1
|
Saeedi Z, Sorouraddin SM, Farajzadeh MA, Afshar Mogaddam MR. Development of magnetic dispersive solid phase extraction of Cd(II) ions from dairy products using an Fe 3O 4@ZIF-8@IIP nanocomposite sorbent. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:3331-3343. [PMID: 40202237 DOI: 10.1039/d4ay02284j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Based on dispersive micro solid phase extraction, a magnetic ion imprinted polymer-metal organic framework (Fe3O4@ZIF-8@IIP) nanocomposite was prepared in this work as a selective and effective sorbent to extract and preconcentrate cadmium(II) ions in dairy samples. An effective extraction process was made possible by the magnetic properties of iron oxide nanoparticles, metal-organic framework's large specific surface area, and ion imprinted polymer's selectivity toward Cd(II) ions. Fourier transform infrared spectrometry and scanning electron microscopy were used to characterize the produced sorbent. Effective optimization factors were examined and optimized, including the volume and type of desorption solvent, the type and duration of stirring, the pH of solution, and the quantity of the sorbent. The limits of detection and quantification under optimal extraction conditions were 0.09 and 0.30 μg L-1, respectively. The linear range, which was 0.30-100 μg L-1, had a coefficient of determination of 0.9927. A satisfactory match was observed in the data collected after testing a certified reference material (NIST SRM 1549 powder milk) to verify the established procedure. When Cd(II) ions were determined at 10 μg L-1 (n = 5), the approach produced relative standard deviation values of ≤3.1%. The developed technique was effectively used to determine Cd(II) ions concentration in several dairy products.
Collapse
Affiliation(s)
- Zohreh Saeedi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | | | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
- Engineering Faculty, Near East University, 99138 Nicosia, North Cyprus, Mersin 10, Türkiye
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center of New Material and Green Chemistry, Khazar University, 41 Mehseti Street, Baku AZ1096, Azerbaijan
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Chang B, Yang T, Fan S, Zhen L, Zhong X, Yang F, Liu Y, Shao C, Hu F, Xu C, Yang Y, Dai Y, Lv J, Du W. Molecular-level insights of microplastic-derived soluble organic matter and heavy metal interactions in different environmental occurrences through EEM-PARAFAC and FT-ICR MS. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137050. [PMID: 39818050 DOI: 10.1016/j.jhazmat.2024.137050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/19/2024] [Accepted: 12/30/2024] [Indexed: 01/18/2025]
Abstract
The interactions between microplastic-derived dissolved organic matter (MPs-DOM) and heavy metals (Cu, Pb, and Cd) regulate the complex environmental transport behavior of pollutants in terrestrial and aquatic environments. In this study, fluorescence excited emission matrix spectroscopy combined with parallel factor analysis (EEM-PARAFAC) and electrospray ionization coupled Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) were employed to investigate the complexation mechanism of MPs-DOM with heavy metals, as well as the effects of different environmental occurrences of MPs-DOM on the transport behaviors of heavy metals in saturated porous medium. The findings demonstrated that MPs-DOM, particularly humic-like substances containing aromatic structures and various oxygen functional groups, could form stable complexes with heavy metals. This interaction significantly altered the transport capacity of Pb and Cu in saturated porous media. It is noteworthy that MPs-DOM in the free and deposited states in the environment may have markedly disparate effects on heavy metal transport. MPs-DOM in the free state may facilitate the co-migration of heavy metal ions in porous media, thereby enhancing the mobility of heavy metals. In contrast, sedimentary-state MPs-DOM can retain heavy metals in porous media and inhibit their migration through complexation with them.
Collapse
Affiliation(s)
- Bokun Chang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Tianhuan Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Shubo Fan
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Leming Zhen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xianbao Zhong
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Fang Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yang Liu
- Ocean college, Zhejiang University, Dinghai 316000, China
| | - Chen Shao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Feinan Hu
- College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling 712100, China
| | - Chenyang Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yajun Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China
| | - Yunchao Dai
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China
| | - Jialong Lv
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China.
| | - Wei Du
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China.
| |
Collapse
|
3
|
Yang J, Liu R, Sun Z, Zhang Y, Ju Y, Li X, Wang J, Gong Y. Synthesis of honeycomb-like citric acid-crosslinked chitosan hydrogel beads (cCHBs): Insight into structural characteristics of Cu(II)-loaded cCHBs (cCHBs-Cu(II)). Int J Biol Macromol 2025; 301:140244. [PMID: 39864697 DOI: 10.1016/j.ijbiomac.2025.140244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/07/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
To date, it has been regarded as one of the most challenging issues to construct novel adsorbents possessing excellent adsorption performance toward heavy metals including copper ions (Cu(II)). Especially, it is controversy about the structural characteristics of chitosan-based adsorbents adsorbed with Cu(II) ions, which could function as new adsorbents. In this study, we adopt a freeze-drying process to synthesize honeycomb-like chitosan hydrogel beads crosslinked with citric acid (cCHBs), further characterize the microstructures of cCHBs and eventually reveal the thermodynamics equations for the removal of target Cu(II). The results show that (1) the tricarboxylic groups within citric acid could prompt to construct long-range ordered channels of cCHBs under a freeze-drying process; (2) the maximum adsorption capacity of cCHBs for Cu(II) was 195.3 mg g-1 calculated by a Langmuir model; (3) the adsorption process of Cu(II) onto cCHBs was a spontaneous, endothermic, and entropy-increasing process. Moreover, the structural characteristics for honeycomb-like cCHBs adsorbed with Cu(II) (cCHBs-Cu(II)) as new adsorbents have been revealed with the adsorption of phosphate anions, which were further simulated with density functional theory (DFT). Accordingly, the superior adsorption performance of cCHBs and cCHBs-Cu(II) sheds light on a significant candidate for selective separation of a series of oxyanions.
Collapse
Affiliation(s)
- Jing Yang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, China
| | - Ru Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, China
| | - Zifei Sun
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, China
| | - Yizhong Zhang
- Seawater Hydrogen Energy and Water Treatment Laboratory, Department of Environmental Technology, The Institute of Seawater Desalination and Multipurpose Utilization, Ministry of Natural Resources (MNR), Tianjin 300192, China; College of Urban and Rural Construction, Hebei Agricultural University, Baoding 071001, China
| | - Yongming Ju
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, China.
| | - Xiaodong Li
- Shimadzu China Innovation Center, Shimadzu (China) Co. LTD, Beijing 100020, China
| | - Jianguo Wang
- Nanjing Guohuan Science And Technology Co., Ltd, Nanjing 210042, China
| | - Yu Gong
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, China.
| |
Collapse
|
4
|
Lu Y, Li P, Cheng L, Ai L, Cao J, Yan H. Chitosan-glutaraldehyde graphene oxide aerogel for extraction of polybrominated and -chlorinated carbazoles in lotus root. Food Chem 2025; 465:142132. [PMID: 39608039 DOI: 10.1016/j.foodchem.2024.142132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 11/30/2024]
Abstract
Halogenated carbazoles (HCZs) are prevalent in sediments, pose a risk of entering the human food chain via lotus roots. However, starch, protein, and fat in lotus root complicate determination of HCZs in this food. This study introduces a straightforward, sensitive, and rapid method for detecting four HCZs in lotus roots. The method employs a conical monolithic extraction column (MEC) containing chitosan-glutaraldehyde-graphene oxide aerogel (CS-GA-GOA) material. The CS-GA-GOA - MEC successfully achieved extraction of four HCZs in spiked lotus root samples in under 5 min. The method was rapid (15 min) compared with alternatives, as well as being sensitivity (0.08-0.27 ng/g), accurate (89.7 %-104.2 %), and more cost-effective. This work contributes to the exploration of advanced adsorbents but also broadens the applicability of graphene oxide aerogels in extraction processes, paving the way for the development of rapid and accurate analytical methods for HCZs in foods.
Collapse
Affiliation(s)
- Yanke Lu
- Hebei Key Laboratory of Analytical Science and Technology, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Pengfei Li
- Hebei Key Laboratory of Analytical Science and Technology, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Liuliu Cheng
- Hebei Key Laboratory of Analytical Science and Technology, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Lianfeng Ai
- Technology Center of Shijiazhuang Customs, Shijiazhuang 050051, China.
| | - Jiankun Cao
- Hebei Key Laboratory of Public Health Safety, College of Public Health, Hebei University, Baoding 071002, China
| | - Hongyuan Yan
- Hebei Key Laboratory of Analytical Science and Technology, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; Hebei Key Laboratory of Public Health Safety, College of Public Health, Hebei University, Baoding 071002, China.
| |
Collapse
|
5
|
Muhmood A, Cui S, Wang J, Wang D, Pugliese L, Wu S. Eco-nano solutions for rapid phosphorus recovery: Closing the loop for sustainable agriculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 964:178477. [PMID: 39837119 DOI: 10.1016/j.scitotenv.2025.178477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/07/2024] [Accepted: 01/09/2025] [Indexed: 01/23/2025]
Abstract
Efficient phosphorus (P) removal from agricultural drainage is crucial for making its removal and recovery economically viable and operationally feasible. This study evaluated cost-effective, green-synthesized nanoparticles (using grass extract) for rapid and efficient P adsorption. Batch experiments were conducted to assess the effect of pH, P concentration, adsorbent dosage, contact time, and temperature on P adsorption. The nanoparticles removed 20 mg/L of P in 5 min, demonstrating their significant potential for effective adsorption in short retention time. They achieved a maximum adsorption capacity of 77.5 mg g-1, outperforming their chemically synthesized counterparts. Moreover, smaller particles exhibited faster initial adsorption, while larger ones contributed more to overall adsorption over time. Modeling results revealed that rapid initial P adsorption was driven by physisorption, while chemisorption controlled the rate of adsorption in the later stages. After five regeneration cycles, the nanoparticles retained over 50 % of their adsorption capacity, demonstrating strong reusability potential. Further research is needed to optimize these nanoparticles for P removal from dynamic agricultural drainage, offering a cost-effective and sustainable solution for P management.
Collapse
Affiliation(s)
- Atif Muhmood
- Department of Agroecology, Aarhus University, Blichers Alle 20, 8830 Tjele, Denmark; Institute of Soil Chemistry and Environmental Sciences, AARI, Faisalabad, Pakistan
| | - Shihao Cui
- Department of Agroecology, Aarhus University, Blichers Alle 20, 8830 Tjele, Denmark
| | - Jingyu Wang
- Department of Agroecology, Aarhus University, Blichers Alle 20, 8830 Tjele, Denmark
| | - Deyong Wang
- Department of Materials and Production, Aalborg University, Fibigerstræde 14, 9220 Aalborg, Denmark
| | - Lorenzo Pugliese
- Department of Agroecology, Aarhus University, Blichers Alle 20, 8830 Tjele, Denmark
| | - Shubiao Wu
- Department of Agroecology, Aarhus University, Blichers Alle 20, 8830 Tjele, Denmark.
| |
Collapse
|
6
|
Saadu Itas Y, Khandaker MU, Mahmoud M. Evaluating the CO 2 capture potential of MgO sheets: a DFT study on the effects of vacancy and Ni doping for assessing environmental sustainability. RSC Adv 2025; 15:3047-3059. [PMID: 39885860 PMCID: PMC11778251 DOI: 10.1039/d4ra08592b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/13/2025] [Indexed: 02/01/2025] Open
Abstract
Investigations on two-dimensional materials for efficient carbon dioxide (CO2) capture and storage have recently attracted much attention, especially in the global industrial sector. In this work, the CO2 uptake by three configurations of two-dimensional magnesium oxide was investigated using density functional theory. CO2 capture analysis was performed considering the geometrical, thermophysical, vibrational, electronic and optical properties. Results indicated that CO2 adsorption by magnesium oxide (MgO) sheets is a spontaneous process accompanied by a decrease in Gibbs free energy. Moreover, the CO2 molecular entropy and enthalpy of the CO2 adsorbed sheet were decreased, indicating that the entire process was enthalpy-driven. Among the pristine, vacant and nickel-doped (Ni-doped) MgO sheets, the Ni-doped system was found to have the highest values of Gibbs free energy, enthalpy and entropy in the order of -51.366 kJ mol-1-K, -65.105 kJ mol-1 and 127.606 J mol-1, respectively. It was also found to adsorb CO2 in the ultraviolet and visible (UV-Vis) regions within the range of 100-850 nm. Electronic interactions demonstrated that metallicity was significantly induced on the MgO sheet Ni impurity states, which enhanced the adsorption ability. Notably, hybrid orbitals between p y and p z revealed strong physisorption, as confirmed by the partial density of states (PDOS). The findings of this research promote CO2 capture sustainability by encouraging future experimentalists to use two-dimensional MgO as a better surface for CO2 capture.
