1
|
Buchmann C, Korz S, Moraru A, Richling E, Sadzik S, Scharfenberger-Schmeer M, Muñoz K. From winery by-product to soil improver? - A comprehensive review of grape pomace in agriculture and its effects on soil properties and functions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 982:179611. [PMID: 40373684 DOI: 10.1016/j.scitotenv.2025.179611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/09/2025] [Accepted: 05/04/2025] [Indexed: 05/17/2025]
Abstract
Grape pomace (GP), a by-product of winemaking, is rich in organic carbon and nutrients, offering potential as an alternative to synthetic soil amendments. However, its broader use in agriculture remains limited due to uncertainties about long-term environmental and agronomic impacts. This review assesses the potential of GP as a soil amendment, highlighting its ability to enhance soil organic matter, nutrient availability, and soil physicochemical properties. At the same time, concerns remain regarding its acidic nature, wide carbon-to‑nitrogen (C/N) ratio, and bioactive compounds, such as mycotoxins and (poly)phenols, which could negatively impact soil microbial communities and nutrient cycling. Furthermore, residual contaminants such as pesticides and heavy metals in GP may pose ecotoxicological risks, potentially disrupting soil ecosystem functions and contaminating surrounding environments. Besides these challenges, research on the efficiency, fate and mobility of GP in soil, particularly in relation to soil type, climate, and agricultural practices, is limited. Furthermore, the effects of various (pre)treatments (e.g., composting, fermentation) on GP properties and soil interactions require more systematic investigation. Future research should focus on long-term field trials, advanced analytical methods, and effective monitoring frameworks. It is essential to refine regulatory guidance based on comprehensive risk assessments to ensure safe application and maximize GP's agronomic and environmental benefits. Overcoming these challenges could transform GP into a valuable resource for sustainable agriculture, contributing to soil health, climate resilience, and a circular economy.
Collapse
Affiliation(s)
- Christian Buchmann
- Faculty of Natural and Environmental Sciences, Institute for Environmental Sciences (iES Landau), RPTU University Kaiserslautern-Landau, Landau, Germany.
| | - Sven Korz
- Faculty of Natural and Environmental Sciences, Institute for Environmental Sciences (iES Landau), RPTU University Kaiserslautern-Landau, Landau, Germany
| | - Anja Moraru
- Institute for Viticulture and Enology, Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Neustadt an der Weinstraße, Germany
| | - Elke Richling
- Faculty of Chemistry, Division Food Chemistry and Toxicology, RPTU University Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Sullivan Sadzik
- Faculty of Chemistry, Division Food Chemistry and Toxicology, RPTU University Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Maren Scharfenberger-Schmeer
- Institute for Viticulture and Enology, Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Neustadt an der Weinstraße, Germany; Kaiserslautern University of Applied Sciences, Wine Campus Neustadt, Neustadt, Germany
| | - Katherine Muñoz
- Faculty of Natural and Environmental Sciences, Institute for Environmental Sciences (iES Landau), RPTU University Kaiserslautern-Landau, Landau, Germany.
| |
Collapse
|
2
|
Xing Y, Xie Y, Wang X. Enhancing soil health through balanced fertilization: a pathway to sustainable agriculture and food security. Front Microbiol 2025; 16:1536524. [PMID: 40356641 PMCID: PMC12067421 DOI: 10.3389/fmicb.2025.1536524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/07/2025] [Indexed: 05/15/2025] Open
Abstract
Sustainable soil health management is pivotal for advancing agricultural productivity and ensuring global food security. This review comprehensively evaluates the effects of mineral-organic fertilizer ratios on soil microbial communities, enzymatic dynamics, functional gene abundance, and holistic soil health. By integrating bioinformatics, enzyme activity assays, and metagenomic analyses, we demonstrate that balanced fertilization significantly enhances microbial diversity, community stability, and functional resilience against environmental stressors. Specifically, the synergistic application of mineral and organic fertilizers elevates β-glucosidase and urease activities, accelerating organic matter decomposition and nutrient cycling while modulating microbial taxa critical for nutrient transformation and pathogen suppression. Notably, replacing 20-40% of mineral fertilizers with organic alternatives mitigates environmental risks such as greenhouse gas emissions and nutrient leaching while sustaining crop yields. This dual approach improves soil structure, boosts water and nutrient retention capacity, and increases microbial biomass by 20-30%, fostering long-term soil fertility. Field trials reveal yield increases of 25-40% in crops like rice and maize under combined fertilization, alongside enhanced soil organic carbon (110.6%) and nitrogen content (59.2%). The findings underscore the necessity of adopting region-specific, balanced fertilization strategies to optimize ecological sustainability and agricultural productivity. Future research should prioritize refining fertilization frameworks through interdisciplinary approaches, addressing soil-crop-climate interactions, and scaling these practices to diverse agroecosystems. By aligning agricultural policies with ecological principles, stakeholders can safeguard soil health-a cornerstone of environmental sustainability and human wellbeing-while securing resilient food systems for future generations.
Collapse
Affiliation(s)
| | | | - Xiukang Wang
- Key Laboratory of Applied Ecology of Loess Plateau, College of Life Science, Yan'an University, Yan'an, China
| |
Collapse
|
3
|
Hernández-Calderón C, Escobar B, Valdez-Ojeda R, Arroyo-Herrera A, Toledano-Thompson T, Baas-López J. Physicochemical characterisation of biochar derived from sargassum spp. and its antibacterial activity. Nat Prod Res 2025:1-11. [PMID: 40186590 DOI: 10.1080/14786419.2025.2484269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 02/17/2025] [Accepted: 03/17/2025] [Indexed: 04/07/2025]
Abstract
This experiment aims to study the potential use of biochar derived from Sargassum spp. as an innovative ingredient in homemade soap, focusing on its antibacterial activity. The pyrolysis process was conducted at 700 °C with a heating rate of 10 °C min-1 for 2 h under a nitrogen atmosphere with KOH chemical activation. The physicochemical properties of the biochar were investigated using XRD, FTIR, Raman, BET surface analysis, and SEM. Highly porous biochar was successfully synthesised, achieving a large specific surface area of 1600 m2 g-1 and a well-developed microporous structure distributed across the surface of the biochar. Klebsiella pneumoniae, Staphylococcus aureus, and Salmonella choleraesuis were used as model pathogens to evaluate the antibacterial activity of biochar-enriched homemade soap using Müeller-Hinton Agar and the Kirby-Bauer test. The antibacterial evaluations demonstrated that the incorporation of biochar into homemade soap partially inhibited the growth of these model pathogens bacteria.
Collapse
Affiliation(s)
- Carlos Hernández-Calderón
- Unidad de Energía Renovable. Centro de Investigación Científica de Yucatán, Carretera Sierra Papacal, Mérida, Yucatán, México
| | - B Escobar
- Unidad de Energía Renovable. Centro de Investigación Científica de Yucatán, Carretera Sierra Papacal, Mérida, Yucatán, México
| | - Ruby Valdez-Ojeda
- Unidad de Energía Renovable. Centro de Investigación Científica de Yucatán, Carretera Sierra Papacal, Mérida, Yucatán, México
| | - Ana Arroyo-Herrera
- Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Tanit Toledano-Thompson
- Unidad de Energía Renovable. Centro de Investigación Científica de Yucatán, Carretera Sierra Papacal, Mérida, Yucatán, México
| | - José Baas-López
- Unidad de Energía Renovable. Centro de Investigación Científica de Yucatán, Carretera Sierra Papacal, Mérida, Yucatán, México
| |
Collapse
|
4
|
Cui Y, Zhang J, Xie X, Zhou L, Wu W, Yang L. Evaluation of comprehensive benefits and the degree of coupling coordination for soil health products: a case study in Weifang City, China. Sci Rep 2025; 15:11089. [PMID: 40169807 PMCID: PMC11961623 DOI: 10.1038/s41598-025-96022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/25/2025] [Indexed: 04/03/2025] Open
Abstract
Evaluating the economic, social, and environmental benefits and coupling coordination of soil health products (SHPs) is required for rational soil science management and sustainable agricultural development. Therefore, this paper developed a comprehensive evaluation index system for Weifang City, Shandong Province, China, with the natural breakpoint method and a coupling coordination model to estimate the comprehensive benefits and coupling coordination of SHPs from 2018 to 2021. The comprehensive benefit scores exhibited a generally upward trend over time and regional spatial heterogeneity. However, the economic benefit scores were higher and more closely related to the planting goals of farmers, while the social benefit scores exhibited less fluctuation and lower regional heterogeneity, and the environmental benefit scores were low. In terms of the degree of coupling coordination, the economic, social, and environmental benefits of SHPs were found to be barely coordinated and on the verge of disorder, with distinct spatial distribution characteristics. The disorder of each system was affected by multiple compound factors and significant uncertainty. The results of the present study thus provide a theoretical foundation for decision-making by government and agricultural organizations regarding the use of SHPs.
Collapse
Affiliation(s)
- Yuhu Cui
- School of Business, Shandong University, Weihai, China
| | - Jie Zhang
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, China
| | - Xueshi Xie
- Stanley Agricultural Group Co. Ltd., Linyi, China
| | - Li Zhou
- Stanley Agricultural Group Co. Ltd., Linyi, China
| | - Wentao Wu
- Stanley Agricultural Group Co. Ltd., Linyi, China
| | - Lin Yang
- School of Business, Shandong University, Weihai, China.
| |
Collapse
|
5
|
Gullì M, Cangioli L, Frusciante S, Graziano S, Caldara M, Fiore A, Klonowski AM, Maestri E, Brunori A, Mengoni A, Pihlanto A, Diretto G, Marmiroli N, Bevivino A. The relevance of biochar and co-applied SynComs on maize quality and sustainability: Evidence from field experiments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 968:178872. [PMID: 39970561 DOI: 10.1016/j.scitotenv.2025.178872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
Adoption of sustainable maize cropping practices is urgently needed. Synthetic microbial communities (SynComs) made of plant growth-promoting microorganisms (PGPMs), coupled with biochar from residual biomass, offer an environmentally compatible alternative to inorganic fertilizers and may improve soil fertility. This article extends in a two-year field trial with preliminary results obtained in previous pot experiments, monitoring plant physiology, soil biology and chemistry, and kernel metabolomics. Here, we report the synergistic effect of the co-application of biochar, SynComs, and arbuscular mycorrhizal fungi on the soil microbiome, maize growth, and kernel metabolomic profile. SynComs application did not affect the diversity and richness of soil microbial communities; therefore, it posed a low risk of long-term effects on soil microbial ecology. With SynComs and biochar co-application to the soil, the physiology of maize plants was characterized by higher chlorophyll content, ear weight, and kernel weight. The combination of SynComs and biochar also affected the kernel metabolome, resulting in enriched health-beneficial and anti-stress metabolites. Since the preliminary evidence on the environmental and economic impact of these new associations was more favorable than that of conventional fertilizers, it seems reasonable that their large-scale implementation can eventually favor the transition to more sustainable agriculture.
Collapse
Affiliation(s)
- Mariolina Gullì
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Lisa Cangioli
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Sarah Frusciante
- Department for Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy
| | - Sara Graziano
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Marina Caldara
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Alessia Fiore
- Department for Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy
| | - Alexandra M Klonowski
- Exploration & Utilisation of Genetic Resources, Matís ohf., Icelandic Food and Biotech R&D, Vínlandsleið 12, 113 Reykjavík, Iceland
| | - Elena Maestri
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Andrea Brunori
- Department for Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy
| | - Alessio Mengoni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Anne Pihlanto
- Natural Resources Institute Finland (Luke), Myllytie 1, 31600 Jokioinen, Helsinki, Finland
| | - Gianfranco Diretto
- Department for Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy
| | - Nelson Marmiroli
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy.
| | - Annamaria Bevivino
- Department for Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy.
| |
Collapse
|
6
|
Xing M, Yan D, Zhang X, Shen Z, Hai M, Zhang Y, Zhang Z, Li F. The effects of remediation under different substrate conditions and environmental behavior of heavy metals. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2025; 27:1021-1031. [PMID: 39989192 DOI: 10.1080/15226514.2025.2468298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
This study analyzed changes in physicochemical properties of the soil under various substrate conditions, as well as the interactions between ryegrass and heavy metals. Results indicated that biochar significantly improved soil physicochemical properties, such as an increase in electrical conductivity by 34.8%, enhancement of pH from 7.13 to 7.32, and augmentation in organic matter by 152%. Moreover, readily available phosphorus and alkali-hydrolyzable nitrogen increased by 237% and 122% respectively, while soil cation exchange capacity rose by 135%. This contributes to plant growth and the maintenance of soil fertility. The biochar addition also led to a decrease in the proportion of fine soil particles by 20%, significantly enhancing structure and stability of soil aggregates and promoting the formation of larger aggregates, crucial for improving soil aeration, water retention, and root permeability. The addition of biochar notably altered the chemical forms of heavy metals in soil, promoting their transformation from bioavailable forms to more stable and less toxic forms, effectively reducing the bioavailability and mobility of heavy metals, and decreasing their environmental toxicity. The addition of biochar, by changing the chemical forms of heavy metals, not only enhanced germination rate of ryegrass seeds but also improved the overall growth state of ryegrass.
Collapse
Affiliation(s)
- Menglong Xing
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology, College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Dajiang Yan
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, China
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Xu Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Zhiyuan Shen
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Mengmeng Hai
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Yanhao Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Zhibin Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, China
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Fengmin Li
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology, College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
7
|
Yin R, Li X, Ning Y, Hu Q, Mao Y, Zhang X, Zhang X. Machine learning unveils the role of biochar application in enhancing tea yield by mitigating soil acidification in tea plantations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 965:178597. [PMID: 39884194 DOI: 10.1016/j.scitotenv.2025.178597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/19/2025] [Accepted: 01/19/2025] [Indexed: 02/01/2025]
Abstract
Biochar, a widely utilized soil amendment in environmental applications, has been employed to enhance tea cultivation. This study utilized three machine learning models to investigate the effects of biochar on tea growth and yield, with the random forest (RF) model demonstrating superior performance (R2 = 0.8768, Root Mean Square Error = 6.1537). Feature importance analysis revealed that biochar characteristics and experimental conditions constitute critical factors exerting an impact on the output, accounting for 39.2 % and 38.6 %, respectively. Specifically, the Ca content of biochar (weight 0.274), the quantity of biochar applied (weight 0.206), and the calcium (Ca) content of soil (weight 0.120) emerged as the three most significant factors affecting tea yield. In conclusion, the machine learning models developed in this study elucidate the multifactorial impact of biochar application on tea yield, providing theoretical and methodological support for practical biochar application strategies in tea production.
