1
|
Xie C, Jiang X, Yin J, Jiang R, Zhu J, Zou S. Bisphenol S accelerates the progression of high fat diet-induced NAFLD by triggering ferroptosis via regulating HMGCS2. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137166. [PMID: 39799675 DOI: 10.1016/j.jhazmat.2025.137166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Bisphenol S (BPS) is a widely detected environmental toxin with the potential to increase the risk of non-alcoholic fatty liver disease (NAFLD). However, the effects of BPS on the progression of high fat diet (HFD)-induced NAFLD remain unclear. This study aimed to explore the role and underlying mechanisms of action of BPS in HFD-induced NAFLD. Our results showed that BPS exposure (50 and 500 μg/kg bodyweight/day) promoted the progression of NAFLD, which was evidenced by increased liver/body weight ratio, elevated serum alanine aminotransferase and aspartate aminotransferase levels, and more and larger lipid droplets in liver tissues. These phenomena were accompanied by abnormal expression levels of fatty acid uptake (Cd36), fatty acid synthesis (Pparγ, Scd-1, and Fasn), fatty acid oxidation (Pparα), and cytokines (TNFα, IL-1β, and IL-6). In vitro and in vivo studies showed that BPS exposure caused hepatic ferroptosis by regulating ferroptosis-related markers (GPX4, xCT, FTH, and ACSL4). Moreover, BPS exposure caused ROS overproduction, mitochondrial dysfunction, lipid peroxidation, and GSH suppression, all of which were restored by ferrostatin-1, a ferroptosis inhibitor. Moreover, BPS significantly upregulated HMGCS2 expression in the hepatocytes and liver tissues. 3-hydroxy-3-methylglutaryl coenzyme A synthetase 2 (HMGCS2) knockdown mitigated the effects of BPS on hepatocytes and reversed the expression of ferroptosis-related markers. Thus, BPS exposure aggravates HFD-induced NAFLD by regulating HMGCS2-mediated ferroptosis. Collectively, our study indicates that BPS exposure at environmentally relevant concentrations may aggravate NAFLD phenotypes under HFD conditions, highlighting the health risks of BPS to the liver.
Collapse
Affiliation(s)
- Chunfeng Xie
- Medical School, Nanjing University, Nanjing 210093, China; Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xinyao Jiang
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Juan Yin
- Department of Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Runqiu Jiang
- Medical School, Nanjing University, Nanjing 210093, China.
| | - Jianyun Zhu
- Department of Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China.
| | - Shenshan Zou
- Department of General Surgery, Changzhou TCM Hospital, No. 25, Heping North Road, Changzhou City, Jiangsu Province 213003, China.
| |
Collapse
|
2
|
Hao KK, Wang QJ, Wei SX, Si HY, Hao JW, Chen NF, Chen ND, Gao XY, Liao SJ, Zheng SJ, Zhang MM. Structural characterization and anti-inflammatory activity of a neutral polysaccharide from Dendrobium huoshanense C. Z. Tang et S. J. Cheng. Int J Biol Macromol 2025; 302:140339. [PMID: 39890001 DOI: 10.1016/j.ijbiomac.2025.140339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/12/2025] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
A neutral polysaccharide (NDHP-2-1) was isolated from Dendrobium huoshanense C. Z. Tang et S. J. Cheng (D. huoshanense). Structure characterization revealed that the weight-average molecular weight of NDHP-2-1 was 20.42 kDa, mainly composed of glucose (95.46 %) and mannose (4.54 %). The backbone of NDHP-2-1 consisted of →6)-α-D-Glcp-(1→, →4)-α-D-Glcp-(1→, and →3,4)-α-D-Glcp-(1→. The T-α-D-Glcp was regarded as the branches attached to the O-4 position of →3,4)-α-D-Glcp-(1 → in the backbone. In vitro experiments indicated that NDHP-2-1 exhibited excellent anti-inflammatory activity. The RAW264.7 cell assay results showed that NDHP-2-1 effectively inhibited the release of pro-inflammatory cytokines, including interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interleukin-10 (IL-10) from LPS-stimulated macrophages. In general, the newly isolated polysaccharide of NDHP-2-1 exhibited significant anti-inflammatory and immunomodulatory properties, suggesting its potential as an effective natural therapeutic agent for managing inflammatory diseases.
Collapse
Affiliation(s)
- Ku-Ku Hao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui Province, China; College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an City 237012, Anhui Province, China
| | - Qi-Jin Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui Province, China; College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an City 237012, Anhui Province, China
| | - Sheng-Xiang Wei
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui Province, China; College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an City 237012, Anhui Province, China
| | - Hua-Yang Si
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an City 237012, Anhui Province, China; Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, Lu'an City 237012, Anhui Province, China
| | - Jing-Wen Hao
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an City 237012, Anhui Province, China; Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, Lu'an City 237012, Anhui Province, China; Anhui Engineering Technology Research Center for Conservation and Utilization of Traditional Chinese Medicine Resource, Lu'an City 237012, Anhui Province, China; Lu'an City Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, Lu'an City 237012, China.
| | - Nai-Fu Chen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui Province, China; College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an City 237012, Anhui Province, China; Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, Lu'an City 237012, Anhui Province, China; Anhui Engineering Technology Research Center for Conservation and Utilization of Traditional Chinese Medicine Resource, Lu'an City 237012, Anhui Province, China; Lu'an City Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, Lu'an City 237012, China.
| | - Nai-Dong Chen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui Province, China; College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an City 237012, Anhui Province, China; Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, Lu'an City 237012, Anhui Province, China; Anhui Engineering Technology Research Center for Conservation and Utilization of Traditional Chinese Medicine Resource, Lu'an City 237012, Anhui Province, China; Lu'an City Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, Lu'an City 237012, China.
| | - Xiao-Yan Gao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui Province, China; College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an City 237012, Anhui Province, China
| | - Si-Jie Liao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui Province, China; College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an City 237012, Anhui Province, China
| | - Shao-Jun Zheng
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an City 237012, Anhui Province, China; Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, Lu'an City 237012, Anhui Province, China; Anhui Engineering Technology Research Center for Conservation and Utilization of Traditional Chinese Medicine Resource, Lu'an City 237012, Anhui Province, China; Lu'an City Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, Lu'an City 237012, China
| | - Man-Man Zhang
- Bozhou Fangxiangyuan Health Products Co., Ltd., 236000 Bozhou City, Anhui Province, China
| |
Collapse
|
3
|
Tian L, Wu Y, Jia Y, Guo M. Understanding of Benzophenone UV Absorber-Induced Damage and Apoptosis in Human Hepatoma Cells. Int J Mol Sci 2025; 26:2990. [PMID: 40243607 PMCID: PMC11988835 DOI: 10.3390/ijms26072990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/07/2025] [Accepted: 03/15/2025] [Indexed: 04/18/2025] Open
Abstract
Benzophenone UV absorbers (BPs), a widely used family of organic UV absorbers (UVAs), have attracted considerable attention for their effects on organisms in recent years. Previous research has been unable to illuminate the intricate situation of BP pollution. To address this knowledge gap, we devised a BAPG-chain model that surpasses existing approaches based on biochemical detection, antioxidant defense systems, proteins, and genes to investigate the biological mechanisms of benzophenone-1 (BP-1) and benzophenone-3 (BP-3) within human hepatoma SMMC-7721 cells as model organisms. The BAPG-chain model links the cellular model, molecular level, macroscopic scale, and microscopic phenomena by adopting a global assessment mindset. Our findings indicate that BPs induce apoptosis via the excessive production of reactive oxygen species (ROS), mitochondrial and nuclear damage, and disruption of the antioxidant stress system. Notably, BPs induce apoptosis via alterations in the expression of genes and proteins associated with apoptosis in the mitochondria. Our experimental evidence sheds light on the biological effects of BPs and highlights the need for further research in this area.
Collapse
Affiliation(s)
| | | | - Yankun Jia
- College of Chemistry and Materials Engineering, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China; (L.T.); (Y.W.)
| | - Ming Guo
- College of Chemistry and Materials Engineering, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China; (L.T.); (Y.W.)
| |
Collapse
|
4
|
Liang B, Huang X, Li Z, Huang Y, Deng Y, Chen X, Zhong Y, Yang X, Feng Y, Bai R, Fan B, Xian H, Li H, Tang S, Huang Z. Polystyrene nanoplastics trigger ferroptosis in Nrf2-deficient gut via ether phospholipid accumulation. ENVIRONMENT INTERNATIONAL 2025; 197:109367. [PMID: 40080957 DOI: 10.1016/j.envint.2025.109367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
The widespread environmental presence of nanoplastics (NPs) raises significant concerns about their health impacts, particularly on the gastrointestinal system, as NPs are primarily ingested. While previous studies have linked NP-induced intestinal toxicity to oxidative stress and reactive oxygen species (ROS) accumulation, the specific mechanisms of cell death remain unclear. Here, we showed that environmentally relevant concentrations of polystyrene nanoplastics (PS-NPs) induced ferroptosis, a form of lipid peroxidation-driven cell death, in intestinal epithelial cells. Using intestinal epithelial-specific Nrf2-deficient mice (Nrf2fl/fl-VilCre+) and human intestinal epithelial Caco-2 cells, we demonstrated that Nrf2, a key oxidative stress regulator, play a protective role against PS-NP-induced ferroptosis. PS-NP exposure disrupted ether phospholipid metabolism, leading to the accumulation of polyunsaturated fatty acid-ether phospholipids and heightened lipid peroxidation in the intestines of Nrf2fl/fl-VilCre+ mice. This accumulation increased the susceptibility of intestinal epithelial cells to ferroptosis. Additionally, a high-fat diet further exacerbated this effect, suggesting that individuals with reduced NRF2 activity and poor dietary habits may be especially vulnerable to PS-NP-induced intestinal damage. Our findings offered new insights into the molecular mechanisms of NP-induced intestinal toxicity and underscored the health risks posed by environmental PS-NP exposure, particularly in populations with compromised antioxidant defenses.
Collapse
Affiliation(s)
- Boxuan Liang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xiyun Huang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhiming Li
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yuji Huang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China; Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yanhong Deng
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xiaoqing Chen
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yizhou Zhong
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China; Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaohong Yang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yu Feng
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Ruobing Bai
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Bingchi Fan
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hongyi Xian
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hao Li
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Shiyue Tang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhenlie Huang
- National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China; Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Jian Y, Li Y, Zhou Y, Mu W. Pollutants in Microenvironmental Cellular Interactions During Liver Inflammation Cancer Transition and the Application of Multi-Omics Analysis. TOXICS 2025; 13:163. [PMID: 40137490 PMCID: PMC11945810 DOI: 10.3390/toxics13030163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/18/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025]
Abstract
This study categorizes pollutant-induced inflammation-cancer transition into three stages: non-alcoholic fatty liver disease (NAFLD), liver fibrosis, and hepatocellular carcinoma (HCC). It systematically reveals the temporal heterogeneity of pollutant-induced liver damage. The findings indicate that pollutants not only directly damage hepatocytes but also modulate key cells in the immune microenvironment, such as hepatic stellate cells (HSCs) and Kupffer cells, thereby amplifying inflammatory and fibrotic responses, ultimately accelerating the progression of HCC. Mechanistically, in the early stage (NAFLD), pollutants primarily cause hepatocyte injury through oxidative stress and lipid metabolism dysregulation. During the fibrosis stage, pollutants promote liver fibrosis by inducing extracellular matrix accumulation, while in the HCC stage, they drive tumorigenesis via activation of the Wnt/β-catenin pathway and p53 inactivation. Through multi-omics analyses, this study identifies critical pathogenic molecules and signaling pathways regulated by pollutants, providing new insights into their pathogenic mechanisms, potential biomarkers, and therapeutic targets. These findings offer valuable guidance for the development of diagnostic and therapeutic strategies for liver diseases and the formulation of environmental health risk prevention measures.
Collapse
Affiliation(s)
| | | | | | - Wei Mu
- School of Public Health, Center for Single-Cell Omics, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.J.); (Y.L.); (Y.Z.)
| |
Collapse
|
6
|
Guo B, He X. The Mechanism of Bisphenol S-Induced Atherosclerosis Elucidated Based on Network Toxicology, Molecular Docking, and Machine Learning. J Appl Toxicol 2025. [PMID: 39978769 DOI: 10.1002/jat.4768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 02/22/2025]
Abstract
The increasing prevalence of environmental pollutants has raised public concern about their potential role in diseases such as atherosclerosis (AS). Existing studies suggest that chemicals, including bisphenol S (BPS), may adversely affect cardiovascular health, but the specific mechanisms remain unclear. This study aims to elucidate the effects of BPS on AS and the underlying mechanisms. Through an extensive search of databases such as ChEMBL, STITCH, SwissTargetPrediction, SuperPred, SEA, and GEO, we identified 34 potential targets related to BPS-induced AS. A target network was constructed using the STRING platform and Cytoscape software. GO and KEGG functional enrichment analysis using the DAVID database revealed that BPS may promote the occurrence of AS by interfering with critical biological processes such as glutathione metabolism, nitrogen metabolism, and tyrosine metabolism. This was followed by the selection of 4 core targets-aminopeptidase n (ANPEP), alcohol dehydrogenase 5 (ADH5), lysosomal pro-x carboxypeptidase (PRCP), and microsomal glutathione s-transferase 1 (MGST1)-using five machine learning methods. These core targets play a pivotal role in BPS-induced AS. Furthermore, molecular docking confirmed the tight binding between BPS and these core targets. In conclusion, this study provides a theoretical framework for understanding the molecular mechanisms of BPS-induced AS and contributes scientific evidence for the development of prevention and treatment strategies for cardiovascular diseases triggered by BPS exposure.
