1
|
Yin W, Chen J, Xu Y, Yu C, Zhou X, Zhang Y. Efficient disinfection of real toilet blackwater by ultraviolet/peracetic acid process: Selective intracellular biomolecular oxidation. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138099. [PMID: 40179780 DOI: 10.1016/j.jhazmat.2025.138099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/19/2025] [Accepted: 03/28/2025] [Indexed: 04/05/2025]
Abstract
Toilet blackwater (BW) disinfection is crucial for preventing microbial contamination but is hindered by its complex composition. This study explored the combined ultraviolet and peracetic acid (UV/PAA) process as a novel strategy for BW disinfection. The UV/PAA process effectively inactivated Fecal coliform (1.372 × 10-5 s-2) in real BW, despite presence of turbidity, suspended solids, and organic matter, which could hinder disinfection. The highly electrophilic PAA and acetoxy(peroxy) radicals were identified as crucial contributors to bacterial inactivation. Biochemical analysis and Density Functional Theory calculations revealed that the system primarily operates through selective intracellular biomolecular oxidation. Electrophilic species preferentially oxidized amino acids with highly local nucleophilicity index, particularly those containing sulfur or nitrogen moieties. This selective oxidation caused protein denaturation, inducing cells into a viable but non-culturable (VBNC) state. Meanwhile, the membrane integrity and metabolic activity was preserved, while oxidative stress and DNA disruption effectively limited bacterial regrowth, proving that this process selectively damages intracellular biomolecules, such as amino acids and DNA. Additionally, the process significantly reduced the abundance of gut microbiota and other pathogens in real BW, highlighting its broad-spectrum antimicrobial efficacy. The UV/PAA process represented a sustainable and eco-friendly advanced disinfection solution for BW treatment.
Collapse
Affiliation(s)
- Wenjun Yin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China.
| | - Yue Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Chengzhi Yu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze Water Environment for Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China.
| |
Collapse
|
2
|
Nunes BBDS, Mendonça JDS, Matos SGDS, Rodrigues ASDL, Pádua BDC, Luz TMD, Malafaia G. Neurobehavioral and neurochemical alterations in female mice following pregestational exposure to SARS-CoV-2 lysate protein. Neurotoxicol Teratol 2025; 109:107451. [PMID: 40347989 DOI: 10.1016/j.ntt.2025.107451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/10/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
The rapid introduction of new environmental contaminants, including viral agents like SARS-CoV-2, has raised concerns about their indirect effects on non-target terrestrial organisms, especially through contaminated water sources. In this study, we investigated the potential neurotoxic effects of pre-mating and gestational exposure to SARS-CoV-2 lysate protein. Female C57Bl/6 J mice were exposed to a concentration of 20 μg/L for 30 days via drinking water. No significant effects were observed on gestational duration, litter size, or offspring biomass, suggesting no direct impact on reproductive performance. However, exposed females exhibited marked neurobehavioral alterations, including increased anxiety-like behavior in the open field test and altered maternal care dynamics, characterized by hyper-responsiveness and increased nest attendance duration. These behavioral changes were strongly correlated with neurochemical imbalances, including elevated dopamine levels in the olfactory bulb, brain, and hypothalamic-pituitary region. Additionally, cholinesterase activity was significantly altered, with increased acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activity in the olfactory bulb and brain, but decreased AChE activity in the hypothalamus-pituitary region, suggesting disrupted cholinergic signaling. Furthermore, oxidative and nitrosative stress markers (ROS and NO) were significantly elevated in mammary and ovarian tissues, indicating a persistent inflammatory response even after exposure cessation. These findings highlight long-term neurochemical and behavioral disruptions following environmentally relevant exposure to SARS-CoV-2 lysate protein, which could compromise neurophysiological homeostasis, stress regulation, and maternal investment in non-target mammals. In natural environments, such alterations may reduce individual fitness and population resilience, emphasizing the need to further investigate the ecotoxicological consequences of viral pollutants on terrestrial organisms.
Collapse
Affiliation(s)
- Bárbara Beatriz da Silva Nunes
- Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Juliana Dos Santos Mendonça
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute - Urutaí Campus. Rodovia Geraldo Silva Nascimento, 2,5 km, Zona Rural, Urutaí, GO, Brazil
| | - Stênio Gonçalves da Silva Matos
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute - Urutaí Campus. Rodovia Geraldo Silva Nascimento, 2,5 km, Zona Rural, Urutaí, GO, Brazil
| | - Aline Sueli de Lima Rodrigues
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute - Urutaí Campus. Rodovia Geraldo Silva Nascimento, 2,5 km, Zona Rural, Urutaí, GO, Brazil; Post-Graduation Program in Natural Resource Conservation of the Cerrado, Goiano Federal Institute, Urutaí, GO, Brazil
| | - Bruno da Cruz Pádua
- Federal Center for Technological Education of Minas Gerais - CurveloCampus, Curvelo, MG, Brazil
| | - Thiarlen Marinho da Luz
- Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute - Urutaí Campus. Rodovia Geraldo Silva Nascimento, 2,5 km, Zona Rural, Urutaí, GO, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute - Urutaí Campus. Rodovia Geraldo Silva Nascimento, 2,5 km, Zona Rural, Urutaí, GO, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil; Post-Graduation Program in Natural Resource Conservation of the Cerrado, Goiano Federal Institute, Urutaí, GO, Brazil..
| |
Collapse
|
3
|
Han T, Gao Y, Zhang S, Jiao Y, Zhao J, Zhao J, Liu Y, Liu K, Lu P, Fan R, Zhang Y, Ren X, Wang M, Gao Z, Li W, Li B, Su T, Sun L. Initial Establishment of Warning Model for Epidemic Intensity of Norovirus GII Associated with Acute Gastroenteritis in Beijing Based on Synthetic Index Method. Viruses 2025; 17:473. [PMID: 40284915 PMCID: PMC12031202 DOI: 10.3390/v17040473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/14/2025] [Accepted: 03/22/2025] [Indexed: 04/29/2025] Open
Abstract
At present, there is no research that classifies the epidemic intensity of acute gastroenteritis (AGE) caused by Norovirus (NoV) GII combined cases and environmental surveillance data at the same time. With reference to the experience of the epidemiological-level classification of infectious disease and the actual epidemiological status of NoV AGE in Chaoyang District, Beijing, China, the epidemic intensity of NoV GII was divided into five grades with increasing intensity from grade 1 to grade 5, which corresponds to non-epidemic risk, general risk, moderate risk, high risk, and ultra-high risk, respectively. If the synthetic index of two consecutive monitoring weeks in the epidemic season of 2023-2024 exceeds a certain threshold, an early warning for the corresponding epidemic intensity will be issued and recommendations on the corresponding control measures will be given. This study established and quantified the criteria for the epidemic intensity of AGE caused by NoV GII based on case surveillance data and environmental surveillance data. It provides a reference for other methods to carry out relevant studies in the future. However, mathematical models cannot completely replace skilled experience. Therefore, when making decisions with early warning models in practice, it is necessary to refer to the opinions of professional and experienced experts to avoid the bias of the early warning model from affecting strategy judgment.
Collapse
Affiliation(s)
- Taoli Han
- Beijing Chaoyang Center for Disease Control and Prevention, Beijing 100021, China; (T.H.)
| | - Yan Gao
- Beijing Chaoyang Center for Disease Control and Prevention, Beijing 100021, China; (T.H.)
| | - Shiyao Zhang
- Beijing Chaoyang Center for Disease Control and Prevention, Beijing 100021, China; (T.H.)
| | - Yang Jiao
- Beijing Chaoyang Center for Disease Control and Prevention, Beijing 100021, China; (T.H.)
| | - Jianhong Zhao
- Beijing Chaoyang Center for Disease Control and Prevention, Beijing 100021, China; (T.H.)
| | - Jiaxin Zhao
- Beijing Chaoyang Center for Disease Control and Prevention, Beijing 100021, China; (T.H.)
| | - Yujie Liu
- Beijing Chaoyang Center for Disease Control and Prevention, Beijing 100021, China; (T.H.)
| | - Kuankuan Liu
- Beijing Chaoyang Center for Disease Control and Prevention, Beijing 100021, China; (T.H.)
| | - Pan Lu
- Beijing Chaoyang Center for Disease Control and Prevention, Beijing 100021, China; (T.H.)
| | - Ru Fan
- Beijing Chaoyang Center for Disease Control and Prevention, Beijing 100021, China; (T.H.)
| | - Yuqi Zhang
- Beijing Chaoyang Center for Disease Control and Prevention, Beijing 100021, China; (T.H.)
| | - Xingmei Ren
- Beijing Chaoyang Center for Disease Control and Prevention, Beijing 100021, China; (T.H.)
| | - Mengnan Wang
- Beijing Chaoyang Center for Disease Control and Prevention, Beijing 100021, China; (T.H.)
| | - Zhiyong Gao
- Beijing Center for Disease Control and Prevention, Beijing 100013, China
| | - Wenjing Li
- Beijing Chaoyang Center for Disease Control and Prevention, Beijing 100021, China; (T.H.)
| | - Beibei Li
- Beijing Chaoyang Center for Disease Control and Prevention, Beijing 100021, China; (T.H.)
| | - Tongyue Su
- School of Public Health, Hebei University, Baoding 071000, China
| | - Lingli Sun
- Beijing Chaoyang Center for Disease Control and Prevention, Beijing 100021, China; (T.H.)
| |
Collapse
|
4
|
Saita T, Thitanuwat B, Niyomdecha N, Prasertsopon J, Lerdsamran H, Puthavathana P, Noisumdaeng P. Measuring SARS-CoV-2 RNA in Bangkok wastewater treatment plants and estimating infected population after fully opening the country in 2023, Thailand. Sci Rep 2025; 15:9663. [PMID: 40113890 PMCID: PMC11926235 DOI: 10.1038/s41598-025-94938-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 03/18/2025] [Indexed: 03/22/2025] Open
Abstract
Wastewater-based epidemiology (WBE) has been employed for monitoring the presence of SARS-CoV-2 infected population. Herein, the study aims to apply the WBE for surveillance and monitoring SARS-CoV-2 in Bangkok, where the highest official covid-19 cases reported in Thailand, during the fully opening for international tourists in early 2023. A total of 200 wastewater samples (100 influent and 100 effluent samples) were collected from 10 wastewater treatment plants (WWTPs) during January-May 2023. SARS-CoV-2 RNA was detected by real time qRT-PCR with accounting for 51% (102/200). Of these, 88% (88/100) and 14% (14/100) were detected in influent and effluent samples, respectively. The SARS-CoV-2 RNA concentration was detected in ranged of 4.76 × 102-1.48 × 105 copies/L. The amount of SARS-CoV-2 RNA has increased approximately 4 times from the lag phase (January-March) to the log phase (April-May). Spearman's correlation coefficient revealed that correlation between estimated infected population and weekly reported cases was statistically significant (p-value = 0.017). SARS-CoV-2 RNA in influent had a statistically significant relationship with weekly reported cases (r = 0.481, p-value < 0.001). Lag time analysis revealed early warning 1-3 weeks before rising covid-19 cases observed. GIS was applied for spatial-temporal analysis at the province level, suggesting real time dashboard should be further developed.
Collapse
Affiliation(s)
- Thanchira Saita
- Faculty of Public Health, Thammasat University, Pathum Thani, 12121, Thailand
- Thammasat University Research Unit in Modern Microbiology and Public Health Genomics, Thammasat University, Pathum Thani, 12121, Thailand
| | | | - Nattamon Niyomdecha
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, 12121, Thailand
| | - Jarunee Prasertsopon
- Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Hatairat Lerdsamran
- Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand
| | | | - Pirom Noisumdaeng
- Faculty of Public Health, Thammasat University, Pathum Thani, 12121, Thailand.
