brazil.
| | - Letícia Lazzari
- LABMAM, Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ 20453-900, Brazil.
| | - Renato S Carreira
- LABMAM, Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ 20453-900, Brazil.
| | - Cássia de O Farias
- LAGOM, Department of Oceanography, Rio de Janeiro State University, R. São Francisco Xavier, 524, Rio de Janeiro, RJ 20550-013, Brazil.
| |
Collapse
|
43
|
Liu GR, Peng X, Wang RK, Tian YZ, Shi GL, Wu JH, Zhang P, Zhou LD, Feng YC. A new receptor model-incremental lifetime cancer risk method to quantify the carcinogenic risks associated with sources of particle-bound polycyclic aromatic hydrocarbons from Chengdu in China. JOURNAL OF HAZARDOUS MATERIALS 2014; 283:462-468. [PMID: 25464284 DOI: 10.1016/j.jhazmat.2014.09.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/15/2014] [Accepted: 09/21/2014] [Indexed: 06/04/2023]
Abstract
PM10 and PM2.5 samples were simultaneously collected during a one-year monitoring period in Chengdu. The concentrations of 16 particle-bound polycyclic aromatic hydrocarbons (Σ16PAHs) were measured. Σ16PAHs concentrations varied from 16.85 to 160.24 ng m(-3) and 14.93 to 111.04ngm(-3) for PM10 and PM2.5, respectively. Three receptor models (principal component analysis (PCA), positive matrix factorization (PMF), and Multilinear Engine 2 (ME2)) were applied to investigate the sources and contributions of PAHs. The results obtained from the three receptor models were compared. Diesel emissions, gasoline emissions, and coal and wood combustion were the primary sources. Source apportionment results indicated that these models were able to track the ΣPAHs. For the first time, the cancer risks for each identified source were quantitatively calculated for ingestion and dermal contact routes by combining the incremental lifetime cancer risk (ILCR) values with the estimated source contributions. The results showed that gasoline emissions posed the highest cancer risk, even though it contributed less to Σ16PAHs. The results and method from this work can provide useful information for quantifying the toxicity of source categories and studying human health in the future.
Collapse
Affiliation(s)
- Gui-Rong Liu
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xing Peng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Rong-Kang Wang
- College of Software, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Ying-Ze Tian
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Guo-Liang Shi
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Jian-Hui Wu
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Pu Zhang
- Chengdu Acedemy of Environmental Sciences, Chengdu 61000, China
| | - Lai-Dong Zhou
- Chengdu Acedemy of Environmental Sciences, Chengdu 61000, China
| | - Yin-Chang Feng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
44
|
MENG H, ZHAO JH, DUAN CF, HAO L, GUAN YF. Thermal Desorption-Gas Chromatography or Gas Chromatography-Mass Spectrometry for Analysis of Semi-Volatile Compounds on Atmospheric Particulate Matters. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2014. [DOI: 10.1016/s1872-2040(14)60749-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
45
|
Gao B, Guo H, Wang XM, Zhao XY, Ling ZH, Zhang Z, Liu TY. Tracer-based source apportionment of polycyclic aromatic hydrocarbons in PM2.5 in Guangzhou, southern China, using positive matrix factorization (PMF). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:2398-2409. [PMID: 22926284 DOI: 10.1007/s11356-012-1129-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 08/16/2012] [Indexed: 06/01/2023]
Abstract
From 28 November to 23 December 2009, 24-h PM2.5 samples were collected simultaneously at six sites in Guangzhou. Concentrations of 18 polycyclic aromatic hydrocarbons (PAHs) together with certain molecular tracers for vehicular emissions (i.e., hopanes and elemental carbon), coal combustion (i.e., picene), and biomass burning (i.e., levoglucosan) were determined. Positive matrix factorization (PMF) receptor model combined with tracer data was applied to explore the source contributions to PAHs. Three sources were identified by both inspecting the dominant tracer(s) in each factor and comparing source profiles derived from PMF with determined profiles in Guangzhou or in the Pearl River Delta region. The three sources identified were vehicular emissions (VE), biomass burning (BB), and coal combustion (CC), accounting for 11 ± 2%, 31 ± 4%, and 58 ± 4% of the total PAHs, respectively. CC replaced VE to become the most important source of PAHs in Guangzhou, reflecting the effective control of VE in recent years. The three sources had different contributions to PAHs with different ring sizes, with higher BB contributions (75 ± 3%) to four-ring PAHs such as pyrene and higher CC contributions (57 ± 4%) to six-ring PAHs such as benzo[ghi]perylene. Temporal variations of VE and CC contributions were probably caused by the change of weather conditions, while temporal variations of BB contributions were additionally influenced by the fluctuation of BB emissions. Source contributions also showed some spatial variations, probably due to the source emission variations near the sampling sites.
Collapse
Affiliation(s)
- Bo Gao
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | | | | | | | | | | | | |
Collapse
|