1
|
Pikula K, Johari SA, Santos-Oliveira R, Golokhvast K. Joint Toxicity and Interaction of Carbon-Based Nanomaterials with Co-Existing Pollutants in Aquatic Environments: A Review. Int J Mol Sci 2024; 25:11798. [PMID: 39519349 PMCID: PMC11547080 DOI: 10.3390/ijms252111798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
This review paper focuses on the joint toxicity and interaction of carbon-based nanomaterials (CNMs) with co-existing pollutants in aquatic environments. It explores the potential harmful effects of chemical mixtures with CNMs on aquatic organisms, emphasizing the importance of scientific modeling to predict mixed toxic effects. The study involved a systematic literature review to gather information on the joint toxicity and interaction between CNMs and various co-contaminants in aquatic settings. A total of 53 publications were chosen and analyzed, categorizing the studies based on the tested CNMs, types of co-contaminants, and the used species. Common test models included fish and microalgae, with zebrafish being the most studied species. The review underscores the necessity of conducting mixture toxicity testing to assess whether the combined effects of CNMs and co-existing pollutants are additive, synergistic, or antagonistic. The development of in silico models based on the solid foundation of research data represents the best opportunity for joint toxicity prediction, eliminating the need for a great quantity of experimental studies.
Collapse
Affiliation(s)
- Konstantin Pikula
- Polytechnical Institute, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia;
| | - Seyed Ali Johari
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Pasdaran St, Sanandaj 66177-15175, Kurdistan, Iran
| | - Ralph Santos-Oliveira
- Laboratory of Synthesis of Novel Radiopharmaceuticals and Nanoradiopharmacy, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro 21941-906, Brazil
- Laboratory of Nanoradiopharmaceuticals and Radiopharmacy, State University of Rio de Janeiro, Rio de Janeiro 23070-200, Brazil
| | - Kirill Golokhvast
- Siberian Federal Scientific Center of Agrobiotechnology RAS, 2b Centralnaya, Presidium, 633501 Krasnoobsk, Russia
- Advanced Engineering School “Agrobiotek”, Tomsk State University, 36 Lenina Avenue, 634050 Tomsk, Russia
| |
Collapse
|
2
|
Wang C, Chen L, Xu J, Zhang L, Yang X, Zhang X, Zhang C, Gao P, Zhu L. Environmental behaviors and toxic mechanisms of engineered nanomaterials in soil. ENVIRONMENTAL RESEARCH 2024; 242:117820. [PMID: 38048867 DOI: 10.1016/j.envres.2023.117820] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/05/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Engineered nanomaterials (ENMs) are inevitably released into the environment with the exponential application of nanotechnology. Parts of ENMs eventually accumulate in the soil environment leading to potential adverse effects on soil ecology, crop production, and human health. Therefore, the safety application of ENMs on soil has been widely discussed in recent years. More detailed safety information and potential soil environmental risks are urgently needed. However, most of the studies on the environmental effects of metal-based ENMs have been limited to single-species experiments, ecosystem processes, or abiotic processes. The present review formulated the source and the behaviors of the ENMs in soil, and the potential effects of single and co-exposure ENMs on soil microorganisms, soil fauna, and plants were introduced. The toxicity mechanism of ENMs to soil organisms was also reviewed including oxidative stress, the release of toxic metal ions, and physical contact. Soil properties affect the transport, transformation, and toxicity of ENMs. Toxic mechanisms of ENMs include oxidative stress, ion release, and physical contact. Joint toxic effects occur through adsorption, photodegradation, and loading. Besides, future research should focus on the toxic effects of ENMs at the food chain levels, the effects of ENMs on plant whole-lifecycle, and the co-exposure and long-term toxicity effects. A fast and accurate toxicity evaluation system and model method are urgently needed to solve the current difficulties. It is of great significance for the sustainable development of ENMs to provide the theoretical basis for the ecological risk assessment and environmental management of ENMs.
Collapse
Affiliation(s)
- Chaoqi Wang
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China
| | - Le'an Chen
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China
| | - Jiake Xu
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China
| | - Lanlan Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China
| | - Xiaoqing Yang
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China
| | - Xiaokai Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China
| | - Cheng Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China.
| | - Peng Gao
- Department of Environmental and Occupational Health, and Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, United States
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian, 271018, China
| |
Collapse
|
3
|
Lu X, Wang Z. Individual and binary exposure of embryonic zebrafish (Danio rerio) to single-walled and multi-walled carbon nanotubes in the absence and presence of dissolved organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166458. [PMID: 37625727 DOI: 10.1016/j.scitotenv.2023.166458] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
The available toxicological information was inadequate to assess the potential ecological risk of a mixture of different nanostructured carbon nanotubes (CNTs) to aquatic organisms, especially for the co-existence of mixed CNTs with dissolved organic matter (DOM). Herein, we investigated individual and binary exposure of zebrafish (Danio rerio) embryos to single-walled (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) in the absence and presence of DOM. Results indicated that embryonic chorions were more resistant to mixed-type CNTs than to single-type CNTs, yet the addition of DOM decreased this resistance. The mixed-type CNTs increased the antioxidant capacity of zebrafish embryos by increasing superoxide dismutase activity in comparison to the single-type CNTs. Furthermore, the mixed-type CNTs caused oxidative damage to the zebrafish embryos, characterized by an increase in malondialdehyde level. Nevertheless, the activation of the antioxidant defense system was modulated by the presence of DOM. Transcriptome sequencing analysis showed that the number of unique genes (UGs) and differentially expressed genes (DEGs) between the mixed-type CNTs and control groups was significantly enhanced compared to the single-type CNTs. DOM increased the number of UGs and up-regulated DEGs, but decreased the number of down-regulated DEGs. GO classification analysis revealed that the mixed-type CNTs mainly altered the cellular component process of single-type CNTs to induce joint effects. DOM generally enhanced the GO enrichment of DEGs in D. rerio embryos exposed to the mixed-type CNTs during the biological process. KEGG pathway enrichment analysis for the mixed-type CNTs showed enrichment of DEGs encoding ether lipid metabolism, glycerophospholipid metabolism, glycerolipid metabolism, citrate cycle, and biosynthesis of nucleotide sugars. However, DOM allowed more specific KEGG pathways towards the mixed-type CNTs to be identified. Despite the mixed-type CNTs exhibiting differential expression of functional genes compared to the control and single-type CNTs, DOM could regulate the expression of these functional genes associated with oxidative stress response, carbohydrate metabolism, endoplasmic reticulum stress, neuroendocrine, osmotic stress, and DNA damage and repair. Our study thus paves a solid way for exploring the molecular mechanism of aquatic toxicity of multiple nanomaterials under field-relevant conditions.
