1
|
Thi Nhu Bui Q, Kim T, Kim HS, Ki JS. Defensive responses of most antioxidant genes in the freshwater dinoflagellate Palatinus apiculatus to cadmium stress and their implications. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117380. [PMID: 39622126 DOI: 10.1016/j.ecoenv.2024.117380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/04/2024] [Accepted: 11/18/2024] [Indexed: 01/26/2025]
Abstract
Photosynthetic dinoflagellates are one of the major microalgal taxa, playing essential roles in biogeochemical cycles and food webs in aquatic environments. Some freshwater dinoflagellates are known to be sensitive to environmental conditions, like water quality and contaminants; however, their molecular toxicological responses are insufficiently discovered. In the present study, we evaluated the physiological and transcriptomic responses of the freshwater dinoflagellate Palatinus apiculatus exposed to cadmium (Cd), focusing on stress-responsive genes. The cell number of P. apiculatus decreased significantly at Cd concentrations above 0.25 mg/L after 72 h, with an estimated EC50 value of 1.35 mg/L. In addition, we constructed 87,207 transcriptomic contigs from the P. apiculatus cells exposed to the Cd. Differential expression gene analysis showed that 21.0 % of total contigs were statistically significant, including 8647 up-regulated and 4195 down-regulated genes. Gene Ontology enrichment results revealed that genes responsive to stress and external stimuli were highly expressed in Cd-treated cells. Moreover, Cd significantly induced reactive oxygen species (ROS) production in P. apiculatus cells, and their patterns were similar to the expressions of certain antioxidant genes. Among the selected genes, GR expression levels were down-regulated, which may lead to the failure of cell defense against heavy metals. These results showed molecular defense pathways of the freshwater dinoflagellate P. apiculatus against the heavy metal that could be served as potential sensitive biomarkers for evaluating molecular toxicity in freshwater ecosystems.
Collapse
Affiliation(s)
- Quynh Thi Nhu Bui
- Department of Life Science, Sangmyung University, Seoul 03016, South Korea
| | - Taehee Kim
- Department of Life Science, Sangmyung University, Seoul 03016, South Korea
| | - Han-Sol Kim
- Department of Life Science, Sangmyung University, Seoul 03016, South Korea
| | - Jang-Seu Ki
- Department of Life Science, Sangmyung University, Seoul 03016, South Korea.
| |
Collapse
|
2
|
Wang JX, Zhang Y, Hu J, Li YF, Egorovich KV, Nikolaevna PN, Vasilevich MV, Zhang ZF, Tang ZH. Metabolomics combined with physiology reveal how white clover (Trifolium repens L.) respond to 6PPD stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176121. [PMID: 39260487 DOI: 10.1016/j.scitotenv.2024.176121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
As a ubiquitous tire antioxidant, N-(1,3-Dimethyl-butyl)-N'-phenyl-p-phenylene- diamine (6PPD) exists widely in various environmental media and has been detected at high levels in the environment. However, the effects of 6PPD on plants are still poorly understood. In this study, a hydroponic experiment was carried out to investigate the response of white clover (Trifolium repens L.) stressed by 6PPD on physiology and metabolomics. The results indicated that the length of stem and root, as well as biomass were significantly reduced after 500 μg L-1 6PPD treatment. Photosynthetic performances including photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), transpiration rate (Tr) and chlorophyll content of leaves decreased in all treatments except 500 μg L-1 of 6PPD. The malondialdehyde (MDA) content in the shoot of white clover increased by 66.33 % when exposed to 500 μg L-1 of 6PPD compared to control group (CK). Hydrogen peroxide and superoxide anion presented a U-shape trend and began to increase at 500 μg L-1. Besides, peroxidase and catalase significantly decreased compared to CK after exposure to 500 μg L-1. Metabolic analysis of clover showed that 6PPD treatment induced changes in 10 metabolic pathways of white clover. Metabolites were significantly down-regulated after exposure to 500 μg L-1 in shoot, while significantly down-regulated in all treatment groups except 500 μg L-1 in root. These findings may provide a novel perspective for phytotoxicity assessment and phytoremediation of 6PPD.
Collapse
Affiliation(s)
- Jian-Xin Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Ye Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jie Hu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China
| | | | | | - Mukhin Vasilii Vasilevich
- Institute of Natural Sciences, M.K. Ammosov North-Eastern Federal University, Yakutsk 677000, Russia
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China.
| | - Zhong-Hua Tang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
3
|
Chen Q, Liu M, Mi W, Wan D, Song G, Huang W, Bi Y. Regulation Mechanism of Gibberellic Acid-3 for Astaxanthin Biosynthesis in Heterotrophic Growing Chromochloris zofingiensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25574-25585. [PMID: 39513753 DOI: 10.1021/acs.jafc.4c05296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Chromochloris zofingiensis has been proven as a potential resource for large-scale astaxanthin production, but little information on phytohormones for its growth and astaxanthin accumulation could be obtained. This study explored the impact of gibberellic acid-3 (GA3) on growth and astaxanthin biosynthesis in heterotrophic C. zofingiensis. After 6 days of cultivation with GA3, biomass and astaxanthin yields in 7.5 L fermenters reached 268.5 g·L-1 and 0.34 g·L-1, respectively, which were 6% and 89% higher than those in the control. GA3 changed transcription levels of genes linked to carbon metabolism, lipid metabolism, astaxanthin production, and ABC transporters. Genes related to astaxanthin biosynthesis, such as phytoene synthase (PSY), phytoene desaturase (PDS), beta-carotenoid hydroxylase (CHYb), and beta-carotenoid ketolase (BKT), were up-regulated under GA3 induction. The enhancement of carbon metabolism and lipid metabolism led to elevated consumption of substrates and generation of reducing power, thus facilitating astaxanthin biosynthesis. By using GA3 and arginine together, the astaxanthin yield increased to 0.39 g·L-1, which was 18% higher than that obtained under GA3 induction. It could be concluded that GA3 showed significant effects on astaxanthin biosynthesis. This research proposed novel feasible approaches to enhance astaxanthin production in heterotrophic C. zofingiensis.
Collapse
Affiliation(s)
- Qiaohong Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Mingmeng Liu
- School of Civil Engineering, Hubei Engineering University, Xiaogan 432000, China
| | - Wujuan Mi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Dong Wan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Gaofei Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Weichao Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yonghong Bi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
4
|
Shen L, Zhang L, Jin J, Jin Z, Li Z, Wu L, Cheng K, Xu D, Liu H. The phototoxicity of sulfamethoxazole stress on pakchoi cabbage (Brassica rapa var. chinensis) seedlings: From the perspective of photoreaction and omics analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175391. [PMID: 39122040 DOI: 10.1016/j.scitotenv.2024.175391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
The increasing use of antibiotics has attracted widespread attention to their environmental risks. However, the phototoxicity of sulfonamide antibiotics to plants remain unclear. In this study, the mechanism of the effect of sulfamethoxazole on photosynthesis of pakchoi cabbage (Brassica rapa var. chinensis) was investigated. The results showed that sulfamethoxazole inhibited the growth of pakchoi cabbage and produced photosynthetic toxicity. The growth inhibition rates increased with concentration, the root and shoot weight were 76.02 % and 47.04 % of the control, respectively, with stay-greens phenomenon in 4 mg·L-1 sulfamethoxazole treatment. Chlorophyll precursors (protoporphyrin IX (Proto IX), Mg-proto IX, and protochlorophyllide (Pchlide), 5-aminolevulinic acid (ALA), and porphobilinogen (PBG)) were 1.38-, 1.26-, 1.12-, 1.71-, and 0.96-fold of the control, respectively; photosynthetic pigments (chlorophyll a, chlorophyll b, and carotenoids) were 1.26-, 1.39-, and 1.03-fold of the control, respectively. Respiration rate was 271.42 % of the control, whereas the net photosynthetic rate was 50.50 % of the control. The maximum photochemical quantum yield of PSII (Fv/Fm), the actual photosynthetic efficiency (Y(II)), the quantum yield of non-regulated energy dissipation (Y(NO)), the apparent electron transfer efficiency of PSII (ETR) under actual light intensity were affected, and chloroplast swelling was observed. Proteomic analysis showed that photosynthesis-related pathways were significantly up-regulated, biological processes such as light response, carbohydrates, and reactive oxygen species were activated. Metabolomic analysis revealed that the tricarboxylic acid cycle (TCA cycle) and carbohydrate catabolism were stimulated significantly (p < 0.05), sugars and amino acids were increased to regulate and enhance the resilience of photosynthesis. While folate biosynthesis and ribosomal pathways were significantly down-regulated, the synthesis and translation processes of amino acids and nucleotides were inhibited.
Collapse
Affiliation(s)
- Luoqin Shen
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Liangyu Zhang
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Jiaojun Jin
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Ziting Jin
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Zhiheng Li
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Lidan Wu
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Kaiming Cheng
- School of Statistics and Mathematics, Collaborative Innovation Center of Statistical Data Engineering, Technology & Application, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Dongmei Xu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, Zhejiang Province, China
| | - Huijun Liu
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China.
| |
Collapse
|
5
|
Feng P, Wu J, Cui H, Huang X, Wang C, Wang C, Li X, Duan W. Effects of environmental concentrations of sulfamethoxazole on Skeletonema costatum and Phaeodactylum tricornutum: Insights into growth, oxidative stress, biochemical components, ultrastructure, and transcriptome. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116851. [PMID: 39128452 DOI: 10.1016/j.ecoenv.2024.116851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
This study aimed to assess the ecological risks posed by sulfamethoxazole (SMX) at environmentally relevant concentrations. Specifically, its effects on the growth and biochemical components (total protein, total lipid, and total carbohydrate) of two marine microalgae species, namely Skeletonema costatum (S. costatum) and Phaeodactylum tricornutum (P. tricornutum), were investigated. Our findings revealed that concentrations of SMX below 150 ng/L stimulated the growth of both microalgae. Conversely, at higher concentrations, SMX inhibited their growth while promoting the synthesis of photosynthetic pigments, total protein, total lipid, and total carbohydrate (P < 0.05). Transmission electron microscope (TEM) observations demonstrated significant alterations in the ultrastructure of algal cells exposed to SMX, including nuclear marginalization, increased chloroplast volume, and heightened vacuolation. In addition, when SMX was lower than 250 ng/L, there was no oxidative damage in two microalgae cells. However, when SMX was higher than 250 ng/L, the antioxidant defense system of algal cells was activated to varying degrees, and the level of malondialdehyde (MDA) increased, indicating that algae cells were damaged by oxidation. From the molecular level, environmental concentration of SMX can induce microalgae cells to produce more energy substances, but there are almost no other adverse effects, indicating that the low level of SMX at the actual exposure level was unlikely to threaten P. tricornutum, but a higher concentration can significantly reduce its genetic products, which can affect the changes of its cell structure and damage P. tricornutum to some extent. Therefore, environmental concentration of SMX still has certain potential risks to microalgae. These outcomes improved current understanding of the potential ecological risks associated with SMX in marine environments.
Collapse
Affiliation(s)
- Pengfei Feng
- Ocean college of Hebei Agricultural University, Qinhuangdao, Hebei Province 066003, PR China; Hebei Key Laboratory of Nutrition Regulation and Disease Control for Aquaculture, Qinhuangdao, Hebei Province, 066003, PR China
| | - Jiangyue Wu
- National Marine Hazard Mitigation Service, Ministry of Natural Resource of the People's Republic of China, Beijing, 100194, PR China
| | - Hongwu Cui
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong Province 266071, PR China
| | - Xiao Huang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu Province 210044, PR China
| | - Chen Wang
- Ocean college of Hebei Agricultural University, Qinhuangdao, Hebei Province 066003, PR China; Hebei Key Laboratory of Nutrition Regulation and Disease Control for Aquaculture, Qinhuangdao, Hebei Province, 066003, PR China
| | - Chenyu Wang
- Ocean college of Hebei Agricultural University, Qinhuangdao, Hebei Province 066003, PR China; Hebei Key Laboratory of Nutrition Regulation and Disease Control for Aquaculture, Qinhuangdao, Hebei Province, 066003, PR China
| | - Xingyu Li
- Ocean college of Hebei Agricultural University, Qinhuangdao, Hebei Province 066003, PR China; Hebei Key Laboratory of Nutrition Regulation and Disease Control for Aquaculture, Qinhuangdao, Hebei Province, 066003, PR China
| | - Weiyan Duan
- Ocean college of Hebei Agricultural University, Qinhuangdao, Hebei Province 066003, PR China; Hebei Key Laboratory of Nutrition Regulation and Disease Control for Aquaculture, Qinhuangdao, Hebei Province, 066003, PR China.
| |
Collapse
|
6
|
Azarin K, Usatov A, Minkina T, Duplii N, Fedorenko A, Plotnikov A, Mandzhieva S, Kumar R, Yong JWH, Sehar S, Rajput VD. Evaluating the phytotoxicological effects of bulk and nano forms of zinc oxide on cellular respiration-related indices and differential gene expression in Hordeum vulgare L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116670. [PMID: 38981388 DOI: 10.1016/j.ecoenv.2024.116670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024]
Abstract
The increasing use of nanoparticles is driving the growth of research on their effects on living organisms. However, studies on the effects of nanoparticles on cellular respiration are still limited. The remodeling of cellular-respiration-related indices in plants induced by zinc oxide nanoparticles (nnZnO) and its bulk form (blZnO) was investigated for the first time. For this purpose, barley (Hordeum vulgare L.) seedlings were grown hydroponically for one week with the addition of test compounds at concentrations of 0, 0.3, 2, and 10 mg mL-1. The results showed that a low concentration (0.3 mg mL-1) of blZnO did not cause significant changes in the respiration efficiency, ATP content, and total reactive oxygen species (ROS) content in leaf tissues. Moreover, a dose of 0.3 mg mL-1 nnZnO increased respiration efficiency in both leaves (17 %) and roots (38 %). Under the influence of blZnO and nnZnO at medium (2 mg mL-1) and high (10 mg mL-1) concentrations, a dose-dependent decrease in respiration efficiency from 28 % to 87 % was observed. Moreover, the negative effect was greater under the influence of nnZnO. The gene transcription of the subunits of the mitochondria electron transport chain (ETC) changed mainly only under the influence of nnZnO in high concentration. Expression of the ATPase subunit gene, atp1, increased slightly (by 36 %) in leaf tissue under the influence of medium and high concentrations of test compounds, whereas in the root tissues, the atp1 mRNA level decreased significantly (1.6-2.9 times) in all treatments. A dramatic decrease (1.5-2.4 times) in ATP content was also detected in the roots. Against the background of overexpression of the AOX1d1 gene, an isoform of alternative oxidase (AOX), the total ROS content in leaves decreased (with the exception of 10 mg mL-1 nnZnO). However, in the roots, where the pressure of the stress factor is higher, there was a significant increase in ROS levels, with a maximum six-fold increase under 10 mg mL-1 nnZnO. A significant decrease in transcript levels of the pentose phosphate pathway and glycolytic enzymes was also shown in the root tissues compared to leaves. Thus, the disruption of oxidative phosphorylation leads to a decrease in ATP synthesis and an increase in ROS production; concomitantly reducing the efficiency of cellular respiration.
