1
|
Deng J, Fu L, Wang Y, Zhang C, Deng Y, Luo X, Mailhot G. The Effect of [Glu][H 2PO 4] via Foliar Spraying on Cadmium and Arsenic Absorption and Translocation in Rice Plants. TOXICS 2025; 13:133. [PMID: 39997948 PMCID: PMC11860629 DOI: 10.3390/toxics13020133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025]
Abstract
Rice is the main source of cadmium (Cd) and arsenic (As) in Chinese diet. The formulation of targeted agronomic interventions for mitigating Cd and As bioaccumulation in rice grains constitutes a critical pathway toward ensuring food safety and public health security. Foliar spraying technology with ionic liquids, effectively reduces Cd/As content in rice. In this study, an ionic liquid of amino acids ([Glu][H2PO4]) as a foliar conditioner was applied to two varieties of rice (X24 and Z35) to explore the mechanism of reducing the accumulation of Cd/As in rice. The results showed that [Glu][H2PO4] reduced Cd/As levels by up to 58.57% and 44.09%, respectively. [Glu][H2PO4] reduced the transfer factor from the root system to flag leaves, nodes, and other organs, thus reducing the Cd/As content in them. [Glu][H2PO4] promoted amino acid synthesis in seeds, increased Ca2+ level, increased OsGLR3.1-3.5 expression, and decreased OsLsi1-3 expression in flag leaves, thereby Cd/As was inhibited from being absorbed and transported by rice. The results demonstrated that the foliar application of [Glu][H2PO4] significantly mitigated the accumulation of Cd/As in rice. This study introduces a novel and effective strategy for reducing Cd/As accumulation in rice, hoping to enhance the safety and quality of rice crops.
Collapse
Affiliation(s)
- Jiawei Deng
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute of Ministry of Agriculture and Rural Affairs (MARA), Tianjin 300191, China; (J.D.); (L.F.); (Y.W.); (X.L.)
| | - Lin Fu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute of Ministry of Agriculture and Rural Affairs (MARA), Tianjin 300191, China; (J.D.); (L.F.); (Y.W.); (X.L.)
| | - Yanan Wang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute of Ministry of Agriculture and Rural Affairs (MARA), Tianjin 300191, China; (J.D.); (L.F.); (Y.W.); (X.L.)
| | - Changbo Zhang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute of Ministry of Agriculture and Rural Affairs (MARA), Tianjin 300191, China; (J.D.); (L.F.); (Y.W.); (X.L.)
| | - Yun Deng
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China;
| | - Xin Luo
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute of Ministry of Agriculture and Rural Affairs (MARA), Tianjin 300191, China; (J.D.); (L.F.); (Y.W.); (X.L.)
| | - Gilles Mailhot
- Institut de Chimie de Clermont-Ferrand, CNRS, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France;
| |
Collapse
|
2
|
Zhou W, Fan Y, Jin C, Wang Y, Yan F, Wang T, Liu Q, Chen Y, Deng F, Lei X, Hu J, Tao Y, Cheng H, Ren W. High-yield rice with rich nutrition and low toxicity can be obtained under potato-rice cropping system. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1799-1808. [PMID: 39387437 DOI: 10.1002/jsfa.13957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 05/30/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Rice is often rotated with dryland crops to produce sufficient foodstuff, as rice is the main food crop of humans. In order to verify whether under the intensive rice-based cropping system, high yield and good quality of rice can be achieved simultaneously to ensure food security. Five long-term paddy-upland rotations - wheat-rice (WR), rapeseed-rice (RR), garlic-rice (GR), broad beans-rice (BR) and potato-rice (PR) - were conducted from 2014 to investigate rice yield, along with the profiling of 24 elements in rice grain. RESULTS Mg, Zn, Cu, As, Mo and Sb concentrations were highest in the aleurone layer, and Ag and Cd concentrations showed little variation among different parts of the rice grain. Al, Ti, V, Si, Fe and Tl concentrations in the endosperm under GR were higher, while the Se concentration under PR was the highest. Furthermore, the yield of GR and PR were higher than the other three rotations with N supplementation, and the sustainable yield index of PR and WR were larger than 0.8. CONCLUSION When we consider the concentration of toxic (As, Cd and Pb) and nutrient elements (Ca, Fe, Zn, Se, Cu and Mg) in the endosperm and grain yields, PR can simultaneously achieve high yield, high nutrition and low toxicity with different nitrogen treatments. Here we provide novel insights regarding the selection of rice-based cropping systems, focused on producing nutritious and safe rice with high grain yield. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wei Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China / Key Laboratory of Eco-physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs/Sichuan Agricultural University, Chengdu, China
| | - Yu Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China / Key Laboratory of Eco-physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs/Sichuan Agricultural University, Chengdu, China
| | - Chunlian Jin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China / Key Laboratory of Eco-physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs/Sichuan Agricultural University, Chengdu, China
| | - Yajun Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China / Key Laboratory of Eco-physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs/Sichuan Agricultural University, Chengdu, China
| | - Fengjun Yan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China / Key Laboratory of Eco-physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs/Sichuan Agricultural University, Chengdu, China
| | - Tao Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China / Key Laboratory of Eco-physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs/Sichuan Agricultural University, Chengdu, China
| | - Qi Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China / Key Laboratory of Eco-physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs/Sichuan Agricultural University, Chengdu, China
| | - Yong Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China / Key Laboratory of Eco-physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs/Sichuan Agricultural University, Chengdu, China
| | - Fei Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China / Key Laboratory of Eco-physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs/Sichuan Agricultural University, Chengdu, China
| | - Xiaolong Lei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China / Key Laboratory of Eco-physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs/Sichuan Agricultural University, Chengdu, China
| | - Jianfeng Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China / Key Laboratory of Eco-physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs/Sichuan Agricultural University, Chengdu, China
| | - Youfeng Tao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China / Key Laboratory of Eco-physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs/Sichuan Agricultural University, Chengdu, China
| | - Hong Cheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China / Key Laboratory of Eco-physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs/Sichuan Agricultural University, Chengdu, China
| | - Wanjun Ren
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China / Key Laboratory of Eco-physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs/Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Ge Y, Jia P, Tian S, Lu L. Cadmium distribution in rice: Understanding the role of plant nodes and growth stages. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124919. [PMID: 39251124 DOI: 10.1016/j.envpol.2024.124919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/18/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Cadmium (Cd) contamination in farmland poses a significant threat to food security in staple crops, especially rice. Using a mix of hydroponic and soil culture methods, stable isotope tracers, and advanced analytical techniques, this study elucidated the mechanisms of Cd uptake, translocation, and accumulation in rice throughout different growth stages. Despite a notable linear correlation between soil DTPA (diethylene-triaminepentaacetic acid)-Cd and the total Cd concentration of rice, our findings showed that the influence of soil Cd level on the proportion of Cd in grain was negligible. The study highlighted the dynamic response of Cd distribution within plant nodes to changes in DTPA-extractable Cd. Heading stage (HS) and mature stage (MS) were critical for Cd uptake and upward transport in rice, and the contribution of Cd absorption in brown rice was 28.61% and 40.16%, respectively. Moreover, the distribution of Cd in nodes showed how important nodes are for controlling and redistributing Cd in rice. In the HS, the lower node had a function in re-transporting, whereas in the MS, there was a considerable redistribution of Cd in the upper node. These insights can help us understand rice Cd dynamics and develop agronomic techniques and rice cultivars that minimize Cd accumulation.
Collapse
Affiliation(s)
- Yining Ge
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Peihan Jia
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shengke Tian
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Agricultural Resource and Environment of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lingli Lu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Agricultural Resource and Environment of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Liu Z, Sun H, Li Y, Bao Q, Huang Y. Metabolic regulation mechanism of melatonin for reducing cadmium accumulation and improving quality in rice. Food Chem 2024; 455:139857. [PMID: 38823141 DOI: 10.1016/j.foodchem.2024.139857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024]
Abstract
Melatonin acts as a potential regulator of cadmium (Cd) tolerance in rice. However, its practical value in rice production remains unclear. To validate the hypothesis that melatonin affects Cd accumulation and rice quality, a series of experiments were conducted. The results showed that exogenous melatonin application was associated with reduced Cd accumulation (23-43%) in brown rice. Fourier transform infrared spectroscopy (FTIR) analysis showed that exogenous melatonin affected the rice protein secondary structure and starch short-range structure. Metabolomics based on LC-MS/MS revealed that exogenous melatonin altered the brown rice metabolic profile, decreased fatty acid metabolite content, but increased amino acid metabolite, citric acid, melatonin biosynthetic metabolite, and plant hormone contents. These findings indicate that exogenous melatonin can effectively reduced Cd accumulation and improve rice quality through metabolic network regulation, serving as an effective treatment for rice cultivated in Cd-contaminated soil.
Collapse
Affiliation(s)
- Zewei Liu
- Innovation Team of Heavy Metal Ecotoxicology and Pollution Remediation, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Hongyu Sun
- Innovation Team of Heavy Metal Ecotoxicology and Pollution Remediation, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yan Li
- School of Energy and Environmental Sciences, Yunnan Normal University, Kunming 650500, China
| | - Qiongli Bao
- Innovation Team of Heavy Metal Ecotoxicology and Pollution Remediation, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Yizong Huang
- School of Energy and Environmental Sciences, Yunnan Normal University, Kunming 650500, China.
| |
Collapse
|
5
|
Wu W, Qi D, Chen Y, Wang J, Zhang G, Wang Q, Niu H, Zhao Q, Peng T. Exogenous selenium mitigates cadmium uptake and accumulation in two rice (Oryza sativa L.) varieties in cadmium-contaminated soil. Sci Rep 2024; 14:21248. [PMID: 39261527 PMCID: PMC11390724 DOI: 10.1038/s41598-024-72113-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024] Open
Abstract
Rice grown in cadmium (Cd)-contaminated soil, is a potential threat to human health, but exogenous selenium (Se) application on rice can mitigate Cd toxicity. However, the mechanisms underlying Se mitigation of Cd stress in ratoon rice (RR) are still poorly understood. We conducted a pot experiment with moderate Cd-contaminated yellow-brown paddy soil on two rice varieties 'Taoyouxiangzhan' (TX) and 'Liangyou 6326'(LY). For all treatments, 1.0 mg kg-1 sodium selenite solution was added to soil. Treatment T1 was sodium selenite only, and in the other treatments 100 mg L-1 Se solution was sprayed on the leaves at seedling stage (T2), at tillering stage (T3), and in early anthesis stage (T4). Se treatments decreased Cd accumulation in rice grains and herbage. Under foliar spraying 100 mg L-1 Se at the seedling + 1.0 mg kg-1 Se in soil (T2), leaf Cd content decreased 16.95% in the current season and grains content decreased 46.67% in the subsequent season. Furthermore, grain Se content increased 0.94 mg kg-1 for the TX variety combined with the analysis of Cd bio-accumulation factor in grains, and Se treatments effectively decreased Cd grain concentrations due to reduced Cd translocation from roots to grains. TX variety rice showed a more pronounced response to Se treatments than LY.
Collapse
Affiliation(s)
- Wenjiang Wu
- Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Biology, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
| | - Deqiang Qi
- Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Biology, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
| | - Yalong Chen
- Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Biology, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
| | - Jiaqi Wang
- Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Biology, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
| | - Ganggang Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
| | - Qinghua Wang
- Forestry and Fruit Research Institute of Beijing Academy of Agricultural Sciences, Beijing, 100089, People's Republic of China
| | - Hongbin Niu
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
| | - Quanzhi Zhao
- Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Biology, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China.
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China.
- College of Agronomy, Guizhou University, Guiyang, 550025, Guizhou, People's Republic of China.
| | - Ting Peng
- Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Biology, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China.
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China.
| |
Collapse
|
6
|
Fu L, Deng J, Liu S, Zhang C, Xue W, Mailhot G, Vione D, Deng Y, Wang C, Wang L. Efficient regulation of cadmium accumulation by carboxymethylammonium chloride in rice: Correlation analysis and expression of transporter gene OsGLR3. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172861. [PMID: 38685417 DOI: 10.1016/j.scitotenv.2024.172861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/11/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
The mechanism of carboxymethylammonium chloride (CC) regulating cadmium (Cd) accumulation in rice was studied in field and hydroponic experiments. Field experiments showed that 0.2-1.2 mmol L-1 CC spraying effectively reduced Cd accumulation by 44 %-77 % in early rice grains and 39 %-78 % in late rice grains, significantly increased calcium (Ca) content and amino acids content in grains, as well as alleviated Cd-induced oxidative damage in leaves. Hydroponic experiments further verified the inhibition effect of CC on Cd accumulation. 1.2 mmol L-1 CC made the highest decrease of Cd content in shoots and roots of hydroponic seedlings by 45 % and 53 %, respectively. Exogenous CC significantly increased glutamate (Glu), glycine (Gly) and glutathione (GSH) content, and improved the activities of catalase (CAT) and superoxide dismutase (SOD) by 41-131 % and 11-121 % in shoots of hydroponic seedlings, respectively. Exogenous CC also increased the relative expression of OsGLR3.1-3.5 in the shoots and roots of hydroponic seedlings. The quantum computational chemistry was used to clarify that the Gly radical provided by CC could form various complexes with Cd through carboxyl oxygen atoms. These results showed that exogenous application of CC improved the tolerance to Cd by enhancing the antioxidant capacity; inhibited the absorption, transport and accumulation of Cd in rice by (1) promoting chelation, (2) increasing the GLRs activity through upregulating the content of Glu, Gly, as well as the expression of OsGLR3.1-3.5.
