1
|
Li W, Zhu Z, Fang X, Wang X, Chu W, Gong H, Yan M. Polyvinyl chloride microplastics facilitated the transmission of Vibrio parahaemolyticus from surrounding water to Litopenaeus vannamei. Food Microbiol 2025; 129:104757. [PMID: 40086986 DOI: 10.1016/j.fm.2025.104757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/01/2025] [Accepted: 02/17/2025] [Indexed: 03/16/2025]
Abstract
Microplastics (MPs) pose a major threat to marine life and ecosystems. However, the toxicological effects of MPs on crustaceans which are highly susceptible to MPs pollution are not fully understood. In addition, MPs can serve as the medium for pathogens, increasing the risk of disease outbreaks in shrimp aquaculture. To study the biological risks of MPs close to the aquacultural practice, the current study firstly focused on the impacts of MPs colonized by the pathogen Vibrio parahaemolyticus on shrimp Litopenaeus vannamei. The role of microplastics in facilitating pathogens infection of shrimps was firstly reported. Under this impact, the hepatopancreas of L. vannamei suffered severe damage. At 96 hpi, the shrimp mortality rate reached 100%. Dominant phyla altered in the intestinal and hepatopancreatic microbiota of L. vannamei. The characterization of the L. vannamei microbiota under the condition where the pathogens and MPs exist in the surroundings, to be used as a reference for comparison with healthy and diseased shrimp in the aquacultural system, is necessary.
Collapse
Affiliation(s)
- Weixin Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510641, PR China; School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ziying Zhu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510641, PR China
| | - Xilin Fang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510641, PR China
| | - Xiaocui Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510641, PR China
| | - Wei Chu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Han Gong
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510641, PR China.
| | - Muting Yan
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510641, PR China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
2
|
Sun X, Zhuang Y, Wang Y, Zhang Z, An L, Xu Q. Polyethylene terephthalate microplastics affect gut microbiota distribution and intestinal damage in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 294:118119. [PMID: 40164037 DOI: 10.1016/j.ecoenv.2025.118119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Polyethylene terephthalate microplastics (PET-MPs) have been detected in the environment and human metabolites or tissues; however, their potential effects on humans under actual exposure doses remain unclear. Herein, male adult mice were exposed to 10 µm PET-MPs at concentrations of 10, 50, and 250 mg/kg per body weight consecutively for 28 days. Changes in blood biochemistry, inflammatory factors, colonic histopathology, colonic mucus gene mRNA levels, and the gut microflora were monitored to study PET-MPs toxicity. The results showed that PET-MPs exposure increased relative serum alanine aminotransferase (ALT) and glucose (GLU) levels in 50 mg/kg bw PET-MPs exposure group, and altered relative levels of inflammatory factors, thereby inducing the inflammatory response. Moreover, PET-MPs exposure increased mRNA expression levels of colonic mucus secretion related and barrier function related genes, indicating intestinal mucus secretion and barrier integrity dysfunction, which was consistent with the results of histopathological results. In addition, gut microbiota analysis revealed that the diversity and community composition were altered after PET-MPs exposure, suggesting a metabolic disorder. Therefore, our results demonstrated that exposure to PET-MPs led to intestinal injury and changes in the gut microbiome composition in mice. Overall, the study findings provided basic data about the health risks of PET-MPs to humans, highlighting that MPs-induced toxicity warrants more concern in the future.
Collapse
Affiliation(s)
- Xiangying Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Science, Beijing 100012, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Kaifeng Center for Disease Control and Prevention, Kaifeng, Henan 475000, China
| | - Yin Zhuang
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yubang Wang
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Zhenbo Zhang
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Lihui An
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Science, Beijing 100012, China.
| | - Qiujin Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Science, Beijing 100012, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
3
|
Sun J, Geng L, Zhou D, Teng X, Chen M. Gut microbiota participates in polystyrene microplastics-induced defective implantation through impairing uterine receptivity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:124997. [PMID: 40101486 DOI: 10.1016/j.jenvman.2025.124997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/22/2025] [Accepted: 03/13/2025] [Indexed: 03/20/2025]
Abstract
Microplastics (MPs) are widespread in global ecosystems and could pose risks to human health. However, crucial information on the impact of MP exposure on female reproductive health remains insufficient. In this study, we constructed an MP-exposure mice model through oral administration of polystyrene microplastics (PS-MPs) and found that it resulted in impaired uterine receptivity and defective implantation. An accumulation of plastic particles was detected in MP mice intestines. Metagenomic sequencing of feces samples indicated a structural and functional alteration of gut microbiota. Alistipes played a prominent role in MP biodegradation, while among the biodegradable functional genes, ACSL made the greatest contribution. Both had a significant increase in MP group, suggesting a potential occurrence of ferroptosis. Ferroptosis, a form of programmed cell death, is closely associated with uterine receptivity impairment and defective implantation. We detected MDA contents and ferroptosis-related proteins, and the results indicated the activation of ferroptosis in the process. Our research is the first to elucidate that exposure to MPs impairs uterine receptivity and results in deficient implantation, while also providing initial evidence that gut microbiota plays a critical role in this process.
Collapse
Affiliation(s)
- Jiani Sun
- Centre for Assisted Reproduction, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Lulu Geng
- Centre for Assisted Reproduction, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Dan Zhou
- Centre for Assisted Reproduction, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xiaoming Teng
- Centre for Assisted Reproduction, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Miaoxin Chen
- Centre for Assisted Reproduction, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
4
|
Chen X, Zhang Z, Hsueh Y, Zhang C, Yu J, Zhu J, Niu J, Yin N, Zhang J, Cui X, Liu X, Xu K, Yuan C. Interactions between environmental pollutants and gut microbiota: A review connecting the conventional heavy metals and the emerging microplastics. ENVIRONMENTAL RESEARCH 2025; 269:120928. [PMID: 39855410 DOI: 10.1016/j.envres.2025.120928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Growing epidemiological evidence suggests that the diverse and functional gut microbiota plays a vital role in regulating the health and disease of organisms including human. However, organisms are inevitably exposed to widespread environmental pollutants, and the interactions between their gut microbiota and pollutants are relatively underreported. The present paper considers heavy metals (HMs) and microplastics (MPs) as representatives of traditional and emerging pollutants and systematically summarizes their effects on gut microbiota and the effects of gut microbiota on pollutants. The former refers to the alterations in the gut microbiota's abundance, diversity and composition caused by pollutants, whereas the latter focuses on the changes in the metabolism of pollutants by adjusting the dominant bacteria, specific enzymes, and key genes. In particular, some fields were found to be poorly studied, including extension of research to humans, mechanistic exploration of gut microbiota's changes, and the metabolism of pollutants by gut microbiota. Accordingly, we draw attention to the development and application of in vitro test models to more accurately explore the interactions between pollutants and gut microbiota when assessing human health risks. In addition, by combining state-of-the-art biological techniques with culturomics, more gut microbiota can be identified, isolated, and cultured, which helps to confirm the relationship between pollutants and gut microbiota and the potential function of gut microbiota in pollutant metabolism. Furthermore, the phenomenon of coexposure to HMs and MPs is becoming more frequent, and their interactions with gut microbiota and the influence on human health is expected to be one of the frontier research fields in the future. The key information presented in this review can stimulate further development of techniques and methodologies for filling the knowledge gaps in the relationships between combined pollutants (HMs and MPs), gut microbiota, and human health.
Collapse
Affiliation(s)
- Xiaochen Chen
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Zengdi Zhang
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Yushiang Hsueh
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, China; Department of Civil and Environmental Engineering, National University of Kaohsiung, Kaohsiung, 81148, Taiwan, ROC
| | - Chunpeng Zhang
- Key Laboratory of Groundwater Resources and Environment (Ministry of Education), Jilin University, Changchun, 130021, China
| | - Jianying Yu
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, China; The Second Geological Exploration Institute, China Metallurgical Geology Bureau, Fuzhou, 350108, China
| | - Junyu Zhu
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Jia Niu
- Center of Safe and Energy-saving Engineering Technology for Urban Water Supply and Drainage System, School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350118, China
| | - Naiyi Yin
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Jianyu Zhang
- Jiangsu Longchang Chemical Co., Ltd., Rugao, 226532, China
| | - Xiaoyu Cui
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Kaiqin Xu
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Ching Yuan
- Department of Civil and Environmental Engineering, National University of Kaohsiung, Kaohsiung, 81148, Taiwan, ROC.
| |
Collapse
|
5
|
Medriano CA, Kim S, Kim LH, Bae S. Chronic Exposure of Adult Zebrafish to Polyethylene and Polyester-based Microplastics: Metabolomic and Gut Microbiome Alterations Reflecting Dysbiosis and Resilience. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136691. [PMID: 39642737 DOI: 10.1016/j.jhazmat.2024.136691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024]
Abstract
The study explored the ecotoxicological effects of chronic exposure to microplastic (MP) on adult zebrafish, focusing on environmentally relevant concentrations of polyethylene (PE) beads and polyester (PES). High-throughput untargeted metabolomics via UPLC-QToF-MS and 16S metagenomics for gut microbiota analysis were used to assess ecotoxicity in zebrafish exposed to varying concentrations of PE and PES. The VIP (Variable Importance in Projection) scores indicated PE exposure primarily impacted phospholipids, ceramides, and nucleotide-related compounds, while PES exposure led to alterations in lipid-related compounds, chitin, and amino acid derivatives. From MSEA (Metabolite Set Enrichment Analysis) and Mummichog analyses, PE and PES significantly disrupted key metabolomic pathways associated with inflammation, immune responses, and apoptosis, including leukotriene and arachidonic acid metabolism and the formation of putative anti-inflammatory metabolites from EPA. PE caused physical disruption and inflammation of the epithelial barrier, whereas PES affected gut microbiota interactions, impairing digestion and metabolism. Although alpha diversity within the gut microbiome remained stable, beta diversity analysis revealed significant shifts in microbial composition and structure, suggesting a disruption of functional balance and an increased susceptibility to pathogens. Chronic PE and PES exposures induced shifts in the gut microbial community and interaction network with potential increases in pathogenic bacteria and alteration in commensal bacteria, demonstrating the microbiome's resilience and adaptability to stressors of MPs exposure. High-throughput metabolomics and 16S metagenomics revealed potential chronic diseases associated with inflammation, immune system disorders, metabolic dysfunction, and gut dysbiosis, highlighting the complex relationship between gut microbiome resilience and metabolic disruption under MP-induced stress, with significant ecological implications.
Collapse
Affiliation(s)
- Carl Angelo Medriano
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore
| | - Sungpyo Kim
- Research Institute for Advanced Industrial Technology, Korea University, Republic of Korea
| | - Lan Hee Kim
- Research Institute for Advanced Industrial Technology, Korea University, Republic of Korea; Department of Environmental System Engineering, Korea University, Republic of Korea
| | - Sungwoo Bae
- Department of Environmental System Engineering, Korea University, Republic of Korea.
| |
Collapse
|
6
|
Bernardini I, Mezzelani M, Panni M, Dalla Rovere G, Nardi A, El Idrissi O, Peruzza L, Gorbi S, Ferraresso S, Bargelloni L, Patarnello T, Regoli F, Milan M. Transcriptional modulation in Mediterranean Mussel Mytilus galloprovincialis following exposure to four pharmaceuticals widely distributed in coastal areas. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107255. [PMID: 39904231 DOI: 10.1016/j.aquatox.2025.107255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/05/2025] [Accepted: 01/19/2025] [Indexed: 02/06/2025]
Abstract
Ecotoxicological risk and the mode of action of human drugs on non-target marine animals remain unclear, keeping a gap of knowledge on risks related to ecosystem disruption and chemical contamination of food chains. Understanding these impacts is critical to developing proper waste management practices and regulatory frameworks to prevent long-term environmental and human health problems. This study investigates the impacts of Gemfibrozil, Metformin, Ramipril, and Venlafaxine, individually and combined on Mytilus galloprovincialis over 30 days and assesses persistent effects post-recovery using RNA-seq and 16S rRNA microbiota profiling. All pharmaceuticals caused few changes in the microbiota while gene expression analyses highlighted drug-specific alterations. Gemfibrozil exposure led to alterations in lipid and fatty acid metabolism, suggesting a similar mode of action to that observed in target species. Metformin significantly impacted the mussels' energy metabolism, with disruptions in specific genes and pathways potentially related to glucose uptake and insulin signaling. Metformin was also the treatment leading to the most significant changes in predicted functional profiles of the microbiota, suggesting that it may influence the microbiota's potential to interact with host glucose metabolism. Ramipril exposure resulted in the up-regulation of stress response and cell cycle regulation pathways and Venlafaxine induced changes in serotonin and synapse pathways, indicating potential similarities in mechanisms of action with target species. Mixture of the four pharmaceuticals severely impacted mussel physiology, including impairment of oxidative phosphorylation and compensatory activation of several pathways involved in energy metabolism. Despite recovery after depuration, changes in stress and energy related metabolism pathways suggests potential persistent effects from combined pharmaceutical exposure. Notably, the up-regulation of mTOR1 signaling in all treatments after 30 days underscores its key role in coordinating bivalve stress responses. The Transcriptomic Hazard Index (THI) calculated for each treatment indicates major/severe hazards after exposure that decreased to slight/moderate hazards after depuration.
Collapse
Affiliation(s)
- Ilaria Bernardini
- Dipartimento di Biomedicina Comparata e Alimentazione, Università di Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Polo di Agripolis, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Marica Mezzelani
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche 60131 Ancona, Italy
| | - Michela Panni
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche 60131 Ancona, Italy
| | - Giulia Dalla Rovere
- Dipartimento di Biomedicina Comparata e Alimentazione, Università di Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Polo di Agripolis, Italy
| | - Alessandro Nardi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche 60131 Ancona, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Ouafa El Idrissi
- Université de Corse Pasquale Paoli, UMR CNRS 6134 Sciences pour l'Environnement, 20250 Corte, France
| | - Luca Peruzza
- Dipartimento di Biomedicina Comparata e Alimentazione, Università di Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Polo di Agripolis, Italy
| | - Stefania Gorbi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche 60131 Ancona, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Serena Ferraresso
- Dipartimento di Biomedicina Comparata e Alimentazione, Università di Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Polo di Agripolis, Italy
| | - Luca Bargelloni
- Dipartimento di Biomedicina Comparata e Alimentazione, Università di Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Polo di Agripolis, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Tomaso Patarnello
- Dipartimento di Biomedicina Comparata e Alimentazione, Università di Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Polo di Agripolis, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche 60131 Ancona, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy.
| | - Massimo Milan
- Dipartimento di Biomedicina Comparata e Alimentazione, Università di Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Polo di Agripolis, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy.
| |
Collapse
|
7
|
Yin L, Yang M, Teng A, Ni C, Wang P, Tang S. Unraveling Microplastic Effects on Gut Microbiota across Various Animals Using Machine Learning. ACS NANO 2025; 19:369-380. [PMID: 39723918 DOI: 10.1021/acsnano.4c07885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Microplastics, rapidly expanding and durable pollutant, have been shown to significantly impact gut microbiota across a spectrum of animal species. However, comprehensive analyses comparing microplastic effects on gut microbiota among these species are still limited, and the critical factors driving these effects remain to be clarified. To address these issues, we compiled 1352 gut microbiota samples from six animal categories, employing machine learning to conduct an in-depth meta-analysis. Our study revealed that mice, compared with other animals, not only exhibit a heightened susceptibility to the toxic effects of microplastics─evidenced by decreased gut microbiota diversity, increased Firmicutes/Bacteroidetes ratios, destabilized microbial networks, and disruption in the equilibrium of beneficial and harmful bacteria─but also possess limited potential to degrade microplastics, unlike earthworms and insects. Furthermore, machine learning models confirmed that exposure duration is the key factor driving changes induced by microplastics in gut microbiota. We also identified Lactobacillus, Helicobacter, and Pseudomonas as potential biomarkers for detecting microplastic toxicity in the animal gut. Overall, these findings provide valuable insights into the health risks and driving factors associated with microplastic exposure across multiple animal species.