Collapse
Affiliation(s)
- Xibo Lu
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing 210044, PR China
| | - Zhuang Wang
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing 210044, PR China.
| |
Collapse
|
4
|
Zhang W, Di S, Yan J. Chiral pesticides levels in peri-urban area near Yangtze River and their correlations with water quality and microbial communities. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3817-3831. [PMID: 36586031 DOI: 10.1007/s10653-022-01459-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/08/2022] [Indexed: 06/01/2023]
Abstract
Pesticides are considered to be the second-largest non-point source pollution in water. Our research assayed the river network of typical agricultural areas in the middle and lower Yangtze River as the study area. Pesticides residues in aquatic environment were determined by QuEChERS, combined with high-performance liquid chromatography tandem mass spectrometry, or gas chromatograph-mass spectrometer. At chiral pesticides' levels, we detected pesticides contents in water, classified and counted the types of pesticides, and analyzed their environmental risk assessment. Furthermore, potential correlations between chiral pesticides concentrations and water quality indicators were assayed. Additionally, we explored their relations with microbial communities at species levels. Enantiomers of Diclofop-methyl, Ethiprole, Difenoconazole and Epoxiconazole were enantioselectively distributed. More interestingly, due to various chiral environment of the sampling site, the enantiomers of Tebuconazole Acetochlor, Glufosinate ammonium and Bifenthrin had completely different distributions at different sites. Based on that, the chiral pesticides Diclofop-methyl, Bifenthrin, Ethiprole, Tebuconazole and Difenoconazole are enantioselective to the risk of aquatic environment. Generally, enantiomeric selectivity had high positive correlations with total nitrogen and phosphorus. Then we found that chiral fate behavior of Tebuconazole and Paichongding in water might be affected by prokaryotes. In addition, the chiral behavior of Diclofop-methyl, Propiconazole, Difenoconazole, and Tebuconazole isomers in water might be negatively affected by eukaryotes. That research helped us to comprehensively understand the impact of non-point source pollution of chiral pesticides in aquatic environment and provided basic data support for developing biological and water quality indicators for monitoring pollution in aquatic environment.
Collapse
Affiliation(s)
- Wenjun Zhang
- Key Laboratory of Integrated Regulation and Resources Development On Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jin Yan
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
5
|
Zhao X, Yuan P, Yang Z, Peng W, Meng X, Cheng J. Integration of Micro-Nano-Engineered Hydroxyapatite/Biochars with Optimized Sorption for Heavy Metals and Pharmaceuticals. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1988. [PMID: 35745328 PMCID: PMC9227354 DOI: 10.3390/nano12121988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 02/06/2023]
Abstract
From the perspective of treating wastes with wastes, bamboo sawdust was integrated with a hydroxyapatite (HAP) precursor to create engineered nano-HAP/micro-biochar composites (HBCs) by optimizing the co-precipitated precursor contents and co-pyrolysis temperature (300, 450, 600 °C). The physicochemical properties of HBCs, including morphologies, porosities, component ratios, crystalline structures, surface elemental chemical states, surface functional groups, and zeta potentials as a function of carbonization temperatures and components of precursors, were studied. Biochar matrix as an efficient carrier with enhanced specific surface area to prevent HAP from aggregation was desired. The sorption behavior of heavy metal (Cu(II), Cd(II), and Pb(II)) and pharmaceuticals (carbamazepine and tetracycline) on HBCs were analyzed given various geochemical conditions, including contact time, pH value, ionic strength, inferencing cations and anions, coexisting humic acid, and ambient temperature. HBCs could capture these pollutants efficiently from both simulated wastewaters and real waters. Combined with spectroscopic techniques, proper multiple dominant sorption mechanisms for each sorbate were elucidated separately. HBCs presented excellent reusability for the removal of these pollutants through six recycles, except for tetracycline. The results of this study provide meaningful insight into the proper integration of biochar-mineral composites for the management of aquatic heavy metals and pharmaceuticals.
Collapse
Affiliation(s)
- Xin Zhao
- Graduate Department, Civil Aviation Flight University of China, Guanghan 618307, China;
| | - Peiling Yuan
- Zhengzhou Key Laboratory of Low-Dimensional Quantum Materials and Devices, College of Science, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Ziyan Yang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China;
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Wei Peng
- Department of Ecology and Environment of Henan Province, Zhengzhou 450046, China;
| | - Xiang Meng
- Chongqing Key Laboratory of Materials Surface & Interface Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (X.M.); (J.C.)
| | - Jiang Cheng
- Chongqing Key Laboratory of Materials Surface & Interface Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (X.M.); (J.C.)
| |
Collapse
|
6
|
Fang R, Gong J, Cao W, Chen Z, Huang D, Ye J, Cai Z. The combined toxicity and mechanism of multi-walled carbon nanotubes and nano copper oxide toward freshwater algae: Tetradesmus obliquus. J Environ Sci (China) 2022; 112:376-387. [PMID: 34955220 DOI: 10.1016/j.jes.2021.05.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 06/14/2023]
Abstract
Nanoparticles (NPs) are widely used for their special physical properties and released into the natural environment. When two types of NPs exist in the same environment, the presence of one type of NP may affect the properties of the other type of NP. This study investigated the toxic effects of multi-walled carbon nanotubes (MWCNTs) and copper oxide nanoparticles (CuO NPs) on Tetradesmus obliquus. Both NPs had toxic effects on algae, and the toxic effects of MWCNTs were significantly stronger than CuO NPs which the 96-hr median effective concentration to algae were 33.8 and 169.2 mg/L, respectively. Oxidative stress and cell membrane damage were the main reasons for the toxicity of NPs to algae, and they were concentration-dependent, and the existence of CuO NPs in some groups reduced cell membrane damage caused by MWCNTs which may because that CuO NPs formed heteroaggregation with MWCNTs, reducing the contact of nanoparticles with cell membranes, then reducing physical damage. Scanning electron microscopy (SEM) and transmission electron microscope (TEM) results indicated cell damage, the heteroaggregation of MWCNTs-CuO NPs and obvious nanoparticles internalization. In some groups, the presence of CuO NPs significantly reduced reactive oxygen species (ROS) level induced by MWCNTs. However, for the highest concentration group, the ROS level was much higher than that of the two NPs alone treatment groups, which might be related to the high concentration of MWCNTs promoting the internalization of CuO NPs. MWCNTs and CuO NPs affected and interacted with each other, causing more complex toxic effects on aquatic organisms.