Collapse
Affiliation(s)
- Rongxiu Yin
- Tea Research Institute, Guizhou Provincial Academy of Agricultural Sciences, Guiyang 550006, China
| | - Xin Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yating Ning
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Qiang Hu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yihu Mao
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Xiaoqin Zhang
- Tea Research Institute, Guizhou Provincial Academy of Agricultural Sciences, Guiyang 550006, China.
| | - Xinzhong Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|
8
|
Li Q, Zhong Z, Yang Y, Qi R, Du H, Zheng X. Effect of sludge-based biochar on the stabilization of Cd in soil: experimental and theoretical studies. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2025; 27:941-948. [PMID: 39865579 DOI: 10.1080/15226514.2025.2457510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Soil heavy metal contamination and sludge disposal have become globally environmental issues problems of great concern. Utilizing sludge pyrolysis to produce biochar for remediating heavy metal-contaminated soil is an effective strategy to solve these two environmental problems. In this study, municipal sewage sludge and papermaking sludge were used as feedstock to prepare co-pyrolyzed biochar, which was then applied to reduce the toxicity of Cd in soil. The results indicated that the application of co-pyrolyzed biochar significantly increased soil pH, CEC, and enzyme activity, while decreasing the content of available Cd in the soil. Following the application of 3% co-pyrolyzed biochar, the proportion of acid-soluble Cd in the soil decreased to below 46%, as the biochar facilitated the conversion of leachable acid-soluble Cd to stable oxidizable and residual forms through precipitation and complexation. The DFT computational results indicate that the aromatics in co-pyrolyzed biochar can adsorb Cd ions through cation-π interactions, while carboxyl, hydroxyl, aldehyde, and amide groups can provide more electrons for the adsorption of Cd ions, resulting in stronger adsorption capacities. The study findings provide a feasible solution for the resourceful treatment of sludge and the remediation of heavy metal-contaminated soil.
Collapse
Affiliation(s)
- Qian Li
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, China
| | - Zhaoping Zhong
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, China
| | - Yuxuan Yang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, China
| | - Renzhi Qi
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, China
| | - Haoran Du
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, China
| | - Xiang Zheng
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing, China
| |
Collapse
|
9
|
Li H, Liu Y, TaoYuan, Liu Y, Li T, Yan J, Yang C. Insights into the characteristics and toxicity of microalgal biochar-derived dissolved organic matter by spectroscopy and machine learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177648. [PMID: 39566617 DOI: 10.1016/j.scitotenv.2024.177648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/17/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
Microalgal biochar has potential applications in various fields; however, there is limited research on the properties and risks of microalgal biochar-derived dissolved organic matter (MBDOM). This study examined how different pyrolysis temperatures (200 °C and 500 °C) and extraction solutions (0.1 mol/L HCl, Milli-Q water, and 0.1 mol/L NaOH) affect the characteristics and toxicity of MBDOM from three microalgae using multi-spectroscopy methods. Results showed that higher pyrolysis temperature reduced dissolved organic carbon (DOC), total nitrogen (TN), and total phosphorus (TP) but increased total potassium (TK) in the MBDOM. Alkaline solution promoted DOC and TN dissolution, while acidic solutions enhanced TP and TK release from biochar. The molecular weight, aromaticity, and fluorescent composition of MBDOM varied based on pyrolysis temperature, extraction solution, and microalgae species. MBDOM from low pyrolysis temperature and alkaline extraction exhibited significant toxicity to Photobacterium phosphoreum T3. Correlation analysis and machine learning revealed that pyrolysis temperature had a greater influence on the characteristics and toxicity of MBDOM than the extraction solution. The toxicity of MBDOM was primarily associated with TN and DOC contents and also influenced by molecular weight, aromaticity, and humification. These findings are essential for optimizing microalgal biochar production and application.
Collapse
Affiliation(s)
- Hongjia Li
- Marine and Fishery institute of Zhejiang Ocean University, Zhoushan 316021, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Zhejiang Marine Fisheries Research Institute, Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhoushan 316021, China
| | - Yangzhi Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - TaoYuan
- Zhoushan Dinghai Ecological Environment Monitoring Station (Zhoushan Dinghai Ecological Environment Protection Technology Service Center), Zhoushan 316000, China
| | - Yuxue Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tiejun Li
- Marine and Fishery institute of Zhejiang Ocean University, Zhoushan 316021, China; Zhejiang Marine Fisheries Research Institute, Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhoushan 316021, China
| | - Jun Yan
- Marine and Fishery institute of Zhejiang Ocean University, Zhoushan 316021, China; Zhejiang Marine Fisheries Research Institute, Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhoushan 316021, China.
| | - Chenghu Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
10
|
Ernest B, Yanda PZ, Hansson A, Fridahl M. Long-term effects of adding biochar to soils on organic matter content, persistent carbon storage, and moisture content in Karagwe, Tanzania. Sci Rep 2024; 14:30565. [PMID: 39702623 DOI: 10.1038/s41598-024-83372-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024] Open
Abstract
Soils require the application of biochar to improve degradation. The objective of this study was to evaluate the long-term effects of a field experiment on soil organic matter (SOM), soil organic carbon (SOC), and soil moisture content in Karagwe, Tanzania. Seven years ago, a field experiment was conducted using a Latin rectangle design with four replications. The treatments included carbonization and sanitation (CaSa) and carbonization and standard compost (CaSt), which were compared to control Andosols (CoA). A total of 96 soil samples were collected to determine SOM, SOC, and soil moisture content. The data were analyzed using one-way analysis of variance. The results showed that soil samples from the CaSa-treated soil had an increase in SOM content of 17.3%, an increase in stored SOC content of 10.0%, and an increase in soil moisture content of 6.3%. Compared with those in CoA, the CaSt-treated soil showed increases in SOM, SOC, and soil moisture of 14.4%, 8.4%, and 4.0%, respectively. Therefore, all treatments improved soil properties, with CaSa proving more effective in enhancing SOM, SOC, and soil moisture content compared to CaSt and CoA. In conclusion, CaSa is recommended for its sustainable ability to enhance Karagwean soil over time.
Collapse
Affiliation(s)
- Baraka Ernest
- Department of Medical Botany, Plant Breeding, and Agronomy, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, Dar es Salaam, Tanzania
- Institute of Resource Assessment, University of Dar es Salaam, P.O. Box 35097, Dar es Salaam, Tanzania
| | - Pius Z Yanda
- Institute of Resource Assessment, University of Dar es Salaam, P.O. Box 35097, Dar es Salaam, Tanzania
| | - Anders Hansson
- Department of Thematic Studies: Environmental Change, Centre for Climate Science and Policy Research (CSPR), Linköping University, SE-58183, Linköping, Sweden.
| | - Mathias Fridahl
- Department of Thematic Studies: Environmental Change, Centre for Climate Science and Policy Research (CSPR), Linköping University, SE-58183, Linköping, Sweden
| |
Collapse
|
11
|
Li Y, Cheng L, Yang B, Zhao Y, Ding Y, Zhou C, Wu Y, Dong R, Liu Y, Xu A. Remediation of Cd-As-Ni co-contaminated soil by extracellular polymeric substances from Bacillus subtilis: Dynamic improvements of soil properties and ecotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177009. [PMID: 39423897 DOI: 10.1016/j.scitotenv.2024.177009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
As the primary reservoir of heavy metals in nature, soil is highly susceptible to significant co-contamination with Cd-As-Ni. In current study, extracellular polymeric substances (EPS) from Bacillus subtilis were utilized as a novel improver to simultaneously enhance soil property and restrain ecotoxicity in Cd-As-Ni co-contaminated soil. Our findings revealed that EPS effectively bound and immobilized free Cd, As, and Ni in soil and decreased 49.73 % of soil available Cd, 79.16 % of As and 77.87 % of Ni contents by increasing soil pH, soil organic matter and cation exchange capacity. The EPS was also found to inhibit the Cd-As-Ni induced ecotoxicity in Caenorhabditis elegans by increasing the activities of antioxidant enzymes including superoxide dismutase, glutathione, and catalase. The remediation of EPS showed progressive improvement over time, and maintained a lasting effect after achieving peak efficiency. Our results might provide a new perspective on the potential of EPS in remediation of soil heavy metal pollution and the development and utilization of microbial biomass resources in a wider range.
Collapse
Affiliation(s)
- Yang Li
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China
| | - Lei Cheng
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China
| | - Baolin Yang
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China
| | - Yanan Zhao
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China
| | - Yuting Ding
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China
| | - Chenxi Zhou
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China
| | - Yuanyuan Wu
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China
| | - Ruoyun Dong
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China
| | - Yun Liu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China.
| | - An Xu
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, PR China.
| |
Collapse
|
12
|
Rizwan M, Murtaza G, Ahmed Z, Lin Q, Chen X, Khan I, Abdelrahman H, Antoniadis V, Ali EF, Lee SS, Leng L, Shaheen SM, Li H. Synergistic effect of biochar and intercropping on lead phytoavailability in the rhizosphere of a vegetable-grass system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176531. [PMID: 39332740 DOI: 10.1016/j.scitotenv.2024.176531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/05/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
The effects of engineered steam exploded biochar on the phytoavailability of toxic elements in the shared- and nonshared-rhizosphere of vegetable-grass intercropping system have not been investigated yet. Therefore, we explored and elucidated the synergistic effect of pristine rape-straw biochar (BC), steam exploded BC (BCSE), KMnO4-modified BCSE (BCSEMn), and hydroxyapatite-modified BCSE (BCSEHA) on the solubility, fractionation and phytoavailability of lead (Pb) in a vegetable-grass intercropping system. In a rhizosphere box, Brassica chinensis L. (pakchoi; PC, as a vegetable) and Pennisetum polystachion L. (mission grass; MG, as a Pb hyperaccumulator), were grown in the biochar treated soil with (non-shared rhizosphere) or without (shared rhizosphere) root separation. Addition of BCSEMn and BCSEHA, particularly BCSEMn, significantly improved plant growth, photosynthetic pigment levels, and positively influenced the gas exchange attributes by suppressing oxidative stress and boosting antioxidant enzymes activities. Both biochars altered a proportion of Pb in the acid soluble to the immobile fraction and thus significantly decreased its leachability (TCLP-Pb) and bioavailability (CaCl2-extrcated Pb) by 32.7 %-33.9 % and 48.5 %-53.5 %, respectively, as compared to the control. Both biochars, particularly BCSEMn, reduced significantly the Pb content in shoots and roots of PC and MG with a significantly higher efficiency in the PC than in the MG; this was the case more in the shared than in the non-shared rhizosphere. These findings indicate the synergistic effect of BCSEMn and BCSEHA and intercropping for enhancing the grass phytostabilization capacity for Pb and reducing its uptake by edible plants in a vegetables-grass system, which could be used as a promising approach for the phytomanagement of Pb contaminated soils.
Collapse
Affiliation(s)
- Muhammad Rizwan
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China; College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ghulam Murtaza
- School of Agriculture, Yunnan University, Kunming, Yunnan 650500, China
| | - Zeeshan Ahmed
- Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Urumqi 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Chinese Academy of Sciences, Urumqi 848300, China
| | - Qimei Lin
- College of Land Science and Technology, China Agricultural University, Beijing 100193, China; Agricultural Resources and Environmental Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Xuejiao Chen
- College of Land Science and Technology, China Agricultural University, Beijing 100193, China; School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China
| | - Imran Khan
- Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University Jinhua 321004, China
| | - Hamada Abdelrahman
- Cairo University, Faculty of Agriculture, Soil Science Department, Giza 12613, Egypt
| | - Vasileios Antoniadis
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Greece
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, 11099, Taif 21944, Saudi Arabia
| | - Sang Soo Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, Republic of Korea.
| | - Lijian Leng
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China; Xiangjiang Laboratory, Changsha 410205, China.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Laboratory of Soil and Groundwater Management, Institute of Foundation Engineering, Water- and Waste-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Hailong Li
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
13
|
Abbas HMM, Rais U, Altaf MM, Rasul F, Shah A, Tahir A, Nafees-Ur-Rehman M, Shaukat M, Sultan H, Zou R, Khan MN, Nie L. Microbial-inoculated biochar for remediation of salt and heavy metal contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176104. [PMID: 39250966 DOI: 10.1016/j.scitotenv.2024.176104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/15/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Numerous harmful contaminants (i.e. salt and heavy metals) have become major threats to soil and are being introduced into the soil through human and geological activities. These contaminants are raising global concerns about their toxic effects on food safety, human health and reclamation mechanisms. Microbial-inoculated biochar can improve soil environment by immobilizing and transforming contaminants in soil and altering the physico-chemical and biochemical properties of soil. In this review we will discuss the positive effects of microbial-modified biochar on physicochemical properties of contaminated soil. It can decrease the pH, EC while increase CEC, OM and other biochemical properties of soil. Additionally, we discuss the efficacy of biochar as a microbial carrier for salt and heavy metals-contaminated soil and plant growth in those soils. This review provides a better understanding of the potential of microbial biochar can be used for bioremediation of contaminated soil, which will help the researcher to modify biochar in a targeted way for specific applications.