- Thammasat University Research Unit in Modern Microbiology and Public Health Genomics, Thammasat University, Pathum Thani, 12121, Thailand.
| |
Collapse
|
5
|
Mercier É, D'Aoust PM, Eid W, Hegazy N, Kabir P, Wan S, Pisharody L, Renouf E, Stephenson S, Graber TE, MacKenzie AE, Delatolla R. Sewer transport conditions and their role in the decay of endogenous SARS-CoV-2 and pepper mild mottle virus from source to collection. Int J Hyg Environ Health 2025; 263:114477. [PMID: 39378553 DOI: 10.1016/j.ijheh.2024.114477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/06/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
This study presents a comprehensive analysis of the decay patterns of endogenous SARS-CoV-2 and Pepper mild mottle virus (PMMoV) within wastewaters spiked with stool from infected patients expressing COVID-19 symptoms, and hence explores the decay of endogenous SARS-CoV-2 and PMMoV targets in wastewaters from source to collection of the sample. Stool samples from infected patients were used as endogenous viral material to more accurately mirror real-world decay processes compared to more traditionally used lab-propagated spike-ins. As such, this study includes data on early decay stages of endogenous viral targets in wastewaters that are typically overlooked when performing decay studies on wastewaters harvested from wastewater treatment plants that contain already-degraded endogenous material. The two distinct sewer transport conditions of dynamic suspended sewer transport and bed and near-bed sewer transport were simulated in this study at temperatures of 4 °C, 12 °C and 20 °C to elucidate decay under these two dominant transport conditions within wastewater infrastructure. The dynamic suspended sewer transport was simulated over 35 h, representing typical flow conditions, whereas bed and near-bed transport extended to 60 days to reflect the prolonged settling of solids in sewer systems during reduced flow periods. In dynamic suspended sewer transport, no decay was observed for SARS-CoV-2, PMMoV, or total RNA over the 35-h period, and temperature ranging from 4 °C to 20 °C had no noticeable effect. Conversely, experiments simulating bed and near-bed transport conditions revealed significant decreases in SARS-CoV-2 and total RNA concentrations by day 2, and PMMoV concentrations by day 3. Only PMMoV exhibited a clear trend of increasing decay constant with higher temperatures, suggesting that while temperature influences decay dynamics, its impact may be less significant than previously assumed, particularly for endogenous RNA that is bound to dissolved organic matter in wastewater. First order decay models were inadequate for accurately fitting decay curves of SARS-CoV-2, PMMoV, and total RNA in bed and near-bed transport conditions. F-tests confirmed the superior fit of the two-phase decay model compared to first order decay models across temperatures of 4 °C-20 °C. Finally, and most importantly, total RNA normalization emerged as an appropriate approach for correcting the time decay of SARS-CoV-2 exposed to bed and near-bed transport conditions. These findings highlight the importance of considering decay from the point of entry in the sewers, sewer transport conditions, and normalization strategies when assessing and modelling the impact of viral decay rates in wastewater systems. This study also emphasizes the need for ongoing research into the diverse and multifaceted factors that influence these decay rates, which is crucial for accurate public health monitoring and response strategies.
Collapse
Affiliation(s)
- Élisabeth Mercier
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Patrick M D'Aoust
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Walaa Eid
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Nada Hegazy
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Pervez Kabir
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Shen Wan
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Lakshmi Pisharody
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Elizabeth Renouf
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Sean Stephenson
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Tyson E Graber
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Alex E MacKenzie
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada.
| |
Collapse
|
6
|
Sanguino-Jorquera DG, Mainardi-Remis JM, Maidana-Kulesza MN, Cruz MC, Poma HR, González MA, Irazusta VP, Rajal VB. An integrative analysis of SARS-CoV 2 during the first and second waves of COVID-19 in Salta, Argentina. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176782. [PMID: 39378941 DOI: 10.1016/j.scitotenv.2024.176782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/01/2024] [Accepted: 10/05/2024] [Indexed: 10/10/2024]
Abstract
Wastewater surveillance has been extensively applied to provide information about SARS-CoV-2 circulation in the community. However, its applicability is limited in regions lacking adequate sewerage infrastructure, without wastewater treatment plants (WWTP) or with insufficient coverage. During the COVID-19 pandemic, from July 2020 to September 2021, comprehensive epidemiological data encompassing positive, recovered, and deceased cases were collected alongside precipitation records. Additionally, wastewater samples from 13 main sewersheds and river water from two points (up- and downstream the main WWTP), in the city of Salta, were gathered. A total of 452 water samples were analyzed for quantitative detection of SARS-CoV-2 using reverse transcription real-time PCR. Across the 62-week study period, two distinct waves of COVID-19 were identified. The dynamics of deceased cases showed peaks 10 and 28 days after the peaks of positive cases in the first and second waves, respectively. Downstream river water exhibited higher fecal contamination than the upstream samples, evincing the impact of the WWTP discharges. Viral concentration in river waters mirrored those from wastewater, reflecting the progression of cases. Despite the lower reported number of cases during the first wave in comparison to the second (5420 vs. 8516 cases at the respective peaks), higher viral concentrations were detected in water samples (1.97 × 107 vs. 2.36 × 106 gc/L, respectively), suggesting underreporting during the first wave, and highlighting the positive effect of vaccination during the second. To the best of our knowledge, this is the first study that simultaneously and systematically analyzed surface water and wastewater over a prolonged period, the effect of precipitations were considered for the variations in the concentrations, and the findings compared with epidemiological information. Environmental surveillance was demonstrated to be a great tool to obtain valuable information about the circulation patterns of SARS-CoV-2, especially under resource constraints to massively test the population, thus, underreporting cases. Furthermore, the methodology employed herein can be easily expanded to the community-level surveillance of other pathogens excreted in urine and feces, encompassing viruses, bacteria, and protozoa.
Collapse
Affiliation(s)
- Diego Gastón Sanguino-Jorquera
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Juan Martín Mainardi-Remis
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina; Facultad de Ingeniería, UNSa, Av. Bolivia 5150, Salta 4400, Argentina
| | - María Noel Maidana-Kulesza
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Mercedes Cecilia Cruz
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina.
| | - Hugo Ramiro Poma
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Mónica Aparicio González
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Verónica Patricia Irazusta
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina; Facultad de Ciencias Naturales, UNSa, Av. Bolivia 5150, Salta 4400, Argentina
| | - Verónica Beatriz Rajal
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina; Facultad de Ingeniería, UNSa, Av. Bolivia 5150, Salta 4400, Argentina; Singapore Centre for Environmental Life Science Engineering (SCELSE), Nanyang Technological University, Singapore.
| |
Collapse
|
7
|
Liu X, Hao Q, Fan M, Teng B. Carbonaceous adsorbents in wastewater treatment: From mechanism to emerging application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177106. [PMID: 39490830 DOI: 10.1016/j.scitotenv.2024.177106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/02/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
Adsorption is of great significance in the water pollution control. Carbonaceous adsorbents, such as carbon quantum dots, carbon nanotubes, graphene, and activated carbons, have long been deployed in sustainable wastewater treatment due to their excellent physical structure and strong interaction with various pollutants; these features allow them to spark greater interest in environmental remediation. Although numerous eye-catch researches on carbon materials in wastewater treatment, there is a lack of comprehensive comparison and summary of the vivid structure-activity-application relationships of different types of carbonaceous adsorbents at the molecular and atomic level. Herein, this review aims to scrutinize and contrast the adsorption mechanisms of carbonaceous adsorbents with different dimensions, analyzing the qualitative differences in adsorption capacity from microscopic perspectives, structural diversity caused by preparation methods, and environmental external factors affecting adsorption occurrence. Then, a quantitatively in-depth critical appraisal of traditional and emerging contaminants in wastewater treatment using carbonaceous adsorbents, and innovative strategies for enhancing their adsorption capacity are discussed. Finally, in the context of growing imposed circularity and zero waste wishes, this review offers some promising insights for carbonaceous adsorbents in achieving sustainable wastewater treatment.
Collapse
Affiliation(s)
- Xiao Liu
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China; State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, 300071 Tianjin, China
| | - Qinglan Hao
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Maohong Fan
- Department of Chemical & Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA.
| | - Botao Teng
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
8
|
Mashau F, Dada AC, Msolo L, Ebomah KE, Ekundayo TC, Iwu CD, Nontongana N, Okoh AI. Factors affecting detection and estimation of SARS-CoV-2 RNA concentration of COVID-19 positive cases in wastewater influent: A systematic review. Public Health 2024; 237:167-175. [PMID: 39418699 DOI: 10.1016/j.puhe.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/09/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Wastewater Based Surveillance (WBS) has emerged as a novel monitoring tool for tracking and estimating the dissemination of the Novel Coronavirus Disease 2019 (COVID-19) within communities. OBJECTIVE The goal of this review is to assess the factors that influence estimations of SARS-CoV-2 RNA concentration estimations in wastewater. METHODS A literature search was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis for Scoping Reviews (PRISMA-ScR) criteria in the electronic databases Scopus, PubMed, Google Scholar, and Medline. The overall quality, sample methodologies, quantification methods, and estimating approaches of selected papers were assessed. RESULTS Our findings reveal that 16 out of 24 articles (67 %) focused on physiochemical analyses. This review showed that sampling strategies and laboratory methodologies play a crucial role in the detection of SARS-CoV-2 RNA in wastewater samples. Moreover, we found that WBS-based estimation of COVID-19 is influenced by several factors such as wastewater temperature, shedding rate, and population size. CONCLUSION This review reveals that the identified parameters require adjustments to achieve optimum conditions that accurately predict community infections. Including these factors that influence the estimation of SARS-CoV-2 RNA concentration in wastewater is essential for developing effective public health strategies to combat the spread of COVID-19.
Collapse
Affiliation(s)
- Funanani Mashau
- Department of Public Health, Faculty of Health Sciences, University of Fort Hare, East London, South Africa; SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa; Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa.
| | - Ayokunle C Dada
- QMRA Data Experts, P. O. Box 37 Waikato Mail Centre, Hamilton, New Zealand
| | - Luyanda Msolo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa; Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
| | - Kingsley E Ebomah
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa; Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
| | - Temitope C Ekundayo
- Department of Biotechnology and Food Science, Durban University of Technology, Steve Biko Campus, Health Services, 121 Steve Biko Rd, Musgrave, Berea, 4001, Durban, South Africa; Department of Biological Sciences, University of Medical Sciences, Ondo City, Ondo State, Nigeria
| | - Chidozie D Iwu
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
| | - Nolonwabo Nontongana
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa; Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa; Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
| |
Collapse
|
9
|
Shao XT, Li HY, Gong ZF, Lin JG, Wang DG. Screening potential biomarkers for acute respiratory infectious diseases from antipyretics, antiviral, and antibiotics in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176714. [PMID: 39368510 DOI: 10.1016/j.scitotenv.2024.176714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/31/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Since the onset of COVID-19, respiratory diseases have emerged as a focal concern within the field of public health. This study aims to reveal the prevalence of acute respiratory infectious diseases by screening antipyretic, antiviral, and antibiotic biomarkers through wastewater analysis. Samples were collected over a seven-day period each year in 2022, 2023, and 2024 from a northern city in China, assessing the concentrations of two antipyretics (paracetamol and ibuprofen), one antiviral drug (oseltamivir), eleven antibiotics, and three pathogens (influenza A, influenza B, and Mycoplasma pneumoniae). The usage of most antipyretics and antibiotics was higher in 2023 and 2024, primarily due to the outbreak of COVID-19 in 2023 and the prevalence of influenza A, influenza B, and Mycoplasma pneumoniae in 2024. The prevalence assessed using antipyretics (2.68 %) and pathogens (2.70 %) demonstrated a high degree of consistency, whereas the prevalence estimated using antibiotics and antiviral drugs was only 0.53 % and 0.36 %, respectively. Antibiotics are generally used to treat a broad spectrum of bacterial infections rather than targeting a specific pathogen, so their presence in wastewater may not directly reflect the prevalence of a particular disease. In contrast, antipyretics and specific pathogens exhibit a stronger correlation, suggesting that they may serve as more reliable biomarkers than antiviral and antibiotic drugs. The research findings offer alternative biomarkers, such as antipyretics, aside from pathogens, for the assessment of acute respiratory infectious diseases.
Collapse
Affiliation(s)
- Xue-Ting Shao
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, China
| | - Hao-Yang Li
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, China
| | - Zhen-Fang Gong
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, China
| | - Jian-Guo Lin
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, China
| | - De-Gao Wang
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, China.
| |
Collapse
|
10
|
Ansari M, Behnami A, Benis KZ, Farzadkia M. An updated review on SARS-CoV-2 in hospital wastewater: occurrence and persistence. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1276. [PMID: 39615022 DOI: 10.1007/s10661-024-13464-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
SARS-CoV-2, primarily affecting the respiratory system, is also found in fecal samples from COVID-19 patients, demonstrating wastewater as a significant route for viral RNA transmission. During high prevalence periods, healthcare facility wastewater became a potential contamination source. Understanding the role of wastewater in epidemiology is crucial for public health risk assessment. In hospitals, with a specific number of COVID-19 cases, wastewater analysis offers a unique opportunity to link virus presence in wastewater with COVID-19 hospitalizations, a connection that is not possible in urban wastewater treatment plants (WWTPs). Shorter wastewater transit times enable more accurate virus tracking. With documented infection rates and rigorous testing, hospitals are ideal for wastewater monitoring, revealing practicalities and limitations. This review updates global efforts in quantifying SARS-CoV-2 in hospital wastewater, considering hospitalization rates' influence on viral RNA levels and comparing disinfection methods. Insights gleaned from this study contribute to Wastewater-based Epidemiology (WBE) and can be applied to other virus strains, enhancing our understanding of disease transmission dynamics and aiding in public health response strategies.