Collapse
Affiliation(s)
- Lingzi Yin
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong 511453, China
| | - Minghao Yang
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong 511453, China
| | - Anqi Teng
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong 511453, China
| | - Can Ni
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR 999077, China
| | - Pandeng Wang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Shaojun Tang
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong 511453, China
- Division of Emerging Interdisciplinary Areas, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR 999077 China
| |
Collapse
|
8
|
Mauliasari IR, Lee HJ, Koo SY, Hitayezu E, Kieu ANT, Lee SM, Cha KH. Benzo(a)pyrene and Gut Microbiome Crosstalk: Health Risk Implications. TOXICS 2024; 12:938. [PMID: 39771153 PMCID: PMC11840287 DOI: 10.3390/toxics12120938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 02/23/2025]
Abstract
This review delves into the impact of benzo(a)pyrene (B(a)P), which is a toxic and pervasive polycyclic aromatic hydrocarbon (PAH) and known carcinogen, on the human health risk from a gut microbiome perspective. We retrieved the relevant articles on each PAH and summarized the reporting to date, with a particular focus on benzo(a)pyrene, which has been reported to have a high risk of gut microbiome-related harm. B(a)P exposure can compromise the homeostasis of the gut microbiota, leading to dysbiosis, a state of microbial imbalance. The consequences of B(a)P-induced gut dysbiosis can be far-reaching, potentially contributing to inflammation, metabolic disorders, and an increased risk of various diseases. Additionally, due to the strong coupling between B(a)P and microparticles, the toxicity of B(a)P may be further compounded by its reaction with strong gut disruptors such as micro-/nanoplastics, which have recently become a serious environmental concern. This review summarizes current research on the impact of B(a)P on the gut microbiome, highlighting the intricate relationship between environmental exposure, gut health, and human disease. Further research is necessary to elucidate the underlying mechanisms and develop effective strategies to mitigate the adverse health effects of B(a)P exposure.
Collapse
Affiliation(s)
- Intan Rizki Mauliasari
- Center for Natural Product Systems Biology, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (I.R.M.); (H.J.L.); (S.Y.K.); (E.H.); (A.N.T.K.)
- Department of Aquatic Life Medicine, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea;
| | - Hee Ju Lee
- Center for Natural Product Systems Biology, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (I.R.M.); (H.J.L.); (S.Y.K.); (E.H.); (A.N.T.K.)
| | - Song Yi Koo
- Center for Natural Product Systems Biology, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (I.R.M.); (H.J.L.); (S.Y.K.); (E.H.); (A.N.T.K.)
| | - Emmanuel Hitayezu
- Center for Natural Product Systems Biology, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (I.R.M.); (H.J.L.); (S.Y.K.); (E.H.); (A.N.T.K.)
- Department of Food Science, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Anh Nguyen Thi Kieu
- Center for Natural Product Systems Biology, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (I.R.M.); (H.J.L.); (S.Y.K.); (E.H.); (A.N.T.K.)
- Natural Products Applied Science, KIST School, University of Science and Technology, Gangneung 25451, Republic of Korea
| | - Sang-Min Lee
- Department of Aquatic Life Medicine, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea;
| | - Kwang Hyun Cha
- Center for Natural Product Systems Biology, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (I.R.M.); (H.J.L.); (S.Y.K.); (E.H.); (A.N.T.K.)
- Natural Products Applied Science, KIST School, University of Science and Technology, Gangneung 25451, Republic of Korea
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, 20, Ilsan-ro, Wonju 26493, Republic of Korea
| |
Collapse
|
9
|
Woh PY, Shiu HY, Fang JKH. Microplastics in seafood: Navigating the silent health threat and intestinal implications through a One Health food safety lens. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136350. [PMID: 39527854 DOI: 10.1016/j.jhazmat.2024.136350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
This systematic review revealed microplastic (MP) contamination and conducted hazard risk assessment in various seafood species of different geographic locations. Evidence was available on fish, crustaceans, and mollusks, with most studies from China reporting 19 seafood species containing the highest variety of total MP polymers. The maximum percentage of MPs in terms of size, composition, shape, and color was attributed to 100-1500 µm, polyethylene terephthalate (PET), fibers, and blue color, respectively. Aquatic life in brackish and marine ecosystems harbored higher levels of MPs than freshwater organisms. Crustacean species Thenus orientalis (flathead lobster) off the coasts of Iran were the most heavily loaded with 460.2 MPs/individual. Meta-analysis revealed high statistical and model heterogeneity of MP content in fish (mean 1.11 MPs/individual, 95 % confidence interval (CI)= 0.3-1.92) and shellfish (1.43 MPs/individual, 95 % CI= -0.35-3.21). The highest MP contamination factor (CF) was estimated in marine carnivorous Plectropomus leopardus (leopard coral trout) from Australia/Fiji (CF= 3.06), omnivorous Portunus sanguinolentus (three spot crab) from India (CF= 5.44), and filter-feeding Chlamys nobilis (noble scallop) from China (CF= 3.38), with the highest pollution risk index (PRI) values of 366877.6, 46437.5, and 45672.2, respectively. Studies show that MPs are potential triggers of altered key microbial diversity of Firmicutes, Fusobacteria, Proteobacteria, Actinobacteria, and Bacteroidetes. The dysbiotic properties of MPs increased intestinal permeability and decreased immune system associated with inflammation. In summary, this study provides a significant understanding of the MP abundance in edible seafood species and knowledge of MP risk assessment important to safeguard food safety and human health.
Collapse
Affiliation(s)
- Pei Yee Woh
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong; Research Institute for Future Food (RiFood), The Hong Kong Polytechnic University, Hong Kong.
| | - Ho Yi Shiu
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong
| | - James Kar-Hei Fang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong; Research Institute for Future Food (RiFood), The Hong Kong Polytechnic University, Hong Kong; State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong.
| |
Collapse
|
10
|
Zhang X, Jiang C, Xu S, Zheng X, Liu X, Wang J, Wu W, Wang C, Zhuang X. Microbiome and network analysis reveal potential mechanisms underlying Carassius auratus diseases: The interactions between critical environmental and microbial factors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122485. [PMID: 39278018 DOI: 10.1016/j.jenvman.2024.122485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/09/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Despite the rapid development of research on aquatic environment microbiota, limited attention has been paid to exploring the complex interactions between microbial communities and aquatic environments. Particularly, the mechanisms underlying fish diseases based on such dynamic interactions remain unknown. This study aimed to address the gap by conducting microbiome and co-occurrence network analyses on the typical freshwater aquaculture systems. High-throughput 16S rRNA gene sequencing results revealed significant differences in the microbiota between the disease and healthy groups. Notably, disease mortality varied consistently with the gradient of relative abundance of Proteobacteria (intestine, R2 = 0.46, p < 0.05) and Cyanobacteria (gill, R2 = 0.67, p < 0.01), indicating their potential use as diagnostic criteria. Furthermore, the elevated hepatosomatic index, NO3-N, COD and TC (sediment) were directly correlated with diseases (r > 0.54, p < 0.01). Mean concentrations of NO3-N, COD and TC were elevated by 78.87%, 25.63% and 44.2%, respectively, in ponds where diseases occurred. Quantitative analysis (qPCR) revealed that Aeromonas sobria infected hosts through a potential pathway of "sediment (4.4 × 105 copy number/g)-water (1.1 × 103 copy number/mL)-intestine (1.2 × 106 copy number/g)". Similarly, the potential route for Aeromonas veronii was sediment (4.9 × 106 copy number/g) to gill (5.1 × 105 copy number/g). Additionally, the complexity of microbial networks in the intestine, water, and sediment was significantly lower in the disease group, although no similar phenomenon was observed in the gill microbial network. In summary, these findings reveal that elevated concentrations of crucial environmental factors disrupt the linkages within microbiota, fostering the growth of opportunistic bacteria capable of colonizing fish gut or gills. This offers new insights into potential mechanisms by which environmental factors cause disease in fish.
Collapse
Affiliation(s)
- Xupo Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cancan Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengjun Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; Yangtze River Delta Research Center for Eco-Environmental Sciences, China Key Laboratory of Environmental Biotechnology, Yiwu, 322000, China.
| | - Xiaoxu Zheng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxuan Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Jinglin Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenzheng Wu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cong Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuliang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
11
|
Shi Z, Yao F, Liu Z, Zhang J. Microplastics predominantly affect gut microbiota by altering community structure rather than richness and diversity: A meta-analysis of aquatic animals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124639. [PMID: 39095000 DOI: 10.1016/j.envpol.2024.124639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
The impacts of microplastics on the gut microbiota, a crucial component of the health of aquatic animals, remain inadequately understood. This phylogenetically controlled meta-analysis aims to identify general patterns of microplastic effects on the alpha diversity (richness and Shannon index), beta diversity, and community structure of gut microbiota in aquatic animals. Data from 63 peer-reviewed articles on the Web of Science were synthesized, encompassing 424 observations across 31 aquatic species. The analysis showed that microplastics significantly altered the community structure of gut microbiota, with between-group distances being 87.75% higher than within-group distances. This effect was significant even at environmentally relevant concentrations (≤1 mg L-1). However, their effects on richness, Shannon index, and beta diversity (community variation) were found to be insignificant. The study also indicated that the effects of microplastics were primarily dependent on their concentration and size, while the phylogeny of tested species explained limited heterogeneity. Furthermore, variations in gut microbiota alpha diversity, beta diversity, and community structure were correlated with changes in antioxidant enzyme activities from the liver and hepatopancreas. This implies that gut microbiota attributes of aquatic animals may provide insights into host antioxidant levels. In summary, this study illuminates the impacts of microplastics on the gut microbiota of aquatic animals and examines the implications of these effects for host health. It emphasizes that microplastics mainly alter the community structure of gut microbiota rather than significantly affecting richness and diversity.
Collapse
Affiliation(s)
- Zhaoji Shi
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Engineering Technology Research Centre of Modern Eco-Agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Fucheng Yao
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Engineering Technology Research Centre of Modern Eco-Agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Ziqiang Liu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Engineering Technology Research Centre of Modern Eco-Agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaen Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Engineering Technology Research Centre of Modern Eco-Agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
12
|
Park JK, Lee JE, Do Y. Life on both environment in semi-aquatic frogs: Impact of aquatic microplastic (MP) from MP enrichment to growth, immune function and physiological stress. CHEMOSPHERE 2024; 366:143547. [PMID: 39419331 DOI: 10.1016/j.chemosphere.2024.143547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/11/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024]
Abstract
The pervasive distribution of microplastics (MPs) in aquatic ecosystems presents a significant threat to wildlife, with amphibians being particularly vulnerable due to their complex life cycles and ecological roles. This study investigates physiological and ecological impacts of aquatic MP exposure on juvenile black-spotted pond frogs (Pelophylax nigromaculatus), focusing on juvenile frog stage, history of life after metamorphosis. MP examinations in the intestine and body revealed accumulation primarily in the gastrointestinal tracts without evidence of systemic distribution. Experimental exposure to different concentrations of MPs demonstrated adverse effects on growth, physiological stress, and immune function. Notably, higher MP concentrations led to significant reductions in growth and innate immunity, indicative of compromised health. High concentrations of MPs were associated with elevated levels of corticosterone and antioxidant enzymes, indicating physiological stress. However, there was no evidence of extreme hormonal surges or imbalances in antioxidant enzyme activity, suggesting that amphibians were able to effectively cope with the levels of MPs used in the study. Changes in gastrointestinal morphology and fecal microbiota composition were observed, reflecting response of metabolic adaptation to MP exposure. At low concentrations of MPs, adaptive changes in digestive tract morphology and the maintenance of gut microbiota balance were observed, indicating that the frogs were able to manage the exposure below a certain threshold. In contrast, high concentrations of MPs had clear negative effects on amphibians, which could impact biodiversity and ecosystem stability. These findings also suggest that MPs may trigger adaptive responses at lower concentrations, while still posing significant environmental risks at higher levels.
Collapse
Affiliation(s)
- Jun-Kyu Park
- Department of Biological Sciences, Kongju National University, (32588) Room 204, 56, Kongjudaehak-ro, Kongju-si, Gongju, 32588, Chungcheongnam-do, Republic of Korea
| | - Ji-Eun Lee
- Department of Biological Sciences, Kongju National University, (32588) Room 204, 56, Kongjudaehak-ro, Kongju-si, Gongju, 32588, Chungcheongnam-do, Republic of Korea
| | - Yuno Do
- Department of Biological Sciences, Kongju National University, (32588) Room 204, 56, Kongjudaehak-ro, Kongju-si, Gongju, 32588, Chungcheongnam-do, Republic of Korea.
| |
Collapse
|
13
|
Jing L, Zhang Y, Zhang Q, Zhao H. Polystyrene microplastics disrupted physical barriers, microbiota composition and immune responses in the cecum of developmental Japanese quails. J Environ Sci (China) 2024; 144:225-235. [PMID: 38802233 DOI: 10.1016/j.jes.2023.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 05/29/2024]
Abstract
Microplastics, a new type of emerging pollutant, is ubiquitous in terrestrial and water environments. Microplastics have become a growing concern due to their impacts on the environment, animal, and human health. Birds also suffer from microplastics contamination. In this study, we examined the toxic effects of polystyrene microplastics (PS-MPs) exposure on physical barrier, microbial community, and immune function in the cecum of a model bird species-Japanese quail (Coturnix japonica). The one-week-old birds were fed on environmentally relevant concentrations of 20 µg/kg, 400 µg/kg, and 8 mg/kg PS-MPs in the diet for 5 weeks. The results showed that microplastics could cause microstructural damages characterized by lamina propria damage and epithelial cell vacuolation and ultrastructural injuries including microvilli breakage and disarrangement as well as mitochondrial vacuolation in the cecum of quails. In particular, blurry tight junctions, wider desmosomes spacing, and gene expression alteration indicated cecal tight junction malfunction. Moreover, mucous layer breakdown and mucin decrease indicated that chemical barrier was disturbed by PS-MPs. PS-MPs also changed cecal microbial diversity. In addition, structural deformation of cecal tonsils and increasing proinflammatory cytokines suggested cecal immune disorder and inflammation responses by PS-MPs exposure. Our results suggested that microplastics negatively affected digestive system and might pose great health risks to terrestrial birds.
