1
|
Li C, Luo H, Chen M, Lin F, Ren X, Huang Y, Zhou L. Bisphenol AF induces cell cycle arrest and apoptosis in TM3 Leydig cells via the p53 signaling pathway. Reprod Toxicol 2025; 134:108882. [PMID: 40089166 DOI: 10.1016/j.reprotox.2025.108882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025]
Abstract
Bisphenol AF (BPAF), one of the most common bisphenol analogues, has been reported to exhibit higher estrogenic activity compared to bisphenol A (BPA) due to the presence of additional hydrophobic groups. To comprehensively understand the male reproductive toxicity of BPAF, TM3 Leydig cells were used to investigate the effects of BPAF on cell proliferation, apoptosis, and cell cycle arrest. The underlying mechanisms of cellular responses induced by BPAF were examined through analysis of target mRNA and protein expression. Results showed that BPAF treatment reduced cell viability and induced both G2/M cell cycle arrest and apoptosis in a time- and dose-dependent manner in TM3 Leydig cells. RNA sequencing analysis and experimental verification further revealed that the p53 signaling pathway was involved in BPAF-induced cytotoxicity. Furthermore, Pifithrin-α (PFT-α), a p53 inhibitor, attenuated BPAF-induced G2/M cell cycle arrest and apoptosis. These results demonstrate that the p53 signaling pathway mediates BPAF-induced cell cycle arrest and apoptosis in Leydig cells, providing mechanistic insights into BPAF's toxicological effects on the male reproductive system.
Collapse
Affiliation(s)
- Chenlu Li
- Scholol of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Haolong Luo
- Scholol of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Mengyuan Chen
- Scholol of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Fuxing Lin
- Scholol of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Xiangmei Ren
- Scholol of Public Health, Xuzhou Medical University, Xuzhou, China; Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yefei Huang
- Scholol of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Li Zhou
- Scholol of Public Health, Xuzhou Medical University, Xuzhou, China; Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
2
|
Elseweidy MM, Harb NG, Ali AA, El-Aziz RMA, Elrashidy RA. Sulforaphane substantially impedes testicular ferroptosis in adult rats exposed to di-2-ethylhexyl phthalate through activation of NRF-2/SLC7A11/GPX-4 trajectory. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3163-3175. [PMID: 39352535 PMCID: PMC11920001 DOI: 10.1007/s00210-024-03440-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/07/2024] [Indexed: 03/19/2025]
Abstract
Di-2-ethylhexyl phthalate (DEHP) is a common plasticizer with a deleterious impact on testicular functionality and male fertility. Growing evidence implicates ferroptosis as one of the plausible mechanisms for DEHP-induced testicular injury. Sulforaphane (SFN) is a natural isothiocyanate displaying beneficial effects on testicular injury in several animal models. Herein, we explored the potential protective effect of SFN on testicular ferroptosis and toxicity evoked by DEHP. Adult male Wistar rats were equally distributed into three groups (n = 6/group): (i) CON group; (ii) DEHP group, received DEHP (2 g/kg PO) for 4 weeks; and (iii) DEHP + SFN group, received SFN (10 mg/kg, PO) 1 week prior to DEHP then concurrently with DEHP for further 4 weeks. Compared to CON group, exposure to DEHP caused testicular atrophy, deteriorated testicular architecture, testicular fibrosis, reduced sperm count and motility, higher sperm deformity, and declined serum testosterone level. All these abnormalities were ameliorated by SFN preconditioning. Additionally, pretreatment with SFN reversed the increased aromatase level and upregulated the steroidogenic markers in testes of DEHP-exposed rats. SFN pretreatment also counteracted DEHP-induced oxidative stress and boosted the total antioxidant capacity in testicular tissue via activation of the nuclear factor erythroid 2-related factor 2 (NRF-2) and its downstream target, hemeoxygenase-1 (HO-1). Moreover, SFN preconditioning mitigated DEHP-induced ferroptosis through up-surging SLC7A11, GPX-4, and GSH, while suppressing iron overload and ACSL4-induced lipid peroxidation in testicular tissue of rats. These findings may nominate SFN as a promising protective intervention to alleviate testicular ferroptosis associated with DEHP exposure through activation of NRF-2/SLC7A11/GPX-4 trajectory.
Collapse
Affiliation(s)
- Mohammed M Elseweidy
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Nouran G Harb
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Abdelmoniem A Ali
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Reda M Abd El-Aziz
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Rania A Elrashidy
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
3
|
Zhang L, Sun S, Su W, Tan M. Preventive effect of sea bass protein-based high internal phase Pickering emulsion loaded with astaxanthin on DEHP-induced liver lipid metabolism disorder. Int J Biol Macromol 2025; 292:139190. [PMID: 39732256 DOI: 10.1016/j.ijbiomac.2024.139190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
The present study was to investigate the effect of the astaxanthin high internal phase Pickering emulsion (H-AXT) on DEHP-induced liver lipid metabolism disorder and to demonstrate its possible protective mechanism. We have developed an antioxidant activity emulsion system to deliver astaxanthin into the liver to maximize its ability to protect the liver. In vitro, H-AXT intervention inhibited oxidative stress restored the level of mitochondrial membrane potential to 90 % of that of normal LO2 cells, and alleviated the imbalance of energy metabolism by protecting mitochondrial structure and function. Based on metabonomics, it was proved that H-AXT inhibited triglyceride accumulation by antagonizing lipid metabolism disorder. In DEHP-induced mice, H-AXT intervention mitigated liver damage by inhibiting oxidative stress and inflammatory reaction, and alleviated metabolic dysfunction by regulating lipid levels and inhibiting fat accumulation. Meanwhile, H-AXT alleviated DEHP-induced testicular tissue damage and maintained the integrity of testicular tissue. The encapsulation of the emulsion system effectively promoted the liver uptake of astaxanthin to prevent liver diseases associated with metabolic disorders.
Collapse
Affiliation(s)
- Lijuan Zhang
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116600, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Shan Sun
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Wentao Su
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
4
|
Fang Z, Jin Z, Zhao Q, Weng J, Zhang Z, Yang Y, Jiang H. Multi-omics revealed activation of TNF-α induced apoptosis signaling pathway in testis of DEHP treated prepubertal male rat. Reprod Toxicol 2025; 132:108758. [PMID: 39613166 DOI: 10.1016/j.reprotox.2024.108758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/11/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) exposure has been associated with male reproductive damage, but the mechanisms involved remain incompletely defined. This study aims to investigate the effects of DEHP exposure on the testes of prepubertal rats through an integrative analysis of metabolomics and transcriptomics, combined with molecular experiments. DEHP exposure resulted in decreased testis weight and increased oxidative stress level in the testis tissues of prepubertal male rats. Moreover, our findings showed a disordered testis structure, reduced spermatogenic and Sertoli cells as well as destruction of mitochondria structure in the testis tissues of DEHP-treated prepubertal male rats. Transcriptome function analysis together with metabolome function analysis indicated that spermatogenesis, apoptosis, inflammatory, lipid metabolism as well as DNA repair signaling pathway were enriched in the testis of DEHP-treated prepubertal male rats. The integrative omics analysis further suggested that TNF-α induced apoptosis played a crucial role in mediating the detrimental effects of DEHP exposure on the testis of prepubertal rats, which was validated by ELISA, Western blotting and Tunel assays. Validation experiments conducted in vitro using GC-2 cells corroborated these findings, demonstrating that mono-(2-ethylhexyl) phthalate (MEHP), the main active metabolite of DEHP, significantly inhibits cell proliferation and increases apoptosis via activating the TNF-α apoptosis pathway. Overall, these findings provided a novel mechanism of dysregulated spermatogenesis of DEHP exposure on the testes of prepubertal rats.
Collapse
Affiliation(s)
- Zishui Fang
- Department of Urology, Peking University First Hospital, Beijing 100034, China; Institution of Urology, Peking University, Beijing 100034, China; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing 100034, China
| | - Zirun Jin
- Department of Urology, Peking University First Hospital, Beijing 100034, China; Institution of Urology, Peking University, Beijing 100034, China; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing 100034, China
| | - Qiancheng Zhao
- Department of Urology, Peking University First Hospital, Beijing 100034, China; Institution of Urology, Peking University, Beijing 100034, China; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing 100034, China
| | - Jiaming Weng
- Department of Urology, Center for Reproductive Medicine, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Zhe Zhang
- Department of Urology, Center for Reproductive Medicine, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Yuzhuo Yang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Xishiku Road, Xicheng District, Beijing 100034, China.
| | - Hui Jiang
- Department of Urology, Peking University First Hospital, Beijing 100034, China; Institution of Urology, Peking University, Beijing 100034, China; Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing 100034, China.
| |
Collapse
|
5
|
Yang L, Liu S, Song P, Liu Z, Peng Z, Kong D, Zhou J, Yan X, Ma K, Yu Y, Liu X, Dong Q. DEHP-mediated oxidative stress leads to impaired testosterone synthesis in Leydig cells through the cAMP/PKA/SF-1/StAR pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125503. [PMID: 39657860 DOI: 10.1016/j.envpol.2024.125503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/03/2024] [Accepted: 12/07/2024] [Indexed: 12/12/2024]
Abstract
Leydig cells (LCs) injury is often irreversible upon discovery; hence, early identification of risk factors for injury is crucial. The ubiquitous plasticizer di-2-ethylhexyl phthalate (DEHP) in the environment has been shown to potentially cause damage to LCs. However, the underlying mechanisms remain unclear. The present study utilized scRNA-seq analysis, the advantage of which is the ability to explore the characteristics of various testicular cells, combined with studies in vitro and in vivo, to assay the changes in and damage processes of LCs during DEHP exposure. We found that DEHP disrupted the structure and function of LCs. GO analysis suggested that a series of pathways changed, among which the most significant were the "steroid synthesis" and "oxidative stress" pathways. Moreover, DEHP dramatically changed the manner of interaction between LCs and other cells, and the most significant type was the cell-cell contact, which included NECTIN, APP, CADM, and CD39. In addition, the activity of multiple transcription factors (TFs) decreased after DEHP exposure, and the activity of steroidogenic factor 1 (SF-1, Nr5a1) was the most obviously altered. Next, we found that the LCs region indeed experienced oxidative stress, including increased ROS signals, the decreased SOD activity and T-AOC, and increased concentration of 8-OHdG and MDA content. The testosterone level, as well as the expression of StAR, P450scc, and 3β-HSD, was also reduced. To study the association between testosterone synthesis and oxidative stress, the antioxidants N-acetyl-L-cysteine (NAC) and H2O2 were used, and we found that mono-2-ethylhexyl ester (MEHP, a major biometabolite of DEHP) disrupted testosterone synthesis through the inhibition of the cAMP/PKA/SF-1/StAR pathway by inducing oxidative stress. Our study provides new insights into the role and mechanisms of DEHP in LCs injury.
Collapse
Affiliation(s)
- Luchen Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Shengzhuo Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Pan Song
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Zhenghuan Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Zhufeng Peng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Depei Kong
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Jing Zhou
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Xin Yan
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Kai Ma
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Yunfei Yu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Xiaoyang Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China
| | - Qiang Dong
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China.
| |
Collapse
|
6
|
Anwar C, Chu YC, Tsai ML, Ho CT, Lai CS. Tetrahydrocurcumin alleviates di-(2-ethylhexyl) phthalate-induced adipose tissue dysfunction and testicular toxicity in adult mice: possible involvement of adiponectin-adipoR signaling in the testis. Food Funct 2025; 16:583-600. [PMID: 39704213 DOI: 10.1039/d4fo04271a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Widespread exposure to endocrine disruptors is associated with metabolic dysfunction and reproductive toxicity. Tetrahydrocurcumin (THC) has attracted attention as it offers protection against obesity and metabolic disorders due to its potent antioxidative and diverse biological properties but its influence and underlying mechanism of action on adipose tissue function and DEHP-induced testicular injury remain unknown. Our results showed that THC (100 mg kg-1 day-1) administration for 27 weeks enlarged adipocytes while attenuating macrophage infiltration and IL-6 expression in the adipose tissue of male C57BL/6J mice exposed to 5 mg kg-1 day-1 of DEHP. Moreover, THC ameliorated DEHP-induced deregulation of adiponectin but not leptin. DEHP caused testicular histological damage, spermatogenesis impairment, apoptosis, inflammation, and AGE, which were improved by THC. THC treatment elevated Nrf2/HO-1 and decreased Glut1 in interstitial Leydig cells, which may contribute to its beneficial effects on the testis. Our results further demonstrated that THC also ameliorated circulating adiponectin and testicular adipoR1-AMPK signaling, partially accounting for the improvement of DEHP-caused testicular dysfunction. The finding of this study revealed that THC is a promising candidate for improving adipose and testicular dysfunction caused by DEHP.
Collapse
Affiliation(s)
- Choirul Anwar
- Institute of Aquatic Science and Technology, Collage of Hydrosphere Science, National Kaohsiung University of Science and Technology, No. 142, Haijhuan Rd., Nanzih Dist., Kaohsiung City 81157, Taiwan
| | - Yu-Chi Chu
- Department of Seafood Science, National Kaohsiung University of Science and Technology, No. 142, Haijhuan Rd., Nanzih Dist., Kaohsiung City 81157, Taiwan.
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, No. 142, Haijhuan Rd., Nanzih Dist., Kaohsiung City 81157, Taiwan.
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Ching-Shu Lai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, No. 142, Haijhuan Rd., Nanzih Dist., Kaohsiung City 81157, Taiwan.
| |
Collapse
|
7
|
Yang F, Li X, Wang M, Lan X, Zhang J, Li J, Chang D, Yu X. The Role of Environmental Endocrine Disruptors on Leydig Cell Death and Senescen. World J Mens Health 2025; 43:43.e5. [PMID: 39843178 DOI: 10.5534/wjmh.240254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/11/2024] [Accepted: 11/26/2024] [Indexed: 01/24/2025] Open
Abstract
Environmental endocrine disruptors, as exogenous chemicals that interfere with hormonal behavior, are known to cause testicular Leydig cell death and senescence. The incidence of diseases of the male reproductive system has been increasing over the past half-century. Genetic defects alone cannot explain the rapid increase in incidence, and there is growing evidence that environmental factors or lifestyle changes are responsible for the high incidence in recent years. Testicular Leydig cells occupy an important role in the male reproductive system. In this study, we review the mechanisms by which environmental endocrine disruptors promote both death and senescence of testicular Leydig cells, refine the former into two programmed death modes, apoptosis, and autophagy, and further explore the interactions among them, thus summarizing the advances of the toxic effects of environmental endocrine disruptors on testicular Leydig cells, and expecting to provide a new therapeutic idea.