Collapse
Affiliation(s)
- Mohsen Ansari
- Department of Environmental Health Engineering, Qazvin University of Medical Sciences, Qazvin, Iran
- Social Determinants of Health Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ali Behnami
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Khaled Zoroufchi Benis
- Department of Process Engineering and Applied Science, Dalhousie University, Halifax, NS, Canada
| | - Mahdi Farzadkia
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Yang S, Jiao Y, Dong Q, Li S, Xu C, Liu Y, Sun L, Huang X. Evaluating approach uncertainties of quantitative detection of SARS-CoV-2 in wastewater: Concentration, extraction and amplification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175285. [PMID: 39102960 DOI: 10.1016/j.scitotenv.2024.175285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/10/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Substantial uncertainties pose challenges to the accuracy of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) quantification in wastewater. We conducted a comprehensive evaluation of two concentration methods, three nucleic acid extraction methods, and the amplification performance of eight primer-probe sets. Our results showed that the two concentration methods exhibited similar recovery rates. Specifically, using a 30 kDa cut-off ultrafilter and a centrifugal force of 2500 g achieved the highest virus recovery rates (27.32 ± 8.06 % and 26.37 ± 7.77 %, respectively), with lower corresponding quantification uncertainties of 29.51 % and 29.47 % in ultrafiltration methods. Similarly, a 15 % PEG concentration with 1.5 M NaCl markedly improved virus recovery (26.76 ± 5.92 % and 28.47 ± 6.74 %, respectively), and reducing variation to 22.16 % and 23.66 % in the PEG precipitation method. Additionally, employing a vigorous bead-beating approach at 6 m/s during viral RNA extraction significantly increased RNA yield, with an efficiency reaching up to 82.18 %. Among the evaluated eight primer-probe sets, the E_Sarbeco primer-probe set provided the most stable and consistent quantitative results across various sample matrices. These findings are crucial for establishing robust viral quantification protocols and enhancing methodological precision for effective wastewater surveillance, enabling sensitive and precise detection of SARS-CoV-2.
Collapse
Affiliation(s)
- Shaolin Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, China
| | - Yang Jiao
- Beijing Chaoyang Center for Disease Control and Prevention, Beijing 100021, China
| | - Qian Dong
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, China
| | - Siqi Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, China
| | - Chenyang Xu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, China
| | - Yanchen Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, China.
| | - Lingli Sun
- Beijing Chaoyang Center for Disease Control and Prevention, Beijing 100021, China.
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, China.
| |
Collapse
|
12
|
Yang Y, Tan J, Wang F, Sun W, Shi H, Cheng Z, Xie Y, Zhou X. Preconcentration and detection of SARS-CoV-2 in wastewater: A comprehensive review. Biosens Bioelectron 2024; 263:116617. [PMID: 39094290 DOI: 10.1016/j.bios.2024.116617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Severe acute respiratory syndrome coronaviruses 2 (SARS-CoV-2) causing coronavirus disease 2019 (COVID-19) affected the health of human beings and the global economy. The patients with SARS-CoV-2 infection had viral RNA or live infectious viruses in feces. Thus, the possible transmission of SARS-CoV-2 through wastewater received great attentions. Moreover, SARS-CoV-2 in wastewater can serve as an early indicator of the infection within communities. We summarized the preconcentration and detection technology of SARS-CoV-2 in wastewater aiming at the complex matrices of wastewater and low virus concentration and compared their performance characteristics. We described the emerging tests that would be possible to realize the rapid detection of SARS-CoV-2 in fields and encourage academics to advance their technologies beyond conception. We concluded with a brief discussion on the outlook for integrating preconcentration and the detection of SARS-CoV-2 with emerging technologies.
Collapse
Affiliation(s)
- Yihan Yang
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jisui Tan
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Fan Wang
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Weiming Sun
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Hanchang Shi
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zhao Cheng
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yangcun Xie
- Chinese Academy of Environmental Planning, Beijing, 100043, China.
| | - Xiaohong Zhou
- School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
13
|
Korajkic A, McMinn BR, Pemberton AC, Kelleher J, Ahmed W. The comparison of decay rates of infectious SARS-CoV-2 and viral RNA in environmental waters and wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174379. [PMID: 38955270 PMCID: PMC11290430 DOI: 10.1016/j.scitotenv.2024.174379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
Understanding the decay characteristics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wastewater and ambient waters is important for multiple applications including assessment of risk of exposure associated with handling wastewater samples, public health risk associated with recreation in wastewater polluted ambient waters and better understanding and interpretation of wastewater-based epidemiology (WBE) results. We evaluated the decay rates of infectious SARS-CoV-2 and viral RNA in wastewater and ambient waters under temperature regimes representative of seasonal fluctuations. Infectious virus was seeded in autoclaved primary wastewater effluent, final dechlorinated wastewater effluent, lake water, and marine water at a final concentration of 6.26 ± 0.07 log10 plaque forming units per milliliter. Each suspension was incubated at either 4°, 25°, and 37 °C. Samples were initially collected on an hourly basis, then approximately every other day for 15 days. All samples were analyzed for infectious virus via a plaque assay using the Vero E6 cell line, and viral gene copy levels were quantified with the US CDC's N1 and N2 reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) assays. The infectious virus decayed significantly faster (p ≤ 0.0214) compared to viral RNA, which persisted for the duration of the study irrespective of the incubation conditions. The initial loss (within 15 min of seeding) as well as decay of infectious SARS-CoV-2 was significantly faster (p ≤ 0.0387) in primary treated wastewater compared to other water types, but viral RNA did not degrade appreciably in this matrix until day 15. Overall, temperature was the most important driver of decay, and after 24 h, no infectious SARS-CoV-2 was detected at 37 °C in any water type. Moreover, the CDC N2 gene assay target decayed significantly (p ≤ 0.0174) faster at elevated temperatures compared to CDC N1, which has important implications for RT-qPCR assay selection for WBE approach.
Collapse
Affiliation(s)
- Asja Korajkic
- Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, United States.
| | - Brian R McMinn
- Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, United States
| | - Adin C Pemberton
- Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, United States
| | - Julie Kelleher
- Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, United States
| | - Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct 41 Boggo Road, Qld 4102, Australia
| |
Collapse
|
14
|
Fondriest M, Vaccari L, Aldrovandi F, De Lellis L, Ferretti F, Fiorentino C, Mari E, Mascolo MG, Minelli L, Perlangeli V, Bortone G, Pandolfi P, Colacci A, Ranzi A. Wastewater-Based Epidemiology for SARS-CoV-2 in Northern Italy: A Spatiotemporal Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:741. [PMID: 38928987 PMCID: PMC11203876 DOI: 10.3390/ijerph21060741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
The study investigated the application of Wastewater-Based Epidemiology (WBE) as a tool for monitoring the SARS-CoV-2 prevalence in a city in northern Italy from October 2021 to May 2023. Based on a previously used deterministic model, this study proposed a variation to account for the population characteristics and virus biodegradation in the sewer network. The model calculated virus loads and corresponding COVID-19 cases over time in different areas of the city and was validated using healthcare data while considering viral mutations, vaccinations, and testing variability. The correlation between the predicted and reported cases was high across the three waves that occurred during the period considered, demonstrating the ability of the model to predict the relevant fluctuations in the number of cases. The population characteristics did not substantially influence the predicted and reported infection rates. Conversely, biodegradation significantly reduced the virus load reaching the wastewater treatment plant, resulting in a 30% reduction in the total virus load produced in the study area. This approach can be applied to compare the virus load values across cities with different population demographics and sewer network structures, improving the comparability of the WBE data for effective surveillance and intervention strategies.
Collapse
Affiliation(s)
- Matilde Fondriest
- Regional Agency for Prevention, Environment and Energy of Emilia-Romagna, 40139 Bologna, Italy; (L.V.); (E.M.); (M.G.M.); (G.B.); (A.C.); (A.R.)
| | - Lorenzo Vaccari
- Regional Agency for Prevention, Environment and Energy of Emilia-Romagna, 40139 Bologna, Italy; (L.V.); (E.M.); (M.G.M.); (G.B.); (A.C.); (A.R.)
| | - Federico Aldrovandi
- Alma Mater Institute on Healthy Planet, Department of Biological, Geological and Environmental Sciences, University of Bologna, 40138 Bologna, Italy;
| | | | - Filippo Ferretti
- Local Health Authority of Bologna, Department of Public Health, 40124 Bologna, Italy; (F.F.); (C.F.); (V.P.); (P.P.)
| | - Carmine Fiorentino
- Local Health Authority of Bologna, Department of Public Health, 40124 Bologna, Italy; (F.F.); (C.F.); (V.P.); (P.P.)
| | - Erica Mari
- Regional Agency for Prevention, Environment and Energy of Emilia-Romagna, 40139 Bologna, Italy; (L.V.); (E.M.); (M.G.M.); (G.B.); (A.C.); (A.R.)
- Local Health Authority of Bologna, Department of Public Health, 40124 Bologna, Italy; (F.F.); (C.F.); (V.P.); (P.P.)
| | - Maria Grazia Mascolo
- Regional Agency for Prevention, Environment and Energy of Emilia-Romagna, 40139 Bologna, Italy; (L.V.); (E.M.); (M.G.M.); (G.B.); (A.C.); (A.R.)
| | | | - Vincenza Perlangeli
- Local Health Authority of Bologna, Department of Public Health, 40124 Bologna, Italy; (F.F.); (C.F.); (V.P.); (P.P.)
| | - Giuseppe Bortone
- Regional Agency for Prevention, Environment and Energy of Emilia-Romagna, 40139 Bologna, Italy; (L.V.); (E.M.); (M.G.M.); (G.B.); (A.C.); (A.R.)
| | - Paolo Pandolfi
- Local Health Authority of Bologna, Department of Public Health, 40124 Bologna, Italy; (F.F.); (C.F.); (V.P.); (P.P.)
| | - Annamaria Colacci
- Regional Agency for Prevention, Environment and Energy of Emilia-Romagna, 40139 Bologna, Italy; (L.V.); (E.M.); (M.G.M.); (G.B.); (A.C.); (A.R.)
| | - Andrea Ranzi
- Regional Agency for Prevention, Environment and Energy of Emilia-Romagna, 40139 Bologna, Italy; (L.V.); (E.M.); (M.G.M.); (G.B.); (A.C.); (A.R.)
| |
Collapse
|
15
|
Li X, Liu C, Wang D, Deng J, Guo Y, Shen Y, Yang S, Ji JS, Luo H, Bai J, Jiang J. Persistent pollution of genetic materials in a typical laboratory environment. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134201. [PMID: 38579585 DOI: 10.1016/j.jhazmat.2024.134201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/20/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
From the onset of coronavirus disease (COVID-19) pandemic, there are concerns regarding the disease spread and environmental pollution of biohazard since studies on genetic engineering flourish and numerous genetic materials were used such as the nucleic acid test of the severe acute respiratory syndrome coronavirus (SARS-CoV-2). In this work, we studied genetic material pollution in an institute during a development cycle of plasmid, one of typical genetic materials, with typical laboratory settings. The pollution source, transmission routes, and pollution levels in laboratory environment were examined. The Real-Time quantitative- Polymerase Chain Reaction results of all environmental mediums (surface, aerosol, and liquid) showed that a targeted DNA segment occurred along with routine experimental operations. Among the 79 surface and air samples collected in the genetic material operation, half of the environment samples (38 of 79) are positive for nucleic acid pollution. Persistent nucleic acid contaminations were observed in all tested laboratories and spread in the public area (hallway). The highest concentration for liquid and surface samples were 1.92 × 108 copies/uL and 5.22 × 107 copies/cm2, respectively. Significant amounts of the targeted gene (with a mean value of 74 copies/L) were detected in the indoor air of laboratories utilizing centrifuge devices, shaking tables, and cell homogenizers. Spills and improper disposal of plasmid products were primary sources of pollution. The importance of establishing designated experimental zones, employing advanced biosafety cabinets, and implementing highly efficient cleaning systems in laboratories with lower biosafety levels is underscored. SYNOPSIS: STATEMENT. Persistent environmental pollutions of genetic materials are introduced by typical experiments in laboratories with low biosafety level.
Collapse
Affiliation(s)
- Xue Li
- School of Environment, Tsinghua University, Beijing, China
| | - Ce Liu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Dongbin Wang
- School of Environment, Tsinghua University, Beijing, China
| | - Jianguo Deng
- School of Environment, Tsinghua University, Beijing, China
| | - Yuntao Guo
- Department of Electrical Engineering, Tsinghua University, Beijing, China
| | - Yicheng Shen
- School of Environment, Tsinghua University, Beijing, China
| | - Shuwen Yang
- School of Environment, Tsinghua University, Beijing, China
| | - John S Ji
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Haiyun Luo
- Department of Electrical Engineering, Tsinghua University, Beijing, China
| | - Jingwei Bai
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Jingkun Jiang
- School of Environment, Tsinghua University, Beijing, China.
| |
Collapse
|
16
|
Ma JX, Wang X, Pan YR, Wang ZY, Guo X, Liu J, Ren NQ, Butler D. Data-driven systematic analysis of waterborne viruses and health risks during the wastewater reclamation process. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 19:100328. [PMID: 37965045 PMCID: PMC10641159 DOI: 10.1016/j.ese.2023.100328] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 11/16/2023]
Abstract
Waterborne viral epidemics are a major threat to public health. Increasing interest in wastewater reclamation highlights the importance of understanding the health risks associated with potential microbial hazards, particularly for reused water in direct contact with humans. This study focused on identifying viral epidemic patterns in municipal wastewater reused for recreational applications based on long-term, spatially explicit global literature data during 2000-2021, and modelled human health risks from multiple exposure pathways using a well-established quantitative microbial risk assessment methodology. Global median viral loads in municipal wastewater ranged from 7.92 × 104 to 1.4 × 106 GC L-1 in the following ascending order: human adenovirus (HAdV), norovirus (NoV) GII, enterovirus (EV), NoV GI, rotavirus (RV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Following secondary or tertiary wastewater treatment, NoV GI, NoV GII, EV, and RV showed a relatively higher and more stable log reduction value with medians all above 0.8 (84%), whereas SARS-CoV-2 and HAdV showed a relatively lower reduction, with medians ranging from 0.33 (53%) to 0.55 (72%). A subsequent disinfection process effectively enhanced viral removal to over 0.89-log (87%). The predicted event probability of virus-related gastrointestinal illness and acute febrile respiratory illnesses in reclaimed recreational water exceeded the World Health Organization recommended recreational risk benchmark (5% and 1.9%, respectively). Overall, our results provided insights on health risks associated with reusing wastewater for recreational purposes and highlighted the need for establishing a regulatory framework ensuring the safety management of reclaimed waters.