Collapse
Affiliation(s)
- Lingyang Jing
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yuxin Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Qingyu Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Hongfeng Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
14
|
Bian DD, Liu X, Zhang X, Zhang GY, Wu RC, Shi YX, Zhu XR, Zhang DZ, Liu QN, Tang BP, Zhu BJ. Correlative analysis of transcriptome and 16S rDNA in Procambarus clarkii reveals key signaling pathways are involved in Chlorantraniliprole stress response by phosphoinositide 3-kinase (PI3K). Int J Biol Macromol 2024; 280:135966. [PMID: 39326603 DOI: 10.1016/j.ijbiomac.2024.135966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/02/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Chlorantraniliprole (CAP), a diamide insecticide, is extensively used in agricultural production. With the increasing adoption of the rice-crayfish integrated farming model, pesticide application has become more frequent. However, the potential risk of CAP to crayfish (Procambarus clarkii) remains unclear. In this study, crayfish were exposed to 30, 60, 90 mg/L CAP for 96 h. As CAP exposure time and concentration increased, crayfish survival rates and total hemocyte counts (THC) decreased. Biochemical indicators revealed that CAP exposure induced oxidative stress and immunosuppression in crayfish, leading to metabolic disorders and reduced ATP content. Additionally, pathological analysis and 16S rDNA sequencing demonstrated that CAP exposure compromised the intestinal barrier of crayfish, altered the intestinal microbial community structure, and caused apoptosis. Differential gene expression analysis showed that CAP exposure significantly suppressed the expression of genes related to immune and energy metabolism pathways, resulting in immune dysfunction and insufficient energy supply, while activating the PI3K/AKT/mTOR signaling pathway. PI3K knockdown reduced antioxidant and digestive activities, increased the expression of proinflammatory and apoptosis genes, and exacerbated CAP-induced intestinal toxicity. This study is the first to explore the characterization and function of PI3K in crustaceans, providing new insights for further research on crustacean antioxidants and defense mechanisms.
Collapse
Affiliation(s)
- Dan-Dan Bian
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, College of Life Sciences, Anhui Agricultural University, Hefei 230036, People's Republic of China; Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Xin Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Xue Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Geng-Yu Zhang
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, College of Life Sciences, Anhui Agricultural University, Hefei 230036, People's Republic of China; Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Ren-Chao Wu
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, College of Life Sciences, Anhui Agricultural University, Hefei 230036, People's Republic of China; Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Yan-Xia Shi
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China
| | - Xi-Rong Zhu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China.
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China.
| | - Bao-Jian Zhu
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, College of Life Sciences, Anhui Agricultural University, Hefei 230036, People's Republic of China.
| |
Collapse
|
15
|
Xu M, Niu H, Wu L, Xing M, Mo Z, Chen Z, Li X, Lou X. Impact of Microplastic Exposure on Blood Glucose Levels and Gut Microbiota: Differential Effects under Normal or High-Fat Diet Conditions. Metabolites 2024; 14:504. [PMID: 39330511 PMCID: PMC11433756 DOI: 10.3390/metabo14090504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Microplastics are emerging pollutants that have garnered significant attention, with evidence suggesting their association with the pathogenesis of type 2 diabetes mellitus. In order to assess the impact of polystyrene microplastic exposure on alterations in the gut microbiota and the subsequent implications for glucose dysregulation under different dietary conditions in mice, we investigated the effects and disparities in the blood glucose levels induced by polystyrene microplastic exposure in mice fed a high-fat diet versus those fed a normal diet. Using 16S rRNA sequencing and bioinformatics analyses, we explored the dynamic changes and discrepancies in the gut microbiota stability induced by polystyrene microplastic exposure under varied dietary conditions, and we screened for gut genera associated with the potential of polystyrene microplastics to disrupt glucose homeostasis. Our findings indicate that a high-fat diet resulted in abnormal mouse body weight, energy intake, blood glucose levels and related metabolic parameters. Additionally, polystyrene microplastic exposure exacerbated the glucose metabolism disorders induced by a high-fat diet. Furthermore, the composition and diversity of the mouse gut microbiota were significantly altered following microplastic exposure, with 11 gut genera exhibiting a differential presence between mice fed a high-fat diet combined with microplastic exposure compared to those fed a normal diet with microplastic exposure. Moreover, Ucg-009 played an intermediary role in the association between a high-fat diet and the fasting blood glucose. Hence, our study demonstrates that polystyrene microplastic exposure exacerbates high-fat diet-induced glucose metabolism disorders, whereas its impact on the blood glucose under normal dietary conditions is not significant, highlighting the differential influence attributable to distinct alterations in characteristic gut genera.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xueqing Li
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (M.X.); (H.N.); (L.W.); (M.X.); (Z.M.); (Z.C.)
| | - Xiaoming Lou
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (M.X.); (H.N.); (L.W.); (M.X.); (Z.M.); (Z.C.)
| |
Collapse
|
16
|
Zhu B, Chen X, Zhang T, Zhang Q, Fu K, Hua J, Zhang M, Qi Q, Zhao B, Zhao M, Yang L, Zhou B. Interactions between intestinal microbiota and metabolites in zebrafish larvae exposed to polystyrene nanoplastics: Implications for intestinal health and glycolipid metabolism. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134478. [PMID: 38696962 DOI: 10.1016/j.jhazmat.2024.134478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/09/2024] [Accepted: 04/27/2024] [Indexed: 05/04/2024]
Abstract
Previous studies have shown the harmful effects of nanoscale particles on the intestinal tracts of organisms. However, the specific mechanisms remain unclear. Our present study focused on examining the uptake and distribution of polystyrene nanoplastics (PS-NPs) in zebrafish larvae, as well as its toxic effects on the intestine. It was found that PS-NPs, marked with red fluorescence, primarily accumulated in the intestine section. Subsequently, zebrafish larvae were exposed to normal PS-NPs (0.2-25 mg/L) over a critical 10-day period for intestinal development. Histopathological analysis demonstrated that PS-NPs caused structural changes in the intestine, resulting in inflammation and oxidative stress. Additionally, PS-NPs disrupted the composition of the intestinal microbiota, leading to alterations in the abundance of bacterial genera such as Pseudomonas and Aeromonas, which are associated with intestinal inflammation. Metabolomics analysis showed alterations in metabolites that are primarily involved in glycolipid metabolism. Furthermore, MetOrigin analysis showed a significant correlation between bacterial flora (Pedobacter and Bacillus) and metabolites (D-Glycerate 2-phosphate and D-Glyceraldehyde 3-phosphate), which are related to the glycolysis/gluconeogenesis pathways. These findings were further validated through alterations in multiple biomarkers at various levels. Collectively, our data suggest that PS-NPs may impair the intestinal health, disrupt the intestinal microbiota, and subsequently cause metabolic disorders.
Collapse
Affiliation(s)
- Biran Zhu
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Hubei Shizhen Laboratory, Wuhan 430061, China
| | - Xianglin Chen
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430061, China
| | - Taotao Zhang
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430061, China
| | - Qianqian Zhang
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430061, China
| | - Kaiyu Fu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jianghuan Hua
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Hubei Shizhen Laboratory, Wuhan 430061, China
| | - Mengyuan Zhang
- Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Qing Qi
- Wuhan Business University, Wuhan 430056, China
| | - Binbin Zhao
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430061, China
| | - Min Zhao
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430061, China.
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
17
|
Nizzetto L, Binda G, Hurley R, Baann C, Selonen S, Velmala S, van Gestel CAM. Comments to "Degli-Innocenti, F. The pathology of hype, hyperbole and publication bias is creating an unwarranted concern towards biodegradable mulch films" [J. Hazard. Mater. 463 (2024) 132923]. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:133690. [PMID: 38336580 DOI: 10.1016/j.jhazmat.2024.133690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Some narratives present biodegradable plastic use for soil mulching practices in agriculture as "environmentally friendly" and "sustainable" alternatives to conventional plastics. To verify these narratives, environmental research recently started focusing on their potential impact on soil health, highlighting some concerns. The paper by Degli-Innocenti criticizes this unfolding knowledge arguing that it is affected by communication hypes, alarmistic writing and a focus on exposure scenarios purposedly crafted to yield negative effects. The quest of scientists for increased impact - the paper concludes - is the driver of such behavior. As scholars devoted to the safeguarding of scientific integrity, we set to verify whether this serious claim is grounded in evidence. Through a bibliometric analysis (using number of paper reads, citations and mentions on social media to measure the impact of publications) we found that: i) the papers pointed out by Degli-Innocenti as examples of biased works do not score higher than the median of similar publications; ii) the methodology used to support the conclusion is non-scientific; and iii) the paper does not fulfil the requirements concerning disclosure of conflicts of interests. We conclude that this paper represents a non-scientific opinion, potentially biased by a conflict of interest. We ask the paper to be clearly tagged as such, after the necessary corrections on the ethic section have been made. That being said, the paper does offer some useful insights for the definition of exposure scenarios in risk assessment. We comment and elaborate on these proposed models, hoping that this can help to advance the field.
Collapse
Affiliation(s)
- Luca Nizzetto
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway; Research Centre for Toxic Compounds in the Environment, Masaryk University, 62500 Brno, Czech Republic.
| | - Gilberto Binda
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway; DISAT Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy
| | - Rachel Hurley
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway
| | - Cecilie Baann
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway
| | - Salla Selonen
- Finnish Environment Institute (SYKE), Mustialankatu 3, 00790 Helsinki, Finland
| | - Sannakajsa Velmala
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| |
Collapse
|
18
|
Yang Z, Li Y, Zhang G. Degradation of microplastic in water by advanced oxidation processes. CHEMOSPHERE 2024; 357:141939. [PMID: 38621489 DOI: 10.1016/j.chemosphere.2024.141939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/19/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024]
Abstract
Plastic products have gained global popularity due to their lightweight, excellent ductility, high durability, and portability. However, out of the 8.3 billion tons of plastic waste generated by human activities, 80% of plastic waste is discarded due to improper disposal, and then transformed into microplastic pollution under the combined influence of environmental factors and microorganisms. In this comprehensive study, we present a thorough review of recent advancements in research on the source, distribution, and effect of microplastics. More importantly, we conducted deep research on the catalytic degradation technologies of microplastics in water, including advanced oxidation and photocatalytic technologies, and elaborated on the mechanisms of microplastics degradation in water. Besides, various strategies for mitigating microplastic pollution in aquatic ecosystems are discussed, ranging from policy interventions, the initiative for plastic recycling, the development of efficient catalytic materials, and the integration of multiple technological approaches. This review serves as a valuable resource for addressing the challenge of removing microplastic contaminants from water bodies, offering insights into effective and sustainable solutions.
Collapse
Affiliation(s)
- Zhixiong Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Yuan Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Gaoke Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China.
| |
Collapse
|
19
|
Zheng S, Wang WX. Single-Cell RNA Sequencing Profiling Cellular Heterogeneity and Specific Responses of Fish Gills to Microplastics and Nanoplastics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5974-5986. [PMID: 38512049 DOI: 10.1021/acs.est.3c10338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Fish gills are highly sensitive organs for microplastic (MP) and nanoplastic (NP) invasions, but the cellular heterogeneity of fish gills to MPs and NPs remains largely unknown. We employed single-cell RNA sequencing to investigate the responses of individual cell populations in tilapia Oreochromis niloticus gills to MP and NP exposure at an environmentally relevant concentration. Based on the detected differentially expressed gene (DEG) numbers, the most affected immune cells by MP exposure were macrophages, while the stimulus of NPs primarily targeted T cells. In response to MPs and NPs, H+-ATPase-rich cells exhibited distinct changes as compared with Na+/K+-ATPase-rich cells and pavement cells. Fibroblasts were identified as a potential sensitive cell-type biomarker for MP interaction with O. niloticus gills, as evidenced by the largely reduced cell counts and the mostly detected DEGs among the 12 identified cell populations. The most MP-sensitive fibroblast subpopulation in O. niloticus gills was lipofibroblasts. Cell-cell communications between fibroblasts and H+-ATPase-rich cells, neurons, macrophages, neuroepithelial cells, and Na+/K+-ATPase-rich cells in O. niloticus gills were significantly inhibited by MP exposure. Collectively, our study demonstrated the cellular heterogeneity of O. niloticus gills to MPs and NPs and provided sensitive markers for their toxicological mechanisms at single-cell resolution.
Collapse
Affiliation(s)
- Siwen Zheng
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
20
|
Chu T, Zhang R, Guo F, Zhu M, Zan S, Yang R. The toxicity of polystyrene micro- and nano-plastics on rare minnow (Gobiocypris rarus) varies with the particle size and concentration. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 269:106879. [PMID: 38422927 DOI: 10.1016/j.aquatox.2024.106879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
How the particle size and concentration of microplastics impact their toxicity is largely unknown. Herein, the effects of polystyrene microplastics (1 μm, MPs) and nanoplastics (100 nm, NPs) exposed at 1 mg/L (L) and 10 mg/L (H), respectively, on the growth, histopathology, oxidative stress, gut microbiome, and metabolism of rare minnow (Gobiocypris rarus) were investigated by chemical analysis and multi-omics. MPs and NPs inhibited the growth, induced histopathological injury and aggravated oxidative stress markedly with contrasting significance of particle size and concentration. The composition of core gut microbiota changed dramatically especially for the MPs-H. Similarly, gut bacterial communities were reshaped by the MPs and NPs but only NPs-H decreased both richness and Shannon indexes significantly. Co-occurrence network analysis revealed that the potential keystone genera underwent great changes in exposed groups compared to the control. MPs-H increased the network complexity and the frequency of positive interactions which was opposite to other exposed groups. Moreover, the metabolomic profiles associated with amino acid, lipid, unsaturated fatty acid and hormone metabolism were disturbed significantly especially for MPs-H and NPs-H. In conclusion, the toxicity of MPs depends on both the particle size and concentration, and varies with the specific indicators as well.
Collapse
Affiliation(s)
- Tingting Chu
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Rui Zhang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Fuyu Guo
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Anhui Provincial Engineering Research Center of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, China
| | - Meng Zhu
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Anhui Provincial Engineering Research Center of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, China
| | - Shuting Zan
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Anhui Provincial Engineering Research Center of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, China
| | - Ruyi Yang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Anhui Provincial Engineering Research Center of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, China.
| |
Collapse
|
21
|
Zhu L, Wang K, Wu X, Zheng H, Liao X. Association of specific gut microbiota with polyethylene microplastics caused gut dysbiosis and increased susceptibility to opportunistic pathogens in honeybees. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170642. [PMID: 38320694 DOI: 10.1016/j.scitotenv.2024.170642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/13/2024]
Abstract
The emergence of microplastics as contaminants has raised concerns regarding their potential toxicity. Recent studies on microplastic pollution caused by food packaging have drawn attention to its impact on health. However, despite being used extensively in food packaging, there is little knowledge about the toxicity of polyethylene microplastics (PE-MPs). Here, we studied the toxicity of PE-MPs on the model animal honeybees using different particle sizes (1 μm, 10 μm, 100 μm in diameter). Oral exposure to 100-μm PE-MPs resulted in elevated honeybee mortality and increased their susceptibility to pathogens. This is likely due to the mechanical disruption and gut microbial dysbiosis by PE-MPs. Snodgrassella, a core functional gut bacteria, was specifically enriched on the surface of PE-MPs, which perturbs the gut microbial communities in honeybees. Furthermore, the increased mortality in challenge trials with the opportunistic pathogen Hafnia alvei for PE-MPs pre-exposed honeybees revealed a potential health risk. These findings provide fresh insights into evaluating the potential hazards associated with PE-MPs.