Collapse
Affiliation(s)
- Yahaya Saadu Itas
- Applied Physics and Radiation Technologies Group, CCDCU, School of Engineering and Technology, Sunway University 47500 Bandar Sunway Selangor Malaysia
- Department of Physics, Bauchi State University Gadau Nigeria
- NanoScience and Technology Research Group, Department of Physics, Saadu Zungur University Nigeria
| | - Mayeen Uddin Khandaker
- Applied Physics and Radiation Technologies Group, CCDCU, School of Engineering and Technology, Sunway University 47500 Bandar Sunway Selangor Malaysia
- Faculty of Graduate Studies, Daffodil International University Daffodil Smart City, Birulia, Savar Dhaka 1216 Bangladesh
- Department of Physics, College of Science, Korea University 145 Anam-ro, Seongbuk-gu Seoul 02841 Republic of Korea
| | - Mustafa Mahmoud
- Central Labs, King Khalid University AlQura'a, P.O. Box 960 Abha Saudi Arabia
- Department of Radiological Sciences, College of Applied Medical Sciences, King Khalid University Abha 61421 Saudi Arabia
| |
Collapse
|
7
|
El-Gazzar N, Abdo E, Rabie G, El-Sayed MT. Suppression of mycotoxins production and efficient chelation of heavy metals using natural melanin originated from Aspergillus flavus and Aspergillus carbonarius. BMC Biotechnol 2025; 25:6. [PMID: 39794745 PMCID: PMC11724575 DOI: 10.1186/s12896-024-00941-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND This study employed melanin synthesized by Aspergillus flavus and Aspergillus carbonarius to inhibit the production of mycotoxins and bioremediation of heavy metals (HMs). METHODS First, twenty fungal isolates were obtained from soil samples, and were evaluated to produce melanin. The melanin of the most potent producers has undergone several confirmatory experiments, including, Dihydroxyphenylalanine (DOPA)-inhibitor-kojic acid pathway detection, High-performance liquid chromatography (HPLC), Fourier-transform infrared (FTIR) and Nuclear magnetic resonance (NMR). Additionally, the melanin production culture conditions were optimized. The antioxidant activity of melanin was detected with 1,1-Diphenyl-2-picrylhydrazyl (DPPH). HPLC was used to measure the mycotoxins produced in culture media supplemented with melanin. Molecular docking study investigated molecular interactions between melanin and mycotoxins through in silico approaches. FTIR and Energy-dispersive X-ray spectroscopy (EDX) were utilized to determine the percentage of melanin-chelated HMs, and an atomic absorption spectrophotometer (AAS) was used to detect HMs removal efficiency. RESULTS The melanin-enriched medium (0.3% and 0.4%) exhibited complete inhibition of aflatoxin B1 (AF-B1) by A. flavus and ochratoxin A (OTA) by A. carbonarius, respectively. Furthermore, melanin showed effective HM removal efficiency, increasing with melanin concentration. The removal efficiency of Cd+2 and Cr+6 by 1 mg/mL melanin was 49% and 63%, respectively. When the concentration of melanin was increased to 15 mg/mL, the removal efficiency of Cd+2 and Cr+2 increased to 60% and 77%, respectively. CONCLUSION The study exhibited a natural approach for melanin production, using melanin as a heavy metal-chelating agent and capability to inhibit the production of aflatoxin B1 and ochratoxin A. Further, the study provides significant evidence regarding the bioremediation pipeline, for melanin production through biotechnological processes by filamentous fungi.
Collapse
Affiliation(s)
- Nashwa El-Gazzar
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Sharkia, 44519, Egypt.
| | - Esraa Abdo
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Sharkia, 44519, Egypt
| | - Gamal Rabie
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Sharkia, 44519, Egypt
| | - Manal Tawfeek El-Sayed
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Sharkia, 44519, Egypt
| |
Collapse
|
8
|
Liu L, Xu C, Yang Y, Fu C, Ma F, Zeng Z, Wang G. Graphene-based polymer composites in thermal management: materials, structures and applications. MATERIALS HORIZONS 2025; 12:64-91. [PMID: 39373527 DOI: 10.1039/d4mh00846d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Graphene, with its high thermal conductivity (k), excellent mechanical properties, and thermal stability, is an ideal filler for developing advanced high k and heat dissipation materials. However, creating graphene-based polymer nanocomposites (GPNs) with high k remains a significant challenge to meet the demand for efficient heat dissipation. Here, the effects of graphene material and structure on thermal properties are investigated from both microscopic and macroscopic perspectives. Initially, it briefly introduces the influence of graphene structural parameters on its intrinsic k, along with summarizing methods to adjust these parameters. Various techniques for establishing different thermal conductivity pathways at the macroscopic scale (including filler hybridization, 3D networks, horizontal alignment, and vertical alignment) are reviewed, along with their respective advantages and disadvantages. Furthermore, we discuss the applications of GPNs as thermal interface materials (TIMs), phase change materials (PCMs), and smart responsive thermal management materials in the field of thermal management. Finally, the current challenges and future perspectives of GPN research are discussed. This review offers researchers a comprehensive overview of recent advancements in GPNs for thermal management and guidance for developing the next generation of thermally conductive polymer composites.
Collapse
Affiliation(s)
- Luqi Liu
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chenchen Xu
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Yuequan Yang
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Chao Fu
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Fuliang Ma
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Zhixiang Zeng
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Gang Wang
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| |
Collapse
|
9
|
Hao J, Bi C, Li S, Zhao S, Yang S, Li Y, E T. Structural regulation of alginate-based adsorbents based on different coordination configurations of metal ions and selective adsorption of copper ion. Int J Biol Macromol 2025; 284:138160. [PMID: 39613059 DOI: 10.1016/j.ijbiomac.2024.138160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
To tackle the problem of developing efficient adsorbents for the selective removal of copper ions from wastewater, this investigation focused on the synthesis of Fe-GO/MMT/SA and Al-GO/MMT/SA copper ion adsorbent materials (Fe-GMS and Al-GMS), respectively, by merging two distinct metal ions (Fe(III) and Al(III)) with sodium alginate (SA), graphene oxide (GO), and montmorillonite (MMT). By introducing metal ions with different coordination configurations, the slit structure and pore density of the adsorbents can be effectively controlled, thereby enhancing the selectivity for copper ion adsorption. The results show that Fe-GMS has excellent adsorption capacity for Cu(II) compared with Al(III), and the adsorption capacity and distribution coefficient are 116.44 mg/g and 14.45 L/g, respectively, which is mainly due to the octahedral coordination configuration of Fe(III) having more coordination points when cross-linked with SA, forming a more complex and closer slit structure and cross-linked network. This result was further verified by density functional theory (DFT). Therefore, Fe-GMS stands as a promising Cu(II)-selective adsorbent, offering a valuable framework for the rational design of alginate-based aerogel adsorbents suitable for wastewater treatment applications.
Collapse
Affiliation(s)
- Jie Hao
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China
| | - Changlong Bi
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China
| | - Suya Li
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China
| | - Shuang Zhao
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China.
| | - Shuyi Yang
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China
| | - Yun Li
- Chemistry & Chemical Engineering of College, Yantai University, Yantai 264005, Shandong, China.
| | - Tao E
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013, Liaoning, China.
| |
Collapse
|
10
|
Mchich Z, Stefan DS, Mamouni R, Saffaj N, Bosomoiu M. Eco-Friendly Hydrogel Beads from Seashell Waste for Efficient Removal of Heavy Metals from Water. Polymers (Basel) 2024; 16:3257. [PMID: 39684002 DOI: 10.3390/polym16233257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
The objective of this study is to develop a calcium carbonate-based adsorbent derived from Cellana Tramoscrica seashells, incorporated into a sodium alginate matrix (Na-Alg@CTs) to form hydrogel beads, for the efficient removal of Cu (II) and Zn (II) heavy metals from aqueous solutions. XRD, SEM/EDS, and FTIR analysis confirm the successful synthesis and characterization of the fabricated adsorbent. The adsorption study of Cu (II) and Zn (II) onto Na-Alg@CTs hydrogel beads revealed that the Langmuir model was the most suitable for characterizing the adsorption isotherms, suggesting monolayer coverage. Na-Alg@CTs exhibited a maximum Langmuir adsorption capacity of 368.58 mg/g and 1075.67 mg/g for Cu (II) and Zn (II), respectively. Additionally, the kinetics followed the pseudo-second-order model, indicating that the adsorption process is primarily governed by chemisorption. The thermodynamic study suggests that the uptake of metal ions on Na-Alg@CTs hydrogel beads is spontaneous and endothermic. The exceptional adsorption capacity, eco-friendly nature, and low-cost characteristics of Na-Alg@CTs hydrogel beads make them an ideal adsorbent for the removal of Cu (II) and Zn (II) from wastewater.
Collapse
Affiliation(s)
- Zaineb Mchich
- Team of Biotechnology, Materials, and Environment, Faculty of Sciences, Ibn Zohr University, Agadir BP 8106, Morocco
| | - Daniela Simina Stefan
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Rachid Mamouni
- Team of Biotechnology, Materials, and Environment, Faculty of Sciences, Ibn Zohr University, Agadir BP 8106, Morocco
| | - Nabil Saffaj
- Team of Biotechnology, Materials, and Environment, Faculty of Sciences, Ibn Zohr University, Agadir BP 8106, Morocco
| | - Magdalena Bosomoiu
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| |
Collapse
|
11
|
Ma F, Zhu T, Wang Y, Torii S, Wang Z, Zhao C, Li X, Zhang Y, Quan H, Yuan C, Hao L. Adsorption mechanism and remediation of heavy metals from soil amended with hyperthermophilic composting products: Exploration of waste utilization. BIORESOURCE TECHNOLOGY 2024; 410:131292. [PMID: 39153701 DOI: 10.1016/j.biortech.2024.131292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Due to high humification, hyperthermophilic composting products (HP) show potential for remediating heavy metal pollution. However, the interaction between HP and heavy metals remains unclear. This study investigated the adsorption mechanism and soil remediation effect of HP on heavy metals. The results showed that the maximum adsorption capacity of HP increased by an average of 30.74 % compared to conventional composting products. HP transformed 34.87 % of copper, 42.55 % of zinc, and 35.63 % of lead from exchangeable and reducible forms into residual and oxidizable forms, thus reducing the soil risk level. In conclusion, HP significantly enhanced the adsorption of heavy metals and their transformation from unstable to stable forms, primarily due to the higher content of hydroxyl and carboxyl groups. This study aims to demonstrate the effectiveness of HP for remediating heavy metal pollution and to enhance the understanding of the underlying mechanism, which lays a foundation for waste utilization.
Collapse
Affiliation(s)
- Feng Ma
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China; Department of Mechanical and Mathematical Engineering, Kumamoto University, Kumamoto 860-8555, Japan
| | - Tong Zhu
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China.
| | - Youzhao Wang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
| | - Shuichi Torii
- Department of Mechanical and Mathematical Engineering, Kumamoto University, Kumamoto 860-8555, Japan
| | - Zhipeng Wang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
| | - Chaoyue Zhao
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
| | - Xu Li
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
| | - Yanping Zhang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
| | - Haoyu Quan
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
| | - Chunli Yuan
- Key Laboratory of Eco-restoration of Regional Contaminated Environment, MOE, Shenyang University, Shenyang 110044, China
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China
| |
Collapse
|
12
|
Azizi N, Eslami R, Goudarzi S, Zarrin H. Harnessing synergy: Polydopamine-hBN integration in electrospun nanofibers for Co (II) ion, methylene blue and crystal violet dyes adsorption. CHEMOSPHERE 2024; 363:142842. [PMID: 39009089 DOI: 10.1016/j.chemosphere.2024.142842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
In today's world, major pollutants, such as cationic dyes and heavy metals, pose a serious threat to human health and the environment. In this study, a novel adsorbent was created through the electrospinning of polyvinyl alcohol/polyacrylic acid (PVA/PAA), incorporated with hexagonal boron nitride (hBN) coated with polydopamine (PDA). The integration of hBN and PDA substantially enhanced the adsorption capacity of the PVA/PAA fibers, making them highly effective in adsorbing cationic dyes such as methylene blue and crystal violet, as well as cobalt (II) ions, from contaminated water. The adsorbents were assessed to understand how their adsorption behavior varies with pH, as well as to examine their adsorption kinetics and isotherms. The results indicate that the PVA/PAA-hBN@PDA adsorbent has maximum adsorption capacities of 1029.57 mg/g, 793.65 mg/g, and 62.46 mg/g for methylene blue, crystal violet, and cobalt (II) ions, respectively. This underscores the superior performance of the PVA/PAA-hBN@PDA adsorbent when compared to both the PVA/PAA and PVA/PAA-hBN adsorbents. The adsorption kinetics adhered to a pseudo-second-order model, indicating chemisorption, whereas the Langmuir model implied a monolayer adsorption. Overall, the findings of this study highlight the efficacy of harnessing the synergistic capabilities of hBN and PDA within the PVA/PAA-hBN@PDA adsorbents, providing an efficient and eco-friendly approach to removing cationic dyes and heavy metals from contaminated water, and thereby contributing to a cleaner and safer environment for all.