Collapse
Affiliation(s)
- Jia-Xin Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xu Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
- Centre for Water Systems, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, United Kingdom
| | - Yi-Rong Pan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhao-Yue Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Xuesong Guo
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Junxin Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - David Butler
- Centre for Water Systems, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, United Kingdom
| |
Collapse
|
17
|
Zhang M, Roldan-Hernandez L, Boehm A. Persistence of human respiratory viral RNA in wastewater-settled solids. Appl Environ Microbiol 2024; 90:e0227223. [PMID: 38501669 PMCID: PMC11022535 DOI: 10.1128/aem.02272-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/01/2024] [Indexed: 03/20/2024] Open
Abstract
Wastewater-based epidemiology has emerged as a valuable tool for monitoring respiratory viral diseases within communities by analyzing concentrations of viral nucleic-acids in wastewater. However, little is known about the fate of respiratory virus nucleic-acids in wastewater. Two important fate processes that may modulate their concentrations in wastewater as they move from household drains to the point of collection include sorption or partitioning to wastewater solids and degradation. This study investigated the decay kinetics of genomic nucleic-acids of seven human respiratory viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), respiratory syncytial virus (RSV), human coronavirus (HCoV)-OC43, HCoV-229E, HCoV-NL63, human rhinovirus (HRV), and influenza A virus (IAV), as well as pepper mild mottle virus (PMMoV) in wastewater solids. Viruses (except for PMMoV) were spiked into wastewater solids and their concentrations were followed for 50 days at three different temperatures (4°C, 22°C, and 37°C). Viral genomic RNA decayed following first-order kinetics with decay rate constants k from 0 to 0.219 per day. Decay rate constants k were not different from 0 for all targets in solids incubated at 4°C; k values were largest at 37°C and at this temperature, k values were similar across nucleic-acid targets. Regardless of temperature, there was limited viral RNA decay, with an estimated 0% to 20% reduction, over the typical residence times of sewage in the piped systems between input and collection point (<1 day). The k values reported herein can be used directly in fate and transport models to inform the interpretation of measurements made during wastewater surveillance.IMPORTANCEUnderstanding whether or not the RNA targets quantified for wastewater-based epidemiology (WBE) efforts decay during transport between drains and the point of sample collection is critical for data interpretation. Here we show limited decay of viral RNA targets typically measured for respiratory disease WBE.
Collapse
Affiliation(s)
- Mengyang Zhang
- Department of Civil and Environmental Engineering, School of Engineering and Doerr School of Sustainability, Stanford University, Stanford, California, USA
| | - Laura Roldan-Hernandez
- Department of Civil and Environmental Engineering, School of Engineering and Doerr School of Sustainability, Stanford University, Stanford, California, USA
| | - Alexandria Boehm
- Department of Civil and Environmental Engineering, School of Engineering and Doerr School of Sustainability, Stanford University, Stanford, California, USA
| |
Collapse
|
18
|
Duker EO, Obodai E, Addo SO, Kwasah L, Mensah ES, Gberbi E, Anane A, Attiku KO, Boakye J, Agbotse GD, Dickson AE, Quarcoo JA, Darko PA, Larbi YA, Ntim NAA, Dzudzor B, Odoom JK. First Molecular Detection of SARS-CoV-2 in Sewage and Wastewater in Ghana. BIOMED RESEARCH INTERNATIONAL 2024; 2024:9975781. [PMID: 38595329 PMCID: PMC11003379 DOI: 10.1155/2024/9975781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/26/2024] [Accepted: 02/28/2024] [Indexed: 04/11/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is shed in the stool of infected individuals and can be detected in sewage and wastewater contaminated with infected stool. This study is aimed at detecting the virus and its potential survival in sewage and wastewater in Ghana. The cross-sectional study included samples from 16 validated environmental surveillance sites in 7 regions of Ghana. A total of 354 samples composed of wastewater (280) and sewage (74) were collected from November 2020 to November 2022. Overall, 17% of the samples were positive for SARS-CoV-2 by real-time PCR, with 6% in sewage and 11% in wastewater. The highest number of positive samples was collected from the Greater Accra Region (7.3%) with the least recorded in the Bono East Region (0.6%). Further characterization of the positive samples using the next-generation sequencing (NGS) approach yielded two variants: Alpha (B.1.1.7) and Delta (AY.36). Attempts to isolate SARS-CoV-2 in the Vero cell line were not successful probably due to the low viral load concentrations (Ct values > 35) or prolonged exposure to high temperatures rendering the virus noninfectious. Our findings suggest that SARS-CoV-2 RNA in sewage and wastewater may not be infectious, but the prevalence shows that the virus persists in the communities within Ghana.
Collapse
Affiliation(s)
- Ewurabena Oduma Duker
- Virology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Evangeline Obodai
- Virology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Seth Offei Addo
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Lorreta Kwasah
- Virology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Edna Serwah Mensah
- Virology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Emmanuel Gberbi
- Virology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Abraham Anane
- Virology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Keren O. Attiku
- Virology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Jessica Boakye
- Virology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Gayheart Deladem Agbotse
- Virology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Angelina Evelyn Dickson
- Virology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Joseph Ahia Quarcoo
- Virology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Patience Akosua Darko
- Virology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Yaw Awuku Larbi
- Virology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Nana Afia Asante Ntim
- Virology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Bartholomew Dzudzor
- Department of Medical Biochemistry, University of Ghana Medical School, University of Ghana, Legon, Accra, Ghana
| | - John Kofi Odoom
- Virology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
19
|
Rana P, Patial S, Soni V, Singh P, Khosla A, Thakur S, Hussaisn CM, de Carvalho Nagliate P, Meili L, Selvasembian R, Raizada P. "Long COVID" and Its Impact on The Environment: Emerging Concerns and Perspectives. ENVIRONMENTAL MANAGEMENT 2024; 73:471-480. [PMID: 38091027 DOI: 10.1007/s00267-023-01914-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/11/2023] [Indexed: 02/24/2024]
Abstract
The COVID-19 pandemic has caused unprecedented global health and economic crises. The emergence of long COVID-19 has raised concerns about the interplay between SARS-CoV-2 infections, climate change, and the environment. In this context, a concise analysis of the potential long-term effects of the COVID-19 epidemic along with the awareness aboutenvironmental issues are realized. While COVID-19 effects in the short-term have reduced environmental air pollutants and pressures, CO2 emissions are projected to increase as the economy recovers and growth rates return to pre-COVID-19 levels. This review discusses the systematic effects of both the short-term and long-term effects of the pandemic on the clean energy revolution and environmental issues. This article also discusses opportunities to achieve long-term environmental benefits and emphasizes the importance of future policies in promoting global environmental sustainability. Future directions for growth and recovery are presented to cope with long COVID-19 epidemic along with the critical findings focussing on various aspects: waste management, air quality improvement.
Collapse
Affiliation(s)
- Parul Rana
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Shilpa Patial
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Vatika Soni
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Atul Khosla
- School of Management, Faculty of Management Sciences, Shoolini University, Solan, HP, 173229, India
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland
| | | | | | - Lucas Meili
- Laboratory of Processes (LAPRO), Center of Technology, Federal University of Alagoas, Maceió, Alagoas, 57072-900, Brazil.
| | - Rangabhashiyam Selvasembian
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522240, India.
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India.
| |
Collapse
|
20
|
Sharma V, Takamura H, Biyani M, Honda R. Real-Time On-Site Monitoring of Viruses in Wastewater Using Nanotrap ® Particles and RICCA Technologies. BIOSENSORS 2024; 14:115. [PMID: 38534222 DOI: 10.3390/bios14030115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/10/2024] [Accepted: 02/17/2024] [Indexed: 03/28/2024]
Abstract
Wastewater-based epidemiology (WBE) is an effective and efficient tool for the early detection of infectious disease outbreaks in a community. However, currently available methods are laborious, costly, and time-consuming due to the low concentration of viruses and the presence of matrix chemicals in wastewater that may interfere with molecular analyses. In the present study, we designed a highly sensitive "Quick Poop (wastewater with fecal waste) Sensor" (termed, QPsor) using a joint approach of Nanotrap microbiome particles and RICCA (RNA Isothermal Co-Assisted and Coupled Amplification). Using QPsor, the WBE study showed a strong correlation with standard PEG concentrations and the qPCR technique. Using a closed format for a paper-based lateral flow assay, we were able to demonstrate the potential of our assay as a real-time, point-of-care test by detecting the heat-inactivated SARS-CoV-2 virus in wastewater at concentrations of 100 copies/mL and within one hour. As a proof-of-concept demonstration, we analyzed the presence of viral RNA of the SARS-CoV-2 virus and PMMoV in raw wastewater samples from wastewater treatment plants on-site and within 60 min. The results show that the QPsor method can be an effective tool for disease outbreak detection by combining an AI-enabled case detection model with real-time on-site viral RNA extraction and amplification, especially in the absence of intensive clinical laboratory facilities. The lab-free, lab-quality test capabilities of QPsor for viral prevalence and transmission in the community can contribute to the efficient management of pandemic situations.
Collapse
Affiliation(s)
- Vishnu Sharma
- BioSeeds Corporation, Ishikawa Create Labo-202, Asahidai 2-13, Nomi 923-1211, Ishikawa, Japan
| | - Hitomi Takamura
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa 920-1164, Ishikawa, Japan
| | - Manish Biyani
- BioSeeds Corporation, Ishikawa Create Labo-202, Asahidai 2-13, Nomi 923-1211, Ishikawa, Japan
| | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa 920-1164, Ishikawa, Japan
| |
Collapse
|
21
|
Farkas K, Pântea I, Woodhall N, Williams D, Lambert-Slosarska K, Williams RC, Grimsley JMS, Singer AC, Jones DL. Diurnal changes in pathogenic and indicator virus concentrations in wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123785-123795. [PMID: 37989946 PMCID: PMC10746776 DOI: 10.1007/s11356-023-30381-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/06/2023] [Indexed: 11/23/2023]
Abstract
Wastewater-based epidemiology (WBE) has been commonly used for monitoring SARS-CoV-2 outbreaks. As sampling times and methods (i.e. grab vs composite) may vary, diurnal changes of viral concentrations in sewage should be better understood. In this study, we collected untreated wastewater samples hourly for 4 days at two wastewater treatment plants in Wales to establish diurnal patterns in virus concentrations and the physico-chemical properties of the water. Simultaneously, we also trialled three absorbent materials as passive samples as a simple and cost-efficient alternative for the collection of composite samples. Ninety-six percent of all liquid samples (n = 74) and 88% of the passive samplers (n = 59) were positive for SARS-CoV-2, whereas 87% and 97% of the liquid and passive samples were positive for the faecal indicator virus crAssphage, respectively. We found no significant daily variations in the concentration of the target viruses, ammonium and orthophosphate, and the pH and electrical conductivity levels were also stable. Weak positive correlations were found between some physico-chemical properties and viral concentrations. More variation was observed in samples taken from the influent stream as opposed to those taken from the influent tank. Of the absorbent materials trialled as passive samples, we found that tampons provided higher viral recoveries than electronegative filter paper and cotton gauze swabs. For all materials tested, viral recovery was dependent on the virus type. Our results indicate that grab samples may provide representative alternatives to 24-h composite samples if taken from the influent tank, hence reducing the costs of sampling for WBE programmes. Tampons are also viable alternatives for cost-efficient sampling; however, viral recovery should be optimised prior to use.
