1
|
Duffel MW. Cytosolic sulfotransferases in endocrine disruption. Essays Biochem 2024; 68:541-553. [PMID: 38699885 PMCID: PMC11531609 DOI: 10.1042/ebc20230101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024]
Abstract
The mammalian cytosolic sulfotransferases (SULTs) catalyze the sulfation of endocrine hormones as well as a broad array of drugs, environmental chemicals, and other xenobiotics. Many endocrine-disrupting chemicals (EDCs) interact with these SULTs as substrates and inhibitors, and thereby alter sulfation reactions responsible for metabolism and regulation of endocrine hormones such as estrogens and thyroid hormones. EDCs or their metabolites may also regulate expression of SULTs through direct interaction with nuclear receptors and other transcription factors. Moreover, some sulfate esters derived from EDCs (EDC-sulfates) may serve as ligands for endocrine hormone receptors. While the sulfation of an EDC can lead to its excretion in the urine or bile, it may also result in retention of the EDC-sulfate through its reversible binding to serum proteins and thereby enable transport to other tissues for intracellular hydrolysis and subsequent endocrine disruption. This mini-review outlines the potential roles of SULTs and sulfation in the effects of EDCs and our evolving understanding of these processes.
Collapse
Affiliation(s)
- Michael W Duffel
- Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA 52242, U.S.A
| |
Collapse
|
2
|
Marchiandi J, Dagnino S, Zander-Fox D, Green MP, Clarke BO. Characterization of Chemical Exposome in A Paired Human Preconception Pilot Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20352-20365. [PMID: 39508786 DOI: 10.1021/acs.est.4c04356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Parental preconception exposure to synthetic chemicals may have critical influences on fertility and reproduction. Here, we present a robust LC-MS/MS method covering up to 95 diverse xenobiotics in human urine, serum, seminal and follicular fluids to support exposome-wide assessment in reproductive health outcomes. Extraction recoveries of validated analytes ranged from 62% to 137% and limits of quantification from 0.01 to 6.0 ng/mL in all biofluids. We applied the validated method to a preconception cohort of Australian couples (n = 30) receiving fertility treatment. In total, 36 and 38 xenobiotics were detected across the paired biofluids of males and females, respectively, including PFAS, parabens, organic UV-filters, plastic additives, antimicrobials, and other industrial chemicals. Results showed 39% of analytes in males and 37% in females were equally detected in paired serum, urine, and reproductive fluids. The first detection of the sunscreen ingredient avobenzone and the industrial chemical 4-nitrophenol in follicular and seminal fluids suggests they can cross both blood-follicle/testis barriers, indicating potential risks for fertility. Further, the blood-follicle transfer of perfluorobutanoic acid, PFOA, PFHxS, PFOS, and oxybenzone corroborate that serum concentrations can be reliable proxies for assessing exposure within the ovarian microenvironment. In conclusion, we observed significant preconception exposure to multiple endocrine disruptors in couples and identified potential xenobiotics relevant to male and female fertility impairments.
Collapse
Affiliation(s)
- Jaye Marchiandi
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria 3010, Australia
| | - Sonia Dagnino
- Transporters in Imaging and Radiotherapy in Oncology (TIRO), School of Medicine, Direction de la Recherche Fondamentale (DRF), Institut des sciences du vivant Fréderic Joliot, Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Université Côte d'Azur (UCA), 28 Avenue de Valombrose, 06107 Nice, France
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, W12 7TA London, U.K
| | - Deirdre Zander-Fox
- Monash IVF Group Pty, Cremorne, Melbourne, Victoria 3121, Australia
- Department of Obstetrics & Gynaecology, Monash University, Clayton, Melbourne, Victoria 3168, Australia
| | - Mark P Green
- Monash IVF Group Pty, Cremorne, Melbourne, Victoria 3121, Australia
- School of BioSciences, University of Melbourne, Victoria 3010, Australia
| | - Bradley O Clarke
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
3
|
Belova L, Caballero-Casero N, Ballesteros A, Poma G, van Nuijs ALN, Covaci A. Trapped and drift-tube ion-mobility spectrometry for the analysis of environmental contaminants: Comparability of collision cross-section values and resolving power. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9901. [PMID: 39198935 DOI: 10.1002/rcm.9901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024]
Abstract
RATIONALE Ion-mobility (IM)-derived collision cross-section (CCS) values can serve as a valuable additional identification parameter within suspect and non-target screening studies of environmental contaminants. However, these applications require to assess the reproducibility of CCS calculations between different IM set-ups. Especially for the comparison of trapped and drift-tube IM (TIMS/DTIM) derived CCS values, data for environmental applications is lacking. METHODS The presented study assessed the bias of TIMS derived CCSN2 (TIMSCCSN2) values of 48 environmental contaminants from three classes in comparison to a previously established DTIM database. Based on two sets of isomeric bisphenols, the resolving power of both systems was compared, addressing the instrumental settings which influence the resolution of TIMS measurements. RESULTS For 91% of the datapoints, bias between TIMSCCSN2 and DTCCSN2 values (latter set as reference) were < 2%, indicating a good inter-platform reproducibility. TIMS resolving power was dependent on the selected mobility window and ramping times whereby a resolution of up to 116 was achieved. Similar resolving power was observed for multiplexed DTIMS data if a high-resolution post-processing step was implemented. CONCLUSIONS These results provide valuable insights in CCSN2 reproducibility facilitating database transfer in future TIMS based studies. Knowledge on the influence of acquisition settings on robustness of TIMSCCSN2 calculations and resolving power can ease method development supporting efficient development and reliable identifications of emerging environmental contaminants.