Collapse
Affiliation(s)
- Kirill Azarin
- Southern Federal University, Rostov-on-Don 344090, the Russian Federation
| | - Alexander Usatov
- Southern Federal University, Rostov-on-Don 344090, the Russian Federation
| | - Tatiana Minkina
- Southern Federal University, Rostov-on-Don 344090, the Russian Federation
| | - Nadezhda Duplii
- Southern Federal University, Rostov-on-Don 344090, the Russian Federation
| | - Aleksei Fedorenko
- Southern Federal University, Rostov-on-Don 344090, the Russian Federation
| | - Andrey Plotnikov
- Southern Federal University, Rostov-on-Don 344090, the Russian Federation
| | - Saglara Mandzhieva
- Southern Federal University, Rostov-on-Don 344090, the Russian Federation
| | - Rahul Kumar
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh 174103, India
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp 23456, Sweden.
| | - Shafaque Sehar
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Vishnu D Rajput
- Southern Federal University, Rostov-on-Don 344090, the Russian Federation.
| |
Collapse
|
7
|
Shen A, Qian A, Ma S, Xiang S, Ouyang L, Shao L. Transcriptome analysis of the bloom-forming dinoflagellate Prorocentrum donghaiense exposed to Ginkgo biloba leaf extract, with an emphasis on photosynthesis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:18579-18592. [PMID: 38351353 DOI: 10.1007/s11356-024-32409-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/06/2024] [Indexed: 03/09/2024]
Abstract
Ginkgo biloba leaf extract (GBE) can effectively treat bloom-forming freshwater algae. However, there is limited information about the underlying suppression mechanism of the marine bloom-forming Prorocentrum donghaiense-the most dominant algal bloom species in the East China Sea. We investigated the effect of GBE on P. donghaiense in terms of its response to photosynthesis at the molecular/omic level. In total, 93,743 unigenes were annotated using six functional databases. Furthermore, 67,203 differentially expressed genes (DEGs) were identified in algae treated with 1.8 g∙L-1 GBE. Among these DEGs, we identified the genes involved in photosynthesis. PsbA, PsbB and PsbD in photosystem II, PsaA in photosystem I, and PetB and PetD in the cytochrome b6/f complex were downregulated. Other related genes, such as PsaC, PsaE, and PsaF in photosystem I; PetA in the cytochrome b6/f complex; and atpA, atpD, atpH, atpG, and atpE in the F-type H+-ATPase were upregulated. These results suggest that the structure and activity of the complexes were destroyed by GBE, thereby inhibiting the electron flow between the primary and secondary quinone electron acceptors, primary quinone electron acceptor, and oxygen-evolving complex in the PSII complex, and interrupting the electron flow between PSII and PSI, ultimately leading to a decline in algal cell photosynthesis. These findings provide a basis for understanding the molecular mechanisms underlying P. donghaiense exposure to GBE and a theoretical basis for the prevention and control of harmful algal blooms.
Collapse
Affiliation(s)
- Anglu Shen
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, People's Republic of China.
| | - Aixue Qian
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Shengwei Ma
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, People's Republic of China
| | - Shu Xiang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Longling Ouyang
- Key Laboratory of East China Sea & Oceanic Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
- East China Sea Fisheries Research Institute, Shanghai, 200090, China
| | - Liu Shao
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| |
Collapse
|
8
|
Pu W, Chu X, Xu S, Dai X, Xiao L, Cui T, Huang B, Hu G, Zhang C. Molybdenum exposure induces inflammatory response via the regulatory effects of lncRNA-00072124/miR-308/OSMR crosstalk on JAK/STAT axis in duck kidneys. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169374. [PMID: 38104808 DOI: 10.1016/j.scitotenv.2023.169374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Molybdenum (Mo) is an essential nutrient in living organisms. Although numerous researchers have noticed the health damage caused by excessive Mo, the underlying mechanism of excessive Mo-induced nephrotoxicity remains poorly understood. A gene crosstalk called competitive endogenous RNAs (ceRNAs) can interpret many regulatory mechanisms molecularly. But there are few researches have tried to explain the damage mechanism of excess Mo to organisms through ceRNAs network. To clarify this, the study explored the changes in lncRNAs and miRNAs expression profiles in the kidney of ducks exposed to excess Mo for 16 weeks. The sequencing results showed that Mo exposure caused differential expression of 144 lncRNAs and 14 miRNAs. The occurrence of inflammation through the JAK/STAT axis was observed and the lncRNA-00072124/miR-308/OSMR axis was verified by a double luciferase reporter assay. Overexpression of miR-308 and RNA interference of OSMR reduced Mo-induced inflammatory factors, while miR-308 knockdown showed the opposite effect. Simultaneously, lncRNA-00072124 affected OSMR function as a ceRNA. Taken together, these results concluded that Mo exposure activated the JAK/STAT axis and induced inflammation mediated by the lncRNA-00072124/miR-308/OSMR crosstalk. The results might provide new views for revealing the toxic effects of excess Mo in duck kidneys.
Collapse
Affiliation(s)
- Wenjing Pu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Xuesheng Chu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Shiwen Xu
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Li Xiao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Ting Cui
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Bingyan Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, PR China.
| |
Collapse
|
9
|
Wang L, Yang M, Guo C, Jiang Y, Zhu Z, Hu C, Zhang X. Toxicity of tigecycline on the freshwater microalga Scenedesmus obliquus: Photosynthetic and transcriptional responses. CHEMOSPHERE 2024; 349:140885. [PMID: 38061560 DOI: 10.1016/j.chemosphere.2023.140885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
Tigecycline (TGC) is a new tetracycline antibiotic medication against multidrug-resistant bacteria. However, the toxicity of TGC to microalgae remains largely unknown. In this study, the toxicity of TGC on Scenedesmus obliquus was examined, focusing on changes in algal growth, photosynthetic activity, and transcriptome. According to an acute toxicity test, the IC10 and IC50 values were 0.72 mg/L and 4.15 mg/L, respectively. Analyses of photosynthetic efficiency and related parameters, such as light absorption, energy capture, and electron transport, identified a 35% perturbation in the IC50 group, while the IC10 group remained largely unaffected. Transcriptomic analysis showed that in the IC10 and IC50 treatment groups, there were 874 differentially expressed genes (DEGs) (220 upregulated and 654 downregulated) and 4289 DEGs (2660 upregulated and 1629 downregulated), respectively. Gene Ontology enrichment analysis showed that TGC treatment markedly affected photosynthesis, electron transport, and chloroplast functions. In the IC50 group, a clear upregulation of genes related to photosynthesis and chloroplast functions was observed, which could be an adaptive stress response. In the IC10 group, significant downregulation of DEGs involved in ribosomal pathways and peptide biosynthesis processes was observed. Kyoto Encyclopedia of Gene and Genomes enrichment analysis showed that treatment with TGC also disrupted energy production, protein synthesis, and metabolic processes in S. obliquus. Significant downregulation of key proteins related to Photosystem II was observed under the IC10 TGC treatment. Conversely, IC50 TGC treatment resulted in substantial upregulation across a broad array of photosystem-related proteins from both Photosystems II and I. IC10 and IC50 TGC treatments differentially influenced proteins involved in the photosynthetic electron transport process. This study emphasizes the potential risks of TGC pollution to microalgae, which contributes to a better understanding of the effects of antibiotic contamination in aquatic ecosystems.
Collapse
Affiliation(s)
- Liyan Wang
- Affiliated Hospital of Jiaxing University, Jiaxing 314001, China
| | - Maoxian Yang
- Affiliated Hospital of Jiaxing University, Jiaxing 314001, China
| | - Canyang Guo
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Yeqiu Jiang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Zhihong Zhu
- Affiliated Hospital of Jiaxing University, Jiaxing 314001, China
| | - Changwei Hu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Xiaoping Zhang
- Affiliated Hospital of Jiaxing University, Jiaxing 314001, China.
| |
Collapse
|
10
|
Iqbal B, Zhao X, Khan KY, Javed Q, Nazar M, Khan I, Zhao X, Li G, Du D. Microplastics meet invasive plants: Unraveling the ecological hazards to agroecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167756. [PMID: 37832681 DOI: 10.1016/j.scitotenv.2023.167756] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/30/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
The objective of this study was to assess the combined impact of environmental microplastic pollution and biological invasion which represent critical global eco-environmental challenges. The invasion of Solidago canadensis L. and soil microplastic contamination in the agroecosystem pose severe hazards to soil and plant ecology and human health. Oryza sativa L. (rice) was examined after individual and combined exposure to Solidago canadensis L. invasion (SI) and soil polyethylene microplastic contamination (MPc). Comparing the individual and combination treatments to the control, leaf biomass decreased, with varying changes in carbon, nitrogen, and phosphorus. Antioxidant enzyme activity and reactive oxygen species levels were significantly reduced following SI exposure and increased following the combined treatment (SI × MP). In contrast, ascorbate peroxidase and catalase activities were reduced after the combined treatment. Due to the confluence of various abiotic stressors, the combined treatment had a higher impact on leaf metabolites than the singular SI and MPc treatments. However, in comparison, the combined treatment significantly influenced the metabolic profile. In conclusion, the interaction between SI and MPc resulted in significant metabolic alterations. These changes were characterized by shifts in metabolite pools influenced by antioxidant enzyme activities and nutrient content, ultimately enhancing defense mechanisms within rice crops. Consequently, these stressors threaten the food safety, sustainability, and agricultural output of crops. The co-exposure of invasive plants and microplastics sheds light on the bio-ecological risks associated with microplastics in staple foods and offers valuable insights into the phytotoxicity of invasive plants in the presence of polyethylene microplastics.
Collapse
Affiliation(s)
- Babar Iqbal
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, People's Republic of China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
| | - Xiaoxun Zhao
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Kiran Yasmin Khan
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Qaiser Javed
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Mudasir Nazar
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Ismail Khan
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Xin Zhao
- Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Guanlin Li
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, People's Republic of China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China.
| | - Daolin Du
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| |
Collapse
|
11
|
Shen L, Zhang P, Lin Y, Huang X, Zhang S, Li Z, Fang Z, Wen Y, Liu H. Polystyrene microplastic attenuated the toxic effects of florfenicol on rice (Oryza sativa L.) seedlings in hydroponics: From the perspective of oxidative response, phototoxicity and molecular metabolism. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132176. [PMID: 37523959 DOI: 10.1016/j.jhazmat.2023.132176] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/16/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023]
Abstract
Antibiotics and microplastics (MPs) are two emerging pollutants in agroecosystems, however the effects of co-exposure to antibiotics and MPs remain unclear. The toxicity of florfenicol (FF) and polystyrene microplastics (PS-MPs) on rice seedlings was investigated. FF and PS-MPs caused colloidal agglomeration, which changed the environmental behavior of FF. FF inhibited rice growth and altered antioxidant enzyme (superoxide dismutase, peroxidase, and catalase) activities, leading to membrane lipid peroxidation; impaired photosynthetic systems, decreased photosynthetic pigments (Chlorophyll a, Chlorophyll b, and carotene), chlorophyll precursors (Proto IX, Mg-Proto IX, and Pchlide), photosynthetic and respiratory rates. The key photosynthesis related genes (PsaA, PsaB, PsbA, PsbB, PsbC, and PsbD) were significantly down-regulated. The ultrastructure of mesophyll cells was destroyed with chloroplast swelling, membrane surface blurring, irregular thylakoid lamellar structure, and number of peroxisomes increased. PS-MPs mitigated FF toxicity, and the IBR index values showed that 10 mg∙L-1 PS-MPs were more effective. Metabolomic analysis revealed that the abundance of metabolites and metabolic pathways were altered by FF, was greater than the combined "MPs-FF" contamination. The metabolism of amino acids, sugars, and organic acids were severely interfered. Among these, 15 metabolic pathways were significantly altered, with the most significant effects on phenylalanine metabolism and the citric acid cycle (p < 0.05).