Collapse
Affiliation(s)
- Fang Yang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoya Li
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meijing Wang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiucheng Lan
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingyi Zhang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junjun Li
- Chengdu Fifth People's Hospital, Chengdu, China
| | - Degui Chang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xujun Yu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
8
|
Alam MS, Maowa Z, Hasan MN. Phthalates toxicity in vivo to rats, mice, birds, and fish: A thematic scoping review. Heliyon 2025; 11:e41277. [PMID: 39811286 PMCID: PMC11731458 DOI: 10.1016/j.heliyon.2024.e41277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
Background Phthalates, a large group of endocrine disruptors, are ubiquitous in the environment and detrimental to human health. This scoping review aimed to summarize the effects of phthalates on laboratory animals relevant to humans, assess toxicity, and analyze mechanisms of toxicity for public health concerns. Methods Articles were retrieved from Google Scholar, PubMed, ScienceDirect, and Web of Science search engines. The search used the term "toxicity of phthalates in vivo, animals or birds or fish." Original research articles published between 2010 and 2024 describing in vivo toxicity in rat, mouse, bird, and fish models, were included. Conversely, articles that did not meet the above criteria were excluded from this scoping review. Two authors independently extracted data using data extraction tools based on themes, while a third arbitrated if consensus was not met. A senior researcher developed the themes, which were further refined through discussions. Data analysis involved quantitative (percentage of studies) and qualitative (content analysis) methods. Results Of the 8180 articles screened, 153 met the inclusion criteria. Most of them were published after 2015 (74.50 %). The scoping review showed that DEHP (56.20 %) and DBP (21.57 %) were the most studied phthalates followed by BBP, DiBP, DMP, DEP, BBOP, and DiNP. Scarce data were available on DnOP, DPHP, DPeP, DUDP, DTDP, DMiP, and DiOP. Interestingly, studies of combinations of two or more phthalates were also present. The main laboratory animals employed were rats (48.37 %) and mice (39.87 %), while the least studied were birds (5.22 %) and fish (6.53 %). Most studies related to testicular toxicity (37.60 %), hepatotoxicity (23.53 %), and ovarian toxicity (18.30 %) investigations, while the rest consisted of neurotoxicity (6.88 %), renal toxicity (6.53 %), and thyroid toxicity studies (4.57 %). Studies focused on oxidative stress (34.64 %), apoptosis (22.22 %), steroid hormone deprivation (20.26 %), lipid metabolism disorder (11.76 %), and immunotoxicity (5.88 %) as mechanisms of toxicity. The most commonly used techniques were H&E, RT-qPCR, ROS assay, WB, IHC, ELISA, RIA, TUNEL, TEM, IFM, FCM, and RNA-seq. Conclusions DEHP and DBP are the most toxic and studied phthalates, while BBP, DiNP, DiBP, DiDP, BBOP, DMP, and DiOP and their combinations require more accurate studies to confirm their toxic effects on human health and mechanisms of action. These will assist policymakers in adopting strategies to minimize public exposure and adverse effects.
Collapse
Affiliation(s)
- Mohammad Shah Alam
- Department of Anatomy and Histology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Zannatul Maowa
- Department of Anatomy and Histology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Mohammad Nazmol Hasan
- Department of Statistics, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| |
Collapse
|
9
|
Wang J, Wei Y, Wu Y, Zhao T, Kang L, Han L, Chen J, Long C, Wei G, Shen L, Wu S. Di-(2-ethylhexyl) phthalate induces prepubertal testicular injury through MAM-related mitochondrial calcium overload in Leydig and Sertoli cell apoptosis. Toxicology 2024; 509:153956. [PMID: 39307383 DOI: 10.1016/j.tox.2024.153956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
As one of the most prevalent environmental endocrine disruptors, di-(2-ethylhexyl) phthalate (DEHP) is known for its significant developmental toxicity to the male reproductive system in humans and mice. Prepubertal exposure to DEHP has been shown to cause testicular damage, but the underlying mechanisms require further investigation. To investigate this effect, prepubertal mice were exposed to 100, 250 or 500 mg/kg body weight (bw) of DEHP for 14 days, which resulted in impaired histological structure and increased apoptosis of the testes. RNA sequencing (RNA-seq) of testicular tissue suggested that DEHP led to injury in Leydig and Sertoli cells. To further elucidate these mechanisms, we conducted experiments using immature mouse Leydig (TM3) and Sertoli (TM4) cells, and exposed them to 200 μM mono-(2-ethylhexyl) phthalate (MEHP), the primary metabolite of DEHP, for 24 h. We found that MEHP exposure induced oxidative stress injury and promoted cell apoptosis, and that cotreatment with N-acetylcysteine partially reversed these injuries. Given the close association between oxidative stress and mitochondrial calcium levels, we demonstrated that MEHP exposure disrupted mitochondria and increased mitochondrial calcium levels. In addition, MEHP exposure facilitated the formation of mitochondria-associated endoplasmic reticulum membranes (MAMs), upregulated protein expression and enhanced the interactions of the IP3R3-Grp75-VDAC1 complex. Furthermore, inhibition of calcium transfer in the IP3R3-Grp75-VDAC1-MCU axis relieved MEHP-induced mitochondrial injury, oxidative stress and apoptosis in TM3 and TM4 cells. This study highlights the importance of MAM-mediated mitochondrial calcium overload and the subsequent apoptosis of Leydig and Sertoli cells as pivotal factors contributing to testicular injury induced by prepubertal exposure to DEHP.
Collapse
Affiliation(s)
- Junke Wang
- Department of Urology, Pediatric Research Institute, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Department of Urology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuexin Wei
- Department of Urology, Pediatric Research Institute, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yuhao Wu
- Department of Urology, Pediatric Research Institute, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Tianxin Zhao
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, China
| | - Lian Kang
- Department of Urology, Pediatric Research Institute, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lindong Han
- Department of Urology, Pediatric Research Institute, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jiadong Chen
- Department of Urology, Pediatric Research Institute, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Chunlan Long
- Department of Urology, Pediatric Research Institute, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Guanghui Wei
- Department of Urology, Pediatric Research Institute, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Lianju Shen
- Department of Urology, Pediatric Research Institute, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Shengde Wu
- Department of Urology, Pediatric Research Institute, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
10
|
Meng J, Xiao L, Li Q, Gong L, Luo P, Zhao Y, Wang S. Di-(2-ethylhexyl) phthalate exposure induces ferroptosis by regulating the Nrf2-mediated signaling pathway in mouse ovaries. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117104. [PMID: 39321527 DOI: 10.1016/j.ecoenv.2024.117104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), an endocrine-disrupting chemical present in plasticized products, exerts strong modulation on the anatomy and function of the female reproductive system. However, the potential mechanisms underlying DEHP-induced regulation of prepubertal female reproductive toxicity have not yet been elucidated. Therefore, this study was designed to elucidate the molecular mechanism of ovarian injury induced by DEHP exposure in mice. Elevated serum mono-2-ethylhexyl phthalate (MEHP) concentrations, decreased levels of ovarian hormones (E2 and P4), and observed ovarian injury were found after DEHP exposure. Ovarian transcriptome analysis revealed significant alterations in ferroptosis-associated gene expression, with potential regulation by Nrf2. Subsequent analysis of ferrous iron, malondialdehyde (MDA), Western blotting, and immunofluorescence of the ovaries confirmed the RNA-seq findings. Transcriptome analysis of granulosa cells revealed a direct or indirect regulatory relationship between Nrf2 and downstream ferroptosis-related proteins following MEHP exposure. Further experiments demonstrated that ferrostatin-1 attenuated MEHP-induced ferroptosis in granulosa cells. Additionally, Nrf2 stabilization and accumulation in the nucleus of granulosa cells were observed following MEHP treatment. RNAi-mediated knockdown of Nrf2 exacerbated MEHP-induced ferroptosis in granulosa cells. This evidence indicates that DEHP exposure induces ferroptosis through regulation of the Nrf2-mediated signaling pathway in mouse ovaries, laying the groundwork for future studies aiming to develop therapeutic strategies against DEHP toxicity.
Collapse
Affiliation(s)
- Jinzhu Meng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China; Guizhou Provincial Key Laboratory for Biodiversity Conservation and Utilization in the Fanjing Mountain Region, Tongren University, Tongren, China
| | - Lilin Xiao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Qiuye Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Ling Gong
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Ping Luo
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Yuanyuan Zhao
- Guizhou Provincial Key Laboratory for Biodiversity Conservation and Utilization in the Fanjing Mountain Region, Tongren University, Tongren, China.
| | - Shuilian Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
11
|
Lu Z, Huang Q, Qin X, Chen F, Li E, Lin H. Novel Insights into Ethanol-Soluble Oyster Peptide-Zinc-Chelating Agents: Structural Characterization, Chelation Mechanism, and Potential Protection on MEHP-Induced Leydig Cells. Mar Drugs 2024; 22:465. [PMID: 39452873 PMCID: PMC11509544 DOI: 10.3390/md22100465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Numerous studies have reported that mono-(2-ethylhexyl) phthalate (MEHP) (bioactive metabolite of Di(2-ethylhexyl) phthalate) has inhibitory effects on Leydig cells. This study aims to prepare an oyster peptide-zinc complex (PEP-Zn) to alleviate MEHP-induced damage in Leydig cells. Zinc-binding peptides were obtained through the following processes: zinc-immobilized affinity chromatography (IMAC-Zn2+), liquid chromatography-mass spectrometry technology (LC-MS/MS) analysis, molecular docking, molecular dynamic simulation, and structural characterization. Then, the Zn-binding peptide (PEP) named Glu-His-Ala-Pro-Asn-His-Asp-Asn-Pro-Gly-Asp-Leu (EHAPNHDNPGDL) was identified. EHAPNHDNPGDL showed the highest zinc-chelating ability of 49.74 ± 1.44%, which was higher than that of the ethanol-soluble oyster peptides (27.50 ± 0.41%). In the EHAPNHDNPGDL-Zn complex, Asn-5, Asp-7, Asn-8, His-2, and Asp-11 played an important role in binding to the zinc ion. Additionally, EHAPNHDNPGDL-Zn was found to increase the cell viability, significantly increase the relative activity of antioxidant enzymes and testosterone content, and decrease malondialdehyde (MDA) content in MEHP-induced TM3 cells. The results also indicated that EHAPNHDNPGDL-Zn could alleviate MEHP-induced apoptosis by reducing the protein level of p53, p21, and Bax, and increasing the protein level of Bcl-2. These results indicate that the zinc-chelating peptides derived from oyster peptides could be used as a potential dietary zinc supplement.
Collapse
Affiliation(s)
- Zhen Lu
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, College of Food Science and Technology, National Research and Development Branch Center for Shellfish Processing, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Ocean University, Zhanjiang 524088, China; (Z.L.); (Q.H.)
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China; (F.C.); (E.L.)
| | - Qianqian Huang
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, College of Food Science and Technology, National Research and Development Branch Center for Shellfish Processing, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Ocean University, Zhanjiang 524088, China; (Z.L.); (Q.H.)
| | - Xiaoming Qin
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, College of Food Science and Technology, National Research and Development Branch Center for Shellfish Processing, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Ocean University, Zhanjiang 524088, China; (Z.L.); (Q.H.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Fujia Chen
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China; (F.C.); (E.L.)
| | - Enzhong Li
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China; (F.C.); (E.L.)
| | - Haisheng Lin
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, College of Food Science and Technology, National Research and Development Branch Center for Shellfish Processing, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Ocean University, Zhanjiang 524088, China; (Z.L.); (Q.H.)
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
12
|
Chen RX, Liu SC, Kan XC, Wang YR, Wang JF, Wang TL, Li C, Jiang WJ, Chen YAL, Zhou T, Fan SL, Chang J, Xu X, Shi KH, Zhang YD, Wu MY, Yu Y, Li CX, Li XC. CircUGP2 Suppresses Intrahepatic Cholangiocarcinoma Progression via p53 Signaling Through Interacting With PURB to Regulate ADGRB1 Transcription and Sponging miR-3191-5p. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402329. [PMID: 39120980 PMCID: PMC11481218 DOI: 10.1002/advs.202402329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/17/2024] [Indexed: 08/11/2024]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is the second most common primary liver cancer and its prognosis remains poor. Although growing numbers of studies have verified the involvement of circular RNAs (circRNAs) in various cancer types, their specific functions in ICC remain elusive. Herein, a circRNA, circUGP2 is identified by circRNA sequencing, which is downregulated in ICC tissues and correlated with patients' prognosis. Moreover, circUGP2 overexpression suppresses tumor progression in vitro and in vivo. Mechanistically, circUGP2 functions as a transcriptional co-activator of PURB over the expression of ADGRB1. It can also upregulate ADGRB1 expression by sponging miR-3191-5p. As a result, ADGRB1 prevents MDM2-mediated p53 polyubiquitination and thereby activates p53 signaling to inhibit ICC progression. Based on these findings, circUGP2 plasmid is encapsulated into a lipid nanoparticle (LNP) system, which has successfully targeted tumor site and shows superior anti-tumor effects. In summary, the present study has identified the role of circUGP2 as a tumor suppressor in ICC through regulating ADGRB1/p53 axis, and the application of LNP provides a promising translational strategy for ICC treatment.