Collapse
Affiliation(s)
- Lidia Belova
- Toxicological Centre, University of Antwerp, Antwerp, Belgium
| | - Noelia Caballero-Casero
- Department of Analytical Chemistry, Institute of Chemistry for Energy and the Environment, University of Córdoba, Córdoba, Spain
| | - Ana Ballesteros
- Department of Analytical Chemistry, Institute of Chemistry for Energy and the Environment, University of Córdoba, Córdoba, Spain
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Antwerp, Belgium
| | | | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
4
|
Średnicka P, Roszko M, Emanowicz P, Wójcicki M, Popowski D, Kanabus J, Juszczuk-Kubiak E. Influence of bisphenol A and its analogues on human gut microbiota composition and metabolic activity: Insights from an in vitro model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177323. [PMID: 39489444 DOI: 10.1016/j.scitotenv.2024.177323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Food contamination is a primary route of human exposure to bisphenols (BPs), which are known to affect gut microbiota (GM) and intestinal health. This study comprehensively assessed the impact of bisphenol A (BPA) and three of its substitutes-bisphenol S (BPS), bisphenol F (BPF), and tetramethyl bisphenol F (TMBPF, the monomer of valPure V70) - on the taxonomic and functional profile of human GM using an in vitro model. Human GM was acutely exposed to 1 mM concentrations of these BPs during a 48 h anaerobic cultivation. We first examined the effects of BPA, BPS, BPF, and TMBPF on GM taxonomic and metabolic profiles, mainly focusing on short-chain fatty acids (SCFAs) production. We then evaluated the degradation potential of these BPs by GM and its influence on their estrogenic activity. Finally, we assessed the impact of GM metabolites from BPs-exposed cultures on the viability of intestinal epithelial cells (Caco-2). BPA, BPS, and BPF severely disrupted GM taxonomic composition and metabolite profiles, significantly reducing SCFAs production. In contrast, TMBPF exhibited the least disruptive effects, suggesting it may be a safer alternative. Although the GM did not biotransform the BPs, bioadsorption occurred, with affinity correlating to hydrophobicity in the order of TMBPF > BPA > BPF > BPS. GM reduced the estrogenic activity of BPs primarily through bioadsorption. However, exposure of gut epithelial cells to Post-Culture Supernatants of BPA, BPF, and TMBPF significantly reduced Caco-2 cell viability, indicating the potential formation of harmful GM-derived metabolites and/or a depletion of beneficial GM metabolites.
Collapse
Affiliation(s)
- Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, Warsaw, Poland.
| | - Marek Roszko
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, Warsaw, Poland
| | - Paulina Emanowicz
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, Warsaw, Poland
| | - Michał Wójcicki
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, Warsaw, Poland
| | - Dominik Popowski
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, Warsaw, Poland; Natural Products & Food Research and Analysis - Pharmaceutical Technology, Faculty of Pharmacy, University of Antwerp, Universiteitplein 1, Wilrijk, Belgium
| | - Joanna Kanabus
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, Warsaw, Poland
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Rakowiecka 36 Street, Warsaw, Poland
| |
Collapse
|
5
|
Kumar R, Oke A, Rockmill B, de Cruz M, Verduzco R, Shodhan A, Woodruff-Madeira X, Abrahamsson DP, Varshavsky J, Lam J, Robinson JF, Allard P, Woodruff TJ, Fung JC. Rapid identification of reproductive toxicants among environmental chemicals using an in vivo evaluation of gametogenesis in budding yeast Saccharomyces cerevisiae. Reprod Toxicol 2024; 128:108630. [PMID: 38906490 PMCID: PMC11648579 DOI: 10.1016/j.reprotox.2024.108630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/26/2024] [Accepted: 05/31/2024] [Indexed: 06/23/2024]
Abstract
Infertility affects ∼12 % of couples, with environmental chemical exposure as a potential contributor. Of the chemicals that are actively manufactured, very few are assessed for reproductive health effects. Rodents are commonly used to evaluate reproductive effects, which is both costly and time consuming. Thus, there is a pressing need for rapid methods to test a broader range of chemicals. Here, we developed a strategy to evaluate large numbers of chemicals for reproductive toxicity via a yeast, S. cerevisiae high-throughput assay to assess gametogenesis as a potential new approach method (NAM). By simultaneously assessing chemicals for growth effects, we can distinguish if a chemical affects gametogenesis only, proliferative growth only or both. We identified a well-known mammalian reproductive toxicant, bisphenol A (BPA) and ranked 19 BPA analogs for reproductive harm. By testing mixtures of BPA and its analogs, we found that BPE and 17 β-estradiol each together with BPA showed synergistic effects that worsened reproductive outcome. We examined an additional 179 environmental chemicals including phthalates, pesticides, quaternary ammonium compounds and per- and polyfluoroalkyl substances and found 57 with reproductive effects. Many of the chemicals were found to be strong reproductive toxicants that have yet to be tested in mammals. Chemicals having affect before meiosis I division vs. meiosis II division were identified for 16 gametogenesis-specific chemicals. Finally, we demonstrate that in general yeast reproductive toxicity correlates well with published reproductive toxicity in mammals illustrating the promise of this NAM to quickly assess chemicals to prioritize the evaluation for human reproductive harm.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA; Center of Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Ashwini Oke
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA; Center of Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Beth Rockmill
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA; Center of Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Matthew de Cruz
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA; Center of Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Rafael Verduzco
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA; Center of Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Anura Shodhan
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA; Center of Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Xavier Woodruff-Madeira
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA; Center of Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Dimitri P Abrahamsson
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Julia Varshavsky
- Department of Health Sciences and Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA
| | - Juleen Lam
- Department of Public Health, California State University, East Bay, Hayward, CA, USA
| | - Joshua F Robinson
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA; Center of Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Patrick Allard
- UCLA Institute for Society & Genetics, University of California, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tracey J Woodruff
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Jennifer C Fung
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA; Center of Reproductive Sciences, University of California, San Francisco, CA, USA.