Collapse
Affiliation(s)
- Luoqin Shen
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Ping Zhang
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Yanyao Lin
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Xinting Huang
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Siyi Zhang
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Zhiheng Li
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Zhiguo Fang
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Yuezhong Wen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Huijun Liu
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China.
| |
Collapse
|
12
|
Yu X, Xing H, Sun J, Du X, Lu G, Zhu L. New insight into phytometabolism and phytotoxicity mechanism of widespread plasticizer di (2-ethylhexyl) phthalate in rice plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163254. [PMID: 37019237 DOI: 10.1016/j.scitotenv.2023.163254] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 05/27/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) as widely utilized plasticizer has aroused increasing concerns since its endocrine disrupting effects and continuous accumulation in biota. To date, the interaction mechanism between DEHP and rice plants has not been clearly illustrated at molecular level. Here, we investigated biological transformation and response of rice plants (Oryza sativa L.) to DEHP at realistic exposure concentrations. Nontargeted screening by UPLC-QTOF-MS was used to verify 21 transformation products derived from phase I metabolism (hydroxylation and hydrolysis) and phase II metabolism (conjugation with amino acids, glutathione, and carbohydrates) in rice. MEHHP-asp, MEHHP-tyr, MEHHP-ala, MECPP-tyr and MEOHP-tyr as the conjugation products with amino acids are observed for the first time. Transcriptomics analyses unraveled that DEHP exposure had strong negative effects on genes associated with antioxidative components synthesis, DNA binding, nucleotide excision repair, intracellular homeostasis, and anabolism. Untargeted metabolomics revealed that metabolic network reprogramming in rice roots was induced by DEHP, including nucleotide metabolism, carbohydrate metabolism, amino acid synthesis, lipid metabolism, synthesis of antioxidant component, organic acid metabolism and phenylpropanoid biosynthesis. The integrated analyses of interaction between differentially expressed genes (DEGs) and differentially expressed metabolites (DEMs) endorsed that metabolic network regulated by DEGs was significantly interfered by DEHP, resulting in cell dysfunction of roots and visible growth inhibition. Overall, these finding generated fresh perspective for crops security caused by plasticizer pollution and enhanced the public focus on dietary risk.
Collapse
Affiliation(s)
- Xiaolong Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Huanhuan Xing
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China; School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China.
| | - Xiaodong Du
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
13
|
Machuca-Sepúlveda J, Miranda J, Lefin N, Pedroso A, Beltrán JF, Farias JG. Current Status of Omics in Biological Quality Elements for Freshwater Biomonitoring. BIOLOGY 2023; 12:923. [PMID: 37508354 PMCID: PMC10376755 DOI: 10.3390/biology12070923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 07/30/2023]
Abstract
Freshwater ecosystems have been experiencing various forms of threats, mainly since the last century. The severity of this adverse scenario presents unprecedented challenges to human health, water supply, agriculture, forestry, ecological systems, and biodiversity, among other areas. Despite the progress made in various biomonitoring techniques tailored to specific countries and biotic communities, significant constraints exist, particularly in assessing and quantifying biodiversity and its interplay with detrimental factors. Incorporating modern techniques into biomonitoring methodologies presents a challenging topic with multiple perspectives and assertions. This review aims to present a comprehensive overview of the contemporary advancements in freshwater biomonitoring, specifically by utilizing omics methodologies such as genomics, metagenomics, transcriptomics, proteomics, metabolomics, and multi-omics. The present study aims to elucidate the rationale behind the imperative need for modernization in this field. This will be achieved by presenting case studies, examining the diverse range of organisms that have been studied, and evaluating the potential benefits and drawbacks associated with the utilization of these methodologies. The utilization of advanced high-throughput bioinformatics techniques represents a sophisticated approach that necessitates a significant departure from the conventional practices of contemporary freshwater biomonitoring. The significant contributions of omics techniques in the context of biological quality elements (BQEs) and their interpretations in ecological problems are crucial for biomonitoring programs. Such contributions are primarily attributed to the previously overlooked identification of interactions between different levels of biological organization and their responses, isolated and combined, to specific critical conditions.
Collapse
Affiliation(s)
- Jorge Machuca-Sepúlveda
- Doctoral Program on Natural Resources Sciences, Universidad de La Frontera, Avenida Francisco Salazar, 01145, P.O. Box 54-D, Temuco 4780000, Chile
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Javiera Miranda
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Nicolás Lefin
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Alejandro Pedroso
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Jorge F Beltrán
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Jorge G Farias
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
14
|
Awashra M, Młynarz P. The toxicity of nanoparticles and their interaction with cells: an in vitro metabolomic perspective. NANOSCALE ADVANCES 2023; 5:2674-2723. [PMID: 37205285 PMCID: PMC10186990 DOI: 10.1039/d2na00534d] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/27/2023] [Indexed: 05/21/2023]
Abstract
Nowadays, nanomaterials (NMs) are widely present in daily life due to their significant benefits, as demonstrated by their application in many fields such as biomedicine, engineering, food, cosmetics, sensing, and energy. However, the increasing production of NMs multiplies the chances of their release into the surrounding environment, making human exposure to NMs inevitable. Currently, nanotoxicology is a crucial field, which focuses on studying the toxicity of NMs. The toxicity or effects of nanoparticles (NPs) on the environment and humans can be preliminary assessed in vitro using cell models. However, the conventional cytotoxicity assays, such as the MTT assay, have some drawbacks including the possibility of interference with the studied NPs. Therefore, it is necessary to employ more advanced techniques that provide high throughput analysis and avoid interferences. In this case, metabolomics is one of the most powerful bioanalytical strategies to assess the toxicity of different materials. By measuring the metabolic change upon the introduction of a stimulus, this technique can reveal the molecular information of the toxicity induced by NPs. This provides the opportunity to design novel and efficient nanodrugs and minimizes the risks of NPs used in industry and other fields. Initially, this review summarizes the ways that NPs and cells interact and the NP parameters that play a role in this interaction, and then the assessment of these interactions using conventional assays and the challenges encountered are discussed. Subsequently, in the main part, we introduce the recent studies employing metabolomics for the assessment of these interactions in vitro.
Collapse
Affiliation(s)
- Mohammad Awashra
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University 02150 Espoo Finland
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology Wroclaw Poland
| | - Piotr Młynarz
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology Wroclaw Poland
| |
Collapse
|
15
|
Lu T, Zhang T, Yang W, Yang B, Cao J, Yang Y, Li M. Molecular Toxicity Mechanism Induced by the Antibacterial Agent Triclosan in Freshwater Euglena gracilis Based on the Transcriptome. TOXICS 2023; 11:toxics11050414. [PMID: 37235229 DOI: 10.3390/toxics11050414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023]
Abstract
Triclosan (TCS), a commonly used antibacterial preservative, has been demonstrated to have high toxicological potential and adversely affects the water bodies. Since algae are one of the most significant primary producers on the planet, understanding the toxicological processes of TCS is critical for determining its risk in aquatic ecosystems and managing the water environment. The physiological and transcriptome changes in Euglena gracilis were studied in this study after 7 days of TCS treatment. A distinct inhibition ratio for the photosynthetic pigment content in E. gracilis was observed from 2.64% to 37.42% at 0.3-1.2 mg/L, with TCS inhibiting photosynthesis and growth of the algae by up to 38.62%. Superoxide dismutase and glutathione reductase significantly changed after exposure to TCS, compared to the control, indicating that the cellular antioxidant defense responses were induced. Based on transcriptomics, the differentially expressed genes were mainly enriched in biological processes involved in metabolism pathways and microbial metabolism in diverse environments. Integrating transcriptomics and biochemical indicators found that changed reactive oxygen species and antioxidant enzyme activities stimulating algal cell damage and the inhibition of metabolic pathways controlled by the down-regulation of differentially expressed genes were the main toxic mechanisms of TCS exposure to E. gracilis. These findings establish the groundwork for future research into the molecular toxicity to microalgae induced by aquatic pollutants, as well as provide fundamental data and recommendations for TCS ecological risk assessment.
Collapse
Affiliation(s)
- Ting Lu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Tong Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Weishu Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Bin Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Jing Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yang Yang
- School of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
16
|
Feng P, Zhao S, Zhang Y, Li E. A review of probiotics in the treatment of autism spectrum disorders: Perspectives from the gut–brain axis. Front Microbiol 2023; 14:1123462. [PMID: 37007501 PMCID: PMC10060862 DOI: 10.3389/fmicb.2023.1123462] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/07/2023] [Indexed: 03/18/2023] Open
Abstract
Autism spectrum disorders (ASD) are a class of neurodevelopmental conditions with a large societal impact. Despite existing evidence suggesting a link between ASD pathogenesis and gut–brain axis dysregulation, there is no systematic review of the treatment of probiotics on ASD and its associated gastrointestinal abnormalities based on the gut–brain axis. Therefore, we performed an analysis for ASD based on preclinical and clinical research to give a comprehensive synthesis of published evidence of a potential mechanism for ASD. On the one hand, this review aims to elucidate the link between gastrointestinal abnormalities and ASD. Accordingly, we discuss gut microbiota dysbiosis regarding gut–brain axis dysfunction. On the other hand, this review suggests that probiotic administration to regulate the gut–brain axis might improve gastrointestinal symptoms, restore ASD-related behavioral symptoms, restore gut microbiota composition, reduce inflammation, and restore intestinal barrier function in human and animal models. This review suggests that targeting the microbiota through agents such as probiotics may represent an approach for treating subsets of individuals with ASD.
Collapse
Affiliation(s)
- Pengya Feng
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancer of Henan Province, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuai Zhao
- College of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Yangyang Zhang
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Enyao Li
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Enyao Li,
| |
Collapse
|
17
|
Sun J, Li X, Qu Z, Wang H, Cheng Y, Dong S, Zhao H. Comparative proteomic analysis reveals novel insights into the continuous cropping induced response in Scrophularia ningpoensis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1832-1845. [PMID: 36271763 DOI: 10.1002/jsfa.12284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/23/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Scrophularia ningpoensis is a well-known medicinal crop. Continuous cropping seriously affects the yield and quality, but little is known about the influence of continuous cropping on metabolic pathways. In this study, the difference in protein abundance between continuous cropping and non-continuous cropping of S. ningpoensis roots was studied by proteomics, and the molecular mechanism that protects S. ningpoensis against continuous cropping was explored. RESULTS The results suggested that continuous cropping in S, ningpoensis altered the expression of proteins related to starch and sucrose metabolism, glycolysis/gluconeogenesis, pentose phosphate pathway, citric acid cycle, phenylalanine, tyrosine and tryptophan biosynthesis, phenylpropanoid biosynthesis, terpenoid backbone biosynthesis, monoterpenoid biosynthesis, sesquiterpenoid and triterpenoid biosynthesis, and steroid biosynthesis. Among these processes, the most affected were phenylpropanoid biosynthesis and starch and sucrose metabolism, which may be important for continuous cropping resistance. CONCLUSION The effect of continuous cropping on S. ningpoensis was demonstrated at the proteome level in this work, and identified candidate proteins that may cause continuous cropping reactions. The paper provides the theoretical foundation and scientific reference for enhancing the continuous cropping resistance of S. ningpoensis. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiachen Sun
- Tianjin Key Laboratory of Food and Biotechnology, State Experimental and Training Centre of Food and Drug, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Xuejiao Li
- Endocrine and Metabolic Disease Center, Medical Key Laboratory of Hereditary Rare Diseases of Henan, Luoyang Sub-Center of National Clinical Research Center for Metabolic Diseases, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Zhuo Qu
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Huairui Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Yao Cheng
- Tianjin Key Laboratory of Food and Biotechnology, State Experimental and Training Centre of Food and Drug, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Shengjie Dong
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Faculty of Education and Sports, Guangdong Baiyun University, Guangzhou, China
| | - Hui Zhao
- Tianjin Key Laboratory of Food and Biotechnology, State Experimental and Training Centre of Food and Drug, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| |
Collapse
|
18
|
Cao M, Wang F, Zhou B, Chen H, Yuan R, Ma S, Geng H, Li J, Lv W, Wang Y, Xing B. Nanoparticles and antibiotics stress proliferated antibiotic resistance genes in microalgae-bacteria symbiotic systems. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130201. [PMID: 36283215 DOI: 10.1016/j.jhazmat.2022.130201] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The comprehensive effect of exogenous pollutants on the dispersal and abundance of antibiotic-resistance genes (ARGs) in the phycosphere, bacterial community and algae-bacteria interaction remains poorly understood. We investigated community structure and abundance of ARGs in free-living (FL) and particle-attached (PA) bacteria in the phycosphere under nanoparticles (silver nanoparticles (AgNPs) and hematite nanoparticles (HemNPs)) and antibiotics (tetracycline and sulfadiazine) stress using high-throughput sequencing and real-time quantitative PCR. Meanwhile, the intrinsic connection of algae-bacteria interaction was explored by transcriptome and metabolome. The results showed that the relative abundance of sulfonamide and tetracycline ARGs in PA and FL bacteria increased 103-129 % and 112-134 %, respectively, under combined stress of nanoparticles and antibiotics. Antibiotics have a greater effect on ARGs than nanoparticles at environmentally relevant concentrations. Proteobacteria, Firmicutes, and Bacteroidetes, as the primary potential hosts of ARGs, were the dominant phyla. Lifestyle, i.e., PA and FL, significantly determined the abundance of ARGs and bacterial communities. Moreover, algae can provide bacteria with nutrients (carbohydrates and amino acids), and can also produce antibacterial substances (fatty acids). This algal-bacterial interaction may indirectly affect the distribution and abundance of ARGs. These findings provide new insights into the distribution and dispersal of ARGs in microalgae-bacteria symbiotic systems.