Collapse
Affiliation(s)
- Rui Xiang Chen
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Shuo Chen Liu
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Xue Chun Kan
- School of MedicineSoutheast UniversityNanjingJiangsu210009China
| | - Yi Rui Wang
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Ji Fei Wang
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Tian Lin Wang
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Chang Li
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Wang Jie Jiang
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Yan An Lan Chen
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Tao Zhou
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Shi Long Fan
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Jiang Chang
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Xiao Xu
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Kuang Heng Shi
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Yao Dong Zhang
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Ming Yu Wu
- The Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Yue Yu
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Chang Xian Li
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Xiang Cheng Li
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
- The Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| |
Collapse
|
13
|
Cao H, Xie Q, Luo P, Chen J, Xia K, Ma L, Chen D, Deng C, Wan Z. Di-(2-ethylhexyl) phthalate exposure induces premature testicular senescence by disrupting mitochondrial respiratory chain through STAT5B-mitoSTAT3 in Leydig cell. GeroScience 2024; 46:4373-4396. [PMID: 38499958 PMCID: PMC11336147 DOI: 10.1007/s11357-024-01119-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/27/2024] [Indexed: 03/20/2024] Open
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), a prevalent plasticizer, is known to have endocrine-disrupting effects on males and cause reproductive toxicity. There were causal effects of DEHP on testosterone levels in the real world by Mendelian randomization analysis. Exposure to DEHP during the preadult stage might lead to premature testicular senescence, but the mechanisms responsible for this have yet to be determined. In this study, we administered DEHP (300 mg/kg/day) to male C57BL/6 mice from postnatal days 21 to 49. The mice were kept for 6 months without DEHP. RNA sequencing was conducted on testicular tissue at PNM6. The results indicated that DEHP hindered testicular development, lowered serum testosterone levels in male mice, and induced premature testicular senescence. TM3 Leydig cells were exposed to 300 μM of mono(2-ethylhexyl) phthalate (MEHP), the bioactive metabolite of DEHP, for 72 h. The results also found that DEHP/MEHP induced senescence in vivo and in vitro. The mitochondrial respiratory chain was disrupted in Leydig cells. The expression and stability of STAT5B were elevated by MEHP treatment in TM3 cells. Furthermore, p-ERK1/2 was significantly decreased by STAT5B, and mitochondria-STAT3 (p-STAT3 ser727) was significantly decreased due to the decrease of p-ERK1/2. Additionally, the senescence level of TM3 cells was decreased and treated with 5 mM NAC for 1 h after MEHP treatment. In conclusion, these findings provided a novel mechanistic understanding of Leydig cells by disrupting the mitochondrial respiratory chain through STAT5B-mitoSTAT3.
Collapse
Affiliation(s)
- Haiming Cao
- The Andrology Department, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
- The Reproductive Andrology Clinic, the Seventh Affiliated Hospital of Sun Yat-Sen University, 628 Zhenyuan Road, 518000, Shenzhen, Guangdong, China
| | - Qigen Xie
- The Andrology Department, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
- The Department of Pediatric Surgery, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Peng Luo
- The Andrology Department, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Jiaqi Chen
- The Urology Department, Affiliated Sanming First Hospital, Fujian Medical University, Sanming, 365000, Fujian, China
| | - Kai Xia
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Lin Ma
- The Reproductive Center, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518000, Guangdong, China
| | - Demeng Chen
- Translational Medicine Center, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Chunhua Deng
- The Andrology Department, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Zi Wan
- The Andrology Department, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
14
|
Ding Y, Chen ZQ, Pan WF, Chen HJ, Wu M, Lyu YQ, Xie H, Huang YC, Chen ZZ, Chen F. The association and underlying mechanism of the digit ratio (2D:4D) in hypospadias. Asian J Androl 2024; 26:356-365. [PMID: 38563741 PMCID: PMC11280205 DOI: 10.4103/aja202377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 01/14/2024] [Indexed: 04/04/2024] Open
Abstract
The second-to-fourth digit (2D:4D) ratio is thought to be associated with prenatal androgen exposure. However, the relationship between the 2D:4D ratio and hypospadias is poorly understood, and its molecular mechanism is not clear. In this study, by analyzing the hand digit length of 142 boys with hypospadias (23 distal, 68 middle, and 51 proximal) and 196 controls enrolled in Shanghai Children's Hospital (Shanghai, China) from December 2020 to December 2021, we found that the 2D:4D ratio was significantly increased in boys with hypospadias ( P < 0.001) and it was positively correlated with the severity of the hypospadias. This was further verified by the comparison of control mice and prenatal low testosterone mice model obtained by knocking out the risk gene (dynein axonemal heavy chain 8 [ DNAH8 ]) associated with hypospadias. Furthermore, the discrepancy was mainly caused by a shift in 4D. Proteomic characterization of a mouse model validated that low testosterone levels during pregnancy can impair the growth and development of 4D. Comprehensive mechanistic explorations revealed that during the androgen-sensitive window, the downregulation of the androgen receptor (AR) caused by low testosterone levels, as well as the suppressed expression of chondrocyte proliferation-related genes such as Wnt family member 5a ( Wnt5a ), Wnt5b , Smad family member 2 ( Smad2 ), and Smad3 ; mitochondrial function-related genes in cartilage such as AMP-activated protein kinase ( AMPK ) and nuclear respiratory factor 1 ( Nrf-1 ); and vascular development-related genes such as myosin light chain ( MLC ), notch receptor 3 ( Notch3 ), and sphingosine kinase 1 ( Sphk1 ), are responsible for the limitation of 4D growth, which results in a higher 2D:4D ratio in boys with hypospadias via decreased endochondral ossification. This study indicates that the ratio of 2D:4D is a risk marker of hypospadias and provides a potential molecular mechanism.
Collapse
Affiliation(s)
- Yu Ding
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Zu-Quan Chen
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Wen-Feng Pan
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Hao-Jie Chen
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Min Wu
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Yi-Qing Lyu
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Hua Xie
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Yi-Chen Huang
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Zhong-Zhong Chen
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Urogenital Development Research Center, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Fang Chen
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Clinical Research Center for Hypospadias, Pediatric College, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| |
Collapse
|
15
|
Wu W, Jiang W, Zhou Y, Zhang Z, Li G, Tang C. Phthalate exposure aggravates periodontitis by activating NFκB pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116252. [PMID: 38547731 DOI: 10.1016/j.ecoenv.2024.116252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Phthalates are widely used plasticizers, which were identified as risk factors in the development of many human diseases. However, the effects of phthalates in the periodontitis are unknown. We aimed to investigated the relationship of periodontitis and phthalate exposure as well as the underlying mechanisms. MATERIALS AND METHODS Univariate and multivariate logistic regressions were employed to evaluate the association between phthalate metabolites and periodontitis. The generalized additive model and piecewise logistic regression were conducted to investigate the dose-response relationship. Cell and animal models were used to explore the role and mechanism of DEHP in the development of periodontitis. Transcriptome sequencing, bioinformatics analysis, western blot, immunofluorescence and mice model of periodontitis were also employed. RESULTS MEHP (OR 1.14, 95% CI 1.05-1.24), MCPP (OR 1.08, 95% CI 1.00-1.17), MEHHP (OR 1.18, 95% CI 1.08-1.29), MEOHP (OR 1.18, 95% CI 1.07-1.29), MiBP (OR 1.15, 95% CI 1.04-1.28), and MECPP (OR 1.20, 95% CI 1.09-1.32) were independent risk factors. And MEHHP, the metabolite of DEHP, showed the relative most important effects on periodontitis with the highest weight (0.34) among all risk factors assessed. And the increase of inflammation and the activation of NFκB pathway in the periodontitis model mice and cells were observed. CONCLUSION Exposure to multiple phthalates was positively associated with periodontitis in US adults between 30 and 80 years old. And DEHP aggravated inflammation in periodontitis by activating NFκB pathway.
Collapse
Affiliation(s)
- Wei Wu
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Wenxiu Jiang
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Department of Orthodontic, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yongmiao Zhou
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Zhewei Zhang
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Guoqing Li
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Chunbo Tang
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China.
| |
Collapse
|
16
|
Hong Y, Zhou X, Li Q, Chen J, Wei Y, Long C, Shen L, Zheng X, Li D, Wang X, Yu C, Wu S, Wei G. X-box binding protein 1 caused an imbalance in pyroptosis and mitophagy in immature rats with di-(2-ethylhexyl) phthalate-induced testis toxicity. Genes Dis 2024; 11:935-951. [PMID: 37692514 PMCID: PMC10491871 DOI: 10.1016/j.gendis.2023.02.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/08/2023] [Indexed: 03/29/2023] Open
Abstract
As a widely used plasticizer, di-(2-ethylhexyl) phthalate (DEHP) is known to induce significant testicular injury. However, the potential mechanism and effects of pubertal exposure to DEHP on testis development remain unclear. In vivo, postnatal day (PND) 21 male rats were gavaged with 0, 250, and 500 mg/kg DEHP for ten days. Damage to the seminiferous epithelium and disturbed spermatogenesis were observed after DEHP exposure. Meanwhile, oxidative stress-induced injury and pyroptosis were activated. Both endoplasmic reticulum (ER) stress and mitophagy were involved in this process. Monoethylhexyl phthalate (MEHP) was used as the biometabolite of DEHP in vitro. The GC-1 and GC-2 cell lines were exposed to 0, 100 μM, 200 μM, and 400 μM MEHP for 24 h. Reactive oxygen species (ROS) generation, oxidative stress damage, ER stress, mitophagy, and pyroptosis were significantly increased after MEHP exposure. The ultrastructure of the ER and mitochondria was destroyed. X-box binding protein 1 (XBP1) was observed to be activated and translocated into the nucleus. ROS generation was inhibited by acetylcysteine. The levels of antioxidative stress, ER stress, mitophagy, and pyroptosis were decreased as well. After the administration of the ER stress inhibitor 4-phenyl-butyric acid, both mitophagy and pyroptosis were inhibited. Toyocamycin-induced XBP1 down-regulation decreased the levels of mitophagy and pyroptosis. The equilibrium between pyroptosis and mitophagy was disturbed by XBP1 accumulation. In summary, our findings confirmed that DEHP induced a ROS-mediated imbalance in pyroptosis and mitophagy in immature rat testes via XBP1. Moreover, XBP1 might be the key target in DEHP-related testis dysfunction.
Collapse
Affiliation(s)
- Yifan Hong
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xiazhu Zhou
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Qi Li
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Jing Chen
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Yuexin Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Chunlan Long
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Lianju Shen
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xiangqin Zheng
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Dinggang Li
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xia Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Chenjun Yu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Shengde Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| |
Collapse
|
17
|
Wang X, Li D, Zheng X, Hong Y, Zhao J, Deng W, Wang M, Shen L, Long C, Wei G, Wu S. Di-(2-ethylhexyl) phthalate induces ferroptosis in prepubertal mouse testes via the lipid metabolism pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:1747-1758. [PMID: 38050670 DOI: 10.1002/tox.24065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/07/2023] [Accepted: 11/16/2023] [Indexed: 12/06/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), a widely used plasticizer, has been shown to cause reproductive toxicity, but the precise mechanism remains unclear. This study aimed to investigate the possible molecular mechanism of DEHP-induced testicular damage. In vivo study, we administered different doses of DEHP (0, 250, and 500 mg/kg/day) to male C57BL/6 mice from 22 and 35 days after birth. We found that DEHP exposure induced histopathological alterations in prepubertal testes, and testicular lipidomics indicated notable alterations in lipid metabolism and significant enrichment of ferroptosis. Further tests showed that ferrous iron (Fe2+ ) and malondialdehyde (MDA) levels significantly increased after DEHP exposure. Western blotting revealed that DEHP exposure reduced glutathione peroxidase 4 (GPX4) expression, and elevated acyl coenzyme A synthetase long-chain member 4 (ACSL4) and lysophosphatidylcholine acyltransferase 3 (LPCAT3) expression. The in vitro results were consistent with the in vivo results. When Leydig cells and Sertoli cells were treated with ferrostatin-1 and monoethylhexyl phthalate (MEHP), MEHP-induced increases in Fe2+ and MDA levels, accumulation of lipid reactive oxygen species, downregulation of GPX4, and upregulation of ACSL4 and LPCAT3 were reversed. Collectively, our findings suggested that aberrant lipid metabolism and ferroptosis may be involved in prepubertal DEHP exposure-induced testicular damage.
Collapse
Affiliation(s)
- Xia Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Dinggang Li
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xiangqin Zheng
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yifan Hong
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Jie Zhao
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Wei Deng
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Mingxin Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Lianju Shen
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Chunlan Long
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Shengde Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
18
|
Li N, Sun DM, Chang YZ, Li XN, Li JL, Wang TQ. Di-(2-ethylhexyl) phthalate exacerbates abnormalities of testicular development in F1 males via inhibition the Wnt/β-catenin signaling pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123170. [PMID: 38135137 DOI: 10.1016/j.envpol.2023.123170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
The theory of "Developmental Origins of Health and Disease (DOHaD)" espouses that environmental exposures to toxicants during critical developmental stages can affect health outcomes in adulthood. Di (2-ethylhexyl) phthalate (DEHP) is a plasticizer that can be transferred to developing organisms via the placenta and breast milk as an environmental endocrine disruptor. We herein implemented a cross-fostering model to decipher the contributions of prenatal vs. postnatal exposure to low or high dose DEHP (30 or 500 mg/kg-bw•d) on reproductive outcomes in male offspring and the underlying mechanism of action. Unexpectedly, we observed that postnatal DEHP exposure programmed weight gain in a dose-dependent manner, in-utero exposure to high dose DEHP appeared to constitute a significant factor in the weight loss of male offspring. Moreover, in the low dose group, offspring of control that were suckled by DEHP dams (CC-DE) generated a considerable number of adverse reproductive outcomes compared with the offspring of DEHP that were suckled by control dams (DE-CC), based on histopathologic alterations in the testis, blockage of sex hormone secretion, and transcriptional inhibition of steroid-hormone-related factors in the hypothalamic-pituitary-testicular (HPT) axis. However, DE-CC group affected reproductive dysfunction in male offspring more so than CC-DE in the high dose group. Mechanistically, DEHP contributed to the inhibition of steroidogenesis by perturbing the Wnt/β-catenin-signaling pathway. These studies confirm the sensitivity window in which future reproductive outcomes in offspring are influenced following developmental exposure to DEHP at two different dosages, and reveals a critical role for the Wnt/β-catenin signaling pathway in DEHP-induced male reproductive disorders.