| |
Collapse
|
6
|
Fu Z, Jin H, Mao W, Yin S, Xu L, Hu Z. Conjugated metabolites of bisphenol A and bisphenol S in indoor dust, outdoor dust, and human urine. CHEMOSPHERE 2024; 362:142617. [PMID: 38880259 DOI: 10.1016/j.chemosphere.2024.142617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Bisphenol A (BPA) and bisphenol S (BPS) have been widely spread in the global environment. However, for conjugated BPA and BPS metabolites, limited studies have investigated their occurrence in environmental matrices. We collected paired indoor and outdoor dust (n = 97), as well as human urine (n = 153) samples, from residential houses in Quzhou, China, and measured these samples for 8 conjugated BPA and BPS metabolites. Three BPA metabolites were found in collected indoor and outdoor dust, with BPA sulfate (mean 0.75 and 1.3 ng/g, respectively) and BPA glucuronide (0.13 and 0.26 ng/g) being more abundant. BPA conjugates accounted for a mean of 42 and 56% of total BPA (sum of conjugated BPA and BPA metabolites) in indoor and outdoor dust, respectively. BPS sulfate (mean 0.29 and 0.82 ng/g, respectively) had consistently higher concentrations than BPS glucuronide (0.13 and 0.27 ng/g) in indoor and outdoor samples. BPS conjugates contributed a mean 32% and 45% of total BPS (sum of BPS and BPS metabolites) in indoor and outdoor dust, respectively. Moreover, conjugated BPA and BPS metabolites in indoor or outdoor dust were not significantly correlated with those in urine from residents. Overall, this study first demonstrates the wide presence of conjugated BPA and BPS metabolites, besides BPA and BPS, in indoor and outdoor dust. These data are important for elucidating the sources of conjugated BPA and BPS metabolites in the human body.
Collapse
Affiliation(s)
- Zhenling Fu
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Weili Mao
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China
| | - Sihui Yin
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China
| | - Luyao Xu
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China
| | - Zefu Hu
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China.
| |
Collapse
|
7
|
Qu J, Guo R, Liu L, Ren F, Jin H. Occurrence of bisphenol analogues and their conjugated metabolites in foodstuff. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174922. [PMID: 39038674 DOI: 10.1016/j.scitotenv.2024.174922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/23/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
Bisphenol analogues (BPs) are prevalent in diverse foodstuff samples worldwide. However, the occurrence of conjugated bisphenol A (BPA) and bisphenol S (BPS) metabolites in foodstuff remains poorly understood. This study analyzed eight BPs, and four conjugated BPA and BPS metabolites, in three animal-derived foodstuff and five plant-derived foodstuff samples from China. Results showed that fish foodstuff (9.7 ng/g ww) contained the highest mean concentration of BPA, followed by rice (5.1 ng/g ww) and beans foodstuff (3.6 ng/g ww). BPA-sulfate had higher mean concentrations than BPA-glucuronide in different foodstuff categories, except that in eggs foodstuff (p < 0.05). Compared with other foodstuff items, fish (3.4 ng/g ww) and vegetable (1.6 ng/g ww) foodstuff samples exhibited comparatively higher mean concentrations of BPS. Mean concentrations of BPS-sulfate were consistently higher than BPS-glucuronide in vegetables, meats, and fish foodstuff (p < 0.05). BPA contributed the major total dietary intake (DI) of BPs, with the mean DI of 435 ng/kg bw/day for women and 374 ng/kg bw/day for men, respectively. To our knowledge, this study is the first to investigate the occurrence of conjugated BPA and BPS metabolites in foodstuff, which enhances our comprehension of the origins of these conjugated metabolites in the human body.
Collapse
Affiliation(s)
- Jianli Qu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Ruyue Guo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Lin Liu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Fangfang Ren
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China.
| |
Collapse
|
8
|
Gu HJ, Kim DY, Shin SH, Rahman MS, Lee HS, Pang MG, Kim JM, Ryu BY. Genome-wide transcriptome analysis reveals that Bisphenol A activates immune responses in skeletal muscle. ENVIRONMENTAL RESEARCH 2024; 252:119034. [PMID: 38701888 DOI: 10.1016/j.envres.2024.119034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/31/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Cumulative human exposure to the environmental toxin, bisphenol A (BPA), has raised important health concerns in recent decades. However, the direct genomic regulation of BPA in skeletal muscles and its clinical significance are poorly understood. Therefore, we conducted a genome-wide transcriptome analysis after daily oral administration of BPA at the lowest observed adverse-effect level (LOAEL, 50 mg/kg) in male mice for six weeks to explore the gene-expression regulations in skeletal muscle induced by BPA. The primary Gene Ontology terms linked to BPA-dependent, differentially expressed genes at LOAEL comprised adaptive-immune response, positive regulation of T cell activation, and immune system process. The gene-set enrichment analysis disclosed increased complement-associated genes [complement components 3 (C3) and 4B, complement factor D, complement receptor 2, and immunoglobulin lambda constant 2] in the group administered with BPA, with a false-discovery rate of <0.05. Subsequent validation analysis conducted in BPA-fed animal skeletal muscle tissue and in vitro experiments confirmed that BPA induced immune activation, as evidenced by increased levels of C3 and C4α proteins in mice, C2C12 myoblasts, and mouse skeletal muscle cells. In addition, BPA markedly upregulated the transcription of tumor necrosis factor-α (Tnfα) in C2C12 myoblasts and mouse skeletal muscle cells, which was substantially inhibited by 5z-7-oxozeanol and parthenolide, providing further evidence of BPA-induced inflammation in muscle cells. Our bioinformatics and subsequent animal and in vitro validations demonstrate that BPA can activate inflammation in skeletal muscle, which could be a risk factor underlying chronic muscle weakness and wastage.