Collapse
Affiliation(s)
- Manman Cao
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, 100875 Beijing, China; School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Fei Wang
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, 100875 Beijing, China.
| | - Beihai Zhou
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Huilun Chen
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Rongfang Yuan
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Shuai Ma
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Huanhuan Geng
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Junhong Li
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Wenxiao Lv
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Yan Wang
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
19
|
Du C, Sang W, Xu C, Jiang Z, Wang J, Fang Y, Zhu C, Wizi J, Akram MA, Ni L, Li S. Integrated transcriptomic and metabolomic analysis of Microcystis aeruginosa exposed to artemisinin sustained-release microspheres. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130114. [PMID: 36368067 DOI: 10.1016/j.jhazmat.2022.130114] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/24/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Artemisinin sustained-release microspheres (ASMs) have been shown to inhibit Microcystis aeruginosa (M. aeruginosa) blooms. Previous studies have focused on inhibitory mechanism of ASMs on the physiological level of M. aeruginosa, but the algal inhibitory mechanism of ASMs has not been comprehensively and profoundly revealed. The study proposed to reveal the toxicity mechanism of ASMs on M. aeruginosa based on transcriptomics and metabolomics. After exposure to 0.2 g·L-1 ASMs for 7 days, M. aeruginosa biomass was significantly inhibited, with an inhibition rate (IR) of 47 % on day 7. Transcriptomic and metabolomic results showed that: (1) 478 differentially expressed genes (DEGs) and 251 differential metabolites (DMs) were obtained; (2) ASMs inhibited photosynthesis by blocking photosynthetic pigment synthesis, destroying photoreaction centers and photosynthetic carbon reactions; (3) ASMs reduced L-glutamic acid content and blocked glutathione (GSH) synthesis, leading to an imbalance in the antioxidant system; (4) ASM disrupted nitrogen metabolism and the hindered synthesis of various amino acids; (5) ASMs inhibited glyoxylate cycle and TCA cycle. This study provides an important prerequisite for the practical application of ASMs and a new perspective for the management of harmful algal blooms (HABs).
Collapse
Affiliation(s)
- Cunhao Du
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 210098 Nanjing, China
| | - Wenlu Sang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 210098 Nanjing, China
| | - Chu Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 210098 Nanjing, China
| | - Zhiyun Jiang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 210098 Nanjing, China
| | - Jiajia Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 210098 Nanjing, China
| | - Yuanyi Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 210098 Nanjing, China
| | - Chengjie Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 210098 Nanjing, China
| | - Jakpa Wizi
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 210098 Nanjing, China
| | - Muhammad Asif Akram
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 210098 Nanjing, China
| | - Lixiao Ni
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 210098 Nanjing, China.
| | - Shiyin Li
- School of Environment, Nanjing Normal University, 210023 Nanjing, China.
| |
Collapse
|
20
|
Zhang Y, Zhao J, Sa N, Huang C, Yu W, Ma T, Yang H, Ma F, Sun S, Tang C, Sang W. Multi-omics analysis reveals copper-induced growth inhibition mechanisms of earthworm (Eisenia fetida). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120862. [PMID: 36549452 DOI: 10.1016/j.envpol.2022.120862] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/19/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Exposure to high concentrations of copper can cause toxic effects on the growth and development of organisms, but the relevant toxic mechanisms are far from fully understood. This study investigated the changes of metabolites, genes, and gut microorganisms in earthworms (Eisenia fetida) exposed to 0 (control), 67.58 (low), 168.96 (medium), and 337.92 (high) mg/kg of Cu in soil for 60 days. Differentially expressed genes (DEGs) and differential metabolites (DMs) at the low-, medium-, and high-level Cu exposure groups were identified and introduced into Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Integrated metabolomic and transcriptomic analysis revealed that amino acid metabolism, lipid metabolism, and carbohydrate metabolism are the major metabolic pathways disturbed by Cu exposure. Furthermore, Cu exposure significantly decreased the diversity of the intestinal bacterial community and affected the relative abundance (increased or decreased) of intestinal colonizing bacteria. This resulted in high energy expenditure, inhibited nutrient absorption and fatty acid synthesis, and weakened antioxidant and detoxification abilities, ultimately inhibiting the growth of E. fetida. These findings offer important clues and evidence for understanding the mechanism of Cu-induced growth and development toxicity in E. fetida and provide further data for risk assessment in terrestrial ecosystems.
Collapse
Affiliation(s)
- Yanliang Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100083, China
| | - Jinqi Zhao
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100083, China
| | - Na Sa
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100083, China
| | - Chenyu Huang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100083, China
| | - Wenyu Yu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100083, China
| | - Tianxiao Ma
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100083, China
| | - Hongjun Yang
- Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, Shandong Province, 256600, China
| | - Fang Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Siqi Sun
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | | | - Weiguo Sang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100083, China.
| |
Collapse
|
21
|
Li M, Chang M, Li M, An Z, Zhang C, Liu J, He M. Ozone mechanism, kinetics, and toxicity studies of halophenols: Theoretical calculation combined with toxicity experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160101. [PMID: 36370799 DOI: 10.1016/j.scitotenv.2022.160101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Aromatic disinfection by-products (DBPs), which are generally more toxic than aliphatic DBPs, have attracted increasing attention. The toxicity of 13 typical halophenols on Scenedesmus obliquus was experimentally investigated, and the ozonation mechanism and kinetics of representative halophenols were further studied by quantum chemical calculations. The results showed that the EC50 values of halophenols ranged from 2.74 to 60.23 mg/L, and their toxicity ranked as follows: di-halogenated phenols > mono-halogenated phenols, mixed halogen-substituted phenols > single halogen-substituted phenols, and iodophenols > bromophenols > chlorophenols. The toxicity of halophenols was well described by the electronegativity index (ω) as lg(EC50)-1 = 6.228ω - 3.869, indicating halophenols capturing electrons as their potential toxicity mechanism. The reactions of O3 with halophenolate anions were dominated by three mechanisms: 1,3-dipolar cycloaddition, oxygen addition, and single electron transfer. The kinetic calculation indicated that O3 oxidized aqueous halophenols by reacting with halophenolate anions with the reaction rate constants as high as (0.91-3.47) × 1010 M-1 s-1. The number of halogen substituents affected the kO3, cal values of halophenolate anions, which are in the order of 2,4-dihalophenolate anions >4-halophenolate anions > 2,4,6-trihalophenolate anions. During the ozonation of 2,4,6-tribromophenol (246TBP), the toxic products (dimers and brominated benzoquinones) could be synergistically degraded by O3 and HO•. Thus, ozonation is feasible as a strategy to degrade aromatic DBPs.
Collapse
Affiliation(s)
- Mingxue Li
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Mengjie Chang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Mingyang Li
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Zexiu An
- Environment Research Institute, Shandong University, Qingdao 266237, PR China; College of Plant Protection, Hebei Agricultural University, Baoding 071000, PR China
| | - Chao Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China.
| | - Jian Liu
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
22
|
He J, Wang ZZ, Li CH, Xu HL, Pan HZ, Zhao YX. Metabolic alteration of Tetrahymena thermophila exposed to CdSe/ZnS quantum dots to respond to oxidative stress and lipid damage. Biochim Biophys Acta Gen Subj 2023; 1867:130251. [PMID: 36244576 DOI: 10.1016/j.bbagen.2022.130251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/17/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
CdSe/ZnS Quantum dots (QDs) are possibly released to surface water due to their extensive application. Based on their high reactivity, even small amounts of toxicant QDs will disturb water microbes and pose a risk to aquatic ecology. Here, we evaluated CdSe/ZnS QDs toxicity to Tetrahymena thermophila (T. thermophila), a model organism of the aquatic environment, and performed metabolomics experiments. Before the omics experiment was conducted, QDs were found to induce inhibition of cell proliferation, and reactive oxygen species (ROS) production along with Propidium iodide labeled cell membrane damage indicated oxidative stress stimulation. In addition, mitochondrial ultrastructure alteration of T. thermophila was also confirmed by Transmission Electron Microscope results after 48 h of exposure to QDs. Further results of metabolomics detection showed that 0.1 μg/mL QDs could disturb cell physiological and metabolic metabolism characterized by 18 significant metabolite changes, of which twelve metabolites improved and three decreased significantly compared to the control. Kyoto Encyclopedia of Genes and Genomes analysis showed that these metabolites were involved in the ATP-binding cassette transporter and purine metabolism pathways, both of which respond to ROS-induced cell membrane damage. In addition, purine metabolism weakness might also reflect mitochondrial dysfunction associated with energy metabolism and transport abnormalities. This research provides deep insight into the potential risks of quantum dots in aquatic ecosystems.
Collapse
Affiliation(s)
- Jie He
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhi-Zheng Wang
- The College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Chen-Hong Li
- The College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Hai-Long Xu
- Collaborative Scientific Research Centre, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Hong-Zhi Pan
- Collaborative Scientific Research Centre, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China.
| | - Yu-Xia Zhao
- The College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China.
| |
Collapse
|
23
|
Effects of Tetracycline on Scenedesmus obliquus Microalgae Photosynthetic Processes. Int J Mol Sci 2022; 23:ijms231810544. [PMID: 36142466 PMCID: PMC9504007 DOI: 10.3390/ijms231810544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Tetracycline (TC) antibiotics can be detected worldwide in the aquatic environment due to their extensive use and low utilization efficiency, and they may affect the physiological processes of non-target organisms. In this study, the acute and sub-acute toxicities of TC on the freshwater microalga Scenedesmus obliquus were investigated with an emphasis on algal photosynthesis and transcription alterations during an 8 d TC exposure. The results showed that the IC10, IC30 and IC50 values were 1.8, 4.1 and 6.9 mg/L, respectively. During sub-acute exposure, the microalgae of the IC10 treatment was able to recover comparable growth to that of the control by day 7, while significantly lower cell densities were observed in the IC30 and IC50 treatments at the end of the exposure. The photosynthetic efficiency Fv/FM of S. obliquus first decreased as the TC concentration increased and then returned to a level close to that of the control on day 8, accompanied by an increase in photosynthetic activities, including light harvesting, electron transport and energy dissipation. Transcriptomic analysis of the IC10 treatment (1.8 mg/L TC) revealed that 2157 differentially expressed genes were up-regulated and 1629 were down-regulated compared with the control. KEGG and GO enrichments demonstrated that 28 photosynthesis-related genes involving light-harvesting chlorophyll protein complex, photosystem I, photosystem II, photosynthetic electron transport and enzymes were up-regulated, which may be the factor responsible for the enhanced photosynthesis and recovery of the microalgae. Our work may be helpful not only for gaining a better understanding of the environmental risk of TC at concentrations close to the real levels in natural waters, but also for explaining photosynthesis and related gene transcription induced by antibiotics.
Collapse
|
24
|
Liu H, Yin H, Zhu M, Dang Z. Degradation of organophosphorus flame retardants in heterogeneous photo-Fenton system driven by Fe(III)-based metal organic framework: Intermediates and their potential interference on bacterial metabolism. CHEMOSPHERE 2022; 291:133072. [PMID: 34838833 DOI: 10.1016/j.chemosphere.2021.133072] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/03/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Organophosphorus flame retardants (OPFRs) have been regarded as one of the most rebarbative classes of emerging contaminants due to their persistence and toxicity. In the current study, Fe-based metal organic framework (MIL-88A) was synthesized and employed as photo-Fenton catalyst for the degradation of tris-(2-chloroisopropyl) phosphate (TCPP), a typical representative of OPFRs. The observations indicated that visible light could boost the reduction of ≡FeIII to ≡FeII in Fe-O clusters of MIL-88A during the photo-Fenton system and consequently induce the transformation of H2O2 to OH, which realized efficient degradation of TCPP. Due to the excellent function of MIL-88A, the effective pH application range of photo-Fenton system was extended in comparison with traditional Fenton system. The degradation efficiency of TCPP was visibly influenced in presence of humic acid (HA). MIL-88A exhibited a commendable reusability and stability after 3 times cycle. As the photo-Fenton reaction proceeded, TCPP was disintegrated to several kinds of carboxylated, dechlorinated and hydroxylated products. The observations of metabolomics endorsed that the interference of intermediate products mixture on E. coli weakened to a certain extent. In conclusion, carboxylation, dechlorination, hydroxylation and oxidation of TCPP were likewise effective for its detoxification, revealing that heterogeneous photo-Fenton system driven by Fe-based metal organic framework will be an attractive and safe treatment technique for OPFRs control.