Collapse
Affiliation(s)
- Hafiz Muhammad Mazhar Abbas
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
| | - Ummah Rais
- Department of Zoology, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Muhammad Mohsin Altaf
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Fahd Rasul
- Department of Agronomy, University of Agriculture Faisalabad, 38040 Faisalabad, Punjab, Pakistan
| | - Asad Shah
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
| | - Ashar Tahir
- Rubber Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571700, Hainan, China
| | | | - Muhammad Shaukat
- Department of Agricultural Sciences, Faculty of Sciences, Allama Iqbal Open University Islamabad, 44310 Islamabad, Pakistan
| | - Haider Sultan
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
| | - Ruilong Zou
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
| | - Mohammad Nauman Khan
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China.
| | - Lixiao Nie
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China.
| |
Collapse
|
14
|
Yoshioka S, Ohta A, Rahman S, Imaizumi M, Ni S, Mizuishi T, Sawai H, Wong KH, Mashio AS, Hasegawa H. Enhanced fluoride extraction from contaminated soil combining chelator and surfactant: Insights into adsorptive controlment of soil surface charge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 372:123421. [PMID: 39581010 DOI: 10.1016/j.jenvman.2024.123421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
Biodegradable chelators and surfactants are promising alternatives to conventional washing agents for remediating soil contaminated with toxic elements, owing to their excellent extractability and environmental compatibility. Most previous studies have primarily aimed at maximizing removal efficiency. However, understanding their underlying extraction mechanism is essential to expand the application potential of chelator- or surfactant-assisted washing systems. This study evaluated the effectiveness of chelators and surfactants in remediating fluoride (F)-contaminated soil and explored their associated extraction mechanisms. Our findings highlight a biodegradable chelator, HIDS (3-hydroxy-2,2'-imino disuccinic acid) as uniquely effective in F extraction with minimal F-bearing minerals dissolution (Ca, Fe, and Al). Chelator recovery rates and zeta potential measurements in post-washed solutions suggests that HIDS adsorbs onto soil surfaces, displacing the originally adsorbed F and enhancing the negative surface charge to inhibit F re-adsorption. Additionally, applying an anionic surfactant to enhance F extraction from soil showed promising results. Notably, a binary blend of HIDS and in-lab designed anionic surfactant, SDT (sodium N-dodecanoyl-taurinate), achieved the highest F removal rate (132 mg kg-1) under optimized washing conditions (HIDS: 10 mmol L-1, SDT: 10 mmol L-1, solution pH: 3, and washing time: 1 h), enhancing F extraction by 22% compared to HIDS-only washing (108 mg kg-1; washing time: 3 h). The FT-IR and zeta potential measurements suggested that SDT adsorbed onto the soil surface. The action of the HIDS-SDT blend towards F extraction involves the complexation and acid dissolution of F-bearing soil minerals, followed by F replacement through chelator and surfactant adsorption. This process mitigated F back-adsorption and enhanced F extraction by generating a negatively charged soil surface.
Collapse
Affiliation(s)
- Shoji Yoshioka
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan.
| | - Akio Ohta
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan.
| | - Shafiqur Rahman
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
| | - Minami Imaizumi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
| | - Shengbin Ni
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
| | - Tomoya Mizuishi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan; Daikyo Construction, 235-2, Kaya, Yonago, Tottori 689-3543, Japan
| | - Hikaru Sawai
- Department of Industrial Engineering, National Institute of Technology, Ibaraki College, 866 Nakane, Hitachinaka, Ibaraki, 312-8508, Japan
| | - Kuo H Wong
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
| | - Asami S Mashio
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
| | - Hiroshi Hasegawa
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan.
| |
Collapse
|
15
|
Singha WJ, Deka H. Ecological and human health risk associated with heavy metals (HMs) contaminant sourced from petroleum refinery oily sludge. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135077. [PMID: 39002490 DOI: 10.1016/j.jhazmat.2024.135077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/29/2024] [Accepted: 06/28/2024] [Indexed: 07/15/2024]
Abstract
The environmental and human health risk of heavy metals (HMs) in petroleum based oily sludge (OS) varies depending upon the source of origin of the crude oil and treatment processes practiced at the refineries. Consequently, the present study explores the potential risk associated with HMs of OS obtained from different refinery sites to the environment and human health. The results showed that HMs (Cu, Ni, Zn, Mn) present in OS surpasses the permissible limit of WHO guidelines except for Cr. Additionally, the Igeo value (grade 3-6), Ef (2.48-121.4), PLI (5.12-22.65), Cd (32.48-204.76) and PERI (grade 1-5) confirmed the high level of HMs contamination into the OS and its risk to the environment. Besides, the hazard index (HI) and the total carcinogenic risk (TCR) for HMs show substantial risk to both adult and children health. Likewise, the G-mean enzyme index and potential soil enzyme risk index (PSERI) of the OS showed a high risk to soil biological properties. Furthermore, statistical analysis confirmed the heterogeneity in properties of the OS and its potential impact on the soil ecosystem arising from different sites. Finally, the study unveils a novel perspective on the environmental and human health consequences associated with the OS.
Collapse
Affiliation(s)
- W James Singha
- Ecology and Environmental Remediation Laboratory, Department of Botany, Gauhati University, Guwahati 781014, Assam, India
| | - Hemen Deka
- Ecology and Environmental Remediation Laboratory, Department of Botany, Gauhati University, Guwahati 781014, Assam, India.
| |
Collapse
|
16
|
Cai Y, Ren L, Wu L, Li J, Yang S, Song X, Li X. Saline-alkali soil amended with biochar derived from maricultural-solid-waste: Ameliorative effect and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122134. [PMID: 39151340 DOI: 10.1016/j.jenvman.2024.122134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 06/04/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
At present, it is estimated that approximately 800 million hectares of arable land worldwide is saline-alkali soil, which has become one of the major limiting factors restricting global agricultural productivity. Meanwhile, the residual food and excreta of mariculture animals, accompanied by potential eutrophication pollution, remain an unresolved issue due to salinity. In this study, the ameliorative effects of biochar (BC700) prepared from maricultural-solid-waste on the biological properties and physicochemical of saline-alkali soil and Salicornia europaea L growth were investigated. Supplements of 1, 3 and 5% BC700 significantly increased the total nitrogen, available phosphorus, available potassium and organic carbon in soil by 2.00-68.30%, 26.74-64.96%, 7.74-52.53% and 3.43-64.96%, respectively. And BC700 significantly reduced soil pH. This occurred with enhanced soil urease, sucrase and alkaline phosphatase activities and alterations to the bacterial community structure, thus improving P and N cycling and the soil physicochemical properties. In addition, BC700 has weakened the competition between saline soil microorganisms and also changed the key species of microbial networks. Co-utilization of BC700 and S. europaea cultivation could increase the stability of the soil microbial community while the growth of the plant was significantly promoted by 19.8-25.4%. Supplements of 3% BC700 are recommended as an eco-friendly and effective treatment for the recycling of mariculture wastes for the improvement of saline-alkali soils.
Collapse
Affiliation(s)
- Yongkun Cai
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao, 266001, P. R. China
| | - Liping Ren
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, P. R. China
| | - Lele Wu
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao, 266001, P. R. China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, P. R. China
| | - Jun Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, P. R. China
| | - Shengmao Yang
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, 298 Desheng Middle Road, Hangzhou, 310021, P. R. China
| | - Xiefa Song
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao, 266001, P. R. China
| | - Xian Li
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao, 266001, P. R. China.
| |
Collapse
|
17
|
Song H, Chen SF, Si G, Bhatt K, Chen SH, Chen WJ. Removal of environmental pollutants using biochar: current status and emerging opportunities. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:384. [PMID: 39167116 DOI: 10.1007/s10653-024-02142-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024]
Abstract
In recent times, biochar has emerged as a novel approach for environmental remediation due to its exceptional adsorption capacity, attributed to its porous structure formed by the pyrolysis of biomass at elevated temperatures in oxygen-restricted conditions. This characteristic has driven its widespread use in environmental remediation to remove pollutants. When biochar is introduced into ecosystems, it usually changes the makeup of microbial communities by offering a favorable habitat. Its porous structure creates a protective environment that shields them from external pressures. Consequently, microorganisms adhering to biochar surfaces exhibit increased resilience to environmental conditions, thereby enhancing their capacity to degrade pollutants. During this process, pollutants are broken down into smaller molecules through the collaborative efforts of biochar surface groups and microorganisms. Biochar is also often used in conjunction with composting techniques to enhance compost quality by improving aeration and serving as a carrier for slow-release fertilizers. The utilization of biochar to support sustainable agricultural practices and combat environmental contamination is a prominent area of current research. This study aims to examine the beneficial impacts of biochar application on the absorption and breakdown of contaminants in environmental and agricultural settings, offering insights into its optimization for enhanced efficacy.
Collapse
Affiliation(s)
- Haoran Song
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shao-Fang Chen
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Guiling Si
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Kalpana Bhatt
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shao-Hua Chen
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Wen-Juan Chen
- Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
18
|
Kumari S, Chowdhry J, Kumar M, Garg MC. Machine learning (ML): An emerging tool to access the production and application of biochar in the treatment of contaminated water and wastewater. GROUNDWATER FOR SUSTAINABLE DEVELOPMENT 2024; 26:101243. [DOI: 10.1016/j.gsd.2024.101243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
|
19
|
Pinelli S, Rossi S, Malcevschi A, Miragoli M, Corradi M, Selis L, Tagliaferri S, Rossi F, Cavallo D, Ursini CL, Poli D, Mozzoni P. Biochar dust emission: Is it a health concern? Preliminary results for toxicity assessment. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 109:104477. [PMID: 38810713 DOI: 10.1016/j.etap.2024.104477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
Biochar is currently garnering interest as an alternative to commercial fertilizer and as a tool to counteract global warming. However, its use is increasingly drawing attention, particularly concerning the fine dust that can be developed during its manufacture, transport, and use. This work aimed to assess the toxicity of fine particulate Biochar (
Collapse
Affiliation(s)
- Silvana Pinelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Stefano Rossi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Alessio Malcevschi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Michele Miragoli
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Centre for Research in Toxicology (CERT), University of Parma, Parma, Italy; Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
| | - Massimo Corradi
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Centre for Research in Toxicology (CERT), University of Parma, Parma, Italy
| | - Luisella Selis
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Sara Tagliaferri
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Centre for Research in Toxicology (CERT), University of Parma, Parma, Italy
| | - Francesca Rossi
- National Research Council (CNR), Istituto dei Materiali per l'Elettronica ed il Magnetismo (IMEM), Parma, Italy
| | - Delia Cavallo
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Monte Porzio Catone, Italy
| | - Cinzia Lucia Ursini
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Monte Porzio Catone, Italy
| | - Diana Poli
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Monte Porzio Catone, Italy
| | - Paola Mozzoni
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Centre for Research in Toxicology (CERT), University of Parma, Parma, Italy.
| |
Collapse
|
20
|
Li W, Shen Y, Wang G, Ma H, Yang Y, Li G, Huo X, Liu Z. Plant species diversity and functional diversity relations in the degradation process of desert steppe in an arid area of northwest China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121534. [PMID: 38905797 DOI: 10.1016/j.jenvman.2024.121534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Species and functional diversity play a major role in the stability and sustainability of grassland ecosystems. However, changes in species and functional diversity during grassland degradation in arid areas as well as the underlying mechanisms remain unclear. In this study, we surveyed the vegetation and soil properties of arid regions across a degradation gradient to explore the shifts in species and functional diversity in plant communities, their relationships and key determinants during desert steppe degradation. Our results found significant variability in species diversity and functional diversity across degradation stages. Species diversity (Shannon-Wiener index (H), and Pielou index) and functional diversity (functional evenness (FEve) index, and Rao's quadratic entropy (RaoQ) index) tended to increase initially and then decrease with increasing grassland degradation. The Patrick index, Simpson index, functional richness (FRic) index, functional divergence (FDiv) index, and functional dispersion (FDis) index declined as grassland degradation increased. The relationships between species diversity and functional diversity indices at different stages of degradation in the desert steppe were inconsistent. From no to heavy degradation grasslands, the correlation between species diversity and functional diversity gradually weakened. Specifically, there was a significant correlation between Patrick (R) and FRic indices (R2 > 0.7) on both non-degraded and light degraded grasslands, but there was no significant correlation between R and FRic indices in moderately and heavily degraded grasslands (R2 < 0.7), and R2 gradually decreased. Redundancy analysis and partial least squares path modeling showed that grassland degradation has a significant direct effect on the species diversity and functional diversity. In addition grassland degradation has direct and indirect effects on the species diversity through soil available nitrogen, organic matter and total nitrogen. Functional diversity is directly or indirectly affected by species diversity, soil available nitrogen, organic matter and total nitrogen, soil moisture content, soil bulk density, and pH value. In summary, the relationship between species and functional diversity indices gradually weakened from areas with no degradation to heavy degradation in arid desert grasslands. Our study reveals the patterns and relationships between species diversity and functional diversity throughout the process of grassland degradation, demonstrating a gradual decrease in ecosystem stability and sustainability as degradation advances. Our results have significant implications for the restoration of grassland degradation and the management of ecosystem services in arid steppe regions.