Collapse
Affiliation(s)
- Lin Fu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute of Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Jiawei Deng
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute of Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Shuangyue Liu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute of Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Changbo Zhang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute of Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Weijie Xue
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute of Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Gilles Mailhot
- Université Clermont Auvergne, CNRS, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Davide Vione
- Università degli Studi di Torino, Dipartimento di Chimica, Via P. Giuria 5, 10125 Torino, Italy
| | - Yun Deng
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Changrong Wang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute of Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Lei Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
7
|
Wang J, Chen X, Chu S, Hayat K, Chi Y, Liao X, Zhang H, Xie Y, Zhou P, Zhang D. Conjoint analysis of physio-biochemical, transcriptomic, and metabolomic reveals the response characteristics of solanum nigrum L. to cadmium stress. BMC PLANT BIOLOGY 2024; 24:567. [PMID: 38880885 PMCID: PMC11181532 DOI: 10.1186/s12870-024-05278-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Cadmium (Cd) is a nonessential element in plants and has adverse effects on the growth and development of plants. However, the molecular mechanisms of Cd phytotoxicity, tolerance and accumulation in hyperaccumulators Solanum nigrum L. has not been well understood. Here, physiology, transcriptome, and metabolome analyses were conducted to investigate the influence on the S. nigrum under 0, 25, 50, 75 and 100 µM Cd concentrations for 7 days. Pot experiments demonstrated that compared with the control, Cd treatment significantly inhibited the biomass, promoted the Cd accumulation and translocation, and disturbed the balance of mineral nutrient metabolism in S. nigrum, particularly at 100 µM Cd level. Moreover, the photosynthetic pigments contents were severely decreased, while the content of total protein, proline, malondialdehyde (MDA), H2O2, and antioxidant enzyme activities generally increased first and then slightly declined with increasing Cd concentrations, in both leaves and roots. Furthermore, combined with the previous transcriptomic data, numerous crucial coding-genes related to mineral nutrients and Cd ion transport, and the antioxidant enzymes biosynthesis were identified, and their expression pattern was regulated under different Cd stress. Simultaneously, metabolomic analyses revealed that Cd treatment significantly changed the expression level of many metabolites related to amino acid, lipid, carbohydrate, and nucleotide metabolism. Metabolic pathway analysis also showed that S. nigrum roots activated some differentially expressed metabolites (DEMs) involved in energy metabolism, which may enhance the energy supply for detoxification. Importantly, central common metabolism pathways of DEGs and DEMs, including the "TCA cycle", "glutathione metabolic pathway" and "glyoxylate and dicarboxylate metabolism" were screened using conjoint transcriptomics and metabolomics analysis. Our results provide some novel evidences on the physiological and molecular mechanisms of Cd tolerance in hyperaccumulator S. nigrum plants.
Collapse
Affiliation(s)
- Juncai Wang
- Guizhou Academy of Sciences, Guiyang, Guizhou, 550001, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- The Land Greening Remediation Engineering Research Center of Guizhou Province, Guiyang, 550001, China
| | - Xunfeng Chen
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kashif Hayat
- Key Laboratory of Pollution Exposure and Health Intervention, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Yaowei Chi
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaofeng Liao
- Guizhou Academy of Sciences, Guiyang, Guizhou, 550001, China
- The Land Greening Remediation Engineering Research Center of Guizhou Province, Guiyang, 550001, China
- Guizhou University, Guiyang, 550025, China
| | - Hongliang Zhang
- Guizhou Academy of Sciences, Guiyang, Guizhou, 550001, China
- The Land Greening Remediation Engineering Research Center of Guizhou Province, Guiyang, 550001, China
| | - Yuangui Xie
- Guizhou Academy of Sciences, Guiyang, Guizhou, 550001, China.
- The Land Greening Remediation Engineering Research Center of Guizhou Province, Guiyang, 550001, China.
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
8
|
Fu L, Deng J, Lao DR, Zhang C, Xue W, Deng Y, Luo X. Effects of Foliar Spraying of Dicarboxylicdimethylammonium Chloride on Cadmium and Arsenic Accumulation in Rice Grains. TOXICS 2024; 12:418. [PMID: 38922098 PMCID: PMC11209034 DOI: 10.3390/toxics12060418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024]
Abstract
A field experiment with double cropping rice was carried out to study the foliar application effects of dicarboxylicdimethylammonium chloride (DDAC) on cadmium (Cd) and arsenic (As) accumulation in rice grains. The results showed that the spraying of DDAC could significantly reduce the accumulation of Cd and As in rice grains. The highest reductions in Cd and As content were observed when 1.5 mmol L-1 DDAC was sprayed, with 49.1% and 27.4% reductions in Cd and As content in early rice grains and 56.5% and 28.1% reductions in Cd and As content in late rice grains, respectively. In addition, the content of calcium (Ca) in rice grains increased significantly after DDAC foliar application, which was also conducive to the synthesis of amino acids such as glutamate (Glu), glycine (Gly) and cysteine (Cys) in rice grains. The results indicated that the foliar spraying of DDAC can inhibit the absorption, transport, accumulation and toxicity of Cd and As in rice grains by increasing amino acid synthesis and regulating the absorption and transport of essential elements.
Collapse
Affiliation(s)
- Lin Fu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (L.F.); (J.D.); (D.R.L.); (X.L.)
| | - Jiawei Deng
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (L.F.); (J.D.); (D.R.L.); (X.L.)
| | - Dayliana Ruiz Lao
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (L.F.); (J.D.); (D.R.L.); (X.L.)
| | - Changbo Zhang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (L.F.); (J.D.); (D.R.L.); (X.L.)
| | - Weijie Xue
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (L.F.); (J.D.); (D.R.L.); (X.L.)
| | - Yun Deng
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China;
| | - Xin Luo
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (L.F.); (J.D.); (D.R.L.); (X.L.)
| |
Collapse
|
9
|
Li W, Li J, Hussain K, Peng K, Yu J, Xu M, Yang S. Transporters and phytohormones analysis reveals differential regulation of ryegrass (Lolium perenne L.) in response to cadmium and arsenic stresses. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134228. [PMID: 38626683 DOI: 10.1016/j.jhazmat.2024.134228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/18/2024] [Accepted: 04/04/2024] [Indexed: 04/18/2024]
Abstract
Cadmium (Cd) and arsenic (As) are two highly toxic heavy metals and metalloids that coexist in many situations posing severe threats to plants. Our investigation was conducted to explore the different regulatory mechanisms of ryegrass (Lolium perenne L.) responding to individual and combined Cd and As stresses in hydroponics. Results showed that the ryegrass well-growth phenotype was not affected by Cd stress of 10 mg·L-1. However, As of 10 mg·L-1 caused rapid water loss, proline surge, and chlorosis in shoots, suggesting that ryegrass was highly sensitive to As. Transcriptomic analysis revealed that the transcription factor LpIRO2 mediated the upregulation of ZIP1 and YSL6 that played an important role in Cd tolerance. We found that the presence of As caused the overexpression of LpSWT12, a process potentially regulated by bHLH14, to mitigate hyperosmolarity. Indoleacetic acid (IAA) and abscisic acid (ABA) contents and expression of their signaling-related genes were significantly affected by As stress rather than Cd. We predict a regulatory network to illustrate the interaction between transporters, transcription factors, and signaling transduction, and explain the antagonism of Cd and As toxicity. This present work provides a research basis for plant protection from Cd and As pollution.
Collapse
Affiliation(s)
- Wenwen Li
- School of Ecology and Environment at Anhui Normal University, Wuhu, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, China
| | - Jie Li
- School of Ecology and Environment at Anhui Normal University, Wuhu, China
| | - Khateeb Hussain
- School of Ecology and Environment at Anhui Normal University, Wuhu, China
| | - Kaihao Peng
- Beijing Peace Carbon Environmental Technology Co. Ltd, China
| | - Jiaming Yu
- School of Ecology and Environment at Anhui Normal University, Wuhu, China
| | - Miaoqing Xu
- School of Ecology and Environment at Anhui Normal University, Wuhu, China
| | - Shiyong Yang
- School of Ecology and Environment at Anhui Normal University, Wuhu, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, China.
| |
Collapse
|
10
|
Zhang Y, Xu Y, Huang Q, Liang X, Sun Y, Wang L. Transcriptome and ultrastructural analysis revealed the mechanism of Mercapto-palygorskite on reducing Cd content in wheat. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132890. [PMID: 37922582 DOI: 10.1016/j.jhazmat.2023.132890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
Large areas of crop yields in northern China have faced with cadmium (Cd) contamination problems. Mercapto-modified palygorskite (MP), as a highly efficient immobilization material, could reduce Cd absorption in wheat and alleviate its biotoxicity. However, the molecular mechanism underlying MP-mediated Cd reduction and detoxification processes in wheat is not well understood. This aim of this study was to investigate the biochemical and molecular mechanisms underlying the reduction in Cd accumulation in wheat (Triticum aestivum L.). The results showed that MP application decreased the Cd concentration by 68.91-74.32% (root) and 70.68-77.2% (shoot), and significantly increased the glutathione (GSH) and phytochelatins (PCs) contents in root and shoot. In addition, with the application of MP, the percentage of Cd in the cell walls and organelles of wheat decreased, while that of Cd in soluble components was increased. The content of Cd in all components was significantly reduced. Ultrastructural analysis revealed that MP thickened the cell wall, promoted vesicle formation in the membrane and protected the integrity of intracellular organelles in wheat. Transcriptome analysis further confirmed the above results. MP upregulated the expression of several genes (CCR, CAD COMT and SUS) involved in cell wall component biosynthesis and promoted vesicle formation on cell membranes by upregulating the expression of PLC and IPMK genes. In addition, genes related to antioxidant synthesis (PGD, glnA and GSS) and photosynthesis (Lhca, Lhcb) were altered by MP to alleviate Cd toxicity in wheat. This present work will help to more thoroughly elucidate the molecular mechanism by which wheat defends against Cd contamination under MP application and provide and important research basis for the application of this material in the future.
Collapse
Affiliation(s)
- Yu Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, People's Republic of China
| | - Yingming Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, People's Republic of China.
| | - Qingqing Huang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, People's Republic of China
| | - Xuefeng Liang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, People's Republic of China
| | - Yuebing Sun
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, People's Republic of China
| | - Lin Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, People's Republic of China
| |
Collapse
|
11
|
Zhan J, Ren Y, Huang Y, Ju X, Liu H, Christie P, Wu L. New insights into the key role of node I in thallium accumulation in seed of coix (Coix lacryma-jobi L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168389. [PMID: 37952669 DOI: 10.1016/j.scitotenv.2023.168389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/04/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
The mechanisms underlying the distribution of many toxic metal(loid)s in shoots and metal(loid) transport to grains have been well documented in the quest for food safety but there remains a lack of knowledge on thallium (Tl) accumulation in food crops. Here, field investigations combined with a glasshouse pot experiment were conducted to investigate the characteristics of Tl distribution and accumulation in coix, a major food crop in south Guizhou province, China, and the role of node I in restricting Tl transport to the seed. Fourteen percent of coix seed samples collected from the Lanmuchang Tl-As-Hg mine contained higher Tl concentrations than the recommended limit for foods and feedstuffs in Germany (0.5 mg kg-1), with the highest exceedance rate of the metal(loid)s determined, when grown in soils surrounding the mine with a very high Tl concentration of 0.07-89.5 mg kg-1 and a general low pH of 4.19-6.48. Thallium concentrations were higher in coix nodes than in internodes, followed by roots and grains. The Tl translocation factors from node I to grains were 0.01-0.21 and were the lowest of any translocation factors between different tissues. Node I is therefore the key tissue restricting Tl transport to coix grains. Thallium was localized mainly in the diffuse vascular bundles (DVBs) in node I. The co-localization of Tl and sulfur in the DVBs and Tl contamination-induced phytochelatin (PC) accumulation indicate that Tl storage in the DVBs involving complexation with PCs in node I is an important process in Tl accumulation in coix grains. Moreover, the area of DVBs in node I increased with increasing soil Tl pollution level, providing more channels for Tl transport to the panicles and grains and thereby acting as a key factor restricting Tl transport to the grains. These results provide new insights into the key role of node I in Tl accumulation in coix grains and indicate key points to minimize Tl accumulation in grains for food safety.
Collapse
Affiliation(s)
- Juan Zhan
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yi Ren
- College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Yufeng Huang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xianhang Ju
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Hongyan Liu
- College of Agriculture, Guizhou University, Guiyang 550025, China.
| | - Peter Christie
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Longhua Wu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
12
|
Liu Q, Zhang Z, Bai C, Li Y, Yin X, Lin W, Yao L. Disturbed nutrient accumulation and cell wall metabolism in panicles are responsible for rice straighthead disease. PHYSIOLOGIA PLANTARUM 2024; 176:e14214. [PMID: 38366694 DOI: 10.1111/ppl.14214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/26/2023] [Accepted: 01/19/2024] [Indexed: 02/18/2024]
Abstract
Rice straighthead disease substantially reduces crop yield, posing a significant threat to global food security. Dimethylarsinic acid (DMA) is the causal agent of straighthead disease and is highly toxic to the reproductive tissue of rice. However, the precise physiological mechanism underlying DMA toxicity remains unknown. In this study, six rice varieties with varying susceptibility to straighthead were utilized to investigate the growth performance and element distribution in rice panicles under DMA stress through pot experiments, as well as to explore the physiological response to DMA using transcriptomic methods. The findings demonstrate significant variations in both DMA accumulation and straighthead sensitivity among cultivars. The susceptible varieties exhibited higher DMA accumulation indices and displayed typical symptoms of straighthead disease, including erect panicles, deformed rachides and husks, and reduced seed setting rate and grain yield when compared to the resistant varieties. Moreover, DMA addition promoted mineral nutrients to accumulate in rachides and husks but less in grains. DMA showed preferential accumulation in rice grains with a distribution pattern similar to that of Copper (Cu) and zinc (Zn) within the panicle. Transcriptome analyses underscored the substantial impact of DMA on gene expression related to mineral metabolism. Notably, DMA addition significantly up-regulated the expression of pectin methylesterase, pectin lyase, polygalacturonase, and exogalacturonase genes in Nanjingxiangzhan, while these genes were down-regulated or weakly expressed in Ruanhuayou 1179. The alteration of pectin metabolic pathways induced by DMA may lead to abnormality of cell wall assembly and modification, thereby resulting in deformed rice panicles.