Collapse
Affiliation(s)
- Nan Li
- Center of laboratory animal, National Research Institute for Family Planning, Beijing, 100081, PR China.
| | - De-Ming Sun
- Center of laboratory animal, National Research Institute for Family Planning, Beijing, 100081, PR China
| | - Yong-Zhang Chang
- Center of laboratory animal, National Research Institute for Family Planning, Beijing, 100081, PR China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tian-Qi Wang
- Center of laboratory animal, National Research Institute for Family Planning, Beijing, 100081, PR China.
| |
Collapse
|
19
|
Ma S, Wang L, Li S, Zhao S, Li F, Li X. Transcriptome and proteome analyses reveal the mechanisms involved in polystyrene nanoplastics disrupt spermatogenesis in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123086. [PMID: 38061432 DOI: 10.1016/j.envpol.2023.123086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 01/26/2024]
Abstract
Nanoplastics have been demonstrated to be reproductively toxic to mammals. However, the mechanisms of nanoplastics induce reproductive damage in mammals, especially their effects on spermatogenesis, remain elusive. Herein, we explored the effects and underlying mechanisms of polystyrene nanoplastics (PS-NPs) on the testicular development of male mice after 28 days of exposure, representing the first systematic study of PS-NPs-induced male reproductive injury by integrating histomorphology, transcriptomics and proteomics. PS-NPs decreased the sperm concentration, sperm motility, and disrupted the structure of the seminiferous tubules of the mice. Besides, transcriptome and proteome analyses revealed that PS-NPs disrupted spermatogenesis by inhibiting the transcription of Prm3/Tnp1/Aurkc/Mea1/Mettl14 and the expression of Pmfbp1/Ggn/Fsip2. Furthermore, PS-NPs enabled Hsd3b5 protein expression to reduce dihydrotestosterone levels, and affected sperm flagellar assembly by decreasing the expression of Dnah8/Tekt5/Rsph6a. Moreover, PS-NPs induced testicular cell apoptosis by up-regulating the expression of cathepsins (B/F/H). In addition, PS-NPs destroyed tight junctions by reducing the expression of the Claudin family (3/5/15). In conclusion, PS-NPs can disrupt spermatogenesis by altering the expression patterns of transcriptome and proteome, inducing testicular cell apoptosis and destroying tight junctions.
Collapse
Affiliation(s)
- Sheng Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200436, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai, 200436, China
| | - Lirui Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200436, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai, 200436, China
| | - Sisi Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200436, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai, 200436, China
| | - Shurui Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200436, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai, 200436, China
| | - Feiyu Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200436, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai, 200436, China
| | - Xinhong Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200436, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai, 200436, China.
| |
Collapse
|
20
|
Liu LL, Yue JZ, Lu ZY, Deng RY, Li CC, Yu YN, Zhou WJ, Lin M, Gao HT, Liu J, Xia LZ. Long-term exposure to the mixture of phthalates induced male reproductive toxicity in rats and the alleviative effects of quercetin. Toxicol Appl Pharmacol 2024; 483:116816. [PMID: 38218207 DOI: 10.1016/j.taap.2024.116816] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/30/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
Phthalates (PEs), such as di(2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP) and butyl benzyl phthalate (BBP) could cause reproductive and developmental toxicities, while human beings are increasingly exposed to them at low-doses. Phytochemical quercetin (Que) is a flavonoid that has estrogenic effect, anti-inflammatory and anti-oxidant effects. This study was conducted to assess the alleviative effect of Que. on male reproductive toxicity induced by the mixture of three commonly used PEs (MPEs) at low-dose in rats, and explore the underlying mechanism. Male rats were treated with MPEs (16 mg/kg/day) and/or Que. (50 mg/kg/d) for 91 days. The results showed that MPEs exposure caused male reproductive injuries, such as decreased serum sex hormones levels, abnormal testicular pathological structure, increased abnormal sperm rate and changed expressions of PIWIL1 and PIWIL2. Furthermore, MPEs also changed the expression of steroidogenic proteins in steroid hormone metabolism, including StAR, CYP11A1, CYP17A1, 17β-HSD, CYP19A1. However, the alterations of these parameters were reversed by Que. MPEs caused male reproductive injuries in rats; Que. inhibited MPEs' male reproductive toxicity, which might relate to the improvement of testosterone biosynthesis.
Collapse
Affiliation(s)
- Li-Lan Liu
- Department of Preventive Medicine, School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory of Watershed Science and Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Jun-Zhe Yue
- Department of Preventive Medicine, School of Public Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhen-Yu Lu
- Department of Preventive Medicine, School of Public Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Ru-Ya Deng
- Department of Preventive Medicine, School of Public Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Can-Can Li
- Department of Preventive Medicine, School of Public Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Ye-Na Yu
- Department of Preventive Medicine, School of Public Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Wen-Jin Zhou
- Department of Preventive Medicine, School of Public Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Min Lin
- Department of Preventive Medicine, School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory of Watershed Science and Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Hai-Tao Gao
- Department of Preventive Medicine, School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory of Watershed Science and Health, Wenzhou Medical University, Wenzhou 325035, China.
| | - Jiaming Liu
- Department of Preventive Medicine, School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory of Watershed Science and Health, Wenzhou Medical University, Wenzhou 325035, China.
| | - Ling-Zi Xia
- Department of Preventive Medicine, School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory of Watershed Science and Health, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
21
|
Chen J, Zhao T, Zheng X, Kang L, Wang J, Wei Y, Wu Y, Shen L, Long C, Wei G, Wu S. Protective effects of melatonin on DEHP-induced apoptosis and oxidative stress in prepubertal testes via the PI3K/AKT pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:952-964. [PMID: 37975621 DOI: 10.1002/tox.24029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/28/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP), an environmental endocrine disruptor, is one of the most common plasticizers and is widely used in various plastic products. DEHP induces apoptosis and oxidative stress and has been shown to have androgenic toxicity. However, the methods to combat DEHP-induced testicular damage and the mechanisms involved remain to be elucidated. In the present study, we used melatonin, which has strong antioxidant properties, to intervene in prepubertal mice and mouse Leydig cells (TM3) treated with DEHP or its metabolite mono(2-ethylhexyl) phthalate (MEHP). The results showed that melatonin protected against DEHP-induced testicular damage in prepubertal mice, mainly by protecting against DEHP-induced structural destruction of the germinal tubules and by attenuating the DEHP-induced decrease in testicular organ coefficients and testosterone levels. Transcriptomic analysis found that melatonin may attenuate DEHP-induced oxidative stress and apoptosis in prepubertal testes. In vitro studies further revealed that MEHP induces oxidative stress injury and increases apoptosis in TM3 cells, while melatonin reversed this damage. In vitro studies also found that MEHP exposure inhibited the expression levels of molecules related to the PI3K/AKT signaling pathway, and melatonin reversed this change. In conclusion, these findings suggest that melatonin protects against DEHP-induced prepubertal testicular injury via the PI3K/AKT signaling pathway, and provide a theoretical basis and experimental rationale for combating male reproductive dysfunction.
Collapse
Affiliation(s)
- Jiadong Chen
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Tianxin Zhao
- Department of Pediatric Urology, Guangzhou Woman and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiangqin Zheng
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Lian Kang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Junke Wang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Yuexin Wei
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Yuhao Wu
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Lianju Shen
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Chunlan Long
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Guanghui Wei
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Shengde Wu
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
22
|
Li Y, Xu L, Hao C, Yang S, Wang J, Chen J. ARTS is essential for di-2-ethylhexyl phthalate (DEHP)-induced apoptosis of mouse Leydig cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115882. [PMID: 38171099 DOI: 10.1016/j.ecoenv.2023.115882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
As an extensively employed plasticizer in industrial applications, di-2-ethylhexyl phthalate (DEHP) can induce apoptosis of mouse Leydig cells, yet the precise mechanism remains elusive. In the current study, we identified that DEHP could specially induced apoptosis in the Leydig cells of the testis tissue, accompanied with the upregulation of apoptosis-related protein in the TGF-β signaling pathway (ARTS) in the cells. Overexpression of ARTS significantly induced apoptosis of TM3 cells, while knockdown of ARTS inhibited apoptosis. Furthermore, DEHP-induced apoptosis of TM3 cells could be alleviated by knockdown of ARTS, which indicated that ARTS was involved in DEHP-induced apoptosis of mouse Leydig cells. Bioinformation assay predicts that there are four potential p53-responsive elements (p53-REs) located at - 6060, - 5726, - 5631 and - 5554 before the transcription start site of ARTS gene, implying that gene transcription of ARTS could be regulated by p53. Interestingly, DEHP was shown to specifically upregulate the expression of p53 in the Leydig cells of the testis tissue and TM3 cells. Consistently, p53 was proved to bind to the RE4 site of the ARTS gene promoter and transcriptionally activated the promoter-driven expression of the luciferase reporter gene. Overexpression of p53 could induce apoptosis of TM3 cells; while knockdown of p53 could not only rescue DEHP-induced apoptosis of the cells, but also inhibit DEHP-caused upregulation of ARTS. Meanwhile, we showed that oxidative stress could induce apoptosis of TM3 cells, accompanied with the increased protein levels of p53 and ARTS; while inhibition of oxidative stress dramatically alleviated DEHP-induced apoptosis and the up-regulation of p53 and ARTS. Taken together, these results indicated that DEHP-induced oxidative stress activates the p53-ARTS cascade to promote apoptosis of mouse Leydig cells.
Collapse
Affiliation(s)
- Yue Li
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Linlin Xu
- Department of Pathology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Chaoju Hao
- Library, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Si Yang
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Jinglei Wang
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Jiaxiang Chen
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
23
|
Wu J, Zhou T, Shen H, Jiang Y, Yang Q, Su S, Wu L, Fan X, Gao M, Wu Y, Cheng Y, Qi Y, Lei T, Xin Y, Han S, Li X, Wang Y. Mixed probiotics modulated gut microbiota to improve spermatogenesis in bisphenol A-exposed male mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115922. [PMID: 38171106 DOI: 10.1016/j.ecoenv.2023.115922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/05/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
Bisphenol A (BPA), an environmental endocrine disruptor (EDC), has been implicated in impairing intestinal and male reproductive dysfunction. The efficacy of gut microbiota modulation for BPA-exposed testicular dysfunction has yet to be verified through research. Therefore, this study explored the potential of mixed probiotics in restoring spermatogenesis damage through the gut-testis axis under BPA exposure. We selected two probiotics strains (Lactobacillus rhamnosus and Lactobacillus plantarum) with BPA removal properties in vitro and the BPA-exposed male mice model was established. The probiotics mixture effectively reduced BPA residue in the gut, serum, and testis in mice. Through 16 S rDNA-seq and metabolomics sequencing, we uncovered that vitamin D metabolism and bile acid levels in the gut was abolished under BPA exposure. This perturbation was linked to an increased abundance of Faecalibaculum and decreased abundance of Lachnospiraceae_NK4A136_group and Ligilactobacillus. The probiotics mixture restored this balance, enhancing intestinal barrier function and reducing oxidative stress. This improvement was accompanied by a restored balance of short-chain fatty acids (SCFAs). Remarkably, the probiotics ameliorated testicular dysfunction by repairing structures of seminiferous tubules and reversing arrested spermiogenesis. Further, the probiotics mixture enhanced testosterone-driven increases in spermatogonial stem cells and all stages of sperm cells. Testicular transcriptome profiling linked these improvements to fatty acid degradation and peroxisome pathways. These findings suggest a significant interplay between spermatogenesis and gut microbiota, demonstrating that probiotic intake could be a viable strategy for combating male subfertility issues caused by BPA exposure.
Collapse
Affiliation(s)
- Jingyuan Wu
- The First Clinical Medical College of Lanzhou University, Lanzhou University, China
| | - Tuoyu Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Haofei Shen
- The First Hospital of Lanzhou University, Lanzhou, China
| | - Yanbiao Jiang
- The First Hospital of Lanzhou University, Lanzhou, China
| | - Qi Yang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Shaochen Su
- The First Hospital of Lanzhou University, Lanzhou, China
| | - Luming Wu
- Gansu International Scientific and Technological Cooperation Base of Reproductive Medicine Transformation Application, Gansu Key Laboratory of Reproductive Medicine and Embryo, Lanzhou, China
| | - Xue Fan
- The First Hospital of Lanzhou University, Lanzhou, China
| | - Min Gao
- The First Clinical Medical College of Lanzhou University, Lanzhou University, China
| | - Yang Wu
- The First Clinical Medical College of Lanzhou University, Lanzhou University, China
| | - Yun Cheng
- The First Clinical Medical College of Lanzhou University, Lanzhou University, China
| | - Yuan Qi
- The First Clinical Medical College of Lanzhou University, Lanzhou University, China
| | - Ting Lei
- The First Clinical Medical College of Lanzhou University, Lanzhou University, China
| | - Yongan Xin
- Linxia Hui Autonomous Prefecture Maternity and Childcare Hospital, Linxia, China
| | - Shiqiang Han
- Linxia Hui Autonomous Prefecture Maternity and Childcare Hospital, Linxia, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Yiqing Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou University, China; Gansu International Scientific and Technological Cooperation Base of Reproductive Medicine Transformation Application, Gansu Key Laboratory of Reproductive Medicine and Embryo, Lanzhou, China.
| |
Collapse
|
24
|
Liu P, Shao Y, Liu C, Lv X, Afedo SY, Bao W. Special Staining and Protein Expression of VEGF/EGFR and P53/NF-κB in Cryptorchid Tissue of Erhualian Pigs. Life (Basel) 2024; 14:100. [PMID: 38255715 PMCID: PMC10817362 DOI: 10.3390/life14010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Erhualian pigs exhibit one of the highest reproductive rates globally, and cryptorchidism is a crucial factor affecting reproductive abilities of boars. This investigation focused on cryptorchid tissues from Erhualian pigs, where the histological structure of cryptorchidism was observed using specialized staining. In addition, protein expression of P53/NF-κB in cryptorchid tissues was assessed using Western blot and immunohistochemistry. In comparison to normal Erhualian testes, Masson's trichrome staining indicated a reduction in collagen fibers in the connective tissue and around the basal membrane of the seminiferous tubules in cryptorchid testes. Moreover, collagen fiber distribution was observed to be disordered. Verhoeff Van Gieson (EVG) and argyrophilic staining demonstrated brownish-black granular nucleoli organized regions in mesenchymal cells and germ cells. When compared to normal testicles, the convoluted seminiferous tubules of cryptorchids exhibited a significantly reduced number and diameter (p < 0.01). Notably, VEGF/EGFR and P53/NF-κB expression in cryptorchidism significantly differed from that in normal testes. In particular, the expression of VEGF and P53 in cryptorchid tissues was significantly higher than that in normal testes tissues, whereas the expression of EGFR in cryptorchid tissues was significantly lower than that in normal testes tissues (all p < 0.01). NF-κB expressed no difference in both conditions. The expressions of VEGF and NF-κB were observed in the cytoplasm of testicular Leydig cells and spermatogenic cells, but they were weak in the nucleus. EGFR and P53 were more positively expressed in the cytoplasm of these cells, with no positive expression in the nucleus. Conclusion: There were changes in the tissue morphology and structure of the cryptorchid testis, coupled with abnormally high expression of VEGF and P53 proteins in Erhualian pigs. We speculate that this may be an important limiting factor to fecundity during cryptorchidism.