Collapse
Affiliation(s)
- Rong Fang
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Jilai Gong
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.
| | - Weicheng Cao
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Zengping Chen
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Danlian Huang
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Jun Ye
- Hunan Qing Zhi Yuan Environmental Protection Technology Co., Ltd., Changsha 410082, China
| | - Zhe Cai
- Hunan Qing Zhi Yuan Environmental Protection Technology Co., Ltd., Changsha 410082, China
| |
Collapse
|
7
|
Zhao J, Luo W, Xu Y, Ling J, Deng L. Potential reproductive toxicity of multi-walled carbon nanotubes and their chronic exposure effects on the growth and development of Xenopus tropicalis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:142652. [PMID: 33092835 DOI: 10.1016/j.scitotenv.2020.142652] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
The increasing production and use of multi-walled carbon nanotubes (MWCNTs) will inevitably lead to discharge into the environment and exert negative effects on organisms. Many studies have focused on the toxicity of MWCNTs to aquatic animals, but little is known about their possible potential reproductive toxicity. In this study, 6 sexually mature Xenopus tropicalis were exposed to 0.5 and 2.5 mg/L MWCNTs suspensions for 56 days, and the toxicity of MWCNTs to the growth and reproduction of X. tropicalis were studied. The results showed that MWCNTs could inhibit the growth of body, including the testis, ovaries and fat of X. tropicalis. Histopathological section analysis showed that MWCNTs affected the formation of spermatogonia and oocytes, while had no notable effect on the heart or liver. MWCNTs would be accumulated in lungs of X. tropicalis inducing lung cannons. In addition, MWCNTs changed the microbial community structure and diversity of gut microbiota but did not change its abundance significantly. Moreover, MWCNTs could even decrease the fertilized and survival rate of X. tropicalis embryos. These results indicated that chronic exposure to MWCNTs would not only affect the growth and development of X. tropicalis, but also pose a potential risk on their reproduction.
Collapse
Affiliation(s)
- Jianbin Zhao
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenshi Luo
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006, China.
| | - Jiayin Ling
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Longhua Deng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
8
|
Rodríguez Sartori D, Bertuola M, Miñán A, Gonik E, Gonzalez MC, Fernández Lorenzo de Mele M. Environmentally Induced Changes of Commercial Carbon Nanotubes in Aqueous Suspensions. Adaptive Behavior of Bacteria in Biofilms. ACS OMEGA 2021; 6:5197-5208. [PMID: 33681561 PMCID: PMC7931186 DOI: 10.1021/acsomega.0c05114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
The effects of environmental factors such as sunlight irradiation and the presence of humic acid (HA) on the physicochemical properties of commercial multiwall carbon nanotubes (MWCNT) suspended in a simulated inorganic matrix (SIM) and their impacts on bacteria growing in biofilms were evaluated. Both solar irradiation and the presence of HA lead to the dissolution of adsorbed metals on the MWCNT, which are residues of synthesis catalysts. Also, preferential adsorption of certain HA components on the MWCNT induces important modifications in the aliphatic/aromatic relationship of HA components in solution and the generation and release of new moieties. Results demonstrated that the variation of such physicochemical parameters strongly affects the interactions of MWCNT with Pseudomonas aeruginosa sessile bacteria. Thus, the number of attached bacteria increased, and stress responses such as decrease in bacterial size were found in the presence of sunlight-irradiated MWCNT with a particular distribution of extracellular polymeric substances (EPS) strands. A shielding effect was observed when HA was added. It was concluded that physicochemical alterations caused by environmental conditions (with/without irradiation, presence/absence of HA) on MWCNT-containing SIM trigger distinctive adaptive behavior of bacteria in biofilms. This information must be taken into account in the development of biologically assisted treatments for organic metal co-contamination of MWCNT-containing media since MWCNT discharge alters the physicochemical properties and composition of the aqueous environment and the response of the biofilms that interact with it.
Collapse
Affiliation(s)
- Damián Rodríguez Sartori
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas
(INIFTA), CCT La Plata, CONICET, Facultad de Ciencias Exactas, UNLP, C.C. 16 Suc. 4, 1900 La Plata, Argentina
| | - Marcos Bertuola
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas
(INIFTA), CCT La Plata, CONICET, Facultad de Ciencias Exactas, UNLP, C.C. 16 Suc. 4, 1900 La Plata, Argentina
| | - Alejandro Miñán
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas
(INIFTA), CCT La Plata, CONICET, Facultad de Ciencias Exactas, UNLP, C.C. 16 Suc. 4, 1900 La Plata, Argentina
| | - Eduardo Gonik
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas
(INIFTA), CCT La Plata, CONICET, Facultad de Ciencias Exactas, UNLP, C.C. 16 Suc. 4, 1900 La Plata, Argentina
| | - Mónica C. Gonzalez
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas
(INIFTA), CCT La Plata, CONICET, Facultad de Ciencias Exactas, UNLP, C.C. 16 Suc. 4, 1900 La Plata, Argentina
| | - Mónica Fernández Lorenzo de Mele
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas
(INIFTA), CCT La Plata, CONICET, Facultad de Ciencias Exactas, UNLP, C.C. 16 Suc. 4, 1900 La Plata, Argentina
- Facultad
de Ingeniería, UNLP, B1900 La Plata, Argentina
| |
Collapse
|
9
|
Chen Y, Li J, Zhou Q, Liu Z, Li Q. Hexavalent chromium amplifies the developmental toxicity of graphene oxide during zebrafish embryogenesis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111487. [PMID: 33126181 DOI: 10.1016/j.ecoenv.2020.111487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Combined toxicity is a critical issue in risk assessment of contaminants. However, very little is known about the joint effects of graphene oxide (GO, a crucial 2-dimensional carbon material) and hexavalent chromium (Cr6+, a widespread heavy metal), particularly with respect to the critical period of embryogenesis. In this study, the combined toxicity of GO and Cr6+ was evaluated through embryo-larval toxicity test in Danio rerio (zebrafish). Results indicated that the co-exposure of Cr6+ (1 mg/L) and GO (0.01 mg/L) inhibited hatching and spontaneous movement of embryos, but no significant changes were found in the single Cr6+ or GO group. Compared with the single GO or Cr6+ exposure, their co-exposure (GO+Cr6+) significantly enhanced the teratogenicity in a concentration-dependent pattern, and the spinal curvature was observed as the main deformity. GO+Cr6+ changed the protein secondary structures of embryos result of the generation of ROS and oxidative stress. The degradations of vertical myosepta and cartilages were observed in co-exposure group, suggesting that GO+Cr6+ disrupted the development of musculoskeletal system. The genes col11a1a, col2a1a and postnb were down-regulated but the genes acta1b and mmp9 were up-regulated by GO+Cr6+. The interactions between Cr6+ and GO demonstrated that the morphology, structure, and surface properties of GO were modified by Cr6+. The enhanced defects and O-containing groups of GO could trap more β-sheets, induced oxidative stress, disturbed the development of skeletal muscles and cartilages in zebrafish. These data suggested that GO+Cr6+ enhanced their joint toxicity due to the variation of nanoparticle properties. This finding is important for assessing the ecological risk of graphene family nanomaterials in the natural environment.