Collapse
Affiliation(s)
- Qinghui Liu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Zhijun Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Cuihua Bai
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Guangzhou, China
| | - Yi Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Xueying Yin
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Wanting Lin
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Lixian Yao
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Guangzhou, China
| |
Collapse
|
13
|
Chen B, Deng X, Ma Q, Zhao Y, Wang A, Zhang X, Zeng Q. Cadmium accumulation in brown rice (Oryza sativa L.) depends on environmental factors and nutrient transport: A three-year field study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166942. [PMID: 37690756 DOI: 10.1016/j.scitotenv.2023.166942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Cadmium (Cd) accumulation in brown rice is a complex process in agroecosystems and is influenced by multiple factors, such as climate, soil properties, and nutrient transport. However, during the Cd transport process (soil-root-straw-brown rice), it remains unclear how Cd concentration in brown rice (BCd) is causal relationship to environmental factors and nutrient transport. The differences in precipitation, soil properties, nutrient transport, and Cd transport were studied through a three-year fixed-point field trial and linked them to the standard of Cd and nutrient absorption and transport processes. The results showed that the available Cd concentration (ACd), and BCd in 2020 were lower than those in 2019 and 2021, but monthly precipitation (MP) was higher in 2020 than in 2019 and 2021. The MP and niche metrics were significantly negatively associated with ACd and BCd. However, the relationship between the form and location of different nutrient elements and Cd in roots, Cd in straws, and BCd also varied during the transport of nutrient elements and Cd from soil to root to straw to brown rice. Structural equation modelling analysis showed that nitrogen (N 15.5 %), phosphorus (P 14.1 %), silicon (Si 4.2 %), and iron (Fe 7.6 %) transport were more closely related to BCd than to potassium (K), calcium (Ca), magnesium (Mg), and manganese (Mn). The increase in MP significantly inhibited the increase in BCd, whereas the MP led to a decrease in BCd by affecting the transport of N and Fe. Among them, Si, Fe, and BCd had indirect causal relationships, whereas N, P, and BCd had direct causal relationships. Particularly, P is a crucial nutrient in reducing BCd in the Cd transport process. Our results highlight a strong causal relationship between environmental factors and nutrient transport and BCd, and provide a theoretical basis for fertiliser application in Cd-contaminated agroecosystems.
Collapse
Affiliation(s)
- Bin Chen
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Xiao Deng
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Qiao Ma
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Yingyue Zhao
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Andong Wang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Xiaopeng Zhang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230001, China
| | - Qingru Zeng
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
14
|
Tan X, Zhang Y, Ren M, Qie H, Liu M, Cui J, Liu D, Jiao C, Lin A. Effects of soil amendments on Cd and As mobility in the soil-rice system and their distribution in the grain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166608. [PMID: 37640070 DOI: 10.1016/j.scitotenv.2023.166608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/01/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
The accumulation, mobilization, and distribution of toxic metal(loid)s in rice are key factors that affect food security and determine bio-utilization patterns. In this study, five soil amendments with different components were used in paddy fields to study the key factors: organic amendments: (1) polyaspartic acid (OA1) and (2) organic fertilizer (OA2); inorganic amendments: (3) kaolinite (IA1) and (4) magnesium slag (IA2); and organic-inorganic composite amendments: (5) modified biochar/quicklime (OIA). Although the Cd and As exhibited opposite chemical dissolution behaviors, IA1/OIA, can simultaneously reduce their accumulation and transfer coefficients in rice tissues, while other amendments only work for one of them. The in situ distribution in grains showed that IA1/OIA changed the original Cd distribution in the lemma and palea, whereas all amendments reduced Cd accumulation in the germ. In contrast, OA1/IA2 amendments led to more As accumulation in the rice husks and bran than in the endosperm center, and the germ had higher As signals. Because of their similar transport pathways and interactions, the concentrations of Cd and As in the grains were correlated with a variety of mineral elements (Fe, Mo, Zn, etc.). Changes in the Cd/As concentration and distribution in rice were achieved through the improvement of soil properties and plant growth behavior through amendments. The application of OIA resulted in the highest immobilization indices, at 82.17 % and 35.34 % for Cd and As, respectively. The Cd/As concentrations in the rice grains were highly positively correlated with extractable-Cd/As in the soil (Cd: R2 = 0.95, As: R2 = 0.93). These findings reveal the migration and distribution mechanisms of Cd and As in the soil-rice system, and thus provide fundamental information for minimizing food safety risk.
Collapse
Affiliation(s)
- Xiao Tan
- College of Chemical Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Yinjie Zhang
- College of Chemical Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Meng Ren
- College of Chemical Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Hantong Qie
- College of Chemical Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Meng Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Jun Cui
- College of Chemical Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Dongpo Liu
- College of Ecological Environment, Institute of Disaster Prevention, 065201, Hebei, China
| | - Chunlei Jiao
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Key Laboratory for Bio Medical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China.
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, 100029 Beijing, China.
| |
Collapse
|
15
|
Song Y, Liu Y, Li H, Fang Y, Lu D, Yang Z. The crucial elements for lettuce (Lactuca sativa L.) growth under DMA stress and the linkage with DMA behavior: A new application of ionome. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119124. [PMID: 37776798 DOI: 10.1016/j.jenvman.2023.119124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/12/2023] [Accepted: 09/17/2023] [Indexed: 10/02/2023]
Abstract
Dimethylarsinic acid (DMA) is one of the common arsenic (As) species present in soil and is more toxic to plants than others. Identifying the crucial elements for plant growth under DMA stress is essential to enhance plant tolerance to DMA. Herein, we provided for the first time an ionome-based approach to address this issue. The phenotype, As species and concentrations of 11 essential elements in lettuce tissues were monitored under exposures of 0.1, 0.5, 1, 2, 5 mg L-1 DMA in hydroponic culture for 32 days. Lettuces remained normal (no significant difference in phenotype from the control) under 0.1-2 mg L-1 DMA stress, and were inhibited with fresh weights of leaf and root under 5 mg L-1 DMA stress. Integrating the difference in ionome profiles between the two growth states (normal and inhibited) and the responses of the individual element, Mg and S were clarified as the most possible candidates for the crucial elements for lettuce growth under DMA stress. Under 5 mg L-1 DMA stress, the accumulation of Mg and S declined, yet their BCF values were significantly increased, which was consistent with the change in BCF of DMA. Based on the physiological functions of Mg and S and the toxicity of DMA, it could be inferred that the enhanced transfer of Mg and S to leaves should be induced by the potential damage caused by the increased DMA accumulation in leaves, and would result in a shortage of both elements in roots as well as the growth inhibition.
Collapse
Affiliation(s)
- Yang Song
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China.
| | - Yang Liu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China.
| | - Ying Fang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China
| | - Denglong Lu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China.
| |
Collapse
|
16
|
Huang Z, Guo L, Chen X, Sun J, Ye Y, Sheng L, Zhang Y, Zhou J, Ji J, Sun X. Long-term chronic food-derived arsenic exposure induce the urinary system metabolic dysfunction in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165499. [PMID: 37454865 DOI: 10.1016/j.scitotenv.2023.165499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
The consumption of rice contaminated with arsenic on a long-term basis has emerged as a pressing public health issue of global significance. Arsenic-induced urinary injury, particularly kidney damage, has received widespread attention. In this study, mice model under long-term arsenic exposure was established, mouse were exposed to rice arsenic (30 mg/kg) for 14 months. Changes of related metabolites were observed based on kidney metabolomics and lipidomics, and major biomarkers were screened by urine metabolomics. The results showed that phosphatidylethanolamine (PE) was significantly increased and phosphatidycholine (PC) and phosphatidylglycerol (PG) were significantly reduced after arsenic exposure, leading to related downstream lipid metabolism disorders. The metabolic pathways for amino acid and energy were observed to be impacted. In addition, metabolic disorders due to arsenic exposure may be associated with inherited neurometabolic disorders, such as D-2-hydroxyglutaric aciduria (D-2-HGA), and pyruvate carboxylase deficiency (PCD), which is predicted based on significant difference biomarkers (2-oxoglutarate, malic acid, and succinic acid) screened for urine. This study elucidates the mechanism of toxicity in the urinary system induced by arsenic exposure at nearly half life cycle, which furnishes crucial scientific evidence pertaining to the toxicity and risk evaluation associated with chronic exposure to the arsenic.
Collapse
Affiliation(s)
- Zhongjia Huang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Lianxian Guo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Xu Chen
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Lina Sheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Yinzhi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Jianzhong Zhou
- College of Food Science and Pharmacy, Xinjiang Agricultural University, No. 311 Nongda Dong Road, Ürümqi, 830052, Xinjiang ygur Autonomous Region, PR China
| | - Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, PR China; College of Food Science and Pharmacy, Xinjiang Agricultural University, No. 311 Nongda Dong Road, Ürümqi, 830052, Xinjiang ygur Autonomous Region, PR China.
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, PR China; Yixing Institute of Food and Biotechnology, No. 19, Wenzhuang Road, Qiting Street, Yixing City, Wuxi, China
| |
Collapse
|
17
|
Zhang Y, Xu Y, Liang X, Wang L, Sun Y, Huang Q, Qin X. Ionomic analysis reveals the mechanism of mercaptosilane-modified palygorskite on reducing Cd transport from soil to wheat. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:98091-98105. [PMID: 37603246 DOI: 10.1007/s11356-023-29376-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/13/2023] [Indexed: 08/22/2023]
Abstract
Mercaptosilane-modified palygorskite (MP) can immobilize Cd in acid soil and reduce the enrichment of Cd in rice. However, the immobilization effect and its durability on alkaline field were unclear. Meanwhile, whether MP could reduce Cd in different wheat parts at different stages also needs further exploration. Here, we determined the dynamic change of Cd in soil and wheat at different periods, studied the interaction mechanism at key organs, and calculated the contribution of coexisting metals on the reduction of Cd to study the effect of MP on the transfer of Cd in soil-wheat system. Results showed MP was highly effective to immobilize Cd in alkaline farmland and could take effect during the whole growing season but not change pH values. DTPA-Cd and EXE-Cd of soil were reduced by 34.88-49.71% and 49.36-84.81%, respectively, while OX-Cd was increased by 34.61-43.60% at the whole stages. Cd in grains at maturity stage was reduced from 0.118 to 0.069 mg/kg, lower than the limit standard of the China and Codex Alimentarius Commission (0.1 mg/kg). Root and nodes were critical organs influenced by MP to reduce Cd in grains, and the reduction efficiency on wheat was relatively weak at flowering and filling stage. MP regulated the antagonism or synergy effects of coexisting elements on Cd to modulate the Cd accumulation in grains. Besides, the contributions of different elements on Cd were also evaluated by path models. This will provide an important basis for the precision remediation of Cd-polluted alkaline wheat fields.
Collapse
Affiliation(s)
- Yu Zhang
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
| | - Yingming Xu
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China.
| | - Xuefeng Liang
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
| | - Lin Wang
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
| | - Yuebing Sun
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
| | - Qingqing Huang
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
| | - Xu Qin
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
| |
Collapse
|
18
|
Xiao A, Chi Y, Huang L, Li WC, Ye Z. Effects of cultivar, water condition and their interactions on Cd accumulation in rice grains. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115168. [PMID: 37352585 DOI: 10.1016/j.ecoenv.2023.115168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 05/17/2023] [Accepted: 06/18/2023] [Indexed: 06/25/2023]
Abstract
Using low Cd accumulation cultivars and managing field water regimes are effective measures to mitigate Cd accumulations in rice grains. However, the effect of the cultivar-water condition interaction (CWI) on grain Cd accumulations has largely been ignored. To solve this problem, pot and hydroponic experiments were conducted using 14 rice cultivars and two contrasting water conditions. The results showed that CWI significantly affected Cd concentrations in rice grains and roots, explaining 8.8% and 22.8% of the total variance, respectively. These CWI effects were derived from cultivar-dependent variations in rhizosphere soil properties [Eh, pH and available Cd associated with root radial oxygen loss (ROL)] and root Cd uptake. In this context, cultivar HH61 exhibited low, stable Cd accumulations, owing to its stably lower translocation rate, root Cd uptake ability and available Cd in its rhizosphere than the other cultivars, which was induced by its lower ROL. Root-to-grain Cd translocation rates were vital in determining Cd accumulations in grain of different cultivars but were independent from CWI. These results indicated that CWI could play an important role in Cd accumulation in rice while stable low-Cd cultivar should possess low ROL under flooding and low root-to-grain Cd translocation rate. The results will provide novel theoretical basis for cultivar selection and hence benefit the extensive use of low-accumulation cultivars and public health.
Collapse
Affiliation(s)
- Anwen Xiao
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Yihan Chi
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Lu Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530105, China
| | - Wai Chin Li
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong Special Administrative Region of China.
| | - Zhihong Ye
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
19
|
Yi Q, Wang Y, Yi C, Li L, Chen Y, Zhou H, Tong F, Liu L, Gao Y, Shi G. Agronomic and ionomics indicators of high-yield, mineral-dense, and low-Cd grains of wheat (Triticum aestivum L.) cultivars. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 261:115120. [PMID: 37302237 DOI: 10.1016/j.ecoenv.2023.115120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
The accumulation of toxic and essential nutrient elements in wheat grain influences wheat yield, grain nutritional quality, and human health. Here, we assessed the potential for breeding wheat cultivars to combine high yield with low cadmium and high iron and/or zinc concentrations in grains, and we screened appropriate cultivars. A pot experiment was conducted to explore differences in grain cadmium, iron, and zinc concentrations among 68 wheat cultivars, as well as their relationships with other nutrient elements and agronomic characters. The results showed 2.04-, 1.71-, and 1.64-fold differences in grain cadmium, iron, and zinc concentrations, respectively, among the 68 cultivars. Grain cadmium concentration was positively correlated with grain zinc, iron, magnesium, phosphorus, and manganese concentrations. Grain copper concentration was positively correlated with grain zinc and iron concentrations, but not with grain cadmium concentration. Therefore, copper has a potential role in regulating grain iron and zinc accumulation without influencing cadmium concentration in wheat grain. There were no significant relationships between grain cadmium concentration and four important wheat agronomic characters (i.e., grain yield, straw yield, thousand kernel weight, and plant height), indicating that the breeding of low-cadmium-accumulating cultivars with dwarfism and high yield characteristics is possible. On cluster analysis, four cultivars (Ningmai11, Xumai35, Baomai6, and Aikang58) exhibited low-cadmium and high-yield characteristics. Among them, Aikang58 contained moderate iron and zinc concentrations, while Ningmai11 had relatively high iron but low zinc concentrations in the grain. These results imply that it is feasible to breed high-yield dwarf wheat with low cadmium and moderate iron and zinc concentrations in the grain.