Collapse
Affiliation(s)
- Penggang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Yiming Shao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Caihong Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyang Lv
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Seth Yaw Afedo
- Department of Animal Science, School of Agriculture, University of Cape Coast, Cape Coast P.O. Box 5007, Ghana
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
25
|
Hu J, Luo X, Panga MJ, Appiah C, Retyunskiy V, Zhu L, Zhao Y. Toxic effects and potential mechanisms of zinc pyrithione (ZPT) exposure on sperm and testicular injury in zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132575. [PMID: 37741212 DOI: 10.1016/j.jhazmat.2023.132575] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/06/2023] [Accepted: 09/16/2023] [Indexed: 09/25/2023]
Abstract
Zinc pyrithione (ZPT) is widely recognized for its beneficial properties as an antifouling, antibacterial, and antifungal agent. Despite its positive industrial contributions, ZPT has been proven to exhibit toxicity towards various ecosystems, particularly affecting marine life. However, there is still a dearth of comprehensive research on ZPT toxicity and its toxicological mechanism in reproductive systems of aquatic organisms. In our study, we conducted a thorough analysis and unveiled a multitude of abnormalities in zebrafish sperm and testicular tissue caused by ZPT exposure, including a dose-dependent diminishing of testosterone levels, various sperm deformities, decreased sperm concentration and motility, and ROS-induced testicular tissue DNA damage. In addition, our study suggested that ZPT-induced testicular damage is associated with heightened oxidative stress, apoptosis, and possible hyperpolarization of the mitochondrial membrane. Through RNA-seq analysis, a total of 409 DEGs associated with ZPT-induced testicular injury were identified, and the hub gene was determined using a protein-protein interaction network (PPI). The genes and pathways uncovered in this study point to potential mechanisms of ZPT exposure on sperm and testicular injury in zebrafish.
Collapse
Affiliation(s)
- Jinyuan Hu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Xu Luo
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Mogellah John Panga
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Clara Appiah
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Vladimir Retyunskiy
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Lin Zhu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Ye Zhao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
26
|
Qigen X, Haiming C, Kai X, Yong G, Chunhua D. Prenatal DEHP Exposure Induces Premature Testicular Aging by Promoting Leydig Cell Senescence through the MAPK Signaling Pathways. Adv Biol (Weinh) 2023; 7:e2300130. [PMID: 37246248 DOI: 10.1002/adbi.202300130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/02/2023] [Indexed: 05/30/2023]
Abstract
Previous studies show that prenatal di-(2-ethylhexyl) phthalate (DEHP) exposure induces premature testicular aging. However, the evidence is weak, and the underlying mechanisms remain unclear. p38/extracellular signal-regulated kinase (ERK)/c-Jun NH(2)-terminal kinase (JNK) MAPK pathways participate in aging. Leydig cell (LC) senescence results in testicular aging. Whether prenatal DEHP exposure induces premature testicular aging by promoting LC senescence warrants further study. Here, male mice undergo prenatal exposure to 500 mg per kg per day DEHP, and TM3 LCs are treated with 200 µm mono (2-ethylhexyl) phthalate (MEHP). MAPK pathways, testicular toxicity, and senescent phenotypes (β-gal activity, p21, p16, and cell cycle) of male mice and LCs are explored. Prenatal DEHP exposure induces premature testicular aging in middle-aged mice (poor genital development, reduced testosterone synthesis, poor semen quality, increased β-gal activity, and upregulated expression of p21 and p16). MEHP induces LCs senescence (cell cycle arrest, increased β-gal activity, and upregulated expression of p21). p38 and JNK pathways are activated, and the ERK pathway is inactivated. In conclusion, prenatal DEHP exposure induces premature testicular aging by promoting LC senescence through MAPK signaling pathways.
Collapse
Affiliation(s)
- Xie Qigen
- Department of Pediatric Surgery, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Andrology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Cao Haiming
- Department of Andrology, Reproductive Center of the Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518000, China
| | - Xia Kai
- Department of Andrology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Gao Yong
- Department of Andrology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Deng Chunhua
- Department of Andrology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| |
Collapse
|
27
|
Lu H, Zhang Z, Wang Z, Wang J, Mi T, Jin L, Wu X, Luo J, Liu Y, Liu J, Cai W, Guo P, He D. Human Mesenchymal Stem Cells-Derived Exosome Mimetic Vesicles Regulation of the MAPK Pathway and ROS Levels Inhibits Glucocorticoid-Induced Apoptosis in Osteoblasts. Stem Cells Int 2023; 2023:5537610. [PMID: 37771550 PMCID: PMC10533242 DOI: 10.1155/2023/5537610] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/12/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
Background Long-term extensive use of glucocorticoids will lead to hormonal necrosis of the femoral head, and osteoblasts play an important role in the prevention of osteonecrosis. However, there is no complete cure for necrosis of the femoral head. Mesenchymal stem cell- (MSCs-) derived exosomes are widely used for the repair of various tissue lesions. Therefore, the aim of this study was to investigate the mechanism of dexamethasone- (DEX-) induced osteoblast apoptosis and the therapeutic effect of human umbilical cord MSC- (hucMSC-) derived exosome mimetic vesicles (EMVs) on osteoblast-induced apoptosis by DEX. Methods The viability and apoptosis of primary MC3T3-E1 cells were determined by the Cell Counting Kit-8 (CCK-8), FITC-Annexin V/PI staining and immunoblot. The intracellular levels of reactive oxygen species (ROS) after DEX treatment were measured by 2', 7' -dichlorodihydrofluorescein diacetate (DCFH-DA) staining. In this study, hucMSC-EMVs and N-acetyl-l-cysteine (NAC) were used as therapeutic measures. The expression of B-cell lymphoma 2-associated X, Bcl 2, HO-1, and nuclear factor erythroid-derived 2-like 2 and MAPK- signaling pathway in osteogenic cell MC3T3-E1 cells treated with Dex was analyzed by the immunoblotting. Results DEX significantly induced osteoblasts MC3T3-E1 apoptosis and ROS accumulation. MAPK-signaling pathway was activated in MC3T3-E1 after DEX treatment. hucMSC-EMVs intervention significantly downregulated DEX-induced MAPK-signaling pathway activation and ROS accumulation. In addition, hucMSC-EMVs can reduce the apoptosis levels in osteoblast MC3T3-E1 cells induced by DEX. Conclusions Our study confirmed that hucMSC-EMVs regulates MAPK-signaling pathway and ROS levels to inhibit DEX-induced osteoblast apoptosis.
Collapse
Affiliation(s)
- Hongxu Lu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
- Department of Orthopaedics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhaoxia Zhang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Zhaoying Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Jinkui Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Tao Mi
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Liming Jin
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Xin Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Junyi Luo
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Yimeng Liu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Junhong Liu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Wenquan Cai
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
- Department of Orthopaedics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Guo
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Dawei He
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical, National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| |
Collapse
|
28
|
Hong Y, Zhou X, Li Q, Chen J, Wei Y, Wang S, Zheng X, Zhao J, Yu C, Pei J, Zhang J, Long C, Shen L, Wu S, Wei G. Wnt10a downregulation contributes to MEHP-induced disruption of self-renewal and differentiation balance and proliferation inhibition in GC-1 cells: Insights from multiple transcriptomic profiling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122091. [PMID: 37364752 DOI: 10.1016/j.envpol.2023.122091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Di (2-ethylhexyl) phthalate (DEHP), one of phthalic acid esters, has been widely used in daily products. Its main metabolite, mono (2-ethylhexyl) phthalate (MEHP) was reported to possess higher testicular toxicity than DEHP. To explore the precise mechanism in MEHP-induced testis damage, multiple transcriptomic sequencing was employed in spermatogonia cell line GC-1 cells treated with MEHP (0, 100, and 200 μM) for 24 h. Integrative omics analysis and empirical validation revealed that Wnt signaling pathway was downregulated and wnt10a, one of hub genes, may be the key player in this process. Similar results were observed in DEHP-exposed rats. MEHP-induced disturbance of self-renewal and differentiation was dose-dependent. Moreover, self-renewal proteins were downregulated; the differentiation level was stimulated. Meanwhile, GC-1 proliferation was decreased. Stable transformation strain of wnt10a overexpression GC-1 cell line constructed from lentivirus was utilized in this study. The upregulation of Wnt10a significantly reversed the dysfunction of self-renewal and differentiation and promoted the cell proliferation. Finally, retinol, predicted to be useful in CONNECTIVITY MAP (cMAP), failed to rescue the damage caused by MEHP. Cumulatively, our findings revealed that the downregulation of Wnt10a induced the imbalance of self-renew and differentiation, and inhibition of cell proliferation in GC-1 cells after MEHP exposure.
Collapse
Affiliation(s)
- Yifan Hong
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering; Chongqing Key Laboratory of Pediatrics; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Xiazhu Zhou
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering; Chongqing Key Laboratory of Pediatrics; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Qi Li
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering; Chongqing Key Laboratory of Pediatrics; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Jing Chen
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering; Chongqing Key Laboratory of Pediatrics; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Yuexin Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering; Chongqing Key Laboratory of Pediatrics; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Siyuan Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering; Chongqing Key Laboratory of Pediatrics; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Xiangqin Zheng
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering; Chongqing Key Laboratory of Pediatrics; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Jie Zhao
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering; Chongqing Key Laboratory of Pediatrics; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Chengjun Yu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering; Chongqing Key Laboratory of Pediatrics; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Jun Pei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering; Chongqing Key Laboratory of Pediatrics; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Jie Zhang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering; Chongqing Key Laboratory of Pediatrics; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Chunlan Long
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering; Chongqing Key Laboratory of Pediatrics; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Lianju Shen
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering; Chongqing Key Laboratory of Pediatrics; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Shengde Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering; Chongqing Key Laboratory of Pediatrics; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China.
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering; Chongqing Key Laboratory of Pediatrics; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| |
Collapse
|
29
|
Hong Y, Zhou X, Li Q, Chen J, Wei Y, Shen L, Long C, Wu S, Wei G. Epigallocatechin gallate alleviates mono-2-ethylhexyl phthalate-induced male germ cell pyroptosis by inhibiting the ROS/mTOR/NLRP3 pathway. Toxicol In Vitro 2023:105626. [PMID: 37286014 DOI: 10.1016/j.tiv.2023.105626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/10/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
Mono-2-ethylhexyl phthalate (MEHP) exposure is known to induce severe testicular injury via reactive oxygen species (ROS). However, few effective treatments are available for the precise treatment of MEHP-induced germ cell damage. Epigallocatechin gallate (EGCG), one of the major polyphenols in green tea, has potential antioxidant activity and can alleviate many diseases induced by oxidative stress. This study explored whether EGCG protects germ cells from MEHP-induced oxidative stress damage. Cells were treated with 400 μM MEHP and 60 μM EGCG for 24 h. EGCG reduced MEHP-induced ROS overgeneration in the spermatogonial cell line GC-1 and spermatocyte cell line GC-2. Western blotting and immunofluorescence showed that the MEHP+EGCG group exhibited lower nuclear factor (erythroid-derived 2)-like 2 (NRF2), heme oxygenase (decycling) 1 (HO-1), and superoxide dismutase (SOD) expression than the MEHP group. Moreover, activation of the mammalian target of rapamycin (mTOR) pathway was decreased. The expression of key factors of pyroptosis was downregulated, and interleukin-10 (IL-10) expression was reduced. Additionally, apoptosis was inhibited by EGCG. The findings indicate that EGCG protects against MEHP-induced germ cell pyroptosis by scavenging ROS, suppressing the mTOR pathway, and inhibiting pyroptosis. EGCG may thus be a potential treatment for MEHP-related spermatogenic dysfunction.
Collapse
Affiliation(s)
- Yifan Hong
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Xiazhu Zhou
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Qi Li
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Jing Chen
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Yuexin Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Lianju Shen
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Chunlan Long
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China.
| | - Shengde Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| |
Collapse
|
30
|
Ma XY, Zhu Y, Xu YR, Saleem MAU, Jian PA, Yi BJ, Li XN, Li JL. Mitocytosis Is Critical for Phthalate-Induced Injury to the Ovarian Granulosa Cell Layer in Quail ( Coturnix japonica). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5745-5755. [PMID: 36977485 DOI: 10.1021/acs.jafc.2c08601] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Phthalates are widely used synthetic chemicals that determine endocrine disruption effects on female reproductivity and oviposition. Our study demonstrated that the mitochondrial quality in ovarian granulosa cells (GCs) is associated with a poor prognosis in female reproduction. However, the molecular mechanism of di-(2-ethylhexyl) phthalate (DEHP) exposure on the quail ovarian GC layer is still unknown. To validate the effects of DEHP on the GC layer, 8 days' old 150 female Japanese quail were treated orally with DEHP (250, 500, and 750 mg/kg BW/day) for 45 days to explore the toxic effects of DEHP on the ovarian GC layer. Histopathological assessment and ultrastructure observation found that DEHP decreased the thickness of the GC layer, resulted in mitochondrial damage, and activated mitocytosis. Additionally, the results further suggested that DEHP impacted the secretion of steroid hormones (reduced FSH, E2, and T levels and boosted Prog, PRL, and LH levels) by triggering mitocytosis (enhanced transcription of MYO19 and protein of KIF5B levels), mitochondrial dynamics (increasing mRNA and protein levels of OPA1, DRP1, MFN1, and MFN2), mitophagy (increasing mRNA and protein levels of Parkin, LC3B, and P62), and inducing GC function disorder. In conclusion, our research provided a new idea to explain the mechanism of DEHP toxicity of the ovarian GC layer in quail and presented insights into the role of mitocytosis in DEHP-induced ovarian GC layer injury.