Collapse
Affiliation(s)
- Bing Guo
- Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xuan He
- College of Traditional Chinese Medicine, Changsha Medical University, Changsha, Hunan, China
| |
Collapse
|
7
|
Palacios-Valladares JR, Martinez-Jimenez YI, Morillon-Torres V, Rivera-Maya OB, Gómez R, Calderon-Aranda ES. Bisphenol A and Its Emergent Substitutes: State of the Art of the Impact of These Plasticizers on Oxidative Stress and Its Role in Vascular Dysfunction. Antioxidants (Basel) 2024; 13:1468. [PMID: 39765797 PMCID: PMC11673293 DOI: 10.3390/antiox13121468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 01/03/2025] Open
Abstract
The "One Health approach" has evidenced the significant impact of xenobiotic exposure to health, and humans are a relevant target for their toxic effects. Bisphenol A (BPA) exerts a ubiquitous exposure source in all ecosystems. Given its endocrine-disrupting and harmful consequences on health, several countries have enforced new regulations to reduce exposure to BPA. Cardiovascular diseases (CVDs) are complex conditions that lead to higher mortality worldwide, where family history, lifestyle, and environmental factors, like BPA exposure, have a remarkable contribution. This chemical compound is the most widely used in plastic and epoxy resin manufacturing and has been associated with effects on human health. Therefore, new-generation bisphenols (NGBs) are replacing BPA use, arguing that they do not harm health. Nonetheless, the knowledge about whether NGBs are secure options is scanty. Although BPA's effects on several organs and systems have been documented, the role of BPA and NGBs in CVDs has yet to be explored. This review's goals are focused on the processes of endothelial activation (EA)-endothelial dysfunction (ED), a cornerstone of CVDs development, bisphenols' (BPs) effects on these processes through oxidant and antioxidant system alteration. Despite the scarce evidence on pro-oxidant effects associated with NGBs, our review demonstrated a comparable harmful effect on BPA. The results from the present review suggest that the biological mechanisms to explain BPs cardiotoxic effects are the oxidant stress ↔ inflammatory response ↔ EA ↔ ED → atherosclerotic plate → coagulation promotion. Other effects contributing to CVD development include altered lipid metabolism, ionic channels, and the activation of different intracellular pathways, which contribute to ED perpetuation in a concerted manner.
Collapse
Affiliation(s)
| | | | | | | | - Rocio Gómez
- Department of Toxicology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07360, Mexico; (J.R.P.-V.); (Y.I.M.-J.); (V.M.-T.); (O.B.R.-M.)
| | - Emma S. Calderon-Aranda
- Department of Toxicology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07360, Mexico; (J.R.P.-V.); (Y.I.M.-J.); (V.M.-T.); (O.B.R.-M.)
| |
Collapse
|
8
|
Ma N, Liu X, Zhao L, Liu Y, Peng X, Ma D, Ma L, Kiyama R, Dong S. Bisphenol P induces increased oxidative stress in renal tissues of C57BL/6 mice and human renal cortical proximal tubular epithelial cells, resulting in kidney injury. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175159. [PMID: 39094650 DOI: 10.1016/j.scitotenv.2024.175159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/18/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Bisphenol P (BPP) has been detected in human biological samples; however studies on its nephrotoxicity are scarce. Given the susceptibility of kidneys to endocrine-disrupting chemicals, there is an urgent need to investigate the renal toxicity of BPP. This study aimed to evaluate the effects of different concentrations of BPPs on the kidneys of C57BL/6 mice and elucidate the underlying mechanisms of renal damage using a combination of mouse renal transcriptomic data and human renal proximal tubular epithelial cells (HK-2). Mice were exposed to BPP (0, 0.3, 30, 3000 μg/kg bw/d) via gavage for 5 weeks. Renal injury was assessed based on changes in body and kidney weights, serum renal function indices, and histopathological examination. Transcriptomic analysis identified differentially expressed genes and pathways, whereas cellular assays were used to measure cell viability, reactive oxygen species (ROS), apoptosis, and the expression of key genes and proteins. The results show that BPP exposure induces renal injury, as evidenced by increased body weight, abnormal renal function indices, and renal tissue damage. Transcriptomic analysis revealed alterations in genes and pathways related to oxidative stress, p53 signaling, autophagy, and apoptosis. Cellular experiments confirmed that BPP induces oxidative stress and apoptosis. Furthermore, BPP exposure significantly inhibits autophagy, potentially exacerbating apoptosis and contributing to kidney injury. Treatment with a ROS inhibitor (N-Acetylcysteine, NAC) mitigated BPP-induced autophagy inhibition and apoptosis, implicating oxidative stress as a key factor. BPP exposure may lead to renal injury through excessive ROS accumulation, oxidative stress, inflammatory responses, autophagy inhibition, and increased apoptosis. The effects of NAC highlight the role of oxidative stress in BPP-induced nephrotoxicity. These findings enhance our understanding of BPP-induced nephrotoxicity and underscore the need to control BPP exposure to prevent renal disease. This study emphasized the importance of evaluating the safety of new Bisphenol A analogs, including BPP, in environmental toxicology.
Collapse
Affiliation(s)
- Nana Ma
- College of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, Hebei, China
| | - Xia Liu
- College of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, Hebei, China
| | - Lining Zhao
- College of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, Hebei, China
| | - Yue Liu
- College of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, Hebei, China
| | - Xinyi Peng
- College of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, Hebei, China
| | - Dan Ma
- College of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, Hebei, China
| | - Lei Ma
- College of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, Hebei, China
| | - Ryoiti Kiyama
- Kyushu Sangyo University, 2-3-1 Matsukadai, Higashi-ku, Fukuoka 813-8503, Japan
| | - Sijun Dong
- College of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, Hebei, China.
| |
Collapse
|
9
|
Zuo YB, Wen ZJ, Cheng MD, Jia DD, Zhang YF, Yang HY, Xu HM, Xin H, Zhang YF. The pro-atherogenic effects and the underlying mechanisms of chronic bisphenol S (BPS) exposure in apolipoprotein E-deficient mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117133. [PMID: 39342757 DOI: 10.1016/j.ecoenv.2024.117133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/23/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Atherosclerosis (AS) and its related cardiovascular diseases (CVDs) remain the most frequent cause of morbidity and mortality worldwide. Researches showed that bisphenol A (BPA) exposure might exacerbate AS progression. However, as an analogue of BPA, little is known about the cardiovascular toxicity of bisphenol S (BPS), especially whether BPS exposure has the pro-atherogenic effects in mammals is still unknown. Here, we firstly constructed an apolipoprotein E knockout (ApoE-/-) mouse model and cultured cells to investigate the risk of BPS on AS and explore the underlying mechanisms. Results showed that prolonged exposure to 50 μg/kg body weight (bw)/day BPS indeed aggravated AS lesions both in the en face aortas and aortic sinuses of ApoE-/- mice. Moreover, BPS were found to be implicated in the AS pathological process: 1) stimulates adhesion molecule expression to promote monocyte-endothelial cells (ECs) adhesion with 3.6 times more than the control group in vivo; 2) increases the distribution of vascular smooth muscle cells (VSMCs) with 9.3 times more than the control group in vivo, possibly through the migration of VSMCs; and 3) induces an inflammatory response by increasing the number of macrophages (MACs), with 3.7 times more than the control group in vivo, and the release of inflammatory mediators. Furthermore, we have identified eight significant AS-related genes induced by BPS, including angiopoietin-like protein 7 (Angptl17) and lipocalin-2 (Lcn2) in ECs; matrix metalloproteinase 9 (Mmp13), secreted phosphoprotein 1 (Spp1), and collagen type II alpha 1 (Col2a1) in VSMCs; and kininogen 1 (Kng1), integrin alpha X (Itgax), and MAC-expressed gene 1 (Mpeg1) in MACs. Overall, this study firstly found BPS exposure could exacerbate mammalian AS and might also provide a theoretical basis for elucidating BPS and its analogues induced AS and related CVDs.
Collapse
Affiliation(s)
- Ying-Bing Zuo
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China; Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao 266000, China
| | - Zeng-Jin Wen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Meng-Die Cheng
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China; Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao 266000, China
| | - Dong-Dong Jia
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Yi-Fei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Hong-Yu Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Hai-Ming Xu
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| | - Hui Xin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao 266000, China.
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China.
| |
Collapse
|
10
|
Yang C, Zhu K, Cheng M, Yuan X, Wang S, Zhang L, Zhang X, Wang Q. Graphene oxide-decorated microporous sulfonated polyetheretherketone for guiding osteoporotic bone regeneration. J Control Release 2024; 374:15-27. [PMID: 39111596 DOI: 10.1016/j.jconrel.2024.07.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024]
Abstract
Recent studies have indicated that the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is an ideal therapeutic target for osteoporosis because it affects the differentiation of osteoblasts and osteoclasts. RNA sequencing utilizing multifunctional graphene oxide (GO) nanosheets revealed a correlation between GO nanomaterials and the NLRP3 inflammasome, as well as osteogenic genes in macrophages. This study aimed to construct a bone microenvironment-responsive multifunctional two-dimensional GO coating on the surface of microporous sulfonated polyetheretherketone (SPEEK) via polydopamine modification (SPEEK@PDA-GO). In vitro analysis showed that the SPEEK@PDA-GO implants weakened the STAT3-mediated NLRP3/caspase-1/IL-1β signaling pathway in macrophages and subsequently prevented the formation of an extracellular inflammatory microenvironment, which is crucial for osteoclastogenesis. SPEEK@PDA-GO displayed significantly higher expression of M2 macrophage markers and osteogenic genes, indicating that the multifunctional GO nanosheets could facilitate bone regeneration via their immunomodulatory properties. The ability of SPEEK@PDA-GO to stimulate new bone formation and block bone loss caused by estrogen loss due to ovariectomy was also analyzed. The findings of this study offer valuable information on the possible involvement of the NLRP3 inflammasome in the interaction between the immune system and bone health in patients with osteoporosis.
Collapse
Affiliation(s)
- Chao Yang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Kechao Zhu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Mengqi Cheng
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xiangwei Yuan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Shengjie Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Lei Zhang
- Department of Orthopedics, Nanjing Jinling Hospital, Affliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China.
| | - Xianlong Zhang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Qi Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| |
Collapse
|
11
|
Tian L, Wu Y, Hou Y, Dong Y, Ni K, Guo M. Environmentally Friendly UV Absorbers: Synthetic Characterization and Biosecurity Studies of the Host-Guest Supramolecular Complex. Int J Mol Sci 2024; 25:8476. [PMID: 39126045 PMCID: PMC11312980 DOI: 10.3390/ijms25158476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Isoamyl 4-methoxycinnamate (IMC) is widely used in various fields because of its exceptional UV-filter properties. However, due to its cytotoxicity and anti-microbial degradability, the potential eco-environmental toxicity of IMC has become a focus of attention. In this study, we propose a host-guest supramolecule approach to enhance the functionality of IMC, resulting in a more environmentally friendly and high-performance materials. Sulfobutyl-β-cyclodextrin sodium salt (SBE-β-CD) was used as the host molecule. IMC-SBE-β-CD supramolecular substances were prepared through the "saturated solution method", and their properties and biosecurity were evaluated. Meanwhile, we conducted the AOS tree evaluation system that surpasses existing evaluation approaches based on apoptosis, oxidative stress system, and signaling pathways to investigate the toxicological mechanisms of IMC-SBE-β-CD within human hepatoma SMMC-7721 cells as model organisms. The AOS tree evaluation system aims to offer the comprehensive analysis of the cytotoxic effects of IMC-SBE-β-CD. Our findings showed that IMC-SBE-β-CD had an encapsulation rate of 84.45% and optimal stability at 30 °C. Further, IMC-SBE-β-CD promoted cell growth and reproduction without compromising the integrity of mitochondria and nucleus or disrupting oxidative stress and apoptosis-related pathways. Compared to IMC, IMC-SBE-β-CD is biologically safe and has improved water solubility with the UV absorption property maintained. Our study provides the foundation for the encapsulation of hydrophobic, low-toxicity organic compounds using cyclodextrins and offers valuable insights for future research in this field.
Collapse
Affiliation(s)
| | | | | | | | - Kaijie Ni
- College of Chemistry and Materials Engineering, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China; (L.T.); (Y.W.); (Y.H.); (Y.D.)
| | - Ming Guo
- College of Chemistry and Materials Engineering, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China; (L.T.); (Y.W.); (Y.H.); (Y.D.)
| |
Collapse
|
12
|
Sharma N, Kumar V, S V, Umesh M, Sharma P, Thazeem B, Kaur K, Thomas J, Pasrija R, Utreja D. Hazard identification of endocrine-disrupting carcinogens (EDCs) in relation to cancers in humans. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 109:104480. [PMID: 38825092 DOI: 10.1016/j.etap.2024.104480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/21/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Endocrine disrupting chemicals or carcinogens have been known for decades for their endocrine signal disruption. Endocrine disrupting chemicals are a serious concern and they have been included in the top priority toxicants and persistent organic pollutants. Therefore, researchers have been working for a long time to understand their mechanisms of interaction in different human organs. Several reports are available about the carcinogen potential of these chemicals. The presented review is an endeavor to understand the hazard identification associated with endocrine disrupting carcinogens in relation to the human body. The paper discusses the major endocrine disrupting carcinogens and their potency for carcinogenesis. It discusses human exposure, route of entry, carcinogenicity and mechanisms. In addition, the paper discusses the research gaps and bottlenecks associated with the research. Moreover, it discusses the limitations associated with the analytical techniques for detection of endocrine disrupting carcinogens.
Collapse
Affiliation(s)
- Neha Sharma
- Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam 602105, India
| | - Vinay Kumar
- Biomaterials & Tissue Engineering (BITE) Laboratory, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam 602105, India.
| | - Vimal S
- Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam 602105, India
| | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru, Karnataka 560029, India
| | - Preeti Sharma
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Basheer Thazeem
- Waste Management Division, Integrated Rural Technology Centre (IRTC), Palakkad, Kerala 678592, India
| | - Komalpreet Kaur
- Punjab Agricultural University, Institute of Agriculture, Gurdaspur, Punjab 143521, India
| | - Jithin Thomas
- Department of Biotechnology, Mar Athanasius College, Kerala, India
| | - Ritu Pasrija
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Divya Utreja
- Department of Chemistry, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| |
Collapse
|
13
|
Liu J, Qu L, Wang F, Mei Z, Wu X, Wang B, Liu H, He L. A study on the anti-senescent effects of flavones derived from Prinsepia utilis Royle seed residue. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118021. [PMID: 38492793 DOI: 10.1016/j.jep.2024.118021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Prinsepia utilis Royle, also known as the Anas fruit, is a unique perennial woody oil plant from Yunnan Province, China. In the ancient texts of Dongba sutras and Yunnan Southern Materia Medica, it has been documented that the local Naxi, Tibetan, and Mosuo communities extensively utilize the root and leaf fruits of green thorns for various purposes. These include treating mild-to-moderate specific dermatitis, moisturising the skin, providing protection against UV damage, aiding childbirth in pregnant women, safeguarding stomach health, reducing the risk of arteriosclerosis, and delaying aging. AIM OF THE STUDY In this study, leftover residues from oil extraction were efficiently reused, and flavonoids were identified during subsequent extraction and separation processes. The anti-senescent effects of flavonoids in P. utilis Royle have not been systematically studied. Therefore, the objective of this study was to explore the anti-senescent properties of the flavonoids obtained from P. utilis Royle. METHODS First, HPLC and other analytical techniques were used to identify the components of the P. utilis Royle flavonoid (PURF). Next, DPPH, hydroxyl radicals, superoxide anion O2-, collagenase, and elastase were initially detected using in vitro biochemical assays. To examine its antioxidant properties, a zebrafish model was used, and to confirm its anti-senescent effects, a d-galactose-induced mouse aging model was employed. The anti-senescent mechanism of PURF was examined using a natural senescence HFF model. Furthermore, the anti-senescent target was confirmed using a 3D full T-Skin™ model. RESULTS In vitro biochemical assays demonstrated that flavones exhibited potent antioxidant activity and anti-senescent potential by inhibiting DPPH, hydroxyl radicals, superoxide anion O2-, collagenase, and elastase. It significantly enhanced the antioxidant effect on zebrafish while suppressing ROS and inflammatory injury, up-regulating COL1A1, COL3A1, AMPK, and mTOR gene expression and down-regulating MMP-9, TGF-β, p21, and p16 gene expression suggesting its potential anti-senescent ability. Findings from the D-galactose-induced aging mouse model showed that PURF greatly increased SOD levels, while simultaneously decreasing HYP and MDA levels. In addition, when PURF was given to the HFF cell and 3D full T-Skin™ model, consistent trends were observed in gene and protein expression, with up-regulation of COL1A1, COL3A1, AMPK, and mTOR genes and down-regulation of TGF-β, MMP-1, MMP-9, p21, and p16 genes. Therefore, these preliminary findings indicate that flavones can modulate AMPK/mTOR/TGF-β signalling pathways to exert its influence. CONCLUSION The kernel residue of natural P. utilis Royle oil extracted from Yunnan province was previously considered agricultural waste, but we successfully extracted and isolated its flavonoid components. Our preliminary studies demonstrated its potential as an environmentally friendly anti-senescent raw material.