Collapse
Affiliation(s)
- Qingsong Yi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, China; Key Laboratory of Agro-Environment in Downstream of Yangtze River Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, China
| | - Chao Yi
- Key Laboratory of Agro-Environment in Downstream of Yangtze River Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; National Agricultural Experimental Station for Agricultural Environment, Luhe, Minstry of Agriculture and Rural Affairs, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Linxin Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yinglong Chen
- The UWA Institute of Agriculture, and UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
| | - Huimin Zhou
- Key Laboratory of Agro-Environment in Downstream of Yangtze River Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Fei Tong
- Key Laboratory of Agro-Environment in Downstream of Yangtze River Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; National Agricultural Experimental Station for Agricultural Environment, Luhe, Minstry of Agriculture and Rural Affairs, China
| | - Lizhu Liu
- Key Laboratory of Agro-Environment in Downstream of Yangtze River Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; National Agricultural Experimental Station for Agricultural Environment, Luhe, Minstry of Agriculture and Rural Affairs, China
| | - Yan Gao
- Key Laboratory of Agro-Environment in Downstream of Yangtze River Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; National Agricultural Experimental Station for Agricultural Environment, Luhe, Minstry of Agriculture and Rural Affairs, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Gaoling Shi
- Key Laboratory of Agro-Environment in Downstream of Yangtze River Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; National Agricultural Experimental Station for Agricultural Environment, Luhe, Minstry of Agriculture and Rural Affairs, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
20
|
Xiong S, Kong X, Chen G, Tian L, Qian D, Zhu Z, Qu LQ. Metallochaperone OsHIPP9 is involved in the retention of cadmium and copper in rice. PLANT, CELL & ENVIRONMENT 2023; 46:1946-1961. [PMID: 36850039 DOI: 10.1111/pce.14576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 02/03/2023] [Accepted: 02/24/2023] [Indexed: 05/04/2023]
Abstract
Metallochaperones are a unique class of proteins that play crucial roles in metal homoeostasis and detoxification. However, few metallochaperones have been functionally characterised in rice. Heterologous expression of Heavy metal-associated Isoprenylated Plant Protein 9 (OsHIPP9), a metallochaperone, altered yeast tolerance to cadmium (Cd) and copper (Cu). We investigated the physiological role of OsHIPP9 in rice. OsHIPP9 was primarily expressed in the root exodermis and xylem region of enlarged vascular bundles (EVB) at nodes. KO of OsHIPP9 increased the Cd concentrations of the upper nodes and panicle, but decreased Cd in expanded leaves. KO of OsHIPP9 decreased Cu uptake and accumulation in rice. Constitutive OX of OsHIPP9 increased Cd and Cu accumulation in aboveground tissues and brown rice. OsHIPP9 showed binding capacity for Cd and Cu. We propose that OsHIPP9 has dual metallochaperone roles, chelating Cd in the xylem region of EVB for Cd retention in the nodes and chelating Cu in rice roots to aid Cu uptake.
Collapse
Affiliation(s)
- Shuo Xiong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of the Chinese Academy of Sciences, Beijing, China
| | - Xiaohang Kong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of the Chinese Academy of Sciences, Beijing, China
| | - Guoqiang Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Lihong Tian
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Dandan Qian
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zhen Zhu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Le Qing Qu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Hu C, Yan B, Liu Y, Gong C, Zhao M, Qiu R, Tang Y. Differential Effects of Senescence on the Phloem Exports of Cadmium and Zinc from Leaves to Grains in Rice during Grain Filling. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091902. [PMID: 37176960 PMCID: PMC10180549 DOI: 10.3390/plants12091902] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
In rice, non-essential toxic cadmium (Cd) and the essential nutrient zinc (Zn) share similar transport pathways, which makes it challenging to differentially regulate the allocation of these elements to the grain. The phloem is the main pathway for the loading of these elements into rice grains. It has long been accepted that tissue senescence makes the nutrients (e.g., Zn) stored in leaves available for further phloem export toward the grain. Whether senescence could drive the phloem export of Cd remains unclear. To this end, the stable isotopes 111Cd and 67Zn were used to trace the phloem export and the subsequent allocation of Cd and Zn from the flag leaves, where senescence was accelerated by spraying abscisic acid. Furthermore, changes upon senescence in the distribution of these elements among the leaf subcellular fractions and in the expression of key transporter genes were investigated. Abscisic acid-induced senescence enhanced the phloem export of Zn but had no impact on that of Cd, which was explained by the significant release of Zn from the chloroplast and cytosol fractions (concentrations decreased by ~50%) but a strong allocation of Cd to the cell wall fraction (concentration increased by ~90%) during senescence. Nevertheless, neither Zn nor Cd concentrations in the grain were affected, since senescence strengthened the sequestration of phloem-exported Zn in the uppermost node, but did not impact that of phloem-exported Cd. This study suggests that the agronomic strategies affecting tissue senescence could be utilized to differentially regulate Cd and Zn allocation in rice during grain filling.
Collapse
Affiliation(s)
- Chengfeng Hu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Bofang Yan
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yating Liu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chen Gong
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Man Zhao
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Rongliang Qiu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yetao Tang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
22
|
Lin Q, Hamid Y, Yang H, Jiang J, Shan A, Wang M, Hussain B, Feng Y, Li T, He Z, Yang X. Cadmium mobility and health risk assessment in the soil-rice-human system using in vitro biaccessibility and in vivo bioavailability assay: Two year field experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161564. [PMID: 36640893 DOI: 10.1016/j.scitotenv.2023.161564] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/08/2023] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Humans are mainly exposed to cadmium (Cd) due to the rice consumption, however there exist considerable differences across rice cultivars in terms of Cd absorption and accumulation in the grains, and subsequent release after digestion (bioaccessibility), as well as uptake by Caco-2 cells of humans (bioavailability). This study comprised of field and lab simulation trials where in the field, firstly 39 mid-rice cultivars were screened for their phytoremediation potential coupled with safe production in relation to uptake and translocation of Cd. Lower Cd concentrations (˂0.2 mg kg-1) in polished rice of 74 % cultivars were ascribed to the increased root to straw translocation indicating that straw may acquire higher accumulation of Cd. Furthermore, the ionomic profile demonstrated that the spatial distribution of metals in different rice organs corresponds to the plant growth morphology. In the second year, in vitro-in vivo assay model was employed to assess the bioaccessibility and bioavailability of Cd in polished rice and to further estimate the daily Cd intake by humans through rice grains. The results of bioaccessibility and bioavailability assays and daily estimated Cd intake presented the corresponding values of 39.02-59.76 %, 8.69-24.26 %, and 0.0185-0.9713 μg kg-1 body weight day-1, respectively. There exists a strong connection between total Cd and bioaccessible Cd to humans (R2 = 0.94, P < 0.01). Polynomial fitting (R2 = 0.91, P < 0.01) showed a better statistically significant correlation between total Cd contents and bioavailable levels, suggesting that in vitro-in vivo assays should be considered in future studies. The results of field experiments and in vitro-in vivo assays recommended the Tianyouhuazhan (MR-29), Heliangyou1hao (MR-17), and Yongyou15 (MR-1) as suitable mid-rice cultivars for the phytoremediation of slightly Cd contaminated soils coupled with rice agro-production due to their high nutritional value and low total and bioavailable Cd for human.
Collapse
Affiliation(s)
- Qiang Lin
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Yasir Hamid
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Haijun Yang
- Agriculture Technical Extension Center of Qujiang, Quzhou 324002, People's Republic of China
| | - Jianfeng Jiang
- Agriculture Technical Extension Center of Qujiang, Quzhou 324002, People's Republic of China
| | - Anqi Shan
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Mei Wang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Bilal Hussain
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Ying Feng
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Tingqiang Li
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Zhenli He
- Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL 34945, USA
| | - Xiaoe Yang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
23
|
Zhang Z, Lu Y, Li H, Gao Y, Yang Z. The role of nickel in cadmium accumulation in rice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160421. [PMID: 36423846 DOI: 10.1016/j.scitotenv.2022.160421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/05/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Rice is one of the world's staple foods. Cadmium (Cd) levels in paddy soil are still increasing, and "Cd-contaminated rice" is a frequent occurrence, posing a serious threat to human health. Therefore, Cd contamination in rice is a key issue in agricultural production that needs to be addressed urgently. The Cd accumulation in rice is closely related to other elements. In this study, the impact of nickel (Ni) on the uptake and accumulation of Cd in rice was revealed, and the mechanism was discussed. Statistical analysis of field data showed that Cd concentration in rice grains decreased exponentially with increasing Ni concentration in paddy soils, which was verified by the hydroponic experiments. Under 5 μmol/L Cd exposure conditions, the addition of Ni (100 μmol/L) reduced the Cd contents in roots, stems, and leaves by 81.6 %, 60.6 %, and 65.9 %, respectively. With the presence of Ni, the amount of iron plaque decreased, and the Cd content in the iron plaque was reduced due to the competition between Ni and Cd for adsorption sites. In addition, the migration of Cd from stems to leaves was reduced. At the same time, the distribution of Cd in the cell was altered, and the concentration of Cd in the root cell walls increased with increasing Ni addition under 5 μmol/L Cd exposure. These findings highlight the critical role of Ni in inhibiting Cd accumulation in rice, and provide important information for understanding the effects of coexisting elements in Cd-contaminated soils on Cd accumulation in crops.
Collapse
Affiliation(s)
- Zhaoxue Zhang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; Key Laboratory of Testing and Tracing of Rare Earth Products for State Market Regulation, Jiangxi University of Science and Technology, Ganzhou 341000, China; Analysis and Testing Center, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Yi Lu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, China.
| | - Ya Gao
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, China.
| |
Collapse
|
24
|
Gao Y, Duan Z, Zhang L, Sun D, Li X. The Status and Research Progress of Cadmium Pollution in Rice- ( Oryza sativa L.) and Wheat- ( Triticum aestivum L.) Cropping Systems in China: A Critical Review. TOXICS 2022; 10:794. [PMID: 36548627 PMCID: PMC9783001 DOI: 10.3390/toxics10120794] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
The accumulation of cadmium in rice (Oryza sativa L.) and wheat (Triticum aestivum L.) is a serious threat to the safe use of farmland and to the health of the human diet that has attracted extensive attention from researchers. In this review, a bibliometric analysis was performed using a VOS viewer (1.6.18, Netherlands) to investigate the status of cadmium contamination in rice and wheat growing systems, human health risks, mechanisms of Cd uptake and transport, and the corresponding research hotspots. It has a certain reference value for the prevention and control of cadmium pollution in rice and wheat planting systems in China and abroad. The results showed that the Cd content in rice and wheat planting systems in the Yangtze River Basin was significantly higher than that in other areas of China, and the Cd content in rice and wheat grains and the hazard quotient (HQ) in Hunan Province was the highest. The average Cd concentration exceeded the recommended limit by about 62% for rice and 81% for wheat. The main reasons for the high Cd pollution in rice and wheat growing areas in Hunan are mining activities, phosphate fertilizer application, sewage irrigation, and electronic equipment manufacturing. In this review, we demonstrate that cadmium toxicity reduces the uptake and transport of essential elements in rice and wheat. Cadmium stress seriously affected the growth and morphology of plant roots. In the shoots, Cd toxicity was manifested by a series of physiological injuries, such as decreased photosynthesis, soluble protein, sugar, and antioxidant enzyme activity. Cadmium that accumulates in the shoots is transferred to grains and then passes up the food chain to people and animals. Therefore, methods for reducing cadmium content in grains of rice and wheat are urgently needed, especially in Cd-contaminated soil. Current research on Cd pollution in rice and wheat planting systems focuses on the bioavailability of Cd, soil rhizosphere changes in wheat and rice, and the role of antioxidant enzyme systems in alleviating heavy metal stress in rice and wheat.
Collapse
Affiliation(s)
- Yue Gao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zengqiang Duan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingxiao Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Da Sun
- Technology Extension Station of Agriculture and Fisheries of Nanhu District of Jiaxing, Jiaxing 314051, China
| | - Xun Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Xiao L, Shibuya T, Watanabe T, Kato K, Kanayama Y. Effect of Light Quality on Metabolomic, Ionomic, and Transcriptomic Profiles in Tomato Fruit. Int J Mol Sci 2022; 23:13288. [PMID: 36362073 PMCID: PMC9654364 DOI: 10.3390/ijms232113288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 09/11/2024] Open
Abstract
Light quality affects plant growth and the functional component accumulation of fruits. However, there is little knowledge of the effects of light quality based on multiomics profiles. This study combined transcriptomic, ionomic, and metabolomic analyses to elucidate the effects of light quality on metabolism and gene expression in tomato fruit. Micro-Tom plants were grown under blue or red light-emitting diode light for 16 h daily after anthesis. White fluorescent light was used as a reference. The metabolite and element concentrations and the expression of genes markedly changed in response to blue and red light. Based on the metabolomic analysis, amino acid metabolism and secondary metabolite biosynthesis were active in blue light treatment. According to transcriptomic analysis, differentially expressed genes in blue and red light treatments were enriched in the pathways of secondary metabolite biosynthesis, carbon fixation, and glycine, serine, and threonine metabolism, supporting the results of the metabolomic analysis. Ionomic analysis indicated that the element levels in fruits were more susceptible to changes in light quality than in leaves. The concentration of some ions containing Fe in fruits increased under red light compared to under blue light. The altered expression level of genes encoding metal ion-binding proteins, metal tolerance proteins, and metal transporters in response to blue and red light in the transcriptomic analysis contributes to changes in the ionomic profiles of tomato fruit.