Collapse
Affiliation(s)
- Hang Liu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| | - Minghan Zhu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| |
Collapse
|
25
|
Pan J, Wang J, Fang K, Hou W, Li B, Zhao J, Ma X. RNA m 6A Alterations Induced by Biomineralization Nanoparticles: A Proof-of-Concept Study of Epitranscriptomics for Nanotoxicity Evaluation. NANOSCALE RESEARCH LETTERS 2022; 17:23. [PMID: 35122526 PMCID: PMC8817964 DOI: 10.1186/s11671-022-03663-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Although various strategies have been included in nanotoxicity evaluation, epitranscriptomics has rarely been integrated into this field. In this proof-of-concept study, N6-methyladenosine (m6A) changes of mRNA in HEK293T cells induced by three bovine serum albumin (BSA)-templated Au, CuS and Gd2O3 nanoparticles are systematically explored, and their possible biological mechanisms are preliminarily investigated. It has been found that all the three BSA-templated nanoparticles can reduce m6A levels, and the genes with reduced m6A are enriched for TGF-beta signaling, which is critical for cell proliferation, differentiation and apoptosis. Further results indicate that abnormal aggregation of m6A-related enzymes at least partly account for the nanoparticle-induced epitranscriptomic changes. These findings demonstrate that epitranscriptomics analysis can provide an unprecedented landscape of the biological effect induced by nanomaterials, which should be involved in the nanotoxicity evaluation to promote the potential clinical translation of nanomaterials.
Collapse
Affiliation(s)
- Jinbin Pan
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Jiaojiao Wang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Kun Fang
- Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Wenjing Hou
- Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Bing Li
- Department of Orthopedics, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Jie Zhao
- Department of Orthopedics, Tianjin Hospital, Tianjin University, Tianjin, 300211, China.
| | - Xinlong Ma
- Department of Orthopedics, Tianjin Hospital, Tianjin University, Tianjin, 300211, China.
| |
Collapse
|
26
|
Danouche M, El Ghachtouli N, Aasfar A, Bennis I, El Arroussi H. Pb(II)-phycoremediation mechanism using Scenedesmus obliquus: cells physicochemical properties and metabolomic profiling. Heliyon 2022; 8:e08967. [PMID: 35243087 PMCID: PMC8866896 DOI: 10.1016/j.heliyon.2022.e08967] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/09/2021] [Accepted: 02/11/2022] [Indexed: 01/23/2023] Open
Abstract
This study highlights the mechanisms of Pb(II)-phycoremediation using the Pb(II) tolerant strain of Scenedesmus obliquus. First, monitoring of cell growth kinetics in control and Pb(II)-doped medium revealed significant growth inhibition, while the analyses through flow cytometry and Zetasizer revealed no difference in cell viability and size. Residual weights of control and Pb(II)-loaded cells assessed by thermogravimetric analysis were 31.34% and 57.8%, respectively, indicating the uptake of Pb(II) into S. obliquus cells. Next, the use of chemical extraction to distinguish between the intracellular and extracellular uptake indicated the involvement of both biosorption (85.5%) and bioaccumulation (14.5%) mechanisms. Biosorption interaction of Pb(II) ions and the cell wall was confirmed using SEM-EDX, FTIR, zeta potential, zero-charge pH, and contact angle analyses. Besides, the biochemical characterization of control and Pb(II)-loaded cells revealed that the bioaccumulation of Pb(II) induces significant increases in the carotenoids and lipids content, while it decreases in the chlorophyll, carbohydrates, and proteins content. Finally, the metabolomic analysis indicated an increase in the relative abundance of fatty acid methyl esters, alkanes, aromatic compounds, and sterols. However, the alkenes and monounsaturated fatty acids decreased. Such metabolic adjustment may represent an adaptive strategy that prevents high Pb(II)-bioaccumulation in cellular compartments.
Collapse
Affiliation(s)
- M. Danouche
- Green Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat, Morocco
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Corresponding author.
| | - N. El Ghachtouli
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Corresponding author.
| | - A. Aasfar
- Green Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat, Morocco
| | - I. Bennis
- Green Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat, Morocco
| | - H. El Arroussi
- Green Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat, Morocco
- AgroBioScience (AgBS), Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| |
Collapse
|
27
|
Janova A, Kolackova M, Bytesnikova Z, Capal P, Chaloupsky P, Svec P, Ridoskova A, Cernei N, Klejdus B, Richtera L, Adam V, Huska D. New insights into mechanisms of copper nanoparticle toxicity in freshwater algae Chlamydomonas reinhardtii: Effects on the pathways of secondary metabolites. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Li Q, Lu D, Sun H, Guo J, Mo J. Tylosin toxicity in the alga Raphidocelis subcapitata revealed by integrated analyses of transcriptome and metabolome: Photosynthesis and DNA replication-coupled repair. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 239:105964. [PMID: 34534865 DOI: 10.1016/j.aquatox.2021.105964] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/19/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
Tylosin (TYN) is widely used in veterinary prophylactic as a macrolide and frequently detected in the surface water. Previous studies showed that exposure to TYN caused suppression of chlorophyll biosynthesis and inhibition of photosynthesis at the physiological level, associated with reduced growth performances in algae, but the molecular mechanisms remain unknown, especially at environmental exposure levels. The present study elucidated the underlying molecular mechanism(s) of TYN toxicity in a model green alga Raphidocelis subcapitata using approaches of transcriptomics and metabolomics. Following a 7-day exposure, algal growth performances were reduced by 26.3% and 58.3% in the 3 (an environmentally realistic level) and 400 μg L-1 TYN treatment group, respectively. A total of 577 (99) and 5438 (180) differentially expressed genes (differentially accumulated metabolites) were identified in algae treated with 3 and 400 μg L-1 TYN, respectively. Signaling pathways including photosynthesis - antenna protein, porphyrin and chlorophyll metabolism, carbon fixation in photosynthetic organisms, and DNA replication were altered in the 400 μg L-1 TYN treatment, while photosynthesis and DNA replication were the shared pathways in both TYN treatments. The metabolomic data further suggest that molecular pathways related to photosynthesis, DNA replication-coupled repair and energy metabolism were impaired. Photosynthesis was identified as the most sensitive target of TYN toxicity in R. subcapitata, in contrast to protein synthesis inhibition caused by TYN in bacteria. This study provides novel mechanistic information of TYN toxicity in R. subcapitata.
Collapse
Affiliation(s)
- Qi Li
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Denglong Lu
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Haotian Sun
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China.
| | - Jiezhang Mo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China; State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
29
|
Xiong Q, Hu LX, Liu YS, Zhao JL, He LY, Ying GG. Microalgae-based technology for antibiotics removal: From mechanisms to application of innovational hybrid systems. ENVIRONMENT INTERNATIONAL 2021; 155:106594. [PMID: 33940395 DOI: 10.1016/j.envint.2021.106594] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 05/12/2023]
Abstract
Antibiotics contamination is an emerging environmental concern, owing to its potential risks to ecosystems and human health. Microalgae-based technology has been widely reported as a promising alternative to conventional wastewater treatment, since it is a solar-power driven, ecologically friendly, cost-effective, and sustainable reclamation strategy. This review provides fundamental insights into the major mechanisms underpinning microalgae-based antibiotics removal, including bioadsorption, bioaccumulation, and biodegradation. The critical role of extracellular polymeric substances on bioadsorption and extracellular biodegradation of antibiotics are also covered. Moreover, this review sheds light on the important factors affecting the removal of antibiotics by microalgae, and summarizes several novel approaches to improve the removal efficiency, including acclimation, co-metabolism and microbial consortium. Besides, hybrid systems (such as, microalgae-based technologies combined with the conventional activated sludge, advanced oxidation processes, constructed wetlands, and microbial fuel cells), and genetic engineering are also recommended, which will be feasible for enhanced removal of antibiotics. Finally, this review also highlights the need for further studies aimed at optimizing microalgae-based technology, with emphasis on improving performance and expanding its application in large-scale settings, especially in terms of technical, environmental-friendly and economically competitiveness. Overall, this review summarizes current understanding on microalgae-based technologies for removal of antibiotics and outlines future research directions.
Collapse
Affiliation(s)
- Qian Xiong
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Li-Xin Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
30
|
Rempel A, Gutkoski JP, Nazari MT, Biolchi GN, Cavanhi VAF, Treichel H, Colla LM. Current advances in microalgae-based bioremediation and other technologies for emerging contaminants treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:144918. [PMID: 33578141 DOI: 10.1016/j.scitotenv.2020.144918] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/16/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Emerging contaminants (EC) have been detected in effluents and drinking water in concentrations that can harm to a variety of organisms. Therefore, several technologies are developed to treat these compounds, either for their complete removal or degradation in less toxic by-products. Some technologies applied to the treatment of EC, such as adsorption, advanced oxidative processes, membrane separation processes, and bioremediation through microalgal metabolism, were identified by thematic maps. In this review, we used a bibliometric software from >1000 articles. These manuscripts, in general, present removals from 0% to 100% for different ECs. This efficiency varies between treatment technologies and the contaminants' physical-chemical properties and their concentration and operational parameters. This review explored the bioremediation of EC through microalgae with greater emphasis. The main mechanisms of action of microalgae in the bioremediation of ECs are biodegradation bioadsorption, and bioaccumulation. Also, physicochemical properties and removal efficiencies of >50 emerging contaminants are presented. Although there are challenges related to the generation of more toxic by-products and economic and environmental viability, these can be minimized with advances in the development of treatment technologies and even through the integration of different techniques to make the treatment of contaminants emerging from environmental media more sustainable.
Collapse
Affiliation(s)
- Alan Rempel
- Graduate Program in Environmental and Civil Engineering, University of Passo Fundo (UPF), Passo Fundo, Rio Grande do Sul 99052-900, Brazil
| | - Julia Pedó Gutkoski
- Chemical Engineering Course, University of Passo Fundo (UPF), Passo Fundo, Rio Grande do Sul 99052-900, Brazil
| | - Mateus Torres Nazari
- Graduate Program in Environmental and Civil Engineering, University of Passo Fundo (UPF), Passo Fundo, Rio Grande do Sul 99052-900, Brazil
| | - Gabrielle Nadal Biolchi
- Chemical Engineering Course, University of Passo Fundo (UPF), Passo Fundo, Rio Grande do Sul 99052-900, Brazil
| | | | - Helen Treichel
- Laboratory of Microbiology and Bioprocess, Environmental Science and Technology, Federal University of Fronteira Sul - Campus Erechim, 99700-000 Erechim, RS, Brazil
| | - Luciane Maria Colla
- Graduate Program in Environmental and Civil Engineering, University of Passo Fundo (UPF), Passo Fundo, Rio Grande do Sul 99052-900, Brazil.
| |
Collapse
|
31
|
You X, Xu N, Yang X, Sun W. Pollutants affect algae-bacteria interactions: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116723. [PMID: 33611207 DOI: 10.1016/j.envpol.2021.116723] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
With increasing concerns on the ecological risks of pollutants, many efforts have been devoted to revealing the toxic effects of pollutants on algae or bacteria in their monocultures. However, how pollutants affect algae and bacteria in their cocultures is still elusive but crucial due to its more environmental relevance. The present review outlines the interactions between algae and bacteria, reveals the influential mechanisms of pollutants (including pesticides, metals, engineered nanomaterials, pharmaceutical and personal care products, and aromatic pollutants) to algae and bacteria in their coexisted systems, and puts forward prospects for further advancing toxic studies in algal-bacterial systems. Pollutants affect the physiological and ecological functions of bacteria and algae by interfering with their relationships. Cell-to-cell adhesion, substrate exchange and biodegradation of organic pollutants, enhancement of signal transduction, and horizontal transfer of tolerance genes are important defense strategies in algal-bacterial systems to cope with pollution stress. Developing suitable algal-bacterial models, identifying cross-kingdom signaling molecules, and deciphering the horizontal transfer of pollutant resistant genes between algae and bacteria under pollution stress are the way forward to fully exploit the risks of pollutants in natural aquatic environments.
Collapse
Affiliation(s)
- Xiuqi You
- College of Environmental Sciences and Engineering, Peking University, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing, 100871, China
| | - Nan Xu
- Shenzhen Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xi Yang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Weiling Sun
- College of Environmental Sciences and Engineering, Peking University, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing, 100871, China.
| |
Collapse
|
32
|
Oxidative Stress-Induced Alteration of Plant Central Metabolism. Life (Basel) 2021; 11:life11040304. [PMID: 33915958 PMCID: PMC8066879 DOI: 10.3390/life11040304] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress is an integral component of various stress conditions in plants, and this fact largely determines the substantial overlap in physiological and molecular responses to biotic and abiotic environmental challenges. In this review, we discuss the alterations in central metabolism occurring in plants experiencing oxidative stress. To focus on the changes in metabolite profile associated with oxidative stress per se, we primarily analyzed the information generated in the studies based on the exogenous application of agents, inducing oxidative stress, and the analysis of mutants displaying altered oxidative stress response. Despite of the significant variation in oxidative stress responses among different plant species and tissues, the dynamic and transient character of stress-induced changes in metabolites, and the strong dependence of metabolic responses on the intensity of stress, specific characteristic changes in sugars, sugar derivatives, tricarboxylic acid cycle metabolites, and amino acids, associated with adaptation to oxidative stress have been detected. The presented analysis of the available data demonstrates the oxidative stress-induced redistribution of metabolic fluxes targeted at the enhancement of plant stress tolerance through the prevention of ROS accumulation, maintenance of the biosynthesis of indispensable metabolites, and production of protective compounds. This analysis provides a theoretical basis for the selection/generation of plants with improved tolerance to oxidative stress and the development of metabolic markers applicable in research and routine agricultural practice.