Collapse
Affiliation(s)
- Kata Farkas
- School of Environmental Natural Sciences, Bangor University, Bangor, LL57 2UW, Gwynedd, UK.
| | - Igor Pântea
- School of Environmental Natural Sciences, Bangor University, Bangor, LL57 2UW, Gwynedd, UK
| | - Nick Woodhall
- School of Environmental Natural Sciences, Bangor University, Bangor, LL57 2UW, Gwynedd, UK
| | - Denis Williams
- School of Environmental Natural Sciences, Bangor University, Bangor, LL57 2UW, Gwynedd, UK
| | | | - Rachel C Williams
- School of Environmental Natural Sciences, Bangor University, Bangor, LL57 2UW, Gwynedd, UK
| | - Jasmine M S Grimsley
- Data Analytics & Surveillance Division, UK Health Security Agency, 10 South Colonnade, Canary Wharf, London, E14 4PU, UK
- The London Data Company, London, EC2N 2AT, UK
| | - Andrew C Singer
- UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, UK
| | - Davey L Jones
- School of Environmental Natural Sciences, Bangor University, Bangor, LL57 2UW, Gwynedd, UK
- Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
| |
Collapse
|
22
|
Shao XT, Wang YS, Gong ZF, Li YY, Tan DQ, Lin JG, Pei W, Wang DG. Surveillance of COVID-19 and influenza A(H1N1) prevalence in China via medicine-based wastewater biomarkers. WATER RESEARCH 2023; 247:120783. [PMID: 37924682 DOI: 10.1016/j.watres.2023.120783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023]
Abstract
The simultaneous monitoring of individual or multiple diseases can be achieved by selecting therapeutic medicines used to treat the primary symptoms of the condition as biomarkers in wastewater. This study proposes a novel approach to monitor the prevalence of COVID-19 and influenza A (H1N1) by selecting nine medicines to serve as biomarkers, including three antipyretics, three antivirals, and three cough suppressants. To verify our approach, wastewater samples were collected from seventeen urban and five rural wastewater treatment plants (WWTPs) in a Chinese city over a period of one year. The use of antipyretics increased notably during the COVID-19 pandemic, while the consumption of antivirals for influenza A (H1N1) rose in the post-COVID-19 pandemic period, indicating a minor spike in the occurrence of influenza A (H1N1) after the COVID-19 pandemic. Fever is a significant symptom of COVID-19 and can serve as a reliable indicator of disease prevalence. Our research found that the prevalence of COVID-19 in urban areas was significantly higher (at 78.5 %, 95 % CI: 73.4 % - 83.9 %) than in rural areas (with a prevalence of 48.1 %, 95 % CI: 42.4 % - 53.8 %). The prevalence of COVID-19 in urban areas in this study was consistent with the data reported by the Chinese center for Disease Control and Prevention (82.4 %). Continuous monitoring of WWTPs in urban areas with fluctuating populations and complex demographics can provide early disease warning. Our results demonstrate the feasibility of evaluating community disease prevalence by selecting major therapeutic medicines as biomarkers in wastewater.
Collapse
Affiliation(s)
- Xue-Ting Shao
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, China, 116026
| | - Yan-Song Wang
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, China, 116026
| | - Zhen-Fang Gong
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, China, 116026
| | - Yan-Ying Li
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, China, 116026
| | - Dong-Qin Tan
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, China, 116026
| | - Jian-Guo Lin
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, China, 116026
| | - Wei Pei
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, China, 116026
| | - De-Gao Wang
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, China, 116026.
| |
Collapse
|
23
|
Babler KM, Sharkey ME, Amirali A, Boone MM, Comerford S, Currall BB, Grills GS, Laine J, Mason CE, Reding B, Schürer S, Stevenson M, Vidović D, Williams SL, Solo-Gabriele HM. Expanding a Wastewater-Based Surveillance Methodology for DNA Isolation from a Workflow Optimized for SARS-CoV-2 RNA Quantification. J Biomol Tech 2023; 34:3fc1f5fe.dfa8d906. [PMID: 38268997 PMCID: PMC10805363 DOI: 10.7171/3fc1f5fe.dfa8d906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Wastewater-based surveillance (WBS) is a noninvasive, epidemiological strategy for assessing the spread of COVID-19 in communities. This strategy was based upon wastewater RNA measurements of the viral target, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The utility of WBS for assessing the spread of COVID-19 has motivated research to measure targets beyond SARS-CoV-2, including pathogens containing DNA. The objective of this study was to establish the necessary steps for isolating DNA from wastewater by modifying a long-standing RNA-specific extraction workflow optimized for SARS-CoV-2 detection. Modifications were made to the sample concentration process and included an evaluation of bead bashing prior to the extraction of either DNA or RNA. Results showed that bead bashing reduced detection of RNA from wastewater but improved recovery of DNA as assessed by quantitative polymerase chain reaction (qPCR). Bead bashing is therefore not recommended for the quantification of RNA viruses using qPCR. Whereas for Mycobacterium bacterial DNA isolation, bead bashing was necessary for improving qPCR quantification. Overall, we recommend 2 separate workflows, one for RNA viruses that does not include bead bashing and one for other microbes that use bead bashing for DNA isolation. The experimentation done here shows that current-standing WBS program methodologies optimized for SARS-CoV-2 need to be modified and reoptimized to allow for alternative pathogens to be readily detected and monitored, expanding its utility as a tool for public health assessment.
Collapse
Affiliation(s)
- Kristina M. Babler
- Department of ChemicalEnvironmental and Materials
EngineeringUniversity of MiamiCoral GablesFlorida33124USA
| | - Mark E. Sharkey
- Department of MedicineUniversity of Miami Miller School
of MedicineMiamiFlorida33136USA
| | - Ayaaz Amirali
- Department of ChemicalEnvironmental and Materials
EngineeringUniversity of MiamiCoral GablesFlorida33124USA
| | - Melinda M. Boone
- Sylvester Comprehensive Cancer CenterUniversity of Miami
Miller School of MedicineMiamiFlorida33136USA
| | - Samuel Comerford
- Department of MedicineUniversity of Miami Miller School
of MedicineMiamiFlorida33136USA
| | - Benjamin B. Currall
- Sylvester Comprehensive Cancer CenterUniversity of Miami
Miller School of MedicineMiamiFlorida33136USA
| | - George S. Grills
- Sylvester Comprehensive Cancer CenterUniversity of Miami
Miller School of MedicineMiamiFlorida33136USA
| | - Jennifer Laine
- Environmental Health and SafetyUniversity of MiamiMiamiFlorida33136USA
| | - Christopher E. Mason
- Department of Physiology and BiophysicsWeill Cornell
MedicineNew YorkNew York10065USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Al-Saud
Institute for Computational BiomedicineWeill Cornell MedicineNew
YorkNew York10065USA
- The WorldQuant Initiative for Quantitative PredictionWeill Cornell MedicineNew YorkNew YorkUSA 10065USA
| | - Brian Reding
- Environmental Health and SafetyUniversity of MiamiMiamiFlorida33136USA
| | - Stephan Schürer
- Sylvester Comprehensive Cancer CenterUniversity of Miami
Miller School of MedicineMiamiFlorida33136USA
- Department of Molecular and Cellular PharmacologyUniversity of Miami Miller School of MedicineMiamiFlorida33136USA
- Institute for Data Science & Computing, University of
MiamiCoral GablesFlorida33146USA
| | - Mario Stevenson
- Department of MedicineUniversity of Miami Miller School
of MedicineMiamiFlorida33136USA
| | - Dušica Vidović
- Department of Molecular and Cellular PharmacologyUniversity of Miami Miller School of MedicineMiamiFlorida33136USA
| | - Sion L. Williams
- Sylvester Comprehensive Cancer CenterUniversity of Miami
Miller School of MedicineMiamiFlorida33136USA
| | - Helena M. Solo-Gabriele
- Department of ChemicalEnvironmental and Materials
EngineeringUniversity of MiamiCoral GablesFlorida33124USA
| |
Collapse
|
24
|
Xue B, Guo X, Cao J, Yang S, Qiu Z, Wang J, Shen Z. The occurrence, ecological risk, and control of disinfection by-products from intensified wastewater disinfection during the COVID-19 pandemic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165602. [PMID: 37478942 DOI: 10.1016/j.scitotenv.2023.165602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/23/2023]
Abstract
Increased disinfection of wastewater to preserve its microbiological quality during the coronavirus infectious disease-2019 (COVID-19) pandemic have inevitably led to increased production of toxic disinfection by-products (DBPs). However, there is limited information on such DBPs (i.e., trihalomethanes, haloacetic acids, nitrosamines, and haloacetonitriles). This review focused on the upsurge of chlorine-based disinfectants (such as chlorine, chloramine and chlorine dioxide) in wastewater treatment plants (WWTPs) in the global response to COVID-19. The formation and distribution of DBPs in wastewater were then analyzed to understand the impacts of these large-scale usage of disinfectants in WWTPs. In addition, potential ecological risks associated with DBPs derived from wastewater disinfection and its receiving water bodies were summarized. Finally, various approaches for mitigating DBP levels in wastewater and suggestions for further research into the environmental risks of increased wastewater disinfection were provided. Overall, this study presented a comprehensive overview of the formation, distribution, potential ecological risks, and mitigating approaches of DBPs derived from wastewater disinfection that will facilitate appropriate wastewater disinfection techniques selection, potential ecological risk assessment, and removal approaches and regulations consideration.
Collapse
Affiliation(s)
- Bin Xue
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China
| | - Xuan Guo
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Academy of Military Science, Beijing 102205, China
| | - Jinrui Cao
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China
| | - Shuran Yang
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China
| | - Zhigang Qiu
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China
| | - Jingfeng Wang
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China.
| | - Zhiqiang Shen
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China.
| |
Collapse
|
25
|
Zhou J, Pang Y, Wang H, Li W, Liu J, Luo Z, Shao W, Zhang H. Sewage network operational risks based on InfoWorks ICM with nodal flow diurnal patterns under NPIs for COVID-19. WATER RESEARCH 2023; 246:120708. [PMID: 37827041 DOI: 10.1016/j.watres.2023.120708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 09/18/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023]
Abstract
Non-Pharmaceutical Interventions (NPIs) have been widely employed globally over the past three years to control the rapid spread of coronavirus disease 2019 (COVID-19). These measures have imposed restrictions on urban residents' activities and significantly influenced sewage discharge characteristics within sewage network, particularly in densely populated cities in China. This study focused on the nodal flow diurnal patterns and sewage network operational risks before and after epidemic lockdown in Beijing from March to May in 2022. Nodal flow diurnal patterns on weekdays and weekends before and after NPIs were analyzed using measured data through statistical and mathematical methods. A sewage network model was established to simulate and analyze the operational risks based on InfoWorks ICM before and after epidemic lockdown. The main conclusions were as follows: (1) In predominantly residential areas, the total wastewater volume increased by approximately 28.76 % to 33.52 % after the implementation of strict NPIs. The morning and midday "M" peaks on normalized weekdays transformed into "N" peaks, and the morning peak time was delayed by 0.5 to 1 hour after the lockdown; (2) Following NPIs, More than 90 % of manholes' average water levels rose to varying degrees, approximately 50 % of pipe lengths exhibited a full flow state; (3) When the lockdown was in place during a hot summer day, sewage overflow phenomena were observed in 4.6 % and 9.6 % of manholes, respectively, with per capita daily drainage equivalent reaching 40-50 %. These findings hold significant implications for the proactive planning and operational management of water industry infrastructure during major emergencies.
Collapse
Affiliation(s)
- Jinjun Zhou
- Faculty of architecture, civil and transportation engineering, Beijing University of Technology, Beijing 100124, China
| | - Yali Pang
- Faculty of architecture, civil and transportation engineering, Beijing University of Technology, Beijing 100124, China
| | - Hao Wang
- Faculty of architecture, civil and transportation engineering, Beijing University of Technology, Beijing 100124, China.
| | - Wentao Li
- Faculty of architecture, civil and transportation engineering, Beijing University of Technology, Beijing 100124, China
| | - Jiahong Liu
- China Institute of Water Resources and Hydropower Research State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing 100038, China
| | - Zhuoran Luo
- School of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing 102206, China
| | - Weiwei Shao
- China Institute of Water Resources and Hydropower Research State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing 100038, China
| | - Haijia Zhang
- Faculty of architecture, civil and transportation engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
26
|
Atoui A, Cordevant C, Chesnot T, Gassilloud B. SARS-CoV-2 in the environment: Contamination routes, detection methods, persistence and removal in wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163453. [PMID: 37059142 PMCID: PMC10091716 DOI: 10.1016/j.scitotenv.2023.163453] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 06/01/2023]
Abstract
The present study reviewed the occurrence of SARS-CoV-2 RNA and the evaluation of virus infectivity in feces and environmental matrices. The detection of SARS-CoV-2 RNA in feces and wastewater samples, reported in several studies, has generated interest and concern regarding the possible fecal-oral route of SARS-CoV-2 transmission. To date, the presence of viable SARS-CoV-2 in feces of COVID-19 infected people is not clearly confirmed although its isolation from feces of six different patients. Further, there is no documented evidence on the infectivity of SARS-CoV-2 in wastewater, sludge and environmental water samples, although the viral genome has been detected in these matrices. Decay data revealed that SARS-CoV-2 RNA persisted longer than infectious particle in all aquatic environment, indicating that genome quantification of SARS-CoV-2 does not imply the presence of infective viral particles. In addition, this review also outlined the fate of SARS-CoV-2 RNA during the different steps in the wastewater treatment plant and focusing on the virus elimination along the sludge treatment line. Studies showed complete removal of SARS-CoV-2 during the tertiary treatment. Moreover, thermophilic sludge treatments present high efficiency in SARS-CoV-2 inactivation. Further studies are required to provide more evidence with respect to the inactivation behavior of infectious SARS-CoV-2 in different environmental matrices and to examine factors affecting SARS-CoV-2 persistence.