Collapse
Affiliation(s)
- Wen Li
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Ningxia University, 489 Helanshan West Road, Yinchuan 750021, Ningxia, China; Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Ningxia University, 489 Helanshan West Road, Yinchuan, 750021, Ningxia, China; College of Forestry and Prataculture, Ningxia University, 489 Helanshan West Road, Yinchuan, 750021, Ningxia, China
| | - Yan Shen
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Ningxia University, 489 Helanshan West Road, Yinchuan 750021, Ningxia, China; Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Ningxia University, 489 Helanshan West Road, Yinchuan, 750021, Ningxia, China; College of Forestry and Prataculture, Ningxia University, 489 Helanshan West Road, Yinchuan, 750021, Ningxia, China; Northern Yanchi Desert Steppe Observation and Research Station of Ningxia, Huamachi Town, Yanchi County, Wuzhong 751500, Ningxia, China
| | - Guohui Wang
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Ningxia University, 489 Helanshan West Road, Yinchuan 750021, Ningxia, China; Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Ningxia University, 489 Helanshan West Road, Yinchuan, 750021, Ningxia, China; College of Forestry and Prataculture, Ningxia University, 489 Helanshan West Road, Yinchuan, 750021, Ningxia, China; Northern Yanchi Desert Steppe Observation and Research Station of Ningxia, Huamachi Town, Yanchi County, Wuzhong 751500, Ningxia, China
| | - Hongbin Ma
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Ningxia University, 489 Helanshan West Road, Yinchuan 750021, Ningxia, China; Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Ningxia University, 489 Helanshan West Road, Yinchuan, 750021, Ningxia, China; College of Forestry and Prataculture, Ningxia University, 489 Helanshan West Road, Yinchuan, 750021, Ningxia, China; Northern Yanchi Desert Steppe Observation and Research Station of Ningxia, Huamachi Town, Yanchi County, Wuzhong 751500, Ningxia, China.
| | - Yandong Yang
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Ningxia University, 489 Helanshan West Road, Yinchuan 750021, Ningxia, China; Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Ningxia University, 489 Helanshan West Road, Yinchuan, 750021, Ningxia, China; College of Forestry and Prataculture, Ningxia University, 489 Helanshan West Road, Yinchuan, 750021, Ningxia, China
| | - Guoqiang Li
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Ningxia University, 489 Helanshan West Road, Yinchuan 750021, Ningxia, China; Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Ningxia University, 489 Helanshan West Road, Yinchuan, 750021, Ningxia, China; College of Forestry and Prataculture, Ningxia University, 489 Helanshan West Road, Yinchuan, 750021, Ningxia, China
| | - Xinru Huo
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Ningxia University, 489 Helanshan West Road, Yinchuan 750021, Ningxia, China; Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Ningxia University, 489 Helanshan West Road, Yinchuan, 750021, Ningxia, China; College of Forestry and Prataculture, Ningxia University, 489 Helanshan West Road, Yinchuan, 750021, Ningxia, China
| | - Zhuo Liu
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Ningxia University, 489 Helanshan West Road, Yinchuan 750021, Ningxia, China; Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Ningxia University, 489 Helanshan West Road, Yinchuan, 750021, Ningxia, China; College of Forestry and Prataculture, Ningxia University, 489 Helanshan West Road, Yinchuan, 750021, Ningxia, China
| |
Collapse
|
21
|
Su Z, Liu X, Wang Z, Wang J. Biochar effects on salt-affected soil properties and plant productivity: A global meta-analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121653. [PMID: 38971065 DOI: 10.1016/j.jenvman.2024.121653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/29/2024] [Accepted: 06/29/2024] [Indexed: 07/08/2024]
Abstract
Biochar has been recognized as a promising practice for ameliorating degraded soils, yet the consensus on its effects remains largely unknown due to the variability among biochar, soil and plant. This study therefore presents a meta-analysis synthesizing 92 publications containing 987 paired data to scrutinize biochar effects on salt-affected soil properties and plant productivity. Additionally, a random meta-forest approach was employed to identify the key factors of biochar on salt-affected soil and plant productivity. Results showed that biochar led to significant reductions in electrical conductivity (EC), bulk density (BD) and pH by 7.4%, 4.7% and 1.2% compared to the unamended soil, respectively. Soil organic carbon (by 55.1%) and total nitrogen (by 31.3%) increased significantly with biochar addition. Moreover, biochar overall enhanced plant productivity by 31.5%, and more pronounced increases in forage/medicinal with higher salt tolerance than others. The results also identified that the soil salinity and biochar application rate were the most important co-regulators for EC and PP changes. The structural equation model further showed that soil salinity (P < 0.001), biochar pH (P < 0.001) and biochar specific surface area (P < 0.01) had a significant negative effect on soil EC, but it was positively impacted by biochar pyrolysis temperature (P < 0.05). Furthermore, plant productivity was positively affected by biochar pH (P < 0.001) and biochar feedstock (P < 0.01), while negatively influenced by biochar pyrolysis temperature (P < 0.01). This study highlights that woody biochar with 7.6 < pH < 9.0 and pyrolyzed at 400-600 °C under 30-70 t ha-1 application rate in moderately saline coarse soils is a recommendable pattern to enhance forage/medicinal productivity while reducing soil salinity. In conclusion, biochar offers promising avenues for ameliorating degradable soils, but it is imperative to explore largescale applications and field performance across different biochar, soil, and plant types.
Collapse
Affiliation(s)
- Zhenjuan Su
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan, 750021, China
| | - Xuezhi Liu
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan, 750021, China; Engineering Technology Research Center of Water-Saving and Water Resource Regulation in Ningxia, Yinchuan, 750021, China
| | - Zhongjing Wang
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan, 750021, China; School of Civil Engineering, Tsinghua University, Beijing, 100084, China.
| | - Jie Wang
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan, 750021, China
| |
Collapse
|
22
|
Drenning P, Volchko Y, Enell A, Berggren Kleja D, Larsson M, Norrman J. A method for evaluating the effects of gentle remediation options (GRO) on soil health: Demonstration at a DDX-contaminated tree nursery in Sweden. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174869. [PMID: 39038670 DOI: 10.1016/j.scitotenv.2024.174869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
Healthy soils provide valuable ecosystem services (ES), but soil contamination can inhibit essential soil functions (SF) and pose risks to human health and the environment. A key advantage of using gentle remediation options (GRO) is the potential for multifunctionality: to both manage risks and improve soil functionality. In this study, an accessible, scientific method for soil health assessment directed towards practitioners and decision-makers in contaminated land management was developed and demonstrated for a field experiment at a DDX-contaminated tree nursery site in Sweden to evaluate the relative effects of GRO on soil health (i.e., the 'current capacity' to provide ES). For the set of relevant soil quality indicators (SQI) selected using a simplified logical sieve, GRO treatment was observed to have highly significant effects on many SQI according to statistical analysis due to the strong influence of biochar amendment on the sandy soil and positive effects of nitrogen-fixing leguminous plants. The SQI were grouped within five SF and the relative effects on soil health were evaluated compared to a reference state (experimental control) by calculating quantitative treated-SF indices. Multiple GRO treatments are shown to have statistically significant positive effects on many SF, including pollutant attenuation and degradation, water cycling and storage, nutrient cycling and provisioning, and soil structure and maintenance. The SF were in turn linked to soil-based ES to calculate treated-ES indices and an overall soil health index (SHI), which can provide simplified yet valuable information to decision-makers regarding the effectiveness of GRO. The experimental GRO treatment of the legume mix with biochar amendment and grass mix with biochar amendment are shown to result in statistically significant improvements to soil health, with overall SHI values of 141 % and 128 %, respectively, compared to the reference state of the grass mix without biochar (set to 100 %).
Collapse
Affiliation(s)
- Paul Drenning
- Department of Architecture and Civil Engineering, Chalmers University of Technology, SE 412-96 Gothenburg, Sweden.
| | - Yevheniya Volchko
- Department of Architecture and Civil Engineering, Chalmers University of Technology, SE 412-96 Gothenburg, Sweden
| | - Anja Enell
- Swedish Geotechnical Institute (SGI), SE-581 93 Linköping, Sweden
| | - Dan Berggren Kleja
- Swedish Geotechnical Institute (SGI), SE-581 93 Linköping, Sweden; Department of Soil and Environment, Swedish University of Agricultural Sciences (SLU), Box 7014, SE-750 07 Uppsala, Sweden
| | - Maria Larsson
- Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - Jenny Norrman
- Department of Architecture and Civil Engineering, Chalmers University of Technology, SE 412-96 Gothenburg, Sweden
| |
Collapse
|
23
|
Liu M, Sui C, Wang B, Huang R, Zhang W, Zhang T, Zhang Q, Liu Y. Effects of short-term exposure to Pomacea canaliculata secretions on Limnodrilus hoffmeisteri and Propsilocerus akamusi: A study based on behavior, intestinal microbiota, and antioxidant system. Ecol Evol 2024; 14:e11591. [PMID: 38932957 PMCID: PMC11199190 DOI: 10.1002/ece3.11591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Pomacea canaliculata is one of the most notorious invasive aquatic snail, capable of influencing various aquatic organisms through their secretions. Limnodrilus hoffmeisteri and Propsilocerus akamusi are the most prevalent and powerful bioturbators in aquatic ecosystems. However, the mechanism of P. canaliculata's secretions affecting bioturbators remains unknown. This study aimed to investigate the effects of P. canaliculata's secretion on L. hoffmeisteri and P. akamusi. L. hoffmeisteri and P. akamusi were treated for 24 h with P. canaliculata and the native species Bellamya aeruginosa secretions at different densities (1 or 20). The migration numbers and aggregation rate of L. hoffmeisteri indicated that P. canaliculata secretion caused L. hoffmeisteri to become alert and migrate away from the nucleus community, resulting in poor population identification, especially at high concentrations. Moreover, the antioxidant enzymatic activity, lipid peroxidation, intestinal microbial diversity, and composition of the two bioturbators were analyzed. Superoxide dismutase (SOD) activity and malondialdehyde (MDA) concentration were elevated following P. canaliculata secretion treatment, indicating oxidative damage. Furthermore, the composition and diversity of intestinal microbiota of L. hoffmeisteri and P. akamusi were changed. The abundance of functional microbiota decreased, and pathogenic bacteria such as Aeromonas became dominant in the intestines of both bioturbators. The current research evaluates the effects of P. canaliculata secretion on the behavior, oxidative stress, and intestinal microbial composition and diversity of two bioturbators, providing new insights into the assessment of post-invaded ecosystems.
Collapse
Affiliation(s)
- Mingyuan Liu
- School of Life ScienceLiaoning Normal UniversityDalianChina
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of EducationDalianChina
| | - Changrun Sui
- School of Life ScienceLiaoning Normal UniversityDalianChina
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of EducationDalianChina
| | - Baolong Wang
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of EducationDalianChina
- College of Marine Science and EnvironmentDalian Ocean UniversityDalianChina
| | - Ruipin Huang
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of EducationDalianChina
- College of Marine Science and EnvironmentDalian Ocean UniversityDalianChina
| | - Weixiao Zhang
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of EducationDalianChina
- College of Marine Science and EnvironmentDalian Ocean UniversityDalianChina
| | - Tao Zhang
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of EducationDalianChina
- College of Marine Science and EnvironmentDalian Ocean UniversityDalianChina
| | - Qian Zhang
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of EducationDalianChina
- College of Marine Science and EnvironmentDalian Ocean UniversityDalianChina
| | - Ying Liu
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of EducationDalianChina
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouChina
| |
Collapse
|
24
|
Wang W, Nie M, Yan C, Yuan Y, Xu A, Ding M, Wang P, Ju M. Effect of pyrolysis temperature and molecular weight on characterization of biochar derived dissolved organic matter from invasive plant and binding behavior with the selected pharmaceuticals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123867. [PMID: 38556151 DOI: 10.1016/j.envpol.2024.123867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
A comprehensive understanding of the characteristics of biochar released-dissolved organic matter (BDOM) derived from an invasive plant and its impact on the binding behavior of pharmaceuticals is essential for the application of biochar, yet has received less attention. In this study, the binding behavior of BDOM pyrolyzed at 300-700 °C with sulfathiazole, acetaminophen, chloramphenicol (CAP), and carbamazepine (CMZ) was investigated based on a multi-analytical approach. Generally, the pyrolysis temperature exhibited a more significant impact on the spectral properties of BDOM and pharmaceutical binding behavior than those of the molecular weight. With increased pyrolysis temperature, the dissolved organic carbon decreased while the proportion of the protein-like substance increased. The highest binding capacity towards the drugs was observed for the BDOM pyrolyzed at 500 °C with the molecular weight larger than 0.3 kDa. Moreover, the protein-like substance exhibited higher susceptive and released preferentially during the dialysis process and also showed more sensitivity and bound precedingly with the pharmaceuticals. The active binding points were the aliphatic C-OH, amide II N-H, carboxyl CO, and phenolic-OH on the tryptophan-like substance. Furthermore, the binding affinity of the BDOM pyrolyzed at 500 °C was relatively high with the stability constant (logKM) of 4.51 ± 0.52.
Collapse
Affiliation(s)
- Wangyu Wang
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China
| | - Minghua Nie
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China
| | - Caixia Yan
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China.
| | - Yulong Yuan
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China
| | - Aoxue Xu
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China
| | - Mingjun Ding
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China
| | - Peng Wang
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China
| | - Min Ju
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China
| |
Collapse
|
25
|
He D, Luo Y, Zhu B. Feedstock and pyrolysis temperature influence biochar properties and its interactions with soil substances: Insights from a DFT calculation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171259. [PMID: 38417524 DOI: 10.1016/j.scitotenv.2024.171259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
The use of biochar for soil improvement and emission reduction has been widely recognized for its excellent performance. However, the choice of feedstock and pyrolysis temperature for biochar production significantly affects its surface parameters and interactions with soil substances. In this study, we retrieved 465 peer-reviewed papers on the application of biochar in reducing greenhouse gas emissions and nutrient losses in soil and analyzed the changes in biochar physicochemical parameters from different feedstock and pyrolytic temperatures. Molecular simulation computing technology was also used to explore the impacts of these changes on the interaction between biochar and soil substances. The statistical results from the peer-reviewed papers indicated that biochar derived from wood-based feedstock exhibits superior physical characteristics, such as increased porosity and specific surface area. Conversely, biochar derived from straw-based feedstock was found to contain excellent element content, such as O, N, and H, and biochar derived from straw and produced at low pyrolysis temperatures contains a significant number of functional groups that enhance the charge transfer potential and adsorption stability by increasing surface charge density, charge distribution and bonding orbitals. However, it should be noted that this enhancement may also activate certain recalcitrant C compounds and promote biochar decomposition. Taken together, these results have significant implications for biochar practitioners when selecting suitable feedstock and pyrolysis temperatures based on agricultural needs and increasing their understanding of the interaction mechanism between biochar and soil substances.