Collapse
Affiliation(s)
- Yuming Chen
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Jitong Li
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases/Henan Neural Development Engineering Research Center for Children, Department of Nephrology and Rheumatology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Zhijie Liu
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Qiong Li
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
10
|
Song B, Zeng Z, Zeng G, Gong J, Xiao R, Chen M, Tang X, Ye S, Shen M. Effects of hydroxyl, carboxyl, and amino functionalized carbon nanotubes on the functional diversity of microbial community in riverine sediment. CHEMOSPHERE 2021; 262:128053. [PMID: 33182130 DOI: 10.1016/j.chemosphere.2020.128053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
Nowadays, more and more attention is focused on the environmental harm brought by the wide production and use of carbon nanotubes. In this study, the metabolic function of sediment microbial community was investigated after unfunctionalized or functionalized multi-walled carbon nanotubes (MWCNTs) were incorporated. The surface functional groups on the studied functionalized MWCNTs in this work were hydroxyl, carboxyl, and amino, respectively. The metabolic functional diversity was determined by Biolog EcoPlates after one-month exposure to MWCNTs. Incorporating 0.5 wt% amino functionalized MWCNTs significantly decreased the microbial activity and diversity, and all types of MWCNTs caused great inhibition on the microbial metabolism at the dosage of 2.0 wt%. The sediment microbes preferred polymers and amino acids. Principal component and similarity analysis indicated that the microbial carbon metabolism was more affected by the MWCNT dosage compared with the functionalization, and 2.0 wt% amino functionalized MWCNTs made the greatest difference in metabolic function of sediment microbial community. These consequences may help to assess the environmental risks of MWCNTs from the aspect of ecological relevance of sediment microbial community.
Collapse
Affiliation(s)
- Biao Song
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Zhuotong Zeng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, 410011, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Jilai Gong
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Rong Xiao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, 410011, PR China.
| | - Ming Chen
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Xiang Tang
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Shujing Ye
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Maocai Shen
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
11
|
Wang D, Wang S, Bai L, Nasir MS, Li S, Yan W. Mathematical Modeling Approaches for Assessing the Joint Toxicity of Chemical Mixtures Based on Luminescent Bacteria: A Systematic Review. Front Microbiol 2020; 11:1651. [PMID: 32849340 PMCID: PMC7412757 DOI: 10.3389/fmicb.2020.01651] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/25/2020] [Indexed: 01/14/2023] Open
Abstract
Developments in industrial applications inevitably accelerate the discharge of enormous substances into the environment, whereas multi-component mixtures commonly cause joint toxicity which is distinct from the simple sum of independent effect. Thus, ecotoxicological assessment, by luminescent bioassays has recently brought increasing attention to overcome the environmental risks. Based on the above viewpoint, this review included a brief introduction to the occurrence and characteristics of toxic bioassay based on the luminescent bacteria. In order to assess the environmental risk of mixtures, a series of models for the prediction of the joint effect of multi-component mixtures have been summarized and discussed in-depth. Among them, Quantitative Structure-Activity Relationship (QSAR) method which was widely applied in silico has been described in detail. Furthermore, the reported potential mechanisms of joint toxicity on the luminescent bacteria were also overviewed, including the Trojan-horse type mechanism, funnel hypothesis, and fishing hypothesis. The future perspectives toward the development and application of toxicity assessment based on luminescent bacteria were proposed.
Collapse
Affiliation(s)
- Dan Wang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Shaanxi, China
| | - Shan Wang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Shaanxi, China
| | - Linming Bai
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Shaanxi, China
| | - Muhammad Salman Nasir
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Shaanxi, China.,Department of Structures and Environmental Engineering, University of Agriculture, Faisalabad, Pakistan
| | - Shanshan Li
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Shaanxi, China
| | - Wei Yan
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Shaanxi, China
| |
Collapse
|
12
|
Deng R, Gao X, Hou J, Lin D. Multi-omics analyses reveal molecular mechanisms for the antagonistic toxicity of carbon nanotubes and ciprofloxacin to Escherichia coli. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 726:138288. [PMID: 32305750 DOI: 10.1016/j.scitotenv.2020.138288] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 05/05/2023]
Abstract
With the increasing production and application, engineered nanomaterials (ENMs) are being discharged into the environment, where they can interact with co-existing contaminants, causing complicated joint toxicity to organisms that needs to be studied. The case study of ENMs-contaminant joint toxicity and the understanding of relative mechanisms are very insufficient, particularly the mechanisms of molecular interactions and governing processes. Herein, a typical ENMs, carbon nanotubes (CNTs, 0-60 mg/L), and a common antibiotic, ciprofloxacin (CIP, 0-900 mg/L), were selected as the analytes. Their joint toxicity to a model microbe Escherichia coli was specifically investigated via biochemical, transcriptomics, and metabolomics approaches. The result revealed an antagonistic effect on growth inhibition between CNTs and CIP. Mitigations in cell membrane disruption and oxidative stress were involved in the antagonistic action. CIP (48.8-244 mg/L) decreased the bioaccumulation of CNTs (7.2 mg/L) via reducing cell-surface hydrophobicity and hindering the bio-nano interaction, which could attenuate the toxicity of CNTs to bacteria. CNTs (7.2 and 14.4 mg/L) alleviated the disturbance of CIP (122 and 244 mg/L) to gene expressions especially related to nitrogen compound metabolism, oxidoreductase activity, and iron-sulfur protein maturation, probably through relieving the CIP-induced inhibition of DNA gyrase activity. Further, CNTs (7.2 and 14.4 mg/L) offset the impact of CIP (122 and 244 mg/L) on bacterial metabolome via the regulation of biosynthesis of unsaturated fatty acids and metabolisms of some amino acids and glutathione. The findings shed new light on the molecular mechanisms by which ENMs present joint effect on contaminant toxicity, and provide important information for risk assessments of CNTs and fluoroquinolones in the environment.