Collapse
Affiliation(s)
- Ali Atoui
- ANSES, Nancy Laboratory for Hydrology, Water Microbiology Unit, 40, rue Lionnois, 54 000 Nancy, France.
| | - Christophe Cordevant
- ANSES, Strategy and Programs Department, Research and Reference Division, Maisons-Alfort F-94 700, France
| | - Thierry Chesnot
- ANSES, Nancy Laboratory for Hydrology, Water Microbiology Unit, 40, rue Lionnois, 54 000 Nancy, France
| | - Benoît Gassilloud
- ANSES, Nancy Laboratory for Hydrology, Water Microbiology Unit, 40, rue Lionnois, 54 000 Nancy, France
| |
Collapse
|
27
|
Liu P, Guo L, Cavallo M, Cantrell C, Hilton SP, Nguyen A, Long A, Dunbar J, Barbero R, Barclay R, Sablon O, Wolfe M, Lepene B, Moe C. Comparison of Nanotrap ® Microbiome A Particles, membrane filtration, and skim milk workflows for SARS-CoV-2 concentration in wastewater. Front Microbiol 2023; 14:1215311. [PMID: 37476666 PMCID: PMC10354513 DOI: 10.3389/fmicb.2023.1215311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/12/2023] [Indexed: 07/22/2023] Open
Abstract
Introduction Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) RNA monitoring in wastewater has become an important tool for Coronavirus Disease 2019 (COVID-19) surveillance. Grab (quantitative) and passive samples (qualitative) are two distinct wastewater sampling methods. Although many viral concentration methods such as the usage of membrane filtration and skim milk are reported, these methods generally require large volumes of wastewater, expensive lab equipment, and laborious processes. Methods The objectives of this study were to compare two workflows (Nanotrap® Microbiome A Particles coupled with MagMax kit and membrane filtration workflows coupled with RNeasy kit) for SARS-CoV-2 recovery in grab samples and two workflows (Nanotrap® Microbiome A Particles and skim milk workflows coupled with MagMax kit) for SARS-CoV-2 recovery in Moore swab samples. The Nanotrap particle workflow was initially evaluated with and without the addition of the enhancement reagent 1 (ER1) in 10 mL wastewater. RT-qPCR targeting the nucleocapsid protein was used for detecting SARS-CoV-2 RNA. Results Adding ER1 to wastewater prior to viral concentration significantly improved viral concentration results (P < 0.0001) in 10 mL grab and swab samples processed by automated or manual Nanotrap workflows. SARS-CoV-2 concentrations in 10 mL grab and Moore swab samples with ER1 processed by the automated workflow as a whole showed significantly higher (P < 0.001) results than 150 mL grab samples using the membrane filtration workflow and 250 mL swab samples using the skim milk workflow, respectively. Spiking known genome copies (GC) of inactivated SARS-CoV-2 into 10 mL wastewater indicated that the limit of detection of the automated Nanotrap workflow was ~11.5 GC/mL using the RT-qPCR and 115 GC/mL using the digital PCR methods. Discussion These results suggest that Nanotrap workflows could substitute the traditional membrane filtration and skim milk workflows for viral concentration without compromising the assay sensitivity. The manual workflow can be used in resource-limited areas, and the automated workflow is appropriate for large-scale COVID-19 wastewater-based surveillance.
Collapse
Affiliation(s)
- Pengbo Liu
- Center for Global Safe Water, Sanitation, and Hygiene, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Lizheng Guo
- Center for Global Safe Water, Sanitation, and Hygiene, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Matthew Cavallo
- Center for Global Safe Water, Sanitation, and Hygiene, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Caleb Cantrell
- Center for Global Safe Water, Sanitation, and Hygiene, Rollins School of Public Health, Emory University, Atlanta, GA, United States
- Ceres Nanosciences, Inc., Manassas, VA, United States
| | - Stephen Patrick Hilton
- Center for Global Safe Water, Sanitation, and Hygiene, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Anh Nguyen
- Center for Global Safe Water, Sanitation, and Hygiene, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Audrey Long
- Center for Global Safe Water, Sanitation, and Hygiene, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Jillian Dunbar
- Center for Global Safe Water, Sanitation, and Hygiene, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | | | | | - Orlando Sablon
- Center for Global Safe Water, Sanitation, and Hygiene, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Marlene Wolfe
- Center for Global Safe Water, Sanitation, and Hygiene, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Ben Lepene
- Ceres Nanosciences, Inc., Manassas, VA, United States
| | - Christine Moe
- Center for Global Safe Water, Sanitation, and Hygiene, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| |
Collapse
|
28
|
Luz TMD, Guimarães ATB, Matos SGDS, de Souza SS, Gomes AR, Rodrigues ASDL, Durigon EL, Charlie-Silva I, Freitas ÍN, Islam ARMT, Rahman MM, Silva AM, Malafaia G. Exposure of adult zebrafish (Danio rerio) to SARS-CoV-2 at predicted environmentally relevant concentrations: Outspreading warns about ecotoxicological risks to freshwater fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163269. [PMID: 37028679 PMCID: PMC10076041 DOI: 10.1016/j.scitotenv.2023.163269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/15/2023]
Abstract
While the multifaceted social, economic, and public health impacts associated with the COVID-19 pandemic are known, little is known about its effects on non-target aquatic ecosystems and organisms. Thus, we aimed to evaluate the potential ecotoxicity of SARS-CoV-2 lysate protein (SARS.CoV2/SP02.2020.HIAE.Br) in adult zebrafish (Danio rerio) at predicted environmentally relevant concentrations (0.742 and 2.226 pg/L), by 30 days. Although our data did not show locomotor alterations or anxiety-like or/and anxiolytic-like behavior, we noticed that exposure to SARS-CoV-2 negatively affected habituation memory and social aggregation of animals in response to a potential aquatic predator (Geophagus brasiliensis). An increased frequency of erythrocyte nuclear abnormalities was also observed in animals exposed to SARS-CoV-2. Furthermore, our data suggest that such changes were associated with a redox imbalance [↑ROS (reactive oxygen species), ↑H2O2 (hydrogen peroxide), ↓SOD (superoxide dismutase), and ↓CAT (catalase)], cholinesterasic effect [↑AChE (acetylcholinesterase) activity], as well as the induction of an inflammatory immune response [↑NO (nitric oxide), ↑IFN-γ (interferon-gamma), and ↓IL-10 (interleukin-10)]. For some biomarkers, we noticed that the response of the animals to the treatments was not concentration-dependent. However, principal component analysis (PCA) and the "Integrated Biomarker Response" index (IBRv2) indicated a more prominent ecotoxicity of SARS-CoV-2 at 2.226 pg/L. Therefore, our study advances knowledge about the ecotoxicological potential of SARS-CoV-2 and reinforces the presumption that the COVID-19 pandemic has negative implications beyond its economic, social, and public health impacts.
Collapse
Affiliation(s)
- Thiarlen Marinho da Luz
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| | | | | | - Sindoval Silva de Souza
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil
| | - Alex Rodrigues Gomes
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Aline Sueli de Lima Rodrigues
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| | - Edison Luiz Durigon
- Laboratory of Clinical and Molecular Virology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Ives Charlie-Silva
- Chemistry Institute, São Paulo State University (UNESP) - Campus Araraquara, Brazil
| | - Ítalo Nascimento Freitas
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | | | - Md Mostafizur Rahman
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Abner Marcelino Silva
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Brazilian Academy of Young Scientists (ABJC), Brazil.
| |
Collapse
|
29
|
Jiang G, Liu Y, Tang S, Kitajima M, Haramoto E, Arora S, Choi PM, Jackson G, D'Aoust PM, Delatolla R, Zhang S, Guo Y, Wu J, Chen Y, Sharma E, Prosun TA, Zhao J, Kumar M, Honda R, Ahmed W, Meiman J. Moving forward with COVID-19: Future research prospects of wastewater-based epidemiology methodologies and applications. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2023; 33:100458. [PMID: 37034453 PMCID: PMC10065412 DOI: 10.1016/j.coesh.2023.100458] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Wastewater-based epidemiology (WBE) has been demonstrated for its great potential in tracking of coronavirus disease 2019 (COVID-19) transmission among populations despite some inherent methodological limitations. These include non-optimized sampling approaches and analytical methods; stability of viruses in sewer systems; partitioning/retention in biofilms; and the singular and inaccurate back-calculation step to predict the number of infected individuals in the community. Future research is expected to (1) standardize best practices in wastewater sampling, analysis and data reporting protocols for the sensitive and reproducible detection of viruses in wastewater; (2) understand the in-sewer viral stability and partitioning under the impacts of dynamic wastewater flow, properties, chemicals, biofilms and sediments; and (3) achieve smart wastewater surveillance with artificial intelligence and big data models. Further specific research is essential in the monitoring of other viral pathogens with pandemic potential and subcatchment applications to maximize the benefits of WBE beyond COVID-19.
Collapse
Affiliation(s)
- Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Yanchen Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Chaoyang District, Beijing 100021, China
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Sudipti Arora
- Dr. B. Lal Institute of Biotechnology, 6-E, Malviya Industrial Area, Malviya Nagar, Jaipur, 302017, India
| | - Phil M Choi
- Water Unit, Health Protection Branch, Queensland Public Health and Scientific Services, Queensland Health, Australia
| | - Greg Jackson
- Water Unit, Health Protection Branch, Queensland Public Health and Scientific Services, Queensland Health, Australia
| | - Patrick M D'Aoust
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Shuxin Zhang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Ying Guo
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Jiangping Wu
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Yan Chen
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Elipsha Sharma
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Tanjila Alam Prosun
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Jiawei Zhao
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey, 64849, Nuevo Leon, Mexico
| | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa, Japan
| | - Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Jon Meiman
- Wisconsin Department of Health Services, Madison, WI 53701, USA
| |
Collapse
|
30
|
Li Y, Ash KT, Joyner DC, Williams DE, Alamilla I, McKay PJ, Iler C, Green BM, Kara-Murdoch F, Swift CM, Hazen TC. Decay of enveloped SARS-CoV-2 and non-enveloped PMMoV RNA in raw sewage from university dormitories. Front Microbiol 2023; 14:1144026. [PMID: 37187532 PMCID: PMC10175580 DOI: 10.3389/fmicb.2023.1144026] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
Introduction Although severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) RNA has been frequently detected in sewage from many university dormitories to inform public health decisions during the COVID-19 pandemic, a clear understanding of SARS-CoV-2 RNA persistence in site-specific raw sewage is still lacking. To investigate the SARS-CoV-2 RNA persistence, a field trial was conducted in the University of Tennessee dormitories raw sewage, similar to municipal wastewater. Methods The decay of enveloped SARS-CoV-2 RNA and non-enveloped Pepper mild mottle virus (PMMoV) RNA was investigated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in raw sewage at 4°C and 20°C. Results Temperature, followed by the concentration level of SARS-CoV-2 RNA, was the most significant factors that influenced the first-order decay rate constants (k) of SARS-CoV-2 RNA. The mean k values of SARS-CoV-2 RNA were 0.094 day-1 at 4°C and 0.261 day-1 at 20°C. At high-, medium-, and low-concentration levels of SARS-CoV-2 RNA, the mean k values were 0.367, 0.169, and 0.091 day-1, respectively. Furthermore, there was a statistical difference between the decay of enveloped SARS-CoV-2 and non-enveloped PMMoV RNA at different temperature conditions. Discussion The first decay rates for both temperatures were statistically comparable for SARS-CoV-2 RNA, which showed sensitivity to elevated temperatures but not for PMMoV RNA. This study provides evidence for the persistence of viral RNA in site-specific raw sewage at different temperature conditions and concentration levels.