Collapse
Affiliation(s)
- Xiang-Yu Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yu Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Ya-Ru Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | | | - Ping-An Jian
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Bao-Jin Yi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P. R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P. R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
31
|
Zheng X, Wei Y, Chen J, Wang X, Li D, Yu C, Hong Y, Shen L, Long C, Wei G, Wu S. Difenoconazole Exposure Induces Retinoic Acid Signaling Dysregulation and Testicular Injury in Mice Testes. TOXICS 2023; 11:328. [PMID: 37112555 PMCID: PMC10142862 DOI: 10.3390/toxics11040328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Difenoconazole (DFZ) is a broad-spectrum triazole fungicide that is widely utilized in agriculture. Although DFZ has been demonstrated to induce reproductive toxicity in aquatic species, its toxic effects on the mammalian reproductive system have yet to be fully elucidated. In vivo, male mice were administered 0, 20 or 40 mg/kg/d of DFZ via oral gavage for 35 days. Consequently, DFZ significantly decreased testicular organ coefficient, sperm count and testosterone levels, augmented sperm malformation rates, and elicited histopathological alterations in testes. TUNEL assay showed increased apoptosis in testis. Western blotting results suggested abnormally high expression of the sperm meiosis-associated proteins STRA8 and SCP3. The concentrations of retinoic acid (RA), retinaldehyde (RE), and retinol (ROL) were increased in the testicular tissues of DFZ-treated groups. The mRNA expression level of genes implicated in RA synthesis significantly increased while genes involved in RA catabolism significantly decreased. In vitro, DFZ reduced cell viability and increased RA, RE, and ROL levels in GC-2 cells. Transcriptome analysis revealed a significant enrichment of numerous terms associated with the RA pathway and apoptosis. The qPCR experiment verified the transcriptome results. In conclusion, our results indicate that DFZ exposure can disrupt RA signaling pathway homeostasis, and induce testicular injury in mice testes.
Collapse
|
32
|
Zhao T, Shen L, Ye X, Bai G, Liao C, Chen Z, Peng T, Li X, Kang X, An G. Prenatal and postnatal exposure to polystyrene microplastics induces testis developmental disorder and affects male fertility in mice. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130544. [PMID: 36493639 DOI: 10.1016/j.jhazmat.2022.130544] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Polystyrene microplastics (PS-MPs) can threaten human health, especially male fertility. However, most existing studies have focused on the adulthood stage of male reproduction toxicity caused by relatively short-term PS-MP exposure. This study aimed to investigate the toxic effect of PS-MPs on testicular development and reproductive function upon prenatal and postnatal exposure. Pregnant mice and their offspring were exposed to 0, 0.5 mg/L, 5 mg/L, and 50 mg/L PS-MPs through their daily drinking water from gestational day 1 to postnatal day (PND) 35 or PND70. We found that PS-MP exposure induced testis development disorder by PND35 and spermatogenesis dysfunction by PND70. By combining RNA sequencing results and bioinformatics analysis, the hormone-mediated signaling pathway, G1/S transition of the mitotic cell cycle, coregulation of androgen receptor activity, and Hippo signaling pathway were shown to be involved in testis development on PND35. The meiotic cell cycle, regulation of the immune effector process, neutrophil degranulation, and inflammation mediated by chemokine and cytokine signaling pathways were associated with disturbed spermatogenesis on PND70. These findings show that prenatal and postnatal exposure to PS-MPs resulted in testis development disorder and male subfertility, which may be regulated by the Hippo signaling pathway and involve an immune reaction.
Collapse
Affiliation(s)
- Tianxin Zhao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Department of Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Lianju Shen
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Ye
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Gaochen Bai
- Department of Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Chen Liao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhicong Chen
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tianwen Peng
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaomin Li
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiangjin Kang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Geng An
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
33
|
Fu H, Zhu X, Di Q, Sun J, Jiang Q, Xu Q. m6A contributes to a pro-survival state in GC-2 cells by facilitating DNA damage repair: Novel perspectives on the mechanism underlying DEHP genotoxicity in male germ cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160432. [PMID: 36423848 DOI: 10.1016/j.scitotenv.2022.160432] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
Di(2-ethyl-hexyl) phthalate (DEHP), an environmental endocrine disruptor, can destroy the sperm genomic integrity and impairs spermatogenesis. N6-methyladenosine (m6A) is involved in the cellular effects of DEHP. However, the genotoxic effect of DEHP on spermatocytes and the possible role of m6A in this process remain unclear. This study demonstrated that m6A alleviates DEHP genotoxicity in GC-2 cells. In DEHP-treated mice, DNA double-strand breaks (DSBs) were induced in the testis and spermatocytes. To further explore the molecular mechanism of DEHP genotoxicity on spermatocytes, GC-2 cells were exposed to DEHP. DEHP produced distinct genotoxicity and caused DSBs, which led to the inhibition of DNA synthesis and cell cycle arrest. The DNA damage response (DDR) was initiated to repair the DSBs induced by environmentally relevant levels of DEHP (100 μM and 200 μM). During this process, METTL3 upregulated m6A, which facilitated the DDR via stabilizing the DNA damage repair factors (Rad51 and Xrcc5) mRNA to maintain the pro-survival state. Moreover, Mettl3 knockdown partially inhibited DDR. Interestingly, high-dose DEHP (400 μM and 600 μM) directly induced apoptosis rather than the pro-survival state. Altogether: METTL3-mediated m6A participates in maintaining the pro-survival state by upregulating DDR, providing guidance for mitigating the genotoxicity of environment-related level DEHP exposure.
Collapse
Affiliation(s)
- Haowei Fu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xiaofang Zhu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Qiannan Di
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jiahui Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Qianqian Jiang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Qian Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
34
|
Shi YS, Zhao Y, Li XN, Li MZ, Li JL. Xenobiotic-sensing nuclear receptors as targets for phthalates-induced lung injury and antagonism of lycopene. CHEMOSPHERE 2023; 312:137265. [PMID: 36403809 DOI: 10.1016/j.chemosphere.2022.137265] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Phthalates are extensively used in the production of plastics products and have been verified to induce lung injury. Lycopene (LYC) has proved an effective preventive and can be utilized to prevent phthalates-induced toxicity. However, the role of phthalate in pathogenesis of lung injury remain poorly researched, and little work has been devoted whether LYC could alleviate phthalate-induced lung toxicity via modulating nuclear xenobiotic receptors (NXRs) response. Here, di (2-ethylhexyl) phthalate (DEHP) is used as the representative of phthalates for further studies on toxicity of phthalates and the antagonistic role of LYC in phthalates-induced lung injury. We found that DEHP exposure caused alveoli destruction and alveolar epithelial cells type II damage. Mechanistically, DEHP exposure increased nuclear accumulation of aryl hydrocarbon receptor (AHR) and its downstream genes level, including cytochrome P450-dependent monooxygenase (CYP) 1A1 and CYP1B1. Constitutive androstane receptor (CAR) and their downstream gene level, including CYP2E1 are also increased after phthalates exposure. Significantly, LYC supplementation relieves lung injury from DEHP exposure by inhibiting the activation of NXRs. We confirm that NXRs plays a key role in phthalates-induced lung injury. Our study showed that LYC may have a positive role in alleviating the toxicity effects of phthalates, which provides an effective strategy for revising phthalates-induced injury.
Collapse
Affiliation(s)
- Yu-Sheng Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Mu-Zi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
35
|
Lei Y, Zhang W, Gao M, Lin H. Mechanism of evodiamine blocking Nrf2/MAPK pathway to inhibit apoptosis of grass carp hepatocytes induced by DEHP. Comp Biochem Physiol C Toxicol Pharmacol 2023; 263:109506. [PMID: 36368504 DOI: 10.1016/j.cbpc.2022.109506] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/24/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
Di (2-ethylhexyl) phthalate (DEHP) is often used as a plasticizer for plastic products, and its excessive use can cause irreversible damage to aquatic animals and humans. Evodiamine (EVO) is an alkaloid component in the fruit of Evodia rutaecarpa, which has antioxidant and detoxification functions. To investigate the toxic mechanism of DEHP on grass carp (Ctenopharyngodon idellus) hepatocyte cell line (L8824) and the therapeutic effect of evodiamine, an experimental model of L8824 cells exposed to 800 μM DEHP and/or 10 μM EVO for 24 h was established. Flow cytometry, AO/EB fluorescence staining, real-time quantitative PCR, and western blot were used to detect the degree of cell injury, oxidative stress level, MAPK signaling pathway relative genes, and the expression of apoptosis-related molecules. The results showed that DEHP exposure could significantly increase the level of reactive oxygen species (ROS), inhibit the activities of antioxidant enzymes (CAT, SOD, GSH-Px), and cause the accumulation of MDA. DEHP also activated MAPK signaling pathway-related molecules (JNK, ERK, P38 MAPK), and then up-regulated the expression of pro-apoptotic factors Bcl-2-Associated X (Bax) and caspase 3, while inhibiting the anti-apoptotic factor B-cell lymphoma-2 (Bcl-2). In addition, EVO can also promote the dissociation of nuclear factor-E2-related factor 2 (Nrf2) into the nucleus, reduce the level of ROS and the occurrence of oxidative stress in grass carp hepatocytes, down-regulate the MAPK pathway, alleviate DEHP-induced apoptosis, and restore the expression of antioxidant genes. These results indicated that evodiamine could block Nrf2/MAPK pathway to inhibit DEHP-induced apoptosis of grass carp hepatocytes.
Collapse
Affiliation(s)
- Yutian Lei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Wenyue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Meichen Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
36
|
Wu X, Wang L, Li Z. Identification of 3-Phenylquinoline Derivative PQ1 as an Antagonist of p53 Transcriptional Activity. ACS OMEGA 2022; 7:43180-43189. [PMID: 36467924 PMCID: PMC9713874 DOI: 10.1021/acsomega.2c05891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
Transcription factor p53 regulates cellular responses to environmental perturbations via the transcriptional activation of downstream target genes. Inappropriate p53 activation can trigger abnormal cellular responses, therefore leading to acute or chronic tissue damage, human developmental syndromes, and neurodegenerative diseases. Antagonists of p53 transcriptional activity provide prospective therapeutic applications and molecular probes. In this article, we identified five 3-phenylquinoline derivatives as potential p53 inhibitors through screening a chemical library consisting of 120 compounds, in which PQ1 was the most active compound. PQ1 had no effect on p53 protein levels and decreased the expression of p53 target gene p21. PQ1 thermally stabilizes the wild-type p53 protein. Further, transcriptomics confirmed that PQ1 exposure generated a similar regulatory effect to transcription profiles with a reported p53 transcriptional inhibitor pifithrin-α. However, compared to pifithrin-α, PQ1 increased the sensitivity of SW480 cells to 5FU. Taken together, PQ1 was a novel antagonist of p53 transcriptional activity. We propose that PQ1 could be developed as a chemical tool to pinpoint the physiological functions of p53 and a novel lead compound for targeting dysfunctional p53 activation.
Collapse
Affiliation(s)
- Xingkang Wu
- Modern
Research Center for Traditional Chinese Medicine, The Key Laboratory
of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, P. R. China
- Key
Laboratory of Effective Substances Research and Utilization in TCM
of Shanxi Province, No.
92, Wucheng Road, Taiyuan 030006, Shanxi, P.
R. China
- Shanxi
Key Laboratory of Redevelopment of Famous Local Traditional Chinese
Medicines, No. 92, Wucheng
Road, Taiyuan 030006, Shanxi, P. R. China
| | - Lu Wang
- Modern
Research Center for Traditional Chinese Medicine, The Key Laboratory
of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, P. R. China
| | - Zhenyu Li
- Department
of Pharmacy, Shandong Provincial Hospital
Affiliated to Shandong First Medical University, Jinan 250021, Shandong, P. R. China
| |
Collapse
|
37
|
Zhao Y, Li XN, Zhang H, Cui JG, Wang JX, Chen MS, Li JL. Phthalate-induced testosterone/androgen receptor pathway disorder on spermatogenesis and antagonism of lycopene. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129689. [PMID: 36104915 DOI: 10.1016/j.jhazmat.2022.129689] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Male infertility is an attracting growing concern owing to decline in sperm quality of men worldwide. Phthalates, in particular to di (2-ethylhexyl) phthalate (DEHP) or its main metabolite mono-2-ethylhexyl phthalate (MEHP), affect male reproductive development and function, which mainly accounts for reduction in male fertility. Lycopene (LYC) is a natural antioxidant agent that has been recognized as a possible therapeutic option for treating male infertility. Testosterone (T)/androgen receptor (AR) signaling pathway is involved in maintaining spermatogenesis and male fertility. How DEHP causes spermatogenesis disturbance and whether LYC could prevent DEHP-induced male reproductive toxicity have remained unclear. Using in vivo and vitro approaches, we demonstrated that DEHP caused T biosynthesis reduction in Leydig cell and secretory function disorder in Sertoli cell, and thereby resulted in spermatogenic impairment. Results also showed that MEHP caused mitochondrial damage and oxidative damage, which imposes a serious threat to the progress of spermatogenesis. However, LYC supplement reversed these changes. Mechanistically, DEHP contributed to male infertility via perturbing T/AR signaling pathway during spermatogenesis. Overall, our study reveals critical role for T/AR signal transduction in male fertility and provides promising insights into the protective role of LYC in phthalate-induced male reproductive disorders.