Collapse
Affiliation(s)
- Nahid Azizi
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Research and Innovation Department, Sensofine Inc., Innovation Boost Zone (IBZ), Toronto Metropolitan University, Toronto, ON, M5G 2C2, Canada
| | - Reza Eslami
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Research and Innovation Department, Sensofine Inc., Innovation Boost Zone (IBZ), Toronto Metropolitan University, Toronto, ON, M5G 2C2, Canada
| | - Shaghayegh Goudarzi
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | - Hadis Zarrin
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Research and Innovation Department, Sensofine Inc., Innovation Boost Zone (IBZ), Toronto Metropolitan University, Toronto, ON, M5G 2C2, Canada.
| |
Collapse
|
13
|
Cui K, Han X, Zhou P, Hao M, Wang X, Bian L, Nie J, Yang G, Liang J, Liu X, Wang F. A novel highly dispersed calcium silicate hydrate nanosheets for efficient high-concentration Cu 2+ adsorption. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134774. [PMID: 38870850 DOI: 10.1016/j.jhazmat.2024.134774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/15/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024]
Abstract
Currently, the low cost and effective purification toward heavy metal ions in wastewater has garnered global attention. Herein, we used hydrothermal method to prepare highly dispersed calcium silicate hydrate in fluorite tailings. And the stacking thickness of calcium silicate hydrate layered morphology was less than 5 nm. For high concentration Cu2+ purification investigation in wastewater, we found that the equilibrium adsorption capacity reached 797.92 mg/g via the CSH with 3:2 Ca/Si molar ratio, be 1.43-21.8 times than that of reported data. Therein, the metal-metal exchange and deposition are the primary pathways for Cu2+ adsorption, and electrostatic attraction is the secondary pathway. And the relative ∼100 % removal rate of high-concentration Ni2+ and Cr3+ ions were confirmed via CSH prepared from different tailings. This method offers a cost-effective way to utilize tailings for preparing highly efficient adsorbents toward HMIs removal in wastewater.
Collapse
Affiliation(s)
- Kaibin Cui
- Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin 300130, China; Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin 300130, China
| | - Xiaoyu Han
- Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin 300130, China; Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin 300130, China
| | - Pengfei Zhou
- Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin 300130, China; Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin 300130, China
| | - Ming Hao
- Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin 300130, China; Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin 300130, China
| | - Xianku Wang
- Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin 300130, China; Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin 300130, China
| | - Liang Bian
- Key Laboratory of Solid Waste Treatment and Resource Recycle, State Key Laboratory of Environment-friendly Energy Materials, Tianfu Institute of Research and Innovation, School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China.
| | - Jianan Nie
- Key Laboratory of Solid Waste Treatment and Resource Recycle, State Key Laboratory of Environment-friendly Energy Materials, Tianfu Institute of Research and Innovation, School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Guanling Yang
- Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin 300130, China; Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin 300130, China
| | - Jinsheng Liang
- Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin 300130, China; Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin 300130, China
| | - Xinnan Liu
- Key Laboratory of Solid Waste Treatment and Resource Recycle, State Key Laboratory of Environment-friendly Energy Materials, Tianfu Institute of Research and Innovation, School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Fei Wang
- Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin 300130, China; Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
14
|
Nianga-Obambi PS, Douma DH, Etindele AJ, Raji AT, Malonda-Boungou BR, M’Passi-Mabiala B, Kenmoe S. Adsorption Behaviour of Pb and Cd on Graphene Oxide Nanoparticle from First-Principle Investigations. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2831. [PMID: 38930200 PMCID: PMC11204970 DOI: 10.3390/ma17122831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Graphene oxide (GO) is considered as a promising adsorbent material for the removal of metal from aqueous environments. Here, we have used the density functional theory (DFT) approach and a combination of parameters to characterise the interactions of GO with lead (Pb) and cadmium (Cd), i.e., typical harmful metals often found in water. Our model systems consist of a singly and doubly adsorbed neutral (Pb0, Cd0) and charged (Pb2+, Cd2+) atoms adsorbed on the GO nanoparticle of the chemical formula C30H14O15. We show that a single charged metal ion binds more strongly than a neutral atom of the same type. Moreover, to determine the possibility of multiple adsorptions of the GO nanoparticle, two metal atoms of the same species were co-adsorbed on its surface. We found a site-dependent adsorption energy such that when two atoms of the same specie are adsorbed at sites Si and Sj, the binding energy per atom depends on whether one of the two atoms is adsorbed firstly on the Si or Sj sites. Furthermore, the binding energy per atom for the two co-adsorbed atoms of the same specie (i.e., neutral or charged) is less than the binding energy of a singly adsorbed atom. This suggests that atoms may become less likely to be adsorbed on the GO nanoparticle when their concentration increases. We adduce the origin of this observation to be interplay between the metal-metal interaction on the one hand and GO-metal on the other, with the former resulting in less binding for the charged adsorbed metals in particular, due to repulsive interaction between two positively charged ions. The frontier molecular orbitals analysis and the calculated global reactivity descriptors of the respective GO-metal complexes revealed that all the GO-metal complexes have a smaller HOMO-LUMO gap (HLG) relative to that of pristine metal-free GO nanoparticle. This may indicate that although the GO-metal complexes are stable, they are less stable compared to metal-free GO nanoparticles. The negative values of the chemical potentials obtained for all the GO-metal complexes further confirm their stability. Our work differs from previous experimental studies in that those lacked details of the interaction mechanisms between GO, Pb and Cd, as well as previous theoretical studies which used limited numbers of parameters to characterise the GO-metal interactions. Rather, we present a set of parameters or descriptors which provide comprehensive physical and electronic characterisation of GO-metal systems as obtained via the DFT calculations. These parameters, along with those reported in previous studies, may find applications in rational design and high-throughput screening of graphene-based materials for water purification, as an example.
Collapse
Affiliation(s)
- Preslie Sala Nianga-Obambi
- Groupe de Simulations Numériques en Magnétisme et Catalyse, Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville BP 69, Congo; (P.S.N.-O.); (B.R.M.-B.)
| | - Dick Hartmann Douma
- Groupe de Simulations Numériques en Magnétisme et Catalyse, Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville BP 69, Congo; (P.S.N.-O.); (B.R.M.-B.)
| | - Anne Justine Etindele
- Higher Teachers Training College, University of Yaounde I, Yaounde P.O. Box 47, Cameroon;
| | - Abdulrafiu Tunde Raji
- Center for Augmented Intelligence and Data Science (CAIDS), College of Science, Engineering and Technology (CSET), University of South Africa (UNISA), UNISA Muckleneuk Campus, Preller Street, Muckleneuk, Pretoria 0003, South Africa;
| | - Brice Rodrigue Malonda-Boungou
- Groupe de Simulations Numériques en Magnétisme et Catalyse, Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville BP 69, Congo; (P.S.N.-O.); (B.R.M.-B.)
- Institut National de Recherches en Sciences Exactes et Naturelles (IRSEN), Brazzaville BP 2400, Congo;
| | - Bernard M’Passi-Mabiala
- Institut National de Recherches en Sciences Exactes et Naturelles (IRSEN), Brazzaville BP 2400, Congo;
| | - Stephane Kenmoe
- Department of Theoretical Chemistry, University of Duisburg-Essen, Universität Str. 2, 45141 Essen, Germany
| |
Collapse
|
15
|
Gupta T, Ratandeep, Dutt M, Kaur B, Punia S, Sharma S, Sahu PK, Pooja, Saya L. Graphene-based nanomaterials as potential candidates for environmental mitigation of pesticides. Talanta 2024; 272:125748. [PMID: 38364558 DOI: 10.1016/j.talanta.2024.125748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/30/2023] [Accepted: 02/05/2024] [Indexed: 02/18/2024]
Abstract
Over the years, bioaccumulation of hazardous chemicals in the food chain has become a critical issue, resulting in numerous health risks. Environmental mitigation aims to clean up contaminated sites and eliminate hazardous materials from the air, water, or soil to restore the site to its original and safe condition. Pesticides constitute one of the most dangerous environmental pollutants which are generally used to increase crop production. Addressing the removal or treatment of pesticides has become pivotal in mitigating environmental threats. Diverse remediation methods are employed to protect the environment and public health. Graphene-based materials have emerged as promising candidates with exceptional properties, including excellent adsorption capacity due to their high surface area, strong hydrophilicity, and tunable properties. Owing to these properties, they have been attracting major research attention in the field of design and fabrication of materials for the mitigation of pesticides from the environment such as from contaminated food, water and other samples. Various physical, chemical and biological extraction techniques are adopted to remove pesticides. This review article provides an insight into the potential role of graphene-based materials in the environmental remediation of pesticides. We have focused on the removal of Organophosphates, Organochlorines, Carbamates and Pyrethroids present in water, fruit, vegetable and other samples, highlighting the urgent need for environmental remediation. While graphene-based materials hold potential for pesticide remediation, addressing challenges in scalable production, assessing long-term sustainability, and mitigating potential environmental impacts are critical steps for successful large-scale applications.
Collapse
Affiliation(s)
- Tarisha Gupta
- Department of Chemistry, IIT Gandhinagar, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Ratandeep
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Madhav Dutt
- Department of Chemistry, Sri Venkateswara College (University of Delhi), Dhaula Kuan, New Delhi, 110021, India
| | - Bikaramjeet Kaur
- Department of Chemistry, Sri Venkateswara College (University of Delhi), Dhaula Kuan, New Delhi, 110021, India
| | - Srishti Punia
- Department of Chemistry, Sri Venkateswara College (University of Delhi), Dhaula Kuan, New Delhi, 110021, India
| | - Suhani Sharma
- Department of Chemistry, Sri Venkateswara College (University of Delhi), Dhaula Kuan, New Delhi, 110021, India
| | - Prasanta Kumar Sahu
- Department of Chemistry, Shivaji College, (University of Delhi), Raja Garden, New Delhi, 110027, India
| | - Pooja
- Department of Chemistry, Sri Venkateswara College (University of Delhi), Dhaula Kuan, New Delhi, 110021, India.
| | - Laishram Saya
- Department of Chemistry, Sri Venkateswara College (University of Delhi), Dhaula Kuan, New Delhi, 110021, India.
| |
Collapse
|
16
|
Zhang L, Bai J, Zhai Y, Zhang K, Wang Y, Tang R, Xiao R, Jorquera MA. Multimedia distribution, partitioning, sources, comprehensive toxicity risk and co-occurrence network characteristics of trace elements in a typical Chinese shallow lake with high antibiotic risk. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133436. [PMID: 38190795 DOI: 10.1016/j.jhazmat.2024.133436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024]
Abstract
Although the combined pollution of trace elements and antibiotics has received extensive attention, the fate and toxicity risk of trace elements with high antibiotic risk are still unclear. The multimedia distributions, partitioning, sources, toxicity risks and co-occurrence network characteristics of trace elements in surface water (SW), overlying water (OW), pore water (PW) and sediment (Sedi) samples of 61 sites from Baiyangdian (BYD) Lake were investigated. The trace elements in the SW and OW are derived mainly from traffic and agricultural sources, and those in PW and Sedi samples are primarily from lithogenic and industrial sources. The total toxicity risk index (TRI) of nine trace elements (ΣTRI) in Sedi samples showed a very high toxicity risk (18.35 ± 8.84), and a high combined pollution toxicity risk (ΣΣTRI) was observed in PW (149.17 ± 97.52) and Sedi samples (46.37 ± 24.00). The co-occurrence network from SW to PW became more vulnerable. Generally, total antibiotics and TP may be keystones of trace elements in water and sediment. The high antibiotic risk significantly influenced ΣΣTRI in water samples but not in Sedi samples. The findings provide new implications for the monitoring and control of combined antibiotic-trace element pollution in shallow lakes.