Collapse
Affiliation(s)
- Ye Li
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, United States
| | - K. T. Ash
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Dominique C. Joyner
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Daniel E. Williams
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, United States
| | - I. Alamilla
- Student Health Center, University of Tennessee, Knoxville, TN, United States
| | - P. J. McKay
- Student Health Center, University of Tennessee, Knoxville, TN, United States
| | - C. Iler
- Department of Facilities Services, The University of Tennessee, Knoxville, TN, United States
| | - B. M. Green
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, United States
| | - F. Kara-Murdoch
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, United States
| | - C. M. Swift
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, United States
| | - Terry C. Hazen
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, United States
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
- Bredesen Center, University of Tennessee, Knoxville, TN, United States
- Institute for a Secure and Sustainable Environment, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
31
|
Ferreira RDO, Guimarães ATB, Luz TMD, Rodrigues ASDL, Islam ARMT, Rahman MM, Ragavendran C, Kamaraj C, Charlie-Silva I, Durigon EL, Braz HLB, Arias AH, Santiago OC, Barceló D, Malafaia G. First report on the toxicity of SARS-CoV-2, alone and in combination with polyethylene microplastics in neotropical fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163617. [PMID: 37088384 PMCID: PMC10122543 DOI: 10.1016/j.scitotenv.2023.163617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
The COVID-19 pandemic has caused unprecedented negative impacts in the modern era, including economic, social, and public health losses. On the other hand, the potential effects that the input of SARS-CoV-2 in the aquatic environment from sewage may represent on non-target organisms are not well known. In addition, it is not yet known whether the association of SARS-CoV-2 with other pollutants, such as microplastics (MPs), may further impact the aquatic biota. Thus, we aimed to evaluate the possible ecotoxicological effects of exposure of male adults Poecilia reticulata, for 15 days, to inactivated SARS-CoV-2 (0.742 pg/L; isolated SARS.CoV2/SP02.2020.HIAE.Br) and polyethylene MP (PE MPs) (7.1 × 104 particles/L), alone and in combination, from multiple biomarkers. Our data suggest that exposure to SARS-CoV-2 induced behavioral changes (in the open field test), nephrotoxic effect (inferred by the increase in creatinine), hepatotoxic effect (inferred by the increase in bilirubin production), imbalance in the homeostasis of Fe, Ca, and Mg, as well as an anticholinesterase effect in the animals [marked by the reduction of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activity]. On the other hand, exposure to PE MPs induced a genotoxic effect (assessed by the comet assay), as well as an increase in enzyme activity alpha-amylase, alkaline phosphatase, and carboxylesterases. However, we did not show synergistic, antagonistic, or additive effects caused by the combined exposure of P. reticulata to SARS-CoV-2 and PE MPs. Principal component analysis (PCA) and values from the "Integrated Biomarker Response" index indicate that exposure to SARS-CoV-2 was determinant for a more prominent effect in the evaluated animals. Therefore, our study sheds light on the ecotoxicity of the new coronavirus in non-target organisms and ratifies the need for more attention to the impacts of COVID-19 on aquatic biota.
Collapse
Affiliation(s)
- Raíssa de Oliveira Ferreira
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), JordiGirona 1826, 08034 Barcelona, Spain
| | | | - Thiarlen Marinho da Luz
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| | - Aline Sueli de Lima Rodrigues
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| | | | - Md Mostafizur Rahman
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Chinnasamy Ragavendran
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research and Virtual Education, SRM Institute of Science and Technology (SRMIST), Kattankulathur 603203, Tamil Nadu, India
| | - Ives Charlie-Silva
- Chemistry Institute, São Paulo State University (UNESP) Campus Araraquara, Brazil
| | - Edison Luiz Durigon
- Laboratory of Clinical and Molecular Virology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | | | - Andrés Hugo Arias
- National University of the South Bahía Blanca, CONICET Instituto Argentino de Oceanografía (IADO), Argentina
| | - Omar Cruz Santiago
- Multidisciplinary Postgraduate Program for Environmental Sciences, Universidad Autónoma de San Luis Potosí, Mexico
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA-CERCA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003 Girona, Spain
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil; Brazilian Academy of Young Scientists (ABJC), Brazil.
| |
Collapse
|
32
|
Hart JJ, Jamison MN, McNair JN, Szlag DC. Frequency and degradation of SARS-CoV-2 markers N1, N2, and E in sewage. JOURNAL OF WATER AND HEALTH 2023; 21:514-524. [PMID: 37119151 DOI: 10.2166/wh.2023.314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease that is mainly spread through aerosolized droplets containing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is excreted in feces by infected individuals. Sewage surveillance has been applied widely to obtain data on the prevalence of COVID-19 in whole communities. We used SARS-CoV-2 gene targets N1, N2, and E to determine the prevalence of COVID-19 at both municipal and building levels. Frequency analysis of wastewater testing indicated that single markers detected only 85% or less of samples that were detected as positive for SARS-CoV-2 with the three markers combined, indicating the necessity of pairing markers to lower the false-negative rate. The best pair of markers in both municipal and building level monitoring was N1 and N2, which correctly identified 98% of positive samples detected with the three markers combined. The degradation rates of all three targets were assessed at two different temperatures (25 and 35 °C) as a possible explanation for observed differences between markers in frequency. Results indicated that all three RNA targets degrade at nearly the same rate, indicating that differences in degradation rate are not responsible for the observed differences in marker frequency.
Collapse
Affiliation(s)
- John J Hart
- Oakland University, Department of Chemistry, 146 Library Dr, Rochester, MI 48309, USA E-mail: ; Robert B. Annis Water Resources Institute, 740 West Shoreline Dr, Muskegon, MI 49441, USA
| | - Megan N Jamison
- Oakland University, Department of Chemistry, 146 Library Dr, Rochester, MI 48309, USA E-mail: ; The Ohio State University, 281 W Lane Ave, Columbus, OH 43210, USA
| | - James N McNair
- Robert B. Annis Water Resources Institute, 740 West Shoreline Dr, Muskegon, MI 49441, USA
| | - David C Szlag
- Oakland University, Department of Chemistry, 146 Library Dr, Rochester, MI 48309, USA E-mail:
| |
Collapse
|
33
|
Babler KM, Sharkey ME, Abelson S, Amirali A, Benitez A, Cosculluela GA, Grills GS, Kumar N, Laine J, Lamar W, Lamm ED, Lyu J, Mason CE, McCabe PM, Raghavender J, Reding BD, Roca MA, Schürer SC, Stevenson M, Szeto A, Tallon JJ, Vidović D, Zarnegarnia Y, Solo-Gabriele HM. Degradation rates influence the ability of composite samples to represent 24-hourly means of SARS-CoV-2 and other microbiological target measures in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161423. [PMID: 36623667 PMCID: PMC9817413 DOI: 10.1016/j.scitotenv.2023.161423] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/25/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
The utility of using severe-acute respiratory syndrome coronavirus-2 (SARS-CoV-2) RNA for assessing the prevalence of COVID-19 within communities begins with the design of the sample collection program. The objective of this study was to assess the utility of 24-hour composites as representative samples for measuring multiple microbiological targets in wastewater, and whether normalization of SARS-CoV-2 by endogenous targets can be used to decrease hour to hour variability at different watershed scales. Two sets of experiments were conducted, in tandem with the same wastewater, with samples collected at the building, cluster, and community sewershed scales. The first set of experiments focused on evaluating degradation of microbiological targets: SARS-CoV-2, Simian Immunodeficiency Virus (SIV) - a surrogate spiked into the wastewater, plus human waste indicators of Pepper Mild Mottle Virus (PMMoV), Beta-2 microglobulin (B2M), and fecal coliform bacteria (FC). The second focused on the variability of these targets from samples, collected each hour on the hour. Results show that SARS-CoV-2, PMMoV, and B2M were relatively stable, with minimal degradation over 24-h. SIV, which was spiked-in prior to analysis, degraded significantly and FC increased significantly over the course of 24 h, emphasizing the possibility for decay and growth within wastewater. Hour-to-hour variability of the source wastewater was large between each hour of sampling relative to the variability of the SARS-CoV-2 levels calculated between sewershed scales; thus, differences in SARS-CoV-2 hourly variability were not statistically significant between sewershed scales. Results further provided that the quantified representativeness of 24-h composite samples (i.e., statistical equivalency compared against hourly collected grabs) was dependent upon the molecular target measured. Overall, improvements made by normalization were minimal within this study. Degradation and multiplication for other targets should be evaluated when deciding upon whether to collect composite or grab samples in future studies.
Collapse
Affiliation(s)
- Kristina M Babler
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Mark E Sharkey
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Samantha Abelson
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ayaaz Amirali
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Aymara Benitez
- Miami-Dade Water and Sewer Department, Miami, FL 33149, USA
| | - Gabriella A Cosculluela
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - George S Grills
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Naresh Kumar
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Jennifer Laine
- Environmental Health and Safety, University of Miami, Miami, FL 33136, USA
| | - Walter Lamar
- Division of Occupational Health, Safety & Compliance, University of Miami Health System, Miami, FL 33136, USA
| | - Erik D Lamm
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Jiangnan Lyu
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York City, NY 10021, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Philip M McCabe
- Department of Psychology, University of Miami, Coral Gables, FL 33146, USA; Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA
| | | | - Brian D Reding
- Environmental Health and Safety, University of Miami, Miami, FL 33136, USA
| | - Matthew A Roca
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Stephan C Schürer
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Institute for Data Science & Computing, University of Miami, Coral Gables, FL, USA
| | - Mario Stevenson
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Angela Szeto
- Department of Psychology, University of Miami, Coral Gables, FL 33146, USA
| | - John J Tallon
- Facilities and Operations, University of Miami, Coral Gables, FL 33146, USA
| | - Dusica Vidović
- Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yalda Zarnegarnia
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Helena M Solo-Gabriele
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
34
|
Kim S, Boehm AB. Wastewater monitoring of SARS-CoV-2 RNA at K-12 schools: comparison to pooled clinical testing data. PeerJ 2023; 11:e15079. [PMID: 36967994 PMCID: PMC10035418 DOI: 10.7717/peerj.15079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/24/2023] [Indexed: 03/22/2023] Open
Abstract
Background Wastewater measurements of SARS-CoV-2 RNA have been extensively used to supplement clinical data on COVID-19. Most examples in the literature that describe wastewater monitoring for SARS-CoV-2 RNA use samples from wastewater treatment plants and individual buildings that serve as the primary residence of community members. However, wastewater surveillance can be an attractive supplement to clinical testing in K-12 schools where individuals only spend a portion of their time but interact with others in close proximity, increasing risk of potential transmission of disease. Methods Wastewater samples were collected from two K-12 schools in California and divided into solid and liquid fractions to be processed for detection of SARS-CoV-2. The resulting detection rate in each wastewater fraction was compared to each other and the detection rate in pooled clinical specimens. Results Most wastewater samples were positive for SARS-CoV-2 RNA when clinical testing was positive (75% for solid samples and 100% for liquid samples). Wastewater samples continued to test positive for SARS-CoV-2 RNA when clinical testing was negative or in absence of clinical testing (83% for both solid and liquid samples), indicating presence of infected individuals in the schools. Wastewater solids had a higher concentration of SARS-CoV-2 than wastewater liquids on an equivalent mass basis by three orders of magnitude.
Collapse
Affiliation(s)
- Sooyeol Kim
- Stanford University, Stanford, CA, United States of America
| | | |
Collapse
|
35
|
Steffen HC, Smith K, van Deventer C, Weiskerger C, Bosch C, Brandão J, Wolfaardt G, Botha A. Health risk posed by direct ingestion of yeasts from polluted river water. WATER RESEARCH 2023; 231:119599. [PMID: 36645944 DOI: 10.1016/j.watres.2023.119599] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
River water is an essential human resource that may be contaminated with hazardous microorganisms. However, the risk of yeast infection through river water exposure is unclear because it is highly dependant on individual susceptibility and has therefore not been well-studied, to date. To evaluate this undefined risk, we analysed the fungal communities in less polluted (LP) and highly polluted (HP) river water, as determined using principal coordinate analysis of pollution indicators. We enumerated culturable yeasts using a thermally selective isolation procedure (37 °C) and thus promoted the growth of potentially opportunistic species. Yeast species identified as clinically relevant were then tested for antifungal resistance. In addition, we propose a quantitative microbial risk assessment (QMRA) framework to quantitatively assess the potential risk of yeast infection. Our results indicated that pollution levels significantly altered fungal communities (p = 0.007) and that genera representing opportunistic and pathogenic members were significantly more abundant in HP waters (p = 0.038). Additionally, the yeast species Candida glabrata and Clavispora lusitaniae positively correlated with other pollution indicators, demonstrating the species' indicator potential. Our QMRA results further indicate that higher risk of infection is associated with increased water pollution levels (considering both physicochemical and bacterial indicators). Furthermore, yeast species with higher pathogenic potential present an increased risk of infection despite lower observed concentrations in the river water. Interestingly, the bloom of Meyerozyma guilliermondii during the wet season suggests that other environmental factors, such as dissolved oxygen levels and water turbulence, might affect growth characteristics of yeasts in river water, which consequently affects the distribution of annual infection risks. The presence of antifungal resistant yeasts, observed in this study, could further contribute to variation in risk distribution. Research on the ecophysiology of yeasts in these environments is therefore necessary to ameliorate the uncertainty and sensitivity of the proposed QMRA model. In addition to the vital knowledge on opportunistic and pathogenic yeast occurrence in river water and their observed association with pollution, this study provides valuable methods and insights to initiate future QMRAs of yeast infections.