Collapse
Affiliation(s)
- Lingran Xiao
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai 980-8572, Japan
| | - Tomoki Shibuya
- Faulty of Agriculture, Yamagata University, Tsuruoka 997-8555, Japan
| | - Toshihiro Watanabe
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Kazuhisa Kato
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai 980-8572, Japan
| | - Yoshinori Kanayama
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai 980-8572, Japan
| |
Collapse
|
26
|
Lin Q, Hamid Y, Yin X, Hussain B, He Z, Yang X. Screening of low-Cd accumulating early rice cultivars coupled with phytoremediation and agro-production: Bioavailability and bioaccessibility tests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157143. [PMID: 35798119 DOI: 10.1016/j.scitotenv.2022.157143] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Previous studies have focused on total cadmium (Cd) accumulation in rice or its transformation in soil, but only a few have examined the entire soil-rice-human system. This study investigated the Cd bioaccessibility and bioavailability for humans from grains of early rice cultivars grown in a Cd-polluted field and further combined with multi-traits to discover and evaluate the optimum safe production and phytoremediation potential cultivars. The results revealed that Cd concentration in polished rice was <0.20 mg kg-1 in 79 % of early rice cultivars, implying that Cd levels in rice might be reduced by cultivar selection. Furthermore, the higher values of root to straw translocation factor indicates the maximal accumulation of Cd in straw and with highest soil to straw accumulation factor (>1.0) in 66.67 % of cultivars. However, bioaccessibility and bioavailability varied greatly among cultivars with corresponding values ranging from 5.68 to 7.67 % and 1.87 to 5.71 ng g-1, respectively. Despite the fact that polynomial fitting revealed a statistically significant relationship between Cd content in polished rice and bioavailable Cd in humans (R2 = 0.718, P = 0.025), poor goodness of fit for bioaccessibility, bioavailability, and toxicity varied even within low-Cd accumulating cultivars. As a result of multi trait analysis and bioavailability, Zhuliangyou4024 (ER-9), Lingliangyou211 (ER-3), and Yonxian15 (ER-28) were found to be the three best early rice cultivars with higher essential nutrients, less total and bioavailable Cd, and relative high phytoremediation potential and are suitable for healthy rice production and soil remediation.
Collapse
Affiliation(s)
- Qiang Lin
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Yasir Hamid
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xianyuan Yin
- Beautiful Village Construction Center of Quzhou Agriculture and Rural Affairs Bureau, Quzhou 324002, People's Republic of China
| | - Bilal Hussain
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Zhenli He
- Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL 34945, USA
| | - Xiaoe Yang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
27
|
Liu N, Liu Q, Min J, Zhang S, Li S, Chen Y, Dai J. Specific bacterial communities in the rhizosphere of low-cadmium and high‑zinc wheat (Triticum aestivum L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156484. [PMID: 35667435 DOI: 10.1016/j.scitotenv.2022.156484] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Microorganisms can modulate the contents of cadmium (Cd) and zinc (Zn) in wheat grains. Increasing the essential nutrient element Zn and decreasing the toxic element Cd in wheat grains can significantly improve human health. To characterize the specific bacterial communities associated with Cd and Zn accumulation in wheat, we conducted a field experiment by planting wheat cultivars differing in their capacity for Cd and Zn accumulation. The grain Cd contents in wheat cultivars YN23 (0.078 mg kg-1), JN17 (0.080 mg kg-1), YN836 (0.081 mg kg-1) and LM2 (0.091 mg kg-1) were significantly lower than those in ZM32 (0.16 mg kg-1). The Zn contents were significantly higher in the grains of JN17 (44.36 mg kg-1), LM2 (42.22 mg kg-1) and ZM32 (43.19 mg kg-1) than YN23 (27.05 mg kg-1) and YN836 (29.70 mg kg-1). On the basis of contents and bio-concentration factors of Cd and Zn in wheat grain, JN17 and LM2 were identified as low-Cd- and high-Zn-accumulating cultivars, YN23 and YN836 were low-Cd- and low-Zn-accumulating cultivars, and ZM23 was a high-Cd- and high-Zn-accumulating cultivar. The relative abundance values of Gemmatimonadaceae, Sphingomonadaceae and Beijerinckiaceae in the rhizospheres of low-Cd cultivars were significantly higher than those of high-Cd cultivars. High-Zn cultivars had higher abundance of Rhodanobacteraceae in the rhizosphere than did low-Zn cultivars. The low-Cd- and high-Zn-accumulating cultivars were enriched in Alphaproteobacteria and Gemmatimonadaceae, and strengthened nitrification function including aerobic_ammonia_oxidation and aerobic_nitrite_oxidation in the rhizosphere soil, thus contributing to the decreased Cd and increased Zn contents in wheat grains. Microbial technology is a promising method to control the contents of Cd and Zn in wheat grains.
Collapse
Affiliation(s)
- Na Liu
- College of Resource and Environment, Shanxi Agricultural University, Taigu 030801, China; Environment Research Institute, Shandong University, Qingdao 266237, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu 030801, China
| | - Qian Liu
- Shandong General Station of Agricultural Environmental Protection and Rural Energy, Jinan 250000, China
| | - Jianmei Min
- Shandong General Station of Agricultural Environmental Protection and Rural Energy, Jinan 250000, China
| | - Shujuan Zhang
- Shandong General Station of Agricultural Environmental Protection and Rural Energy, Jinan 250000, China
| | - Shuangshuang Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yihui Chen
- Environment Research Institute, Shandong University, Qingdao 266237, China; Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiulan Dai
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
28
|
Guo Z, Wang X, Zhang X, Wang L, Wang R, Hui X, Wang S, Chen Y, White PJ, Shi M, Wang Z. Synchrotron X-ray Fluorescence Technique Identifies Contribution of Node Iron and Zinc Accumulations to the Grain of Wheat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9346-9355. [PMID: 35852475 DOI: 10.1021/acs.jafc.2c02561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Increasing iron (Fe) and zinc (Zn) concentrations in crop grains with high yield is an effective measure to ensure food supply and alleviate mineral malnutrition in humans. Micronutrient concentrations in grains depend on not only their availability in soils but also their uptake in roots and translocation to shoots and grains. In this three-year field study, we investigated genotypic variation in Fe and Zn uptake and translocation within six wheat cultivars and examined in detail Fe and Zn distributions in various tissues of two cultivars with similar high yield but different grain Fe and Zn concentrations using synchrotron micro-X-ray fluorescence. Results revealed that root Fe and Zn concentrations were 11 and 44% greater in high-nutrient (HN) than in low-nutrient (LN) concentration cultivar. Although both cultivars accumulated similar amounts of Fe in shoots, HN cultivar had greater accumulation of Fe in grain and greater accumulation of Zn in both shoots and grain. Grain Zn concentration was positively correlated with shoot Zn accumulation, and grain Fe concentration was positively correlated with the ability to translocate Fe from leaves/stem to grains. In the first nodes of shoots, HN cultivar had 482% greater Fe and 36% greater Zn concentrations in the enlarged vascular bundle (EVB) than LN cultivar. In top nodes, HN cultivar had 225 and 116% greater Fe and Zn concentrations in the transit vascular bundle and 77 and 71% greater in the EVB when compared to LN cultivar. HN cultivar also had a greater ability to allocate Fe and Zn to the grain than LN cultivar. In conclusion, HN cultivar had greater capacity of Fe and Zn acquirement by roots and translocation and partitioning from shoots into grains. Screening wheat cultivars for larger Fe and Zn concentrations in shoot nodes could be a novel strategy for breeding crops with greater grain Fe and Zn concentrations.
Collapse
Affiliation(s)
- Zikang Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xingshu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xuemei Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Li Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Runze Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoli Hui
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Sen Wang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yinglong Chen
- The UWA Institute of Agriculture, and School of Agriculture & Environment, The University of Western Australia, Perth, Western Australia 6001, Australia
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Philip J White
- Ecological Sciences Department, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, U.K
| | - Mei Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
- Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in Loess Plateau, Taigu 030801, China
| | - Zhaohui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
29
|
Guo J, Chen M, Huang Y, Xie S, Zhang X, Zuo T, Hu C, Wang G. Chloride application weakens cadmium immobilization by lime in paddy rice soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113761. [PMID: 35714480 DOI: 10.1016/j.ecoenv.2022.113761] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Contamination of agricultural products by cadmium (Cd) is a global health problem, causing chronic abnormalities. The consumption of rice, the most-consumed foods, is an important exposure route of Cd to human body. Chloride (Cl-) is reported to increase Cd uptake by rice; however, the effect on Cd uptake and accumulation by rice in the presence of lime is not clear. Therefore, a pot culture experiment was performed to explore the influence of Cl- on the absorption and accumulation of Cd in rice plants under lime remediation and its possible mechanisms. The results showed that Cl- promoted Cd accumulation in rice grains, mainly because of increased Cd bioavailability in the soil and by impeding the formation of iron plaques on rice roots, which reduced chelating and precipitation of Cd. Moreover, increased overexpression of the main transporters of Cd in rice roots, including OsNramp5, OsNramp1, OsIRTs and OsHMA2, favored the upward translocation of Cd from the root to shoot and increased the transfer factors (TFs) from soil to root, root-stem, leaf to grain, and soil to grain. Therefore, the application of Cl-rich materials to Cd-contaminated rice fields should be avoided during liming of the soil for Cd immobilization.
Collapse
Affiliation(s)
- Jingxia Guo
- College of Resource and Environmental Science, Soil Environmental Health and Regulation, Key Laboratory of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Miaofen Chen
- College of Resource and Environmental Science, Soil Environmental Health and Regulation, Key Laboratory of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yongxin Huang
- College of Resource and Environmental Science, Soil Environmental Health and Regulation, Key Laboratory of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Shengcong Xie
- College of Resource and Environmental Science, Soil Environmental Health and Regulation, Key Laboratory of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Xiaohui Zhang
- College of Resource and Environmental Science, Soil Environmental Health and Regulation, Key Laboratory of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Tingting Zuo
- College of Resource and Environmental Science, Soil Environmental Health and Regulation, Key Laboratory of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Cong Hu
- College of Resource and Environmental Science, Soil Environmental Health and Regulation, Key Laboratory of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Guo Wang
- College of Resource and Environmental Science, Soil Environmental Health and Regulation, Key Laboratory of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
30
|
Xu Z, Zhu Z, Zhao Y, Huang Z, Fei J, Han Y, Wang M, Yu P, Peng J, Huang Y, Fahmy AE. Foliar uptake, accumulation, and distribution of cadmium in rice (Oryza sativa L.) at different stages in wet deposition conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119390. [PMID: 35513197 DOI: 10.1016/j.envpol.2022.119390] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/24/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
Atmospheric deposition of cadmium (Cd) in rice (Oryza sativa L.) has become a major global concern. Foliar uptake allows vegetables to accumulate heavy metals from the atmosphere, but this has rarely been studied in rice. Therefore, this study investigated the Cd accumulation in rice growing at different exposure periods (the tillering, booting, heading, and maturity stages) under a wet deposition of CdCl2·2.5H2O solution through pot experiments. The Cd concentrations in leaves, roots, husk, brown rice, and leaf structures were analyzed to explore foliar uptake, accumulation, and distribution of Cd in rice tissues at different growth stages. The results showed that wet deposited Cd can be absorbed on the rice leaf surface and remains on the leaves for a long time. The sequence of Cd accumulation in rice tissues was: leaves > brown rice > husk > roots, with leaves accounting for greater than 71.78% of the total accumulation. The accumulation of wet deposited Cd in leaves, husk, and brown rice had large temporal variations between the four typical stages. There was no significant variations in Cd content in roots between different growth stages. Correspondingly, the foliar uptake of Cd was rarely transported from the leaves via the phloem to roots. Conversely, the foliar uptake of Cd was transported upwards to grains. The accumulation of Cd fluctuated with each growth stage, initially increasing and then decreasing at the heading stage and finally reaching a peak at the maturity stage. The highest total accumulation of Cd in both the high and low wet deposition conditions occurred at maturity, resulting in 15.53 and 11.23 μg plant-1, respectively. These results provide theoretical support for further research into identifying efficient foliar control measures to reduce Cd accumulation and maintain food safety.
Collapse
Affiliation(s)
- Zhangqian Xu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Hunan Agricultural University, Hunan, 410128, China
| | - Zhen Zhu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Hunan Agricultural University, Hunan, 410128, China
| | - Yuhua Zhao
- Ningyuan County Agricultural Comprehensive Service Center, Hunan, 425600, China
| | - Zhi Huang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Hunan Agricultural University, Hunan, 410128, China
| | - Jiangchi Fei
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Hunan Agricultural University, Hunan, 410128, China
| | - Yongliang Han
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Hunan Agricultural University, Hunan, 410128, China
| | - Maodi Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Hunan Agricultural University, Hunan, 410128, China
| | - Pengyue Yu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Hunan Agricultural University, Hunan, 410128, China
| | - Jianwei Peng
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Hunan Agricultural University, Hunan, 410128, China
| | - Ying Huang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Hunan Agricultural University, Hunan, 410128, China; Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Beijing, 100081, PR China.
| | - Ahmed E Fahmy
- Egyptian Atomic Energy Authority, Nuclear Research Centre, Soil & Water Research Department, Abou-Zaabl, 13759, Egypt
| |
Collapse
|
31
|
Luo Q, Bai B, Xie Y, Yao D, Zhang D, Chen Z, Zhuang W, Deng Q, Xiao Y, Wu J. Effects of Cd uptake, translocation and redistribution in different hybrid rice varieties on grain Cd concentration. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 240:113683. [PMID: 35653975 DOI: 10.1016/j.ecoenv.2022.113683] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
In order to identify the key transport process that determines the Cd concentration in brown rice, this study used 21 hybrid rice varieties as experimental materials and conducted field experiments in Qiyang (cadmium-contaminated site) and Yongding (low-cadmium site). Cd concentrations in 8 organs were measured, and bioconcentration factors and transfer factor were further calculated. The results showed that the Cd concentrations of the organs related to the xylem transport were as follows: root > node > stem > leaf sheath > leaf. In the phloem, the Cd concentrations were as follows: rachis > brown rice > rice husk. And the results of the correlation analysis found that Cd concentration between brown rice and root showed a significant positive correlation in Cd-contaminated site, but no significant correlation in low-cadmium site. Meanwhile, at both experimental sites, the Cd concentration of brown rice showed the most significant correlation with the phloem transfer factor from leaf and leaf sheath to brown rice. Principal Component Analysis (PCA) and stepwise regression analysis likewise found that Cd concentration in leaf and leaf sheath and their phloem transport of Cd to brown rice were significantly and positively correlated with Cd concentration in brown rice. The above results showed that the transport of leaf and leaf sheath to brown rice was a key process, and played a more important role in the accumulation of cadmium in brown rice than in root.