Collapse
Affiliation(s)
- Hyo Jin Gu
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Do-Young Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Seung Hee Shin
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Md Saidur Rahman
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Hee-Seok Lee
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea; Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| | - Buom-Yong Ryu
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
9
|
Gao Y, Bi L, Li A, Du M, Song M, Jiang G. Associations of Bisphenols Exposure and Hyperuricemia Based on Human Investigation and Animal Experiments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5290-5298. [PMID: 38468128 DOI: 10.1021/acs.est.4c00792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Hyperuricemia is characterized by elevated blood uric acid (UA) levels, which can lead to certain diseases. Epidemiological studies have explored the association between environmental contaminant exposure and hyperuricemia. However, few studies have investigated the role of chemical exposure in the development of hyperuricemia. Here, we sought to investigate the effects of bisphenol exposure on the occurrence of hyperuricemia. Fifteen bisphenol chemicals (BPs) were detected in human serum and urine samples collected from an area with a high incidence of hyperuricemia in China. Serum UA levels positively correlated with urinary bisphenol S (BPS), urinary bisphenol P (BPP), and serum bisphenol F (BPF). The effects of these three chemicals on UA levels in mice were explored at various exposure concentrations. An increase in serum UA levels was observed in BPS- and BPP-exposed mice. The results showed that BPS exposure increased serum UA levels by damaging the structure of the kidneys, whereas BPP exposure increased serum UA levels by disturbing purine metabolism in the liver. Moreover, BPF did not induce an increase in serum UA levels owing to the inhibition of guanine conversion to UA. In summary, we provide evidence of the mechanisms whereby exposure to three BPs disturbs UA homeostasis. These findings provide new insights into the risks of exposure to bisphenol chemicals.
Collapse
Affiliation(s)
- Yue Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Bi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China
| | - Aijing Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China
| | - Mei Du
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Marchiandi J, Alghamdi W, Dagnino S, Green MP, Clarke BO. Exposure to endocrine disrupting chemicals from beverage packaging materials and risk assessment for consumers. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133314. [PMID: 38147747 DOI: 10.1016/j.jhazmat.2023.133314] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/11/2023] [Accepted: 12/17/2023] [Indexed: 12/28/2023]
Abstract
This study investigated the influence of beverage packaging materials on the presence of endocrine disrupting chemicals (EDCs) in plastic, glass, carton, aluminium, and tin canned non-alcoholic beverages. Results showed that 63 EDCs including perfluoroalkyl and polyfluoroalkyl substances (PFAS), bisphenols, parabens, benzophenone-type UV-filters, biocides, nitrophenols, and alkylphenols, were detected in 144/162 screened products. Detected ∑63EDC concentrations ranged from 1.3 to 19,600 ng/L. EDC concentrations were higher in beverages packaged in metal cans while lower or no levels were detected in glass, plastic, and carton packaged drinks. Bisphenol levels were higher on average in canned beverages compared to glass (p < 0.01) and plastic products (p < 0.05) produced by the same brand and manufacturer. Two structural isomers of bisphenol A (BPA) were identified in 19 beverages, constituting the first detection in foodstuffs. The calculated daily intake of detected EDCs showed that exposure to BPA from per capita beverage consumption of 364 mL/day are up to 2000-fold higher than the newly revised safety guideline for BPA recommended by the EFSA (European Food Safety Authority). Overall, these findings suggest that BPA exposure poses a potential health hazard for individuals who regularly consume non-alcoholic beverages packaged in aluminium or tin cans, particularly young children.