Collapse
|
33
|
Peng J, Guo J, Lei Y, Mo J, Sun H, Song J. Integrative analyses of transcriptomics and metabolomics in Raphidocelis subcapitata treated with clarithromycin. CHEMOSPHERE 2021; 266:128933. [PMID: 33223212 DOI: 10.1016/j.chemosphere.2020.128933] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/04/2020] [Accepted: 11/07/2020] [Indexed: 06/11/2023]
Abstract
As a macrolide antibiotic, clarithromycin (CLA) has a high detection rate in surface water and sewage treatment plant effluents worldwide, posing a considerably high ecological risk to aquatic ecosystem. However, algal transcriptome and metabolome in response to CLA remains largely unknown. In this study, a model alga Raphidocelis subcapitata (R. subcapitata), was exposed to CLA at the concentrations of 0, 3, 10, and 15 μg L-1. Transcriptomic analysis was performed for all the treatment groups, whereas metabolomics was merely applied to 0, 3, and 10 μg L-1 groups because of the limited amount of algal biomass. After 7 d cultivation, the growth of R. subcapitata was significantly hindered at the concentrations above 10 μg L-1. A total of 115, 1833, 2911 genes were differentially expressed in 3, 10, and 15 μg L-1 groups, respectively; meanwhile, 134 and 84 differentially accumulated metabolites (DAMs) were found in the 3 and 10 μg L-1 groups. Specifically, expression levels of DEGs and DAMs related to xenobiotic metabolism, electron transport and energy synthesis were dysregulated, leading to the produced reactive oxygen species (ROS). To confront the CLA-induced injury, the biosynthesis of unsaturated fatty acids and carotenoids of R. subcapitata in 3 μg L-1 were up-regulated; although the photosynthesis was up-regulated in both 10 μg L-1 and 15 μg L-1 groups, the energy synthesis and the ability to resist ROS in these two groups were down-regulated. Overall, this study shed light on the mechanism underlying the inhibitory effects of macrolide antibiotics in algae.
Collapse
Affiliation(s)
- Jianglin Peng
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China.
| | - Yuan Lei
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Jiezhang Mo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Haotian Sun
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Jinxi Song
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
34
|
Luo SW, Alimujiang A, Balamurugan S, Zheng JW, Wang X, Yang WD, Cui J, Li HY. Physiological and molecular responses in halotolerant Dunaliella salina exposed to molybdenum disulfide nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124014. [PMID: 33069998 DOI: 10.1016/j.jhazmat.2020.124014] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/19/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Molybdenum disulfide nanoparticles (MoS2 NPs) has emerged as the promising nanomaterial with a wide array of applications in the biomedical, industrial and environmental field. However, the potential effect of MoS2 NPs on marine organisms has yet to be reported. In this study, the effect of MoS2 NPs on the physiological index, subcellular morphology, transcriptomic profiles of the marine microalgae Dunaliella salina was investigated for the first time. exhibited "doping-like" effects on marine microalgae; Growth stimulation was 193.55%, and chlorophyll content increased 1.61-fold upon the addition of 50 μg/L MoS2 NPs. Additionally, exposure to MoS2 NPs significantly increased the protein and carbohydrate content by 2.03- and 1.56-fold, respectively. The antioxidant system was activated as well to eliminate the adverse influence of reactive oxygen species (ROS). Transcriptomic analysis revealed that genes involved in porphyrin synthesis, glycolysis/gluconeogenesis, tricarboxylic acid cycle and DNA replication were upregulated upon MoS2 NPs exposure, which supports the mechanistic role of MoS2 NPs in improving cellular growth and photosynthesis. The "doping-like" effects on marine algae suggest that the low concentration of MoS2 NPs might change the rudimentary ecological composition in the ocean.
Collapse
Affiliation(s)
- Shan-Wei Luo
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Adili Alimujiang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Srinivasan Balamurugan
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jian-Wei Zheng
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiang Wang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wei-Dong Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jianghu Cui
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
35
|
Chen H, Xie H, Huang S, Xiao T, Wang Z, Ni X, Deng S, Lu H, Hu J, Li L, Wen Y, Shang D. Development of mass spectrometry-based relatively quantitative targeted method for amino acids and neurotransmitters: Applications in the diagnosis of major depression. J Pharm Biomed Anal 2020; 194:113773. [PMID: 33279298 DOI: 10.1016/j.jpba.2020.113773] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022]
Abstract
Targeted metabolomics analysis based on triple quadrupole (QQQ) MS coupled with multiple reaction monitoring mode (MRM) is the gold standard for metabolite quantification and it is widely applied in metabolomics. However, standard compounds for each metabolite and the corresponding analogs are necessary for quantitative measurements. To identify the differentially present metabolites in various groups, determining the relative concentration of metabolites would be more efficient than accurate quantification. In this study, a relatively quantitative targeted method was established for metabonomics research, on the basis of hydrophilic interaction liquid chromatography (HILIC)/QQQ MS operated in MRM mode. The quality control-base random forest signal correction algorithm (QC-RFSC algorithm) was applied for quality control instead of the internal standard method. High quality relative quantification was achieved without internal standards, and integrated peak areas were successfully used for statistical and pathway analyses. Amino acids and neurotransmitters (dopamine, kynurenic acid, urocanic acid, tryptophan, kynurenine, tyrosine, valine, threonine, serine, alanine, glycine, glutamine, citrulline, GABA, glutamate, aspartate, arginine, ornithine and histidine) in serum samples were simultaneously determined with the newly developed method. To demonstrate the applicability of this method in large-scale analyses, we analyzed the above metabolites in serum from patients with major depression. The serum levels of glutamate, aspartate, threonine, glycine and alanine were significantly higher, and those of citrulline, kynurenic acid and urocanic acid were significantly lower, in patients with major depression than in controls. This is the first report of the difference in urocanic acid, a compound reported to improve glutamate biosynthesis and release in the central nervous system, between healthy controls and patients with major depression.
Collapse
Affiliation(s)
- Hongzhen Chen
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, 510370, Guangzhou, China
| | - Huanshan Xie
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, 510370, Guangzhou, China
| | - Shanqing Huang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, 510370, Guangzhou, China
| | - Tao Xiao
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, 510370, Guangzhou, China
| | - Zhanzhang Wang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, 510370, Guangzhou, China
| | - Xiaojiao Ni
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, 510370, Guangzhou, China
| | - Shuhua Deng
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, 510370, Guangzhou, China
| | - Haoyang Lu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, 510370, Guangzhou, China
| | - Jingqin Hu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, 510370, Guangzhou, China
| | - Lu Li
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, 510370, Guangzhou, China
| | - Yuguan Wen
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, 510370, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders,510370,Guangzhou,China.
| | - Dewei Shang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, 510370, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders,510370,Guangzhou,China.
| |
Collapse
|
36
|
Wu X, Liu Y, Yin S, Xiao K, Xiong Q, Bian S, Liang S, Hou H, Hu J, Yang J. Metabolomics revealing the response of rice (Oryza sativa L.) exposed to polystyrene microplastics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115159. [PMID: 32663678 DOI: 10.1016/j.envpol.2020.115159] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/25/2020] [Accepted: 06/30/2020] [Indexed: 05/23/2023]
Abstract
Large amounts of microplastics accumulate in the agricultural soil. Microplastics would stress the crops but the underlying mechanism remains unclear. Herein, a laboratory exposure and field trials were carried out to investigate the response of rice (Oryza sativa L. II You. 900) to stress induced by polystyrene microplastics (PS-MPs) using a metabolomic approach. After laboratory exposure for 21 days, the decreases in shoot biomass of rice exposed to low, medium and high doses of PS-MPs were 13.1% (CV = 4.1%), 18.8% (CV = 3.7%), and 40.3% (CV = 9.2%), respectively, while the antioxidant enzymes showed an inverted upper-U shape when exposed to PS-MPs. A total of 24 samples from three exposure dose levels were included in the metabolic analysis. The metabolites of 12 amino acids, 16 saccharides, 26 organic acids and 17 others (lipids and polyols) in leaves decreased after the exposure to both 50 mg L-1 and 250 mg L-1 PS-MPs doses with hydroponically-cultured. The inhibition of perturbed biological pathway causes the biosynthesis of amino acids, nucleic acids, fatty acids and some secondary metabolites decreased which indicate that the energy expenditure exceeded the substance accumulation. In order to further validate the effects of PS-MPs on rice leaves obtained from the laboratory-scale experiments, a field-trial experiment was conducted. After 142 days of cultivation in farmland, the results with a maximum of 25.9% lower biomass in the crops exposed with PS-MPs. As such, the presence of PS-MPs may affect rice production by altering the metabolic systems of rice. Long-term exposure of PS-MPs to rice might be a potential risk to rice safety and quality.
Collapse
Affiliation(s)
- Xiang Wu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei, 430074, China
| | - Yao Liu
- College of Environmental and Biological Engineering, Wuhan Technology and Business University, Wuhan, Hubei, 430065, China
| | - Shanshan Yin
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Keke Xiao
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei, 430074, China
| | - Qiao Xiong
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei, 430074, China
| | - Shijie Bian
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei, 430074, China
| | - Sha Liang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei, 430074, China
| | - Huijie Hou
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei, 430074, China
| | - Jingping Hu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei, 430074, China
| | - Jiakuan Yang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei, 430074, China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| |
Collapse
|
37
|
Wang S, Wang W, Li X, Zhao X, Wang Y, Zhang H, Xu S. Cooperative application of transcriptomics and ceRNA hypothesis: LncRNA-107052630/miR-205a/G0S2 crosstalk is involved in ammonia-induced intestinal apoptotic injury in chicken. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122605. [PMID: 32334290 DOI: 10.1016/j.jhazmat.2020.122605] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Ammonia (NH3), as a harmful gas from agricultural production, plays an important role in air pollution, such as haze. Although numerous researchers have paid attention to health damage through NH3 inhalation, the exhaustive mechanism of NH3 induced intestinal toxicity remains unclear. A genes crosstalk named competing endogenous RNAs (ceRNA) can explain many regulatory manners from the molecular perspective. However, few studies have attempted to interpret the injury mechanism of air pollutants to the organism via ceRNA theory. Here, we thoroughly investigated the lncRNA-associated-ceRNA mechanism in jejunum samples from a 42-days-old NH3-exposed chicken model through deep RNA sequencing. We observed the occurrence of apoptosis in jejunum, obtained 46 significantly dysregulated lncRNAs and 30 dysregulated miRNAs, and then constructed lncRNA-associated-ceRNA networks in jejunum. Importantly, a network regulating G0S2 in NH3-induced apoptosis was discovered. Research results showed that G0S2 was upregulated in jejunum of NH3-exposed group and was associated with activation of the mitochondrial apoptosis pathway. G0S2 antagonized the anti-apoptotic effect of Bcl2, which could be reversed by miR-205a. Meanwhile, lncRNA-107052630 acted as ceRNA to affect G0S2 function. These data provide new insight for revealing the biological effect of NH3 toxicity, as well as the environmental research.
Collapse
Affiliation(s)
- Shengchen Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Wei Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaojing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xia Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
38
|
Kumar G, Shekh A, Jakhu S, Sharma Y, Kapoor R, Sharma TR. Bioengineering of Microalgae: Recent Advances, Perspectives, and Regulatory Challenges for Industrial Application. Front Bioeng Biotechnol 2020; 8:914. [PMID: 33014997 PMCID: PMC7494788 DOI: 10.3389/fbioe.2020.00914] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/15/2020] [Indexed: 01/14/2023] Open
Abstract
Microalgae, due to their complex metabolic capacity, are being continuously explored for nutraceuticals, pharmaceuticals, and other industrially important bioactives. However, suboptimal yield and productivity of the bioactive of interest in local and robust wild-type strains are of perennial concerns for their industrial applications. To overcome such limitations, strain improvement through genetic engineering could play a decisive role. Though the advanced tools for genetic engineering have emerged at a greater pace, they still remain underused for microalgae as compared to other microorganisms. Pertaining to this, we reviewed the progress made so far in the development of molecular tools and techniques, and their deployment for microalgae strain improvement through genetic engineering. The recent availability of genome sequences and other omics datasets form diverse microalgae species have remarkable potential to guide strategic momentum in microalgae strain improvement program. This review focuses on the recent and significant improvements in the omics resources, mutant libraries, and high throughput screening methodologies helpful to augment research in the model and non-model microalgae. Authors have also summarized the case studies on genetically engineered microalgae and highlight the opportunities and challenges that are emerging from the current progress in the application of genome-editing to facilitate microalgal strain improvement. Toward the end, the regulatory and biosafety issues in the use of genetically engineered microalgae in commercial applications are described.