Collapse
Affiliation(s)
- Liya Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100085, China
| | - Kewen Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100085, China
| | - Xiaomeng Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100085, China.
| | - Hao Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100085, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100085, China
| |
Collapse
|
22
|
Tian H, Zheng C, Huang X, Qi C, Li B, Du Z, Zhu L, Wang J, Wang J. Effects of farmland residual mulch film-derived microplastics on the structure and function of soil and earthworm Metaphire guillelmi gut microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170094. [PMID: 38224880 DOI: 10.1016/j.scitotenv.2024.170094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
Microplastics derived from polyethylene (PE) mulch films are widely found in farmland soils and present considerable potential threats to agricultural soil ecosystems. However, the influence of microplastics derived from PE mulch films, especially those derived from farmland residual PE mulch films, on soil ecosystems remains unclear. In this study, we analyzed the bacterial communities attached to farmland residual transparent PE mulch film (FRMF) collected from peanut fields and the different ecological effects of unused PE mulch film-derived microplastics (MPs) and FRMF-derived microplastics (MPs-aged) on the soil and earthworm Metaphire guillelmi gut microbiota, functional traits, and co-occurrence patterns. The results showed that the assembly and functional patterns of the bacterial communities attached to the FRMF were clearly distinct from those in the surrounding farmland soil, and the FRMF enriched some potential plastic-degrading and pathogenic bacteria, such as Nocardioidaceae, Clostridiaceae, Micrococcaceae, and Mycobacteriaceae. MPs substantially influenced the assembly and functional traits of soil bacterial communities; however, they only significantly changed the functional traits of earthworm gut bacterial communities. MPs-aged considerably affected the assembly and functional traits of both soil and earthworm gut bacterial communities. Notably, MPs had a more remarkable effect on nitrogen-related functions than the MPs-aged in numbers for both soil and earthworm gut samples. Co-occurrence network analysis revealed that both MPs and MPs-aged enhanced the synergistic interactions among operational taxonomic units (OTUs) of the composition networks for all samples. For community functional networks, MPs and MPs-aged enhanced the antagonistic interactions for soil samples; however, they exhibited contrasting effects for earthworm gut samples, as MPs enhanced the synergistic interactions among the functional contents. These findings broaden and deepen our understanding of the effects of FRMF-derived microplastics on soil ecosystems, suggesting that the harmful effects of aged plastics on the ecological environment should be considered.
Collapse
Affiliation(s)
- Huimei Tian
- College of Forestry, Shandong Agricultural University, Taian 271018, China.
| | - Chuanwei Zheng
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, Taian 271018, China
| | - Xinjie Huang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, Taian 271018, China
| | - Chen Qi
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Bing Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, Taian 271018, China.
| | - Zhongkun Du
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, Taian 271018, China.
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, Taian 271018, China.
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, Taian 271018, China.
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, Taian 271018, China.
| |
Collapse
|
23
|
Yang H, Zhong J, Leng X, Wu J, Cheng P, Shen L, Wu J, Li P, Du H. Effectiveness assessment of using water environmental microHI to predict the health status of wild fish. Front Microbiol 2024; 14:1293342. [PMID: 38274749 PMCID: PMC10808811 DOI: 10.3389/fmicb.2023.1293342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
Aquatic wildlife health assessment is critically important for aquatic wildlife conservation. However, the health assessment of aquatic wildlife (especially aquatic wild animals) is difficult and often accompanied by invasive survey activities and delayed observability. As there is growing evidence that aquatic environmental microbiota could impact the health status of aquatic animals by influencing their symbiotic microbiota, we propose a non-invasive method to monitor the health status of wild aquatic animals using the environmental microbiota health index (microHI). However, it is unknown whether this method is effective for different ecotype groups of aquatic wild animals. To answer this question, we took a case study in the middle Yangtze River and studied the water environmental microbiota and fish gut microbiota at the fish community level, population level, and ecotype level. The results showed that the gut microHI of the healthy group was higher than that of the unhealthy group at the community and population levels, and the overall gut microHI was positively correlated with the water environmental microHI, whereas the baseline gut microHI was species-specific. Integrating these variations in four ecotype groups (filter-feeding, scraper-feeding, omnivorous, and carnivorous), only the gut microHI of the carnivorous group positively correlated with water environmental microHI. Alcaligenaceae, Enterobacteriaceae, and Achromobacter were the most abundant groups with health-negative-impacting phenotypes, had high positive correlations between gut sample group and environment sample group, and had significantly higher abundance in unhealthy groups than in healthy groups of carnivorous, filter-feeding, and scraper-feeding ecotypes. Therefore, using water environmental microHI to indicate the health status of wild fish is effective at the community level, is effective just for carnivorous fish at the ecotype level. In the middle Yangtze River, Alcaligenaceae, Enterobacteriaceae (family level), and Achromobacter (genus level) were the key water environmental microbial groups that potentially impacted wild fish health status. Of course, more data and research that test the current hypothesis and conclusion are encouraged.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hao Du
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| |
Collapse
|
24
|
Peller JR, Tabor G, Davis C, Iceman C, Nwachukwu O, Doudrick K, Wilson A, Suprenant A, Dabertin D, McCool JP. Distribution and Fate of Polyethylene Microplastics Released by a Portable Toilet Manufacturer into a Freshwater Wetland and Lake. WATER 2024; 16:11. [PMID: 39219624 PMCID: PMC11361013 DOI: 10.3390/w16010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A portable toilet manufacturer in northwest Indiana (USA) released polyethylene microplastic (MP) pollution into a protected wetland for at least three years. To assess the loads, movement, and fate of the MPs in the wetland from this point source, water and sediment samples were collected in the fall and spring of 2021-2023. Additional samples, including sediment cores and atmospheric particulates, were collected during the summer of 2023 from select areas of the wetland. The MPs were isolated from the field samples using density separation, filtration, and chemical oxidation. Infrared and Raman spectroscopy analyses identified the MPs as polyethylene, which were quantified visually using a stereomicroscope. The numbers of MPs in 100 mL of the marsh water closest to the source ranged from several hundred to over 400,000, while the open water samples contained few microplastics. Marsh surface sediments were highly contaminated with MPs, up to 18,800 per 30.0 g dry mass (dm), compared to core samples in the lower depths (>15 cm) that contained only smaller MPs (<200 µm), numbering 0-480 per 30.0 g (dm). The wide variations in loads of MP contaminants indicate the influence of numerous factors, such as proximity to the point source pollution, weather conditions, natural matter, and pollution sinks, namely sediment deposition. As proof of concept, we demonstrated a novel remediation method using these real-world samples to effectively agglomerate and remove MPs from contaminated waters.
Collapse
Affiliation(s)
- Julie R. Peller
- Department of Chemistry, Valparaiso University, 1710 Chapel Drive, Valparaiso, IN 46383, USA
| | - Gavin Tabor
- Department of Chemistry, Valparaiso University, 1710 Chapel Drive, Valparaiso, IN 46383, USA
| | - Christina Davis
- Department of Chemistry, Valparaiso University, 1710 Chapel Drive, Valparaiso, IN 46383, USA
| | - Chris Iceman
- Department of Chemistry, Valparaiso University, 1710 Chapel Drive, Valparaiso, IN 46383, USA
| | - Ozioma Nwachukwu
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Kyle Doudrick
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Antigone Wilson
- Department of Chemistry, Valparaiso University, 1710 Chapel Drive, Valparaiso, IN 46383, USA
| | - Alyssa Suprenant
- Department of Chemistry, Valparaiso University, 1710 Chapel Drive, Valparaiso, IN 46383, USA
| | - David Dabertin
- Dabertin Law Offices, 5246 Hohman Avenue Suite 302, Hammond, IN 46320, USA
| | - Jon-Paul McCool
- Department of Geography and Meteorology, Valparaiso University, 1809 Chapel Drive, Valparaiso, IN 46383, USA
| |
Collapse
|
25
|
Zhao P, Lu W, Avellán-Llaguno RD, Liao X, Ye G, Pan Z, Hu A, Huang Q. Gut microbiota related response of Oryzias melastigma to combined exposure of polystyrene microplastics and tetracycline. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167359. [PMID: 37769716 DOI: 10.1016/j.scitotenv.2023.167359] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/01/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
The co-existence of microplastics (MPs) and antibiotics in the coastal environment poses a combined ecological risk. Single toxic effects of MPs or antibiotics on aquatic organisms have been verified, however, the exploration of their combined toxic effects remains limited. Here, foodborne polystyrene microplastics (PS-MPs, 10 μm, 0.1 % w/w in food) and waterborne tetracyclines (TC, 50 μg/L) were used to expose an estuarine fish Oryzias melastigma for four weeks. We found that the aqueous availability of TC was not significantly altered coexisting with MPs. The fish body weight gain was significantly slower in TC alone or combined groups than the control group, consistent with the lower lipid content in livers. The body length gain was significantly inhibited by the combined presence compared to the single exposure. Both exposures led to a shift of gut microbiota composition and diversity. TC and the combined group possessed similar gut microbiota which is distinct from PS-MPs and the control group. The Firmicutes/Bacteroidetes (F/B) ratio in the TC and combined groups were significantly lower compared to the control, while the PS-MPs group showed no significant impact. Metabolomic analysis of the fish liver confirmed the shift of metabolites in specific pathways after different exposures. More, a number of gut microbiota-related metabolites on lipid metabolism was perturbed, which were annotated in arachidonic acid metabolism and linoleic acid metabolism. In all, TC modulates bacterial composition in the fish gut and disturbs their liver metabolites via the gut-liver axis, which led to the slower growth of O. melastigma. More, the adverse impact was aggravated by the co-exposure to foodborne PS-MPs.
Collapse
Affiliation(s)
- Peiqiang Zhao
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; School of Public Utilities, Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China
| | - Wenjia Lu
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ricardo David Avellán-Llaguno
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xin Liao
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guozhu Ye
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhizhen Pan
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Anyi Hu
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Qiansheng Huang
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; National Basic Science Data Center, Beijing 100190, China.
| |
Collapse
|
26
|
Sol D, Solís-Balbín C, Laca A, Laca A, Díaz M. A standard analytical approach and establishing criteria for microplastic concentrations in wastewater, drinking water and tap water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165356. [PMID: 37422236 DOI: 10.1016/j.scitotenv.2023.165356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
The ubiquitous presence of microplastics (MPs) in natural water bodies reflects the global issue regarding these micropollutants. The main problem of MPs lies on the difficulty of removing these particles from water during wastewater and drinking water treatments. The release of MPs to the environment in treated wastewater contributed to the dispersion of these micropollutants, which enhances the harmful effect of MPs on fauna and flora. In addition, their presence in tap water entails a potential risk to human health since MPs can be directly consumed. The first step is being able to quantify and characterise these microparticles accurately. In this work, a comprehensive analysis on the presence of MPs in wastewater, drinking water and tap water has been conducted with emphasis on sampling methods, pre-treatment, MP size and analytical methods. Based on literature data, a standard experimental procedure has been proposed with the objective of recommending a methodology that allows the homogenisation of MP analysis in water samples. Finally, reported MP concentrations for influents and effluents of drinking and wastewater treatment plants and tap water have been analysed, in terms of abundance, ranges and average values, and a tentative classification of different waters based on their MP concentrations is proposed.
Collapse
Affiliation(s)
- Daniel Sol
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, 33006 Oviedo, Spain
| | - Carmen Solís-Balbín
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, 33006 Oviedo, Spain
| | - Amanda Laca
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, 33006 Oviedo, Spain
| | - Adriana Laca
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, 33006 Oviedo, Spain
| | - Mario Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, 33006 Oviedo, Spain.
| |
Collapse
|
27
|
Li S, Wang S, Pan C, Luo Y, Liang S, Long S, Yang X, Wang B. Differences in Physiological Performance and Gut Microbiota between Deep-Sea and Coastal Aquaculture of Thachinotus Ovatus: A Metagenomic Approach. Animals (Basel) 2023; 13:3365. [PMID: 37958120 PMCID: PMC10648977 DOI: 10.3390/ani13213365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/14/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Aquaculture has become the fastest growing sector in global agriculture. The environmental degradation, diseases, and high density of mariculture has made for an inevitable shift in mariculture production from coastal to deep-sea areas. The influence that traditional coastal and emerging deep-sea farming environments exert on aquatic growth, immunity and gut microbial flora is unclear. To address this question, we compared the growth performance, physiological indicators and intestinal microbiological differences of deep-sea and coastal aquaculture in the Guangxi Beibu Gulf of China. The results showed that the growth performance and the complement of C3 and C4 (C3, C4), superoxide dismutase (SOD), and lysozyme (LYS), these physiological and biochemical indicators in the liver, kidney, and muscle of Trachinotus ovatus (T. ovatus), showed significant differences under different rearing conditions. Metagenome sequencing analysis showed Ascomycota, Pseudomonadota, and Bacillota were the three dominant phyla, accounting for 52.98/53.32 (coastal/deep sea), 24.30/22.13, and 10.39/11.82%, respectively. Aligned against the CARD database, a total of 23/2 (coastal/deep-sea) antibiotic resistance genes were screened and grouped into 4/2 genotypes. It indicated that compared with deep-sea fish, higher biological oxygen levels (3.10 times), inorganic nitrogen (110.00 times) and labile phosphate levels (29.00 times) in coastal waters might contributed to the existence of eutrophication with antibiotic resistance. The results of the study can provide complementary data on the study of the difference between deep-sea farming and traditional coastal farming, serving as a reference to future in-depth work on the transformation of fisheries development and scientific standardization of deep-sea farming.
Collapse
Affiliation(s)
- Shuangfei Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (S.L.); (S.W.); (C.P.); (Y.L.); (S.L.); (S.L.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Shilin Wang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (S.L.); (S.W.); (C.P.); (Y.L.); (S.L.); (S.L.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Cong Pan
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (S.L.); (S.W.); (C.P.); (Y.L.); (S.L.); (S.L.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Yanqing Luo
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (S.L.); (S.W.); (C.P.); (Y.L.); (S.L.); (S.L.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Shitong Liang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (S.L.); (S.W.); (C.P.); (Y.L.); (S.L.); (S.L.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Siru Long
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (S.L.); (S.W.); (C.P.); (Y.L.); (S.L.); (S.L.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Xuewei Yang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (S.L.); (S.W.); (C.P.); (Y.L.); (S.L.); (S.L.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Boyu Wang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (S.L.); (S.W.); (C.P.); (Y.L.); (S.L.); (S.L.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
28
|
Zhou W, Huang D, Chen S, Du L, Wang G, Li R, Xu W. Modified nano zero-valent iron reduce toxicity of polystyrene microplastics to ryegrass (Lolium Perenne L.). CHEMOSPHERE 2023; 337:139152. [PMID: 37290504 DOI: 10.1016/j.chemosphere.2023.139152] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
Microplastics pollution in environments has become a major concern and it has been proven to have adverse impacts on plants, so there is an urgent to find approaches to alleviate the detrimental effects of microplastics. In our study, we investigated the influence of polystyrene microplastics (PSMPs) on the growth, photosynthesis, and oxidative defense system changes of ryegrass, as well as the behavior of MPs at roots. Then three types of nanomaterials were applied to alleviate the adverse impact of PSMPs on ryegrass, which were nano zero-valent iron (nZVI), carboxymethylcellulose-modified-nZVI (C-nZVI) and sulfidated nZVI (S-nZVI), respectively. Our results suggested that PSMPs had significant toxicity to ryegrass, leading to decrease of shoot weight, shoot length and root length. Three nanomaterials regained the weight of ryegrass to a varying extent and made more PSMPs aggregate near roots. In addition, C-nZVI and S-nZVI facilitated the entrance of PSMPs into the root and promoted the chlorophyll a and chlorophyll b contents in leaves. Analysis of antioxidant enzymes and malondialdehyde content indicated that ryegrass coped well with the internalization of PSMPs, and all three types of nZVI could alleviate PSMPs-stress in ryegrass. This study elaborates the toxicity of MPs on plants and provides a novel insight into the fixing of MPs by plants and nanomaterials in environments, which needs to be further explored in future research.