Collapse
Affiliation(s)
- Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jia-Gen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jia-Xin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ming-Shan Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
38
|
Zhu X, Fu H, Sun J, Di Q, Xu Q. N6-methyladenosine modification on Hmbox1 is related to telomere dysfunction in DEHP-induced male reproductive injury. Life Sci 2022; 309:121005. [PMID: 36174712 DOI: 10.1016/j.lfs.2022.121005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/12/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022]
Abstract
AIMS Di (2-ethylhexyl) phthalate (DEHP), as an environmental endocrine-disrupting chemical (EDC), can induce male reproductive injury. N6-methyladenosine (m6A) plays a vital role in environmental exposure-induced diseases by regulating gene expression. Therefore, we aim to investigate the role of m6A in DEHP-induced reproductive injury. MAIN METHODS We established an in vivo model of mice exposed to DEHP to explore the effect of DEHP on reproductive injury and m6A. To further explore the molecular mechanism of DEHP toxicity, we built a model of GC-2 cells exposed to mono-(2-ethylhexyl) phthalate (MEHP) in vitro and further silenced Mettl3 in GC-2cells. Besides, we also conducted MeRIP-qPCR and RIP assays to identify the target genes for m6A modification. KEY FINDINGS DEHP induced testicular injury and senescence. And telomeres shortening, reduced levels of telomere repeat-binding factor 1 (TRF1), TRF2, protection of telomeres 1 (POT1), and telomerase reverse transcriptase (TERT) can be observed in DEHP-treated testes. MEHP also induced GC-2 cellular senescence and telomere dysfunction. Besides, increased m6A mediated by METTL3 stabilized homeobox containing 1 (Hmbox1) in an m6A-dependent manner in MEHP-exposed GC-2 cells. Mettl3 knockdown led to lower m6A modification and reduced Hmbox1 stability, resulting in further shortening of telomere length. SIGNIFICANCE our work uncovered that DEHP led to male reproductive injury by telomere dysfunction and m6A modified Hmbox1 contributed to maintaining telomere homeostasis in this process, suggesting that accurate regulation of m6A modification level by drugs has potential value in the treatment of DEHP-induced male reproductive injury.
Collapse
Affiliation(s)
- Xiaofang Zhu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Haowei Fu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jiahui Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Qiannan Di
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Qian Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
39
|
Liu X, Zheng X, Zhang L, Li J, Li Y, Huang H, Fan Z. Joint toxicity mechanisms of binary emerging PFAS mixture on algae (Chlorella pyrenoidosa) at environmental concentration. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129355. [PMID: 35716567 DOI: 10.1016/j.jhazmat.2022.129355] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/04/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Since traditional Per- and polyfluoroalkyl substances (PFAS) were banned in 2009 due to their bioaccumulation, persistence and biological toxicity, the emerging PFAS have been widely used as their substitutes and entered the aquatic environment in the form of mixtures. However, the joint toxicity mechanisms of these emerging PFAS mixtures to aquatic organisms remain largely unknown. Then, based on the testing of growth inhibition, cytotoxicity, photosynthesis and oxidative stress, and the toxicity mechanism of PFAS mixture (Perfluorobutane sulfonate and Perfluorobutane sulfonamide) to algae was explored using the Gene set enrichment analysis (GSEA). The results revealed that all three emerging PFAS treatments had a certain growth inhibitory effect on Chlorella pyrenoidosa (C. pyrenoidosa), but the toxicity of PFAS mixture was stronger than that of individual PFAS and showed a significant synergistic effect at environmental concentration. The joint toxicity mechanisms of binary PFAS mixture to C. pyrenoidosa were related to the damage of photosynthetic system, obstruction of ROS metabolism, and inhibition of DNA replication. Our findings are conductive to adding knowledge in understanding the joint toxicity mechanisms and provide a basis for assessing the environmental risk of emerging PFAS.
Collapse
Affiliation(s)
- Xianglin Liu
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Xiaowei Zheng
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Liangliang Zhang
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Jue Li
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Yanyao Li
- Laboratory of Industrial Water and Ecotechnology, Department of Green Chemistry and Technology, Ghent University, 8500 Kortrijk, Belgium
| | - Honghui Huang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou 510300, China
| | - Zhengqiu Fan
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China.
| |
Collapse
|
40
|
Zhou P, Wu S, Huang D, Wang K, Su X, Yang R, Shao C, Wu J. Oral exposure to DEHP may stimulate prostatic hyperplasia associated with upregulation of COX-2 and L-PGDS expressions in male adult rats. Reprod Toxicol 2022; 112:160-170. [PMID: 35905844 DOI: 10.1016/j.reprotox.2022.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), a typical environmental endocrine disruptor (EED), can disrupt estrogen and androgen secretion and metabolism process, thus inducing dysfunctional reproduction such as impaired gonadal development and spermatogenesis disorder. Prostaglandin synthases (PGS) catalyze various prostaglandins biosynthesis, involved in inflammatory cascade and tumorigenesis. Yet, little is known about how PGS may impact prostatic hyperplasia development and progression. This study concentrates predominantly on the potential prostatic toxicity of DEHP exposure and the mediating role of PGS. In vivo study, adult male rats were administered via oral gavage 30 μg/kg/d, 90 μg/kg/d, 270 μg/kg/d, 810 μg/kg/d DEHP or vehicle for four weeks. The results elucidated that low-dose DEHP may cause the proliferation of the prostate with an increased PCNA/TUNEL ratio. Given the importance of estrogens and androgens in prostatic hyperplasia, our first objective was to evaluate the levels of sex hormones. DEHP improved the ratio of estradiol (E2)/testosterone (T) in a dose-dependent manner and upregulated estrogen receptor alpha (ERα) and androgen receptor (AR) expressions. Prostaglandin synthases, including cyclooxygenase-2 (COX-2) and lipocalin-type prostaglandin D synthase (L-PGDS), were significantly upregulated in the ventral prostate. COX-2 and L-PGDS might mediate the tendency of prostatic hyperplasia induced by low-dose DEHP through estradiol/androgen regulation and imbalance between proliferation and apoptosis in vivo. These findings provide the first evidence that prostaglandin synthases contribute to the tendency toward benign prostatic hyperplasia induced by DEHP. Further investigations will have to be performed to facilitate an improved understanding of the role of prostaglandin synthases in DEHP-induced prostatic lesions.
Collapse
Affiliation(s)
- Ping Zhou
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School ️of Pharmacy, Fudan University, China
| | - Shuangshuang Wu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School ️of Pharmacy, Fudan University, China
| | - Dongyan Huang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School ️of Pharmacy, Fudan University, China
| | - Kaiyue Wang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School ️of Pharmacy, Fudan University, China
| | - Xin Su
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School ️of Pharmacy, Fudan University, China
| | - Rongfu Yang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School ️of Pharmacy, Fudan University, China
| | - Congcong Shao
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School ️of Pharmacy, Fudan University, China
| | - Jianhui Wu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School ️of Pharmacy, Fudan University, China.
| |
Collapse
|
41
|
Zhang W, Xia S, Zhong X, Gao G, Yang J, Wang S, Cao M, Liang Z, Yang C, Wang J. Characterization of 2,2'4,4'-Tetrabromodiphenyl ether (BDE47)-induced testicular toxicity via single-cell RNA-sequencing. PRECISION CLINICAL MEDICINE 2022; 5:pbac016. [PMID: 35875604 PMCID: PMC9306015 DOI: 10.1093/pcmedi/pbac016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/12/2022] [Indexed: 11/30/2022] Open
Abstract
Background The growing male reproductive diseases have been linked to higher exposure to certain environmental compounds such as 2,2′,4,4′-tetrabromodiphenyl ether (BDE47) that are widely distributed in the food chain. However, the specific underlying molecular mechanisms for BDE47-induced male reproductive toxicity are not completely understood. Methods Here, for the first time, advanced single-cell RNA sequencing (ScRNA-seq) was employed to dissect BDE47-induced prepubertal testicular toxicity in mice from a pool of 76 859 cells. Results Our ScRNA-seq results revealed shared and heterogeneous information of differentially expressed genes, signaling pathways, transcription factors, and ligands-receptors in major testicular cell types in mice upon BDE47 treatment. Apart from disruption of hormone homeostasis, BDE47 was discovered to downregulate multiple previously unappreciated pathways such as double-strand break repair and cytokinesis pathways, indicative of their potential roles involved in BDE47-induced testicular injury. Interestingly, transcription factors analysis of ScRNA-seq results revealed that Kdm5b (lysine-specific demethylase 5B), a key transcription factor required for spermatogenesis, was downregulated in all germ cells as well as in Sertoli and telocyte cells in BDE47-treated testes of mice, suggesting its contribution to BDE47-induced impairment of spermatogenesis. Conclusions Overall, for the first time, we established the molecular cell atlas of mice testes to define BDE47-induced prepubertal testicular toxicity using the ScRNA-seq approach, providing novel insight into our understanding of the underlying mechanisms and pathways involved in BDE47-associated testicular injury at a single-cell resolution. Our results can serve as an important resource to further dissect the potential roles of BDE47, and other relevant endocrine-disrupting chemicals, in inducing male reproductive toxicity.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology) , Shenzhen 518020 , China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University , Guangzhou 510632 , China
| | - Siyu Xia
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology) , Shenzhen 518020 , China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University , Guangzhou 510632 , China
| | - Xiaoru Zhong
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology) , Shenzhen 518020 , China
| | - Guoyong Gao
- Department of Spine Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology) , Shenzhen 518020 , China
| | - Jing Yang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology) , Shenzhen 518020 , China
| | - Shuang Wang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology) , Shenzhen 518020 , China
| | - Min Cao
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology) , Shenzhen 518020 , China
| | - Zhen Liang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology) , Shenzhen 518020 , China
| | - Chuanbin Yang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology) , Shenzhen 518020 , China
| | - Jigang Wang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology) , Shenzhen 518020 , China
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences , Beijing 100700 , China
- Center for Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Southern Medical University , Dongguan, 523125, Guangdong , China
| |
Collapse
|
42
|
Liu X, Zhang L, Pang X, Wu Y, Wu Y, Shu Q, Chen Q, Zhang X. Synergistic antibacterial effect and mechanism of high hydrostatic pressure and mannosylerythritol Lipid-A on Listeria monocytogenes. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
Meng Y, Xu X, Niu D, Xu Y, Qiu Y, Zhu Z, Zhang H, Yin D. Organophosphate flame retardants induce oxidative stress and Chop/Caspase 3-related apoptosis via Sod1/p53/Map3k6/Fkbp5 in NCI-1975 cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153160. [PMID: 35051466 DOI: 10.1016/j.scitotenv.2022.153160] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Organophosphate flame retardants (OPFRs) have been ubiquitously detected in dust and air which could cause damage to human health through inhalation. Currently the understanding of their adverse effects and potential mechanisms on the lung are still limited. In this study, human non-small cell lung cancer cell line NCI-H1975 was used to investigate the cytotoxicity, oxidative stress, cellular apoptosis of 9 typical OPFRs with concentrations varied from 0 to 200 μM, and their toxic mechanism associated with molecular structure was compared. After 72 h, tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) displayed the highest cytotoxicity, followed by 2-ethylhexyl diphenyl phosphate (EHDPP), tris(2-butoxyethyl) phosphate (TBOEP) and tris(2-chloroisopropyl) phosphate (TCIPP), while tris(2-chloroethyl) phosphate (TCEP) and tris(2-ethylhexyl) phosphate (TEHP) exhibited the least suppression on cell viability. These results indicated that the variation of cytotoxicity on OPFRs could only be partially explained by their ester linkage. Moreover, the overexpression of intracellular reactive oxygen species (ROS), free Ca2+ and cellular apoptosis suggested that exposure to OPFRs can lead to apoptosis related to oxidative stress. Six genes associated with oxidative stress and apoptosis were upregulated dramatically compared with the control, demonstrating OPFRs induced Chop/Caspase 3-related apoptosis by activating Sod1/p53/Map3k6/Fkbp5 expression in NCI-H1975 cells. This is the first study to investigate cytotoxicity and related mechanism on commonly-used OPFRs in NCI-H1975 cells.
Collapse
Affiliation(s)
- Yuan Meng
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Xiaojuan Xu
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Dong Niu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Yangjie Xu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China.
| | - Zhiliang Zhu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Hua Zhang
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
44
|
Wu Y, Wang J, Zhao T, Chen J, Kang L, Wei Y, Han L, Shen L, Long C, Wu S, Wei G. Di-(2-ethylhexyl) phthalate exposure leads to ferroptosis via the HIF-1α/HO-1 signaling pathway in mouse testes. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127807. [PMID: 34863575 DOI: 10.1016/j.jhazmat.2021.127807] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is an extensively used plasticizer and has been shown to cause reproductive dysfunction in humans and model animals. However, the exact mechanisms of testicular injury induced by DEHP exposure have not been fully clarified. Using gas chromatography-mass spectrometry, we found that mono-2-ethylhexyl ester (MEHP, a major biometabolite of DEHP) and DEHP concentrations were elevated in mouse serum after DEHP exposure. Using RNA-seq, we found that ferroptosis and HIF-1 signaling pathways might be involved in testicular injury due to prepubertal DEHP exposure. Subsequent Western blotting, ferrous iron and MDA measurements, and immunofluorescence of testicular sections verified the RNA-seq findings. Consistently, based on the RNA-seq findings, we found that ferroptosis and HIF-1 signaling pathways might play crucial roles in Leydig and Sertoli cell injury due to MEHP exposure in vitro. Further experiments also confirmed ferroptosis in Leydig and Sertoli cells. Using Western blotting, cellular immunofluorescence and ChIP-qPCR, we found that MEHP exposure caused HIF-1α accumulation and stabilization, resulted in HIF-1α translocation into the nucleus, and induced HIF-1α/Hmox1 binding in Leydig and Sertoli cells. To clarify whether HIF-1α plays a pivotal role in MEHP-induced ferroptosis, we knocked out Hif-1α using the CRISPR/Cas9 technique. We found that Hif-1α knockout rescued MEHP-induced ferroptosis. In summary, our findings certified that prepubertal DEHP exposure led to ferroptosis in mouse testes via the HIF-1α/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Yuhao Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Junke Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China; Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tianxin Zhao
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiadong Chen
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Lian Kang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yuexin Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Lindong Han
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Lianju Shen
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Chunlan Long
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Shengde Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China.