Collapse
Affiliation(s)
- Ling Zhang
- School of Environment, Beijing Normal University, Beijing 100875, China; School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810008, China
| | - Junhong Bai
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yujia Zhai
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Kegang Zhang
- Department of Environmental Engineering and Science, North China Electric Power University, Baoding, China
| | - Yaqi Wang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ruoxuan Tang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Rong Xiao
- College of Environment & Safety Engineering, FuZhou University, Fuzhou, China
| | - Milko A Jorquera
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
17
|
Hu M, Gao W, Zhang L, Wang Y, Feng H. Transformation of Diffusion and Local Structure of CH 4 , CO 2 , SO 2 and H 2 O Mixtures in Graphene Under Wide Temperature and Pressure Range: A Molecular Dynamics Simulation Study. Chemphyschem 2024; 25:e202300851. [PMID: 38088520 DOI: 10.1002/cphc.202300851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/05/2023] [Indexed: 01/11/2024]
Abstract
As a material with high specific surface area and excellent chemical stability, graphene exhibited remarkable adsorption and separation performance as well as a wide range of potential applications. The graphene layer played a significant role in influencing gas transmission. In this study, we employed molecular dynamics simulation to investigate the diffusion characteristics and local structures of a mixed system consisting of CH4 , CO2 , SO2 and H2 O. Additionally, we further examined the transformation of the behavior of these mixtures within graphene layers. The order of diffusion coefficients of the four molecules without graphene was H2 O>SO2 >CO2 ≫CH4 . However, in the double-layer graphene, the order changed to CH4 >CO2 ≫H2 O>SO2 . Higher temperatures and lower pressures were found to facilitate gas diffusion. Temperature and pressure had great effects on the local structures of CH4 , CO2 and SO2 , while their impact on H2 O was limited due to the extensive network of hydrogen bonds formed by H2 O molecules. The statistical results of average coordination number revealed that CH4 tended to aggregate with itself, whereas CO2 and SO2 exhibited a tendency to aggregate with H2 O. The graphene structure enhanced the separation and transportation of CH4 from mixed systems.
Collapse
Affiliation(s)
- Minghui Hu
- Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province Hainan Normal University, Haikou, 571158, China
| | - Wei Gao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lisha Zhang
- Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province Hainan Normal University, Haikou, 571158, China
| | - Yize Wang
- Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province Hainan Normal University, Haikou, 571158, China
| | - Huajie Feng
- Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province Hainan Normal University, Haikou, 571158, China
| |
Collapse
|
18
|
Rahaman MH, Islam MR, Islam R, Alam SMN, Rahman MS, Rahman MA, Begum BA. Preparation, characterization, and adsorption kinetics of graphene oxide/chitosan/carboxymethyl cellulose composites for the removal of environmentally relevant toxic metals. Int J Biol Macromol 2024; 257:128357. [PMID: 38035970 DOI: 10.1016/j.ijbiomac.2023.128357] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
This study attempted to develop a low-cost and eco-friendly bio-based composite adsorbent that is highly efficient in capturing potential toxic metals. The bio-composite adsorbent was prepared using graphene oxide (GO), carboxymethyl cellulose (CMC) and chitosan (CS); and characterized using FTIR, SEM-EDX and WAXD techniques. Metal-ion concentration in an aqueous solution was measured by ICP-OES. This article reveals that the adsorption of heavy metal ions varied according to the adsorbent quantity, initial metal concentration, pH, and interaction time. The metal ions' adsorption capacity (mg/g) was observed to increase when the interaction time and metal concentration increased. Conversely, metal ions adsorption was decreased with an increase in adsorbent dosages. The effect of pH on metal ions' adsorption was ion-specific. The substantial adsorption by GO/CMC/CS composite for Co2+, CrO42-, Mn2+ and Cd2+, had the respective values of 43.55, 77.70, 57.78, and 91.38 mg/g under acidic conditions. The metal ions experimental data were best fitted with pseudo-second-order (PSO) kinetics, and Freundlich isotherm model (except Co2+). The separation factors (RL) value in the present investigation were found between 0 and 1, meaning that the metal ions adsorption onto GO/CS/CMC composite is favorable. The RL and sorption intensity (1/n) values fitted well to the adsorption isotherm.
Collapse
Affiliation(s)
- Md Hafezur Rahaman
- Department of Applied Chemistry and Chemical Engineering, Islamic University, Kushtia 7003, Bangladesh.
| | - Md Rakibul Islam
- Department of Applied Chemistry and Chemical Engineering, Islamic University, Kushtia 7003, Bangladesh
| | - Rafiquel Islam
- Department of Applied Chemistry and Chemical Engineering, Islamic University, Kushtia 7003, Bangladesh
| | - S M Nur Alam
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Safiur Rahman
- Atomic Energy Centre (AECD) Bangladesh Atomic Energy Commission, Dhaka 1000, Bangladesh
| | - Md Aminur Rahman
- Department of Public Health Engineering, Zonal Laboratory, Khulna 9100, Bangladesh
| | - Bilkis A Begum
- Atomic Energy Centre (AECD) Bangladesh Atomic Energy Commission, Dhaka 1000, Bangladesh
| |
Collapse
|
19
|
Cong M, Wu K, Wang J, Li Z, Mao R, Niu Y, Chen H. Synthesis of Aminomethylpyridine-Decorated Polyamidoamine Dendrimer/Apple Residue for the Efficient Capture of Cd(II). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2320-2332. [PMID: 38236574 DOI: 10.1021/acs.langmuir.3c03447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Water contamination irritated by Cd(II) brings about severe damage to the ecosystem and to human health. The decontamination of Cd(II) by the adsorption method is a promising technology. Here, we construct aminomethylpyridine-functionalized polyamidoamine (PAMAM) dendrimer/apple residue biosorbents (AP-G1.0-AMP and AP-G2.0-AMP) for adsorbing Cd(II) from aqueous solution. The adsorption behaviors of the biosorbents for Cd(II) were comprehensively evaluated. The maximum adsorption capacities of AP-G1.0-AMP and AP-G2.0-AMP for Cd(II) are 1.40 and 1.44 mmol·g-1 at pH 6. The adsorption process for Cd(II) is swift and can reach equilibrium after 120 min. The film diffusion process dominates the adsorption kinetics, and a pseudo-second-order model is appropriate to depict this process. The uptake of Cd(II) can be promoted by increasing concentration and temperature. The adsorption isotherm follows the Langmuir model with a chemisorption mechanism. The biosorbents also display satisfied adsorption for Cd(II) in real aqueous media. The adsorption mechanism indicates that C-N, N═C, C-O, CONH, N-H, and O-H groups participate in the adsorption for Cd(II). The biosorbents display a good regeneration property and can be reused with practical value. The as-prepared biosorbents show great potential for removing Cd(II) from water solutions with remarkable significance.
Collapse
Affiliation(s)
- Mengchen Cong
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Kaiyan Wu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006, P. R. China
| | - Jiaxuan Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Ziwei Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Ruiyu Mao
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Yuzhong Niu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Hou Chen
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| |
Collapse
|
20
|
Nascimento DP, de Farias MB, Queiroz RN, da Silva MGC, Prediger P, Vieira MGA. Fluoranthene adsorption by graphene oxide and magnetic chitosan composite (mCS/GO). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6891-6906. [PMID: 38157165 DOI: 10.1007/s11356-023-31528-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/09/2023] [Indexed: 01/03/2024]
Abstract
The oil industry faces the challenge of reducing its high polluting potential, due to the presence of aromatic pollutants, such as polycyclic aromatic hydrocarbons (PAHs). Efforts have been made to mitigate the impact of PAHs in industry through the development of detection technologies and the implementation of mitigation strategies. This study presents the adsorption of fluoranthene, through a magnetic composite of graphene oxide and chitosan as a method of remediation of produced water. The efficiency of the process was evaluated through kinetic, equilibrium, thermodynamic, and characterization analyses. The nanocomposite was able to remove 90.9% of FLT after 60 min and showed a maximum adsorption capacity of 28.22 mg/g, demonstrating that they can be implemented to remove fluoranthene. Kinetic and equilibrium experimental data showed that physisorption is the predominant adsorptive mechanism; however, the process is also influenced by chemisorption, which occurs through electrostatic interactions between the surface of the material and the adsorbate. The thermodynamic study showed that fluoranthene and graphene composite have high affinity, and that the adsorption is exothermic and spontaneous. The results presented in this paper indicate that the magnetic composite is a potential and sustainable adsorbent for fluoranthene remediation.
Collapse
Affiliation(s)
- Danilo Patrício Nascimento
- School of Chemical Engineering, University of Campinas - UNICAMP, Albert Einstein Avenue, 500, 13083-852 Campinas, São Paulo, Brazil
| | - Marina Barbosa de Farias
- School of Chemical Engineering, University of Campinas - UNICAMP, Albert Einstein Avenue, 500, 13083-852 Campinas, São Paulo, Brazil
| | - Ruth Nóbrega Queiroz
- School of Chemical Engineering, University of Campinas - UNICAMP, Albert Einstein Avenue, 500, 13083-852 Campinas, São Paulo, Brazil
| | - Meuris Gurgel Carlos da Silva
- School of Chemical Engineering, University of Campinas - UNICAMP, Albert Einstein Avenue, 500, 13083-852 Campinas, São Paulo, Brazil
| | - Patrícia Prediger
- School of Technology, University of Campinas - UNICAMP, 13484-332 Limeira, São Paulo, Brazil
| | - Melissa Gurgel Adeodato Vieira
- School of Chemical Engineering, University of Campinas - UNICAMP, Albert Einstein Avenue, 500, 13083-852 Campinas, São Paulo, Brazil.
| |
Collapse
|
21
|
Yuan M, Liu D, Shang S, Song Z, You Q, Huang L, Cui S. A novel magnetic Fe 3O 4/cellulose nanofiber/polyethyleneimine/thiol-modified montmorillonite aerogel for efficient removal of heavy metal ions: Adsorption behavior and mechanism study. Int J Biol Macromol 2023; 253:126634. [PMID: 37678684 DOI: 10.1016/j.ijbiomac.2023.126634] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
To efficiently remove heavy metals from wastewater, designing an adsorbent with high adsorption capacity and ease of recovery is necessary. This paper presents a novel magnetic hybridized aerogel, Fe3O4/cellulose nanofiber/polyethyleneimine/thiol-modified montmorillonite (Fe3O4/CNF/PEI/SHMMT), and explores its adsorption performance and mechanism for Pb2+, Cu2+, and Cd2+ in aqueous solutions. The hybrid aerogel has a slit-like porous structure and numerous exposed active sites, which facilitates the uptake of metal ions by adsorption. Pb2+, Cu2+, and Cd2+ adsorption by the hybridized aerogel followed the second-order kinetics and the Langmuir isotherm model, the maximum adsorption of Pb2+, Cu2+, and Cd2+ at 25 °C, pH = 6, 800 mg/L was 429.18, 381.68 and 299.40 mg/g, respectively. The adsorption process was primarily attributed to monolayer chemical adsorption, a spontaneous heat-absorption reaction. FTIR, XPS and DFT studies confirmed that the adsorption mechanisms of Fe3O4/CNF/PEI/SHMMT on Pb2+, Cu2+, and Cd2+ were mainly chelation, coordination, and ion exchange. The lowest adsorption energy of Pb2+ on the hybrid aerogel was calculated to be -2.37 Ha by DFT, which indicates that the sample has higher adsorption affinity and preferential selectivity for Pb2+. After 5 cycles, the adsorption efficiency of the aerogel was still >85 %. The incorporation of Fe3O4 improved the mechanical properties of the aerogel. The Fe3O4/CNF/PEI/SHMMT has fast magnetic responsiveness, and it is easy to be separated and recovered after adsorption, which is a promising potential for the treatment of heavy metal ions.
Collapse
Affiliation(s)
- Man Yuan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, 211800 Nanjing, China; Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, 211800 Nanjing, China
| | - Dongsheng Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, 211800 Nanjing, China; Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, 211800 Nanjing, China
| | - Sisi Shang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, 211800 Nanjing, China; Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, 211800 Nanjing, China
| | - Zihao Song
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, 211800 Nanjing, China; Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, 211800 Nanjing, China
| | - Qi You
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, 211800 Nanjing, China; Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, 211800 Nanjing, China
| | - Longjin Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, 211800 Nanjing, China; Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, 211800 Nanjing, China
| | - Sheng Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, 211800 Nanjing, China; Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, 211800 Nanjing, China.
| |
Collapse
|
22
|
Ma F, Guo Q, Zhang Z, Ding X, Zhang L, Li P, Yu L. Simultaneous removal of aflatoxin B 1 and zearalenone in vegetable oils by hierarchical fungal mycelia@graphene oxide@Fe 3O 4 adsorbent. Food Chem 2023; 428:136779. [PMID: 37413832 DOI: 10.1016/j.foodchem.2023.136779] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Physical adsorbents for detoxification are widely used in vegetable oil industry. So far, the high-efficiency and low-cost adsorbents have not been well explored. Here, a hierarchical fungal mycelia@graphene oxide@Fe3O4 (FM@GO@Fe3O4) was fabricated as an efficient adsorbent for simultaneous removal of aflatoxin B1 (AFB1) and zearalenone (ZEN). The morphological, functional and structural characteristics of the prepared adsorbents were systematic investigated. Batch adsorption experiments in both single and binary systems were conducted, and the adsorption behaviours and mechanism were explored. The results indicated that the adsorption process occurred spontaneously and the mycotoxin adsorption could be described as physisorption through hydrogen bonding, π-π stacking, electrostatic and hydrophobic interactions. Due to good biological safety, magnetic manipulability, scalability, recyclability and easy regeneration, FM@GO@Fe3O4 performance is suitable for application as a detoxification adsorbent in vegetable oil industry. Our study addresses a novel green strategy for removing multiple mycotoxins by integrating the toxigenic isolates with advanced nanomaterials.