Collapse
Affiliation(s)
- Wei Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China.
| | - Sha Chen
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, 430068, PR China
| | - Li Du
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Guangfu Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Ruijin Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Wenbo Xu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
29
|
Sun A, Wang WX. Human Exposure to Microplastics and Its Associated Health Risks. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2023; 1:139-149. [PMID: 39473618 PMCID: PMC11504042 DOI: 10.1021/envhealth.3c00053] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 12/20/2024]
Abstract
Microplastics are a globally emerging contaminant in the environment, but little is known about the potential risks of microplastics to human health. Possible exposure routes of microplastics to humans include ingestion, inhalation, and dermal penetration, with the last of these needing equal attention as the other two main routes. Evidence showed the presence of microplastics in human-derived biological samples (i.e., excrement, biofluids, and tissues). Most of the toxicological studies of microplastics on humans were based on laboratory rodents and human-derived cells. Energy homeostasis, intestinal microflora, and the reproductive, immune, and nervous systems were regarded as targets of microplastics. The toxicity of microplastics on microstructures including lysosomes, mitochondria, endoplasmic reticulum, and the nucleus further revealed the potential risks of microplastics on human health at the cellular levels. As a carrier, microplastics also had the potential to magnify the toxicity of other contaminants in the environment (e.g., plasticizer, metals, antibiotics, and microorganisms). Studies of microplastics at environmentally realistic conditions are still in their infancy with many unsolved questions to predict their risks on human health.
Collapse
Affiliation(s)
- Anqi Sun
- School
of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 518057, China
- Research
Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School
of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 518057, China
- Research
Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
30
|
Zhao Z, Wang X, Jiang J, Dong Y, Pan Y, Guan X, Wang B, Gao S, Chen Z, Zhou Z. Adverse effects of polystyrene nanoplastics on sea cucumber Apostichopus japonicus and their association with gut microbiota dysbiosis. CHEMOSPHERE 2023; 330:138568. [PMID: 37019397 DOI: 10.1016/j.chemosphere.2023.138568] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/22/2023] [Accepted: 03/31/2023] [Indexed: 05/14/2023]
Abstract
The mariculture environment is a sink of microplastics (MPs) due to its enclosed nature and mass use of plastics. Nanoplastics (NPs) are MPs with a diameter <1 μm that have a more toxic effect on aquatic organisms than other MPs. However, little is known about the underlying mechanisms of NP toxicity on mariculture species. Here, we performed a multi-omics investigation to explore gut microbiota dysbiosis and associated health problems induced by NPs in juvenile sea cucumber Apostichopus japonicus, a commercially and ecologically important marine invertebrate. We observed significant differences in gut microbiota composition after 21 days of NP exposure. Ingestion of NPs significantly increased core gut microbes, especially Rhodobacteraceae and Flavobacteriaceae families. Additionally, gut gene expression profiles were altered by NPs, especially those related to neurological diseases and movement disorders. Correlation and network analyses indicated close relationships between transcriptome changes and gut microbiota variation. Furthermore, NPs induced oxidative stress in sea cucumber intestines, which may be associated with intraspecies variation in Rhodobacteraceae in the gut microbiota. The results suggested that NPs were harmful to the health of sea cucumbers, and they highlighted the importance of the gut microbiota in the responses to NP toxicity in marine invertebrates.
Collapse
Affiliation(s)
- Zelong Zhao
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Xuda Wang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Jingwei Jiang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China.
| | - Ying Dong
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Yongjia Pan
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Xiaoyan Guan
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Bai Wang
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Shan Gao
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Zhong Chen
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Zunchun Zhou
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China.
| |
Collapse
|
31
|
Zhang Q, Lv Y, Liu J, Chang L, Chen Q, Zhu L, Wang B, Jiang J, Zhu W. Size matters either way: Differently-sized microplastics affect amphibian host and symbiotic microbiota discriminately. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 328:121634. [PMID: 37054867 DOI: 10.1016/j.envpol.2023.121634] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023]
Abstract
Concerns about the implications of microplastics (MPs) on aqueous animals have gained widespread attention. It has been postulated that the magnitude of MPs can influence its toxicity. However, little is known about how MPs toxicity changes with particle size. Amphibians are reliable bioindicators of ecosystem health due to their complex life cycles. In this study, we compared the influences of two sizes nonfunctionalized polystyrene microspheres (1 and 10 μm) on the metamorphosis of Asiatic toad (Bufo gargarizans). Acute exposure to MPs at high concentrations led to bioaccumulation in the digestive track and internal organs (i.e., liver and heart) of tadpoles. Long-term exposure to either size, at environmentally-related concentrations (1 and 4550 p/mL), led to growth and development delay in pro-metamorphic tadpoles. Remarkably, developmental plasticity mitigated these deleterious effects prior to the onset of metamorphic climax without compromising survival rate in later stages. MPs with a diameter of 10 μm dramatically altered the gut microbiota (e.g., abundance of Catabacter and Desulfovibrio) of pro-metamorphic tadpoles, whereas MPs with a diameter of 1 μm induced much more intensive transcriptional responses in the host tissues (e.g., upregulation of protein synthesis and mitochondrial energy metabolism, and downregulation of neural functions and cellular responses). Given that the two MPs sizes induced similar toxic outcomes, this suggests that their principal toxicity mechanisms are distinct. Small-sized MPs can travel easily across the intestinal mucosa and cause direct toxicity, while large-sized MPs accumulate in gut and affect the host by changing the homeostasis of digestive track. In conclusion, our findings indicate that MPs can affect the growth and development of amphibian larvae, but their developmental plasticity determines the ultimate detrimental effects. Multiple pathways of toxicity may contribute to the size-dependent toxicity of MPs. We anticipate that these findings will increase our understanding of the ecological effects of MPs.
Collapse
Affiliation(s)
- Qunde Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, 610041, China; College of Life Sciences, Nanjing Normal University, Nanjing, China.
| | - Yan Lv
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, 610041, China.
| | - Jiongyu Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, 610041, China.
| | - Liming Chang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, 610041, China.
| | - Qiheng Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, 610041, China.
| | - Lifeng Zhu
- College of Life Sciences, Nanjing Normal University, Nanjing, China.
| | - Bin Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, 610041, China.
| | - Jianping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, 610041, China.
| | - Wei Zhu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chengdu, 610041, China.
| |
Collapse
|
32
|
Astner AF, Gillmore AB, Yu Y, Flury M, DeBruyn JM, Schaeffer SM, Hayes DG. Formation, behavior, properties and impact of micro- and nanoplastics on agricultural soil ecosystems (A Review). NANOIMPACT 2023; 31:100474. [PMID: 37419450 DOI: 10.1016/j.impact.2023.100474] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Micro and nanoplastics (MPs and NPs, respectively) in agricultural soil ecosystems represent a pervasive global environmental concern, posing risks to soil biota, hence soil health and food security. This review provides a comprehensive and current summary of the literature on sources and properties of MNPs in agricultural ecosystems, methodology for the isolation and characterization of MNPs recovered from soil, MNP surrogate materials that mimic the size and properties of soil-borne MNPs, and transport of MNPs through the soil matrix. Furthermore, this review elucidates the impacts and risks of agricultural MNPs on crops and soil microorganisms and fauna. A significant source of MPs in soil is plasticulture, involving the use of mulch films and other plastic-based implements to provide several agronomic benefits for specialty crop production, while other sources of MPs include irrigation water and fertilizer. Long-term studies are needed to address current knowledge gaps of formation, soil surface and subsurface transport, and environmental impacts of MNPs, including for MNPs derived from biodegradable mulch films, which, although ultimately undergoing complete mineralization, will reside in soil for several months. Because of the complexity and variability of agricultural soil ecosystems and the difficulty in recovering MNPs from soil, a deeper understanding is needed for the fundamental relationships between MPs, NPs, soil biota and microbiota, including ecotoxicological effects of MNPs on earthworms, soil-dwelling invertebrates, and beneficial soil microorganisms, and soil geochemical attributes. In addition, the geometry, size distribution, fundamental and chemical properties, and concentration of MNPs contained in soils are required to develop surrogate MNP reference materials that can be used across laboratories for conducting fundamental laboratory studies.
Collapse
Affiliation(s)
- Anton F Astner
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996-4531, United States of America
| | - Alexis B Gillmore
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996-4531, United States of America
| | - Yingxue Yu
- Department of Crops and Soil Sciences, Washington State University, Pullman, WA 99164, and Puyallup, WA 98371, United States of America
| | - Markus Flury
- Department of Crops and Soil Sciences, Washington State University, Pullman, WA 99164, and Puyallup, WA 98371, United States of America
| | - Jennifer M DeBruyn
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996-4531, United States of America
| | - Sean M Schaeffer
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996-4531, United States of America
| | - Douglas G Hayes
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996-4531, United States of America.
| |
Collapse
|
33
|
Gabriel AD, Amparado RF, Lubguban AA, Bacosa HP. Riverine Microplastic Pollution: Insights from Cagayan de Oro River, Philippines. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6132. [PMID: 37372718 DOI: 10.3390/ijerph20126132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/27/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Rivers are vital water sources for humans and homes for aquatic organisms. Conversely, they are well known as the route of plastics into the ocean. Despite being the world's number one emitter of riverine plastics into the ocean, microplastics (MPs), or plastic particles less than 5 mm, in the Philippines' rivers are relatively unexplored. Water samples were collected from six sampling stations along the river channel of the Cagayan de Oro River, one of the largest rivers in Northern Mindanao, Philippines. The extracted microplastics' abundance, distribution, and characteristics were analyzed using a stereomicroscope and Fourier transform infrared spectroscopy (FTIR). The results showed a mean concentration of 300 items/m3 of MPs dominated by blue-colored (59%), fiber (63%), 0.3-0.5 mm (44%), and polyacetylene (48%) particles. The highest concentration of microplastics was recorded near the mouth of the river, and the lowest was in the middle area. The findings indicated a significant difference in MP concentration at the sampling stations. This study is the first assessment of microplastic in a river in Mindanao. The results of this study will aid in formulating mitigation strategies for reducing riverine plastic emissions.
Collapse
Affiliation(s)
- Aiza D Gabriel
- Environmental Science Graduate Program, Department of Biological Sciences, Mindanao State University-Iligan Institute of Technology (MSU-IIT), Tibanga, Iligan City 9200, Philippines
| | - Ruben F Amparado
- Environmental Science Graduate Program, Department of Biological Sciences, Mindanao State University-Iligan Institute of Technology (MSU-IIT), Tibanga, Iligan City 9200, Philippines
- Premier Research Institute of Science and Mathematics, Mindanao State University-Iligan Institute of Technology (MSU-IIT), Tibanga, Iligan City 9200, Philippines
| | - Arnold A Lubguban
- Department of Chemical Engineering and Technology, Mindanao State University-Iligan Institute of Technology (MSU-IIT), Tibanga, Iligan City 9200, Philippines
- Environmental Pollution and Innovation Laboratory, Center for Sustainable Polymers, Mindanao State University-Iligan Institute of Technology (MSU-IIT), Tibanga, Iligan City 9200, Philippines
| | - Hernando P Bacosa
- Environmental Science Graduate Program, Department of Biological Sciences, Mindanao State University-Iligan Institute of Technology (MSU-IIT), Tibanga, Iligan City 9200, Philippines
- Environmental Pollution and Innovation Laboratory, Center for Sustainable Polymers, Mindanao State University-Iligan Institute of Technology (MSU-IIT), Tibanga, Iligan City 9200, Philippines
| |
Collapse
|
34
|
Bydalek F, Webster G, Barden R, Weightman AJ, Kasprzyk-Hordern B, Wenk J. Microplastic biofilm, associated pathogen and antimicrobial resistance dynamics through a wastewater treatment process incorporating a constructed wetland. WATER RESEARCH 2023; 235:119936. [PMID: 37028211 DOI: 10.1016/j.watres.2023.119936] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/05/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Microplastics in wastewater are colonized by biofilms containing pathogens and antimicrobial resistance (AMR) genes that can be exported into receiving water bodies. This study investigated establishment and changes in microplastic-associated biofilm and AMR during a conventional full-scale 2100 population equivalent wastewater treatment process combined with a free water surface polishing constructed wetland. Sequential microplastic colonization experiments were conducted at different stages of the wastewater treatment process, including in raw sewage, treated effluent and the constructed wetland. Two scenarios were tested in which the constructed wetland served as either (i) a polishing step or (ii) as primary recipient of sewage inoculated microplastics. Bacterial 16S rRNA gene sequencing was carried out for qualitative bacterial community analysis. qPCR was applied for quantitative analysis of AMR genes (sul1, ermB, tetW, intiI1), bacterial biomass (16S rRNA) and a human fecal marker (HF183). Microbial diversity on microplastics increased with incubation time. The initial sewage-derived biofilm composition changed more significantly in the wastewater effluent compared to the constructed wetland. Pathogen and AMR load decreased by up to two orders of magnitude after coupled conventional and constructed wetland treatment, while less impact was observed when sewage-inoculated microplastic material was directly transferred into the constructed wetland. Aeromonas, Klebsiella, and Streptococcus were key pathogenic genera correlated with AMR in microplastic-associated biofilms. Despite decreasing trends on human pathogens and AMR load along the treatment process, microplastic-associated biofilms were a considerable potential hotspot for AMR (intI1 gene) and accommodated Cyanobacteria and fish pathogens.