Collapse
Affiliation(s)
- Junxi Liu
- Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai, 201702, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, 650106, China
| | - Liping Qu
- Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai, 201702, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, 650106, China
| | - Feifei Wang
- Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai, 201702, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, 650106, China
| | - Zaoju Mei
- Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai, 201702, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, 650106, China
| | - Xinlang Wu
- Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai, 201702, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, 650106, China
| | - Bo Wang
- Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai, 201702, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming, 650106, China
| | - Haiyang Liu
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, 650106, China
| | - Li He
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming, 650106, China.
| |
Collapse
|
14
|
Shen C, Luo Z, Ma S, Yu C, Lai T, Tang S, Zhang H, Zhang J, Xu W, Xu J. Microbe-Derived Antioxidants Protect IPEC-1 Cells from H 2O 2-Induced Oxidative Stress, Inflammation and Tight Junction Protein Disruption via Activating the Nrf2 Pathway to Inhibit the ROS/NLRP3/IL-1β Signaling Pathway. Antioxidants (Basel) 2024; 13:533. [PMID: 38790638 PMCID: PMC11117695 DOI: 10.3390/antiox13050533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/26/2024] Open
Abstract
Oxidative stress can induce inflammation and tight junction disruption in enterocytes. The initiation of inflammation is thought to commence with the activation of the ROS/NLRP3/IL-1β signaling pathway, marking a crucial starting point in the process. In our previous studies, we found that microbe-derived antioxidants (MAs) showed significant potential in enhancing both antioxidant capabilities and anti-inflammatory effects. The main aim of this research was to investigate the ability of MAs to protect cells from oxidative stress caused by H2O2, to reduce inflammatory responses, and to maintain the integrity of tight junction proteins by modulating the ROS/NLRP3/IL-1β signaling pathway. IPEC-1 cells (1 × 104 cells/well) were initially exposed to 100 mg/L of MAs for 12 h, after which they were subjected to 1 mM H2O2 treatment for 1 h. We utilized small interfering RNA (siRNA) to inhibit the expression of NLRP3 and Nrf2. Inflammatory factors such as IL-1β and antioxidant enzyme activity levels were detected by ELISA. Oxidative stress marker ROS was examined by fluorescence analysis. The NLRP3/IL-1β signaling pathway, Nrf2/HO-1 signaling pathway and tight junction proteins (ZO-1 and Occludin) were detected by RT-qPCR or Western blotting. In our research, it was observed that MA treatment effectively suppressed the notable increase in H2O2-induced inflammatory markers (TNF-α, IL-1β, and IL-18), decreased ROS accumulation, mitigated the expression of NLRP3, ASC, and caspase-1, and promoted the expression of ZO-1 and Occludin. After silencing the NLRP3 gene with siRNA, the protective influence of MAs was observed to be linked with the NLRP3 inflammasome. Additional investigations demonstrated that the treatment with MAs triggered the activation of Nrf2, facilitating its translocation into the nucleus. This process resulted in a notable upregulation of Nrf2, NQO1, and HO-1 expression, along with the initiation of the Nrf2-HO-1 signaling pathway. Consequently, there was an enhancement in the activities of antioxidant enzymes like SOD, GSH-Px, and CAT, which effectively mitigated the accumulation of ROS, thereby ameliorating the oxidative stress state. The antioxidant effectiveness of MAs was additionally heightened in the presence of SFN, an activator of Nrf2. The antioxidant and anti-inflammatory functions of MAs and their role in regulating intestinal epithelial tight junction protein disruption were significantly affected after siRNA knockdown of the Nrf2 gene. These findings suggest that MAs have the potential to reduce H2O2-triggered oxidative stress, inflammation, and disruption of intestinal epithelial tight junction proteins in IPEC-1 cells. This reduction is achieved by blocking the ROS/NLRP3/IL-1β signaling pathway through the activation of the Nrf2 pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jianxiong Xu
- Shanghai Key Laboratory of Veterinary Biotechnology/Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (C.S.); (Z.L.); (S.M.); (T.L.); (S.T.); (H.Z.); (J.Z.); (W.X.)
| |
Collapse
|
15
|
Charles DA, Prince SE. Deciphering the molecular mechanism of NLRP3 in BPA-mediated toxicity: Implications for targeted therapies. Heliyon 2024; 10:e28917. [PMID: 38596095 PMCID: PMC11002687 DOI: 10.1016/j.heliyon.2024.e28917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024] Open
Abstract
Bisphenol-A (BPA), a pervasive industrial chemical used in polymer synthesis, is found in numerous consumer products including food packaging, medical devices, and resins. Detectable in a majority of the global population, BPA exposure occurs via ingestion, inhalation, and dermal routes. Extensive research has demonstrated the adverse health effects of BPA, particularly its disruption of immune and endocrine systems, along with genotoxic potential. This review focuses on the complex relationship between BPA exposure and the NOD-like receptor protein 3 (NLRP3) inflammasome, a multiprotein complex central to inflammatory disease processes. We examine how BPA induces oxidative stress through the generation of intracellular free radicals, subsequently activating NLRP3 signaling. The mechanistic details of this process are explored, including the involvement of signaling cascades such as PI3K/AKT, JAK/STAT, AMPK/mTOR, and ERK/MAPK, which are implicated in NLRP3 inflammasome activation. A key focus of this review is the wide-ranging organ toxicities associated with BPA exposure, including hepatic, renal, gastrointestinal, and cardiovascular dysfunction. We investigate the immunopathogenesis and molecular pathways driving these injuries, highlighting the interplay among BPA, oxidative stress, and the NLRP3 inflammasome. Finally, this review explores the emerging concept of targeting NLRP3 as a potential therapeutic strategy to mitigate the organ toxicities stemming from BPA exposure. This work integrates current knowledge, emphasizes complex molecular mechanisms, and promotes further research into NLRP3-targeted interventions.
Collapse
Affiliation(s)
- Doveit Antony Charles
- Department of Biotechnology, School of Biosciences and Technology, VIT, Vellore, Tamil Nadu, India
| | - Sabina Evan Prince
- Department of Biotechnology, School of Biosciences and Technology, VIT, Vellore, Tamil Nadu, India
| |
Collapse
|
16
|
Chai Y, Gu X, Zhang H, Xu X, Chen L. Phoenixin 20 ameliorates pulmonary arterial hypertension via inhibiting inflammation and oxidative stress. Aging (Albany NY) 2024; 16:5027-5037. [PMID: 38517365 PMCID: PMC11006497 DOI: 10.18632/aging.205468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/15/2023] [Indexed: 03/23/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a severe pathophysiological syndrome resulting in heart failure, which is found to be induced by pulmonary vascular remodeling mediated by oxidative stress (OS) and inflammation. Phoenixin-20 (PNX-20) is a reproductive peptide first discovered in mice with potential suppressive properties against OS and inflammatory response. Our study will explore the possible therapeutic functions of PHN-20 against PAH for future clinical application. Rats were treated with normal saline, PHN-20 (100 ng/g body weight daily), hypoxia, hypoxia+PHN-20 (100 ng/g body weight daily), respectively. A signally elevated RVSP, mPAP, RV/LV + S, and W%, increased secretion of cytokines, enhanced malondialdehyde (MDA) level, repressed superoxide dismutase (SOD) activity, and activated NLRP3 signaling were observed in hypoxia-stimulated rats, which were notably reversed by PHN-20 administration. Pulmonary microvascular endothelial cells (PMECs) were treated with hypoxia with or without PHN-20 (10 and 20 nM). Marked elevation of inflammatory cytokine secretion, increased MDA level, repressed SOD activity, and activated NLRP3 signaling were observed in hypoxia-stimulated PMECs, accompanied by a downregulation of SIRT1. Furthermore, the repressive effect of PHN-20 on the domains-containing protein 3 (NLRP3) pathway in hypoxia-stimulated PMECs was abrogated by sirtuin1 (SIRT1) knockdown. Collectively, PHN-20 alleviated PAH via inhibiting OS and inflammation by mediating the transcriptional function of SIRT1.
Collapse
Affiliation(s)
- Yaqin Chai
- Department of Pulmonary and Critical Care Medicine, Xi’an Chest Hospital, Xi’an 710100, China
| | - Xing Gu
- Department of Pulmonary and Critical Care Medicine, Xi’an Chest Hospital, Xi’an 710100, China
| | - HongJun Zhang
- Department of Pulmonary and Critical Care Medicine, Xi’an Chest Hospital, Xi’an 710100, China
| | - Xinting Xu
- Department of Pulmonary and Critical Care Medicine, Xi’an International Medical Center Hospital, Xi’an 710100, China
| | - Lizhan Chen
- Department of Pulmonary and Critical Care Medicine, Xi’an International Medical Center Hospital, Xi’an 710100, China
| |
Collapse
|
17
|
Liao K, Zhao Y, Qu J, Yu W, Hu S, Fang S, Zhao M, Jin H. Association of serum bisphenols, parabens, and triclosan concentrations with Sjögren Syndrome in the Hangzhou, China population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170031. [PMID: 38220002 DOI: 10.1016/j.scitotenv.2024.170031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/18/2023] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
Exposure to endocrine-disrupting chemicals (EDCs) has been linked to various immune deficiency disorders, including autoimmune diseases like Sjögren Syndrome (SjS). However, the detrimental effects of exposure to EDCs, including bisphenols, parabens, and triclosan (TCS), on SjS have been inadequately documented. Thus, we conducted a cross-sectional study that included both healthy individuals (controls) and patients with SjS (cases). We assessed serum concentrations of bisphenol A (BPA), bisphenol S (BPS), methyl parabens (MeP), ethyl parabens (EtP), and TCS. The relationship between the five EDCs levels and the risk of SjS was also explored. Additionally, we conducted an in-depth analysis of the collective influence of these EDCs mixtures on SjS, employing a weighted quantile sum regression model. Out of the five EDCs analyzed, EtP displayed the highest mean concentration (2.80 ng/mL), followed by BPA (2.66 ng/mL) and MeP (1.99 ng/mL), with TCS registering the lowest level (0.36 ng/mL). Notably, BPS exposure was significantly positively associated with the risk of being diagnosed with SjS (with an odds ratio [OR] of 1.17, p = 0.042). No statistically significant associations with SjS were observed for BPA, MeP, EtP, and TCS (p > 0.05). And we did not observe any significant effects of the EDCs mixture on SjS. To the best of our knowledge, this study is the first to suggest that BPS may potentially increase the risk of SjS. Although no significant effects were observed between other EDCs and SjS risk, we cannot disregard the potential harm of EDCs due to their non-monotonic dose response.
Collapse
Affiliation(s)
- Kaizhen Liao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Yun Zhao
- Department of Rheumatology, the Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, PR China
| | - Jianli Qu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Wenfei Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Shetuan Hu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Shuhong Fang
- College Resources & Environment, Chengdu University Information Technology, Chengdu 610225, PR China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China.
| |
Collapse
|
18
|
Liu J, Li H, Guo Z, Xiao X, Viscardi A, Xiang R, Liu H, Lin X, Han J. The changes and correlation of IL-6 and oxidative stress levels in RAW264.7 macrophage cells induced by PAHs in PM 2.5. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:61. [PMID: 38281271 DOI: 10.1007/s10653-023-01851-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024]
Abstract
The objective of this study was to investigate the effects of anthracene (Ant) with 3 rings, benzo[a]anthracene (BaA) with 4 rings and benzo[b]fluoranthene (BbF) with 5 rings in fine particulate matter (PM2.5) at different exposure times (4 h and 24 h) and low exposure levels (0 pg/mL, 0.1 pg/mL, 1 pg/mL, 100 pg/mL and 10,000 pg/mL) on RAW264.7 cells. The changes of interleukin-6 (IL-6) and oxidative stress levels in RAW264.7 cells were investigated by methyl-thiazolyl-tetrazolium (MTT) and enzyme-linked immunosorbent assay (ELISA). Pearson correlation analysis was used to analyze the correlation between variables. Ant, BaA and BbF induced the secretion of IL-6 and the occurrence of oxidative stress in RAW264.7 cells. The inflammatory effect and oxidative damage were exacerbated with prolonged exposure time, increasing exposure concentration and increasing number of PAH rings. At the same time, IL-6 was found to have a certain correlation with the levels of ROS, MDA and SOD. Exposure to atmospheric PAHs at low concentrations can also produce toxic effects on cells, IL-6 and oxidative stress work together in cell damage. The study is expected to provide a theoretical and experimental basis for air pollution control and human health promotion.
Collapse
Affiliation(s)
- Jiaxin Liu
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China
- Xi'an Gem Flower Chang Qing Hospital, Xi'an, 710200, China
| | - Hongqiu Li
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China
| | - Ziwei Guo
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China
- Xi'an Gem Flower Chang Qing Hospital, Xi'an, 710200, China
| | - Xiang Xiao
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China
- Xi'an Gem Flower Chang Qing Hospital, Xi'an, 710200, China
| | - Angelo Viscardi
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China
| | - Rongqi Xiang
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China
| | - Haobiao Liu
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China
| | - Xue Lin
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China
| | - Jing Han
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China.
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, China.
- Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
19
|
Sun W, Guo Y, Sun X, Liu Z, Luo D, Huang N, Xu Z, Wu J, Wu Y. Alternatives Exert Higher Health Risks than Bisphenol A on Indo-Pacific Humpback Dolphins. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:63-74. [PMID: 38112512 DOI: 10.1021/acs.est.3c02977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The detrimental effects of bisphenol (BP) exposure are a concern for vulnerable species, Indo-Pacific humpback dolphins (Sousa chinensis). To investigate the characteristics of BP profiles and their adverse impact on humpback dolphins, we assessed the concentrations of six BPs, including bisphenol A (BPA), bisphenol S (BPS), bisphenol F (BPF), bisphenol AF (BPAF), bisphenol B (BPB), and bisphenol P (BPP) in blubber (n = 26) and kidney (n = 12) of humpback dolphins stranded in the Pearl River Estuary, China. BPS accounted for the largest proportion of the total bisphenols (∑BPs) in blubber (55%) and kidney (69%). The concentration of ∑BP in blubber was significantly higher than that in the kidney and liver. The EC50 values of five BPA alternatives were lower than those of BPA in humpback dolphin skin fibroblasts (ScSF) and human skin fibroblasts (HSF). ScSF was more sensitive to BPS, BPAF, BPB, and BPP than HSF. The enrichment pathway of BPA was found to be associated with inflammation and immune dysregulation, while BPP and BPS demonstrated a preference for genotoxicity. BPA, BPP, and BPS, which had risk quotients (RQs) > 1, were found to contribute to subhealth and chronic disease in humpback dolphins. According to the EC50-based risk assessment, BPS poses a higher health risk than BPA for humpback dolphins. This study successfully evaluated the risks of bisphenols in rare and endangered cetacean cell lines using a noninvasive method. More in vivo and in field observations are necessary to know whether the BPA alternatives are likely to be regrettable substitutions.
Collapse
Affiliation(s)
- Weifang Sun
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Yongwei Guo
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Xian Sun
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Zhiwei Liu
- School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Dingyu Luo
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Nuoyan Huang
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Zhuo Xu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Jiaxue Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Yuping Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| |
Collapse
|
20
|
Singh RD, Wager JL, Scheidl TB, Connors LT, Easson S, Callaghan MA, Alatorre-Hinojosa S, Swift LH, Colarusso P, Jadli A, Shutt TE, Patel V, Thompson JA. Potentiation of Adipogenesis by Reactive Oxygen Species Is a Unifying Mechanism in the Proadipogenic Properties of Bisphenol A and Its New Structural Analogues. Antioxid Redox Signal 2024; 40:1-15. [PMID: 37154733 DOI: 10.1089/ars.2022.0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Aims: Structural analogues of bisphenol A (BPA), including bisphenol S (BPS) and bisphenol F (BPF), are emerging environmental toxicants as their presence in the environment is rising since new regulatory restrictions were placed on BPA-containing infant products. The adipogenesis-enhancing effect of bisphenols may explain the link between human exposure and metabolic disease; however, underlying molecular pathways remain unresolved. Results: Exposure to BPS, BPF, BPA, or reactive oxygen species (ROS) generators enhanced lipid droplet formation and expression of adipogenic markers after induction of differentiation in adipose-derived progenitors isolated from mice. RNAseq analysis in BPS-exposed progenitors revealed modulation in pathways regulating adipogenesis and responses to oxidative stress. ROS were higher in bisphenol-exposed cells, while cotreatment with antioxidants attenuated adipogenesis and abolished the effect of BPS. There was a loss of mitochondrial membrane potential in BPS-exposed cells and mitochondria-derived ROS contributed to the potentiation of adipogenesis by BPS and its analogues. Male mice exposed to BPS during gestation had higher whole-body adiposity, as measured by time domain nuclear magnetic resonance, while postnatal exposure had no impact on adiposity in either sex. Innovation: These findings support existing evidence showing a role for ROS in regulating adipocyte differentiation and are the first to highlight ROS as a unifying mechanism that explains the proadipogenic properties of BPA and its structural analogues. Conclusion: ROS act as signaling molecules in the regulation of adipocyte differentiation and mediate bisphenol-induced potentiation of adipogenesis. Antioxid. Redox Signal. 40, 1-15.
Collapse
Affiliation(s)
- Radha D Singh
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
- Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, Canada
- Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Jessica L Wager
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
- Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, Canada
- Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Taylor B Scheidl
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
- Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, Canada
- Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Liam T Connors
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
- Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, Canada
- Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Sarah Easson
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
- Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, Canada
- Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Mikyla A Callaghan
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
- Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | | | - Lucy H Swift
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
- Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada
| | - Pina Colarusso
- Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada
| | - Anshul Jadli
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
- Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, Canada
| | - Timothy E Shutt
- Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
- Department of Medical Genetics and University of Calgary, Calgary, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Vaibhav Patel
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
- Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, Canada
| | - Jennifer A Thompson
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
- Cumming School of Medicine, Libin Cardiovascular Institute, University of Calgary, Calgary, Canada
- Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| |
Collapse
|
21
|
Huang S. A novel strategy for the study on molecular mechanism of prostate injury induced by 4,4'-sulfonyldiphenol based on network toxicology analysis. J Appl Toxicol 2024; 44:28-40. [PMID: 37340727 DOI: 10.1002/jat.4506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/22/2023]
Abstract
The study aimed to investigate the underlying molecular mechanisms of prostate injury induced by 4,4'-sulfonyldiphenol (BPS) exposure and propose a novel research strategy to systematically explore the molecular mechanisms of toxicant-induced adverse health effects. By utilizing the ChEMBL, STITCH, and GeneCards databases, a total of 208 potential targets associated with BPS exposure and prostate injury were identified. Through screening the potential target network in the STRING database and Cytoscape software, we determined 21 core targets including AKT1, EGFR, and MAPK3. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses conducted through the DAVID database illustrated that the potential targets of BPS in prostatic toxicity were primarily enriched in cancer signaling pathways and calcium signaling pathways. These findings suggest that BPS may actively participate in the occurrence and development of prostate inflammation, prostatic hyperplasia, prostate cancer, and other aspects of prostate injury by regulating prostate cancer cell apoptosis and proliferation, activating inflammatory signaling pathways, and modulating prostate adipocytes and fibroblasts. This research provides a theoretical basis for understanding the molecular mechanism of underlying BPS-induced prostatic toxicity and establishes a foundation for the prevention and treatment of prostatic diseases associated with exposure to plastic products containing BPS and certain BPS-overwhelmed environments.
Collapse
Affiliation(s)
- Shujun Huang
- West China Medical Center, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Xu H, Li Y, Li Q, Ma Z, Yin S, He H, Xiong Y, Xiong X, Lan D, Li J, Fu W. Cloning and Characterization of Yak DHODH Gene and Its Functional Studies in a Bisphenol S-Induced Ferroptosis Model of Fetal Fibroblasts. Animals (Basel) 2023; 13:3832. [PMID: 38136869 PMCID: PMC10740537 DOI: 10.3390/ani13243832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Dihydroorotate dehydrogenase (DHODH) is a rate-limiting enzyme of de novo biosynthesis of pyrimidine. Although the involvement of DHODH in resisting ferroptosis has been successively reported in recent years, which greatly advanced the understanding of the mechanism of programmed cell death (PCD), the genetic sequence of the yak DHODH gene and its roles in ferroptosis are still unknown. For this purpose, we firstly cloned the coding region sequence of DHODH (1188 bp) from yak liver and conducted a characterization analysis of its predictive protein that consists of 395 amino acids. We found that the coding region of the yak DHODH gene presented high conservation among species. Second, the expression profile of the DHODH gene in various yak tissues was investigated using RT-qPCR. The results demonstrated that DHODH was widely expressed in different yak tissues, with particularly high levels in the spleen, heart, and liver. Third, to investigate the involvement of DHODH in regulating ferroptosis in cells, yak skin fibroblasts (YSFs) were isolated from fetuses. And then, bisphenol S (BPS) was used to induce the in vitro ferroptosis model of YSFs. We observed that BPS decreased the cell viability (CCK8) and membrane potential (JC-1) of YSFs in a dose-dependent manner and induced oxidative stress by elevating reactive oxygen species (ROS). Simultaneously, it was evident that BPS effectively augmented the indicators associated with ferroptosis (MDA and BODIPY staining) and reduced GSH levels. Importantly, the co-administration of Ferrostatin-1 (Fer), a potent inhibitor of ferroptosis, significantly alleviated the aforementioned markers, thereby confirming the successful induction of ferroptosis in YSFs by BPS. Finally, overexpression plasmids and siRNAs of the yak DHODH gene were designed and transfected respectively into BPS-cultured YSFs to modulate DHODH expression. The findings revealed that DHODH overexpression alleviated the occurrence of BPS-induced ferroptosis, while interference of DHODH intensified the ferroptosis process in YSFs. In summary, we successfully cloned the coding region of the yak DHODH gene, demonstrating its remarkable conservation across species. Moreover, using BPS-induced ferroptosis in YSFs as the model, the study confirmed the role of the DHODH gene in resisting ferroptosis in yaks. These results offer valuable theoretical foundations for future investigations into the functionality of the yak DHODH gene and the underlying mechanisms of ferroptosis in this species.
Collapse
Affiliation(s)
- Hongmei Xu
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu 610041, China; (H.X.); (Y.L.); (Q.L.); (Z.M.); (S.Y.); (H.H.); (Y.X.); (X.X.); (D.L.)
| | - Yueyue Li
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu 610041, China; (H.X.); (Y.L.); (Q.L.); (Z.M.); (S.Y.); (H.H.); (Y.X.); (X.X.); (D.L.)
| | - Qiao Li
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu 610041, China; (H.X.); (Y.L.); (Q.L.); (Z.M.); (S.Y.); (H.H.); (Y.X.); (X.X.); (D.L.)
| | - Zifeng Ma
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu 610041, China; (H.X.); (Y.L.); (Q.L.); (Z.M.); (S.Y.); (H.H.); (Y.X.); (X.X.); (D.L.)
| | - Shi Yin
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu 610041, China; (H.X.); (Y.L.); (Q.L.); (Z.M.); (S.Y.); (H.H.); (Y.X.); (X.X.); (D.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Honghong He
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu 610041, China; (H.X.); (Y.L.); (Q.L.); (Z.M.); (S.Y.); (H.H.); (Y.X.); (X.X.); (D.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Yan Xiong
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu 610041, China; (H.X.); (Y.L.); (Q.L.); (Z.M.); (S.Y.); (H.H.); (Y.X.); (X.X.); (D.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Xianrong Xiong
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu 610041, China; (H.X.); (Y.L.); (Q.L.); (Z.M.); (S.Y.); (H.H.); (Y.X.); (X.X.); (D.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Daoliang Lan
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu 610041, China; (H.X.); (Y.L.); (Q.L.); (Z.M.); (S.Y.); (H.H.); (Y.X.); (X.X.); (D.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Jian Li
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu 610041, China; (H.X.); (Y.L.); (Q.L.); (Z.M.); (S.Y.); (H.H.); (Y.X.); (X.X.); (D.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Wei Fu
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu 610041, China; (H.X.); (Y.L.); (Q.L.); (Z.M.); (S.Y.); (H.H.); (Y.X.); (X.X.); (D.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
23
|
Mou Y, Liao W, Liang Y, Li Y, Zhao M, Guo Y, Sun Q, Tang J, Wang Z. Environmental pollutants induce NLRP3 inflammasome activation and pyroptosis: Roles and mechanisms in various diseases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165851. [PMID: 37516172 DOI: 10.1016/j.scitotenv.2023.165851] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Environmental pollution is changing with economic development. Most environmental pollutants are characterized by stable chemical properties, strong migration, potential toxicity, and multiple exposure routes. Harmful substances are discharged excessively, and large quantities of unknown new compounds are emerging, being transmitted and amplifying in the food chain. The increasingly severe problems of environmental pollution have forced people to re-examine the relationship between environmental pollution and health. Pyroptosis and activation of the NLRP3 inflammasome are critical in maintaining the immune balance and regulating the inflammatory process. Numerous diseases caused by environmental pollutants are closely related to NLRP3 inflammasome activation and pyroptosis. We intend to systematically explain the steps and important events that are common in life but easily overlooked by which environmental pollutants activate the NLRP3 inflammasome and pyroptosis pathways. This comprehensive review also discusses the interaction network between environmental pollutants, the NLRP3 inflammasome, pyroptosis, and diseases. Thus, research progress on the impact of decreasing oxidative stress levels to inhibit the NLRP3 inflammasome and pyroptosis, thereby repairing homeostasis and reshaping health, is systematically examined. This review aims to deepen the understanding of the impact of environmental pollutants on life and health and provide a theoretical basis and potential programs for the development of corresponding treatment strategies.
Collapse
Affiliation(s)
- Yu Mou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Wenhao Liao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yun Liang
- The Third People's Hospital of Chengdu, Chengdu 610014, China
| | - Yuchen Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mei Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yaoyao Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Qin Sun
- National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Zhilei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| |
Collapse
|
24
|
Zhou R, Zhang L, Sun Y, Yan J, Jiang H. Association of urinary bisphenols with oxidative stress and inflammatory markers and their role in obesity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115546. [PMID: 37827096 DOI: 10.1016/j.ecoenv.2023.115546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023]
Abstract
Bisphenol A (BPA) and its substitutes are widely used in daily life. Animal and cell line experiments have confirmed the effects of bisphenols on oxidative stress and inflammation. However, current population evidence for the effects of BPA alternatives, such as bisphenol F (BPF) and bisphenol S (BPS), on oxidative stress and inflammation is still sparse. Based on the National Health and Nutrition Examination Survey 2013-2016 data, our study used linear regression, weighted quantile sum model, and Bayesian kernel machine regression model to evaluate the effects of BPA, BPS, and BPF alone and in combination on oxidative stress (serum total bilirubin, and iron) and inflammation (alkaline phosphatase, C-reactive protein, γ-glutamyl transferase ferritin, neutrophil count, lymphocyte count, and neutrophil-to-lymphocyte ratio) markers. On this basis, the possible roles of oxidative stress and inflammation in obesity, which is associated with exposure to bisphenols (BPs), were initially explored. Based on the different covariates selected, a total of 3039 and 2258 participants were included in our study for models 1 and 2, respectively; the median age of participants was 48 years, and 48.7 % were male. Based on all models, our results showed that exposure to BPs alone or in combination was associated with downregulation of serum total bilirubin. Urinary BPF concentration was specifically associated with the neutrophil-to-lymphocyte ratio. Serum total bilirubin may play a role in the association between obesity and BP mixture exposure. Upregulation of the neutrophil-to-lymphocyte ratio was not associated with obesity. In conclusion, our study found that single or combined exposure to BPs, as measured in urine, may be associated with changes in oxidative stress and inflammatory markers, and a decrease in serum total bilirubin may play a mediating role in BP-induced obesity.