Collapse
Affiliation(s)
- Fei Ma
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Qi Guo
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Zhaowei Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Xiaoxia Ding
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Liangxiao Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Hubei Hongshan Laboratory, Wuhan 430070, PR China; Zhejiang Xianghu Laboratory, Hangzhou 311231, PR China
| | - Li Yu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China.
| |
Collapse
|
23
|
Arabkhani P, Asfaram A, Sadegh F. Green and low-temperature synthesis of the magnetic modified biochar under the air atmosphere for the adsorptive removal of heavy metal ions from wastewater: CCD-RSM experimental design with isotherm, kinetic, and thermodynamic studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:120085-120102. [PMID: 37936036 DOI: 10.1007/s11356-023-30469-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023]
Abstract
The accumulation of heavy metal ions in living cells leads to biological damage, which makes the necessity of using new methods to effectively remove heavy metal ions from the environment more vital. In this work, a magnetic modified biochar was prepared under regular air atmosphere and low temperature (220 ºC) and used as a low-cost and green adsorbent for efficient adsorptive removal of cobalt (Co(II)) and Lead (Pb(II)) ions from contaminated waters. The adsorption process was modeled and optimized using CCD-RSM to maximize the removal efficiency of heavy metal ions, as well as was monitored in detail by isotherm, kinetic, and thermodynamic studies. The results show that the Langmuir maximum adsorption capacity of the adsorbent reached 237.92 mg g-1 (single) and 121.23 mg g-1 (binary) for Co(II) and 207.21 mg g-1 (single) and 106.56 mg g-1 (binary) for Pb(II) under the short time of 25 min and solution pH of 6.0. The kinetic studies revealed that the pseudo-first-order model was the best-fitted model to experimental data and indicated that the adsorption process was mostly through chemisorption. Also, thermodynamic studies showed that that adsorptive removal of Co(II)and Pb(II)ions followed an endothermic and spontaneous process. The reusability studies demonstrated that the adsorbent could be successfully regenerated with 5 mL of 0.1 mol L-1 HNO3 solution, and the adsorption efficiency was retaining about 90% after four adsorption-desorption cycles. Also, the results from using real water samples, including drinking water, groundwater, and river water, implied that the synthesized magnetic modified biochar was highly efficient for practical treatment processes. Overall, the results indicated that the proposed magnetic biochar can be considered as a cost-effective and efficient adsorbent for adsorptive removal of heavy metal ions from contaminated waters.
Collapse
Affiliation(s)
- Payam Arabkhani
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Arash Asfaram
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Fatemeh Sadegh
- Department of Chemistry, Faculty of Sciences, University of Sistan of Baluchestan, Zahedan, Iran
| |
Collapse
|
24
|
Fang H, Zeng D, Chen S, Ye X. Unlocking sustainable solutions: controlled Cu 2+ dosing enables efficient recovery and reuse of high-purity copper pyrophosphate from electroplating wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119893-119902. [PMID: 37932614 DOI: 10.1007/s11356-023-30699-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023]
Abstract
The electroplating process of copper pyrophosphate (Cu2P2O7) results in the production of a large volume of wastewater that contains a high concentration of copper (Cu). Currently, conventional lime precipitation creates a substantial amount of secondary pollution, which adds extra economic and environmental burdens. In this study, we suggest a straightforward method for on-site recovery of Cu from Cu2P2O7 electroplating wastewater. By optimizing various parameters, characterizing the resulting product, assessing its electroplating capabilities, and analyzing the speciation during the reaction, we comprehensively investigated the feasibility and mechanism of this technique. The results demonstrated that, under the optimal conditions (Cu/P molar ratio of 0.96, pH of 5.0, and a reaction time of 5.0 min), the concentration of residual Cu remained stable between 22.2 and 27.7 mg/L, even when the initial Cu concentrations varied. The addition of Cu triggered a series of hydrolysis and ionization reactions, primarily leading to the formation of Cu2P2O7·3H2O. The harvested Cu2P2O7·3H2O proved to be suitable for practical electroplating applications, exhibiting comparable performance to commercially available Cu2P2O7·3H2O. This demonstrates the feasibility of recovering high-purity Cu2P2O7·3H2O from copper electroplating wastewater, offering a promising approach for on-site copper reuse and concurrently reducing the demand for natural copper resources. Furthermore, this approach significantly reduces the generation of solid waste, aligning with the principles of sustainable development.
Collapse
Affiliation(s)
- Hongda Fang
- College of Harbour and Coastal Engineering, Jimei University, Xiamen, 361021, China.
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Di Zeng
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Shaohua Chen
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Xin Ye
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| |
Collapse
|
25
|
Hua Z, Tang L, Wu M, Fu J. Graphene hydrogel improves S. putrefaciens' biological treatment of dye wastewater: Impacts of extracellular electron transfer and function of c-type cytochromes. ENVIRONMENTAL RESEARCH 2023; 236:116739. [PMID: 37524158 DOI: 10.1016/j.envres.2023.116739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/19/2023] [Accepted: 07/23/2023] [Indexed: 08/02/2023]
Abstract
Biocompatible materials and biocarriers have attracted great attention in biological wastewater treatment owing to their excellent performance in improving pollutant removal. Graphene-based material, a biocarrier candidate, with excellent adsorbability and conductivity was increasingly applied in anaerobic digestion due to its exceptional potential in the adsorption and electron transfer process. Nevertheless, the green approach for the formation of bio-graphene complexes and their mechanism in dye removal is limited. The aim of this study is to investigate and assess the performance of biological graphene hydrogel (BGH) formed by Shewanella putrefaciens CN32 on the removal of methyl orange (MO) and methylene blue (MB). The results showed that the formation of BGH is determined by the physicochemical characteristics of graphene oxide, including sheet size, oxidation degree, and interlayer distance. BGHs significantly increased the removal efficiency of dyes in comparison to non-graphene samples, with a 24-h removal rate of MO and MB reaching 92.9% and 91%, respectively. The synergetic mechanism of BGH on the enhanced removal rate of organic dye can be ascribed to GO's ability in accelerating extracellular electron transfer and stimulating biodegradation pathways relating to c-type cytochromes, including MtrA and MtrC. These findings provided an understanding of the relationship between graphene-based nanomaterials and Shewanella, which facilitated their future application in environmental biotechnology.
Collapse
Affiliation(s)
- Zilong Hua
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, China
| | - Liang Tang
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, China.
| | - Minghong Wu
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, China
| | - Jing Fu
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, China.
| |
Collapse
|
26
|
Li X, Chen X, Yan Y, Wang F, Feng L, Chen Y. Nitrogen-doped graphene for tetracycline removal via enhancing adsorption and non-radical persulfate activation. ENVIRONMENTAL RESEARCH 2023; 235:116642. [PMID: 37442259 DOI: 10.1016/j.envres.2023.116642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Nitrogen-doped graphene (NG) was synthesized via direct thermal annealing treatment. The obtained NG showed outstanding removal ability for tetracycline (TC) ascribed to enhanced adsorption and persulfate activation. The maximum TC adsorption capacity calculated from the Langmuir model of NG was 227.3 mg/g, which was 1.66 times larger than nitrogen-free graphene. The coexistence of NG and persulfate (PS) exhibited complete degradation of TC within 120 min attributed to the successful modification of nitrogen. Further analysis demonstrated that non-radical electron transfer was the dominant degradation pathway, which was different from the widely acknowledgeable radical mechanism. An electron donor-mediator-acceptor system was introduced, in which TC, NG, and PS performed as electron donor, mediator, and acceptor, respectively. The potential intermediates in the TC degradation process were detected and toxicity assessment was also performed. In addition, more than 75.8% of total organic carbon was removed, and excellent reusability was manifested in multiple adsorption and degradation experiments.
Collapse
Affiliation(s)
- Xiaolu Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xutao Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yuanyuan Yan
- College of Chemistry and Environment Engineering, Yancheng Teachers University, Yancheng, Jiangsu Province, 224002, China
| | - Feng Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Leiyu Feng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
27
|
Hua Z, Tang L, Li L, Wu M, Fu J. Environmental biotechnology and the involving biological process using graphene-based biocompatible material. CHEMOSPHERE 2023; 339:139771. [PMID: 37567262 DOI: 10.1016/j.chemosphere.2023.139771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/29/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Biotechnology is a promising approach to environmental remediation but requires improvement in efficiency and convenience. The improvement of biotechnology has been illustrated with the help of biocompatible materials as biocarrier for environmental remediations. Recently, graphene-based materials (GBMs) have become promising materials in environmental biotechnology. To better illustrate the principle and mechanisms of GBM application in biotechnology, the comprehension of the biological response of microorganisms and enzymes when facing the GBMs is needed. The review illustrated distinct GBM-microbe/enzyme composites by providing the GBM-microbe/enzyme interaction and the determining factors. There are diverse GBM modifications for distinct biotechnology applications. Each of these methods and applications depends on the physicochemical properties of GBMs. The applications of these composites were mainly categorized as pollutant adsorption, anaerobic digestion, microbial fuel cells, and organics degradation. Where information was available, the strategies and mechanisms of GBMs in improving application efficacies were also demonstrated. In addition, the biological response, from microbial community changes, extracellular polymeric substances changes to biological pathway alteration, may become important in the application of these composites. Furthermore, we also discuss challenges facing the environmental application of GBMs, considering their fate and toxicity in the ecosystem, and offer potential solutions. This research significantly enhances our comprehension of the fundamental principles, underlying mechanisms, and biological pathways for the in-situ utilization of GBMs.
Collapse
Affiliation(s)
- Zilong Hua
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, China
| | - Liang Tang
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, China.
| | - Liyan Li
- Department of Civil and Environmental Engineering, College of Design and Engineering, National University of Singapore, Singapore
| | - Minghong Wu
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, China
| | - Jing Fu
- Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, China.
| |
Collapse
|
28
|
Kong Q, Zhang H, Lan Y, Shi X, Fang Z, Chang Q, Liu J, Wei C. Functional graphene oxide for organic pollutants removal from wastewater: a mini review. ENVIRONMENTAL TECHNOLOGY 2023; 44:3183-3195. [PMID: 35286239 DOI: 10.1080/09593330.2022.2053754] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Graphene oxide (GO), an important derivative of graphene, with a variety of active oxygen-containing groups (hydroxyl, carboxyl and epoxy) on its surface is easy to be functionalized to obtain adsorbent with high adsorption capacity. To date, the adsorption behaviour of organic pollutants by functionalized GO adsorbents have been extensively studied, but there has been no systematic review regarding the functionalization method of GO for the purpose to remove organic pollutants from wastewater. The leading objective of this review is to (i) summarize the functionalization strategies of GO for organic pollutants removal (covalent functionalization and non-covalent functionalization), (ii) evaluate the adsorption performance of functional GO towards organic pollutants by taking aromatic pollutants and dyes as examples and (iii) discuss the regeneration property and adsorption mechanism of functional GO adsorbent. In addition, the problems of existing studies and future research directions are also identified briefly.
Collapse
Affiliation(s)
- Qiaoping Kong
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, People's Republic of China
| | - Hongzheng Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, People's Republic of China
| | - Yunlong Lan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, People's Republic of China
| | - Xueqing Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, People's Republic of China
| | - Zilong Fang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, People's Republic of China
| | - Qi Chang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, People's Republic of China
| | - Jun Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, People's Republic of China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, People's Republic of China
| |
Collapse
|
29
|
Abdelsalam H, Sakr MA, Saroka VA, Abd-Elkader OH, Zhang Q. Nanoporous graphene quantum dots constructed from nanoribbon superlattices with controllable pore morphology and size for wastewater treatment. SURFACES AND INTERFACES 2023; 40:103109. [DOI: 10.1016/j.surfin.2023.103109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
30
|
Li M, Zhang S, Zhang P, Qin K, Chen Q, Cao Q, Zhang Y, Zhang J, Yuan C, Xiao H. Dansyl-labelled cellulose as dual-functional adsorbents for elimination and detection of mercury in aqueous solution via aggregation-induced emission. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117773. [PMID: 36996568 DOI: 10.1016/j.jenvman.2023.117773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 06/19/2023]
Abstract
Dansyl chloride fluorophore exhibits typical aggregation induced fluorescence emission behavior in acetone/water solution. To realize the integration of detective and adsorptive functions, dansyl chloride is covalently immobilized on cellulose substrate to fabricate an efficient adsorbent for mercury ions in water. The as-prepared material exhibits excellent fluorescence sensing performance exclusively for Hg (II) with the presence of other metal ions. A sensitive and selective fluorescence quenching across the concentration range of 0.1-8.0 mg/L is observed with a detection limit of 8.33 × 10-9 M as a result of the inhibition of aggregation induced emission caused by the coordination between adsorbent and Hg (II). Besides, the adsorption properties for Hg (II) including the influence of initial concentration and contact time are investigated. Langmuir model and pseudo-second-order kinetics are demonstrated to fit well with the adsorption experiment for the uptake of Hg (II) by the functionalized adsorbent, also, intraparticle diffusion kinetic model is proved to aptly describe the Hg (II) removal in aqueous solution. In addition, the recognition mechanism is considered to originate from the Hg (II) triggered structural reversals of naphthalene ring units which are verified by the X-ray photoelectron spectroscopy and density functional theory calculation. Moreover, the synthesis method used in this work also provides a strategy for the sensing application of organic sensor molecules with AIE properties in which the aggregated behavior could be appropriately realized.