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China.
| |
Collapse
|
45
|
Zhao T, Tang X, Li D, Zhao J, Zhou R, Shu F, Jia W, Fu W, Xia H, Liu G. Prenatal exposure to environmentally relevant levels of PBDE-99 leads to testicular dysgenesis with steroidogenesis disorders. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127547. [PMID: 34879533 DOI: 10.1016/j.jhazmat.2021.127547] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/29/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are a widely used class of brominated flame retardants. Exposure to PBDEs could induce testicular damage in mammals, but the effects and potential mechanism of action of prenatal exposure to environmentally relevant PBDEs on testicular development remain unclear. For the in vivo study, pregnant ICR mice were exposed to environmentally relevant levels of 2,2',4,4',5-pentabromodiphenyl ether (PBDE-99), a major component of commercial PBDE mixtures. We found that the anogenital index and testicular organ coefficient were significantly decreased, the incidence of cryptorchidism was increased, and testicular histology was disturbed in male offspring. Transcriptomic profiling showed that steroidogenesis disorders were significant in all PBDE-99 exposure groups. The testosterone levels, expressions of testosterone regulators, and the number of CYP11A1-positive and 11β-HSD1-positive Leydig cells were significantly decreased after PBDE-99 exposure. For the in vitro study, TM3 Leydig cells were exposed to PBDE-99 at gradient concentrations. Transcriptomic profiling and validation experiments showed that PBDE-99 upregulated reactive oxygen species, activated the ERK1/2 pathway, inhibited the ubiquitination degradation pathway, and finally induced Leydig cell apoptosis. Cumulatively, these findings revealed that prenatal exposure to environmentally relevant levels of PBDE-99 leads to steroidogenesis disorders by inducing the apoptosis of Leydig cells, causing testicular dysgenesis.
Collapse
Affiliation(s)
- Tianxin Zhao
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiangliang Tang
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dian Li
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jinglu Zhao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Rui Zhou
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Fangpeng Shu
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wei Jia
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wen Fu
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Guochang Liu
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
46
|
Kang L, Chen J, Wang J, Zhao T, Wei Y, Wu Y, Han L, Zheng X, Shen L, Long C, Wei G, Wu S. Multiple transcriptomic profiling: potential novel metabolism-related genes predict prepubertal testis damage caused by DEHP exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:13478-13490. [PMID: 34595713 DOI: 10.1007/s11356-021-16701-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
The toxic effect of di(2-ethylhexyl) phthalate (DEHP) on prepubertal testes was examined in this study. We treated 3-week-old male mice with 4.8 mg/kg/day (milligram/kilogram/day) (no observed adverse effect level), 30 mg/kg/day (high exposure dose relative to humans), 100 mg/kg/day (level causing a reproductive system disorder), and 500 mg/kg/day (dose causing a multigenerational reproductive system disorder) of DEHP via gavage. Obvious abnormalities in the testicular organ coefficient, spermatogenic epithelium, and testosterone levels occurred in the 500 mg/kg DEHP group. Ribonucleic acid sequencing (RNA-seq) showed that differentially expressed genes (DEGs) in each group could enrich reproduction and reproductive process terms according to the gene ontology (GO) results, and coenrichment of metabolism pathway was observed by the Reactome pathway analysis. Through the analysis of common genes in the metabolism pathway, we discovered that DEHP exposure at 4.8 to 500 mg/kg or 100 mg/kg caused the same damages to the prepubertal testis. In general, we identified two key transcriptional biomarkers (fatty acid binding protein 3 (Fabp3) and carboxylesterase (Ces) 1d), which provided new insight into the gene regulatory mechanism associated with DEHP exposure and will contribute to the prediction and diagnosis of prepuberty testis injury caused by DEHP.
Collapse
Affiliation(s)
- Lian Kang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China
- National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Pediatrics Chongqing, Room 806, Kejiao Building (NO.6), No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, People's Republic of China
| | - Jiadong Chen
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China
- National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Pediatrics Chongqing, Room 806, Kejiao Building (NO.6), No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, People's Republic of China
| | - Junke Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China
- National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Pediatrics Chongqing, Room 806, Kejiao Building (NO.6), No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, People's Republic of China
| | - Tianxin Zhao
- Department of Pediatric Urology, Guangzhou Woman and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yuexin Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China
- National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Pediatrics Chongqing, Room 806, Kejiao Building (NO.6), No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, People's Republic of China
| | - Yuhao Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China
- National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Pediatrics Chongqing, Room 806, Kejiao Building (NO.6), No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, People's Republic of China
| | - Lindong Han
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China
- National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Pediatrics Chongqing, Room 806, Kejiao Building (NO.6), No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, People's Republic of China
| | - Xiangqin Zheng
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China
- National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Pediatrics Chongqing, Room 806, Kejiao Building (NO.6), No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, People's Republic of China
| | - Lianju Shen
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China
- National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Pediatrics Chongqing, Room 806, Kejiao Building (NO.6), No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, People's Republic of China
| | - Chunlan Long
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China
- National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Pediatrics Chongqing, Room 806, Kejiao Building (NO.6), No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, People's Republic of China
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China
- National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Pediatrics Chongqing, Room 806, Kejiao Building (NO.6), No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, People's Republic of China
| | - Shengde Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.
- National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China.
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, People's Republic of China.
- Chongqing Key Laboratory of Pediatrics Chongqing, Room 806, Kejiao Building (NO.6), No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, People's Republic of China.
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, People's Republic of China.
| |
Collapse
|
47
|
Yan J, Sun D, Kuang X, Liang M, Luo L. Quantitative proteomic analysis reveals the metabolic characteristics and adaptive mechanism of Cupriavidus oxalaticus T2 in the process of simultaneous nitrogen and phenol removal. J Proteomics 2022; 251:104426. [PMID: 34781029 DOI: 10.1016/j.jprot.2021.104426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/07/2021] [Accepted: 11/06/2021] [Indexed: 11/20/2022]
Abstract
Phenol and ammonia in wastewater pose a serious threat to ecosystems and human health. However, the currently limited studies on single bacterium simultaneously removing phenol and nitrogen pollution have not fully elucidated the relevant metabolic mechanisms. The differences in proteomic profile after supplementing with phenol and ammonia for 6 and 24 h, respectively, were evaluated to explore the metabolic characteristics and adaptive mechanism of Cupriavidus oxalaticus T2 during the simultaneous removal process of phenol and nitrogen. Results revealed that a new potential phenol para-degradation pathway appeared in T2. Phenol induced changes in nitrogen metabolism, resulting in increased denitrification and decreased synthesis of glutamate from ammonia at 6 h. In addition, phenol exposure enhanced the expression of cytochrome oxidases with high oxygen affinity and increased ATP synthesis. The increase in chemotaxis and flagellar assembly was conducive to the uptake and utilization of phenol. The synthesis of lipoic acid and biotin was also promoted to resist phenol toxicity. Moreover, phenol triggered cellular stress response, thereby leading to the upregulation of anti-stress proteins, such as universal stress protein, iron‑sulfur cluster protein, and chaperones. This study contributes to revealing the metabolic characteristics and adaptive mechanism of T2 during simultaneous nitrogen and phenol removal. SIGNIFICANCE: Phenol and ammonia often co-exist in wastewater, causing serious environmental problems. The information on the metabolic mechanism of simultaneously removing these two pollutants by bacteria is insufficient at present. Moreover, phenol is toxic to microbial and causes cells damage. Therefore, exploring the response mechanism of bacteria to phenol stress is conducive to understand their tolerance mechanism to aromatic compounds. In this study, the metabolic characteristics and adaptive mechanism of C. oxalaticus T2 during the simultaneous removal of phenol and nitrogen process were evaluated by comparing the proteome profiles at different stages. The results revealed the degradation pathways of phenol and nitrogen by strain T2. A variety of phenol response mechanisms were determined, including enhanced energy production, improved cell motility, increased the synthesis of lipoic acid and biotin, and combined action of multiple anti-stress proteins. This study is potentially useful to future phenol and nitrogen co-pollution bioremediation strategies and provides insight into the phenolic compound resistance mechanism in bacteria.
Collapse
Affiliation(s)
- Junwei Yan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Dongdong Sun
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Xiaoxian Kuang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Minghua Liang
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong 510640, PR China
| | - Lixin Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
48
|
Liu ZH, Yang LC, Song P, Chen JH, Peng ZF, Dong Q. The relationship between exposure to phthalate metabolites and adult-onset hypogonadism. Front Endocrinol (Lausanne) 2022; 13:991497. [PMID: 36060982 PMCID: PMC9433870 DOI: 10.3389/fendo.2022.991497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Adult-onset hypogonadism (AOH) is a common disease for males >40 years old and is closely associated with age-related comorbidities. Phthalates are compounds widely used in a number of products with endocrine-disrupting effects. However, little is known about the association between exposure to phthalates and the risk of AOH. Thus, we conducted this study to explore the potential association using the 2013-2016 National Health and Nutrition Examination Survey (NHANES) data. METHOD Data on AOH and urinary phthalate metabolites were collected, and univariable and multivariable logistic regression analyses were adapted to evaluate the association. The concentrations of each metabolite were calculated and grouped according to their quartiles for the final analysis. RESULT Finally, we found that the odds ratio (OR) increased with increased concentrations of di-(2-ethylhexyl) phthalate (DEHP) metabolites, including mono(2-ethyl-5-carboxypentyl) phthalate (MECPP), mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) and mono(2-ethyl-5-oxohexyl) phthalate (MEOHP). Simultaneously, a significant dose-dependent effect was also observed. The OR for the fourth quartile was highest among all three groups. Specifically, the ORs for the third quartile and fourth quartile were 1.774 and 1.858, respectively, in the MECPP group. For the MEHHP group, the OR increased from 1.580 for the second quartile to 1.814 for the fourth quartile. Similarly, the OR for the higher three quartiles varied from 1.424 to 1.715 in the MEOHP group. CONCLUSION This study first revealed that there was a positive association between exposure to DEHP metabolites and the risk of AOH. These findings add limited evidence to study this topic, while further studies are needed to explain the potential molecular mechanisms.
Collapse
|
49
|
Wei Y, Zhou Y, Long C, Wu H, Hong Y, Fu Y, Wang J, Wu Y, Shen L, Wei G. Polystyrene microplastics disrupt the blood-testis barrier integrity through ROS-Mediated imbalance of mTORC1 and mTORC2. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117904. [PMID: 34371264 DOI: 10.1016/j.envpol.2021.117904] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/15/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
It has been found that polystyrene microplastics (PS-MPs) exposure leads to decreased sperm quality and quantity, and we aim to explore the underlying mechanisms. Therefore, we gave 20 mg/kg body weight (bw) and 40 mg/kg bw 4 μm and 10 μm PS-MPs to male Balb/c mice by gavage. RNA sequencing of testes was performed. After PS-MPs exposure, blood-testis barrier (BTB) integrity was impaired. Since cytoskeleton was closely related to BTB integrity maintenance, and cytoskeleton disorganization could be induced by PS-MPs exposure in the testis, which resulted in the truncation of actin filaments and disruption of BTB integrity. Such processes were attributed to the differential expression of Arp3 and Eps8 (two of the most important actin-binding proteins). According to the transcriptome sequencing results, we examined the oxidative stress level in the testes and Sertoli cells. We found that PS-MPs exposure induced increased reactive oxygen species (ROS) level, which destroyed the balance between mTORC1 and mTORC2 (the mTORC1 activity was increased, while the mTORC2 activity was decreased). In conclusion, PS-MPs induced the imbalance of mTORC1 and mTORC2 via the ROS burst, and altered the expression profile of actin-binding proteins, resulting in F-actin disorganization and reduced expression of junctional proteins in the BTB. Eventually PS-MPs led to BTB integrity disruption and spermatogenesis dysfunction.
Collapse
Affiliation(s)
- Yuexin Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Yu Zhou
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Chunlan Long
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Huan Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Yifan Hong
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Yan Fu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Junke Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Yuhao Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Lianju Shen
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China.
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| |
Collapse
|
50
|
Hosseinzadeh A, Mehrzadi S, Siahpoosh A, Basir Z, Bahrami N, Goudarzi M. The ameliorative effect of ellagic acid on di-(2-ethylhexyl) phthalate-induced testicular structural alterations, oxidative stress, inflammation and sperm damages in adult mice. Reprod Biol Endocrinol 2021; 19:146. [PMID: 34537068 PMCID: PMC8449444 DOI: 10.1186/s12958-021-00830-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 09/07/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Phthalates such as di (2-ethylhexyl) phthalate (DEHP) are well known exogenous substances, disrupting reproductive system function and structure. The current research demonstrated the effect of ellagic acid (EA) on DEHP-induced testicular injury in mice. METHODS Thirty-five healthy adult male mice were randomly divided to five groups; normal saline receiving group, DEHP (2 g/kg/day, dissolved in corn oil, p.o.) receiving group, DEHP (2 g/kg/day, dissolved in corn oil, p.o.) and EA receiving groups (25, 50 and 100 mg/kg/day, p.o.). Treatment duration of animals was 14 days. Body and testes weights and sperm characteristics and histological changes of testes were evaluated. Serum testosterone, luteinizing hormone (LH) and follicle-stimulating hormone (FSH) levels were analyzed. In the testicular tissue, oxidative/nitrosative stress markers and inflammatory cytokine levels were measured. RESULTS Ellagic acid significantly reduced DEHP-induced reduction of body and testes weights. The DEHP-induced reduction of spermatogonia, primary spermatocyte and sertoli cells numbers as well as reduction of sperm vitality and progressive motility were reversed by EA. Furthermore, EA inhibited DEHP-induced alterations in serum hormone levels. These effects were associated with the reduction of DEHP-induced increased level of oxidative stress and inflammatory responses. CONCLUSIONS Ellagic acid considerably inhibits testicular toxicity of DEHP through reducing oxidative/nitrosative stress and inflammatory responses. Our data suggest that EA may be considered as a promising agent to inhibit male reproductive toxicity induced by endocrine disrupting chemicals such as DEHP.
Collapse
Affiliation(s)
- Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Siahpoosh
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Basir
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Nosrat Bahrami
- Department of Midwifery, Faculty of Nursing and Midwifery, Dezful University of Medical Sciences, Dezful, Iran
| | - Mehdi Goudarzi
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|