Collapse
Affiliation(s)
- Debo He
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China; Key Laboratory of Mountain Surface Process and Ecological Regulation, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiming Luo
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China; Key Laboratory of Mountain Surface Process and Ecological Regulation, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Zhu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China; Key Laboratory of Mountain Surface Process and Ecological Regulation, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
26
|
Liao X, Mao S, Shan Y, Gao W, Wang S, Malghani S. Impact of iron-modified biochars on soil nitrous oxide emissions: Variations with iron salts and soil fertility. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120571. [PMID: 38513584 DOI: 10.1016/j.jenvman.2024.120571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024]
Abstract
Nitrous oxide (N2O) emissions from soils are a significant environmental concern due to their contribution to greenhouse gas emissions. Biochar has been considered as a promising soil amendment for its potential to influence soil processes. Iron modification of biochar has been extensively discussed for its ability to enhance adsorption of pollutants, yet its impact on mitigating soil N2O emissions remains poorly understood. In the present study, corn straw (CB) and wood (WB) biochars were treated with FeSO4/FeCl3 (SCB and SWB) and Fe(NO3)3 (NCB and NWB). The effects of these biochars on soil N2O emissions were investigated using soils with varying fertility levels over a 35-day incubation period at 20 °C. Results revealed significant variations in biochar surface chemistry depending on biochar feedstock and iron salts. Compared to pristine biochars, NWB and NCB exhibited higher pH, total N content, and dissolved NO3-N concentrations (246 ± 17 and 298 ± 35 mg kg-1, respectively), but lower bulk and surface C content. In contrast, SWB and SCB demonstrated acidic pH and elevated dissolved NH4-N concentrations (5.38 ± 0.43 and 4.19 ± 0.22 mg kg-1, respectively). In forest soils, NWB and NCB increased cumulative N2O emission by 28.5% and 67.0%, respectively, likely due to the introduction of mineral nitrogen evidenced by significant positive correlation with NO3-N or NH4-N. Conversely, SWB and SCB reduced emissions in the same soil by 28.5% and 6.9%, respectively. In agricultural soil, most biochars, except SWB, enhanced N2O emissions, possibly through the release of labile organic carbon facilitating denitrification. These findings underscore the significance of changes in biochar surface chemistry and the associated potential risk in triggering soil N2O emissions. This study highlights the need for a balanced design of biochar that considers both engineering benefits and climate change mitigation.
Collapse
Affiliation(s)
- Xiaolin Liao
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Shuxia Mao
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yongxin Shan
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Wenran Gao
- College of Material Science, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Saadatullah Malghani
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China; Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871, Frederiksberg C, Copenhagen, Denmark.
| |
Collapse
|
27
|
Caldara M, Gullì M, Graziano S, Riboni N, Maestri E, Mattarozzi M, Bianchi F, Careri M, Marmiroli N. Microbial consortia and biochar as sustainable biofertilisers: Analysis of their impact on wheat growth and production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170168. [PMID: 38244628 DOI: 10.1016/j.scitotenv.2024.170168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
The European Union is among the top wheat producers in the world, but its productivity relies on adequate soil fertilisation. Biofertilisers, either alone or in combination with biochar, can be a preferable alternative to chemical fertilisers. However, the addition of biofertilisers, specifically plant growth promoting microbes (PGPM), could modify grain composition, and/or deteriorate the soil composition. In this study, the two wheat cultivars Triticum aestivum (Bramante) and T. durum (Svevo) were cultivated in open fields for two consecutive years in the presence of a commercial PGPM mix supplied alone or in combination with biochar. An in-depth analysis was conducted by collecting physiological and agronomic data throughout the growth period. The effects of PGPM and biochar were investigated in detail; specifically, soil chemistry and rhizosphere microbial composition were characterized, along with the treatment effects on seed storage proteins. The results demonstrated that the addition of commercial microbial consortia and biochar, alone or in combination, did not modify the rhizospheric microbial community; however, it increased grain yield, especially in the cultivar Svevo (increase of 6.8 %-13.6 %), even though the factors driving the most variations were associated with both climate and cultivar. The total gluten content of the flours was not affected, whereas the main effect of the treatments was a variation in gliadins and low-molecular-weight-glutenin subunits in both cultivars when treated with PGPM and biochar. This suggested improved grain quality, especially regarding the viscoelastic properties of the dough, when the filling period occurred in a dry climate. The results indicate that the application of biofertilisers and biochar may aid the effective management of sustainable wheat cultivation, to support environmental health without altering the biodiversity of the resident microbiome.
Collapse
Affiliation(s)
- Marina Caldara
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Mariolina Gullì
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Sara Graziano
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Nicolò Riboni
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Elena Maestri
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; National Interuniversity Consortium for Environmental Sciences (CINSA), Parco Area delle Scienze, 43124 Parma, Italy
| | - Monica Mattarozzi
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Federica Bianchi
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; Interdepartmental Center CIDEA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Maria Careri
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Nelson Marmiroli
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; National Interuniversity Consortium for Environmental Sciences (CINSA), Parco Area delle Scienze, 43124 Parma, Italy.
| |
Collapse
|
28
|
Han Q, Chen Y, Li Z, Zhang Z, Qin Y, Liu Z, Liu G. Changes in the soil fungal communities of steppe grasslands at varying degradation levels in North China. Can J Microbiol 2024; 70:70-85. [PMID: 38096505 DOI: 10.1139/cjm-2023-0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The grasslands in North China are rich in fungal resources. However, the knowledge of the structure and function of fungal communities and the role of microbial communities in vegetation restoration and succession are limited. Thus, we used an Illumina HiSeq PE250 high-throughput sequencing platform to study the changing characteristics of soil fungal communities in degraded grasslands, which were categorized as non-degraded (ND), lightly degraded, moderately degraded, and severely degraded (SD). Moreover, a correlation analysis between soil physical and chemical properties and fungal communities was completed. The results showed that the number of plant species, vegetation coverage, aboveground biomass, and diversity index decreased significantly with increasing degradation, and there were significant differences in the physical and chemical properties of the soil among the different degraded grasslands. The dominant fungal phyla in the degraded grassland were as follows: Ascomycota, 44.88%-65.03%; Basidiomycota, 12.68%-29.91%; and unclassified, 5.51%-16.91%. The dominant fungi were as follows: Mortierella, 6.50%-11.41%; Chaetomium, 6.71%-11.58%; others, 25.95%-36.14%; and unclassified, 25.56%-53.0%. There were significant differences in the microbial Shannon-Wiener and Chao1 indices between the ND and degraded meadows, and the composition and diversity of the soil fungal community differed significantly as the meadows continued to deteriorate. The results showed that pH was the most critical factor affecting soil microbial and fungal communities in SD grasslands, whereas soil microbial and fungal communities in ND grasslands were mainly affected by water content and other environmental factors.
Collapse
Affiliation(s)
- Qiqi Han
- School of Life Sciences, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Yuhang Chen
- School of Life Sciences, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Zichao Li
- School of Life Sciences, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Zhuo Zhang
- School of Life Sciences, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Yuao Qin
- School of Life Sciences, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Zhongkuan Liu
- Institute of Agro-resources and Environment, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Guixia Liu
- School of Life Sciences, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| |
Collapse
|
29
|
Zou Y, Chen X, Zhang S, Zhang B, Bai Y, Zhang T, Jia J. Co-applied biochar and PGPB promote maize growth and reduce CO 2 emission by modifying microbial communities in coal mining degraded soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120280. [PMID: 38350280 DOI: 10.1016/j.jenvman.2024.120280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/15/2024]
Abstract
Coal mining is one of the human activities that has the greatest impact on the global carbon (C) cycle and biodiversity. Biochar and plant growth-promoting bacteria (PGPB) have been both used to improve coal mining degraded soils; however, it is uncertain whether the effects of biochar application on soil respiration and microbial communities are influenced by the presence or absence of PGPB and soil nitrogen (N) level in coal mining degraded soils. A pot experiment was carried out to examine whether the effects of biochar addition (0, 1, 2 and 4% of soil mass) on soil properties, soil respiration, maize growth, and microbial communities were altered by the presence or absence of PGPB (i.e. Sphingobium yanoikuyae BJ1) (0, 200 mL suspension (2 × 106 colony forming unit (CFU) mL-1)) and two soil N levels (N0 and N1 at 0 and 0.2 g kg-1 urea- N, respectively). The results showed the presence of BJ1 enhanced the maize biomass relative to the absence of BJ1, particularly in N1 soils, which was related to the discovery of Lysobacter and Nocardioides that favor plant growth in N1 soils. This indicates a conversion in soil microbial communities to beneficial ones. The application of biochar at a rate of 1% decreased the cumulative CO2 regardless of the presence or absence of BJ1; BJ1 increased the β-glucosidase (BG) activities, and BG activities were also positively correlated with RB41 strain with high C turnover in N1 soils, which indicates that the presence of BJ1 improves the C utilization rates of RB41, decreasing soil C mineralization. Our results highlight that biochar addition provided environmental benefits in degraded coal mining soils, and the direction and magnitude of these effects are highly dependent on the presence of PGPB and the soil N level.
Collapse
Affiliation(s)
- Yiping Zou
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China; Department of Renewable Resources, University of Alberta, 442 Earth Science Building, Edmonton, Alberta, T6G 2E3, Canada
| | - Xinli Chen
- Department of Renewable Resources, University of Alberta, 442 Earth Science Building, Edmonton, Alberta, T6G 2E3, Canada
| | - Shuyue Zhang
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Ben Zhang
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Yunxing Bai
- Department of Renewable Resources, University of Alberta, 442 Earth Science Building, Edmonton, Alberta, T6G 2E3, Canada
| | - Tao Zhang
- Department of Renewable Resources, University of Alberta, 442 Earth Science Building, Edmonton, Alberta, T6G 2E3, Canada
| | - Jianli Jia
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China.
| |
Collapse
|
30
|
Yang X, Fan J, Jiang L, Zhu F, Yan Z, Li X, Jiang P, Li X, Xue S. Using Fe/H 2O 2-modified biochar to realize field-scale Sb/As stabilization and soil structure improvement in an Sb smelting site. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168775. [PMID: 38016550 DOI: 10.1016/j.scitotenv.2023.168775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023]
Abstract
Antimony (Sb) and arsenic (As) released from the Sb smelting activities pose a major environmental risk and ecological degradation in Sb smelting sites. Here the effects of Fe/H2O2 modified biochar (Fe@H2O2-BC) on the synchronous stabilization of Sb/As and the improvement of soil structure in a typical Sb smelting site in Southern China based on a 1-year field experiment were studied. Application of ≥1 % (w/w) Fe@H2O2-BC could stably decrease the leaching concentrations of Sb and As of the polluted soils to Environmental quality standards for surface water Chinese Level III (GB3838-2002). Compared to the untreated soils, the stabilization efficiency of soil Sb and As treated by Fe@H2O2-BC reached 90.7 % ~ 95.7 % and 89.6 % ~ 90.8 %, respectively. The residue fractions of Sb/As in the soils increased obviously, and the bio-availability of Sb/As decreased by 65.0-95.6 % and 91.1-96.0 %, respectively. Moreover, Fe@H2O2-BC addition elevated soil organic carbon content, increased soil porosity, and improved water retention capacity, indicating the positive effects on soil structure and functions. Advanced mineral identification and characterization systems showed that Sb/As usually occurred in Fe-bearing minerals and stabilized by surface complexation and co-precipitation. The findings demonstrated that 1 % (w/w) Fe@H2O2-BC was appropriate to Sb/As stabilization and soil function recovery following field conditions, which provided potential application for ecological restoration in Sb smelting sites.
Collapse
Affiliation(s)
- Xingwang Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Jiarong Fan
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Lanying Jiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Feng Zhu
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China.
| | - Zaolin Yan
- Hunan Bisenyuan energy saving and environmental protection Co., LTD, Yiyang 413000, PR China
| | - Xue Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Pinghong Jiang
- Hunan Research Academy of Environmental Sciences, Changsha 410018, PR China
| | - Xianghui Li
- Hunan Research Academy of Environmental Sciences, Changsha 410018, PR China
| | - Shengguo Xue
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China.
| |
Collapse
|
31
|
Jiang S, Dai G, Rashid MS, Zhang J, Lin H, Shu Y. Effects of BC on metal uptake by crops (availability) and the vertical migration behavior in soil: A 3-year field experiments of crop rotation. CHEMOSPHERE 2024; 350:141075. [PMID: 38176590 DOI: 10.1016/j.chemosphere.2023.141075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/12/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Biochar (BC) has been substantiated to effectively reduce the available content of heavy metals (HMs) in soil-plant system; however, the risk of biochar (BC)derived dissolved organic matter (DOM) induced metal vertical migration has not been well documented, especially in the long-term field conditions. Therefore, this study investigated HM vertical migration ecological risks and the long-term effectiveness of the amendment of biochar in the three successive years of field trials during the rotation system. The results revealed that biochar application could increase soil pH and DOM with a decrease in soil CaCl2 extractable pool for Pb, Cu, and Cd. Furthermore, the results indicated a significant decrease in acid phosphatase activities and an increase in urease and catalase activities in the soil. Cucumber was shown to be safe during a three-year rotation system in the field. These results suggest that BC has the potential to enhance soil environment and crop yields. BC derived DOM-specific substances were identified using parallel factor analysis of excitation-emission matrix in deep soil (0-60 cm). The study incorporated HM concentration fluctuations in deep soils, providing an additional interpretation of DOM and co-migration of HMs.The environmental risk associated with the increase in DOM hydrophobicity should not be ignored by employing BC for soil HM remediation applications. The study enhances understanding of biochar-derived DOM's migration and stabilization mechanisms on heavy metals, providing guidelines for its use as a soil amendment.
Collapse
Affiliation(s)
- Shaojun Jiang
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Guangling Dai
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Muhammad Saqib Rashid
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Junhao Zhang
- School of Environment, South China Normal University, Guangzhou, 510006, China; SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., Qingyuan, 511517, China
| | - Hai Lin
- Guangzhou Marine Geological Survey, Guangzhou, 510760, China
| | - Yuehong Shu
- School of Environment, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
32
|
Hu Y, Cao Y, Ma C, Yan W. Nano-biochar as a potential amendment for metal(loid) remediation: Implications for soil quality improvement and stress alleviation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119658. [PMID: 38056332 DOI: 10.1016/j.jenvman.2023.119658] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/01/2023] [Accepted: 11/18/2023] [Indexed: 12/08/2023]
Abstract
Metal(loid) contamination of agricultural soils has become an alarming issue due to its detrimental impacts on soil health and global agricultural production. Therefore, environmentally sustainable and cost-effective solutions are urgently required for soil remediation. Biochar, particularly nano-biochar, exhibits superior and high-performance capabilities in the remediation of metal(loid)-contaminated soil, owing to its unique structure and large surface area. Current researches on nano-biochar mainly focus on safety design and property improvement, with limited information available regarding the impact of nano-biochar on soil ecosystems and crop defense mechanisms in metal(loid)-contaminated soils. In this review, we systematically summarized recent progress in the application of nano-biochar for remediation of metal(loid)-contaminated soil, with a focus on possible factors influencing metal(loid) uptake and translocation in soil-crop systems. Additionally, we conducted the potential/related mechanisms by which nano-biochar can mitigate the toxic impacts of metal(loid) on crop production and security. Furthermore, the application of nano-biochar in field trials and existing challenges were also outlined. Future studies should integrate agricultural sustainability and ecosystem health targets into biochar design/selection. This review highlighted the potential of nano-biochar as a promising soil amendment for enhancing the remediation of metal(loid)-contaminated agricultural soils, thereby promoting the synthesis and development of highly efficient nano-biochar towards achieving environmental sustainability.