Collapse
Affiliation(s)
- Ren Zhou
- Department of Anesthesiology, The Ninth People's Hospital of Shanghai, Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Lei Zhang
- Department of Anesthesiology, The Ninth People's Hospital of Shanghai, Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Yu Sun
- Department of Anesthesiology, The Ninth People's Hospital of Shanghai, Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Jia Yan
- Department of Anesthesiology, The Ninth People's Hospital of Shanghai, Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China.
| | - Hong Jiang
- Department of Anesthesiology, The Ninth People's Hospital of Shanghai, Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China.
| |
Collapse
|
25
|
Lu B, Li C, Jing L, Zhuang F, Xiang H, Chen Y, Huang B. Rosmarinic acid nanomedicine for rheumatoid arthritis therapy: Targeted RONS scavenging and macrophage repolarization. J Control Release 2023; 362:631-646. [PMID: 37708976 DOI: 10.1016/j.jconrel.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023]
Abstract
The infiltration of inflammatory cells, especially macrophages, integrated with the production of reactive oxygen and nitrogen species (RONS) and the release of inflammatory cytokines play a crucial role in the pathogenesis of rheumatoid arthritis (RA). Synergistic combination of RONS scavenging and macrophage repolarization from pro-inflammatory M1 phenotype towards anti-inflammatory M2 phenotype, provides a promising strategy for efficient RA treatment. Herein, this study reported a unique self-assembly strategy to construct distinct rosmarinic acid nanoparticles (RNPs) for efficient RA treatment using the naturally occurring polyphenol-based compound, rosmarinic acid (RosA). The designed RNPs exhibited favorable capability in scavenging RONS and pro-inflammatory cytokines produced by macrophages. Attributing to the widened vascular endothelial-cell gap at inflammation sites, RNPs could target and accumulate at the inflammatory joints of collagen-induced arthritis (CIA) rats for guaranteeing therapeutic effect. In vivo investigation demonstrated that RNPs alleviated the symptoms of RA, including joint swelling, synovial hyperplasia, cartilage degradation, and bone erosion in CIA rats. Additionally, the designed RNPs promoted macrophage polarization from M1 phenotype towards M2 phenotype, resulting in the suppressed progression of RA. Therefore, this research represents the representative paradigm for RA therapy using antioxidative nanomedicine deriving from the natural polyphenol-based compound.
Collapse
Affiliation(s)
- Beilei Lu
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China; Shanghai Institute of Medical Imaging, Shanghai 200032, PR China; Institute of Medical Ultrasound and Engineering, Fudan University, Shanghai 200032, PR China
| | - Cuixian Li
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China; Shanghai Institute of Medical Imaging, Shanghai 200032, PR China; Institute of Medical Ultrasound and Engineering, Fudan University, Shanghai 200032, PR China
| | - Luxia Jing
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China; Shanghai Institute of Medical Imaging, Shanghai 200032, PR China; Institute of Medical Ultrasound and Engineering, Fudan University, Shanghai 200032, PR China
| | - Fan Zhuang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China; Shanghai Institute of Medical Imaging, Shanghai 200032, PR China; Institute of Medical Ultrasound and Engineering, Fudan University, Shanghai 200032, PR China
| | - Huijing Xiang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| | - Beijian Huang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China; Shanghai Institute of Medical Imaging, Shanghai 200032, PR China; Institute of Medical Ultrasound and Engineering, Fudan University, Shanghai 200032, PR China.
| |
Collapse
|
26
|
Mokra D, Mokry J, Barosova R, Hanusrichterova J. Advances in the Use of N-Acetylcysteine in Chronic Respiratory Diseases. Antioxidants (Basel) 2023; 12:1713. [PMID: 37760016 PMCID: PMC10526097 DOI: 10.3390/antiox12091713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
N-acetylcysteine (NAC) is widely used because of its mucolytic effects, taking part in the therapeutic protocols of cystic fibrosis. NAC is also administered as an antidote in acetaminophen (paracetamol) overdosing. Thanks to its wide antioxidative and anti-inflammatory effects, NAC may also be of benefit in other chronic inflammatory and fibrotizing respiratory diseases, such as chronic obstructive pulmonary disease, bronchial asthma, idiopathic lung fibrosis, or lung silicosis. In addition, NAC exerts low toxicity and rare adverse effects even in combination with other treatments, and it is cheap and easily accessible. This article brings a review of information on the mechanisms of inflammation and oxidative stress in selected chronic respiratory diseases and discusses the use of NAC in these disorders.
Collapse
Affiliation(s)
- Daniela Mokra
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK-03601 Martin, Slovakia; (R.B.); (J.H.)
| | - Juraj Mokry
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK-03601 Martin, Slovakia;
| | - Romana Barosova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK-03601 Martin, Slovakia; (R.B.); (J.H.)
| | - Juliana Hanusrichterova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK-03601 Martin, Slovakia; (R.B.); (J.H.)
| |
Collapse
|
27
|
Li G, Chen Y, Wu M, Chen K, Zhang D, Zhang R, Yang G, Huang X. Di (2-ethyl) hexyl phthalate induces liver injury in chickens by regulating PTEN/PI3K/AKT signaling pathway via reactive oxygen species. Comp Biochem Physiol C Toxicol Pharmacol 2023; 270:109639. [PMID: 37259793 DOI: 10.1016/j.cbpc.2023.109639] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/11/2023] [Accepted: 04/26/2023] [Indexed: 06/02/2023]
Abstract
Di (2-ethyl) hexyl phthalate (DEHP) is a common environmental endocrine disruptor that induces oxidative stress, posing a significant threat to human and animal health. Oxidative stress can activate the PTEN/PI3K/AKT pathway, which is closely related to cell apoptosis. However, it is unclear whether DEHP induces apoptosis of chicken liver cells by regulating the PTEN/PI3K/AKT pathway through oxidative stress. In this experiment, male laying hens were continuously exposed to 400 mg/kg, 800 mg/kg, and 1600 mg/kg DEHP for 14 d, 28 d, and 42 d. The results showed that liver injury was aggravated with the dose of DEHP gavage, and the ROS/MDA levels in L, M, and H DEHP exposure groups were significantly increased, while the T-AOC/T-SOD/GSH-PX levels were decreased. Meanwhile, DEHP exposure up-regulated the mRNA and protein expression levels of PTEN/Bax/Caspase-9/Caspase-3 and down-regulated the mRNA and protein expression levels of PI3K/AKT/BCL-2, indicating that DEHP may lead to hepatocyte apoptosis through ROS regulation of PTEN/PI3K/AKT axis. In order to further clarify the relationship between oxidative stress and liver injury, we treated chicken hepatocellular carcinoma cell line (LMH) with 2.5 mM N-acetylcysteine (NAC). NAC attenuated these phenomena. In summary, our study suggests that DEHP can induce apoptosis of chicken liver through ROS activation of the PTEN/PI3K/AKT axis.
Collapse
Affiliation(s)
- Guangxing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yang Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Menglin Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Kaiting Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Di Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ruili Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Guijun Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaodan Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
28
|
Du Y, Chen L, Qiao H, Zhang L, Yang L, Zhang P, Wang J, Zhang C, Jiang W, Xu R, Zhang X. Hydrogen-Rich Saline-A Novel Neuroprotective Agent in a Mouse Model of Experimental Cerebral Ischemia via the ROS-NLRP3 Inflammasome Signaling Pathway In Vivo and In Vitro. Brain Sci 2023; 13:939. [PMID: 37371417 DOI: 10.3390/brainsci13060939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Our previous research revealed that inflammation plays an important role in the pathophysiology of cerebral ischemia. The function of the NOD-like receptor protein 3 (NLRP3) inflammasome is to activate the inflammatory process. Recent findings suggest that reactive oxygen species (ROS) are essential secondary messengers that activate the NLRP3 inflammasome. Hydrogen-rich saline (HS) has attracted attention for its anti-inflammatory properties. However, the protective effect and possible mechanism of HSin brain ischemia have not been well elucidated. METHODS To test the therapeutic effect of HS, we established a mouse model of distal middle cerebral artery occlusion (dMCAO) and an in vitro model of BV2 cells induced by lipopolysaccharide (LPS). The ROS scavenger N-acetylcysteine (NAC) was used to investigate the underlying mechanisms of HS. RESULTS HS significantly improved neurological function, reduced infarct volume, and increased cerebral blood flow in a dMCAO mouse model. ROS, NLRP3, Caspase-1, and IL-1β expression increased after cerebral ischemia, and this was reversed by HS treatment. In BV2 cells, the application of NAC further demonstrated that HS could effectively inhibit the expression of the ROS-activated NLRP3 inflammasome. CONCLUSIONS HS, as a novel therapeutic option, could exert protect the brain by inhibiting the activation of the ROS-NLRP3 signaling pathway after cerebral ischemia.
Collapse
Affiliation(s)
- Yuanyuan Du
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang 050000, China
- Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang 050000, China
| | - Linyu Chen
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang 050000, China
- Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang 050000, China
| | - Huimin Qiao
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang 050000, China
- Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang 050000, China
| | - Lan Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang 050000, China
- Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang 050000, China
| | - Lan Yang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang 050000, China
- Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang 050000, China
| | - Peipei Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang 050000, China
- Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang 050000, China
| | - Jing Wang
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang 050000, China
- Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang 050000, China
| | - Cong Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang 050000, China
- Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang 050000, China
| | - Wei Jiang
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang 050000, China
- Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang 050000, China
| | - Renhao Xu
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang 050000, China
- Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang 050000, China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang 050000, China
- Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang 050000, China
| |
Collapse
|
29
|
Ning A, Xiao N, Wang H, Guan C, Ma X, Xia H. Oxidative damage contributes to bisphenol S-induced development block at 2-cell stage preimplantation embryos in mice through inhibiting of embryonic genome activation. Sci Rep 2023; 13:9232. [PMID: 37286763 DOI: 10.1038/s41598-023-36441-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/03/2023] [Indexed: 06/09/2023] Open
Abstract
Although bisphenol S (BPS), as a bisphenol A (BPA) substitute, has been widely used in the commodity, it is embryotoxic in recent experiments. Nowadays, it remains unclear how BPS affects preimplantation embryos. Here, my team investigated the effects of BPS on preimplantation embryos and the possible molecular mechanisms in mice. The results showed that 10-6 mol/L BPS exposure delayed the blastocysts stage, and exposure to 10-4 mol/L BPS induced 2-cell block in mice preimplantation embryos. A significant increase in reactive oxygen species (ROS) level and antioxidant enzyme genes Sod1, Gpx1, Gpx6, and Prdx2 expression were shown, but the level of apoptosis was normal in 2-cell blocked embryos. Further experiments demonstrated that embryonic genome activation (EGA) specific genes Hsp70.1 and Hsc70 were significantly decreased, which implied that ROS and EGA activation have the potential to block 2-cell development. Antioxidant enzymes, including superoxide dismutase (SOD), coenzyme Q10 (CoQ10), and folic acid (FA) were used to further explore the roles of ROS and EGA in 2-cell block. Only 1200 U/mL SOD was found to alleviate the phenomenon of 2-cell block, reduce oxidative damage, and restore the expression of EGA-specific genes Hsp70.1 and Hsc70. Conclusively, this study demonstrates for the first time that BPS can induce 2-cell block, which is mainly mediated by ROS aggregation and results in the failure of EGA activation.
Collapse
Affiliation(s)
- Anfeng Ning
- Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, 100081, China
- Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Nansong Xiao
- Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, 100081, China
- Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Hu Wang
- Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, 100081, China
- Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Chunyi Guan
- Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, 100081, China
- Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xu Ma
- Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, 100081, China.
- Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Hongfei Xia
- Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, 100081, China.
- Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
30
|
Wang Y, Song J, Li Y, Lin C, Chen Y, Zhang X, Yu H. Melatonin inhibited the progression of gastric cancer induced by Bisphenol S via regulating the estrogen receptor 1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115054. [PMID: 37224786 DOI: 10.1016/j.ecoenv.2023.115054] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/17/2023] [Accepted: 05/19/2023] [Indexed: 05/26/2023]
Abstract
In recent years, Bisphenol S (BPS) has increasingly been used as an alternative to Bisphenol A (BPA) in food, paper, and personal care products. It is imperative to clarify the relationship between BPS and tumors in order to treat and prevent diseases. This study discovered a new method for predicting tumor correlations between BPS interactive genes. According to analyses conducted by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes, interactive genes were primarily found in gastric cancer. Based on gene-targeted prediction and molecular docking, BPS appears to exert potential gastric cancer-causing effects through estrogen receptor 1 (ESR1). In addition, gastric cancer patients' prognosis could be accurately predicted by a bisphenol-based prognostic prediction model. Subsequently, the proliferation and migration abilities of gastric cancer cells were further demonstrated to be significantly enhanced by BPS. Similarly, molecular docking analysis revealed that melatonin is also highly correlated with gastric cancer and BPS. In cell proliferation and migration assays, melatonin and BPS exposure inhibited the invasion abilities of gastric cancer cells compared to BPS-exposure. Our research provided a new direction for the exploration the correlation between cancer and environmental toxicity.
Collapse
Affiliation(s)
- Yi Wang
- Department of Gastrointestinal Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350000, Fujian Province, China
| | - Jintian Song
- Department of Abdominal Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350000, Fujian Province, China
| | - Yangming Li
- Department of Gastrointestinal Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350000, Fujian Province, China
| | - Chen Lin
- School of Pharmacy, Fujian Medical University, Fuzhou 350000, Fujian Province, China
| | - Yan Chen
- School of Pharmacy, Fujian Medical University, Fuzhou 350000, Fujian Province, China
| | - Xu Zhang
- Nanjing Medical University, Nanjing, 210029, China
| | - Hui Yu
- Department of Pharmacy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350000, Fujian Province, China.
| |
Collapse
|
31
|
Chen G, Jiang N, Zheng J, Hu H, Yang H, Lin A, Hu B, Liu H. Structural characterization and anti-inflammatory activity of polysaccharides from Astragalus membranaceus. Int J Biol Macromol 2023; 241:124386. [PMID: 37054858 DOI: 10.1016/j.ijbiomac.2023.124386] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/18/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2023]
Abstract
In this study, two homogeneous polysaccharides (APS-A1 and APS-B1) were isolated from Astragalus membranaceus by DEAE-52 cellulose and Sephadex G-100 column chromatography. Their chemical structures were characterized by molecular weight distribution, monosaccharide composition, infrared spectrum, methylation analysis, and NMR. The results revealed that APS-A1 (2.62 × 106 Da) was a 1,4-α-D-Glcp backbone with a 1,4,6-α-D-Glcp branch every ten residues. APS-B1 (4.95 × 106 Da) was a heteropolysaccharide composed of glucose, galactose, and arabinose (75.24:17.27:19.35). Its backbone consisted of 1,4-α-D-Glcp, 1,4,6-α-D-Glcp, 1,5-α-L-Araf and the sidechains composed of 1,6-α-D-Galp and T-α/β-Glcp. Bioactivity assays showed that APS-A1 and APS-B1 had potential anti-inflammatory activity. They could inhibit the production of inflammatory factors (TNF-α, IL-6, and MCP-1) in LPS-stimulated RAW264.7 macrophages via NF-κB and MAPK (ERK, JNK) pathways. These results suggested that the two polysaccharides could be potential anti-inflammatory supplements.