Collapse
Affiliation(s)
- Jaye Marchiandi
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria 3010, Australia
| | - Wejdan Alghamdi
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria 3010, Australia
| | - Sonia Dagnino
- Transporters in Imaging and Radiotherapy in Oncology (TIRO), School of Medicine, Direction de la Recherche Fondamentale (DRF), Institut des sciences du vivant Fréderic Joliot, Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Université Côte d'Azur (UCA), 28 Avenue de Valombrose, 06107 Nice, France; MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, United Kingdom
| | - Mark P Green
- School of BioSciences, University of Melbourne, Victoria 3010, Australia
| | - Bradley O Clarke
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
11
|
Xie M, Liang M, Liu C, Xu Z, Yu Y, Xu J, You S, Wang D, Rad S. Peroxymonosulfate activation by CuMn-LDH for the degradation of bisphenol A: Effect, mechanism, and pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115929. [PMID: 38194810 DOI: 10.1016/j.ecoenv.2024.115929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/05/2023] [Accepted: 01/01/2024] [Indexed: 01/11/2024]
Abstract
The remediation of water contaminated with bisphenol A (BPA) has gained significant attention. In this study, a hydrothermal composite activator of Cu3Mn-LDH containing coexisting phases of cupric nitrate (Cu(NO3)2) and manganous nitrate (Mn(NO3)2) was synthesized. Advanced oxidation processes were employed as an effective approach for BPA degradation, utilizing Cu3Mn-LDH as the catalyst to activate peroxymonosulfate (PMS). The synthesis of the Cu3Mn-LDH material was characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). According to the characterization data and screening experiments, Cu3Mn-LDH was selected as the best experimental material. Cu3Mn-LDH exhibits remarkable catalytic ability with PMS, demonstrating good degradation efficiency of BPA under neutral and alkaline conditions. With a PMS dosage of 0.25 g·L-1 and Cu3Mn-LDH dosage of 0.10 g·L-1, 10 mg·L-1 BPA (approximately 17.5 μM) can be completely degraded within 40 min, of which the TOC removal reached 95%. The reactive oxygen species present in the reaction system were analyzed by quenching experiments and EPR. Results showed that sulfate free radicals (SO4•-), hydroxyl free radicals (•OH), superoxide free radicals (•O2-), and nonfree radical mono-oxygen were generated, while mono-oxygen played a key role in degrading BPA. Cu3Mn-LDH exhibits excellent reproducibility, as it can still completely degrade BPA even after four consecutive cycles. The degradation intermediates of BPA were detected by GCMS, and the possible degradation pathways were reasonably predicted. This experiment proposes a nonradical degradation mechanism for BPA and analyzes the degradation pathways. It provides a new perspective for the treatment of organic pollutants in water.
Collapse
Affiliation(s)
- Mingqi Xie
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| | - Meina Liang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| | - Chongmin Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China.
| | - Zejing Xu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| | - Youkuan Yu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| | - Jie Xu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| | - Shaohong You
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| | - Dunqiu Wang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| | - Saeed Rad
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Theory & Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
12
|
Štefunková N, Greifová H, Jambor T, Tokárová K, Zuščíková L, Bažány D, Massányi P, Capcarová M, Lukáč N. Comparison of the Effect of BPA and Related Bisphenols on Membrane Integrity, Mitochondrial Activity, and Steroidogenesis of H295R Cells In Vitro. Life (Basel) 2023; 14:3. [PMID: 38276253 PMCID: PMC10821247 DOI: 10.3390/life14010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024] Open
Abstract
Bisphenol A (BPA) is an endocrine-disruptive chemical that is widely utilized in the production of polycarbonate plastic and epoxy resin, which are used to make a wide range of consumer products, food and drink containers, and medical equipment. When the potential risk of BPA emerged, it was substituted by allegedly less harmful substitutes such as bisphenols S, F, B, and AF. However, evidence suggests that all bisphenols can have endocrine-disruptive effects, while the extent of these effects is unknown. This study aimed to determine effect of BPA, BPAF, BPB, BPF, and BPS on viability and steroidogenesis in human adrenocortical carcinoma cell line in vitro. The cytotoxicity of bisphenols was shown to be considerable at higher doses. However, at low concentrations, it improved viability as well as steroid hormone secretion, indicating that bisphenols have a biphasic, hormetic effect in biological systems. The results are consistent with the hypothesis that bisphenols selectively inhibit some steroidogenic enzymes. These findings suggest that bisphenols have the potential to disrupt cellular steroidogenesis in humans, but substantially more detailed and systematic research is needed to gain a better understanding of the risks associated with bisphenols and their endocrine-disrupting effect on humans and wildlife.
Collapse
Affiliation(s)
- Nikola Štefunková
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia (P.M.)
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Wang Z, Li J, Song W, Yang J, Dong W, Zhang X. Bisphenol A degradation by chlorine dioxide (ClO 2) and S(IV)/ClO 2 process: Mechanism, degradation pathways and toxicity assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122736. [PMID: 37838321 DOI: 10.1016/j.envpol.2023.122736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 10/16/2023]
Abstract
Recently, it has been reported that chlorine dioxide (ClO2) and (bi)sulfite/ClO2 showed excellent performance in micropollutant removal from water; however, the degradation mechanisms and application boundaries of the two system have not been identified. In this study, bisphenol A (BPA) was chosen as the target contaminant to give multiple comparisons of ClO2 and S(IV)/ClO2 process regarding the degradation performance of contaminant, generation of reactive species, transformation of products and toxicity variation. Both ClO2 and S(IV)/ClO2 can degrade BPA within 3 min. The BPA degradation mechanism was mainly based on direct oxidation in ClO2 process while it was attributed to radicals (especially SO4·-) generation in S(IV)/ClO2 process. Meanwhile, the effect of pH and coexisting substances (Cl-, Br-, HCO3- and HA) were evaluated. It was found that ClO2 preferred the neutral and alkaline condition and S(IV)/ClO2 preferred the acidic condition for BPA degradation. An unexpected speed-up of BPA degradation was observed in ClO2 process in the presence of Br-, HCO3- and HA. In addition, the intermediate products in BPA degradation were identified. Three exclusive products were found in ClO2 process, in which p-benzoquinone was considered to be the reason of the acute toxicity increase in ClO2 process.