Collapse
Affiliation(s)
- Gulshan Kumar
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Ajam Shekh
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, India
| | - Sunaina Jakhu
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Yogesh Sharma
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Ritu Kapoor
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Tilak Raj Sharma
- Division of Crop Science, Indian Council of Agricultural Research, New Delhi, India
| |
Collapse
|
39
|
Hu L, Liu J, Zhang W, Wang T, Zhang N, Lee YH, Lu H. FUNCTIONAL METABOLOMICS DECIPHER BIOCHEMICAL FUNCTIONS AND ASSOCIATED MECHANISMS UNDERLIE SMALL-MOLECULE METABOLISM. MASS SPECTROMETRY REVIEWS 2020; 39:417-433. [PMID: 31682024 DOI: 10.1002/mas.21611] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Metabolism is the collection of biochemical reactions enabled by chemically diverse metabolites, which facilitate different physiological processes to exchange substances and synthesize energy in diverse living organisms. Metabolomics has emerged as a cutting-edge method to qualify and quantify the metabolites in different biological matrixes, and it has the extraordinary capacity to interrogate the biological significance that underlies metabolic modification and modulation. Liquid chromatography combined with mass spectrometry (LC/MS), as a robust platform for metabolomics analysis, has increased in popularity over the past 10 years due to its excellent sensitivity, throughput, and versatility. However, metabolomics investigation currently provides us with only phenotype data without revealing the biochemical functions and associated mechanisms. This limitation indeed weakens the core value of metabolomics data in a broad spectrum of the life sciences. In recent years, the scientific community has actively explored the functional features of metabolomics and translated this cutting-edge approach to be used to solve key multifaceted questions, such as disease pathogenesis, the therapeutic discovery of drugs, nutritional issues, agricultural problems, environmental toxicology, and microbial evolution. Here, we are the first to briefly review the history and applicable progression of LC/MS-based metabolomics, with an emphasis on the applications of metabolic phenotyping. Furthermore, we specifically highlight the next era of LC/MS-based metabolomics to target functional metabolomes, through which we can answer phenotype-related questions to elucidate biochemical functions and associated mechanisms implicated in dysregulated metabolism. Finally, we propose many strategies to enhance the research capacity of functional metabolomics by enabling the combination of contemporary omics technologies and cutting-edge biochemical techniques. The main purpose of this review is to improve the understanding of LC/MS-based metabolomics, extending beyond the conventional metabolic phenotype toward biochemical functions and associated mechanisms, to enhance research capability and to enlarge the applicable scope of functional metabolomics in small-molecule metabolism in different living organisms.
Collapse
Affiliation(s)
- Longlong Hu
- Laboratory for Functional Metabolomics Science, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jingjing Liu
- Laboratory for Functional Metabolomics Science, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenhua Zhang
- Laboratory for Functional Metabolomics Science, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Pharmacognosy, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Tianyu Wang
- Laboratory for Functional Metabolomics Science, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ning Zhang
- Department of Pharmacognosy, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
- Department of Pharmaceutical Analysis, College of Jiamusi, Heilongjiang University of Chinese Medicine, Harbin, 121000, China
| | - Yie Hou Lee
- Translational 'Omics and Biomarkers Group, KK Research Centre, KK Women's and Children's Hospital, Singapore, 229899, Singapore
- OBGYN-Academic Clinical Program, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Haitao Lu
- Laboratory for Functional Metabolomics Science, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
40
|
Liu Q, Liu M, Wu S, Xiao B, Wang X, Sun B, Zhu L. Metabolomics Reveals Antioxidant Stress Responses of Wheat ( Triticum aestivum L.) Exposed to Chlorinated Organophosphate Esters. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6520-6529. [PMID: 32433877 DOI: 10.1021/acs.jafc.0c01397] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, wheat (Triticum aestivum L.) was exposed to three of the most typical chlorinated organophosphate esters (OPEs), which are widely present in farmland soil, at environmental concentrations to assess their accumulation, disruption on metabolism, and oxidative stress in wheat. The three OPEs accumulated distinctly in the root and then translocated to the shoot. After exposure for 7 days, the content of chlorophyll b decreased, while the levels of carotenoid and activities of antioxidases, malonaldehyde, and reactive oxygen species increased significantly in both the root and shoot, indicating that the target OPEs caused significant oxidative stresses and affected photosynthesis in wheat. Untargeted metabolomics revealed concentration- and species-dependent metabolic responses of the three OPEs. Saccharides were downregulated, which might be due to the reduced photosynthesis activities. On the other hand, the chlorinated OPEs induced increases in respiration and antioxidative metabolites, revealing that the antioxidant system of wheat was active in scavenging ROS. The disturbance of tris(1,3-dichloro-2-propyl)phosphate on the metabolisms in wheat tissues was the strongest. These results contribute to the food safety and crop quality assessment of chlorinated OPEs and clarify the underlying mechanisms of their phytotoxicities.
Collapse
Affiliation(s)
- Qing Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China
| | - Menglin Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China
| | - Sihan Wu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China
| | - Bowen Xiao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China
| | - Xiaolei Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China
| | - Binbin Sun
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China
| |
Collapse
|
41
|
He E, Qiu R, Cao X, Song L, Peijnenburg WJGM, Qiu H. Elucidating Toxicodynamic Differences at the Molecular Scale between ZnO Nanoparticles and ZnCl 2 in Enchytraeus crypticus via Nontargeted Metabolomics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3487-3498. [PMID: 32083472 DOI: 10.1021/acs.est.0c00663] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Much effort has been devoted to clarifying the comparative toxicity of ZnO nanoparticles (NPs) and Zn ions; however, little is known about their toxicodynamic processes at the metabolic level. Here, we investigated the acute (2d) and chronic (7d) effects to a soil species, Enchytraeus crypticus, of two sublethal doses of ZnO-NPs and ZnCl2 (10 and 30 mg/L Zn) using ultrahigh performance liquid chromatography-quadrupole-time-of-flight/mass spectrometry-based metabolomics. The metabolomics analysis identified 99, 128, 121, and 183 significantly changed metabolites (SCMs) in E. crypticus exposed to ZnO-NPs for 2d, ZnCl2 for 2d, ZnO-NPs for 7d, and ZnCl2 for 7d, respectively, suggesting that ZnCl2 induced stronger metabolic reprogramming than ZnO-NPs, and a longer exposure time caused greater metabolite changes. Among the SCMs, 67 were shared by ZnO-NPs and ZnCl2 after 2d and 84 after 7d. These metabolites were mainly related to oxidative stress and antioxidant defense, membrane disturbance, and energy expenditure. The targeted analysis on physiological and biochemical responses further proved the metabolic observations. Nevertheless, 32 (33%) and 37 (31%) SCMs were found only in ZnO-NP treatments after 2 and 7d, respectively, suggesting that the toxicity of ZnO-NPs cannot be solely attributed to the released Zn ions. Metabolic pathway analysis revealed significant perturbations of galactose metabolism, amino sugar and nucleotide sugar metabolism, and glycerophospholipid metabolism in all test groups. Based on involvement frequency, glucose-1-phosphate, glycerol 3-phosphate, and phosphorylcholine could serve as universal biomarkers for exposure to different Zn forms. Four pathways perturbed by ZnO-NPs were nanospecific upon acute exposure and three upon chronic exposure. Our findings demonstrated that metabolomics is an effective tool for understanding the molecular toxicity mechanism and highlighted that time-series measurements are essential for discovering and comparing modes of action of metal ions and NPs.
Collapse
Affiliation(s)
- Erkai He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lan Song
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Willie J G M Peijnenburg
- National Institute of Public Health and the Environment, Center for the Safety of Substances and Products, Bilthoven 3720 BA, The Netherlands
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
42
|
Li X, Peng T, Mu L, Hu X. Phytotoxicity induced by engineered nanomaterials as explored by metabolomics: Perspectives and challenges. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 184:109602. [PMID: 31493589 DOI: 10.1016/j.ecoenv.2019.109602] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Given the wide applications of engineered nanomaterials (ENMs) in various fields, the ecotoxicology of ENMs has attracted much attention. The traditional plant physiological activity (e.g., reactive oxygen species and antioxidant enzymes) are limited in that they probe one specific process of nanotoxicity, which may result in the loss of understanding of other important biological reactions. Metabolites, which are downstream of gene and protein expression, are directly related to biological phenomena. Metabolomics is an easily performed and efficient tool for solving the aforementioned problems because it involves the comprehensive exploration of metabolic profiles. To understand the roles of metabolomics in phytotoxicity, the analytical methods for metabolomics should be organized and discussed. Moreover, the dominant metabolites and metabolic pathways are similar in different plants, which determines the universal applicability of metabolomics analysis. The analysis of regulated metabolism will globally and scientifically help determine the ecotoxicology that is induced by ENMs. In the past several years, great developments in nanotoxicology have been achieved using metabolomics. However, many knowledge gaps remain, such as the relationships between biological responses that are induced by ENMs and the regulation of metabolism (e.g., carbohydrate, energy, amino acid, lipid and secondary metabolism). The phytotoxicity that is induced by ENMs has been explored by metabolomics, which is still in its infancy. The detrimental and defence mechanisms of plants in their response to ENMs at the level of metabolomics also deserve much attention. In addition, owing to the regulation of metabolism in plants by ENMs affected by multiple factors, it is meaningful to uniformly identify the key influencing factor.
Collapse
Affiliation(s)
- Xiaokang Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Ting Peng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Li Mu
- Tianjin Key Laboratory of Agro-environment and Safe-product, Key Laboratory for Environmental Factors Control of Agro-product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-environmental Protection, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| |
Collapse
|
43
|
Ribaldone DG, Pellicano R, Actis GC. Inflammation in gastrointestinal disorders: prevalent socioeconomic factors. Clin Exp Gastroenterol 2019; 12:321-329. [PMID: 31410046 PMCID: PMC6650093 DOI: 10.2147/ceg.s210844] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/24/2019] [Indexed: 12/22/2022] Open
Abstract
Western populations harbor a chronic inflammation pattern that lacks organ cardinal signs (edema, increased temperature, pain, and impaired function), releases increased levels of C-reactive protein, and often runs a creeping clinical course with generalized debilitating disease superimposed on system-specific involvement, mostly including nervous tissue (multiple sclerosis, Parkinson's syndromes), joints (arthritis), and skin (psoriasis). A finalistic interpretation may apply to the consideration of the gut as the source of inflammation. In fact, these kind of local events as well as the remote manifestations named above, could be conditioned by the microbiome, the huge cell population indwelling the gut which is under growing scrutiny. The role of the gut as a barrier organ justifies lingering submucosal inflammation as a patrolling activity to maintain bodily integrity; the microbiome, launching inflammogenic signals in response to abrupt diet changes, confers to gut inflammation a socioeconomic vector calling for hitherto unrecognized multi-disciplinary interventions.
Collapse
Affiliation(s)
| | - Rinaldo Pellicano
- Unit of Gastroenterology, Molinette-San Giovanni Antica Sede (SGAS) Hospital, Turin, Italy
| | | |
Collapse
|
44
|
Barranger A, Langan LM, Sharma V, Rance GA, Aminot Y, Weston NJ, Akcha F, Moore MN, Arlt VM, Khlobystov AN, Readman JW, Jha AN. Antagonistic Interactions between Benzo[a]pyrene and Fullerene (C 60) in Toxicological Response of Marine Mussels. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E987. [PMID: 31288459 PMCID: PMC6669530 DOI: 10.3390/nano9070987] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 12/12/2022]
Abstract
This study aimed to assess the ecotoxicological effects of the interaction of fullerene (C60) and benzo[a]pyrene (B[a]P) on the marine mussel, Mytilus galloprovincialis. The uptake of nC60, B[a]P and mixtures of nC60 and B[a]P into tissues was confirmed by Gas Chromatography-Mass Spectrometry (GC-MS), Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS) and Inductively Coupled Plasma Mass Spectrometer (ICP-MS). Biomarkers of DNA damage as well as proteomics analysis were applied to unravel the interactive effect of B[a]P and C60. Antagonistic responses were observed at the genotoxic and proteomic level. Differentially expressed proteins (DEPs) were only identified in the B[a]P single exposure and the B[a]P mixture exposure groups containing 1 mg/L of C60, the majority of which were downregulated (~52%). No DEPs were identified at any of the concentrations of nC60 (p < 0.05, 1% FDR). Using DEPs identified at a threshold of (p < 0.05; B[a]P and B[a]P mixture with nC60), gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis indicated that these proteins were enriched with a broad spectrum of biological processes and pathways, including those broadly associated with protein processing, cellular processes and environmental information processing. Among those significantly enriched pathways, the ribosome was consistently the top enriched term irrespective of treatment or concentration and plays an important role as the site of biological protein synthesis and translation. Our results demonstrate the complex multi-modal response to environmental stressors in M. galloprovincialis.