Collapse
Affiliation(s)
- Rui Deng
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| | - Xuan Gao
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| | - Jie Hou
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
13
|
Xu P, Chen M, Zeng G, Huang D, Lai C, Wang Z, Yan M, Huang Z, Gong X, Song B, Li T, Duan A. Effects of multi-walled carbon nanotubes on metal transformation and natural organic matters in riverine sediment. JOURNAL OF HAZARDOUS MATERIALS 2019; 374:459-468. [PMID: 31077889 DOI: 10.1016/j.jhazmat.2019.04.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/19/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
In this study, pragmatic prospection of multi-walled carbon nanotubes (MWCNTs) is conducted considering their impacts on Cd transformation, microbial activity and natural organic matter (NOM) in sediments. Indeed, dose-dependent of MWCNTs acceleration in Cd sedimentation and immobilization in water-sediment interface has been found. Unexpectedly, even with the reduced Cd bioavailability, high ratios of MWCNTs incorporation led to exacerbated microbial inactivation. Besides, we noted that MWCNTs significantly lowered NOM contents in sediments. Chemical characterization results also demonstrated that high ratios of MWCNTs incorporation reduced the aromaticity, hydrophobicity and humification of fulvic acid (FA) and humic acid (HA) in sediments. The Cd binding results confirmed that quantity and chemical variation of NOM affected their central ability to Cd binding, referring to significant decrease in combined Cd contents. The findings indicated that reduction in humic substances and chemical structure variation might be the important reason attributed to the MWCNTs toxicity. This study provides novel mechanisms understanding the fate of carbon nanotubes considering the balance in environmental benefit and potential risks.
Collapse
Affiliation(s)
- Piao Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Ming Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China.
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China.
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Ziwei Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Ming Yan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Zhenzhen Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Xiaomin Gong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Tao Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Abing Duan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| |
Collapse
|
14
|
Maksimova YG. Microorganisms and Carbon Nanotubes: Interaction and Applications (Review). APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819010101] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Yan Z, Sun H, Jiang R, Dong H, Yang H, Liu J, Lu G, Ji Y. Accumulation, metabolite and active defence system responses of fluoxetine in zebrafish embryos: Influence of multiwalled carbon nanotubes with different functional groups. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 205:204-212. [PMID: 30399532 DOI: 10.1016/j.aquatox.2018.10.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 06/08/2023]
Abstract
Studies on the bioavailability of organic contaminants adsorbed to nanomaterials are increasing. In this study, we investigated the interaction between fluoxetine (FLX) and three multiwalled carbon nanotubes (MWCNTs) with different functional groups in zebrafish (Danio rerio) embryos, focusing on the FLX accumulation, the formation of the metabolite norfluoxetine (NFLX), and the active defence system responses. The accumulation of FLX in zebrafish was intensified by MWCNTs (46-99%), which simultaneously facilitated the formation of the metabolite NFLX by 23-167%. The consistent enhancement revealed that the absorbed FLX is bioavailable in zebrafish. Moreover, the coexisting MWCNTs further promoted the influences of FLX on the active defence system in zebrafish (e.g. antioxidant and metabolic function), eliciting the defence function. The influences of MWCNTs on the bioavailability of FLX in zebrafish could be ordered as OH-MWCNTs > COOH-MWCNTs > pristine MWCNTs. The release of FLX from MWCNTs in biofluids may partially contribute to these significant alterations. In particular, MWCNTs themselves may also modulate the bioavailability of FLX in zebrafish by downregulating the gene expression of membrane ATP-binding cassette transporter (abcb4). These findings demonstrated that MWCNTs increased the bioavailability of FLX in zebrafish, especially the functionalized MWCNTs. The production of metabolites may be a useful bio-endpoint to evaluate the bioavailability of adsorbed contaminants on nanomaterials.
Collapse
Affiliation(s)
- Zhenhua Yan
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Hongwei Sun
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Runren Jiang
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Huike Dong
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Haohan Yang
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jianchao Liu
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Water Conservancy Project & Civil Engineering College, Tibet Agriculture & Animal Husbandry University, Linzhi, 860000, China.
| | - Yong Ji
- School of Hydraulic and Ecological Engineering, Nanchang Institute of Technology, Nanchang, 330099, China
| |
Collapse
|
16
|
Liu Y, Nie Y, Wang J, Wang J, Wang X, Chen S, Zhao G, Wu L, Xu A. Mechanisms involved in the impact of engineered nanomaterials on the joint toxicity with environmental pollutants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:92-102. [PMID: 29990744 DOI: 10.1016/j.ecoenv.2018.06.079] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
Emerging nanoscience and nanotechnology inevitably facilitate discharge of engineered nanomaterials (ENMs) into the environment. Owing to their versatile physicochemical properties, ENMs invariably come across and interact with various pollutants already existing in the environment, leading to considerable uncertainty regarding the risk assessment of pollutants. Nevertheless, the underlying mechanisms of the complicated joint toxicity are still largely unexplored. This review aims to aid in understanding the interaction of ENMs and pollutants from the perspective of ecological and environmental health risk assessment. Based on related research published from 2005 to 2018, this review focuses on summarizing the effect of ENMs on the toxicity of pollutants both in vivo and in vitro. Physicochemical interaction appears as a main factor affecting ENMs-pollutants joint toxicity, with the mechanisms and the resultants for ENM-pollutant adsorption been illustrated. Cellular and molecular mechanisms involved in the joint toxicity of ENMs and pollutants are discussed, including the effect of ENMs on the bioaccumulation, biodistribution, and metabolism of pollutants, as well as the defense responses of organisms against such pollutants. Future in-depth investigation are suggested to focus on further exploring biological mechanisms (especially for the antagonized effect of ENMs against pollutants), using more advanced mammalian models, and paying more attention to the realistic exposure scenarios.