Collapse
Affiliation(s)
- Guangming Chen
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Nan Jiang
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, PR China; Hubei Province Academy of Traditional Chinese Medicine, Wuhan 430074, PR China
| | - Junping Zheng
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Haiming Hu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Huabing Yang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Aizhen Lin
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, PR China; Hubei Province Academy of Traditional Chinese Medicine, Wuhan 430074, PR China
| | - Baifei Hu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China.
| | - Hongtao Liu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China.
| |
Collapse
|
32
|
Yue H, Tian Y, Wu X, Yang X, Xu P, Zhu H, Sang N. Exploration of the damage and mechanisms of BPS exposure on the uterus and ovary of adult female mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161660. [PMID: 36690098 DOI: 10.1016/j.scitotenv.2023.161660] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Bisphenol S (BPS) has been followed with interest for its endocrine disrupting effects, but exploration on the reproductive system of adult females is lack of deep investigation. In the present study, adult female CD-1 mice were treated with BPS for 28 days at 300 μg/kg/day. After that, uteruses and ovaries were harvested for histopathological examination, RNA-seq analysis, and diseases risk prediction. Hematoxylin-eosin (H&E) staining results showed significant histological alterations in the uterus and ovary of the BPS-exposed mice. Bioinformatics analysis of the RNA-seq screened a certain number of differentially expressed genes (DEGs) in both uterus and ovary between BPS group and their corresponding vehicle control groups (Veh), respectively. Functional enrichment analysis of DEGs found that hormone metabolism and immunoinflammatory related pathways were enriched. Disease risk evaluation of the hub genes was performed and the results indicated that diseases associated with uterus and ovary were mainly related to tumors and cancers. Further pan cancer and ovarian cancer survival analysis based on human diseases database pointed out, Foxa1, Gata3, S100a8 and Shh for uterus, Itgam, Dhcr7, Fdps, Hmgcr, Hsd11b1, Hsd3b1, Ptges, F3, Fn1, Ptger4 and Srd5a1 for ovary were significant correlation with cancer. The findings suggest that BPS causes some histopathological changes, alters the expressions of hub genes, enhances uterine and ovarian tumors or even cancer risks.
Collapse
Affiliation(s)
- Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Yuchai Tian
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Xiaoyun Wu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Xiaowen Yang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Pengchong Xu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Huizhen Zhu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| |
Collapse
|
33
|
Shan W, Niu W, Lin Q, Shen Y, Shen F, Lou K, Zhang Y. Bisphenol S exposure promotes cell apoptosis and mitophagy in murine osteocytes by regulating mtROS signaling. Microsc Res Tech 2023; 86:481-493. [PMID: 36625337 DOI: 10.1002/jemt.24289] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/29/2022] [Accepted: 12/31/2022] [Indexed: 01/11/2023]
Abstract
Bisphenol S (BPS), a safer alternative to bisphenol A, is commonly used as a plasticizer to manufacture various food-packaging materials. The accumulated BPS inhibits osteoblastic bone formation and promotes osteoclastogenesis, thereby accelerating remarkable bone destruction, but it is unclear whether BPS affects osteocytes, comprising over 95% of all bone cells. This study aimed to investigate the biological effect of BPS on osteocytes in vitro, as well as the detailed mechanism. Results showed that BPS (200, 400 μmol/L) exposure caused dose-dependently cell death of osteocytes MLO-Y4, and increased cell apoptosis. BPS induced loss of mitochondrial membrane potential (MMP) and mitochondria impairment. Furthermore, BPS upregulated expressions of mitophagy-related proteins including microtubule-associated protein light chain 3 (LC-3) II and PTEN-induced putative kinase (PINK) 1, accompanied by elevation of autophagy flux and the accumulation of acidic vacuoles; whereas p62 level was downregulated after BPS treatment. Additionally, BPS triggered the production of intracellular reactive oxygen species (ROS) and mitochondrial ROS (mtROS), while it decreased expression levels of nuclear factor E2-related factor 2 (Nrf2) and quinone oxidoreductase 1 (NQO1). The specific mtROS scavenger MitoTEMPO reversed cell apoptosis and mitophagy, suggesting that mtROS contributes to BPS exposure-induced apoptosis and mitophagy in MLO-Y4 cells. Our data first provide novel evidence that apoptosis and mitophagy as cellular mechanisms for the toxic effect of BPS on osteocytes, thereby helping our understanding of the potential role of osteocytes in the adverse effect of BPS and its analogs on bone growth, and supporting strategies targeting bone destruction caused by BPS.
Collapse
Affiliation(s)
- Weiyan Shan
- College of Medicine, Shaoxing University, Shaoxing, People's Republic of China
| | - Wanting Niu
- Department of Orthopedics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Qiao Lin
- College of Medicine, Shaoxing University, Shaoxing, People's Republic of China
| | - Yuchen Shen
- College of Medicine, Shaoxing University, Shaoxing, People's Republic of China
| | - Fangmin Shen
- College of Medicine, Shaoxing University, Shaoxing, People's Republic of China
| | - Kai Lou
- College of Medicine, Shaoxing University, Shaoxing, People's Republic of China
| | - Yun Zhang
- College of Medicine, Shaoxing University, Shaoxing, People's Republic of China
| |
Collapse
|
34
|
Lin Z, Zhang W, Li X, Du B, Li T, He H, Lu X, Zhang C, Liu Y, Ni J, Li L, Shi M. Triphenyl phosphate-induced macrophages dysfunction by activation TLR4-mediated ERK/NF-κB pathway. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 36929861 DOI: 10.1002/tox.23778] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/01/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Triphenyl phosphate (TPHP) is one of the most widely used organic phosphorus flame retardants and is ubiquitous in the environment. Studies have been reported that TPHP may lead to obesity, neurotoxicity and reproductive toxicity, but its impact on the immune system is almost blank. The present study was aimed to investigate the potential immunotoxicity of TPHP on macrophages and its underlying mechanism. The results demonstrated for the first time that TPHP (12.5, 25, and 50 μM)-induced F4/80+ CD11c+ phenotype of RAW 264.7 macrophages, accompanied by increased mRNA levels of inflammatory mediators, antigen-presenting genes (Cd80, Cd86, and H2-Aa), and significantly enhanced the phagocytosis of macrophage. Meanwhile, TPHP increased the expression of Toll-like receptor 4 (TLR4), and its co-receptor CD14, leading to significant activation of the downstream ERK/NF-κB pathway. However, co-exposure of cells to TAK-242, a TLR4 inhibitor, suppressed TPHP-induced F4/80+ CD11c+ phenotype, and down-regulated inflammatory mediators and antigen-presentation related genes, via blocked the TLR4/ERK/NF-κB pathway. Taken together, our results suggested that TPHP could induce macrophage dysfunction through activating TLR4-mediated ERK/NF-κB signaling pathway, and it may be the potential reason for health-threatening consequences.
Collapse
Affiliation(s)
- Zeheng Lin
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Wei Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Xing Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Bohai Du
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Tianlan Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Haoqi He
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Xianzhu Lu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Chunmei Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Yiwa Liu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Jindong Ni
- Precision Key Laboratory of Public Health, School of Public Health and Institute of Public Health and Wellness, Guangdong Medical University, Dongguan, China
| | - Li Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Ming Shi
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province, China
| |
Collapse
|
35
|
Wu X, Li S, Zhang M, Bai S, Ni Y, Xu Q, Fan Y, Lu C, Xu Z, Ji C, Du G, Qin Y. Early-life bisphenol AP exposure impacted neurobehaviors in adulthood through microglial activation in mice. CHEMOSPHERE 2023; 317:137935. [PMID: 36696922 DOI: 10.1016/j.chemosphere.2023.137935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 06/17/2023]
Abstract
Bisphenol AP (BPAP), a structural analog of bisphenol A (BPA), has been widely detected in environment and biota. BPAP was reported to interfere with hormone and metabolism, while limited data were available about its effects on neurobehavior, especially exposure to it during early-life time. A mouse model of early-life BPAP exposure was established to evaluate the long-term neurobehaviors in offspring. Collectively, early-life BPAP exposure caused anxiety-like behaviors and impaired learning and memory in adult offspring. Through brain bulk RNA-sequencing (RNA-seq), we found differential expressed genes were enriched in pathways related to behaviors and neurodevelopment, which were consistent with the observed phenotype. Besides, single-nucleus RNA-sequencing (snRNA-seq) showed BPAP exposure altered the transcriptome of microglia in hippocampus. Mechanistically, BPAP exposure induced inflammations in hippocampus through upregulating Iba-1 and activating the microglia. In addition, we observed that BPAP exposure could activate peripheral immunity and promote proportion of macrophages and activation of dendritic cells in the offspring. In conclusion, early-life exposure to BPAP impaired neurobehaviors in adult offspring accompanied with excessive activation of hippocampal microglia. Our findings provide new clues to the underlying mechanisms of BPAP's neurotoxic effects and therefore more cautions should be taken about BPAP.
Collapse
Affiliation(s)
- Xiaorong Wu
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing Medical University, Nanjing, China; School of Public Health, Southwest Medical University, Luzhou, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shiqi Li
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meijia Zhang
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shengjun Bai
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yangyue Ni
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Qiaoqiao Xu
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yun Fan
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chuncheng Lu
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhipeng Xu
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Chenbo Ji
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing Medical University, Nanjing, China
| | - Guizhen Du
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Yufeng Qin
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Microbiology and Infection, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
36
|
Li M, Li T, Yin J, Xie C, Zhu J. Evaluation of toxicological effects of bisphenol S with an in vitro human bone marrow mesenchymal stem cell: Implications for bone health. Toxicology 2023; 484:153408. [PMID: 36565802 DOI: 10.1016/j.tox.2022.153408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
As the use of bisphenol A (BPA) has been restricted in consumer products, bisphenol S (BPS) is one major alternative to BPA for various materials, leading to growing concerns about its health risks in human beings. However, little is known about the toxic effects of BPS on bone health. We employed human bone marrow mesenchymal stem cells (hBMSCs) for the in vitro assessment of BPS on cell proliferation, differentiation, and self-renewal. Our study revealed that BPS at concentrations of 10-10-10-7 M increased cell viability but induced the morphological changes of hBMSCs. Moreover, BPS decreased ROS generation and increased Nrf2 expression. Furthermore, BPS not only activated ERα/β expression but also increased β-catenin expression and induced the replicative senescence of hBMSCs. Furthermore, we found that the upregulation of β-catenin induced by BPS was mediated, in part, by ER signaling. Overall, our results suggested BPS exposure caused the homeostatic imbalance of hBMSCs.
Collapse
Affiliation(s)
- Mei Li
- The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China; School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Tenglong Li
- The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Juan Yin
- Department of Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Chunfeng Xie
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Jianyun Zhu
- Department of Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China.
| |
Collapse
|
37
|
Pei X, Jiang H, Li C, Li D, Tang S. Oxidative stress-related canonical pyroptosis pathway, as a target of liver toxicity triggered by zinc oxide nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130039. [PMID: 36166902 DOI: 10.1016/j.jhazmat.2022.130039] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/04/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) have been widely used in the fields of daily necessities, clinical diagnosis, drug delivery and agricultural production. The improper use of ZnO NPs could pose a risk to ecological environment and public health. Liver has been known as a critical toxic target of ZnO NPs. However, the question whether ZnO NPs lead to hepatocyte death through pyroptosis has not been answered yet, and the effect of oxidative stress on ZnO NPs-induced pyroptosis remains a mystery. We revealed that ZnO NPs disrupted zinc homeostasis and induced oxidative stress impairment in rat liver. Meanwhile, ZnO NPs triggered the assembly of NLRP3-ASC-Caspase-1 inflammatory complex and pyroptosis in both rat liver and HepG2 cells, further causing the activation of GSDMD, promoting the leakage of inflammatory cytokines including IL-1β and IL-18. Importantly, the inhibition of oxidative stress was found to provide protection against pyroptosis in hepatocyte exposed to ZnO NPs. We identified a novel mechanism of liver damage induced by ZnO NPs, demonstrating the activation of canonical Caspase-1-dependent pyroptosis pathway and clarifying the protection of antioxidation against pyroptosis damage. Our discovery provided a support for risk assessment of ZnO NPs and target exploration for clinical treatment related to pyroptosis.
Collapse
Affiliation(s)
- Xingyao Pei
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, Beijing 100193, China
| | - Haiyang Jiang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, Beijing 100193, China
| | - Cun Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300384, China
| | - Daowen Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300384, China; Tianjin Key Laboratory of Biological Feed Additive Enterprise, S&E Burgeoning Biotechnology (Tianjin) Co., Ltd, Tianjin 300383, China; State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Molecular Drug Research, College of Pharmacy, Nankai University, Haihe Education Park, Tongyan Road No. 38, Tianjin 300353, China.
| | - Shusheng Tang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, Beijing 100193, China.
| |
Collapse
|
38
|
Zhang D, Liu X, Xiao Q, Han L, Yang J, Li X, Xu J, Zheng Q, Ma J, Chen J, Lu S. Co-Exposure to Bisphenols, Parabens, and Antimicrobials and Association with Coronary Heart Disease: Oxidative Stress as a Potential Mediating Factor? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:531-538. [PMID: 36534741 DOI: 10.1021/acs.est.2c06488] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Coronary heart disease (CHD) is the leading cause of global morbidity, but the effect of plasticizers and antimicrobial additives on CHD is unknown. Here, we conducted a case-control study to investigate the mediating role of oxidative stress in the association between co-exposure to seven bisphenols, four parabens, triclosan (TCS), triclocarban, and CHD risk in Guangzhou, China. Quantile-based g-computation and weighted quantile sum regression were used to analyze mixture-outcome associations. Quantile-based g-computation showed a positive joint effect of a decile increase in exposure to all examined pollutants on CHD risk (OR: 1.52, 95% CI: 1.25-1.84), with bisphenol A (BPA), bisphenol F (BPF), n-butyl paraben (BuP), and TCS representing major contributors. The results also showed a decile nonmonotonic increase in the exposure mixtures, positively correlated with a 2.22 ng/mL (95% CI: 1.21-3.23 ng/mL) elevation of 8-hydroxy-2'-deoxyguanosine (8-OHdG), with BuP, TCS, bisphenol AP (BPAP), and BPF contributing dominantly. Mediation analysis showed that 8-OHdG mediated the relationship between BPA, BPF, BPAP, and TCS, and CHD risk. Moreover, the mediating role of high-density lipoprotein (HDL) between several bisphenols and CHD was also identified. It is yet to be verified, but bisphenols may elevate CHD risk by reducing HDL status and increasing oxidative stress.