Collapse
Affiliation(s)
- Zhuoyue Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Ji Li
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wei Song
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jingxin Yang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, 510006, China
| | - Wenyi Dong
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xiaolei Zhang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| |
Collapse
|
14
|
Wang Y, Ge Y, Wang R, Liu Z, Yin Z, Yang Z, Liu F, Yang W. MOF-Derived Ni/ZIF-8/ZnO Arrays on Carbon Fiber Cloth for Efficient Adsorption-Catalytic Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2303928. [PMID: 37625020 DOI: 10.1002/smll.202303928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/02/2023] [Indexed: 08/27/2023]
Abstract
The catalytic oxidation of toxic organic pollutants in water requires enhanced efficiency for commercial applications. A ZnO nanorod array grown on a carbon fiber cloth (CFC) serves as the zinc source to ensure that the Ni/ZIF-8/ZnO nanoreactor is constructed. The Ni/ZIF-8/ZnO/CFC nanoreactor efficiently activates peroxymonosulfate (PMS) for bisphenol A (BPA) degradation owing to its high density of active sites, high adsorbability, and dispersibility structure, which concentrates catalytic and adsorptive sites within a confined space. Experimental and theoretical calculations clearly show that the introduction of Ni is beneficial for improving the adsorption of BPA and the activation of PMS. The synergistic mechanism of BPA adsorption-PMS activation is also investigated, and the degradation pathway of BPA is examined. Moreover, a filter catalytic unit is constructed using Ni/ZIF-8/ZnO/CFC to achieve a continuous zero discharge of BPA, which is convenient for nanocatalyst recycling. This study aims to develop a new strategy for the removal of emerging organic pollutants from water using a system with strong adsorption and catalytic capabilities.
Collapse
Affiliation(s)
- Yue Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yu Ge
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ruoding Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Zifan Liu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Zhonglong Yin
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Zhen Yang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Fuqiang Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Weiben Yang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
15
|
Park YK, Chin YW. Degradation of Bisphenol A by Bacillus subtilis P74 Isolated from Traditional Fermented Soybean Foods. Microorganisms 2023; 11:2132. [PMID: 37763976 PMCID: PMC10536603 DOI: 10.3390/microorganisms11092132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Bisphenol A (BPA), one of the most widely used plasticizers, is an endocrine-disrupting chemical that is released from plastic products. The aim of this study was to screen and characterize bacteria with excellent BPA-degrading abilities for application in foods. BPA degradation ability was confirmed in 127 of 129 bacterial strains that were isolated from fermented soybean foods. Among the strains, B. subtilis P74, which showed the highest BPA degradation performance, degraded 97.2% of 10 mg/L of BPA within 9 h. This strain not only showed a fairly stable degradation performance (min > 88.2%) over a wide range of temperatures (30-45 °C) and pH (5.0-9.0) but also exhibited a degradation of 63% against high concentrations of BPA (80 mg/L). The metabolites generated during the degradation were analyzed using high-performance liquid chromatography-mass spectrometry, and predicted degradation pathways are tentatively proposed. Finally, the application of this strain to soybean fermentation was conducted to confirm its applicability in food.
Collapse
Affiliation(s)
| | - Young-Wook Chin
- Research Group of Traditional Food, Korea Food Research Institute, Iseo-myeon, Wanju-gun 55365, Jeollabuk-do, Republic of Korea
| |
Collapse
|
16
|
Di Bella G, Porretti M, Cafarelli M, Litrenta F, Potortì AG, Turco VL, Albergamo A, Xhilari M, Faggio C. Screening of phthalate and non-phthalate plasticizers and bisphenols in Sicilian women's blood. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104166. [PMID: 37268242 DOI: 10.1016/j.etap.2023.104166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/27/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
The plastic accumulation and its degradation into microplastics is an environmental issue not only for their ubiquity, but also for the release of intrinsic chemicals, such as phthalates (PAEs), non-phthalate plasticizers (NPPs), and bisphenols (BPs), which may reach body organs and tissues, and act as endocrine disruptors. Monitoring plastic additives in biological matrices, such as blood, may help in deriving relationships between human exposure and health outcomes. In this work, the profile of PAEs, NPPs and BPs was determined in Sicilian women's blood with different ages (20-60 years) and interpreted by chemometrics. PAEs (DiBP and DEPH), NPPs (DEHT and DEHA), BPA and BPS were at higher frequencies and greater levels in women's blood and varied in relation to age. According to statistical analysis, younger females' blood had higher contents of plasticizers than older women, probably due to a more frequent use of higher quantities of plastic products in daily life.
Collapse
Affiliation(s)
- Giuseppa Di Bella
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences of the University of Messina, Messina, Italy.
| | - Miriam Porretti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences of the University of Messina, Messina, Italy.
| | - Mirea Cafarelli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences of the University of Messina, Messina, Italy.
| | - Federica Litrenta
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences of the University of Messina, Messina, Italy.
| | - Angela Giorgia Potortì
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences of the University of Messina, Messina, Italy.
| | - Vincenzo Lo Turco
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences of the University of Messina, Messina, Italy.
| | - Ambrogina Albergamo
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences of the University of Messina, Messina, Italy.
| | | | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences of the University of Messina, Messina, Italy.