Collapse
Affiliation(s)
- Ming Li
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| | - Siqi Zhang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Panpan Zhang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Kexin Qin
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Qian Chen
- Department of Chemistry, Nanchang University, Nanchang, 330031, PR China
| | - Qianyong Cao
- Department of Chemistry, Nanchang University, Nanchang, 330031, PR China.
| | - Yuling Zhang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Jinghong Zhang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Chungang Yuan
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, E3B 5A3, Canada.
| |
Collapse
|
31
|
Yang Z, Zhou S, Feng X, Wang N, Ola O, Zhu Y. Recent Progress in Multifunctional Graphene-Based Nanocomposites for Photocatalysis and Electrocatalysis Application. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2028. [PMID: 37446544 DOI: 10.3390/nano13132028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
The global energy shortage and environmental degradation are two major issues of concern in today's society. The production of renewable energy and the treatment of pollutants are currently the mainstream research directions in the field of photocatalysis. In addition, over the last decade or so, graphene (GR) has been widely used in photocatalysis due to its unique physical and chemical properties, such as its large light-absorption range, high adsorption capacity, large specific surface area, and excellent electronic conductivity. Here, we first introduce the unique properties of graphene, such as its high specific surface area, chemical stability, etc. Then, the basic principles of photocatalytic hydrolysis, pollutant degradation, and the photocatalytic reduction of CO2 are summarized. We then give an overview of the optimization strategies for graphene-based photocatalysis and the latest advances in its application. Finally, we present challenges and perspectives for graphene-based applications in this field in light of recent developments.
Collapse
Affiliation(s)
- Zanhe Yang
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Siqi Zhou
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Xiangyu Feng
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Nannan Wang
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Oluwafunmilola Ola
- Advanced Materials Group, Faculty of Engineering, The University of Nottingham, Nottingham NG7 2RD, UK
| | - Yanqiu Zhu
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|
32
|
Beigi P, Ganjali F, Hassanzadeh-Afruzi F, Salehi MM, Maleki A. Enhancement of adsorption efficiency of crystal violet and chlorpyrifos onto pectin hydrogel@Fe 3O 4-bentonite as a versatile nanoadsorbent. Sci Rep 2023; 13:10764. [PMID: 37402768 DOI: 10.1038/s41598-023-38005-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/30/2023] [Indexed: 07/06/2023] Open
Abstract
The magnetic mesoporous hydrogel-based nanoadsornet was prepared by adding the ex situ prepared Fe3O4 magnetic nanoparticles (MNPs) and bentonite clay into the three-dimentional (3D) cross-linked pectin hydrogel substrate for the adsorption of organophosphorus chlorpyrifos (CPF) pesticide and crystal violet (CV) organic dye. Different analytical methods were utilized to confirm the structural features. Based on the obtained data, the zeta potential of the nanoadsorbent in deionized water with a pH of 7 was - 34.1 mV, and the surface area was measured to be 68.90 m2/g. The prepared hydrogel nanoadsorbent novelty owes to possessing a reactive functional group containing a heteroatom, a porous and cross-linked structure that aids convenient contaminants molecules diffusion and interactions between the nanoadsorbent and contaminants, viz., CPF and CV. The main driving forces in the adsorption by the Pectin hydrogel@Fe3O4-bentonite adsorbent are electrostatic and hydrogen-bond interactions, which resulted in a great adsorption capacity. To determine optimum adsorption conditions, effective factors on the adsorption capacity of the CV and CPF, including solution pH, adsorbent dosage, contact time, and initial concentration of pollutants, have been experimentally investigated. Thus, in optimum conditions, i.e., contact time (20 and 15 min), pH 7 and 8, adsorbent dosage (0.005 g), initial concentration (50 mg/L), T (298 K) for CPF and CV, respectively, the CPF and CV adsorption capacity were 833.333 mg/g and 909.091 mg/g. The prepared pectin hydrogel@Fe3O4-bentonite magnetic nanoadsorbent presented high porosity, enhanced surface area, and numerous reactive sites and was prepared using inexpensive and available materials. Moreover, the Freundlich isotherm has described the adsorption procedure, and the pseudo-second-order model explained the adsorption kinetics. The prepared novel nanoadsorbent was magnetically isolated and reused for three successive adsorption-desorption runs without a specific reduction in the adsorption efficiency. Therefore, the pectin hydrogel@Fe3O4-bentonite magnetic nanoadsorbent is a promising adsorption system for eliminating organophosphorus pesticides and organic dyes due to its remarkable adsorption capacity amounts.
Collapse
Affiliation(s)
- Paria Beigi
- Department of Physics, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Fereshte Hassanzadeh-Afruzi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad Mehdi Salehi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| |
Collapse
|
33
|
Kong Q, Zhang H, Wang P, Lan Y, Ma W, Shi X. NiCo bimetallic and the corresponding monometallic organic frameworks loaded CMC aerogels for adsorbing Cu 2+: Adsorption behavior and mechanism. Int J Biol Macromol 2023:125169. [PMID: 37270131 DOI: 10.1016/j.ijbiomac.2023.125169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/13/2023] [Accepted: 05/29/2023] [Indexed: 06/05/2023]
Abstract
In this study, three-dimensional (3D) carboxymethylcellulose sodium (CMC) aerogel was decorated with NiCo bimetallic and the corresponding monometallic organic frameworks to prepare MOFs-CMC composite adsorbents for the removal of Cu2+. The obtained MOFs-CMC composite including Ni/Co-MOF-CMC, Ni-MOF-CMC, and Co-MOF-CMC were characterized by SEM, FT-IR, XRD, XPS analysis, and zeta potential. The adsorption behavior of MOFs-CMC composite for Cu2+ was explored by batch adsorption test, adsorption kinetics and adsorption isotherms. The experimental data satisfied the pseudo-second-order model and Langmuir isotherm model. The maximum adsorption capacities followed the sequence of Ni/Co-MOF-CMC (233.99 mg/g) > Ni-MOF-CMC (216.95 mg/g) > Co-MOF-CMC (214.38 mg/g), indicating that there was a synergistic effect between Ni and Co to promote the adsorption of Cu2+. Combining characterization analysis and density functional theory (DFT) calculation, it is clarified that the adsorption mechanism of MOFs-CMC for Cu2+ includes ion exchange, electrostatic interactions, and complexation.
Collapse
Affiliation(s)
- Qiaoping Kong
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China
| | - Hongzheng Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China
| | - Peigan Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China
| | - Yunlong Lan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China
| | - Weiwei Ma
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China
| | - Xueqing Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China.
| |
Collapse
|
34
|
Zeng T, Liu Y, Jiang Y, Zhang L, Zhang Y, Zhao L, Jiang X, Zhang Q. Advanced Materials Design for Adsorption of Toxic Substances in Cigarette Smoke. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2301834. [PMID: 37211707 PMCID: PMC10401148 DOI: 10.1002/advs.202301834] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/27/2023] [Indexed: 05/23/2023]
Abstract
Cigarettes, despite being economically important legal consumer products, are highly addictive and harmful, particularly to the respiratory system. Tobacco smoke is a complex mixture containing over 7000 chemical compounds, 86 of which are identified to have "sufficient evidence of carcinogenicity" in either animal or human tests. Thus, tobacco smoke poses a significant health risk to humans. This article focuses on materials that help reduce the levels of major carcinogens in cigarette smoke; these include nicotine, polycyclic aromatic hydrocarbons, tobacco-specific nitrosamines, hydrogen cyanide, carbon monoxide, and formaldehyde. Specifically, the research progress on adsorption effects and mechanisms of advanced materials such as cellulose, zeolite, activated carbon, graphene, and molecularly imprinted polymers are highlighted. The future trends and prospects in this field are also discussed. Notably, with advancements in supramolecular chemistry and materials engineering, the design of functionally oriented materials has become increasingly multidisciplinary. Certainly, several advanced materials can play a critical role in reducing the harmful effects of cigarette smoke. This review aims to serve as an insightful reference for the design of hybrid and functionally oriented advanced materials.
Collapse
Affiliation(s)
- Ting Zeng
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China
- Research Center, Chengdu Medical College, Chengdu, 610500, China
| | - Yanxia Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yingfang Jiang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Lan Zhang
- Univ Lyon, CNRS, INSA-Lyon, Université Claude Bernard Lyon 1, CETHIL UMR5008, Villeurbanne, F-69621, France
| | - Yagang Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Lin Zhao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xiaoli Jiang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qiang Zhang
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
35
|
Hassen Y, Gedda G, Assen AH, Kabtamu DM, Girma WM. Dodonaea angustifolia Extract-Assisted Green Synthesis of the Cu 2O/Al 2O 3 Nanocomposite for Adsorption of Cd(II) from Water. ACS OMEGA 2023; 8:17209-17219. [PMID: 37214697 PMCID: PMC10193548 DOI: 10.1021/acsomega.3c01609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023]
Abstract
The enhanced worldwide concern for the protection and safety of the environment has made the scientific community focus their devotion on novel and highly effective approaches to heavy metals such as cadmium (Cd) pollutant removal. In this research, Dodonaea angustifolia plant extract-mediated Al2O3 and Cu2O nanoparticle (NP) syntheses were accomplished using the coprecipitation method, and the Cu2O/Al2O3 nanocomposite was prepared by simple mixing of Cu2O and Al2O3 NPs for the removal of Cd(II) ions from aqueous solution. Therefore, an efficient green, economical, facile, and eco-friendly synthesis method was employed, which improved the aggregation of individual metal oxide NPs. The chemical and physical properties of the nanocomposite were examined by different characterization techniques, including scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and Brunauer-Emmett-Teller (BET) surface area analysis. Furthermore, the performances of the nanoadsorbents for the adsorptive eradication of Cd2+ ions from water were investigated. The influence of pH, contact time, initial Cd quantity, and nanocomposite amount on adsorption effectiveness was carefully studied. The adsorption rates of the Cu2O/Al2O3 nanocomposite were rapid, and adsorption equilibrium was attained within 60 min for 97.36% removal of Cd(II) from water. The adsorption isotherm data were best fitted by the pseudo-second-order kinetic and Langmuir isotherm models with the highest adsorption ability of 4.48 mg/g. Therefore, the synthesized Cu2O/Al2O3 nanocomposite could be a potential candidate for a highly efficient adsorbent for heavy metal ion removal from aqueous solutions.
Collapse
Affiliation(s)
- Yeshi
Endris Hassen
- Department
of Chemistry, College of Natural Science, Wollo University, P.O. Box 1145, Dessie 1000, Ethiopia
| | - Gangaraju Gedda
- Department
of Chemistry, School of Engineering, Presidency
University, Bangalore 560064, Karnataka, India
| | - Ayalew H. Assen
- Department
of Chemistry, College of Natural Science, Wollo University, P.O. Box 1145, Dessie 1000, Ethiopia
| | - Daniel Manaye Kabtamu
- Department
of Chemistry, Debre Berhan University, P.O. Box 445, Debre Berhan 7260, Ethiopia
- Department
of Materials Science and Engineering, National
Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Wubshet Mekonnen Girma
- Department
of Chemistry, College of Natural Science, Wollo University, P.O. Box 1145, Dessie 1000, Ethiopia
| |
Collapse
|
36
|
Ayati A, Tanhaei B, Beiki H, Krivoshapkin P, Krivoshapkina E, Tracey C. Insight into the adsorptive removal of ibuprofen using porous carbonaceous materials: A review. CHEMOSPHERE 2023; 323:138241. [PMID: 36841446 DOI: 10.1016/j.chemosphere.2023.138241] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/23/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Over the last decade, the removal of pharmaceuticals from aquatic bodies has garnered substantial attention from the scientific community. Ibuprofen (IBP), a non-steroidal anti-inflammatory drug, is released into the environment in pharmaceutical waste as well as medical, hospital, and household effluents. Adsorption technology is a highly efficient approach to reduce the IBP in the aquatic environment, particularly at low IBP concentrations. Due to the exceptional surface properties of carbonaceous materials, they are considered ideal adsorbents for the IBP removal of, with high binding capacity. Given the importance of the topic, the adsorptive removal of IBP from effluent using various carbonaceous adsorbents, including activated carbon, biochar, graphene-based materials, and carbon nanostructures, has been compiled and critically reviewed. Furthermore, the adsorption behavior, binding mechanisms, the most effective parameters, thermodynamics, and regeneration methods as well as the cost analysis were comprehensively reviewed for modified and unmodified carbonaceous adsorbents. The compiled studies on the IBP adsorption shows that the IBP uptake of some carbon-based adsorbents is significantly than that of commercial activated carbons. In the future, much attention is needed for practical utilization and upscaling of the research findings to aid the management and sustainability of water resource.