Collapse
Affiliation(s)
- Franciszek Bydalek
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK; Water Innovation and Research Centre (WIRC), University of Bath, Bath BA2 7AY, UK; GW4 NERC CDT in Freshwater Biosciences and Sustainability, Cardiff University, Cardiff CF10 3AX, UK; Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Gordon Webster
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | | | - Andrew J Weightman
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Barbara Kasprzyk-Hordern
- Water Innovation and Research Centre (WIRC), University of Bath, Bath BA2 7AY, UK; Department of Chemistry, University of Bath, Bath BA2 7AY, UK
| | - Jannis Wenk
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK; Water Innovation and Research Centre (WIRC), University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
35
|
Gomes AR, Freitas ÍN, Luz TMD, Guimarães ATB, Araújo APDC, Kamaraj C, Rahman MM, Islam ARMT, Arias AH, Silva FBD, Karthi S, Cruz-Santiago O, Silva FG, Malafaia G. Multiple endpoints of polyethylene microplastics toxicity in vascular plants of freshwater ecosystems: A study involving Salvinia auriculata (Salviniaceae). JOURNAL OF HAZARDOUS MATERIALS 2023; 450:131069. [PMID: 36857830 DOI: 10.1016/j.jhazmat.2023.131069] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/21/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
More recently, the number of studies on the impacts of microplastics (MPs) on plants has drawn attention considerably. However, many of these studies focused on terrestrial plants, with vascular plants from freshwater ecosystems being little studied. Thus, we aimed to evaluate the possible effects of exposure of Salvinia auriculata, for 28 days, to different concentrations of polyethylene MPs (PE MPs - diameter: 35.46 ± 18.17 µm) (2.7 ×108 and 8.1 ×108 particles/m3), using different biomarkers. Our data indicated that exposure to PE MPs caused alterations in plant growth/development (inferred by the lower floating frond number, "root" length, and the number of "roots"), as well as lower dispersion of individuals in the experimental units. Plants exposed to PE MPs also showed lower epidermal thickness (abaxial leaf face) and a longer length of the central leaf vein and vascular bundle area. Ultrastructural analyses of S. auriculata exposed to MPs revealed rupture of some epidermal cells and trichomes on the adaxial and abaxial, leaf necrosis, and chlorosis. In the "roots", we observed dehydrated filamentous structures with evident deformations in plants exposed to the pollutants. Both on the abaxial leaf face and on the "roots", the adherence of PE MPs was observed. Furthermore, exposure to PE MPs induced lower chlorophyll content, cell membrane damage, and redox imbalance, marked by reduced catalase and superoxide dismutase activity and increased production of reactive oxygen and nitrogen species as well as malondialdehyde. However, in general, we did not observe the dose-response effect for the evaluated biomarkers. The values of the integrated biomarker response index, the principal component analysis (PCA) results and the hierarchical clustering analysis confirmed the similarity between the responses of plants exposed to different PE MPs concentrations. Therefore, our study sheds light on how PE MPs can affect S. auriculata and reinforces that putting these pollutants in freshwater environments might be hazardous from an ecotoxicological point of view.
Collapse
Affiliation(s)
- Alex Rodrigues Gomes
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Agronomy, Goiano Federal Institute, Rio Verde, GO, Brazil
| | - Ítalo Nascimento Freitas
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Thiarlen Marinho da Luz
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| | | | | | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research and Virtual Education, SRM Institute of Science and Technology (SRMIST), Kattankulathur 603203, Tamil Nadu, India
| | - Md Mostafizur Rahman
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| | | | - Andrés Hugo Arias
- Instituto Argentino de Oceanografía (IADO), Universidad Nacional del Sur (UNS)-CONICET, Florida 8000, Complejo CCT CONICET Bahía Blanca, Bahía Blanca, Argentina
| | - Fábia Barbosa da Silva
- Laboratory of Tissue Culture, Goiano Federal Institute, Rio Verde, GO, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil
| | - Sengodan Karthi
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu 627 412, India
| | - Omar Cruz-Santiago
- Programa Multidisciplinario de Posgrado en Ciencias Ambientales (PMPCA), Agenda Ambiental, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava 201, Zona Universitaria, 78210 San Luis Potosí, Mexico
| | - Fabiano Guimarães Silva
- Post-Graduation Program in Agronomy, Goiano Federal Institute, Rio Verde, GO, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Programa Multidisciplinario de Posgrado en Ciencias Ambientales (PMPCA), Agenda Ambiental, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava 201, Zona Universitaria, 78210 San Luis Potosí, Mexico; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
36
|
Landrigan PJ, Raps H, Cropper M, Bald C, Brunner M, Canonizado EM, Charles D, Chiles TC, Donohue MJ, Enck J, Fenichel P, Fleming LE, Ferrier-Pages C, Fordham R, Gozt A, Griffin C, Hahn ME, Haryanto B, Hixson R, Ianelli H, James BD, Kumar P, Laborde A, Law KL, Martin K, Mu J, Mulders Y, Mustapha A, Niu J, Pahl S, Park Y, Pedrotti ML, Pitt JA, Ruchirawat M, Seewoo BJ, Spring M, Stegeman JJ, Suk W, Symeonides C, Takada H, Thompson RC, Vicini A, Wang Z, Whitman E, Wirth D, Wolff M, Yousuf AK, Dunlop S. The Minderoo-Monaco Commission on Plastics and Human Health. Ann Glob Health 2023; 89:23. [PMID: 36969097 PMCID: PMC10038118 DOI: 10.5334/aogh.4056] [Citation(s) in RCA: 126] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Background Plastics have conveyed great benefits to humanity and made possible some of the most significant advances of modern civilization in fields as diverse as medicine, electronics, aerospace, construction, food packaging, and sports. It is now clear, however, that plastics are also responsible for significant harms to human health, the economy, and the earth's environment. These harms occur at every stage of the plastic life cycle, from extraction of the coal, oil, and gas that are its main feedstocks through to ultimate disposal into the environment. The extent of these harms not been systematically assessed, their magnitude not fully quantified, and their economic costs not comprehensively counted. Goals The goals of this Minderoo-Monaco Commission on Plastics and Human Health are to comprehensively examine plastics' impacts across their life cycle on: (1) human health and well-being; (2) the global environment, especially the ocean; (3) the economy; and (4) vulnerable populations-the poor, minorities, and the world's children. On the basis of this examination, the Commission offers science-based recommendations designed to support development of a Global Plastics Treaty, protect human health, and save lives. Report Structure This Commission report contains seven Sections. Following an Introduction, Section 2 presents a narrative review of the processes involved in plastic production, use, and disposal and notes the hazards to human health and the environment associated with each of these stages. Section 3 describes plastics' impacts on the ocean and notes the potential for plastic in the ocean to enter the marine food web and result in human exposure. Section 4 details plastics' impacts on human health. Section 5 presents a first-order estimate of plastics' health-related economic costs. Section 6 examines the intersection between plastic, social inequity, and environmental injustice. Section 7 presents the Commission's findings and recommendations. Plastics Plastics are complex, highly heterogeneous, synthetic chemical materials. Over 98% of plastics are produced from fossil carbon- coal, oil and gas. Plastics are comprised of a carbon-based polymer backbone and thousands of additional chemicals that are incorporated into polymers to convey specific properties such as color, flexibility, stability, water repellence, flame retardation, and ultraviolet resistance. Many of these added chemicals are highly toxic. They include carcinogens, neurotoxicants and endocrine disruptors such as phthalates, bisphenols, per- and poly-fluoroalkyl substances (PFAS), brominated flame retardants, and organophosphate flame retardants. They are integral components of plastic and are responsible for many of plastics' harms to human health and the environment.Global plastic production has increased almost exponentially since World War II, and in this time more than 8,300 megatons (Mt) of plastic have been manufactured. Annual production volume has grown from under 2 Mt in 1950 to 460 Mt in 2019, a 230-fold increase, and is on track to triple by 2060. More than half of all plastic ever made has been produced since 2002. Single-use plastics account for 35-40% of current plastic production and represent the most rapidly growing segment of plastic manufacture.Explosive recent growth in plastics production reflects a deliberate pivot by the integrated multinational fossil-carbon corporations that produce coal, oil and gas and that also manufacture plastics. These corporations are reducing their production of fossil fuels and increasing plastics manufacture. The two principal factors responsible for this pivot are decreasing global demand for carbon-based fuels due to increases in 'green' energy, and massive expansion of oil and gas production due to fracking.Plastic manufacture is energy-intensive and contributes significantly to climate change. At present, plastic production is responsible for an estimated 3.7% of global greenhouse gas emissions, more than the contribution of Brazil. This fraction is projected to increase to 4.5% by 2060 if current trends continue unchecked. Plastic Life Cycle The plastic life cycle has three phases: production, use, and disposal. In production, carbon feedstocks-coal, gas, and oil-are transformed through energy-intensive, catalytic processes into a vast array of products. Plastic use occurs in every aspect of modern life and results in widespread human exposure to the chemicals contained in plastic. Single-use plastics constitute the largest portion of current use, followed by synthetic fibers and construction.Plastic disposal is highly inefficient, with recovery and recycling rates below 10% globally. The result is that an estimated 22 Mt of plastic waste enters the environment each year, much of it single-use plastic and are added to the more than 6 gigatons of plastic waste that have accumulated since 1950. Strategies for disposal of plastic waste include controlled and uncontrolled landfilling, open burning, thermal conversion, and export. Vast quantities of plastic waste are exported each year from high-income to low-income countries, where it accumulates in landfills, pollutes air and water, degrades vital ecosystems, befouls beaches and estuaries, and harms human health-environmental injustice on a global scale. Plastic-laden e-waste is particularly problematic. Environmental Findings Plastics and plastic-associated chemicals are responsible for widespread pollution. They contaminate aquatic (marine and freshwater), terrestrial, and atmospheric environments globally. The ocean is the ultimate destination for much plastic, and plastics are found throughout the ocean, including coastal regions, the sea surface, the deep sea, and polar sea ice. Many plastics appear to resist breakdown in the ocean and could persist in the global environment for decades. Macro- and micro-plastic particles have been identified in hundreds of marine species in all major taxa, including species consumed by humans. Trophic transfer of microplastic particles and the chemicals within them has been demonstrated. Although microplastic particles themselves (>10 µm) appear not to undergo biomagnification, hydrophobic plastic-associated chemicals bioaccumulate in marine animals and biomagnify in marine food webs. The amounts and fates of smaller microplastic and nanoplastic particles (MNPs <10 µm) in aquatic environments are poorly understood, but the potential for harm is worrying given their mobility in biological systems. Adverse environmental impacts of plastic pollution occur at multiple levels from molecular and biochemical to population and ecosystem. MNP contamination of seafood results in direct, though not well quantified, human exposure to plastics and plastic-associated chemicals. Marine plastic pollution endangers the ocean ecosystems upon which all humanity depends for food, oxygen, livelihood, and well-being. Human Health Findings Coal miners, oil workers and gas field workers who extract fossil carbon feedstocks for plastic production suffer increased mortality from traumatic injury, coal workers' pneumoconiosis, silicosis, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer. Plastic production workers are at increased risk of leukemia, lymphoma, hepatic angiosarcoma, brain cancer, breast cancer, mesothelioma, neurotoxic injury, and decreased fertility. Workers producing plastic textiles die of bladder cancer, lung cancer, mesothelioma, and interstitial lung disease at increased rates. Plastic recycling workers have increased rates of cardiovascular disease, toxic metal poisoning, neuropathy, and lung cancer. Residents of "fenceline" communities adjacent to plastic production and waste disposal sites experience increased risks of premature birth, low birth weight, asthma, childhood leukemia, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer.During use and also in disposal, plastics release toxic chemicals including additives and residual monomers into the environment and into people. National biomonitoring surveys in the USA document population-wide exposures to these chemicals. Plastic additives disrupt endocrine function and increase risk for premature births, neurodevelopmental disorders, male reproductive birth defects, infertility, obesity, cardiovascular disease, renal disease, and cancers. Chemical-laden MNPs formed through the environmental degradation of plastic waste can enter living organisms, including humans. Emerging, albeit still incomplete evidence indicates that MNPs may cause toxicity due to their physical and toxicological effects as well as by acting as vectors that transport toxic chemicals and bacterial pathogens into tissues and cells.Infants in the womb and young children are two populations at particularly high risk of plastic-related health effects. Because of the exquisite sensitivity of early development to hazardous chemicals and children's unique patterns of exposure, plastic-associated exposures are linked to increased risks of prematurity, stillbirth, low birth weight, birth defects of the reproductive organs, neurodevelopmental impairment, impaired lung growth, and childhood cancer. Early-life exposures to plastic-associated chemicals also increase the risk of multiple non-communicable diseases later in life. Economic Findings Plastic's harms to human health result in significant economic costs. We estimate that in 2015 the health-related costs of plastic production exceeded $250 billion (2015 Int$) globally, and that in the USA alone the health costs of disease and disability caused by the plastic-associated chemicals PBDE, BPA and DEHP exceeded $920 billion (2015 Int$). Plastic production results in greenhouse gas (GHG) emissions equivalent to 1.96 gigatons of carbon dioxide (CO2e) annually. Using the US Environmental Protection Agency's (EPA) social cost of carbon metric, we estimate the annual costs of these GHG emissions to be $341 billion (2015 Int$).These costs, large as they are, almost certainly underestimate the full economic losses resulting from plastics' negative impacts on human health and the global environment. All of plastics' economic costs-and also its social costs-are externalized by the petrochemical and plastic manufacturing industry and are borne by citizens, taxpayers, and governments in countries around the world without compensation. Social Justice Findings The adverse effects of plastics and plastic pollution on human health, the economy and the environment are not evenly distributed. They disproportionately affect poor, disempowered, and marginalized populations such as workers, racial and ethnic minorities, "fenceline" communities, Indigenous groups, women, and children, all of whom had little to do with creating the current plastics crisis and lack the political influence or the resources to address it. Plastics' harmful impacts across its life cycle are most keenly felt in the Global South, in small island states, and in disenfranchised areas in the Global North. Social and environmental justice (SEJ) principles require reversal of these inequitable burdens to ensure that no group bears a disproportionate share of plastics' negative impacts and that those who benefit economically from plastic bear their fair share of its currently externalized costs. Conclusions It is now clear that current patterns of plastic production, use, and disposal are not sustainable and are responsible for significant harms to human health, the environment, and the economy as well as for deep societal injustices.The main driver of these worsening harms is an almost exponential and still accelerating increase in global plastic production. Plastics' harms are further magnified by low rates of recovery and recycling and by the long persistence of plastic waste in the environment.The thousands of chemicals in plastics-monomers, additives, processing agents, and non-intentionally added substances-include amongst their number known human carcinogens, endocrine disruptors, neurotoxicants, and persistent organic pollutants. These chemicals are responsible for many of plastics' known harms to human and planetary health. The chemicals leach out of plastics, enter the environment, cause pollution, and result in human exposure and disease. All efforts to reduce plastics' hazards must address the hazards of plastic-associated chemicals. Recommendations To protect human and planetary health, especially the health of vulnerable and at-risk populations, and put the world on track to end plastic pollution by 2040, this Commission supports urgent adoption by the world's nations of a strong and comprehensive Global Plastics Treaty in accord with the mandate set forth in the March 2022 resolution of the United Nations Environment Assembly (UNEA).International measures such as a Global Plastics Treaty are needed to curb plastic production and pollution, because the harms to human health and the environment caused by plastics, plastic-associated chemicals and plastic waste transcend national boundaries, are planetary in their scale, and have disproportionate impacts on the health and well-being of people in the world's poorest nations. Effective implementation of the Global Plastics Treaty will require that international action be coordinated and complemented by interventions at the national, regional, and local levels.This Commission urges that a cap on global plastic production with targets, timetables, and national contributions be a central provision of the Global Plastics Treaty. We recommend inclusion of the following additional provisions:The Treaty needs to extend beyond microplastics and marine litter to include all of the many thousands of chemicals incorporated into plastics.The Treaty needs to include a provision banning or severely restricting manufacture and use of unnecessary, avoidable, and problematic plastic items, especially single-use items such as manufactured plastic microbeads.The Treaty needs to include requirements on extended producer responsibility (EPR) that make fossil carbon producers, plastic producers, and the manufacturers of plastic products legally and financially responsible for the safety and end-of-life management of all the materials they produce and sell.The Treaty needs to mandate reductions in the chemical complexity of plastic products; health-protective standards for plastics and plastic additives; a requirement for use of sustainable non-toxic materials; full disclosure of all components; and traceability of components. International cooperation will be essential to implementing and enforcing these standards.The Treaty needs to include SEJ remedies at each stage of the plastic life cycle designed to fill gaps in community knowledge and advance both distributional and procedural equity.This Commission encourages inclusion in the Global Plastic Treaty of a provision calling for exploration of listing at least some plastic polymers as persistent organic pollutants (POPs) under the Stockholm Convention.This Commission encourages a strong interface between the Global Plastics Treaty and the Basel and London Conventions to enhance management of hazardous plastic waste and slow current massive exports of plastic waste into the world's least-developed countries.This Commission recommends the creation of a Permanent Science Policy Advisory Body to guide the Treaty's implementation. The main priorities of this Body would be to guide Member States and other stakeholders in evaluating which solutions are most effective in reducing plastic consumption, enhancing plastic waste recovery and recycling, and curbing the generation of plastic waste. This Body could also assess trade-offs among these solutions and evaluate safer alternatives to current plastics. It could monitor the transnational export of plastic waste. It could coordinate robust oceanic-, land-, and air-based MNP monitoring programs.This Commission recommends urgent investment by national governments in research into solutions to the global plastic crisis. This research will need to determine which solutions are most effective and cost-effective in the context of particular countries and assess the risks and benefits of proposed solutions. Oceanographic and environmental research is needed to better measure concentrations and impacts of plastics <10 µm and understand their distribution and fate in the global environment. Biomedical research is needed to elucidate the human health impacts of plastics, especially MNPs. Summary This Commission finds that plastics are both a boon to humanity and a stealth threat to human and planetary health. Plastics convey enormous benefits, but current linear patterns of plastic production, use, and disposal that pay little attention to sustainable design or safe materials and a near absence of recovery, reuse, and recycling are responsible for grave harms to health, widespread environmental damage, great economic costs, and deep societal injustices. These harms are rapidly worsening.While there remain gaps in knowledge about plastics' harms and uncertainties about their full magnitude, the evidence available today demonstrates unequivocally that these impacts are great and that they will increase in severity in the absence of urgent and effective intervention at global scale. Manufacture and use of essential plastics may continue. However, reckless increases in plastic production, and especially increases in the manufacture of an ever-increasing array of unnecessary single-use plastic products, need to be curbed.Global intervention against the plastic crisis is needed now because the costs of failure to act will be immense.