Collapse
Affiliation(s)
- Duo Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xiang Liu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Qinru Xiao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Linjiang Han
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Jialei Yang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xiangyu Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jiayi Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Quanzhi Zheng
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jiaojiao Ma
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jimei Chen
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
39
|
Tuzimski T, Szubartowski S, Stupak A, Kwaśniewski W, Szultka-Młyńska M, Kwaśniewska A, Buszewski B. The Association between the Bisphenols Residues in Amniotic Fluid and Fetal Abnormalities in Polish Pregnant Women-Its Potential Clinical Application. Int J Mol Sci 2023; 24:ijms24010730. [PMID: 36614173 PMCID: PMC9821541 DOI: 10.3390/ijms24010730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
The present study aimed to investigate the relationship between the concentrations of bisphenols residues in the amniotic fluid (AF) samples collected during amniocentesis and fetal chromosomal abnormalities in pregnant women. A total of 33 pregnant Polish women aged between 24 and 44 years, and screened to detect high risk for chromosomal defects in the first trimester, were included in this study. Samples were collected from these patients during routine diagnostic and treatment procedures at mid-gestation. The concentrations of various bisphenols residues in the samples were determined by liquid chromatography coupled with triple quadrupole tandem mass spectrometry (LC-ESI-QqQ-MS/MS). Residues of eight analytes (BPS, BPF, BPA, BPAF, BADGE, BADGE•2H2O, BADGE•H2O•HCl and BADGE•2HCl) were detected in amniotic fluid samples in the range 0.69 ng/mL to 3.38 ng/mL. Fetuses with chromosomal abnormalities showed a slightly higher frequency of occurrence of selected bisphenols residues in the AF samples collected between 15-26 weeks of pregnancies. Finally, the proposed method was applied in the simultaneous determination of several endocrine-disrupting chemicals from bisphenol group in 33 human AF samples. BADGE•H2O•HCl has been identified in the AF samples taken from women older than average in the examined group. The number of detected compounds has been significant for the following analytes: BPS, BPAF, BADGE•H2O•HCl and BADGE. The proposed method may be an attractive alternative for application in large-scale human biomonitoring studies.
Collapse
Affiliation(s)
- Tomasz Tuzimski
- Department of Physical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland
- Correspondence: ; Tel.: +48-(81)-4487213
| | - Szymon Szubartowski
- Department of Physical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland
- Doctoral School of Medical University of Lublin, Medical University of Lublin, 20-093 Lublin, Poland
| | - Aleksandra Stupak
- Chair and Department of Obstetrics and Pathology of Pregnancy, Independent Public Clinical Hospital No. 1 in Lublin, Medical University of Lublin, 20-081 Lublin, Poland
| | - Wojciech Kwaśniewski
- Department of Gynaecology and Oncology Gynaecology, Independent Public Clinical Hospital No. 1 in Lublin, Medical University of Lublin, 20-081 Lublin, Poland
| | - Małgorzata Szultka-Młyńska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Anna Kwaśniewska
- Chair and Department of Obstetrics and Pathology of Pregnancy, Independent Public Clinical Hospital No. 1 in Lublin, Medical University of Lublin, 20-081 Lublin, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Torun, Poland
| |
Collapse
|
40
|
The Comparison of the Influence of Bisphenol A (BPA) and Its Analogue Bisphenol S (BPS) on the Enteric Nervous System of the Distal Colon in Mice. Nutrients 2022; 15:nu15010200. [PMID: 36615857 PMCID: PMC9824883 DOI: 10.3390/nu15010200] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Bisphenol A (BPA), commonly used as a plasticizer in various branches of industry has a strong negative effect on living organisms. Therefore, more and more often it is replaced in production of plastics by other substances. One of them is bisphenol S (BPS). This study for the first time compares the impact of BPA and BPS on the enteric neurons using double immunofluorescence technique. It has been shown that both BPA and BPS affect the number of enteric neurons containing substance P (SP), galanin (GAL), vasoactive intestinal polypeptide (VIP), neuronal isoform of nitric oxide synthase (nNOS-a marker of nitrergic neurons) and/or vesicular acetylcholine transporter (VAChT- a marker of cholinergic neurons). The changes noted under the impact of both bisphenols are similar and consisted of an increase in the number of enteric neurons immunoreactive to all neuronal factors studied. The impact of BPS on some populations of neurons was stronger than that noted under the influence of BPA. The obtained results clearly show that BPS (similarly to BPA) administered for long time is not neutral for the enteric neurons even in relatively low doses and may be more potent than BPA for certain neuronal populations.
Collapse
|
41
|
Zheng F, Wu X, Zhang J, Fu Z, Zhang Y. Sevoflurane reduces lipopolysaccharide-induced apoptosis and pulmonary fibrosis in the RAW264.7 cells and mice models to ameliorate acute lung injury by eliminating oxidative damages. Redox Rep 2022; 27:139-149. [PMID: 35801580 PMCID: PMC9272930 DOI: 10.1080/13510002.2022.2096339] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objectives Sevoflurane is identified as an effective candidate drug for acute lung injury (ALI) treatment, but its curing effects and detailed mechanisms have not been fully disclosed. The present study was designed to resolve this academic issue. Methods The ALI mice models were established, and Hematoxylin-eosin staining assay was performed to examine tissue morphologies. Cell viability was determined by CCK-8 assay, and Annexin V-FITC/PI double staining assay was used to examine cell apoptosis. The expression levels of proteins were determined by performing Western Blot analysis and immunofluorescence staining assay. ROS levels were examined by using DCFH-DA staining assay. Results In this study, we investigated this issue and the ALI models were respectively established by treating the BALB/c mice and the murine macrophage cell line RAW264.7 with different concentrations of lipopolysaccharide (LPS) in vivo and in vitro, which were subsequently subjected to sevoflurane co-treatment. The results showed that sevoflurane reduced LPS-induced ALI in mice and suppressed LPS-triggered oxidative stress and apoptotic cell death in the RAW264.7 cells. Interestingly, we evidenced that the elimination of reactive oxygen species (ROS) by N-acetyl-L-cysteine (NAC) reversed LPS-induced cell apoptosis in RAW264.7 cells. Then, we verified that sevoflurane suppressed oxidative damages to restrain LPS-induced apoptotic cell death in the RAW264.7 cells through activating the anti-oxidant Keap1/Nrf2 pathway. Mechanistically, sevoflurane down-regulated Keap1 and upregulated Nrf2 in nucleus to activate the downstream anti-oxidant signaling cascades, which further ameliorated LPS-induced cell apoptosis and lung injury by eliminating oxidative damages. Discussion Taken together, our study illustrated that the sevoflurane attenuates LPS-induced ALI by inhibiting oxidative stress-mediated apoptotic cell death and inflammation, and the Keap1/Nrf2 pathway played an important role in this process.
Collapse
Affiliation(s)
- Fushuang Zheng
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xiuying Wu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jin Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Zhiling Fu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yan Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
42
|
Microbe-Derived Antioxidants Reduce Lipopolysaccharide-Induced Inflammatory Responses by Activating the Nrf2 Pathway to Inhibit the ROS/NLRP3/IL-1β Signaling Pathway. Int J Mol Sci 2022; 23:ijms232012477. [PMID: 36293333 PMCID: PMC9603940 DOI: 10.3390/ijms232012477] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 12/14/2022] Open
Abstract
Inflammation plays an important role in the innate immune response, yet overproduction of inflammation can lead to a variety of chronic diseases associated with the innate immune system; therefore, modulation of the excessive inflammatory response has been considered a major strategy in the treatment of inflammatory diseases. Activation of the ROS/NLRP3/IL-1β signaling axis has been suggested to be a key initiating phase of inflammation. Our previous study found that microbe-derived antioxidants (MA) are shown to have excellent antioxidant and anti-inflammatory properties; however, the mechanism of action of MA remains unclear. The current study aims to investigate whether MA could protect cells from LPS-induced oxidative stress and inflammatory responses by modulating the Nrf2-ROS-NLRP3-IL-1β signaling pathway. In this study, we find that MA treatment significantly alleviates LPS-induced oxidative stress and inflammatory responses in RAW264.7 cells. MA significantly reduce the accumulation of ROS in RAW264.7 cells, down-regulate the levels of pro-inflammatory factors (TNF-α and IL-6), inhibit NLRP3, ASC, caspase-1 mRNA, and protein levels, and reduce the mRNA, protein levels, and content of inflammatory factors (IL-1β and IL-18). The protective effect of MA is significantly reduced after the siRNA knockdown of the NLRP3 gene, presumably related to the ability of MA to inhibit the ROS-NLRP3-IL-1β signaling pathway. MA is able to reduce the accumulation of ROS and alleviate oxidative stress by increasing the content of antioxidant enzymes, such as SOD, GSH-Px, and CAT. The protective effect of MA may be due to its ability of MA to induce Nrf2 to enter the nucleus and initiate the expression of antioxidant enzymes. The antioxidant properties of MA are further enhanced in the presence of the Nrf2 activator SFN. After the siRNA knockdown of the Nrf2 gene, the antioxidant and anti-inflammatory properties of MA are significantly affected. These findings suggest that MA may inhibit the LPS-stimulated ROS/NLRP3/IL-1β signaling axis by activating Nrf2-antioxidant signaling in RAW264.7 cells. As a result of this study, MA has been found to alleviate inflammatory responses and holds promise as a therapeutic agent for inflammation-related diseases.
Collapse
|
43
|
Yang B, Wang Y, Fang C, Song E, Song Y. Polybrominated diphenyl ether quinone exposure leads to ROS-driven lysosomal damage, mitochondrial dysfunction and NLRP3 inflammasome activation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119846. [PMID: 35944775 DOI: 10.1016/j.envpol.2022.119846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/10/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are aromatic compounds that containing bromine atoms, which possess high efficiency, good thermal stability. However, PBDEs had various known toxic effects and were characterized as persistent environmental pollutants. Exposure to a quinone-type metabolite of PBDEs (PBDEQ) is linked with excess production of intracellular reactive oxygen species (ROS) in our previous studies. Here, we observed that PBDEQ exposure led to ROS and mitochondrial dysfunction, which promoted canonical and non-canonical Nod-like receptor protein 3 (NLRP3) inflammasome activation. Further experiments demonstrated that PBDEQ exposure activated Toll-like receptors (TLRs), subsequently regulating nuclear factor kappa B (NF-κB) signaling. Moreover, lysosomal damage and K+ efflux were involved in PBDEQ-driven NLRP3 inflammasome activation. Our in vivo study also illustrated that PBDEQ administration induced liver inflammation in male C57BL/6J mice. Cumulatively, our current finding provided novel insights into PBDEQ-induced pro-inflammatory responses.
Collapse
Affiliation(s)
- Bingwei Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Yuting Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China; Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441100, China
| | - Changyu Fang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
44
|
Tang X, Fan X, Xu T, He Y, Chi Q, Li Z, Li S. Polystyrene nanoplastics exacerbated lipopolysaccharide-induced necroptosis and inflammation via the ROS/MAPK pathway in mice spleen. ENVIRONMENTAL TOXICOLOGY 2022; 37:2552-2565. [PMID: 35833596 DOI: 10.1002/tox.23618] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Plastics are novel environmental pollutants with potential threats to the ecosystem. At least 5.25 trillion plastic particles in the environment, of which nanoplastics are <100 nm in diameter. Polystyrene nanoplastics (PS-NPs) exposure damaged the spleen's immune function. Lipopolysaccharide (LPS) induced other toxicants to damage cells and organs, triggering inflammation. However, the mechanism of PS-NPs aggravated LPS-induced spleen injury remains unclear. In this study, the PS-NPs or/and LPS mice exposure model was replicated by intraperitoneal injection of PS-NPs or/and LPS, and PS-NPs or/and LPS were exposed to RAW264.7 cells. The histopathological and ultrastructural changes of the mice spleen were observed by H&E staining and transmission electron microscope. Western Blot, qRT-PCR, and fluorescent probes staining were used to detect reactive oxygen species (ROS), oxidative stress indicators, inflammatory factors, and necroptosis-related indicators in mice spleen and RAW264.7 cells. The results showed that PS-NPs or LPS induced oxidative stress, activated the MAPK pathway, and eventually caused necroptosis and inflammation in mice spleen and RAW264.7 cells. Compared with the single treatment group, the changes in PS-NPs + LPS group were more obvious. Furthermore, ROS inhibitor N-Acetyl-L-cysteine (NAC) significantly inhibited the activation of the mitogen-activated protein kinase (MAPK) signaling pathway caused by co-treatment of PS-NPs and LPS, reducing necroptosis and inflammation. The results demonstrated that PS-NPs promoted LPS-induced spleen necroptosis and inflammation in mice through the ROS/MAPK pathway. This study increases the data on the damage of PS-NPs to the organism and expands the research ideas and clues.
Collapse
Affiliation(s)
- Xinyu Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Xue Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Tong Xu
- College of Chemistry, Jilin University, Changchun, People's Republic of China
| | - Yujiao He
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Qianru Chi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Zhe Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| |
Collapse
|
45
|
Salehabadi A, Farkhondeh T, Harifi-Mood MS, Aschner M, Samarghandian S. Role of Nrf2 in bisphenol effects: a review study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:55457-55472. [PMID: 35680748 DOI: 10.1007/s11356-022-20996-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Bisphenols (BPs), the main endocrine-disrupting chemicals used in polycarbonate plastics, epoxy-phenol resins, and some other manufacturers, have been interestingly focused to find their toxic effects in recent years. Due to the strong relation between bisphenols and some crucial receptors such as ERs, AR, glucocorticoid receptor, THRs, ERRs, hPXR, AhR, and etcetera, the disrupting and oncogenic role of these chemicals on reproductive, respiratory, and circulatory systems and a broad group of body tissues have been investigated. BPs induce oxidant enzymes, exert antioxidant enzymes from body cells, and result in the expression of proinflammatory genes, leading to cell apoptosis and inflammation. To maintain the homeostasis of human body cells, Nrf2, the key regulator of oxidative stress (Ashrafizadeh et al., 2020a; Ashrafizadeh et al., 2020c; Boroumand et al., 2018), confronts BP-induced ROS and RNS through the activation of antioxidant enzymes such as SOD1/2, CAT, GSH, GPX, HO-1, and etcetera. Chemicals and drugs such as LUT, NAC, GEN, L-NMMA, Ph2Se2, and GE can regulate the interactions between BPs and Nrf2. Despite the vital role of controlled levels of Nrf2 as an anti-inflammatory and antiapoptotic element, the uncontrolled activity of this transcription factor could lead to cell proliferation and tumorigenesis through NQO1, SLC7a11, Gclm, HMOX1, NQO1 gene activation, and some other genes. To avoid the excessive activity of Nrf2, some protein complexes like CUL3-RBX1-Keap1 (as the primary regulator), β-TrCP, and WDR23 regulate Nrf2's function. It is necessary to note that BPA, as the most famous member, is further reviewed due to its resemblance to the bisphenol family to each other.