Collapse
Affiliation(s)
- Yun Liu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Yaguang Nie
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Jingjing Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Juan Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Xue Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Shaopeng Chen
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Guoping Zhao
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Lijun Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China
| | - An Xu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China.
| |
Collapse
|
17
|
Chen M, Zhou S, Zhu Y, Sun Y, Zeng G, Yang C, Xu P, Yan M, Liu Z, Zhang W. Toxicity of carbon nanomaterials to plants, animals and microbes: Recent progress from 2015-present. CHEMOSPHERE 2018; 206:255-264. [PMID: 29753288 DOI: 10.1016/j.chemosphere.2018.05.020] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/17/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
Nanotechnology has gained significant development over the past decades, which led to the revolution in the fields of information, medicine, industry, food security and aerospace aviation. Nanotechnology has become a new research hot spot in the world. However, we cannot only pay attention to its benefit to the society and economy, because its wide use has been bringing potential environmental and health effects that should be noticed. This paper reviews the recent progress from 2015-present in the toxicity of various carbon nanomaterials to plants, animals and microbes, and lays the foundation for further study on the environmental and ecological risks of carbon nanomaterials.
Collapse
Affiliation(s)
- Ming Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Shuang Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yi Zhu
- School of Environmental Science & Engineering, Hubei Polytechnic University, Huangshi 435003, PR China
| | - Yingzhu Sun
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Piao Xu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ming Yan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Wei Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
18
|
Yang X, Feng L, Zhang Y, Hu H, Shi Y, Liang S, Zhao T, Cao L, Duan J, Sun Z. Co-exposure of silica nanoparticles and methylmercury induced cardiac toxicity in vitro and in vivo. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 631-632:811-821. [PMID: 29727991 DOI: 10.1016/j.scitotenv.2018.03.107] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/11/2018] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
The released nanoparticles into environment can potentially interact with pre-existing pollution, maybe causing higher toxicity. As such, assessment of their joint toxic effects is necessary. This study was to investigate the co-exposure cardiac toxicity of silica nanoparticles (SiNPs) and methylmercury (MeHg). Factorial design was used to determine the potential joint action type. In vitro study, human cardiomyocytes (AC16) were exposed to SiNPs and MeHg alone or the combination. Higher toxicity was observed on cell viability, cell membrane damage in co-exposure compared with single exposure and control. The co-exposure enhanced the ROS, MDA generation and reduced the activity of SOD and GSH-Px. In addition, the co-exposure induced much higher cellular apoptotic rate in AC16. In vivo study, after SD rats exposed to SiNPs and MeHg and their mixture by intratracheal instillation for 30days, pathological changes (myocardial interstitial edema) of heart were occurred in co-exposure compared with single exposure and control. Moreover obvious ultra-structural changes, including myofibril disorder, myocardial gap expansion, and mitochondrial damage were observed in co-exposure group. The activity of myocardial enzymes, including CK-MB, ANP, BNP and cTnT, were significantly elevated in co-exposure group of rat serum. Meanwhile, the cardiac injury-linked proteins expression showed an increase in SERCA2 and decreased levels of cTnT, ANP and BNP in co-exposure group. Factorial design analysis demonstrated that additive and synergistic interactions were responsible for the co-exposure cardiac toxicity in vitro and vivo. In summary, our results showed severe cardiac toxicity induced by co-exposure of SiNPs and MeHg in both cardiomycytes and heart. It will help to clarify the potential cardiovascular toxicity in regards to combined exposure pollutions.
Collapse
Affiliation(s)
- Xiaozhe Yang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Lin Feng
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yannan Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Hejing Hu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yanfeng Shi
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Shuang Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Tong Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Lige Cao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
19
|
Londono N, Donovan AR, Shi H, Geisler M, Liang Y. Impact of TiO 2 and ZnO nanoparticles on an aquatic microbial community: effect at environmentally relevant concentrations. Nanotoxicology 2017; 11:1140-1156. [PMID: 29125011 DOI: 10.1080/17435390.2017.1401141] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
To investigate effects of engineered nanoparticles (ENPs) at environmentally relevant concentrations to aquatic microbial communities, TiO2 at 700 µg/L and ZnO at 70 µg/L were spiked to river water samples either separately or combined. Compared to controls where no ENPs were added, the addition of TiO2 ENPs alone at the tested concentration had no statistically significant effect on both the bacterial and eukaryotic communities. The presence of added ENPs: ZnO or ZnO + TiO2 led to significant shift of the microbial community structure and genus distribution. This shift was more obvious for the bacteria than the eukaryotes. Based on results from single particle - inductively coupled plasma - mass spectrometry (SP-ICP-MS), all ENPs aggregated rapidly in water and resulted in much larger particles sizes than the original counterparts. "Dissolved" (including particles smaller than the size detection limits and dissolved ions) concentrations of Ti and Zn increased, too in treatment groups vs. the controls.