| |
Collapse
|
17
|
Cao Y, Chen S, Lu J, Zhang M, Shi L, Qin J, Lv J, Li D, Ma L, Zhang Y. BPA induces placental trophoblast proliferation inhibition and fetal growth restriction by inhibiting the expression of SRB1. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60805-60819. [PMID: 37037937 DOI: 10.1007/s11356-023-26850-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/03/2023] [Indexed: 04/12/2023]
Abstract
Bisphenol-A (BPA) is a common environmental toxicant that is known to be associated with fetal growth restriction (FGR). However, the mechanisms of how BPA induce FGR is poorly characterized. We conducted proteomics to identify the abnormal expression of SRB1 in female placental tissues with high BPA-induced FGR and further verified its decreased expression in human placenta and BeWo cells. Next, the effect of BPA on fetal development was further confirmed in pregnant C57BL/6 mice. The expression of SRB1 was consistently downregulated in human FGR placentas, BPA-exposed trophoblasts and mouse placentas. In addition, we found that SRB1 interacted with PCNA, and BPA exposure indirectly reduced the expression of PCNA and further inhibited placental proliferation. In vitro studies showed that BPA exposure reduced the expression of CDK1, CDK2, cyclin B and phosphorylated Rb in placental trophoblast cells, indicating cell cycle arrest after exposure to BPA. In addition, the expression of γ-H2AX and phosphorylated ATM was upregulated in BPA-exposed trophoblasts, indicating increased DNA damage. Our results indicate that BPA-induced FGR is achieved by reducing the expression of SRB1, inhibiting placental proliferation and increasing DNA damage. Our findings not only explain the mechanism of BPA-associated developmental toxicity but also shed light upon developing novel therapeutic targets.
Collapse
Affiliation(s)
- Yuming Cao
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, No 169 of Donghu Road, Wuhan, 430071, Hubei, China
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Gynaecology and Obstetrics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, People's Republic of China
| | - Sihan Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jing Lu
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, No 169 of Donghu Road, Wuhan, 430071, Hubei, China
| | - Ming Zhang
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, No 169 of Donghu Road, Wuhan, 430071, Hubei, China
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lei Shi
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Juling Qin
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jing Lv
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Danyang Li
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ling Ma
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuanzhen Zhang
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, No 169 of Donghu Road, Wuhan, 430071, Hubei, China.
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Department of Gynaecology and Obstetrics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, People's Republic of China.
| |
Collapse
|
18
|
Chen Y, Hu Z, Tang M, Huang F, Xiong Y, Ouyang D, He J, He S, Xian H, Hu D. Lysosome-related exosome secretion mediated by miR-26b / Rab31 pathway was associated with the proliferation and migration of MCF-7 cells treated with BPA. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114563. [PMID: 36701876 DOI: 10.1016/j.ecoenv.2023.114563] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Bisphenol A (BPA), one of the typical environmental endocrine disruptors (EEDs), can promote the proliferation and migration of cancer cells, but the mechanism of which remains largely unclear. Exosome secretion plays an important role in the stress response of cells to environmental stimuli. This study was designed to explore whether exosome secretion was involved in the toxic effect of BPA on the proliferation and migration of MCF-7 cells, and the related mechanism. Our data shows that the IC50 value of MCF-7 exposure to BPA was about 65.82 µM. The exposure of MCF-7 to 10 µM BPA resulted in a decreased miR-26b expression and the activation of miR-26b/Rab-31 pathway, consequently, the number and activity of lysosomes decreased, the secretion of exosomes increased, cell proliferation and migration were enhanced obviously. Interestingly, miR-26b mimic up-regulated the number and activity of lysosomes via miR-26b/miR-31 pathway, exosome secretion was down-regulated, cell proliferation and migration decreased. Further, when GW4869 was used to directly inhibit the exosome secretion of MCF-7 treated with BPA, their proliferation and migration were down-regulated. Herein, we concluded that the stimulating effect of BPA on the proliferation and migration of MCF-7 cells was associated with the lysosome - related exosome secretion via miR-26b / Rab31 pathway.
Collapse
Affiliation(s)
- Ying Chen
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Zuqing Hu
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China; Department of Clinical Medicine, Jiamusi University, China
| | - Meilin Tang
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Fan Huang
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China; Grade 2019 Undergraduate Student Majoring in Preventive Medicine, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yiren Xiong
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Di Ouyang
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Jiayi He
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Shanshan He
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Hongyi Xian
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China
| | - Dalin Hu
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, PR China.
| |
Collapse
|
19
|
Wang H, Gao R, Liang W, Wei S, Zhou Y, Zeng F. Assessment of BPA and BPS exposure in the general population in Guangzhou, China - Estimation of daily intakes based on urinary metabolites. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120375. [PMID: 36220574 DOI: 10.1016/j.envpol.2022.120375] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/21/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Human exposure to bisphenol A (BPA) and bisphenol S (BPS) has garnered considerable global health concerns. In this paper, the daily intake (DI) of BPA and BPS in the general population of Guangzhou, China, were back-calculated using the biomarkers BPA glucuronides (BPA-G) and BPS glucuronides (BPS-G), respectively. The biomarkers are preferable to total BPA and BPS measurements because they are not susceptible to external contamination. A total of 1440 urine samples were gathered from the general population in Guangzhou, China, which were classified by age and sex into 36 pooled urine samples. 100% and 98% of pooled urine samples contained BPA-G and BPS-G at median values of 1.57 and 0.38 ng/mL, respectively. Based on urinary BPA-G and BPS-G concentrations, we determined the median DI of BPA and BPS to be 31.07 and 7.37 ng/(kg bw*d), respectively, and the highest values to be 106.77 ng/(kg bw*d) and 18.19 ng/(kg bw*d), respectively. Furthermore, our results showed that for the entire dataset, the DI of BPA and BPS were considerably greater in males than in females (p < 0.01)and declined significantly with age (p < 0.05). For risk assessment, the estimated DIs of BPA and BPS were much lower than the European Food Safety Authority' s (EFSA) the temporary acceptable reference dose of 4 μg/(kg bw*d) advised for BPA, suggesting that the exposure risk of BPA and BPS for Guangzhou population is within a controllable safety range. This is the first study to investigate BPA and BPS exposure in the general population of Guangzhou, China, on the basis of urinary metabolites.