Collapse
Affiliation(s)
- Qiuhong Luo
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China; State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan 410125, China
| | - Bin Bai
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan 410125, China
| | - Yunhe Xie
- Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Science, Changsha, Hunan 410125, China
| | - Dongping Yao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan 410125, China
| | - Dongmeng Zhang
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Zhe Chen
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan 410125, China
| | - Wen Zhuang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan 410125, China
| | - Qiyun Deng
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan 410125, China; BioRice (Hunan) Co., Ltd., Changsha, Hunan 410323, China
| | - Yinghui Xiao
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Jun Wu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan 410125, China.
| |
Collapse
|
32
|
Jiao L, Zhang L, Zhang Y, Wang R, Lu B, Liu X. Transcriptome analysis provides new insight into the distribution and transport of selenium and its associated metals in selenium-rich rice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 301:118980. [PMID: 35150800 DOI: 10.1016/j.envpol.2022.118980] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/16/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Selenium is an essential trace element for humans and obtained from diary diets. The consumption of selenium-rich agricultural food is an efficient way to obtain selenium, but the quality and safety of selenium-rich agro-food are always affected by their associated heavy metals, even poses a potential threaten to human health. In this research, a sampling survey of heavy metals contents in selenium-rich rice was conducted, 182 sets of selenium-rich rice samples were collected from five selenium-rich rice-producing areas of China, and the accumulation of selenium and cadmium were found to be associated in rice and soil. Subsequently, a pot experiment was performed in the greenhouse via treating the soil samples with 12 different concentrations of selenium and heavy metals, and the contents of selenium and cadmium in rice grain were confirmed to be significantly associated. Moreover, transcriptome analysis revealed that the up-regulation of transporter-coding may promote the absorption of selenium and cadmium. The expression of antioxidant-coding genes and cadmium chelator transporter coding-genes was up-regulated to reduce the toxicity of cadmium. Meanwhile, the up-regulation of key genes of the ascorbic acid-glutathione metabolic pathway were responsible for the association between selenium and cadmium in Se-rich rice. Our work suggested the correlation between selenium and cadmium accumulation in selenium-rich rice, clarified their accumulation mechanism, provides a direction for the scientific production of selenium-rich agro-foods.
Collapse
Affiliation(s)
- Linshu Jiao
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Cultivation Base of MOST, Laboratory of Quality and Safety Risk Assessment for Agro-products of Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Liuquan Zhang
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Cultivation Base of MOST, Laboratory of Quality and Safety Risk Assessment for Agro-products of Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, 310058, China
| | - Yongzhu Zhang
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Cultivation Base of MOST, Laboratory of Quality and Safety Risk Assessment for Agro-products of Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Ran Wang
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Cultivation Base of MOST, Laboratory of Quality and Safety Risk Assessment for Agro-products of Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Baiyi Lu
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Cultivation Base of MOST, Laboratory of Quality and Safety Risk Assessment for Agro-products of Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, 310058, China.
| | - Xianjin Liu
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Cultivation Base of MOST, Laboratory of Quality and Safety Risk Assessment for Agro-products of Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| |
Collapse
|
33
|
Zhao K, Yang Y, Zhang L, Zhang J, Zhou Y, Huang H, Luo S, Luo L. Silicon-based additive on heavy metal remediation in soils: Toxicological effects, remediation techniques, and perspectives. ENVIRONMENTAL RESEARCH 2022; 205:112244. [PMID: 34688645 DOI: 10.1016/j.envres.2021.112244] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 09/24/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Chemical fertilizer is gaining increasing attention and has been the center of much research which indicating complex beneficial and harmful effects. Chemical fertilizer might cause some environmental hazards to the biosphere, especially in the agricultural ecosystem. The application of silicon (Si) fertilizer in agriculture has been proved to be able to create good economic and environmental benefits. Si is the second most abundant earth crust element. Si fertilizer improves soil quality and alleviates biotic and abiotic crop stress. It is of great significance to understand the function of Si fertilizer in agricultural utilization and environmental remediation. This paper reviews the Si-based fertilizer in farmland use and summarizes prior research relevant with characterization, soil quality improvement, and pollution remediation effects. Its use in agriculture enhances plant silicon uptake, mediates plant salt and drought stress and remediates heavy metals such as Al, As, Cd, Cu, Zn and Cr. This article also summarizes the detoxification mechanism of silicon and its effects on plant physiological activity such as photosynthesis and transpiration. Fertilizer materials and crop fertilizer management were also considered. Foliar spraying is an effective method to improve crop growth and yield and reduce biotic or abiotic stress. Silicon nanoparticle material provides potential with great potential and prospects. More investigation and research are prospected to better understand how silicon impacts the environment and whether it is a beneficial additive.
Collapse
Affiliation(s)
- Keqi Zhao
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410028, China
| | - Yuan Yang
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410028, China.
| | - Lihua Zhang
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410028, China
| | - Jiachao Zhang
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410028, China.
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410028, China
| | - Hongli Huang
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410028, China
| | - Shuang Luo
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410028, China
| | - Lin Luo
- Hunan International Scientific and Technological Cooperation Center for Agricultural Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan, 410028, China
| |
Collapse
|
34
|
Raza A, Tabassum J, Zahid Z, Charagh S, Bashir S, Barmukh R, Khan RSA, Barbosa F, Zhang C, Chen H, Zhuang W, Varshney RK. Advances in "Omics" Approaches for Improving Toxic Metals/Metalloids Tolerance in Plants. FRONTIERS IN PLANT SCIENCE 2022; 12:794373. [PMID: 35058954 PMCID: PMC8764127 DOI: 10.3389/fpls.2021.794373] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/22/2021] [Indexed: 05/17/2023]
Abstract
Food safety has emerged as a high-urgency matter for sustainable agricultural production. Toxic metal contamination of soil and water significantly affects agricultural productivity, which is further aggravated by extreme anthropogenic activities and modern agricultural practices, leaving food safety and human health at risk. In addition to reducing crop production, increased metals/metalloids toxicity also disturbs plants' demand and supply equilibrium. Counterbalancing toxic metals/metalloids toxicity demands a better understanding of the complex mechanisms at physiological, biochemical, molecular, cellular, and plant level that may result in increased crop productivity. Consequently, plants have established different internal defense mechanisms to cope with the adverse effects of toxic metals/metalloids. Nevertheless, these internal defense mechanisms are not adequate to overwhelm the metals/metalloids toxicity. Plants produce several secondary messengers to trigger cell signaling, activating the numerous transcriptional responses correlated with plant defense. Therefore, the recent advances in omics approaches such as genomics, transcriptomics, proteomics, metabolomics, ionomics, miRNAomics, and phenomics have enabled the characterization of molecular regulators associated with toxic metal tolerance, which can be deployed for developing toxic metal tolerant plants. This review highlights various response strategies adopted by plants to tolerate toxic metals/metalloids toxicity, including physiological, biochemical, and molecular responses. A seven-(omics)-based design is summarized with scientific clues to reveal the stress-responsive genes, proteins, metabolites, miRNAs, trace elements, stress-inducible phenotypes, and metabolic pathways that could potentially help plants to cope up with metals/metalloids toxicity in the face of fluctuating environmental conditions. Finally, some bottlenecks and future directions have also been highlighted, which could enable sustainable agricultural production.
Collapse
Affiliation(s)
- Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Javaria Tabassum
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Zainab Zahid
- School of Civil and Environmental Engineering (SCEE), Institute of Environmental Sciences and Engineering (IESE), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Sidra Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Shanza Bashir
- School of Civil and Environmental Engineering (SCEE), Institute of Environmental Sciences and Engineering (IESE), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Rutwik Barmukh
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Rao Sohail Ahmad Khan
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Fernando Barbosa
- Department of Clinical Analysis, Toxicology and Food Sciences, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Chong Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Hua Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Weijian Zhuang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Rajeev K. Varshney
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
35
|
OUP accepted manuscript. Metallomics 2022; 14:6561629. [DOI: 10.1093/mtomcs/mfac023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022]
|
36
|
Zeeshan M, Hu YX, Iqbal A, Salam A, Liu YX, Muhammad I, Ahmad S, Khan AH, Hale B, Wu HY, Zhou XB. Amelioration of AsV toxicity by concurrent application of ZnO-NPs and Se-NPs is associated with differential regulation of photosynthetic indexes, antioxidant pool and osmolytes content in soybean seedling. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112738. [PMID: 34481352 DOI: 10.1016/j.ecoenv.2021.112738] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/25/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Arsenic is a significant food safety and environmental concern due to its mutagenic and carcinogenic effect on living organism. Soybean (Glycine max [L.] Merrill) is a global staple crop grown intensively in arsenic-contaminated regions of the world (e.g., Southern Province of China). Therefore, the objective of this study was to investigate whether Se-NPs and/or ZnO-NPs could be used as an eco-friendly and efficient amendment to reduce arsenic uptake and toxicity in soybean. Ten-days-old seedling, grown in vermiculite, were transferred to hydroponic media and further grown till V2 growth stage appeared. AsV (25 μM Na2HAsO4) stressed plants were treated with ZnONP (25 μM ZnO) and SeNP (25 μM Se) separately and in combination, which were grown for another 10 d. The result demonstrated that arsenic-treated soybean plants displayed a reduction in photosynthetic efficiency, increased proline and glycine betaine accumulation in tissues, and altered antioxidant activity compared to an untreated control. The application of zinc oxide and selenium nanoparticles, both independently and in tandem, reduced arsenic stress in root and shoot tissues and rescued plant health. This was reflected through increased levels of reduced glutathione content, ascorbic acid, and various photosynthesis- and antioxidant-relevant enzymes. In addition, nanoparticle-treated soybean plants displayed higher expression of defense- and detoxification-related genes compared to controls. Cellular toxicants (i.e., oxidized glutathione, reactive oxygen species, and malondialdehyde) were reduced upon nanoparticle treatment. These data collectively suggest that selenium and zinc oxide nanoparticles may be a solution to ameliorate arsenic toxicity in agricultural soils and crop plants.
Collapse
Affiliation(s)
- Muhammad Zeeshan
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yu Xin Hu
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Anas Iqbal
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Abdul Salam
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yong Xin Liu
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Ihsan Muhammad
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Shakeel Ahmad
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Aamir Hamid Khan
- National Key Lab of Crop Genetic Improvement, Huazhong Agriculture University, Wuhan, China
| | - Brett Hale
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, USA
| | - Hai Yan Wu
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xun Bo Zhou
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning 530004, China.
| |
Collapse
|
37
|
Qin X, Xia Y, Hu C, Yu M, Shabala S, Wu S, Tan Q, Xu S, Sun X. Ionomics analysis provides new insights into the co-enrichment of cadmium and zinc in wheat grains. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112623. [PMID: 34388658 DOI: 10.1016/j.ecoenv.2021.112623] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/31/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) is present in many soils and, when enter a food chain, represents a major health threat to humans. The existent large variation in grain Cd content amongst wheat genotypes opens prospects for genetic improvement for reduced Cd uptake in this species. However, selecting low-Cd-accumulating varieties comes with a possible caveat of affecting uptake other essential nutrients. In this work, we screened 134 wheat varieties in 3 various field studies and selected 15 high- and 15 low-Cd accumulating varieties in grains for ionomics analysis. Our results showed that high-Cd accumulating varieties also possessed an ability to accumulate mineral elements of calcium, magnesium, manganese, iron and zinc, while varieties with low Cd content were deficient in many essential nutrients and, especially, zinc (Zn). The above data was confirmed in an independent trail involving another 97 wheat varieties. Thus, selecting plants for high Zn accumulation (as a part of biofortification programs) resulted in an inadvertent increase in accumulation of the toxic Cd in wheat. Vice versa, selecting low Cd-accumulating varieties comes with a danger of reducing their Zn content, with major consequences to food quality and human health. We suggest that the above conundrum can be resolved by understanding the structure-function relations of various transporters isoforms involved in Zn and Cd transport and issue-specific mode of their operation, via cell-based phenotyping followed by molecular breeding.
Collapse
Affiliation(s)
- Xiaoming Qin
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China
| | - Yitao Xia
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengxiao Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Min Yu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China; Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas 7001, Australia
| | - Songwei Wu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiling Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Shoujun Xu
- Institute of Quality Stander and Monitoring Technology for Agro-products, Guangdong Academy of Agricultural Sciencs, Guangzhou 510640, China
| | - Xuecheng Sun
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China.
| |
Collapse
|
38
|
Zou M, Zhou S, Zhou Y, Jia Z, Guo T, Wang J. Cadmium pollution of soil-rice ecosystems in rice cultivation dominated regions in China: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 280:116965. [PMID: 33774546 DOI: 10.1016/j.envpol.2021.116965] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 05/22/2023]
Abstract
Cd accumulation in paddy soils and its subsequent transfer to the food chain are widespread environmental issues, which has been extensively investigated in China. However, most studies focused on regional scales and these results may not be applicable to present the Cd contamination status in soil-rice ecosystems at a national scale. Therefore, based on collected data from China's rice cultivation dominated regions, this study provides the Cd pollution level of paddy soils and rice grains in China. Results indicates that the Yangtze River basin, especially Hunan, required more attention due to the elevated Cd concentrations in soil-rice ecosystems. Moreover, this review summarizes the significant natural and anthropogenic sources, transport and accumulation mechanism as well as the influencing factors of Cd in soil-rice ecosystems. The wide occurrence of Cd contamination in paddy soils derived primarily from mining activities, intensive application of phosphates fertilizers and e-waste. Physicochemical characteristics of soil, soil microorganisms, temperature as well as the physiological features of rice plants all contribute to Cd accumulation in rice grains, which can be controlled to mitigate Cd accumulation in rice grains. This review will provide a scientific reference for Cd pollution control and management with respect to paddy field ecosystems in China and other countries.