Collapse
Affiliation(s)
- Ali Ayati
- EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia.
| | - Bahareh Tanhaei
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Hossein Beiki
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Pavel Krivoshapkin
- EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia
| | - Elena Krivoshapkina
- EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia
| | - Chantal Tracey
- EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia
| |
Collapse
|
37
|
Tambat VS, Patel AK, Chen CW, Raj T, Chang JS, Singhania RR, Dong CD. A sustainable vanadium bioremediation strategy from aqueous media by two potential green microalgae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121247. [PMID: 36764381 DOI: 10.1016/j.envpol.2023.121247] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/06/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Globally, environmental concerns are rapidly growing due to increasing pollution levels. Vanadium is a hazardous heavy metal that poses health issues with an exposure concentration of about 2 ppm. It is regularly discharged by some industries and poses an environmental challenge. There are no sustainable green treatment methods for discharged effluents to mitigate vanadium threats to humans and the environment. In this study, the goal was to develop a green, sustainable method for removing vanadium and to utilize the produced biomass for biofuels, thus offsetting the treatment cost. Microalgae Chlorella sorokiniana SU1 and Picochlorum oklahomensis were employed for vanadium (III) treatment. The maximum removal was 25.5 mg L-1 with biomass and lipid yields of 3.0 g L-1 and 884.4 mg L-1 respectively after 14 days of treatment. The vanadium removal capacity by microalgae was further enhanced up to 2-2.7 folds while optimizing the key parameters, pH, and temperature before removing biomass from the liquid phase. FTIR is used to analyse the reactive groups in algal cell walls to confirm vanadium adsorption and to understand the dominant and quantitative interactions. Zeta potential analysis helps to find out the most suitable pH range to facilitate the ionic bonding of biomass and thus maximum vanadium adsorption. This study addresses regulating external factors for enhancing the removal performance during microalgal biomass harvesting, which significantly enhances the removal of vanadium (III) from the aqueous phase. This strategy aims to improve the removal efficiency of microalgal treatment at an industrial scale for the bioremediation of vanadium and other inorganic pollutants.
Collapse
Affiliation(s)
- Vaibhav Sunil Tambat
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow, 226 029, Uttar Pradesh, India
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Sustainable Environment Research Centre, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Tirath Raj
- Department of Agricultural and Biological Engineering, University of Illinois Urbana-Champaign, 1304 West Pennsylvania Avenue, Urbana, IL, 61801, USA
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Taiwan
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow, 226 029, Uttar Pradesh, India
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Sustainable Environment Research Centre, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan.
| |
Collapse
|
38
|
Rout DR, Jena HM, Baigenzhenov O, Hosseini-Bandegharaei A. Graphene-based materials for effective adsorption of organic and inorganic pollutants: A critical and comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160871. [PMID: 36521616 DOI: 10.1016/j.scitotenv.2022.160871] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Water scarcity has been felt in many countries and will become a critical issue in the coming years. The release of toxic organic and inorganic contaminants from different anthropogenic activities, like mining, agriculture, industries, and domestic households, enters the natural waterbody and pollutes them. Keeping this in view in combating the environmental crises, removing pollutants from wastewater is one of the ongoing environmental challenges. Adsorption technology is an economical, fast, and efficient physicochemical method for removing both organic and inorganic pollutants, even at low concentrations. In the last decade, graphene and its composite materials have become the center of attraction for numerous applications, including wastewater treatment, due to the large surface area, highly active surface, and exclusive physicochemical properties, which make them potential adsorbents with unique physicochemical properties, like low density, chemical strength, structural variability, and the possibility of large-scale fabrications. This review article provides a thorough summary/critical appraisal of the published literature on graphene-, GO-, and rGO-based adsorbents for the removal of organic and inorganic pollutants from wastewater. The synthesis methods, experimental parameters, adsorption behaviors, isotherms, kinetics, thermodynamics, mechanisms, and the performance of the regeneration-desorption processes of these substances are scrutinized. Finally, the research challenges, limitations, and future research studies are also discussed. Certainly, this review article will benefit the research community by getting substantial information on suitable techniques for synthesizing such adsorbents and utilizing them in water treatment and designing water treatment systems.
Collapse
Affiliation(s)
- Dibya Ranjan Rout
- Department of Chemical Engineering, National Institute of Technology, Rourkela 769008, Orissa, India.
| | - Hara Mohan Jena
- Department of Chemical Engineering, National Institute of Technology, Rourkela 769008, Orissa, India.
| | | | | |
Collapse
|
39
|
Yan S, Huang K, Zhang F, Ren X, Wang X, Xing P. Geopolymer composite spheres derived from graphene-modified fly ash/slag: Facile synthesis and removal of lead ions in wastewater. ENVIRONMENTAL RESEARCH 2023; 220:115141. [PMID: 36572330 DOI: 10.1016/j.envres.2022.115141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/30/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Geopolymer composite spheres derived from potassium-activated graphene-modified slag/fly ash powder were produced in a polyethylene glycol (PEG 400) solvent. The effect of graphene type (graphene oxide (GO) and few-layered graphene (GNP)) on the pore structure and lead ions (Pb2+) removal performance of the spheres were evaluated. The results showed that the composite spheres modified with GOs (0.1-0.4 wt%) and GNPs (1-4 wt%) could be spheroidized with an improved performance to adsorb Pb2+ in solution. The graphene-containing spheres reached a maximum BET surface area of 68.85 m2/g. Pseudo-second-order and Langmuir isotherm models could express the adsorption process, which was controlled by both monolayer adsorption and chemisorption. The obtained spheres also showed high adsorption capacities for Ni2+, Cu2+, Zn2+ and Cd2+ ions. Chemical, physical, electrostatic, ion exchange and cation-π interaction were attributed to the adsorption mechanism of the spheres. The spheres showed good cycling ability compared to those without graphene, which had potential application in heavy metal wastewater treatment.
Collapse
Affiliation(s)
- Shu Yan
- School of Metallurgy, Northeastern University, Shenyang, Liaoning, 110819, PR China; Institute for Frontier Technologies of Low-Carbon Steelmaking, Northeastern University, No 11, Lane 3, Wen Hua Road, He Ping District, Shenyang, Liaoning, 110819, PR China; Liaoning Province Engineering Research Center for Technologies of Low-Carbon Steelmaking, Northeastern University, No 11, Lane 3, Wen Hua Road, He Ping District, Shenyang, Liaoning, 110819, PR China.
| | - Kai Huang
- School of Metallurgy, Northeastern University, Shenyang, Liaoning, 110819, PR China
| | - Fanyong Zhang
- Research Institute for Energy Equipment Materials, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300132, PR China
| | - Xiaoqi Ren
- School of Metallurgy, Northeastern University, Shenyang, Liaoning, 110819, PR China
| | - Xueheng Wang
- School of Metallurgy, Northeastern University, Shenyang, Liaoning, 110819, PR China
| | - Pengfei Xing
- School of Metallurgy, Northeastern University, Shenyang, Liaoning, 110819, PR China
| |
Collapse
|
40
|
Liu Y, Wang H, Cui Y, Chen N. Removal of Copper Ions from Wastewater: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3885. [PMID: 36900913 PMCID: PMC10001922 DOI: 10.3390/ijerph20053885] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Copper pollution of the world's water resources is becoming increasingly serious and poses a serious threat to human health and aquatic ecosystems. With reported copper concentrations in wastewater ranging from approximately 2.5 mg/L to 10,000 mg/L, a summary of remediation techniques for different contamination scenarios is essential. Therefore, it is important to develop low-cost, feasible, and sustainable wastewater removal technologies. Various methods for the removal of heavy metals from wastewater have been extensively studied in recent years. This paper reviews the current methods used to treat Cu(II)-containing wastewater and evaluates these technologies and their health effects. These technologies include membrane separation, ion exchange, chemical precipitation, electrochemistry, adsorption, and biotechnology. Thus, in this paper, we review the efforts and technological advances made so far in the pursuit of more efficient removal and recovery of Cu(II) from industrial wastewater and compare the advantages and disadvantages of each technology in terms of research prospects, technical bottlenecks, and application scenarios. Meanwhile, this study points out that achieving low health risk effluent through technology coupling is the focus of future research.
Collapse
Affiliation(s)
- Yongming Liu
- Shandong Provincial Geo-Mineral Engineering Co., Ltd., Jinan 250013, China
| | - Haishuang Wang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Yuanyuan Cui
- Shandong Geological Exploration Institute of China Geology and Mine Bureau, Jinan 250013, China
| | - Nan Chen
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| |
Collapse
|
41
|
Singh YT, Chettri B, Kima L, Renthlei Z, Patra PK, Prasad M, Sivakumar J, Laref A, Ghimire MP, Rai DP. Engineering of Hydrogenated (6,0) Single-Walled Carbon Nanotube under Applied Uniaxial Stress: A DFT-1/2 and Molecular Dynamics Study. ACS OMEGA 2023; 8:6895-6907. [PMID: 36844561 PMCID: PMC9948185 DOI: 10.1021/acsomega.2c07637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Herein, we systematically studied the electronic, optical, and mechanical properties of a hydrogenated (6,0) single-walled carbon nanotube [(6,0) h-SWCNT] under applied uniaxial stress from first-principles density functional theory (DFT) and molecular dynamics (MD) simulation. We have applied the uniaxial stress range from -18 to 22 GPa on the (6,0) h-SWCNT (- sign indicates compressive and + indicates tensile stress) along the tube axes. Our system was found to be an indirect semiconductor (Γ-Δ), with a band gap value of ∼0.77 eV within the linear combination of atomic orbitals (LCAO) method using a GGA-1/2 exchange-correlation approximation. The band gap for (6,0) h-SWCNT significantly varies with the application of stress. The indirect to direct band gap transition was observed under compressive stress (-14 GPa). The strained (6,0) h-SWCNT showed a strong optical absorption in the infrared region. Application of external stress enhanced the optically active region from infrared to Vis with maximum intensity within the Vis-IR region, making it a promising candidate for optoelectronic devices. Ab initio molecular dynamics (AIMD) simulation has been used to study the elastic properties of the (6,0) h-SWCNT which has a strong influence under applied stress.
Collapse
Affiliation(s)
- Yumnam Thakur Singh
- Department
of Physics, North-Eastern Hill University, Shillong, Meghalaya793022, India
| | - Bhanu Chettri
- Department
of Physics, North-Eastern Hill University, Shillong, Meghalaya793022, India
- Physical
Sciences Research Center (PSRC), Department of Physics, Pachhunga
University College, Mizoram University, Aizawl796001, India
| | - Lalrin Kima
- Physical
Sciences Research Center (PSRC), Department of Physics, Pachhunga
University College, Mizoram University, Aizawl796001, India
| | - Zosiamliana Renthlei
- Physical
Sciences Research Center (PSRC), Department of Physics, Pachhunga
University College, Mizoram University, Aizawl796001, India
| | - Prasanta Kumar Patra
- Department
of Physics, North-Eastern Hill University, Shillong, Meghalaya793022, India
| | - Mattipally Prasad
- Department
of Physics, University College of Science, Osmania University, Hyderabad500007, TelanganaIndia
| | - Juluru Sivakumar
- Department
of Physics, University College of Science, Osmania University, Hyderabad500007, TelanganaIndia
| | - Amel Laref
- Department
of Physics and Astronomy, College of Science, King Saud University, Riyadh11451, Saudi Arabia
| | - Madhav Prasad Ghimire
- Central
Department of Physics, Tribhuvan University, Kirtipur, 44613Kathmandu, Nepal
| | - Dibya Prakash Rai
- Physical
Sciences Research Center (PSRC), Department of Physics, Pachhunga
University College, Mizoram University, Aizawl796001, India
| |
Collapse
|
42
|
Xiao L, Wang Z, Wang D, Lan Y, Kong Q. Preparation of CaMgAl-calcined layered double hydroxides and application on the removal of phosphates. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:798-811. [PMID: 36789718 DOI: 10.2166/wst.2023.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A calcined CaMgAl-layered double hydroxide nanocomposite, CaMgAl-LDH (CCMA-0.83-600), was prepared by introducing Mg on the basis of CaAl-LDHs for the removal of phosphate from wastewater. The structure of the as-synthesized CCMA-0.83-600 was confirmed by XRD and SEM analyses. Parameters affecting the adsorption process of phosphate adsorbed by CCMA-0.83-600 were thoroughly explored, such as initial pH, adsorbent dosage and co-existing anions. The adsorption kinetic study suggested that the adsorption process accorded with the pseudo-second-order kinetic model and the adsorption rate was controlled by both the liquid film diffusion and intra-particle diffusion. The adsorption isotherm study indicated the adsorption process followed by the Langmuir isotherm model. Thermodynamic analysis suggested that the adsorption of phosphate was spontaneous and exothermic. The obtained results indicated that CCMA-0.83-600 is a suitable candidate for the removal of phosphate from wastewater.