Collapse
Affiliation(s)
- Amin Salehabadi
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209 1300 Morris Park Avenue, Bronx, NY, USA
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
46
|
Lin C, Ge L, Tang L, He Y, Moqbel SAA, Xu K, Ma D, Zhou X, Ran J, Wu L. Nitidine Chloride Alleviates Inflammation and Cellular Senescence in Murine Osteoarthritis Through Scavenging ROS. Front Pharmacol 2022; 13:919940. [PMID: 35935815 PMCID: PMC9353946 DOI: 10.3389/fphar.2022.919940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is one of the most common chronic musculoskeletal disorder worldwide, representing a major source of disability, pain and socioeconomic burden. Yet the effective pharmaceutical treatments applied in the clinical works are merely symptomatic management with uncertainty around their long-term safety and efficacy, namely no drugs currently are capable of modulating the biological progression of OA. Here, we identified the potent anti-inflammatory as well as anti-oxidative properties of Nitidine Chloride (NitC), a bioactive phytochemical alkaloid extracted from natural herbs, in IL-1β-treated rat articular chondrocytes (RACs), LPS-stimulated RAW 264.7 and rat osteoarthritic models in vivo. We demonstrated NitC remarkably inhibited the production of inflammatory mediators including COX2 and iNOS, suppressed the activation of MAPK and NF-κB cell signaling pathway and reduced the expression of extracellular matrix (ECM) degrading enzymes including MMP3, MMP9 and MMP13 in IL-1β-treated RACs. Several emerging bioinformatics tools were performed to predict the underlying mechanism, the result of which indicated the potential reactive oxygen species (ROS) clearance potential of NitC. Further, NitC exhibited its anti-oxidative potential through ameliorating cellular senescence in IL-1β-treated RACs and decreasing NLRP3 inflammasomes activation in LPS-stimulated RAW 264.7 via scavenging ROS. Additionally, X-ray, micro-CT and other experiments in vivo demonstrated that intra-articular injection of NitC significantly alleviated the cartilage erosion, ECM degradation and subchondral alterations in OA progression. In conclusion, the present study reported the potent anti-inflammatory and anti-oxidative potential of NitC in OA biological process, providing a promising therapeutic agent for OA management.
Collapse
Affiliation(s)
- Changjian Lin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Lujie Ge
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Luping Tang
- Department of Emergency Medicine, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuzhe He
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Safwat Adel Abdo Moqbel
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Kai Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Diana Ma
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Xing Zhou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
| | - Jisheng Ran
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
- *Correspondence: Jisheng Ran, ; Lidong Wu,
| | - Lidong Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, China
- *Correspondence: Jisheng Ran, ; Lidong Wu,
| |
Collapse
|
47
|
Zhang X, Liu W, Zhang S, Wang J, Yang X, Wang R, Yan T, Wu B, Du Y, Jia Y. Wei-Tong-Xin ameliorates functional dyspepsia via inactivating TLR4/MyD88 by regulating gut microbial structure and metabolites. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154180. [PMID: 35613516 DOI: 10.1016/j.phymed.2022.154180] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/23/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Wei-Tong-Xin (WTX) is a traditional Chinese medicine (TCM) that has been screened and improved in accordance with the famous ancient Chinese formula "Wan Ying Yuan". It has been shown to be clinically effective in treating gastric dysmotility, but its underlying molecular mechanism remains unclear. PURPOSE This study primarily dealt with the effects and mechanisms of WTX on functional dyspepsia (FD) induced by chemotherapeutic drug cisplatin (CIS). METHODS Firstly, the UPLC fingerprint and multi-component determination of WTX were established. In vivo, gastrointestinal motility of mice was detected by charcoal propulsion test. Besides, H&E, western blot and qRT-PCR were performed to evaluate the occurrence of gastric antral inflammation. ROS-DHE staining was used to detect ROS levels. Further, the gut microbiota were subjected to sequencing by 16S rRNA, and the levels of bacterial metabolites short-chain fatty acids (SCFAs) and lipopolysaccharide (LPS) were detected by GC-MS and Limulus kits, respectively. The levels of GLP-1 in gastric antrum were assessed by ELISA kits. Finally, siRNA-FFAR2 experiment was performed in Raw 264.7 cells. RESULTS 23 common peaks were obtained from the UPLC fingerprint, and the content of 10 target components was determined. WTX increased the relative abundance of Firmicutes and decreased the number of Verrucomicrobia, accompanied by changes in the levels of SCFAs and LPS. By mediating the expression changes of free fatty acid receptor 2 (FFAR2) and toll-like receptor 4 (TLR4), WTX inhibited the phosphorylation of nuclear factor-κB (NF-κB), JNK and P38, decreased the levels of IL-1β, inducible nitric oxide synthase (iNOS) and ROS, increased the expressions of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), IL-4 and arginase-1 (Arg-1). Decreased expressions of glucagon-like peptide 1 (GLP-1) induced by WTX promoted gastric motility in FD mice. In vitro, siRNA-FFAR2 of Raw 264.7 cells eliminated the effects of WTX on TLR4 signaling pathway. CONCLUSIONS In this study, the chemical profile of WTX was first reported. Based on remodeling the gut microbiota structure and adjusting the levels of metabolites (SCFAs and LPS), WTX inactivated the TLR4/MyD88 signaling pathway to inhibit the occurrence of gastric antral inflammation, which reversed the inhibitory effect of GLP-1 on gastric motility, and improved CIS-induced FD symptoms.
Collapse
Affiliation(s)
- Xiaoying Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Wenjuan Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Shuanglin Zhang
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Jinyu Wang
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Xihan Yang
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Ruixuan Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Tingxu Yan
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Bo Wu
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Yiyang Du
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China.
| | - Ying Jia
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China.
| |
Collapse
|
48
|
Molangiri A, Varma S, M S, Kambham S, Duttaroy AK, Basak S. Prenatal exposure to bisphenol S and bisphenol A differentially affects male reproductive system in the adult offspring. Food Chem Toxicol 2022; 167:113292. [PMID: 35842007 DOI: 10.1016/j.fct.2022.113292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 11/24/2022]
Abstract
Early exposure to bisphenol may result in adverse reproductive health in later life. The use of bisphenol S (BPS) has increased considerably after bisphenol A (BPA) is regulated worldwide. However, little is known about the fetal exposure to BPS compared with BPA and its effects on the reproductive system in the adult male offspring. Here, we investigated the effects of orally administered BPS and BPA (0.4, 4.0, 40.0 μg/kg bw/d) during gestation (gD4-21) on testicular development by evaluating the sperm DNA damage & methylation and testicular functions in the 90 d Wistar rats. Male offspring prenatally exposed to BPS (0.4 μg/kg) had higher plasma testosterone than BPA and control. The testis histology reveals thickened membrane by producing a wide interstitial gap between seminiferous tubules, increased testicular inflammation, oxidative stress, TIMP-1 expression, and decreased VCAM-1 expression. BPS promotes apoptosis by up-regulating IL-6, cleaved caspases, and a spike in sperm DNA fragmentation. Prenatal BPS exposure reduces sperm motility mediated via impaired PI3K-AKT signaling and increases testicular TEX11 expression in the offspring. Exposure of the fetus to BPS interferes developmental programming of the male reproductive system in the offspring. BPS could be an equally potent endocrine disruptor affecting male reproductive functions.
Collapse
Affiliation(s)
- Archana Molangiri
- National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Saikanth Varma
- National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Satyavani M
- National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Saikrishna Kambham
- National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway
| | - Sanjay Basak
- National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India.
| |
Collapse
|
49
|
Li H, Zhang O, Hui C, Huang Y, Shao H, Song M, Gao L, Jin S, Ding C, Xu L. Deuterium-Reinforced Polyunsaturated Fatty Acids Prevent Diet-Induced Nonalcoholic Steatohepatitis by Reducing Oxidative Stress. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:790. [PMID: 35744053 PMCID: PMC9228393 DOI: 10.3390/medicina58060790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022]
Abstract
Background and Objectives: Oxidative stress is implicated in the progression of nonalcoholic steatohepatitis (NASH) through the triggering of inflammation. Deuterium-reinforced polyunsaturated fatty acids (D-PUFAs) are more resistant to the reactive oxygen species (ROS)-initiated chain reaction of lipid peroxidation than regular hydrogenated (H-) PUFAs. Here, we aimed to investigate the impacts of D-PUFAs on oxidative stress and its protective effect on NASH. Materials and Methods: C57BL/6 mice were randomly divided into three groups and were fed a normal chow diet, a methionine-choline-deficient (MCD) diet, and an MCD with 0.6% D-PUFAs for 5 weeks. The phenotypes of NASH in mice were determined. The levels of oxidative stress were examined both in vivo and in vitro. Results: The treatment with D-PUFAs attenuated the ROS production and enhanced the cell viability in tert-butyl hydroperoxide (TBHP)-loaded hepatocytes. Concurrently, D-PUFAs decreased the TBHP-induced oxidative stress in Raw 264.7 macrophages. Accordingly, D-PUFAs increased the cell viability and attenuated the lipopolysaccharide-stimulated proinflammatory cytokine expression of macrophages. In vivo, the administration of D-PUFAs reduced the phenotypes of NASH in MCD-fed mice. Specifically, D-PUFAs decreased the liver transaminase activity and attenuated the steatosis, inflammation, and fibrosis in the livers of NASH mice. Conclusion: D-PUFAs may be potential therapeutic agents to prevent NASH by broadly reducing oxidative stress.
Collapse
Affiliation(s)
- Haoran Li
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; (H.L.); (O.Z.); (C.H.); (Y.H.); (H.S.); (M.S.); (L.G.)
| | - Ouyang Zhang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; (H.L.); (O.Z.); (C.H.); (Y.H.); (H.S.); (M.S.); (L.G.)
| | - Chenmin Hui
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; (H.L.); (O.Z.); (C.H.); (Y.H.); (H.S.); (M.S.); (L.G.)
| | - Yaxin Huang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; (H.L.); (O.Z.); (C.H.); (Y.H.); (H.S.); (M.S.); (L.G.)
| | - Hengrong Shao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; (H.L.); (O.Z.); (C.H.); (Y.H.); (H.S.); (M.S.); (L.G.)
| | - Menghui Song
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; (H.L.); (O.Z.); (C.H.); (Y.H.); (H.S.); (M.S.); (L.G.)
| | - Lingjia Gao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; (H.L.); (O.Z.); (C.H.); (Y.H.); (H.S.); (M.S.); (L.G.)
| | - Shengnan Jin
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; (H.L.); (O.Z.); (C.H.); (Y.H.); (H.S.); (M.S.); (L.G.)
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou 325035, China
| | - Chunming Ding
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; (H.L.); (O.Z.); (C.H.); (Y.H.); (H.S.); (M.S.); (L.G.)
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou 325035, China
| | - Liang Xu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; (H.L.); (O.Z.); (C.H.); (Y.H.); (H.S.); (M.S.); (L.G.)
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
50
|
Luo W, Tao Y, Chen S, Luo H, Li X, Qu S, Chen K, Zeng C. Rosmarinic Acid Ameliorates Pulmonary Ischemia/Reperfusion Injury by Activating the PI3K/Akt Signaling Pathway. Front Pharmacol 2022; 13:860944. [PMID: 35645792 PMCID: PMC9132383 DOI: 10.3389/fphar.2022.860944] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/30/2022] [Indexed: 01/01/2023] Open
Abstract
Pulmonary ischemia/reperfusion (IR) injury is the leading cause of acute lung injury, which is mainly attributed to reactive oxygen species (ROS) induced cell injuries and apoptosis. Since rosmarinic acid (RA) has been identified as an antioxidant natural ester, this natural compound might protect against pulmonary IR injury. In this study, the mice were given RA daily (50, 75, or 100 mg/kg) by gavage for 7 days before the pulmonary IR injury. We found that hypoxemia, pulmonary edema, and serum inflammation cytokines were aggravated in pulmonary IR injury. RA pretreatment (75 and 100 mg/kg) effectively reversed these parameters, while 50 mg/kg RA pretreatment was less pronounced. Our data also indicated RA pretreatment mitigated the upregulation of pro-oxidant NADPH oxidases (NOX2 and NOX4) and the downregulation of anti-oxidant superoxide dismutases (SOD1 and SOD2) upon IR injury. In vitro studies showed RA preserved the viability of anoxia/reoxygenation (AR)-treated A549 cells (a human lung epithelial cell line), and the results showed the protective effect of RA started at 5 μM concentration, reached its maximum at 15 μM, and gradually decreased at 20–25 μM. Besides, RA pretreatment (15 μM) greatly reduced the lactate dehydrogenase release levels subjected to AR treatment. Moreover, the results of our research revealed that RA eliminated ROS production and reduced alveolar epithelial cell apoptosis through activating the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) signaling pathway, which was supported by using wortmannin, because in the presence of wortmannin, the RA-mediated protection was blocked. Meanwhile, wortmannin also reversed the protective effects of RA in mice. Together, our results demonstrate the beneficial role of RA in pulmonary IR injury via PI3K/Akt-mediated anti-oxidation and anti-apoptosis, which could be a promising therapeutic intervention for pulmonary IR injury.
Collapse
Affiliation(s)
- Wenbin Luo
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Yu Tao
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Shengnan Chen
- Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, China
- Department of Cardiology, Chongqing General Hospital, Chongqing, China
| | - Hao Luo
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiaoping Li
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Shuang Qu
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Ken Chen
- Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, China
- *Correspondence: Ken Chen, ; Chunyu Zeng,
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
- Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, China
- Department of Cardiology, Chongqing General Hospital, Chongqing, China
- Heart Center of Fujian Province, Union Hospital, Fujian Medical University, Fuzhou, China
- *Correspondence: Ken Chen, ; Chunyu Zeng,
| |
Collapse
|