Collapse
Affiliation(s)
- Mengmeng Zou
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, China
| | - Shenglu Zhou
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, China.
| | - Yujie Zhou
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, China
| | - Zhenyi Jia
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, China
| | - Tianwei Guo
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, China
| | - Junxiao Wang
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, China
| |
Collapse
|
39
|
Wang Y, Xu Y, Liang X, Wang L, Sun Y, Huang Q, Qin X, Zhao L. Soil application of manganese sulfate could reduce wheat Cd accumulation in Cd contaminated soil by the modulation of the key tissues and ionomic of wheat. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145328. [PMID: 33736398 DOI: 10.1016/j.scitotenv.2021.145328] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/12/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Wheat is one of the main sources of dietary Cd in northern China, and the reduction of Cd accumulation in wheat is of great significance for human health. This study explored and highlighted the effects of soil application of manganese sulfate (MnSO4) on the distribution and transport of Cd in two wheat cultivars, and identified the key tissues and elements during the Cd translocation in wheat by measuring the concentrations of eight elements in 17 parts of wheat under MnSO4 treatment. The bioaccumulation factor of Cd in the roots and the translocation factor of Cd in node1 (connected to the panicle) of the high-Cd wheat cultivar were found to be higher than that of the low-Cd wheat cultivar. Soil application of MnSO4 (0.05-0.2%) significantly reduced the Cd concentration in high- and low-Cd wheat grains by 24.16-57.52% and 25.90-63.44%, respectively, and decreased the Cd concentrations in all wheat tissues. MnSO4 application had no effect on wheat growth, and the inhibition effects on wheat Cd accumulation were more pronounced at wheat-seeding stage. MnSO4 application inhibited Cd uptake by the ion antagonism between Mn/Zn/Fe and Cd in the wheat roots and reduced Cd upward transport by reducing the Cd transport from node1 to internode1 and from panicle to wheat grain. Nodes 2-4 can restrict the transport of both Cd and Mn, whereas node1 and the panicle can inhibit Cd transport but have no effect on Mn transport. The ionomic results show that the overall spatial distribution of different tissues is consistent with the growth morphology of wheat plants. MnSO4 application significantly changed the ionomes of the roots, nodes, glumes, and wheat grains; meanwhile, the differences in the ionomic responses among the roots are the most remarkable. The results of this study show that soil application of MnSO4 is efficient for reducing the Cd accumulation in wheat grown in Cd-contaminated soil, demonstrating wide application potential.
Collapse
Affiliation(s)
- Yale Wang
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, People's Republic of China; Key Laboratory of Original Environmental Pollution Control, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, People's Republic of China
| | - Yingming Xu
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, People's Republic of China; Key Laboratory of Original Environmental Pollution Control, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, People's Republic of China.
| | - Xuefeng Liang
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, People's Republic of China; Key Laboratory of Original Environmental Pollution Control, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, People's Republic of China
| | - Lin Wang
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, People's Republic of China; Key Laboratory of Original Environmental Pollution Control, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, People's Republic of China
| | - Yuebing Sun
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, People's Republic of China; Key Laboratory of Original Environmental Pollution Control, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, People's Republic of China
| | - Qingqing Huang
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, People's Republic of China; Key Laboratory of Original Environmental Pollution Control, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, People's Republic of China
| | - Xu Qin
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, People's Republic of China; Key Laboratory of Original Environmental Pollution Control, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, People's Republic of China
| | - Lijie Zhao
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, People's Republic of China; Key Laboratory of Original Environmental Pollution Control, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, People's Republic of China
| |
Collapse
|
40
|
Zhen S, Shuai H, Xu C, Lv G, Zhu X, Zhang Q, Zhu Q, Núñez-Delgado A, Conde-Cid M, Zhou Y, Huang D. Foliar application of Zn reduces Cd accumulation in grains of late rice by regulating the antioxidant system, enhancing Cd chelation onto cell wall of leaves, and inhibiting Cd translocation in rice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145302. [PMID: 33515894 DOI: 10.1016/j.scitotenv.2021.145302] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/16/2020] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Paddy soil contaminated by cadmium (Cd) has attracted worldwide attention, while foliar spraying of zinc (Zn) could be considered a cost-effective and practical agronomic measure for reducing Cd accumulation in rice grain. However, the effects due to foliar spraying of Zn on different cultivars, as well as the mechanism of subsequent processes taking place are not fully understood up to now. To go a step ahead, a field experiment was conducted with the aim of studying the capability of foliar application of Zn (0.4% ZnSO4) to reduce Cd concentration in grain in five late rice cultivars (here named JLYHZ, FYY272, JY284, CLY7 and LXY130), and the antioxidant activities and subcellular distribution of Cd in the leaves. The results indicate that foliar Zn application significantly decreased grain yield in JY284, CLY7 and JLYHZ, compared to controls. In addition, foliar application of Zn significantly decreased Cd concentration in grain of the five rice cultivars, while increased Zn concentration. The effect of foliar application of Zn on transport coefficients of Cd varied greatly for the different rice cultivars. Foliar application of Zn significantly decreased the malondialdehyde (MDA) concentration in rice leaves, and increased peroxidase (POD) activity. Also, it changed the distribution of Cd in the soluble fraction in leaves (expressed as proportion), which was significantly decreased, and the proportion of Cd in the cell wall increased. The structural equation model (SEM) revealed the positive effects of flag leaf Cd, first node Cd, old leaf Cd, and root Cd concentration on grain Cd concentration. Flag leaf Cd had the highest standardized total effects on grain Cd concentration, followed by old leaf Cd. These results indicated that foliar application of Zn was effective in reducing grain Cd concentration of late rice by enhancing antioxidant activities and Cd chelation onto cell wall of leaves, and reducing Cd concentrations in leaves.
Collapse
Affiliation(s)
- Sheng Zhen
- College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China; Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Hong Shuai
- College of Resources and Environmental Sciences, Hunan Normal University, Changsha 410081, China
| | - Chao Xu
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| | - Guanghui Lv
- College of Resources and Environmental Sciences, Hunan Normal University, Changsha 410081, China
| | - Xiangdong Zhu
- College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Quan Zhang
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Qihong Zhu
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Avelino Núñez-Delgado
- Department of Soil Science and Agricultural Chemistry, Univ. Santiago de Compostela, Engineering Polytechnic School, Campus Univ. s/n, 27002 Lugo, Spain
| | - Manuel Conde-Cid
- Soil Science and Agricultural Chemistry, Fac. Sciences, Univ. Vigo, 32004 Ourense, Spain
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Daoyou Huang
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
41
|
Zhang C, Hiradate S, Kusumoto Y, Morita S, Koyanagi TF, Chu Q, Watanabe T. Ionomic Responses of Local Plant Species to Natural Edaphic Mineral Variations. FRONTIERS IN PLANT SCIENCE 2021; 12:614613. [PMID: 33854517 PMCID: PMC8039527 DOI: 10.3389/fpls.2021.614613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/09/2021] [Indexed: 05/13/2023]
Abstract
Leaf ionome indicates plant phylogenetic evolution and responses to environmental stress, which is a critical influential factor to the structure of species populations in local edaphic sites. However, little is known about leaf ionomic responses of local plant species to natural edaphic mineral variations. In the present study, all plant species and soil samples from a total of 80 soil sites in Shiozuka Highland were collected for multi-elemental analysis. Ioniomic data of species were used for statistical analysis, representing 24 species and 10 families. Specific preferences to ionomic accumulation in plants were obviously affected by the phylogeny, whereas edaphic impacts were also strong but limited within the phylogenetic preset. Correlations among elements resulted from not only elemental synergy and competition but also the adaptive evolution to withstand environmental stresses. Furthermore, ionomic differences of plant families were mainly derived from non-essential elements. The majority of variations in leaf ionome is undoubtedly regulated by evolutionary factors, but externalities, especially environmental stresses also have an important regulating function for landscape formation, determining that the contributions of each factor to ionomic variations of plant species for adaptation to environmental stress provides a new insight for further research on ionomic responses of ecological speciation to environmental perturbations and their corresponding adaptive evolutions.
Collapse
Affiliation(s)
- Chengming Zhang
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Syuntaro Hiradate
- National Institute for Agro-Environmental Sciences (NIAES), Tsukuba, Japan
| | - Yoshinobu Kusumoto
- National Institute for Agro-Environmental Sciences (NIAES), Tsukuba, Japan
| | - Sayaka Morita
- National Institute for Agro-Environmental Sciences (NIAES), Tsukuba, Japan
| | - Tomoyo F. Koyanagi
- National Institute for Agro-Environmental Sciences (NIAES), Tsukuba, Japan
| | - Qingnan Chu
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
42
|
Das P, Khare P, Singh RP, Yadav V, Tripathi P, Kumar A, Pandey V, Gaur P, Singh A, Das R, Hiremath C, Verma AK, Shukla AK, Shanker K. Arsenic-induced differential expression of oxidative stress and secondary metabolite content in two genotypes of Andrographis paniculata. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124302. [PMID: 33162235 DOI: 10.1016/j.jhazmat.2020.124302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 09/01/2020] [Accepted: 10/15/2020] [Indexed: 05/28/2023]
Abstract
The present study explores the differential responses of two genotypes (APwC: wild collection and APMS: mass selection line) of A. paniculata against the three application rates of arsenic (42, 126, and 200 mg kg-1). The oxidative enzymes, As accumulation in different tissues, plant growth, and content of pharmacologically important ent-labdane-related diterpenes (ent-LRDs) of the two genotypes were evaluated in the study. Results demonstrated that As uptake significantly reduced plant biomass in APwC and APMS by 5-41.5% and 9-33% in a dose-response manner, respectively. The APMS exhibited lower bioconcentration and translocation factors, higher As tolerance index, and higher content of ent-LRDs as compared to APWC. As treatment induced a decrease in the sum of four metabolite content of APMS (1.43 times) and an increase in that of APWC (1.12 times) as compared to control. Likewise, variance in the production of 5,7,2',3'-tetramethoxyflavanone, and stress enzymes was also observed between APwC and APMS. The increase in the expression of ApCPS2 suggested its involvement in channeling of metabolic flux towards the biosynthesis of ent-LRDs under As stress.
Collapse
Affiliation(s)
- Paurabi Das
- Agronomy and Soil Science Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Puja Khare
- Agronomy and Soil Science Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Raghavendra Pratap Singh
- Agronomy and Soil Science Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Vineet Yadav
- Agronomy and Soil Science Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pratibha Tripathi
- Agronomy and Soil Science Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Anuj Kumar
- Agronomy and Soil Science Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Versha Pandey
- Agronomy and Soil Science Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Pooja Gaur
- Chemical Sciences Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Asha Singh
- Agronomy and Soil Science Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Ram Das
- Chemical Sciences Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Channayya Hiremath
- CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru 560065, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - Ashutosh K Shukla
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Karuna Shanker
- Chemical Sciences Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
43
|
Zhao H, Huang X, Liu F, Hu X, Zhao X, Wang L, Gao P, Li X, Ji P. Potential of using a new aluminosilicate amendment for the remediation of paddy soil co-contaminated with Cd and Pb. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116198. [PMID: 33296705 DOI: 10.1016/j.envpol.2020.116198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/13/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) and lead (Pb) are toxic heavy metals that impact human health and biodiversity. Removal of Cd/Pb from contaminated soils is a means for maintaining environmental sustainability and biodiversity. In this study, we applied a newly modified material fly ash (NA), zeolite (ZE), and fly ash (FA) to the paddy soils and evaluated the effects of Cd/Pb accumulation in rice via a one-year field experiment. The results showed that the application of NA and ZE enhanced the soil pH and nutrients to a large extent and reduced the availability of Cd/Pb in soil. The Cd and Pb concentrations in rice grains decreased by 32.8% and 62.9%, respectively, with the NA treatments. Similarly, the application of ZE reduced the Cd and Pb concentrations in rice grains by a factor of 27.9% and 63.5%, respectively, which indicates that the amendments can promote the transfer of Cd and Pb from acid-exchangeable fraction to oxidizable and residual fractions. The Cd/Pb showed a significant positive correlation to other metal ions and a negative correlation to the nutrients. Generally, the application of NA and ZE was effective in reducing Cd/Pb accumulation and improving rice yield. Moreover, the NA was more cost-effective than ZE. Hence, this study proves that NA may be a better amendment for remediation of Cd/Pb contaminated soils.
Collapse
Affiliation(s)
- Hanghang Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China; Key Laboratory of Original Agro-environmental Pollution Prevention and Control, Ministry of Agriculture/Tianjin Key Laboratory of Agro-environment and Safe-product, Tianjin, 300191, China
| | - Xunrong Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Fuhao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Xiongfei Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Xin Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Lu Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Pengcheng Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; Scientific Laboratory of Heyang Agricultural Environment and Farmland Cultivation, Ministry of Agriculture and Rural Affairs, Weinan, Shaanxi, 714000, China
| | - Xiuying Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| | - Puhui Ji
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
44
|
Peng CY, Xu XF, Zhu HY, Ren YF, Niu HL, Hou RY, Wan XC, Cai HM. Metabolics and ionomics responses of tea leaves (Camellia sinensis (L.) O. Kuntze) to fluoride stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:65-75. [PMID: 33296847 DOI: 10.1016/j.plaphy.2020.11.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Tea plant (Camellia sinensis (L.) O. Kuntze) is known to accumulate high concentrations of fluoride (F) in its leaves; however, the underlying mechanism of F accumulation remains unclear. The main objective of this study was to investigate the homeostatic self-defense mechanisms of tea leaves to F supplementation (0, 5, 20, and 50 mgL-1) by metabolomics and ionomics. We identified a total of 96 up-regulated and 40 down-regulated metabolites in tea leaves treated with F. Of these different compounds, minor polypeptides, carbohydrates and amino acids played valuable roles in the F-tolerating mechanism of tea plant. After F treatments, the concentrations of sodium (Na), ferrum (Fe), manganese (Mn), and molybdenum (Mo) were significantly increased in tea leaves, whereas the aluminum (Al) was decreased. These findings suggest that the ionic balance and metabolites are attributable to the development of F tolerance, providing new insight into tea plant adaptation to F stress.