Collapse
Affiliation(s)
- Hao Wang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275; Guangdong, China
| | - Rui Gao
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275; Guangdong, China
| | - Weiqian Liang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275; Guangdong, China
| | - Shuyin Wei
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275; Guangdong, China
| | - Yingyue Zhou
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275; Guangdong, China
| | - Feng Zeng
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275; Guangdong, China.
| |
Collapse
|
20
|
Li L, Yang S, Wang Y, Hui S, Xiao T, Kong J, Zhao X. Nitrogen-doped carbon nanosheets for efficient degradation of bisphenol A by H2O2 activation at neutral pH values. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Flieger J, Śniegocki T, Dolar-Szczasny J, Załuska W, Rejdak R. The First Evidence on the Occurrence of Bisphenol Analogues in the Aqueous Humor of Patients Undergoing Cataract Surgery. J Clin Med 2022; 11:6402. [PMID: 36362630 PMCID: PMC9655480 DOI: 10.3390/jcm11216402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/16/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
Human exposure to BPs is inevitable mostly due to contaminated food. In this preliminary study, for the first time, the presence of bisphenols (BPs) in aqueous humor (AH) collected from 44 patients undergoing cataract surgery was investigated. The measurements were performed using a sensitive ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC−MS/MS). Chromatographic separation was achieved using a reverse-phase column and a gradient elution mode. Multiple reaction monitoring (MRM) was used. The method was validated for bisphenol A (BPA) and bisphenol F (BPF). The limits of quantification (LOQs) of both investigated analytes were 0.25 ng mL−1. The method was linear in the range of 0.25−20.0 ng mL−1 with correlation coefficients (R2) higher than 0.98. Recovery of analytes was in the range of 99.9 to 104.3% and intra-assay and inter-assay precision expressed by relative standard deviations (RSD%) were less than 5%. BPA was detected in 12 AH samples with mean concentrations of 1.41 ng mL−1. BPF was not detected at all. Furthermore, two structural isomers termed BPA-1, and BPA-2 were identified, for the first time, in 40.9% of the AH samples, with almost twice higher mean concentrations of 2.15 ng mL−1, and 2.25 ng mL−1, respectively. The total content of BPs were higher in patients with coexisting ocular pathologies such as glaucoma, age-related macular degeneration (AMD), and diabetes in comparison to cataracts alone. However, the difference between these groups did not reach statistical significance (p > 0.05). Performed investigations indicate the need for further research on a larger population with the aim of knowing the consequences of BPs’ accumulation in AH for visual function.
Collapse
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Tomasz Śniegocki
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - Joanna Dolar-Szczasny
- Department of General and Pediatric Ophthalmology, Medical University of Lublin, Chmielna 1, 20-079 Lublin, Poland
| | - Wojciech Załuska
- Department of Nephrology, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland
| | - Robert Rejdak
- Department of General and Pediatric Ophthalmology, Medical University of Lublin, Chmielna 1, 20-079 Lublin, Poland
| |
Collapse
|
22
|
Mostari MH, Rahaman MM, Akhter MA, Ali MH, Sasanami T, Tokumoto T. Transgenerational effects of bisphenol A on zebrafish reproductive tissues and sperm motility. Reprod Toxicol 2022; 109:31-38. [PMID: 35247598 DOI: 10.1016/j.reprotox.2022.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 12/09/2022]
Abstract
In a previous study, we demonstrated the next-generation effects and further transgenerational adverse effects of bisphenol A (BPA) in zebrafish. The adverse effects on reproductive factors, such as gonadal activity, fertility, hatching rate and malformation of embryo caused by the dietary administration on initial generation (F0) male and female zebrafish were continued until third filial (F3) generation. In this study, we examined how much amount of BPA contained in the diet was taken up by the zebrafish. We showed that only about 3.5-6.8% of BPA in the diet was taken into fish body. Also, we confirmed the transgenerational effects caused by 100 times lower amount of BPA than previous study. Even a low amount of BPA (1 μg/g diet) administered to F0 not only caused retraction of the ovaries and testes but also lowered the survival rate and increased the rate of malformation in the offspring. The effects were continued to F3 generation as previously described. Moreover, the sperm motility of the offspring of the BPA-treated ancestral animals was significantly lower, and this adverse effect was continued to F2 generations. These findings demonstrated that BPA at levels comparable to those ingested by humans can cause transgenerational adverse effects on fish reproduction.
Collapse
Affiliation(s)
- Mst Habiba Mostari
- Integrated Bioscience Section, Graduate School of Science and Technology
| | | | - Mst Afroza Akhter
- Integrated Bioscience Section, Graduate School of Science and Technology
| | - Md Hasan Ali
- Integrated Bioscience Section, Graduate School of Science and Technology
| | - Tomohiro Sasanami
- Department of Applied Life Sciences, Faculty of Agriculture, National University Corporation Shizuoka University, Oya 836, Suruga-ku, Shizuoka 422-8529, Japan
| | - Toshinobu Tokumoto
- Integrated Bioscience Section, Graduate School of Science and Technology.
| |
Collapse
|