Collapse
Affiliation(s)
- Yi Hu
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China; Key Laboratory of Urban Forest Ecology of Hunan Province, Changsha, 410004, Hunan, China
| | - Yini Cao
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China; Key Laboratory of Urban Forest Ecology of Hunan Province, Changsha, 410004, Hunan, China.
| | - Chuanxin Ma
- Key Laboratory for City Cluste Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wende Yan
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China; Key Laboratory of Urban Forest Ecology of Hunan Province, Changsha, 410004, Hunan, China.
| |
Collapse
|
33
|
Zhang H, Li Y, Li R, Wu W, Abdelrahman H, Wang J, Al-Solaimani SG, Antoniadis V, Rinklebe J, Lee SS, Shaheen SM, Zhang Z. Mitigation of the mobilization and accumulation of toxic metal(loid)s in ryegrass using sodium sulfide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168387. [PMID: 37952661 DOI: 10.1016/j.scitotenv.2023.168387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/04/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
Remediation of soils contaminated with toxic metal(loid)s (TMs) and mitigation of the associated ecological and human health risks are of great concern. Sodium sulfide (Na2S) can be used as an amendment for the immobilization of TMs in contaminated soils; however, the effects of Na2S on the leachability, bioavailability, and uptake of TMs in highly-contaminated soils under field conditions have not been investigated yet. This is the first field-scale research study investigating the effect of Na2S application on soils with Hg, Pb and Cu contents 70-to-7000-fold higher than background values and also polluted with As, Cd, Ni, and Zn. An ex situ remediation project including soil replacement, immobilization with Na2S, and safe landfilling was conducted at Daiziying and Anle (China) with soils contaminated with As, Cd, Cu, Hg, Ni, Pb and Zn. Notably, Na2S application significantly lowered the sulfuric-nitric acid leachable TMs below the limits defined by Chinese regulations. There was also a significant reduction in the DTPA-extractable TMs in the two studied sites up to 85.9 % for Hg, 71.4 % for Cu, 71.9 % for Pb, 48.1 % for Cd, 37.1 % for Zn, 34.3 % for Ni, and 15.7 % for As compared to the untreated controls. Moreover, Na2S treatment decreased the shoot TM contents in the last harvest to levels lower than the TM regulation limits concerning fodder crops, and decreased the TM root-to-shoot translocation, compared to the untreated control sites. We conclude that Na2S has great potential to remediate soils heavily tainted with TMs and mitigate the associated ecological and human health risks.
Collapse
Affiliation(s)
- Han Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - You Li
- Key laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Weilong Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Hamada Abdelrahman
- Cairo University, Faculty of Agriculture, Soil Science Department, Giza 12613, Egypt
| | - Jianxu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550082 Guiyang, PR China
| | - Samir G Al-Solaimani
- King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, 21589 Jeddah, Saudi Arabia
| | - Vasileios Antoniadis
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Greece
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Sang Soo Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, Republic of Korea.
| | - Sabry M Shaheen
- King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt.
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
34
|
Su Y, Wang Y, Liu G, Zhang Z, Li X, Chen G, Gou Z, Gao Q. Nitrogen (N) "supplementation, slow release, and retention" strategy improves N use efficiency via the synergistic effect of biochar, nitrogen-fixing bacteria, and dicyandiamide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168518. [PMID: 37967639 DOI: 10.1016/j.scitotenv.2023.168518] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
Irrational nitrogen (N) fertilizer management and application practices have led to a range of ecological and environmental problems that seriously threaten food security. In this study, an effective N fertilizer management strategy was established for improving N fertilizer utilization efficiency (NUE). Biochar, N2-fixing bacteria (Enterobacter cloacae), and a nitrification inhibitor (dicyandiamide, DCD) were simultaneously added to the soil during maize cultivation. The goal was to increase soil ammonium nitrogen content and NUE by regulating the relative abundance, enzyme activity, and functional gene expression of N conversion-related soil microbes. Biochar combined with E. cloacae and DCD significantly increased soil N content, and the NUE reached 46.69 %. The relative abundance of Burkholderia and Bradyrhizobium and the activity of nitrogenase increased significantly during biological N2 fixation. Further, the abundance of the nifH gene was significantly up-regulated. The relative abundance of Sphingomonas, Pseudomonas, Nitrospira, and Castellaniella and the activities of ammonia monooxygenase and nitrate reductase decreased significantly during nitrification and denitrification. Moreover, the abundance of the genes amoA and narG was significantly down-regulated. Correlation analyses showed that the increase in soil N2 fixation and the suppression of nitrification and denitrification reactions were the key contributors to the increase in soil N content and NUE. Biochar combined with E. cloacae and DCD synergistically enabled the supplementation, slow release, and retention of N, thus providing adequate N for maize growth. Thus, the combination of biochar, E. cloacae, and DCD is effective for mitigating the irrational application of N fertilizers and reducing N pollution.
Collapse
Affiliation(s)
- Yingjie Su
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yanran Wang
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Guoqing Liu
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Zhongqing Zhang
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Xiaoyu Li
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Guang Chen
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Zechang Gou
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Qiang Gao
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
35
|
Goswami L, Ekblad A, Choudhury R, Bhattacharya SS. Vermi-converted Tea Industry Coal Ash efficiently substitutes chemical fertilization for growth and yield of cabbage (Brassica oleracea var. capitata) in an alluvial soil: A field-based study on soil quality, nutrient translocation, and metal-risk remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168088. [PMID: 37879466 DOI: 10.1016/j.scitotenv.2023.168088] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/10/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
Although coal ashes (CA) can be converted into an eco-friendly product through vermicomposting, the utility of vermiconverted CA in agriculture still needs to be explored. Therefore, the feasibility of vermicomposted tea industry coal ash (VCA) as an alternative nutrient source for cabbage (Brassica oleracea, var. Capitata) production was evaluated through an on-field experiment in alluvial soil. Two types of vermicomposts were prepared using Eisenia fetida (VCAE) and Lampito mauritii (VCAL) and were applied in different combinations with chemical fertilizers. The results revealed a significant increase in nutrient availability (nitrogen, phosphorus, and potassium) in the soil treated with VCA, alongside a concurrent build-up of soil organic carbon stocks, activation of microbial growth, and enhanced soil enzyme activity. Additionally, VCA application substantially reduced toxic metals in the soil, thereby improving soil health and promoting the uptake of essential nutrients (nitrogen, phosphorus, potassium, iron, manganese, copper, and zinc) in cabbage. VCA application reduced the bioaccumulation of potentially toxic metals (chromium, lead, and cadmium) from coal ash, ensuring safer food production. Notably, a 25 % substitution of chemical fertilizers with VCA and farmyard manure (FYM) led to a two-fold increase in the growth and productivity of cabbage. The economic assessment also indicated that large-scale and sustainable recycling of toxic tea industry coal ash in agriculture is feasible. Hence, by integrating VCA-based nutrient management into agricultural practices, developing nations can take significant strides toward achieving circular economy objectives while addressing environmental challenges associated with CA disposal.
Collapse
Affiliation(s)
- Linee Goswami
- Department of Biology, School of Science & Technology, Örebro University, SE 702 81, Sweden.
| | - Alf Ekblad
- Department of Biology, School of Science & Technology, Örebro University, SE 702 81, Sweden
| | - Ratan Choudhury
- Soil and Agro-bioengineering Lab, Department of Environmental Science, Tezpur University, Tezpur, Assam 784028, India
| | - Satya Sundar Bhattacharya
- Soil and Agro-bioengineering Lab, Department of Environmental Science, Tezpur University, Tezpur, Assam 784028, India.
| |
Collapse
|
36
|
Zhang S, Wei L, Trakal L, Wang S, Shaheen SM, Rinklebe J, Chen Q. Pyrolytic and hydrothermal carbonization affect the transformation of phosphorus fractions in the biochar and hydrochar derived from organic materials: A meta-analysis study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167418. [PMID: 37774876 DOI: 10.1016/j.scitotenv.2023.167418] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Carbonized organic materials are widely used to achieve soil improvement and alleviate soil pollution. The carbonization process significantly changes the total phosphorus (P) content and the P form in the solid phase derived from organic materials, which in turn has a significant impact on the P fertilizer effect in soils. In the present study, a meta-analysis with 278 observational data was conducted to detect the impact of the carbonization process (including pyrolytic carbonization and hydrothermal carbonization) on the transformation of P fractions in biochar or hydrochar derived from different organic materials. The results showed that the carbonization process significantly increased the total P content of the solid phase by 67.9%, and that the rate of P recovery from raw materials stayed high with a mean value of 86.8%. Among them, the impact of sludge-derived char was smaller when compared to the manure-derived char and biomass-derived char. The increase of total P in the biochar (or hydrochar) produced at >500 °C (or >200 °C) was more notable than that at <500 °C (or <200 °C). Simultaneously, the carbonization process significantly decreased the proportion of available P pool in the solid phase by 51.7% on average and increased the proportion of stable P pool in the solid phase by 204%. Appropriate production temperature helps to adjust the proportion of stable P pool in the solid phase. This meta-analysis pointed out that the carbonized solid phase recovers most of the P in the feedstock and that it promotes a significant transformation of available P pool in the feedstock to stable P in the carbonized solid phase. These findings provide useful information for the rational use of carbonization technology, the development of corresponding field management strategies, and the potential value of carbonized solid phase utilization.
Collapse
Affiliation(s)
- Shuai Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing 100193, PR China; Key Laboratory of Arable Land Quality Monitoring and Evaluation, State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China
| | - Lulu Wei
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing 100193, PR China
| | - Lukas Trakal
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha 6, Suchdol, Czech Republic
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Qing Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing 100193, PR China.
| |
Collapse
|
37
|
Wang L, Dou Z, Ma C, Jia X, Wang H, Bao W, Wang L, Qu J, Zhang Y. Remediation of di(2-ethylhexyl) phthalate (DEHP) contaminated black soil by freeze-thaw aging biochar. J Environ Sci (China) 2024; 135:681-692. [PMID: 37778838 DOI: 10.1016/j.jes.2023.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 10/03/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP), a complex structure with high toxicity, is a common organic pollutant. This study investigated the effects of fresh biochar (FBC), and freeze-thaw cycled aged biochar (FTC-BC) on DEHP-contaminated soils using a pot experiment. The specific surface area of FBC increased from 145.20 to 303.50 m2/g, and oxygen-containing functional groups increased from 1.26 to 1.48 mol/g after freeze-thaw cycles, greatly enhancing the adsorption of DEHP by biochar in the soil. The comprehensive radar chart evaluation showed that FBC and FTC-BC reduced DEHP growth stress and improved the soil properties. Compared with FBC, FTC-BC performed better in protecting the normal growth of pakchoi and improving soil properties. In addition, the application of biochar increased the diversity and abundance of bacteria in the DEHP-contaminated soil and changed the composition of the soil bacterial community. The partial least squares path model (PLS-PM) showed that adding biochar as a soil remediation agent significantly positively impacted soil nutrients and indirectly reduced the DEHP levels in soil and plants by increasing soil microbial diversity. Compared with FBC, FTC-BC creates a more satisfactory living environment for microorganisms and has a better effect on the degradation of DEHP in the soil. This study provides a theoretical basis for future biochar remediation of DEHP-contaminated soils in cold high-latitude regions.
Collapse
Affiliation(s)
- Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Zeyu Dou
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Chaoran Ma
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiaochen Jia
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Hongye Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Wenjing Bao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
38
|
Wang Q, Duan CJ, Geng ZC, Xu CY. Keystone taxa of phoD-harboring bacteria mediate alkaline phosphatase activity during biochar remediation of Cd-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167726. [PMID: 37832661 DOI: 10.1016/j.scitotenv.2023.167726] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/08/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
Phosphorus (P)-modified biochar can efficiently remediate cadmium (Cd)-contaminated soil. However, the mechanisms of responses of alkaline phosphatase (ALP) and phoD-harboring microorganisms, which are notably sensitive to Cd and P, are not clear during the remediation process. In this study, apple (Malus domestica) tree branches were co-pyrolyzed with tripotassium phosphate (K3PO4) to prepare P-modified biochar, which was used to remediate Cd-soil contaminated soil collected near a mine site. The effect of P-modified biochar on the composition of the phoD-harboring microbial community and its mechanism of interacting with ALP were analyzed. The results showed that the application of P-modified biochar to Cd-contaminated soil promoted the co-precipitation of Cd and phosphate and reduced the content of bioavailable Cd by 69.77 %. P-modified biochar improved the complexity and stability of the soil phoD-harboring microbial community. Furthermore, this study clarified that ALP activity was not completely regulated by the abundance of phoD, but Priestia and Massilia that contain phoD genes dominated the activity of ALP in rhizosphere and bulk soils, respectively. It is notable that bioavailable Cd significantly stimulated Priestia, Massilia, and ALP activity. These findings provide a theoretical basis for the application of P-modified biochar to the remediation of soil contaminated with Cd with respect to P functional microorganisms.