Collapse
Affiliation(s)
- Nathalia Londono
- a Department of Civil and Environmental Engineering , Southern Illinois University , Carbondale , IL , USA
| | - Ariel R Donovan
- b Department of Chemistry , Missouri University of Science and Technology , Rolla , MO , USA
| | - Honglan Shi
- b Department of Chemistry , Missouri University of Science and Technology , Rolla , MO , USA.,c Center for Single Nanoparticle, Single Cell, and Single Molecule Monitoring (CS3M) , Rolla , MO , USA
| | - Matthew Geisler
- d Department of Plant Biology , Life Science II, Southern Illinois University , Carbondale , IL , USA
| | - Yanna Liang
- a Department of Civil and Environmental Engineering , Southern Illinois University , Carbondale , IL , USA.,e Department of Environmental and Sustainable Engineering , University at Albany, State University of New York , Albany , NY , USA
| |
Collapse
|
20
|
Deng R, Lin D, Zhu L, Majumdar S, White JC, Gardea-Torresdey JL, Xing B. Nanoparticle interactions with co-existing contaminants: joint toxicity, bioaccumulation and risk. Nanotoxicology 2017. [DOI: 10.1080/17435390.2017.1343404] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Rui Deng
- Department of Environmental Science, Zhejiang University, Hangzhou, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, China
| | | | - Jason C. White
- The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Jorge L. Gardea-Torresdey
- Department of Chemistry, The University of Texas at El Paso, El Paso, TX, USA
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, El Paso, TX, USA
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
21
|
Hu X, Li D, Gao Y, Mu L, Zhou Q. Knowledge gaps between nanotoxicological research and nanomaterial safety. ENVIRONMENT INTERNATIONAL 2016; 94:8-23. [PMID: 27203780 DOI: 10.1016/j.envint.2016.05.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/01/2016] [Accepted: 05/02/2016] [Indexed: 06/05/2023]
Abstract
With the wide research and application of nanomaterials in various fields, the safety of nanomaterials attracts much attention. An increasing number of reports in the literature have shown the adverse effects of nanomaterials, representing the quick development of nanotoxicology. However, many studies in nanotoxicology have not reflected the real nanomaterial safety, and the knowledge gaps between nanotoxicological research and nanomaterial safety remain large. Considering the remarkable influence of biological or environmental matrices (e.g., biological corona) on nanotoxicity, the situation of performing nanotoxicological experiments should be relevant to the environment and humans. Given the possibility of long-term and low-concentration exposure of nanomaterials, the reversibility of and adaptation to nanotoxicity, and the transgenerational effects should not be ignored. Different from common pollutants, the specific analysis methodology for nanotoxicology need development and exploration furthermore. High-throughput assay integrating with omics was highlighted in the present review to globally investigate nanotoxicity. In addition, the biological responses beyond individual levels, special mechanisms and control of nanotoxicity deserve more attention. The progress of nanotoxicology has been reviewed by previous articles. This review focuses on the blind spots in nanotoxicological research and provides insight into what we should do in future work to support the healthy development of nanotechnology and the evaluation of real nanomaterial safety.
Collapse
Affiliation(s)
- Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Dandan Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yue Gao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Li Mu
- Institute of Agro-Environmental Protection, Ministry of Agriculture, Tianjin 300191, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
22
|
Holden PA, Gardea-Torresdey J, Klaessig F, Turco RF, Mortimer M, Hund-Rinke K, Hubal EAC, Avery D, Barceló D, Behra R, Cohen Y, Deydier-Stephan L, Lee Ferguson P, Fernandes TF, Harthorn BH, Henderson WM, Hoke RA, Hristozov D, Johnston JM, Kane AB, Kapustka L, Keller AA, Lenihan HS, Lovell W, Murphy CJ, Nisbet RM, Petersen EJ, Salinas ER, Scheringer M, Sharma M, Speed DE, Sultan Y, Westerhoff P, White JC, Wiesner MR, Wong EM, Xing B, Horan MS, Godwin HA, Nel AE. Considerations of Environmentally Relevant Test Conditions for Improved Evaluation of Ecological Hazards of Engineered Nanomaterials. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:6124-45. [PMID: 27177237 PMCID: PMC4967154 DOI: 10.1021/acs.est.6b00608] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Engineered nanomaterials (ENMs) are increasingly entering the environment with uncertain consequences including potential ecological effects. Various research communities view differently whether ecotoxicological testing of ENMs should be conducted using environmentally relevant concentrations-where observing outcomes is difficult-versus higher ENM doses, where responses are observable. What exposure conditions are typically used in assessing ENM hazards to populations? What conditions are used to test ecosystem-scale hazards? What is known regarding actual ENMs in the environment, via measurements or modeling simulations? How should exposure conditions, ENM transformation, dose, and body burden be used in interpreting biological and computational findings for assessing risks? These questions were addressed in the context of this critical review. As a result, three main recommendations emerged. First, researchers should improve ecotoxicology of ENMs by choosing test end points, duration, and study conditions-including ENM test concentrations-that align with realistic exposure scenarios. Second, testing should proceed via tiers with iterative feedback that informs experiments at other levels of biological organization. Finally, environmental realism in ENM hazard assessments should involve greater coordination among ENM quantitative analysts, exposure modelers, and ecotoxicologists, across government, industry, and academia.