Collapse
Affiliation(s)
- Liping Xiao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China
| | - Zhemeng Wang
- School of Civil Engineering, Liaoning Technical University, Fuxin 123000, PR China
| | - Dongxue Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China
| | - Yunlong Lan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China
| | - Qiaoping Kong
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China
| |
Collapse
|
43
|
Fama F, Feltracco M, Moro G, Barbaro E, Bassanello M, Gambaro A, Zanardi C. Pesticides monitoring in biological fluids: Mapping the gaps in analytical strategies. Talanta 2023; 253:123969. [PMID: 36191513 DOI: 10.1016/j.talanta.2022.123969] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 12/13/2022]
Abstract
Pesticides play a key-role in the development of the agrifood sector allowing controlling pest growth and, thus, improving the production rates. Pesticides chemical stability is responsible of their persistency in environmental matrices leading to bioaccumulation in animal tissues and hazardous several effects on living organisms. The studies regarding long-term effects of pesticides exposure and their toxicity are still limited to few studies focusing on over-exposed populations, but no extensive dataset is currently available. Pesticides biomonitoring relies mainly on chromatographic techniques coupled with mass spectrometry, whose large-scale application is often limited by feasibility constraints (costs, time, etc.). On the contrary, chemical sensors allow rapid, in-situ screening. Several sensors were designed for the detection of pesticides in environmental matrices, but their application in biological fluids needs to be further explored. Aiming at contributing to the implementation of pesticides biomonitoring methods, we mapped the main gaps between screening and chromatographic methods. Our overview focuses on the recent advances (2016-2021) in analytical methods for the determination of commercial pesticides in human biological fluids and provides guidelines for their application.
Collapse
Affiliation(s)
- Francesco Fama
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia, Italy
| | - Matteo Feltracco
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia, Italy
| | - Giulia Moro
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia, Italy.
| | - Elena Barbaro
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia, Italy; Istituto di Scienze Polari (ISP-CNR), Via Torino 155, 30172, Venezia, Italy
| | - Marco Bassanello
- Health Direction Monastier di Treviso Hospital, Via Giovanni XXIII 7, 31050, Treviso, Italy
| | - Andrea Gambaro
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia, Italy; Istituto di Scienze Polari (ISP-CNR), Via Torino 155, 30172, Venezia, Italy.
| | - Chiara Zanardi
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia, Italy; Institute for the Organic Synthesis and Photosynthesis, Research National Council, 40129, Bologna, Italy
| |
Collapse
|
44
|
Sarmiento V, Lockett M, Sumbarda-Ramos EG, Vázquez-Mena O. Effective Removal of Metal ion and Organic Compounds by Non-Functionalized rGO. Molecules 2023; 28:649. [PMID: 36677707 PMCID: PMC9864598 DOI: 10.3390/molecules28020649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 01/11/2023] Open
Abstract
Effective removal of heavy metals from water is critical for environmental safety and public health. This work presents a reduced graphene oxide (rGO) obtained simply by using gallic acid and sodium ascorbate, without any high thermal process or complex functionalization, for effective removal of heavy metals. FTIR and Raman analysis show the effective conversion of graphene oxide (GO) into rGO and a large presence of defects in rGO. Nitrogen adsorption isotherms show a specific surface area of 83.5 m2/g. We also measure the zeta-potential of the material showing a value of -52 mV, which is lower compared to the -32 mV of GO. We use our rGO to test adsorption of several ion metals (Ag (I), Cu (II), Fe (II), Mn (II), and Pb(II)), and two organic contaminants, methylene blue and hydroquinone. In general, our rGO shows strong adsorption capacity of metals and methylene blue, with adsorption capacity of qmax = 243.9 mg/g for Pb(II), which is higher than several previous reports on non-functionalized rGO. Our adsorption capacity is still lower compared to functionalized graphene oxide compounds, such as chitosan, but at the expense of more complex synthesis. To prove the effectiveness of our rGO, we show cleaning of waste water from a paper photography processing operation that contains large residual amounts of hydroquinone, sulfites, and AgBr. We achieve 100% contaminants removal for 20% contaminant concentration and 63% removal for 60% contaminant concentration. Our work shows that our simple synthesis of rGO can be a simple and low-cost route to clean residual waters, especially in disadvantaged communities with low economical resources and limited manufacturing infrastructure.
Collapse
Affiliation(s)
- Viviana Sarmiento
- Facultad de Odontología, Universidad Autónoma de Baja California, Tijuana 22427, BC, Mexico
- Department of NanoEngineering and Center for Memory and Recording Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Malcolm Lockett
- Department of NanoEngineering and Center for Memory and Recording Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Emigdia Guadalupe Sumbarda-Ramos
- Facultad de Ciencias de la Ingeniería y Tecnología (FCITEC), Universidad Autónoma de Baja California, Valle de las Palmas, Tijuana 22427, BC, Mexico
| | - Oscar Vázquez-Mena
- Department of NanoEngineering and Center for Memory and Recording Research, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
45
|
Shaheen S, Saeed Z, Ahmad A, Pervaiz M, Younas U, Mahmood Khan RR, Luque R, Rajendran S. Green synthesis of graphene-based metal nanocomposite for electro and photocatalytic activity; recent advancement and future prospective. CHEMOSPHERE 2023; 311:136982. [PMID: 36309056 DOI: 10.1016/j.chemosphere.2022.136982] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/10/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The presence of pollutants in waste water is a demanding problem for human health. Investigations have been allocated to study the adsorptive behavior of graphene-based materials to remove pollutants from wastewater. Graphene (GO) due to its hydrophilicity, high surface area, and oxygenated functional groups, is an effective adsorbent for the removal of dyes and heavy metals from water. The disclosure of green synthesis opened the gateway for the economic productive methods. This article reveals the fabrication of graphene-based composite from aloe vera extract using a green method. The proposed mechanism of GO reduction via plant extract has also been mentioned in this work. The mechanism associated with the removal of dyes and heavy metals by graphene-based adsorbents and absorptive capacities of heavy metals has been discussed in detail. The toxicity of heavy metals has also been mentioned here. The Polyaromatic resonating system of GO develops significant π-π interactions with dyes whose base form comprises principally oxygenated functional groups. This review article illustrates a literature survey by classifying graphene-based composite with a global market value from 2010 to 2025 and also depicts a comparative study between green and chemical reduction methods. It presents state of art for the fabrication of GO with novel adsorbents such as metal, polymer, metal oxide and elastomers-based nanocomposites for the removal of pollutants. The current progress in the applications of graphene-based composites in antimicrobial, anticancer, drug delivery, and removal of dyes with photocatalytic efficacy of 73% is explored in this work. It gives a coherent overview of the green synthesis of graphene-based composite, various prospective for the fabrication of graphene, and their biotoxicity.
Collapse
Affiliation(s)
- Shumila Shaheen
- Department of Chemistry, Government College University, Lahore, Pakistan
| | - Zohaib Saeed
- Department of Chemistry, Government College University, Lahore, Pakistan
| | - Awais Ahmad
- Departmento de Quimica Organicia, Universitidad de Cordoba, Edificio Marie Curie (C-3) Ctra Nnal IV-A ,km 396, E14104, Cordoba, Spain
| | - Muhammad Pervaiz
- Department of Chemistry, Government College University, Lahore, Pakistan.
| | - Umer Younas
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | | | - Rafael Luque
- Departmento de Quimica Organicia, Universitidad de Cordoba, Edificio Marie Curie (C-3) Ctra Nnal IV-A ,km 396, E14104, Cordoba, Spain; Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198, Moscow, Russian Federation.
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| |
Collapse
|
46
|
Kazlauskas M, Jurgelėnė Ž, Šemčuk S, Jokšas K, Kazlauskienė N, Montvydienė D. Effect of graphene oxide on the uptake, translocation and toxicity of metal mixture to Lepidium sativum L. plants: Mitigation of metal phytotoxicity due to nanosorption. CHEMOSPHERE 2023; 312:137221. [PMID: 36403815 DOI: 10.1016/j.chemosphere.2022.137221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Due to its unique structure and exceptional properties, graphene oxide (GO) is increasingly used in various fields of industry and therefore is inevitably released into the environment, where it interacts with different contaminants. However, the information relating to the ability of GO to affect the toxicity of contaminants is still limited. Therefore, the aim of our study was to synthesize GO, to examine the phytotoxicity of different concentrations of GO and its co-exposure with the metal mixture using garden cress (Lepidium sativum L.) as a test organism and to evaluate the potential of GO to affect toxicity of metals and their uptake by plants. The metal mixture (MIX) containing Ni (II), Zn (II), Cr (III) and Cu (II) was prepared in accordance with the maximum-permissible-concentrations (MPC) accepted for the inland waters in the EU. Additionally, the capacity of GO to adsorb metals was studied in specific conditions of the phytotoxicity test and assessed using adsorption isotherms. Our data indicate that in most cases the tested concentrations of MIX, GO and MIX + GO did not affect seed germination, root growth and biomass of roots and seedlings, however, they were found to alter photosynthesis processes, enhance production of carotenoids and H2O2 as well as to activate lipid peroxidation. Additionally, our study revealed that GO affects the accumulation of tested metals in roots and shoots of the MIX-exposed L. sativum. This is due to the capacity of GO to adsorb metals from the growth medium. Therefore, low concentrations of GO can be used for water decontamination.
Collapse
Affiliation(s)
- M Kazlauskas
- Nature Research Centre, Akademijos St. 2, LT-08412 Vilnius, Lithuania
| | - Ž Jurgelėnė
- Nature Research Centre, Akademijos St. 2, LT-08412 Vilnius, Lithuania
| | - S Šemčuk
- SRI Center for Physical Sciences and Technology, Savanorių Ave. 231, LT-02300, Vilnius, Lithuania
| | - K Jokšas
- Nature Research Centre, Akademijos St. 2, LT-08412 Vilnius, Lithuania; Vilnius University, Faculty of Chemistry and Geosciences, Naugarduko St. 24, LT-03225, Vilnius, Lithuania
| | - N Kazlauskienė
- Nature Research Centre, Akademijos St. 2, LT-08412 Vilnius, Lithuania
| | - D Montvydienė
- Nature Research Centre, Akademijos St. 2, LT-08412 Vilnius, Lithuania.
| |
Collapse
|
47
|
Pellenz L, de Oliveira CRS, da Silva Júnior AH, da Silva LJS, da Silva L, Ulson de Souza AA, de Souza SMDAGU, Borba FH, da Silva A. A comprehensive guide for characterization of adsorbent materials. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
48
|
Neskoromnaya EA, Khamizov RK, Melezhyk AV, Memetova AE, Mkrtchan ES, Babkin AV. Adsorption of lead ions (Pb2+) from wastewater using effective nanocomposite GO/CMC/FeNPs: Kinetic, isotherm, and desorption studies. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
49
|
Preparation and Application of Graphene–Based Materials for Heavy Metal Removal in Tobacco Industry: A Review. SEPARATIONS 2022. [DOI: 10.3390/separations9120401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Heavy metals are nondegradable in the natural environment and harmful to the ecological system and human beings, causing an increased environmental pollution problem. It is required to remove heavy metals from wastewater urgently. Up until now, various methods have been involved in the heavy metal removals, such as chemical precipitation, chemical reduction, electrochemical, membrane separation, ion exchange, biological, and adsorption methods. Among them, adsorption by graphene–based materials has attracted much more attentions for the removal of heavy metals from wastewater systems in recent years, arising due to their large specific surface area, high adsorption capacity, high removal efficiency, and good recyclability. Therefore, it is quite important to review the heavy metal removal with the graphene–based material. In this review, we have summarized the physicochemical property and preparation methods of graphene and their adsorption property to heavy metals. The influencing parameters for the removal of heavy metals by graphene–based materials have been discussed. In addition, the modification of graphene–based materials to enhance their adsorption capability for heavy metal removal is also reviewed. The heavy metal removal by modified graphene–based materials in the tobacco industry has been especially described in detail. Finally, the future trend for graphene–based materials in the field of heavy metal wastewater treatment is proposed. This knowledge will have great impacts on the field and facilitate the researchers to seek the new functionalization method for graphene–based materials with high adsorption capacity to heavy metals in the tobacco industry in the future.
Collapse
|
50
|
Adsorptive carbon-based materials for biomedical applications. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|