Collapse
Affiliation(s)
- Chuan-Yi Peng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China; Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China; Anhui Province Key Lab of Analysis and Detection for Food Safety, Hefei, 230036, People's Republic of China.
| | - Xue-Feng Xu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China; Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China; Anhui Province Key Lab of Analysis and Detection for Food Safety, Hefei, 230036, People's Republic of China
| | - Hai-Yan Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China; Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China; Anhui Province Key Lab of Analysis and Detection for Food Safety, Hefei, 230036, People's Republic of China
| | - Yin-Feng Ren
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China; Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China; Anhui Province Key Lab of Analysis and Detection for Food Safety, Hefei, 230036, People's Republic of China
| | - Hui-Liang Niu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China
| | - Ru-Yan Hou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China; Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China; Anhui Province Key Lab of Analysis and Detection for Food Safety, Hefei, 230036, People's Republic of China
| | - Xiao-Chun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China.
| | - Hui-Mei Cai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China; Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China; Anhui Province Key Lab of Analysis and Detection for Food Safety, Hefei, 230036, People's Republic of China.
| |
Collapse
|
45
|
Zhou X, Yang J, Kronzucker HJ, Shi W. Selenium Biofortification and Interaction With Other Elements in Plants: A Review. FRONTIERS IN PLANT SCIENCE 2020; 11:586421. [PMID: 33224171 PMCID: PMC7674621 DOI: 10.3389/fpls.2020.586421] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/16/2020] [Indexed: 05/16/2023]
Abstract
Selenium (Se) is an essential element for humans and animals and its deficiency in the diet is a global problem. Crop plants are the main source of Se for consumers. Therefore, there is much interest in understanding the factors that govern the accumulation and distribution of Se in the tissues of crop plants and the mechanisms of interaction of Se absorption and accumulation with other elements, especially with a view toward optimizing Se biofortification. An ideal crop for human consumption is rich in essential nutrient elements such as Se, while showing reduced accumulation of toxic elements in its edible parts. This review focuses on (a) summarizing the nutritional functions of Se and the current understanding of Se uptake by plant roots, translocation of Se from roots to shoots, and accumulation of Se in grains; and (b) discussing the influence of nitrogen (N), phosphorus (P), and sulfur (S) on the biofortification of Se. In addition, we discuss interactions of Se with major toxicant metals (Hg, As, and Cd) frequently present in soil. We highlight key challenges in the quest to improve Se biofortification, with a focus on both agronomic practice and human health.
Collapse
Affiliation(s)
- Xinbin Zhou
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Jing Yang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Herbert J. Kronzucker
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
46
|
Wang Q, Zeng X, Song Q, Sun Y, Feng Y, Lai Y. Identification of key genes and modules in response to Cadmium stress in different rice varieties and stem nodes by weighted gene co-expression network analysis. Sci Rep 2020; 10:9525. [PMID: 32533096 PMCID: PMC7293223 DOI: 10.1038/s41598-020-66132-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/13/2020] [Indexed: 12/19/2022] Open
Abstract
Soil cadmium (Cd) pollution threatens food safety. This study aimed to identify genes related to Cd accumulation in rice. Low- (Shennong 315, short for S315) and high- (Shendao 47, short for S47) Cd-accumulative rice cultivars were incubated with CdCl2·2.5H2O. RNA-seq and weighted gene co-expression network analysis (WGCNA) were performed to identify the modules and genes associated with Cd-accumulative traits of rice. After Cd stress treatment, the Cd content in various tissues of S315 was significantly higher than that of S47. In the stem nodes, the Cd distribution results of the two varieties indicated that the unelongated nodes near the root (short for node A) had a stronger ability to block Cd transfer upwards than the panicle node (short for node B). Cd stress induced huge changes in gene expression profiles. After analyzing the differentially expressed genes (DEGs) in significantly correlated WGCNA modules, we found that genes related to heavy metal transportation had higher expression levels in node A than that in node B, such as Copper transporter 6 (OS04G0415600), Zinc transporter 10 (OS06G0566300), and some heavy-metal associated proteins (OS11G0147500, OS03G0861400, and OS10G0506100). In the comparison results between S315 and S47, the expression of chitinase (OS03G0679700 and OS06G0726200) was increased by Cd treatment in S315. In addition, OsHSPs (OS05G0460000, OS08G0500700), OsHSFC2A (OS02G0232000), and OsDJA5 (OS03G0787300) were found differentially expressed after Cd treatment in S315, but changed less in S47. In summary, different rice varieties have different processes and intensities in response to Cd stress. The node A might function as the key tissue for blocking Cd upward transport into the panicle via vigorous processes, including of heavy metal transportation, response to stress, and cell wall.
Collapse
Affiliation(s)
- Qi Wang
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, 368 Xuefu Road, Nangang District, Harbin, 150000, Heilongjiang, China
| | - Xiannan Zeng
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, 368 Xuefu Road, Nangang District, Harbin, 150000, Heilongjiang, China
| | - Qiulai Song
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, 368 Xuefu Road, Nangang District, Harbin, 150000, Heilongjiang, China
| | - Yu Sun
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, 368 Xuefu Road, Nangang District, Harbin, 150000, Heilongjiang, China
| | - Yanjiang Feng
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, 368 Xuefu Road, Nangang District, Harbin, 150000, Heilongjiang, China
| | - Yongcai Lai
- Heilongjiang Academy of Agricultural Sciences, 368 Xuefu Road, Nangang District, Harbin, 150000, Heilongjiang, China.
| |
Collapse
|
47
|
Li Q, Zhang P, Zhou H, Peng PQ, Zhang K, Mei JX, Li J, Liao BH. Effects of Cd-resistant bacteria and calcium carbonate + sepiolite on Cd availability in contaminated paddy soil and on Cd accumulation in brown rice grains. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110492. [PMID: 32203777 DOI: 10.1016/j.ecoenv.2020.110492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/14/2020] [Accepted: 03/15/2020] [Indexed: 06/10/2023]
Abstract
A pot experiment was conducted to evaluate the effects of combined application of cadmium (Cd)-resistant bacteria (J) and calcium carbonate + sepiolite (G) on both Cd bioavailability in contaminated paddy soil and on Cd accumulation in rice plants. Adding the mixture (J + G) to the soils significantly increased soil pH, decreased extractable Cd contents, and increased Fe/Mn-oxide Cd and organic-bound Cd contents. The applying of J + G, J and G decreased Cd contents in various rice tissues (roots, stems and leaves, husks, and brown rice grains) to different degrees. Compared with those of the CK, Cd contents decreased by 17.8%-53.3% in the roots, 12.3%-27.4% in the stems and leaves, 25.4%-44.6% in the husks, and 28.8%-55.7% in the brown rice grains for the application of J + G; Cd contents decreased by 8.2%-28.5% in the roots, 11.5%-32.0% in the husks, and 27.8%-45.9% in the brown rice grains for the application of J; Cd contents decreased by 12.9%-26.5% in the roots, in the stems and leaves decreased by 4.6%-34.1% in the stems and leaves, 60.2%-79.7% in the husks, and 35.7%-47.6% in the brown rice grains for the application of G. The alone application of bacteria (J) could reduce the bioavailability of Cd in soil and the contents of Cd in brown rice grains to some extent. Moreover, when the bacteria were applied in combination with mineral (J + G), it was a more effective method than the alone application of J or G to reduce the soil Cd bioavailability. Under all the tested conditions, applications of J4+G4 (320 mL kg-1 of J + 8 g kg-1 of G) resulted in the greatest reduction in Cd contents in brown rice grains. Overall, the results indicated that the combination of Cd-resistant bacteria and mineral material could effectively reduce Cd bioavailability in paddy soils and inhibit Cd accumulation in brown rice grains.
Collapse
Affiliation(s)
- Qian Li
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Ping Zhang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Hang Zhou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Pei-Qin Peng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Ke Zhang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jin-Xing Mei
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jing Li
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Bo-Han Liao
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha, 410004, China
| |
Collapse
|
48
|
Zhu QL, Bao J, Liu J, Zheng JL. High salinity acclimatization alleviated cadmium toxicity in Dunaliella salina: Transcriptomic and physiological evidence. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 223:105492. [PMID: 32361487 DOI: 10.1016/j.aquatox.2020.105492] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/29/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
In the present study, we tested the hypothesis that high salinity acclimatization can mitigate cadmium (Cd) toxicity in the microalga Dunaliella salina. To this end, microalgal cells were subjected to high salinity (60 g/L) for 12 weeks until the growth rate remained stable between generations and were then exposed to 2.5 mg/L of Cd for 4 days. Acute Cd toxicity impaired cell growth by increasing Cd bioaccumulation and lipid peroxidation, which reduced cellular pigment, total protein, and glutathione content. It also significantly weakened photosynthetic efficiency and total antioxidant capacity. However, acclimatization to high salinity alleviated these negative effects under Cd stress. To understand the potential mechanisms behind this phenomenon, 12 cDNA libraries from control, Cd-exposed (Cd), high salinity-acclimated (Salinity), and high salinity-acclimated with Cd exposure (Salinity + Cd) cells were derived using RNA sequencing. A total of 2019, 1799, 2150 and 1256 differentially expressed genes (DEGs) were identified from sample groups Salinity / Control, Cd / Control, Salinity + Cd / Control, and Salinity + Cd / Cd, respectively. Some of these DEGs were significantly enriched in ribosome, photosynthesis, stress defense, and photosynthesis-antenna proteins. Among these genes, 82 ribosomal genes were up-regulated in Salinity / Control (corrected P = 3.8 × 10-28), while 81 were down-regulated in Cd / Control (corrected P = 1.1 × 10-24). Moreover, high salinity acclimatization up-regulated 8 photosynthesis genes and 18 stress defense genes compared with the control. Additionally, 3 photosynthesis genes, 11 stress defense genes and 11 genes encoding light harvesting proteins were up-regulated by high salinity acclimatization under Cd exposure. Overall, high salinity acclimatization mitigated Cd toxicity, possibly by up-regulating the transcription of photosynthesis, stress defense, and ribosomal genes. These results provide new insights on cross-tolerance in microalgae.
Collapse
Affiliation(s)
- Qing-Ling Zhu
- Institute of Marine Biology & Pharmacology, Ocean College, Zhejiang University, 1 Zheda Road, Dinghai District, Zhoushan, 316000, Zhejiang, PR China; College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Jingjing Bao
- Institute of Marine Biology & Pharmacology, Ocean College, Zhejiang University, 1 Zheda Road, Dinghai District, Zhoushan, 316000, Zhejiang, PR China
| | - Jianhua Liu
- Institute of Marine Biology & Pharmacology, Ocean College, Zhejiang University, 1 Zheda Road, Dinghai District, Zhoushan, 316000, Zhejiang, PR China; College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, PR China.
| | - Jia-Lang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China.
| |
Collapse
|
49
|
Du F, Liu P, Wang K, Yang Z, Wang L. Ionomic responses of rice plants to the stresses of different arsenic species in hydroponics. CHEMOSPHERE 2020; 243:125398. [PMID: 31770698 DOI: 10.1016/j.chemosphere.2019.125398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/11/2019] [Accepted: 11/17/2019] [Indexed: 05/27/2023]
Abstract
Different ionomic profiles of plants are associated with different external stresses to which they are exposed. Investigation of ionomic variation is necessary for understanding the migration and detoxification of toxic elements in plants. In the current study, rice plants were treated with arsenite, arsenate, monomethylarsonic acid and dimethylarsinic acid in hydroponics. The ionomic responses of the rice plants to different arsenic (As) species stresses were measured and analyzed. The multielement approach is more sensitive at detecting significant variations from external environmental stresses than the consideration of several individual elements. The pairs of significant correlations between elements varied based on the rice tissues and As species used in treatment, resulting in specific correlation networks. However, some pairs of correlations existed regardless of As species treatment used in this study. Positive correlations between P and Fe were observed in rice roots treated with any of the As species, implying that P and Fe share similar biological processes. The heatmap from hierarchical cluster analysis (HCA) agreed with the principal component analysis (PCA) results in ionomic differentiation between roots and shoots. Furthermore, ionomic differences between rice plants treated with different As species were identified through PCA. This study revealed that the ionomic profiles in rice plants are sufficient to detect responses to environmental perturbations. Association studies between ionomics and genomics are necessary to further understand the potential mechanisms that promote uptake or exclusion of elements in plants.
Collapse
Affiliation(s)
- Fan Du
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Peng Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Kai Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Zhaoguang Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, 410083, China
| | - Lin Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, 410083, China.
| |
Collapse
|
50
|
Liu A, Zhou Z, Yi Y, Chen G. Transcriptome analysis reveals the roles of stem nodes in cadmium transport to rice grain. BMC Genomics 2020; 21:127. [PMID: 32028884 PMCID: PMC7003353 DOI: 10.1186/s12864-020-6474-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/09/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Node is the central organ of transferring nutrients and ions in plants. Cadmium (Cd) induced crop pollution threatens the food safety. Breeding of low Cd accumulation cultivar is a chance to resolve this universal problem. This study was performed to identify tissue specific genes involved in Cd accumulation in different rice stem nodes. Panicle node and the first node under panicle (node I) were sampled in two rice cultivars: Xiangwanxian No. 12 (low Cd accumulation cultivar) and Yuzhenxiang (high Cd accumulation cultivar). RNA-seq analysis was performed to identify differentially expressed genes (DEGs) and microRNAs. RESULTS Xiangwanxian No. 12 had lower Cd concentration in panicle node, node I and grain compared with Yuzhenxiang, and node I had the highest Cd concentration in the two cultivars. RNA seq analysis identified 4535 DEGs and 70 miRNAs between the two cultivars. Most genesrelated to the "transporter activity", such as OsIRT1, OsNramp5, OsVIT2, OsNRT1.5A, and OsABCC1, play roles in blocking the upward transport of Cd. Among the genes related to "response to stimulus", we identified OsHSP70 and OsHSFA2d/B2c in Xiangwanxian No. 12, but not in Yuzhenxiang, were all down-regulated by Cd stimulus. The up-regulation of miRNAs (osa-miR528 and osa-miR408) in Xiangwanxian No. 12 played a potent role in lowering Cd accumulation via down regulating the expression of candidate genes, such as bZIP, ERF, MYB, SnRK1 and HSPs. CONCLUSIONS Both panicle node and node I of Xiangwanxian No. 12 played a key role in blocking the upward transportation of Cd, while node I played a critical role in Yuzhenxiang. Distinct expression patterns of various transporter genes such as OsNRT1.5A, OsNramp5, OsIRT1, OsVIT2 and OsABCC1 resulted in differential Cd accumulation in different nodes. Likewise, distinct expression patterns of these transporter genes are likely responsible for the low Cd accumulation in Xiangwanxian No. 12 cultivar. MiRNAs drove multiple transcription factors, such as OsbZIPs, OsERFs, OsMYBs, to play a role in Cd stress response.
Collapse
Affiliation(s)
- Ailing Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128 People’s Republic of China
| | - Zhibo Zhou
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128 People’s Republic of China
| | - Yake Yi
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128 People’s Republic of China
| | - Guanghui Chen
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128 People’s Republic of China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops (CICGO), Hunan Agricultural University, Changsha, 410128 People’s Republic of China
| |
Collapse
|