Collapse
Affiliation(s)
- Audrey Barranger
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Laura M Langan
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Vikram Sharma
- School of Biomedical Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Graham A Rance
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
- Nanoscale and Microscale Research Centre, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Yann Aminot
- Centre for Chemical Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Nicola J Weston
- Nanoscale and Microscale Research Centre, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Farida Akcha
- Ifremer, Laboratory of Ecotoxicology, F-44311, CEDEX 03 Nantes, France
| | - Michael N Moore
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3HD, UK
- European Centre for Environment & Human Health (ECEHH), University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Cornwall TR1 3LJ, UK
| | - Volker M Arlt
- Department of Analytical, Environmental and Forensic Sciences, King's College London, MRC-PHE Centre for Environmental & Health, London SE1 9NH, UK
- NIHR Health Protection Research Unit in Health Impact of Environmental Hazards at King's College London in partnership with Public Health England and Imperial College London, London SE1 9NH, UK
| | - Andrei N Khlobystov
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
- Nanoscale and Microscale Research Centre, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - James W Readman
- Centre for Chemical Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK.
| |
Collapse
|
45
|
Ng QX, Loke W, Venkatanarayanan N, Lim DY, Soh AYS, Yeo WS. A Systematic Review of the Role of Prebiotics and Probiotics in Autism Spectrum Disorders. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:129. [PMID: 31083360 PMCID: PMC6571640 DOI: 10.3390/medicina55050129] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/25/2019] [Accepted: 05/07/2019] [Indexed: 12/23/2022]
Abstract
Background: Autism spectrum disorder (ASD) is a complex developmental condition typically characterized by deficits in social and communicative behaviors as well as repetitive patterns of behaviors. Despite its prevalence (affecting 0.1% to 1.8% of the global population), the pathogenesis of ASD remains incompletely understood. Patients with ASD are reported to have more frequent gastrointestinal (GI) complaints. There is some anecdotal evidence that probiotics are able to alleviate GI symptoms as well as improve behavioral issues in children with ASD. However, systematic reviews of the effect of prebiotics/probiotics on ASD and its associated symptoms are lacking. Methods: Using the keywords (prebiotics OR probiotics OR microbiota OR gut) AND (autism OR social OR ASD), a systematic literature search was conducted on PubMed, EMBASE, Medline, Clinicaltrials.gov and Google Scholar databases. The inclusion criteria were original clinical trials, published in English between the period 1st January 1988 and 1st February 2019. Results: A total of eight clinical trials were systematically reviewed. Two clinical trials examined the use of prebiotic and/or diet exclusion while six involved the use of probiotic supplementation in children with ASD. Most of these were prospective, open-label studies. Prebiotics only improved certain GI symptoms; however, when combined with an exclusion diet (gluten and casein free) showed a significant reduction in anti-sociability scores. As for probiotics, there is limited evidence to support the role of probiotics in alleviating the GI or behavioral symptoms in children with ASD. The two available double-blind, randomized, placebo-controlled trials found no significant difference in GI symptoms and behavior. Conclusion: Despite promising preclinical findings, prebiotics and probiotics have demonstrated an overall limited efficacy in the management of GI or behavioral symptoms in children with ASD. In addition, there was no standardized probiotics regimen, with multiple different strains and concentrations of probiotics, and variable duration of treatments.
Collapse
Affiliation(s)
- Qin Xiang Ng
- MOH Holdings Pte Ltd., 1 Maritime Square, Singapore 099253, Singapore.
- KK Women's and Children's Hospital, 100 Bukit Timah Rd, Singapore 229899, Singapore.
| | - Wayren Loke
- MOH Holdings Pte Ltd., 1 Maritime Square, Singapore 099253, Singapore.
| | - Nandini Venkatanarayanan
- MOH Holdings Pte Ltd., 1 Maritime Square, Singapore 099253, Singapore.
- National University Hospital, National University Health System, Singapore 119074, Singapore.
| | - Donovan Yutong Lim
- Department of Child and Adolescent Psychiatry, Institute of Mental Health, 10 Buangkok View, Singapore 539747, Singapore.
| | - Alex Yu Sen Soh
- National University Hospital, National University Health System, Singapore 119074, Singapore.
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| | - Wee Song Yeo
- National University Hospital, National University Health System, Singapore 119074, Singapore.
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
46
|
Improved Algal Toxicity Test System for Robust Omics-Driven Mode-of-Action Discovery in Chlamydomonas reinhardtii. Metabolites 2019; 9:metabo9050094. [PMID: 31083411 PMCID: PMC6572051 DOI: 10.3390/metabo9050094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 01/05/2023] Open
Abstract
Algae are key components of aquatic food chains. Consequently, they are internationally recognised test species for the environmental safety assessment of chemicals. However, existing algal toxicity test guidelines are not yet optimized to discover molecular modes of action, which require highly-replicated and carefully controlled experiments. Here, we set out to develop a robust, miniaturised and scalable Chlamydomonas reinhardtii toxicity testing approach tailored to meet these demands. We primarily investigated the benefits of synchronised cultures for molecular studies, and of exposure designs that restrict chemical volatilisation yet yield sufficient algal biomass for omics analyses. Flow cytometry and direct-infusion mass spectrometry metabolomics revealed significant and time-resolved changes in sample composition of synchronised cultures. Synchronised cultures in sealed glass vials achieved adequate growth rates at previously unachievably-high inoculation cell densities, with minimal pH drift and negligible chemical loss over 24-h exposures. Algal exposures to a volatile test compound (chlorobenzene) yielded relatively high reproducibility of metabolic phenotypes over experimental repeats. This experimental test system extends existing toxicity testing formats to allow highly-replicated, omics-driven, mode-of-action discovery.
Collapse
|
47
|
Ng QX, Soh AYS, Venkatanarayanan N, Ho CYX, Lim DY, Yeo WS. A Systematic Review of the Effect of Probiotic Supplementation on Schizophrenia Symptoms. Neuropsychobiology 2019; 78:1-6. [PMID: 30947230 DOI: 10.1159/000498862] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/12/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Derangements of the gut microbiome have been linked to increased systemic inflammation and central nervous system disorders, including schizophrenia. This systematic review thus aimed to investigate the hypothesis that probiotic supplementation improves schizophrenia symptoms. METHODS By using the keywords (probiotic OR gut OR microbiota OR microbiome OR yogurt OR yoghurt OR lactobacillus OR bifidobacterium) AND (schizophrenia OR psychosis), a preliminary search of the PubMed, Medline, Embase, Google Scholar, ClinicalTrials.gov, Clinical Trials Register of the Cochrane Collaboration Depression, Anxiety and Neurosis Group (CCDANTR), and Cochrane Field for Complementary Medicine databases yielded 329 papers published in English between January 1, 1960 and May 1, 2018. Attempts were made to search grey literature as well. RESULTS Three clinical studies were reviewed, comparing the use of probiotics to placebo controls. Applying per-protocol analysis and a fixed-effects model, there was no significant difference in schizophrenia symptoms between the group that received probiotic supplementation and the placebo group post-intervention as the standardized mean difference was -0.0884 (95% CI -0.380 to 0.204, p = 0.551). Separate analyses were performed to investigate the effect of probiotic supplementation on positive or negative symptoms of schizophrenia alone. In both instances, no significant difference was observed as well. CONCLUSION Based on current evidence, limited inferences can be made regarding the efficacy of probiotics in schizophrenia. Although probiotics may have other benefits, for example to regulate bowel movement and ameliorate the metabolic effects of antipsychotic medications, the clinical utility of probiotics in the treatment of schizophrenia patients remains to be validated by future clinical studies.
Collapse
Affiliation(s)
- Qin Xiang Ng
- MOH Holdings Pte Ltd., Singapore, Singapore,
- KK Women's and Children's Hospital, Singapore, Singapore,
| | - Alex Yu Sen Soh
- National University Hospital, National University Health System, Singapore, Singapore
| | | | | | - Donovan Yutong Lim
- Department of Child and Adolescent Psychiatry, Institute of Mental Health, Singapore, Singapore
| | - Wee-Song Yeo
- National University Hospital, National University Health System, Singapore, Singapore
| |
Collapse
|
48
|
Wang P, Zhang B, Zhang H, He Y, Ong CN, Yang J. Metabolites change of Scenedesmus obliquus exerted by AgNPs. J Environ Sci (China) 2019; 76:310-318. [PMID: 30528022 DOI: 10.1016/j.jes.2018.05.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 06/09/2023]
Abstract
With increasing emission of silver nanoparticles (AgNPs) into the environment, it is important to understand the effects of ambient concentration of AgNPs. The biological effects of AgNPs on Scenedesmus obliquus, a ubiquitous freshwater microalgae, was evaluated. AgNPs exerted a minor inhibitory effect at low doses. Non-targeted metabolomic studies were conducted to understand and analyze the effect of AgNPs on algal cells from a molecular perspective. During the 48 hr of exposure to AgNPs, 30 metabolites were identified, of which nine had significant changes compared to the control group. These include d-galactose, sucrose, and d-fructose. These carbohydrates are involved in the synthesis and repair of cell walls. Glycine, an important constituent amino acid of glutathione, increased with AgNP exposure concentration increasing, likely to counteract an increased intracellular oxidative stress. These results provide a new understanding of the toxicity effects and mechanism of AgNPs. These metabolites could be useful biomarkers for future research, employed in the early detection of environmental risk from AgNPs.
Collapse
Affiliation(s)
- Pu Wang
- School of Environmental Science & Engineering, Shanghai Jiaotong University, Shanghai 200240, China; School of Municipal and Environmental Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | - Bo Zhang
- School of Environmental Science & Engineering, Shanghai Jiaotong University, Shanghai 200240, China.
| | - Hui Zhang
- NUS Environmental Research Institute, National University of Singapore, Singapore 117597, Singapore
| | - Yiliang He
- School of Environmental Science & Engineering, Shanghai Jiaotong University, Shanghai 200240, China
| | - Choon Nam Ong
- NUS Environmental Research Institute, National University of Singapore, Singapore 117597, Singapore
| | - Jun Yang
- School of Municipal and Environmental Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
49
|
Wang P, Ng QX, Zhang H, Zhang B, Ong CN, He Y. Metabolite changes behind faster growth and less reproduction of Daphnia similis exposed to low-dose silver nanoparticles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 163:266-273. [PMID: 30056340 DOI: 10.1016/j.ecoenv.2018.07.080] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
With increasing presence of silver nanoparticles (AgNPs) into the environment, the chronic and low-dose effects of AgNPs are of vital concern. This study evaluated chronic physiological effects of AgNPs on Daphnia similis, which were exposed to two ambient encountered concentrations (0.02 and 1 ppb) of AgNPs for 21 days. It was observed that the low-dose AgNPs stimulated a significant increase in average length/dry mass, but inhibited reproduction compared to control specimens. Non-targeted metabolomics based on liquid chromatography-quadrupole-time of flight-mass spectrometry (LC-QTOFMS-MS) and gas chromatograph-quadrupole time of flight mass spectrometry (GC-QTOF-MS) were utilized to elucidate the underlying molecular mechanisms of these responses. Forty one metabolites were identified, including 18 significantly-changed metabolites, suggesting up regulation in protein digestion and absorption (amino acids, such as isoleucine, tryptophan, lysine, leucine, valine, aspartic acid, threonine, tyrosine) and down regulation of lipid related metabolism (fatty acids, such as arachidonic acid, stearidonic acid, linoelaidic acid and eicosapentaenoic acid) were key events in these responses. The increase in these amino acid contents explains the accelerated growth of D. similis from the metabolic pathway of aminoacyl-tRNA biosynthesis. Down regulation of fatty acid contents corresponds to the observed drop in the reproduction rate considering the fatty acid biological enzymatic reaction pathways. Significant changes in metabolites provided a renewed mechanistic understanding of low concentration chronic toxicity of AgNP toxicity on D. similis.
Collapse
Affiliation(s)
- Pu Wang
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; School of Municipal and Environmental Engineering, Lanzhou Jiaotong University, 88 Anning Road, Lanzhou 730070, China
| | - Qin Xiang Ng
- Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Hui Zhang
- NUS Environmental Research Institute, National University of Singapore, 117597, Singapore
| | - Bo Zhang
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Choon Nam Ong
- NUS Environmental Research Institute, National University of Singapore, 117597, Singapore
| | - Yiliang He
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
50
|
Chen J, Li K, Le XC, Zhu L. Metabolomic analysis of two rice (Oryza sativa) varieties exposed to 2, 2', 4, 4'-tetrabromodiphenyl ether. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:308-317. [PMID: 29499574 DOI: 10.1016/j.envpol.2018.02.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 06/08/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are toxic chemicals widely distributed in the environment, but few studies are available on their potential toxicity to rice at metabolic level. Therefore we exposed ten rice (Oryza sativa) varieties to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), a predominant congener of PBDEs, in hydroponic solutions with different concentrations. Two varieties that showed different biological effects to BDE-47, YY-9 and LJ-7, were screened as sensitive and tolerant varieties according to changes of morphological and physiological indicators. Metabolic research was then conducted using gas chromatography-mass spectrometry combined with diverse analyses. Results showed that LJ-7 was more active in metabolite profiles and adopted more effective antioxidant defense machinery to protect itself against oxidative damages induced by BDE-47 than YY-9. For LJ-7, the contents of 13 amino acids and 24 organic acids, especially l-glutamic acid, beta-alanine, glycolic acid and glyceric acid were up-regulated significantly which contributed to scavenging reactive oxygen species. In the treatment of 500 μg/L BDE-47, the contents of these four metabolites increased by 33.6-, 19.3-, 10.6- and 10.2-fold, respectively. The levels of most saccharides (such as d-glucose, lactulose, maltose, sucrose and d-cellobiose) also increased by 1.7-12.4 fold which promoted saccharide-related biosynthesis metabolism. Elevation of tricarboxylic acid cycle and glyoxylate and dicarboxylate metabolism enhanced energy-producing processes. Besides, the contents of secondary metabolites, chiefly polyols and glycosides increased significantly to act on defending oxidative stress induced by BDE-47. In contrast, the levels of most metabolites decreased significantly for YY-9, especially those of 13 amino acids (by 0.9%-67.1%) and 19 organic acids (by 7.8%-70.0%). The positive metabolic responses implied LJ-7 was tolerant to BDE-47, while the down-regulation of most metabolites indicated the susceptible nature of YY-9. Since metabolic change might affect the yield and quality of rice, this study can provide useful reference for rice cultivation in PBDEs-polluted areas.
Collapse
Affiliation(s)
- Jie Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Kelun Li
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - X Chris Le
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|