Collapse
Affiliation(s)
- Qiang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Cheng-Jiao Duan
- College of Resources and Environment, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Zeng-Chao Geng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory for Agricultural Environment, Ministry of Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Chen-Yang Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory for Agricultural Environment, Ministry of Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
39
|
Nain P, Purakayastha TJ, Sarkar B, Bhowmik A, Biswas S, Kumar S, Shukla L, Biswas DR, Bandyopadhyay KK, Agarwal BK, Saha ND. Nitrogen-enriched biochar co-compost for the amelioration of degraded tropical soil. ENVIRONMENTAL TECHNOLOGY 2024; 45:246-261. [PMID: 36045480 DOI: 10.1080/09593330.2022.2103742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Tropical soils are often deeply weathered and vulnerable to degradation having low pH and unfavorable Al/Fe levels, which can constrain crop production. This study aims to examine nitrogen-enriched novel biochar co-composts prepared from rice straw, maize stover, and gram residue in various mixing ratios of the biochar and their feedstock materials for the amelioration of acidic tropical soil. Three pristine biochar and six co-composts were prepared, characterized, and evaluated for improving the chemical and biological quality of the soil against a conventional lime treatment. The pH, cation exchange capacity (CEC), calcium carbonate equivalence (CCE) and nitrogen content of co-composts varied between 7.78-8.86, 25.3-30.5 cmol (p+) kg-1, 25.5-30.5%, and 0.81-1.05%, respectively. The co-compost prepared from gram residue biochar mixed with maize stover at a 1:7 dry-weight ratio showed the highest rise in soil pH and CEC, giving an identical performance with the lime treatment and significantly better effect (p < .05) than the unamended control. Agglomerates of calcite and dolomite in biochar co-composts, and surface functional groups contributed to pH neutralization and increased CEC of the amended soil. The co-composts also significantly (p < .05) increased the dehydrogenase (1.87 µg TPF g-1 soil h-1), β-glucosidase (90 µg PNP g-1 soil h-1), and leucine amino peptidase (3.22 µmol MUC g-1 soil h-1) enzyme activities in the soil, thereby improving the soil's biological quality. The results of this study are encouraging for small-scale farmers in tropical developing countries to sustainably reutilize crop residues via biochar-based co-composting technology.
Collapse
Affiliation(s)
- Pooja Nain
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, India
| | - T J Purakayastha
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, India
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Arpan Bhowmik
- Division of Design of Experiments, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, Delhi, India
| | - Sunanda Biswas
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, India
| | - Sarvendra Kumar
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, India
| | - Livleen Shukla
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, India
| | - D R Biswas
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, India
| | - K K Bandyopadhyay
- Division of Agricultural Physics, ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, India
| | - B K Agarwal
- Department of Soil Science and Agricultural Chemistry, Birsa Agricultural University, Ranchi, Jharkhand, India
| | - Namita Das Saha
- Division of Environment Science, ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, India
| |
Collapse
|
40
|
Wang K, Wang S, Zhang X, Wang W, Wang X, Kong F, Xi M. The amelioration and improvement effects of modified biochar derived from Spartina alterniflora on coastal wetland soil and Suaeda salsa growth. ENVIRONMENTAL RESEARCH 2024; 240:117426. [PMID: 37898228 DOI: 10.1016/j.envres.2023.117426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/30/2023]
Abstract
Exotic species Spartina alterniflora (S. alterniflora) are widely invaded in the coastal zones of China and threaten the native ecosystem functions. In this study, phosphorus-magnesium modified BC (P-Mg modified BC) included PA-Mg-BC and DAP-Mg-BC derived from S. alterniflora were successfully prepared by co-pyrolysis of biomass and diammonium phosphate (DAP) or phosphoric acid (PA) and magnesium oxide (MgO). The preparation process markedly improved the surface morphologies, P loading amount, and P-containing functional groups of modified BC. The characterization results indicated that stable and low-solubility Mg-P complex formed on the surface of PA-Mg-BC and DAP-Mg-BC, which delayed the rapid release of P. Moreover, the MgO improved the buffering capacity of PA-Mg-BC and DAP-Mg-BC to competitive anions (SO42- and CO32-) during P release. Meanwhile, pot experiment showed that the suitable applications of PA-Mg-BC and DAP-Mg-BC could improve soil quality and fertility by enhancing SOC, DOC, TN, TP and AP contents, as well as β-glucosidase activities. The amended soil pH and salinity compared to the original soil also declined through precipitation and acid-base neutralization. In addition, P-Mg modified BC could improve bacterial community structure and promote the growth and biomass of Suaeda salsa (S. salsa). This study could provide a feasible method for realizing ecological restoration of coastal wetland and resource utilization of S. alterniflora.
Collapse
Affiliation(s)
- Kang Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao, 266071, China
| | - Sen Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao, 266071, China
| | - Xin Zhang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao, 266071, China
| | - Wenyue Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao, 266071, China
| | - Xiaoyan Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao, 266071, China
| | - Fanlong Kong
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao, 266071, China.
| | - Min Xi
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao, 266071, China.
| |
Collapse
|
41
|
Li H, Ren R, Zhang H, Zhang G, He Q, Han Z, Meng S, Zhang Y, Zhang X. Factors regulating interaction among inorganic nitrogen and phosphorus species, plant uptake, and relevant cycling genes in a weakly alkaline soil treated with biochar and inorganic fertilizer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167280. [PMID: 37742950 DOI: 10.1016/j.scitotenv.2023.167280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
To highlight how biochar affects the interaction between inorganic nitrogen species (ammonium nitrogen, nitrate nitrogen, and nitrite nitrogen: NH4+-N, NO3¯-N, and NO2¯-N) and phosphorus species (calcium phosphate, iron phosphate, and aluminum phosphate: CaP, FeP and AlP) in soil and plant uptake of these nutrients, walnut shell (WS)- and corn cob (CC)-derived biochars (0.5 %, 1 %, 2 %, and 4 %, w/w) were added to a weakly alkaline soil, and then Chinese cabbages were planted. The results showed that the changes in soil inorganic nitrogen were related to biochar feedstock, pyrolysis temperature, and application rate. For soil under the active nitrification condition (dominant NO3¯-N), a significant decrease in the NH4+-N/NO3¯-N ratio after biochar addition indicates enhanced nitrification (excluding WS-derived biochars at 2 % and 4 %), which can be explained by the most positive response of ammonia-oxidizing archaeal amoA to biochar addition. The CC-derived biochar more effectively enhanced soil nitrification than WS-derived biochar did. The addition of 4 % of biochars significantly increased soil inorganic phosphorus, and the addition of CC-derived biochars more effectively increased Ca2P than WS-derived biochars. Biochars significantly decreased plant uptake of phosphorus, while generally had little influence on plant uptake of nitrogen. Interestingly, NO2¯-N in soil significantly positively correlated with total phosphorus in both soil and plant, and significantly negatively correlated with phoC, indicating that a certain degree of NO2¯-N accumulation in soil slightly facilitated plant uptake of phosphorus but inhibited phoC-harboring bacteria. The NO3¯-N in soil significantly positively correlated with Ca2P and Ca8P, while the NH4+-N/NO3¯-N ratio significantly negatively correlated with Ca10P and FeP, indicating that the enhanced nitrification seemed to facilitate the change in phosphorus to readly available ones. This study will help determine how to scientifically and rationally use biochar to regulate inorganic nitrogen and phosphorus species in soil and plant uptake of these nutrients.
Collapse
Affiliation(s)
- Hongyan Li
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi Province, China
| | - Rui Ren
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi Province, China
| | - Hongyu Zhang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi Province, China
| | - Guixiang Zhang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi Province, China.
| | - Qiusheng He
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi Province, China
| | - Zhiwang Han
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi Province, China
| | - Shuhui Meng
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi Province, China
| | - Yanli Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiaohui Zhang
- Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, 037009, China
| |
Collapse
|
42
|
Cui H, Zhu H, Shutes B, Rousseau AN, Feng WD, Hou SN, Ou Y, Yan BX. Soil aggregate-driven changes in nutrient redistribution and microbial communities after 10-year organic fertilization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119306. [PMID: 37839204 DOI: 10.1016/j.jenvman.2023.119306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
Research studies on nutrient content and microbial communities after the application of organic manure have been reported, while available information about multi-interaction mechanisms of nutrient stoichiometry and microbial succession in soil aggregates remains limited. This work conducted a 10-year field experiment amended with cow manure (1.5 t/ha), during which the application of organic manure stimulated the fragmentation of soil macro-aggregates (>5 mm) and the agglomeration of soil micro-aggregates (<0.25 mm). Hence, the proportion of medium-size aggregates (0.25-5 mm) was increased in bulk soil, and there was an insignificant difference in the stability of soil aggregates. Meanwhile, the application of organic manure increased soil organic carbon (SOC), total nitrogen (TN) and phosphorus (TP) in all soil aggregate fractions. SOC, TN and TP were higher in micro-aggregates (<0.25 mm) after the application of organic manure, thus the dominating phylum of bacteria and fungi was more abundance in micro-aggregates due to the increase in nutrient level. During the organic fertilization process, fungal communities significantly changed because the variation of carbon-to-nitrogen ratio (C:N) in soil aggregates. Cultivated farmland in Northeast China showed a considerable capacity to sequestrate SOC during the organic fertilization process, but nitrogen may be a primary macro-element limiting soil productivity. Theoretically, organic manure amended with nitrogen fertilizer could be an effective measure to maintain microbial diversity and crop productivity in agro-ecosystems in Northeast China.
Collapse
Affiliation(s)
- Hu Cui
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Hui Zhu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| | - Brian Shutes
- Department of Natural Sciences, Middlesex University, Hendon, London, NW4 4BT, UK
| | - Alain N Rousseau
- Centre Eau Terre Environnement, Institut National de la Recherche Scientifique (INRS-ETE), 490 de la Couronne, Qu'ebec, Qc, G1K 9A9, Canada
| | - Wei-Dong Feng
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sheng-Nan Hou
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Yang Ou
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| | - Bai-Xing Yan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| |
Collapse
|
43
|
Akpinar D, Chowdhury S, Tian J, Guo M, Barton S, Imhoff PT. Understanding a wood-derived biochar's impact on stormwater quality, plant growth, and survivability in bioretention soil mixtures. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119359. [PMID: 37871550 DOI: 10.1016/j.jenvman.2023.119359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/26/2023] [Accepted: 10/14/2023] [Indexed: 10/25/2023]
Abstract
Bioretention systems are planted media filters used in stormwater infrastructure. Maintaining plant growth and survival is challenging because most designs require significant sand. Conventional bioretention soil media (BSM) might be augmented with biochar to make the BSM more favorable to plants, to improve nutrient removal efficiency, and enhance plant survivability during drought while replacing compost/mulch components that have been linked to excess nutrient export. Pots with BSMs representing high and moderate sand content were amended with wood biochar, planted with switchgrass, and subjected to weekly storms for 20 weeks, followed by a 10-week drought. After 20 weeks, 4% biochar amendment significantly increased stormwater infiltration (67%) and plant available water (52%) in the high sand content BSM (NC mix, which meets requirements for the state of North Carolina (US) and contains no compost/mulch), and these favorable hydraulic properties were not statistically different from a moderate sand content, biochar-free BSM with compost/mulch (DE mix, which meets requirements for state of Delaware (US)). While biochar amendment improved plant height (25%), the number of shoots (89%), and total biomass (70%) in the NC mix, these parameters were still less than those in the biochar-free DE mix containing compost/mulch. TN and NO3-1 removal were also improved (28-35%) by biochar amendment to NC mix, and the resulting TN and TP loadings to groundwater were 10 and 7 times less, respectively than biochar-free DE mix with compost/mulch. During the drought period, biochar amendment increased the time to switchgrass wilting by ∼8 days in the NC mix but remained 40% less than the biochar-free DE mix. A recalcitrant carbon-like biochar mitigates some of the deleterious effects of high sand content BSM on plants, and where nutrient pollution is a concern, replacement of compost/mulch with wood biochar in BSM may be desired.
Collapse
Affiliation(s)
- Derya Akpinar
- Department of Civil and Environmental Engineering, University of Delaware, DE, 19716, Newark, USA
| | - Sraboni Chowdhury
- Department of Civil and Environmental Engineering, University of Delaware, DE, 19716, Newark, USA; Department of Civil and Environmental Engineering, University of Iowa, IA, 52242, Iowa City, USA
| | - Jing Tian
- College of Chemistry and Materials Science, Sichuan Normal University, 610066, Chengdu, China
| | - Mingxin Guo
- Department of Agriculture and Natural Resources, Delaware State University, DE, 19901, Dover, USA
| | - Susan Barton
- Department of Plant and Soil Sciences, University of Delaware, DE, 19716, Newark, USA
| | - Paul T Imhoff
- Department of Civil and Environmental Engineering, University of Delaware, DE, 19716, Newark, USA.
| |
Collapse
|
44
|
Wang L, Chen D, Zhu L. Biochar carbon sequestration potential rectification in soils: Synthesis effects of biochar on soil CO 2, CH 4 and N 2O emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:167047. [PMID: 37716679 DOI: 10.1016/j.scitotenv.2023.167047] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/22/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Biochar production and its soil sequestration are promising ways to mitigate global warming. Effects of biochar on soil CO2, CH4 and N2O release have been studied extensively. In contrast, few studies have comprehensively quantified and synthesized the effect of biochar on soil greenhouse gas (GHG) emission and coupled it to the calculation of carbon sequestration potential. This study obtained the influence coefficient of biochar on soil GHG release relative to biochar carbon storage potential in soils under different environmental conditions, by literature statistics and data transformations. Our results showed that the overall average effect of biochar on soil CO2, CH4, N2O and CO2e release observed in our databases would compensate the potential of biochar soil carbon storage by -2.1 ± 3.3 %, 13.1 ± 9.8 %, -1.6 ± 8.6 % and 5.3 ± 11.4 %, respectively. By combining biochar induced soil GHG emission reduction mechanism and results from our literature statistics, some specific application environmental scenarios (such as biochar with high pyrolysis temperature of 500-600 °C, application in flooded soils, application in straw-return scenarios, etc.) were recommended, which could increase the actual carbon sequestration potential of biochar by an average of about 43.3 ± 30.2 % relative the amount of carbon buried. Our findings provide a scientific basis for developing a precise application strategy towards large scale adoption of biochar as a soil amendment for climate change mitigation.