Collapse
Affiliation(s)
- Patricia A. Holden
- Bren School of Environmental Science and Management, University of California, Santa Barbara, California 93106, United States
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, California 90095, United States
| | - Jorge Gardea-Torresdey
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, California 90095, United States
- Department of Chemistry, Environmental Science and Engineering PhD Program, University of Texas, El Paso, Texas 79968, United States
| | - Fred Klaessig
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, California 90095, United States
- Pennsylvania Bio Nano Systems, Doylestown, Pennsylvania 18901, United States
| | - Ronald F. Turco
- College of Agriculture, Laboratory for Soil Microbiology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Monika Mortimer
- Bren School of Environmental Science and Management, University of California, Santa Barbara, California 93106, United States
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, California 90095, United States
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Kerstin Hund-Rinke
- Fraunhofer Institute for Molecular Biology and Applied Ecology, D-57392 Schmallenberg, Germany
| | - Elaine A. Cohen Hubal
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - David Avery
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, California 90095, United States
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona 08034, Spain
- Institut Català de Recerca de l’Aigua (ICRA), Parc Científic i Tecnològic de la Universitat de Girona, Girona 17003, Spain
| | - Renata Behra
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | - Yoram Cohen
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California Los Angeles, California 90095, United States
- Chemical and Biomolecular Engineering Department, University of California Los Angeles, California 90095, United States
| | | | - Patrick Lee Ferguson
- Department of Civil & Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
- Center for the Environmental Implications of NanoTechnology (CEINT), Duke University, Durham, North Carolina 27708, United States
| | | | - Barbara Herr Harthorn
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, California 90095, United States
- Center for Nanotechnology in Society, University of California, Santa Barbara, California 93106
- Department of Anthropology, University of California, Santa Barbara, California 93106
| | - William Matthew Henderson
- Office of Research and Development, National Exposure Research Laboratory, U.S. Environmental Protection Agency, Athens, Georgia 30605, United States
| | - Robert A. Hoke
- E.I. du Pont de Nemours and Company, Newark, Delaware 19711, United States
| | - Danail Hristozov
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari Venice, Venice 30123, Italy
| | - John M. Johnston
- Office of Research and Development, National Exposure Research Laboratory, U.S. Environmental Protection Agency, Athens, Georgia 30605, United States
| | - Agnes B. Kane
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912, United States
| | | | - Arturo A. Keller
- Bren School of Environmental Science and Management, University of California, Santa Barbara, California 93106, United States
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, California 90095, United States
| | - Hunter S. Lenihan
- Bren School of Environmental Science and Management, University of California, Santa Barbara, California 93106, United States
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, California 90095, United States
| | - Wess Lovell
- Vive Crop Protection Inc, Toronto, Ontario M5G 1L6, Canada
| | - Catherine J. Murphy
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Roger M. Nisbet
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, California 90095, United States
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California 93106, United States
| | - Elijah J. Petersen
- Biosystems and Biomaterials Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Edward R. Salinas
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen, D-67056, Germany
| | - Martin Scheringer
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Monita Sharma
- PETA International Science Consortium, Ltd., London N1 9RL, England, United Kingdom
| | - David E. Speed
- Globalfoundries, Corporate EHS, Hopewell Junction, New York 12533, United States
| | - Yasir Sultan
- Environment Canada, Gatineau, Quebec J8X 4C8, Canada
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, United States
| | - Jason C. White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Mark R. Wiesner
- Department of Civil & Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
- Center for the Environmental Implications of NanoTechnology (CEINT), Duke University, Durham, North Carolina 27708, United States
| | - Eva M. Wong
- Office of Pollution Prevention and Toxics, U.S. Environmental Protection Agency, Washington, D.C. 20460, United States
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Meghan Steele Horan
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, California 90095, United States
| | - Hilary A. Godwin
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California Los Angeles, California 90095, United States
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles, California 90095, United States
- Institute of the Environment and Sustainability, University of California, Los Angeles, California 90095, United States
| | - André E. Nel
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California Los Angeles, California 90095, United States
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
23
|
Yan L, Feng M, Liu J, Wang L, Wang Z. Antioxidant defenses and histological changes in Carassius auratus after combined exposure to zinc and three multi-walled carbon nanotubes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 125:61-71. [PMID: 26655435 DOI: 10.1016/j.ecoenv.2015.11.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 11/24/2015] [Accepted: 11/27/2015] [Indexed: 06/05/2023]
Abstract
With the increasing applications of carbon nanotubes (CNTs) worldwide, considerable concerns have been raised regarding their inevitable releases into natural waters and ecotoxicity. It was supposed that CNTs may interact with some existing pollutants like zinc in aquatic systems and exhibit different effects when compared with their single treatments. However, data on their possible combined toxicity on aquatic species are still lacking. Moreover, the interactions of Zn with different functionalized CNTs may be distinct and thereby lead to diverse results. It is like that functional groups play a vital role in illustrating the differences in toxicity among various CNTs. In this study, the single and joint effects of multi-walled carbon nanotubes (MWCNTs) and two MWCNTs functionalized with carboxylation (COOH-MWCNTs) or hydroxylation (OH-MWCNTs) in the absence or presence of zinc (Zn) on antioxidant status and histopathological changes in Carassius auratus were evaluated. Synergistic effect was tentatively proposed for joint-toxicity action, which was supported by apparently observed oxidative stress and histopathological changes in joint exposure groups. The integrated biomarker response index was calculated to rank the toxicity order, from which the conclusion of synergistic effect was strengthened. Regarding differences among various CNTs, our data showed that OH-MWCNTs and COOH-MWCNTs were more stressful to fish than raw MWCNTs. This finding sustained that functionalization is an important factor in nanotoxicity, which may serve as clues for future design and application of CNTs. Overall, these results provided some valuable toxicological data on the joint effects of CNTs and heavy metals on aquatic species, which can facilitate further understanding on the potential impacts of other coexisting pollutants in the culture of freshwater fish.
Collapse
Affiliation(s)
- Liqing Yan
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Mingbao Feng
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Jiaoqin Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Liansheng Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China.
| |
Collapse
|
24
|
Lee JW, Won EJ, Kang HM, Hwang DS, Kim DH, Kim RK, Lee SJ, Lee JS. Effects of multi-walled carbon nanotube (MWCNT) on antioxidant depletion, the ERK signaling pathway, and copper bioavailability in the copepod (Tigriopus japonicus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 171:9-19. [PMID: 26716406 DOI: 10.1016/j.aquatox.2015.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/10/2015] [Accepted: 12/11/2015] [Indexed: 06/05/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) are nanoparticles widely applicable in various industrial fields. However, despite the usefulness of MWCNTs in industry, their oxidative stress-induced toxicity, combined toxicity with metal, and mitogen-activated protein kinase (MAPK) activation have not been widely investigated in marine organisms. We used the intertidal copepod Tigriopus japonicus as a test organism to demonstrate the adverse effects induced by MWCNTs in aquatic test organisms. The dispersion of the MWCNTs in seawater was maintained over 48 h without aggregation. MWCNTs caused a decrease in acute copper toxicity compared to the copper-only group in response to 20 and 100 mg/L MWCNTs, but not in response to 4 mg/L MWCNT, indicating that MWCNT may suppress acute copper toxicity. Reactive oxygen species (ROS) and enzymatic activities of glutathione S-transferase (GST) and catalase were significantly down-regulated in response to 100 mg/L MWCNT exposure. Glutathione (GSH) and glutathione reductase (GR) activity did not change significantly, indicating that MWCNTs may cause failure of the antioxidant system in T. japonicus. However, MWCNT induced extracellular signal-regulated kinase (ERK) activation without p38 and c-jun NH2-terminal kinase (JNK) activation, suggesting that ERK activation plays a key role in cell signaling pathways downstream of CNT exposure. This suggests that this pathway can be used as a biomarker for CNT exposure in T. japonicus. This study provides a better understanding of the cellular-damage response to MWCNTs.
Collapse
Affiliation(s)
- Jin Wuk Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Eun-Ji Won
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hye-Min Kang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Dae-Sik Hwang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Rae-Kwon Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, South Korea
| | - Su-Jae Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|