Collapse
Affiliation(s)
- Philip J. Landrigan
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Hervé Raps
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Maureen Cropper
- Economics Department, University of Maryland, College Park, US
| | - Caroline Bald
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | | | | | | | | | - Patrick Fenichel
- Université Côte d’Azur
- Centre Hospitalier, Universitaire de Nice, FR
| | - Lora E. Fleming
- European Centre for Environment and Human Health, University of Exeter Medical School, UK
| | | | | | | | - Carly Griffin
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, US
- Woods Hole Center for Oceans and Human Health, US
| | - Budi Haryanto
- Department of Environmental Health, Universitas Indonesia, ID
- Research Center for Climate Change, Universitas Indonesia, ID
| | - Richard Hixson
- College of Medicine and Health, University of Exeter, UK
| | - Hannah Ianelli
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Bryan D. James
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution
- Department of Biology, Woods Hole Oceanographic Institution, US
| | | | - Amalia Laborde
- Department of Toxicology, School of Medicine, University of the Republic, UY
| | | | - Keith Martin
- Consortium of Universities for Global Health, US
| | - Jenna Mu
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | - Adetoun Mustapha
- Nigerian Institute of Medical Research, Lagos, Nigeria
- Lead City University, NG
| | - Jia Niu
- Department of Chemistry, Boston College, US
| | - Sabine Pahl
- University of Vienna, Austria
- University of Plymouth, UK
| | | | - Maria-Luiza Pedrotti
- Laboratoire d’Océanographie de Villefranche sur mer (LOV), Sorbonne Université, FR
| | | | | | - Bhedita Jaya Seewoo
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| | | | - John J. Stegeman
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | - William Suk
- Superfund Research Program, National Institutes of Health, National Institute of Environmental Health Sciences, US
| | | | - Hideshige Takada
- Laboratory of Organic Geochemistry (LOG), Tokyo University of Agriculture and Technology, JP
| | | | | | - Zhanyun Wang
- Technology and Society Laboratory, WEmpa-Swiss Federal Laboratories for Materials and Technology, CH
| | - Ella Whitman
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | - Aroub K. Yousuf
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Sarah Dunlop
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| |
Collapse
|
37
|
Huang L, Zhang W, Zhou W, Chen L, Liu G, Shi W. Behaviour, a potential bioindicator for toxicity analysis of waterborne microplastics: A review. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
38
|
Liu MJ, Guo HY, Gao J, Zhu KC, Guo L, Liu BS, Zhang N, Jiang SG, Zhang DC. Characteristics of microplastic pollution in golden pompano (Trachinotus ovatus) aquaculture areas and the relationship between colonized-microbiota on microplastics and intestinal microflora. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159180. [PMID: 36191704 DOI: 10.1016/j.scitotenv.2022.159180] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Microplastic (MPs) pollution is a global marine environmental problem. The effects of MPs on the gut microbiota of aquatic organisms have received considerable attention. For example, microbes colonizing MPs in pond cultures alter the structure and function of the intestinal microbes of shrimp and fish. It was hypothesized that bacteria on MPs in natural mariculture areas also interact with the intestinal flora of golden pompano (Trachinotus ovatus) because biofilms can form on the surface of MPs during long-term floating in seawater. To our knowledge, this study is the first to investigate MPs pollution in T. ovatus aquaculture. DNA sequencing and bioinformatics analysis confirmed the effect of microbial colonization of MPs on the intestinal flora of T. ovatus. The MPs detected in the gut wet weight (w.w.) of golden pompano (546 ± 52 items/g) were mainly pellets and fragments of blue or green, whereas the sediment MPs dry weight (d.w.) (4765 ± 116 items/kg) were mainly black fibers. The MPs richness in the sediment gradually increased from the open-sea aquaculture area to the estuarine aquaculture area and was positively correlated with the MPs richness in the intestinal tract of golden pompano. MPs 20-200 μm were the most common in the gut and sediment. The intake of MPs increased the abundance of Proteobacteria and decreased that of Firmicutes in the intestinal flora. The functional compositions of MP-colonizing microbes and gut microbiota were similar, suggesting that the two communities influence each other. Network analysis further confirmed this and revealed that Vibrio plays a key role in the intestinal flora and surface microorganisms of MPs. Overall, the intake of MPs by aquatic animals not only affects the intestinal flora and intestinal microbial function, but also poses potential risks to aquaculture.
Collapse
Affiliation(s)
- Ming-Jian Liu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, Guangdong Province, China; College of Fisheries, Tianjin Agricultural University, 300384 Tianjin, China
| | - Hua-Yang Guo
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, Guangdong Province, China
| | - Jie Gao
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, Guangdong Province, China
| | - Ke-Cheng Zhu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, Guangdong Province, China
| | - Liang Guo
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, Guangdong Province, China
| | - Bao-Suo Liu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, Guangdong Province, China
| | - Nan Zhang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, Guangdong Province, China
| | - Shi-Gui Jiang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, Guangdong Province, China; Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China
| | - Dian-Chang Zhang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, Guangdong Province, China; Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China.
| |
Collapse
|
39
|
Hao Y, Sun Y, Li M, Fang X, Wang Z, Zuo J, Zhang C. Adverse effects of polystyrene microplastics in the freshwater commercial fish, grass carp (Ctenopharyngodon idella): Emphasis on physiological response and intestinal microbiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159270. [PMID: 36208741 DOI: 10.1016/j.scitotenv.2022.159270] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/01/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) pollution in aquatic environment has attracted global attention in recent years. To evaluate the potential toxic effects of MPs in freshwater cultured fish, grass carps (Ctenopharyngodon idella) (body length: 7.7 ± 0.1 cm, wet weight: 6.28 ± 0.23 g) were exposed to different sizes (0.5 μm, 15 μm) and concentrations (100 μg/L, 500 μg/L) of polystyrene microplastics (PS-MPs) suspension for 7 and 14 days, followed by 7 days of depuration, detecting the variations in growth rate, histological structure, oxidative response and intestinal microbiome. Our results indicate that MP toxicity elicited significant size- and concentration-dependent responses by grass carp. MP exposure caused obvious decrease in growth rate on day 14 but not on day 7. Additionally, MPs with large size and high concentration caused more severe intestinal damage and less weight gain, while MP particles with small size and high concentration induced more severe liver congestion and stronger oxidative stress. MP exposure dramatically shifted the gut microbial composition, with the top 10 genera in abundance being associated with the diameter and concentration of the MPs. After 7 days of depuration, only superoxide dismutase and malondialdehyde in liver, showed a tendency to recover to the initial values. Even though the differences in the gut microbial community between the control and treatment groups disappeared, and the proportion of potential pathogenic bacteria in intestine was still high. Thus, it is clear that a short-term depuration period of 7 days is not enough for complete normalization.
Collapse
Affiliation(s)
- Yaotong Hao
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China
| | - Yanfeng Sun
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China.
| | - Mo Li
- Life Sciences College, Cangzhou Normal University, Cangzhou 061001, China
| | - Xuedan Fang
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China
| | - Zhikui Wang
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China
| | - Jiulong Zuo
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China
| | - Cuiyun Zhang
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China
| |
Collapse
|
40
|
Kadac-Czapska K, Knez E, Gierszewska M, Olewnik-Kruszkowska E, Grembecka M. Microplastics Derived from Food Packaging Waste-Their Origin and Health Risks. MATERIALS (BASEL, SWITZERLAND) 2023; 16:674. [PMID: 36676406 PMCID: PMC9866676 DOI: 10.3390/ma16020674] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Plastics are commonly used for packaging in the food industry. The most popular thermoplastic materials that have found such applications are polyethylene (PE), polypropylene (PP), poly(ethylene terephthalate) (PET), and polystyrene (PS). Unfortunately, most plastic packaging is disposable. As a consequence, significant amounts of waste are generated, entering the environment, and undergoing degradation processes. They can occur under the influence of mechanical forces, temperature, light, chemical, and biological factors. These factors can present synergistic or antagonistic effects. As a result of their action, microplastics are formed, which can undergo further fragmentation and decomposition into small-molecule compounds. During the degradation process, various additives used at the plastics' processing stage can also be released. Both microplastics and additives can negatively affect human and animal health. Determination of the negative consequences of microplastics on the environment and health is not possible without knowing the course of degradation processes of packaging waste and their products. In this article, we present the sources of microplastics, the causes and places of their formation, the transport of such particles, the degradation of plastics most often used in the production of packaging for food storage, the factors affecting the said process, and its effects.
Collapse
Affiliation(s)
- Kornelia Kadac-Czapska
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland
| | - Eliza Knez
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland
| | - Magdalena Gierszewska
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Ewa Olewnik-Kruszkowska
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Małgorzata Grembecka
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland
| |
Collapse
|
41
|
Li M, Hou Z, Meng R, Hao S, Wang B. Unraveling the potential human health risks from used disposable face mask-derived micro/nanoplastics during the COVID-19 pandemic scenario: A critical review. ENVIRONMENT INTERNATIONAL 2022; 170:107644. [PMID: 36413926 PMCID: PMC9671534 DOI: 10.1016/j.envint.2022.107644] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/09/2023]
Abstract
With the global spread of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), disposable face masks (DFMs) have caused negative environmental impacts. DFMs will release microplastics (MPs) and nanoplastics (NPs) during environmental degradation. However, few studies reveal the release process of MPs/NPs from masks in the natural environment. This review presents the current knowledge on the abiotic and biotic degradation of DFMs. Though MPs and NPs have raised serious concerns about their potentially detrimental effects on human health, little attention was paid to their impacts on human health from DFM-derived MPs and NPs. The potential toxicity of mask-derived MPs/NPs, such as gastrointestinal toxicity, pneumotoxicity, neurotoxicity, hepatotoxicity, reproductive and transgenerational toxicity, and the underlying mechanism will be discussed in the present study. MPs/NPs serve as carriers of toxic chemicals and pathogens, leading to their bioaccumulation and adverse effects of biomagnification by food chains. Given human experiments are facing ethical issues and animal studies cannot completely reveal human characteristics, advanced human organoids will provide promising models for MP/NP risk assessment. Moreover, in-depth investigations are required to identify the release of MPs/NPs from discarded face masks and characterize their transportation through the food chains. More importantly, innovative approaches and eco-friendly strategies are urgently demanded to reduce DFM-derived MP/NP pollution.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China; Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zongkun Hou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Run Meng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
42
|
Chen CZ, Li P, Liu L, Li ZH. Exploring the interactions between the gut microbiome and the shifting surrounding aquatic environment in fisheries and aquaculture: A review. ENVIRONMENTAL RESEARCH 2022; 214:114202. [PMID: 36030922 DOI: 10.1016/j.envres.2022.114202] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/10/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
The rise of "new" sequencing technologies and the development of sophisticated bioinformatics tools have dramatically increased the study of the aquaculture microbiome. Microbial communities exist in complex and dynamic communities that play a vital role in the stability of healthy ecosystems. The gut microbiome contributes to multiple aspects of the host's physiological health status, ranging from nutritional regulation to immune modulation. Although studies of the gut microbiome in aquaculture are growing rapidly, the interrelationships between the aquaculture microbiome and its aquatic environment have not been discussed and summarized. In particular, few reviews have focused on the potential mechanisms driving the alteration of the gut microbiome by surrounding aquatic environmental factors. Here, we review current knowledge on the host gut microbiome and its interrelationship with the microbiome of the surrounding environment, mainly including the main methods for characterizing the gut microbiome, the composition and function of microbial communities, the dynamics of microbial interactions, and the relationship between the gut microbiome and the surrounding water/sediment microbiome. Our review highlights two potential mechanisms for how surrounding aquatic environmental factors drive the gut microbiome. This may deepen the understanding of the interactions between the microbiome and environmental factors. Lastly, we also briefly describe the research gaps in current knowledge and prospects for the future orientation of research. This review provides a framework for studying the complex relationship between the host gut microbiome and environmental stresses to better facilitate the widespread application of microbiome technologies in fisheries and aquaculture.