Collapse
Affiliation(s)
- Lin Wang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Dingjiang Chen
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Lizhong Zhu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| |
Collapse
|
45
|
Liu S, Cui Z, Ding D, Bai Y, Chen J, Cui H, Su R, Qu K. Effect of the molecular weight of DOM on the indirect photodegradation of fluoroquinolone antibiotics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119192. [PMID: 37827075 DOI: 10.1016/j.jenvman.2023.119192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/16/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023]
Abstract
Dissolved organic matter (DOM) is ubiquitous and widespread in natural water and influences the transformation and removal of antibiotics. Nevertheless, the influence of DOM molecular weight (MW) on the indirect photodegradation of antibiotics has rarely been reported. This study attempted to explore the influence of the molecular weight of DOM on the indirect photodegradation of two fluoroquinolone antibiotics (FQs), ofloxacin (OFL) and norfloxacin (NOR), by using UV-vis absorption and fluorescence spectroscopy. The results showed that indirect photodegradation was considered the main photodegradation pathway of FQs in DOM fractions. Triplet-state excited organic matter (3DOM*) and singlet oxygen (1O2) were the main reactive intermediates (RIs) that affected the indirect photodegradation of FQs. The indirect photodegradation rate of FQs was significantly promoted in DOM fractions, especially in the low molecular weight DOM fractions (L-MW DOM, MW < 10 kDa). The results of excitation-emission matrix spectroscopy combined with parallel factor analysis (EEM-PARAFAC) showed that terrestrial humic-like substances had a higher humification degree and fluorophore content in L- MW DOM fractions, which could produce more 3DOM* and 1O2 to promote the indirect photodegradation of FQs. This study provided new insight into the effects of DOM at the molecular weight level on the indirect photodegradation of antibiotics in natural water.
Collapse
Affiliation(s)
- Shukai Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, 266071, China; Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Zhengguo Cui
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, 266071, China
| | - Dongsheng Ding
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, 266071, China
| | - Ying Bai
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, 266071, China.
| | - Jianlei Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, 266071, China
| | - Hongwu Cui
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Rongguo Su
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| | - Keming Qu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, 266071, China
| |
Collapse
|
46
|
Nafees M, Ullah S, Ahmed I. Bioprospecting Biochar and Plant Growth Promoting Rhizobacteria for Alleviating Water Deficit Stress in Vicia faba L. GESUNDE PFLANZEN 2023; 75:2563-2577. [DOI: 10.1007/s10343-023-00875-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/07/2023] [Indexed: 02/07/2024]
|
47
|
Xiu L, Gu W, Sun Y, Wu D, Wang Y, Zhang H, Zhang W, Chen W. The fate and supply capacity of potassium in biochar used in agriculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165969. [PMID: 37541494 DOI: 10.1016/j.scitotenv.2023.165969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/07/2023] [Accepted: 07/30/2023] [Indexed: 08/06/2023]
Abstract
We used chemical extraction, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) to study the potassium (K) in biochar prepared from corn straw at different temperatures (300 °C, 500 °C, 700 °C and 900 °C). The characteristics of biochar were analyzed through Fourier transform infrared spectroscopy (FTIR) and specific surface area analysis. We found that the potassium in biochar can be divided into water soluble potassium, exchangeable potassium, non-exchangeable potassium, and insoluble potassium according to the availability of agricultural potassium. The fate of potassium in straw changed as follows: with increasing pyrolysis temperature, the proportion of the sum of exchangeable and non-exchangeable potassium decreased, and the proportions of insoluble and lost potassium increased. The total, water soluble and exchangeable potassium contents in biochar were highest at 700 °C. The non-exchangeable and insoluble potassium contents were highest at 300 °C and 900 °C, respectively. Kinetics experiments were conducted to determine the different fates of potassium released from biochar at different temperatures; pot experiments were also undertaken. The release of different forms of potassium in biochar at different temperatures is mainly dominated by heterogeneous diffusion. Biochar increased not only the content of different forms of potassium in soil but also the potassium content of soybean stems and leaves. We calculated the potassium supply capacity of biochar by two strategies, measurements of the potassium content in biochar and the conversion rate of potassium in straw during pyrolysis. The most active and efficient potassium supply capacities were 33.60 g·kg-1 and 9.53 g·kg-1 at 700 °C and 300 °C, respectively. Biochar provides readily available (water soluble and exchangeable) potassium and a long-term (non-exchangeable) potassium supply to soil.
Collapse
Affiliation(s)
- Liqun Xiu
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China; National Biochar Institute, Shenyang Agricultural University, Shenyang 110866, China; Agronomy College, Shenyang Agricultural University, Shenyang 110866, China
| | - Wenqi Gu
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China; National Biochar Institute, Shenyang Agricultural University, Shenyang 110866, China; Agronomy College, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuanyuan Sun
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China; National Biochar Institute, Shenyang Agricultural University, Shenyang 110866, China; Agronomy College, Shenyang Agricultural University, Shenyang 110866, China
| | - Di Wu
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China; National Biochar Institute, Shenyang Agricultural University, Shenyang 110866, China; Agronomy College, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuning Wang
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China; National Biochar Institute, Shenyang Agricultural University, Shenyang 110866, China; Agronomy College, Shenyang Agricultural University, Shenyang 110866, China
| | - Honggui Zhang
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China; National Biochar Institute, Shenyang Agricultural University, Shenyang 110866, China; Agronomy College, Shenyang Agricultural University, Shenyang 110866, China
| | - Weiming Zhang
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China; National Biochar Institute, Shenyang Agricultural University, Shenyang 110866, China; Agronomy College, Shenyang Agricultural University, Shenyang 110866, China.
| | - Wenfu Chen
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China; National Biochar Institute, Shenyang Agricultural University, Shenyang 110866, China; Agronomy College, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
48
|
Ndoung OCN, Souza LRD, Fachini J, Leão TP, Sandri D, Figueiredo CCD. Dynamics of potassium released from sewage sludge biochar fertilizers in soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:119057. [PMID: 37742559 DOI: 10.1016/j.jenvman.2023.119057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
The solid product of sewage sludge (SS) pyrolysis, called SS biochar (SSB), is rich in carbon and nutrients, such as phosphorus (P), nitrogen (N), calcium (Ca), and zinc (Zn). However, SSB has a low potassium (K) concentration because it is released with water during the final stage of sewage treatment. The enrichment of SSB with mineral sources of K can solve the low supply of K in SSB and produce an organomineral fertilizer with a slow release of K. However, the dynamics of K release from these enriched fertilizers in different soil types remain unclear. This study investigated the dynamics of K release from biochar-based fertilizer (BBF) in the form of pellets and granules in two soil types (clayey and sandy) and natural silica. An incubation experiment was conducted for 60 days, and replicates were evaluated at prescribed time intervals. After the incubation period, the levels of K available in the solid fraction were determined, and the dynamics of K release were evaluated using four nonlinear regression models. BBFs achieved a slower release of K than the mineral KCl. The dynamics of K release were affected by the physical form of BBF, such that the pelleted BBF exhibited the slowest K release. Furthermore, regarding the concentration detected in the solid phase, the total released was highest in clayey soil, followed by sandy soil and natural silica. The enriched BBFs reduced K release throughout the experimental period, behaving as slow-release fertilizers with the potential to optimize K uptake by plants throughout the growth cycle. Further studies are required to evaluate K leaching and retention in the soil profile when biochar-based fertilizers are applied.
Collapse
Affiliation(s)
| | - Ludmila Raulino de Souza
- Faculty of Agronomy and Veterinary Medicine, University of Brasilia, 70910-970, Brasilia, DF, Brazil
| | - Joisman Fachini
- Faculty of Agronomy and Veterinary Medicine, University of Brasilia, 70910-970, Brasilia, DF, Brazil
| | - Tairone Paiva Leão
- Faculty of Agronomy and Veterinary Medicine, University of Brasilia, 70910-970, Brasilia, DF, Brazil
| | - Delvio Sandri
- Faculty of Agronomy and Veterinary Medicine, University of Brasilia, 70910-970, Brasilia, DF, Brazil
| | | |
Collapse
|
49
|
Farooqi ZUR, Qadir AA, Alserae H, Raza A, Mohy-Ud-Din W. Organic amendment-mediated reclamation and build-up of soil microbial diversity in salt-affected soils: fostering soil biota for shaping rhizosphere to enhance soil health and crop productivity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109889-109920. [PMID: 37792186 DOI: 10.1007/s11356-023-30143-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/25/2023] [Indexed: 10/05/2023]
Abstract
Soil salinization is a serious environmental problem that affects agricultural productivity and sustainability worldwide. Organic amendments have been considered a practical approach for reclaiming salt-affected soils. In addition to improving soil physical and chemical properties, organic amendments have been found to promote the build-up of new halotolerant bacterial species and microbial diversity, which plays a critical role in maintaining soil health, carbon dynamics, crop productivity, and ecosystem functioning. Many reported studies have indicated the development of soil microbial diversity in organic amendments amended soil. But they have reported only the development of microbial diversity and their identification. This review article provides a comprehensive summary of the current knowledge on the use of different organic amendments for the reclamation of salt-affected soils, focusing on their effects on soil properties, microbial processes and species, development of soil microbial diversity, and microbial processes to tolerate salinity levels and their strategies to cope with it. It also discusses the factors affecting the microbial species developments, adaptation and survival, and carbon dynamics. This review is based on the concept of whether addition of specific organic amendment can promote specific halotolerant microbe species, and if it is, then which amendment is responsible for each microbial species' development and factors responsible for their survival in saline environments.
Collapse
Affiliation(s)
- Zia Ur Rahman Farooqi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan.
| | - Ayesha Abdul Qadir
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Hussein Alserae
- Department of Soil Sciences and Water Resources, College of Agricultural Engineering Science, Baghdad University, Baghdad, Iraq
| | - Ali Raza
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Waqas Mohy-Ud-Din
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
- Department of Soil and Environmental Sciences, Ghazi University, Dera Ghazi Khan, 32200, Pakistan
| |
Collapse
|
50
|
Iboko MP, Dossou-Yovo ER, Obalum SE, Oraegbunam CJ, Diedhiou S, Brümmer C, Témé N. Paddy rice yield and greenhouse gas emissions: Any trade-off due to co-application of biochar and nitrogen fertilizer? A systematic review. Heliyon 2023; 9:e22132. [PMID: 38045115 PMCID: PMC10692810 DOI: 10.1016/j.heliyon.2023.e22132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 12/05/2023] Open
Abstract
Combined application of biochar and nitrogen (N) fertilizer could offer opportunities to increase rice yield and reduce methane emissions from paddy fields. However, this strategy may increase nitrous oxide (N2O) emissions, hence its interactive effects on GHG emissions, global warming potential (GWP) and GHG intensity (GHGI) remained poorly understood. We conducted a systematic review to i) evaluate the overall effects of combined application of biochar and N fertilizer rates on GHGs emissions, GWP, rice yield, and GHGI, ii) determine the quantities of biochar and N-fertilizer application that increase rice yield and reduce GHGs emissions and GHGI, and iii) examine the effects of biochar and different types of nitrogen fertilizers on rice yield, GHGs, GWP, and GHGI using data from 45 research articles and 183 paired observations. The extracted data were grouped based on biochar and N rates used by researchers as well as N fertiliser types. Accordingly, biochar rates were grouped into low (≤9 tons/ha), medium (>9 and ≤ 20 ton/ha) and high (>20 tons/ha), while N rates were grouped into three categories: low (≤140 kg N/ha), medium (>140 and ≤ 240 kg N/ha), and high (>240 kg N/ha). For fertiliser types, N rates were grouped as: low (≤150 kg N/ha), medium (>150 and ≤250 kg N/ha), and high (>250 kg N/ha) and N types into: urea, NPK, NPK plus urea (NPK_urea) and NPK plus (NH4)2SO4 (NPK_(NH4)2SO4). Results showed that biochar and N fertiliser significantly affected GHGs emissions, GWP, GHGI and rice yield. Compared to control (i.e., sole N application), co-application of high biochar and medium N rates significantly decreased CH4 emission (82 %) while low biochar with low N rates enhanced CH4 emission (114 %). In contrast, high biochar combined with low N decreased N2O emission by 91 % whereas medium biochar and high N rates resulted in 82 % increase in N2O emission relative to control. The highest GWP and GHGI were observed under co-application of medium biochar and low N rates. Highest rice yield was observed under low biochar rate and high N rate. Regardless of N fertiliser type and biochar rates, increasing N rates increased rice yield and N2O emissions. The highest GWP and GHGI were recorded under sole NPK application. Combination of low biochar and medium N produced low GHGs emissions, high grain yield, and the lowest GHGI, and could be recommended to smallholder farmers to increase rice yield and reduce greenhouse gas emissions from paddy rice field. Further studies should be conducted to evaluate the effects of biochar properties on soil characteristics and greenhouse gas emissions.
Collapse
Affiliation(s)
- Maduabuchi P. Iboko
- Graduate Research Program, Climate Change and Agriculture, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Mali
- Graduate Research Program, Climate Change and Agriculture, Institut Polytechnique Rural de Formation et de Recherche Appliquée, Katibougou, Mali
- School of Agriculture, University of Cape Coast, Cape Coast, Ghana
| | | | - Sunday E. Obalum
- Department of Soil Science, University of Nigeria, Nsukka, 410001, Nigeria
| | - Chidozie J. Oraegbunam
- Global Station for Food, Land & Water Resources, Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9 Kita-Ku, Sapporo, Hokkaido, 060-8589, Japan
| | - Siméon Diedhiou
- Graduate Research Program, Climate Change and Agriculture, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Mali
- Graduate Research Program, Climate Change and Agriculture, Institut Polytechnique Rural de Formation et de Recherche Appliquée, Katibougou, Mali
- School of Agriculture, University of Cape Coast, Cape Coast, Ghana
| | - Christian Brümmer
- Thünen Institute of Climate-Smart Agriculture, Bundesallee 50, 38116, Braunschweig, Germany
| | - Niaba Témé
- Labo Biotechnologie, Institute D'Economie Rurale, Sotuba, Mali
| |
Collapse
|