Collapse
Affiliation(s)
- Cheng-Zhuang Chen
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
43
|
Zhang P, Lu G, Sun Y, Zhang J, Liu J, Yan Z. Aged microplastics change the toxicological mechanism of roxithromycin on Carassius auratus: Size-dependent interaction and potential long-term effects. ENVIRONMENT INTERNATIONAL 2022; 169:107540. [PMID: 36166955 DOI: 10.1016/j.envint.2022.107540] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/30/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Size effects of microplastics have received extensive attention for their influence on other pollutants and harm to organisms. In this study, we investigated the uptake, elimination, tissue distribution and potential toxicity mechanism of roxithromycin (ROX) in the presence of 0.5, 5 and 50 μm of aged microplastics (AMPs) in Carassius auratus. The results showed that AMPs promoted the ROX bioaccumulation of various tissues in a size-dependent manner. AMPs and ROX significantly induced superoxide dismutase and catalase activities of liver and gut, and inhibited acetylcholinesterase activities of brain. The coexistence of smaller AMPs exacerbated pathological abnormalities in liver, gill and brain induced by ROX, while larger AMPs caused more intestinal damage. Moreover, high-throughput 16S rRNA gene sequencing indicated that the abundance of Proteobacteria in 0.5 μm AMPs and ROX joint treatments and Firmicutes and Bacteroidota in 50 μm AMPs and ROX joint treatments were significantly raised (p < 0.05). Metabolomics revealed that AMPs and ROX had a size-dependent long-term effect on gut microbial metabolites, which was mainly related to galactose metabolism, amino acid metabolism and primary bile acid biosynthesis pathways after a 7-day elimination, respectively. These results provide important insights into the relationship between the size effect of AMPs and interaction mechanism of AMPs and coexisting pollutants on aquatic organisms.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Yu Sun
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jiaqi Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
44
|
Bhat MA, Gedik K, Gaga EO. Atmospheric micro (nano) plastics: future growing concerns for human health. AIR QUALITY, ATMOSPHERE, & HEALTH 2022; 16:233-262. [PMID: 36276170 PMCID: PMC9574822 DOI: 10.1007/s11869-022-01272-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 10/06/2022] [Indexed: 05/14/2023]
Abstract
Abstract Plastics are an integral but largely inconspicuous part of daily human routines. The present review paper uses cross-disciplinary scientific literature to examine and assess the possible effects of nanoplastics (NPs) concerning microplastics (MPs) on human health and summarizes crucial areas for future research. Although research on the nature and consequences of MPs has seen a substantial rise, only limited studies have concentrated on the atmospheric nanosized polymeric particles. However, due to the intrinsic technological complications in separating and computing them, their existence has been difficult to determine correctly. There is a consensus that these are not only existing in the environment but can get directly released or as the outcome of weathering of larger fragments, and it is believed to be that combustion can be the tertiary source of polymeric particles. NPs can have harmful consequences on human health, and their exposure may happen via ingestion, inhalation, or absorption by the skin. The atmospheric fallout of micro (nano) plastics may be responsible for contaminating the environment. Apart from this, different drivers affect the concentration of micro (nano) plastics in every environment compartment like wind, water currents, vectors, soil erosion, run-off, etc. Their high specific surface for the sorption of organic pollutions and toxic heavy metals and possible transfer between organisms at different nutrient levels make the study of NPs an urgent priority. These NPs could potentially cause physical damage by the particles themselves and biological stress by NPs alone or by leaching additives. However, there is minimal understanding of the occurrence, distribution, abundance, and fate of NPs in the environment, partially due to the lack of suitable techniques for separating and identifying NPs from complex environmental matrices. Highlights Micro (nano) plastics generated may reach the soil, water, and atmospheric compartments.Atmospheric currents serve as a way to transport, leading to micro (nano) plastics pollution.Exposure to micro (nano) plastics may happen via ingestion, inhalation, or absorption by the skin.Nanoplastics may be environmentally more harmful than other plastic particles; the focus should be on defining the exact size range.Visual classification of micro (nano) plastics is poor in reliability and may also contribute to microplastics being misidentified. Graphical abstract
Collapse
Affiliation(s)
- Mansoor Ahmad Bhat
- Faculty of Engineering, Department of Environmental Engineering, Eskişehir Technical University, 26555 Eskişehir, Turkey
| | - Kadir Gedik
- Faculty of Engineering, Department of Environmental Engineering, Eskişehir Technical University, 26555 Eskişehir, Turkey
- Environmental Research Center (ÇEVMER), Eskişehir Technical University, 26555 Eskişehir, Turkey
| | - Eftade O. Gaga
- Faculty of Engineering, Department of Environmental Engineering, Eskişehir Technical University, 26555 Eskişehir, Turkey
- Environmental Research Center (ÇEVMER), Eskişehir Technical University, 26555 Eskişehir, Turkey
| |
Collapse
|
45
|
Abstract
Plastic waste pollution is one of the biggest problems in the world today. The amount of plastic in the environment continues to increase, and human exposure to microplastic (MP) has become a reality. This subject has attracted the attention of the whole world. The MP problem has also been noticed by the scientific community. The term microplastic is mostly used to define synthetic material with a high polymer content that can have a size range from 0.1 to 5000 µm. This paper aims to characterize the routes of exposure to MP, define its pollution sources, and identify food types contaminated with plastics. This review addresses the current state of knowledge on this type of particles, with particular emphasis on their influence on human health. Adverse effects of MP depend on routes and sources of exposure. The most common route of exposure is believed to be the gastrointestinal tract. Sources of MP include fish, shellfish, water as well as tea, beer, wine, energy drinks, soft drinks, milk, salt, sugar, honey, poultry meat, fruits, and vegetables. Studies have shown that particles of PET, PE, PP, PS, PVC, PA, and PC are the most frequently found in food.
Collapse
Affiliation(s)
- Kornelia Kadac-Czapska
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Eliza Knez
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Małgorzata Grembecka
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
46
|
Medriano CA, Bae S. Acute exposure to microplastics induces metabolic disturbances and gut dysbiosis in adult zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114125. [PMID: 36183426 DOI: 10.1016/j.ecoenv.2022.114125] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
There is limited knowledge of the ecotoxicological impacts of MPs at the environmentally relevant concentration on freshwater animals, even though numerous studies have demonstrated the toxic effects of MPs on living organisms. In this study, zebrafish (Danio rerio) was used as a model organism to investigate the ecotoxicological effects of acute exposure of virgin MPs on changes in metabolome and gut microbiota. High-throughput untargeted metabolomics using liquid chromatography with tandem mass spectrometry (LC-MS/MS) provided comprehensive insights into the metabolic responses of zebrafish exposed to PE (polyethylene) and PES (polyester) MPs. Statistical analysis of metabolomics data indicated that 39 and 27 metabolites, such as lysophosphatidylcholine, phosphocholine, phosphatidylserine, triglyceride, glycosphingolipid, psychosine, 8-amino-7-oxononanoate, cholesterol fatty acid ester, phosphatidylinositol, n-Triacontanol, were significantly altered in PE- and PES-exposed zebrafish, respectively. Furthermore, the enrichment pathway analysis unveiled the synthesis of the structural and functional lipids, signaling molecules, fatty alcohol metabolism, and amino acid metabolism, which was considerably perturbated in MPs-exposed zebrafish. In addition, high-throughput DNA sequencing was conducted to examine changes in gut microbiota in the MPs-treated zebrafish. The MPs exposure increased in the relative abundance of Fusobacteria and Proteobacteria, while the relative abundance of Firmicutes declined in MPs-treated zebrafish. Also, microbial diversity and linear discriminant analyses indicated microbiota dysbiosis, metabolomic dysregulation, and oxidative stress. Taken together, the acute exposure of MPs at environmentally relevant concentrations could disrupt the metabolic interaction via the microbiota-gut-liver-brain relationship, implying gastrointestinal and neurological/immune disorders in zebrafish.
Collapse
Affiliation(s)
- Carl Angelo Medriano
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore
| | - Sungwoo Bae
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore.
| |
Collapse
|
47
|
Sangkham S, Faikhaw O, Munkong N, Sakunkoo P, Arunlertaree C, Chavali M, Mousazadeh M, Tiwari A. A review on microplastics and nanoplastics in the environment: Their occurrence, exposure routes, toxic studies, and potential effects on human health. MARINE POLLUTION BULLETIN 2022; 181:113832. [PMID: 35716489 DOI: 10.1016/j.marpolbul.2022.113832] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) and nanoplastics (NPs) are emerging environmental pollutants, having a major ecotoxicological concern to humans and many other biotas, especially aquatic animals. The physical and chemical compositions of MPs majorly determine their ecotoxicological risks. However, comprehensive knowledge about the exposure routes and toxic effects of MPs/NPs on animals and human health is not fully known. Here this review focuses on the potential exposure routes, human health impacts, and toxicity response of MPs/NPs on human health, through reviewing the literature on studies conducted in different in vitro and in vivo experiments on organisms, human cells, and the human experimental exposure models. The current literature review has highlighted ingestion, inhalation, and dermal contacts as major exposure routes of MPs/NPs. Further, oxidative stress, cytotoxicity, DNA damage, inflammation, immune response, neurotoxicity, metabolic disruption, and ultimately affecting digestive systems, immunology, respiratory systems, reproductive systems, and nervous systems, as serious health consequences.
Collapse
Affiliation(s)
- Sarawut Sangkham
- Department of Environmental Health, School of Public Health, University of Phayao, Muang District, Phayao 56000, Thailand.
| | - Orasai Faikhaw
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Narongsuk Munkong
- Department of Pathology, School of Medicine, University of Phayao, Muang District, Phayao 56000, Thailand
| | - Pornpun Sakunkoo
- Department of Environmental Health, Occupational Health and Safety, Faculty of Public Health, Khon Kaen University, Muang District, Khon Kaen 40002, Thailand.
| | - Chumlong Arunlertaree
- Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Murthy Chavali
- Office of the Dean (Research) & Division of Chemistry, Department of Science, Faculty of Science and Technology, Alliance University, Chandapura-Anekal Main Road, Bengaluru 562106, Karnataka, India
| | - Milad Mousazadeh
- Student research committee, Qazvin University of Medical Sciences, Qazvin, Iran; Social Determinants of Health Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Environmental Health Engineering, School of Health, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ananda Tiwari
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland; Finnish Institute for Health and Welfare, Neulaniementie 4, Kuopio, Finland
| |
Collapse
|
48
|
Junaid M, Siddiqui JA, Sadaf M, Liu S, Wang J. Enrichment and dissemination of bacterial pathogens by microplastics in the aquatic environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154720. [PMID: 35337880 DOI: 10.1016/j.scitotenv.2022.154720] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Microplastic pollution and associated impacts in the aquatic environment are spreading at an alarming rate worldwide. Plastic waste is increasing in the environment, and microplastics (MPs) are becoming a growing issue because they serve as vectors for pathogen transmission. This is the first comprehensive review that specifically addresses MPs as a source and vector of pathogenic bacteria, mainly associated with genera Vibrio, Pseudomonas, Acinetobacter, and so on, which are discovered to be more abundant on the aquatic plastisphere than that in the surrounding wastewater, freshwater, and marine water ecosystems. The horizontal gene transfer, chemotaxis, and co-selection and cross-selection could be the potential mechanism involved in the enrichment and dissemination of bacterial pathogens through the aquatic plastisphere. Further, bacterial pathogens through aquatic plastisphere can cause various ecological and human health impacts such as disrupted food chain, oxidative stress, tissue damages, disease transmission, microbial dysbiosis, metabolic disorders, among others. Last but not least, future research directions are also described to find answers to the challenging questions about bacterial pathogens in the aquatic plastisphere to ensure the integrity and safety of ecological and human health.
Collapse
Affiliation(s)
- Muhammad Junaid
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Junaid Ali Siddiqui
- Department of Entomology, South China Agricultural University, Guangzhou 510642, China
| | - Mamona Sadaf
- Knowledge Unit of Business, Economics, Accountancy and Commerce (KUBEAC), University of Management and Technology, Sialkot Campus, 51310, Pakistan
| | - Shulin Liu
- Department of Entomology, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
49
|
The Occurrence of Microplastics and the Formation of Biofilms by Pathogenic and Opportunistic Bacteria as Threats in Aquaculture. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19138137. [PMID: 35805796 PMCID: PMC9266316 DOI: 10.3390/ijerph19138137] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023]
Abstract
Aquaculture is the most rapidly growing branch of animal production. The efficiency and quality of the produced food depends on sustainable management, water quality, feed prices and the incidence of diseases. Micro- (MP < 5 mm) and nanoplastic (NP < 1000 nm) particles are among the current factors causing serious water pollution. This substance comes solely from products manufactured by humans. MP particles migrate from the terrestrial to the aquatic environment and adversely affect, especially, the health of animals and humans by being a favorable habitat and vector for microbial pathogens and opportunists. More than 30 taxa of pathogens of humans, aquacutural animals and plants, along with opportunistic bacteria, have been detected in plastic-covering biofilm to date. The mobility and durability of the substance, combined with the relatively closed conditions in aquacultural habitats and pathogens’ affinity to the material, make plastic particles a microbiological medium threatening the industry of aquaculture. For this reason, in addition to the fact of plastic accumulation in living organisms, urgent measures should be taken to reduce its influx into the environment. The phenomenon and its implications are related to the concept of one health, wherein the environment, animals and humans affect each other’s fitness.
Collapse
|
50
|
Zhu J, Zhang Y, Xu Y, Wang L, Wu Q, Zhang Z, Li L. Effects of microplastics on the accumulation and neurotoxicity of methylmercury in zebrafish larvae. MARINE ENVIRONMENTAL RESEARCH 2022; 176:105615. [PMID: 35364423 DOI: 10.1016/j.marenvres.2022.105615] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs) and methylmercury (MeHg) have attracted increasing attention due to ubiquitous occurrence and toxicity. This study aimed to investigate whether MPs could absorb MeHg and thus modify its bioconcentration and neurotoxicity in the zebrafish larvae (Danio rerio). The pseudo-second-order model (R2 = 0.989) was found to be suitable for describing the adsorption kinetics of MeHg onto MPs. Compared with Freundlich and Temkin models, the Langmuir isotherm model provided a better fit with the experimental data exhibiting a maximum monolayer adsorption capacity of 54.945 mg/g. These results suggested that adsorption occurs mainly by a chemical process dominated by monolayer adsorption. MPs adsorbed MeHg to form MPs/MeHg complex, which was ingested by zebrafish larvae, and promoted accumulation of MeHg. Thus, the presence of MPs aggravated the reduction of locomotor activity induced by MeHg, and downregulation of neurotransmitters related genes, such as ache, gfap and scl1A3b. Metabolome analysis also revealed disrupted glutathione (GSH) metabolism upon exposure of MeHg alone and in combination with MPs, as reflected by the increased in the ratio of GSH and oxidized glutathione. These effects were also confirmed by upregulation of oxidative stress-related genes, such as sod, sod mt and gpx4a. Collectively, these results indicated that MPs could act as a carrier of MeHg and enhance its accumulation in zebrafish, thereby disrupting locomotor activity by excessive oxidative stress. This study provides a scientific basis for improving health risk assessment of environmental pollutants, particularly those potentially able to adsorb to MPs by virtue of their chemical nature.
Collapse
Affiliation(s)
- Jun Zhu
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, PR China
| | - Yi Zhang
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, PR China
| | - Yawen Xu
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, PR China
| | - Li Wang
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, PR China
| | - Qian Wu
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, PR China
| | - Zhan Zhang
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, PR China.
| | - Lei Li
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, PR China.
| |
Collapse
|