Collapse
Affiliation(s)
- Heidi Christa Steffen
- Department of Microbiology, University of Stellenbosch, Stellenbosch, Western Cape 7600, South Africa
| | - Katrin Smith
- Department of Microbiology, University of Stellenbosch, Stellenbosch, Western Cape 7600, South Africa
| | - Corné van Deventer
- Department of Microbiology, University of Stellenbosch, Stellenbosch, Western Cape 7600, South Africa
| | - Chelsea Weiskerger
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, United States
| | - Caylin Bosch
- Department of Microbiology, University of Stellenbosch, Stellenbosch, Western Cape 7600, South Africa
| | - João Brandão
- Department of Environmental Health, National Institute of Health Doctor Ricardo Jorge, Av. Padre Cruz, Lisbon 1649-016, Portugal; Centre for Environmental and Marine Studies (CESAM), Department of Animal Biology, University of Lisbon, Campo Grande, Lisbon 1749-016, Portugal
| | - Gideon Wolfaardt
- Department of Microbiology, University of Stellenbosch, Stellenbosch, Western Cape 7600, South Africa
| | - Alfred Botha
- Department of Microbiology, University of Stellenbosch, Stellenbosch, Western Cape 7600, South Africa.
| |
Collapse
|
36
|
Freitas ÍN, Dourado AV, Araújo APDC, Souza SSD, Luz TMD, Guimarães ATB, Gomes AR, Islam ARMT, Rahman MM, Arias AH, Mubarak Ali D, Ragavendran C, Kamaraj C, Malafaia G. Toxicity assessment of SARS-CoV-2-derived peptides in combination with a mix of pollutants on zebrafish adults: A perspective study of behavioral, biometric, mutagenic, and biochemical toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159838. [PMID: 36343805 PMCID: PMC9635251 DOI: 10.1016/j.scitotenv.2022.159838] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 05/19/2023]
Abstract
The dispersion of SARS-CoV-2 in aquatic environments via the discharge of domestic and hospital sewage has been confirmed in different locations. Thus, we aimed to evaluate the possible impacts of zebrafish (Danio rerio) exposure to SARS-CoV-2 peptide fragments (PSPD-2001, 2002, and 2003) alone and combined with a mix of emerging pollutants. Our data did not reveal the induction of behavioral, biometric, or mutagenic changes. But we noticed an organ-dependent biochemical response. While nitric oxide and malondialdehyde production in the brain, gills, and muscle did not differ between groups, superoxide dismutase activity was reduced in the "PSPD", "Mix", and "Mix+PSPD" groups. An increase in catalase activity and a reduction in DPPH radical scavenging activity were observed in the brains of animals exposed to the treatments. However, the "Mix+PSPD" group had a higher IBRv2 value, with NO levels (brain), the reduction of acetylcholinesterase activity (muscles), and the DPPH radical scavenging activity (brain and muscles), the most discriminant factors for this group. The principal component analysis (PCA) and hierarchical clustering analysis indicated a clear separation of the "Mix+PSPD" group from the others. Thus, we conclude that exposure to viral fragments, associated with the mix of pollutants, induced more significant toxicity in zebrafish adults than in others.
Collapse
Affiliation(s)
- Ítalo Nascimento Freitas
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Amanda Vieira Dourado
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil
| | | | - Sindoval Silva de Souza
- Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil
| | - Thiarlen Marinho da Luz
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| | | | - Alex Rodrigues Gomes
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | | | - Md Mostafizur Rahman
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Andrés Hugo Arias
- Instituto Argentino de Oceanografía (IADO), Universidad Nacional del Sur (UNS)-CONICET, Florida 8000, Complejo CCT CONICET Bahía Blanca, Edificio E1, B8000BFW Bahía Blanca, Argentina
| | - Davoodbasha Mubarak Ali
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Chinnasamy Ragavendran
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research and Virtual Education, SRM Institute of Science and Technology (SRMIST), Kattankulathur 603203, Tamil Nadu, India
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil.
| |
Collapse
|
37
|
Burnet JB, Cauchie HM, Walczak C, Goeders N, Ogorzaly L. Persistence of endogenous RNA biomarkers of SARS-CoV-2 and PMMoV in raw wastewater: Impact of temperature and implications for wastewater-based epidemiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159401. [PMID: 36240930 PMCID: PMC9554201 DOI: 10.1016/j.scitotenv.2022.159401] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/21/2022] [Accepted: 10/08/2022] [Indexed: 05/28/2023]
Abstract
Understanding the persistence of SARS-CoV-2 biomarkers in wastewater should guide wastewater-based epidemiology users in selecting best RNA biomarkers for reliable detection of the virus during current and future waves of the pandemic. In the present study, the persistence of endogenous SARS-CoV-2 were assessed during one month for six different RNA biomarkers and for the pepper mild mottle virus (PMMoV) at three different temperatures (4, 12 and 20 °C) in one wastewater sample. All SARS-CoV-2 RNA biomarkers were consistently detected during 6 days at 4° and differences in signal persistence among RNA biomarkers were mostly observed at 20 °C with N biomarkers being globally more persistent than RdRP, E and ORF1ab ones. SARS-CoV-2 signal persistence further decreased in a temperature dependent manner. At 12 and 20 °C, RNA biomarker losses of 1-log10 occurred on average after 6 and 4 days, and led to a complete signal loss after 13 and 6 days, respectively. Besides the effect of temperature, SARS-CoV-2 RNA signals were more persistent in the particulate phase compared to the aqueous one. Finally, PMMoV RNA signal was highly persistent in both phases and significantly differed from that of SARS-CoV-2 biomarkers. We further provide a detailed overview of the latest literature on SARS-CoV-2 and PMMoV decay rates in sewage matrices.
Collapse
Affiliation(s)
- Jean-Baptiste Burnet
- Luxembourg Institute of Science and Technology (LIST), Environmental Research & Innovation Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Henry-Michel Cauchie
- Luxembourg Institute of Science and Technology (LIST), Environmental Research & Innovation Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Cécile Walczak
- Luxembourg Institute of Science and Technology (LIST), Environmental Research & Innovation Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Nathalie Goeders
- Luxembourg Institute of Science and Technology (LIST), Environmental Research & Innovation Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Leslie Ogorzaly
- Luxembourg Institute of Science and Technology (LIST), Environmental Research & Innovation Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg.
| |
Collapse
|
38
|
Fu S, He F, Wang R, Song W, Wang Q, Xia W, Qiu Z. Development of quantitative wastewater surveillance models facilitated the precise epidemic management of COVID-19. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159357. [PMID: 36240917 PMCID: PMC9554229 DOI: 10.1016/j.scitotenv.2022.159357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Wastewater surveillance serves as a promising approach to elucidate the silent transmission of SARS-CoV-2 in communities. To understand the decay of the coronavirus in sewage pipes, the decay of the coronavirus traveling over 20 km distance of pipeline was analyzed. Based on the decay model, a WWTP and a community model were then proposed for predicting COVID-19 cases in Xi'an and Nanchang city during the COVID-19 outbreak in 2021 and 2022. The results suggested that Monte Carol simulations estimated 23.3, 50.1, 127.3 and 524.2 infected persons in the Yanta district of Xi'an city on December 14th, 18th, 22nd and 26th of 2021, respectively, which is largely consistent with the clinical reports. Next, we further conducted wastewater surveillance in two WWTPs that covered the whole metropolitan region in Nanchang to validate the robustness of the WWTP model from December 2021 to April 2022. SARS-CoV-2 signals were detected in two WWTPs from March 15th to April 5th. Predicted infection numbers were in agreement with the actual infection cases, which promoted precise epidemic control. Finally, community wastewater surveillance was conducted for 40 communities that were not 100 % covered by massive nucleic acid testing in Nanchang city, which accurately identified the SARS-CoV-2 carriers not detected by massive nucleic acid testing. In conclusion, accurate prediction of COVID-19 cases based on WWTP and community models promoted precise epidemic control. This work highlights the viability of wastewater surveillance for outbreak evaluation and identification of hidden cases, which provides an extraordinary example for implementing precise epidemic control of COVID-19.
Collapse
Affiliation(s)
- Songzhe Fu
- Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China.
| | - Fenglan He
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Nanchang Center for Disease Control and Prevention, Nanchang 330038, China
| | - Rui Wang
- Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, Dalian Ocean University, Dalian 116023, China
| | - Wentao Song
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Nanchang Center for Disease Control and Prevention, Nanchang 330038, China
| | - Qingyao Wang
- Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, Dalian Ocean University, Dalian 116023, China
| | - Wen Xia
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Nanchang Center for Disease Control and Prevention, Nanchang 330038, China
| | - Zhiguang Qiu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| |
Collapse
|
39
|
Kotlarz N, Holcomb DA, Tanvir Pasha ABM, Reckling S, Kays J, Lai YC, Daly S, Palani S, Bailey E, Guidry VT, Christensen A, Berkowitz S, Hoppin JA, Mitasova H, Engel LS, Reyes FLDL, Harris A. Timing and Trends for Municipal Wastewater, Lab-Confirmed Case, and Syndromic Case Surveillance of COVID-19 in Raleigh, North Carolina. Am J Public Health 2023; 113:79-88. [PMID: 36356280 PMCID: PMC9755929 DOI: 10.2105/ajph.2022.307108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2022] [Indexed: 11/12/2022]
Abstract
Objectives. To compare 4 COVID-19 surveillance metrics in a major metropolitan area. Methods. We analyzed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in wastewater influent and primary solids in Raleigh, North Carolina, from April 10 through December 13, 2020. We compared wastewater results with lab-confirmed COVID-19 cases and syndromic COVID-like illness (CLI) cases to answer 3 questions: (1) Did they correlate? (2) What was the temporal alignment of the different surveillance systems? (3) Did periods of significant change (i.e., trends) align? Results. In the Raleigh sewershed, wastewater influent, wastewater primary solids, lab-confirmed cases, and CLI were strongly or moderately correlated. Trends in lab-confirmed cases and wastewater influent were observed earlier, followed by CLI and, lastly, wastewater primary solids. All 4 metrics showed sustained increases in COVID-19 in June, July, and November 2020 and sustained decreases in August and September 2020. Conclusions. In a major metropolitan area in 2020, the timing of and trends in municipal wastewater, lab-confirmed case, and syndromic case surveillance of COVID-19 were in general agreement. Public Health Implications. Our results provide evidence for investment in SARS-CoV-2 wastewater and CLI surveillance to complement information provided through lab-confirmed cases. (Am J Public Health. 2023;113(1):79-88. https://doi.org/10.2105/AJPH.2022.307108).
Collapse
Affiliation(s)
- Nadine Kotlarz
- Nadine Kotlarz and Jane A. Hoppin are with the Department of Biological Sciences, North Carolina State University, Raleigh. David A. Holcomb and Lawrence S. Engel are with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill. A. B. M. Tanvir Pasha, Judith Kays, Yi-Chun Lai, Sean Daly, Francis L. de los Reyes III, and Angela Harris are with the Department of Civil, Construction, and Environmental Engineering, North Carolina State University. Stacie Reckling and Helena Mitasova are with the Center for Geospatial Analytics, North Carolina State University. Sivaranjani Palani is with the Department of Plant and Microbial Biology, North Carolina State University. Erika Bailey is with Raleigh Water, Raleigh, NC. Virginia T. Guidry, Ariel Christensen, and Steven Berkowitz are with the Division of Public Health, North Carolina Department of Health and Human Services, Raleigh
| | - David A Holcomb
- Nadine Kotlarz and Jane A. Hoppin are with the Department of Biological Sciences, North Carolina State University, Raleigh. David A. Holcomb and Lawrence S. Engel are with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill. A. B. M. Tanvir Pasha, Judith Kays, Yi-Chun Lai, Sean Daly, Francis L. de los Reyes III, and Angela Harris are with the Department of Civil, Construction, and Environmental Engineering, North Carolina State University. Stacie Reckling and Helena Mitasova are with the Center for Geospatial Analytics, North Carolina State University. Sivaranjani Palani is with the Department of Plant and Microbial Biology, North Carolina State University. Erika Bailey is with Raleigh Water, Raleigh, NC. Virginia T. Guidry, Ariel Christensen, and Steven Berkowitz are with the Division of Public Health, North Carolina Department of Health and Human Services, Raleigh
| | - A B M Tanvir Pasha
- Nadine Kotlarz and Jane A. Hoppin are with the Department of Biological Sciences, North Carolina State University, Raleigh. David A. Holcomb and Lawrence S. Engel are with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill. A. B. M. Tanvir Pasha, Judith Kays, Yi-Chun Lai, Sean Daly, Francis L. de los Reyes III, and Angela Harris are with the Department of Civil, Construction, and Environmental Engineering, North Carolina State University. Stacie Reckling and Helena Mitasova are with the Center for Geospatial Analytics, North Carolina State University. Sivaranjani Palani is with the Department of Plant and Microbial Biology, North Carolina State University. Erika Bailey is with Raleigh Water, Raleigh, NC. Virginia T. Guidry, Ariel Christensen, and Steven Berkowitz are with the Division of Public Health, North Carolina Department of Health and Human Services, Raleigh
| | - Stacie Reckling
- Nadine Kotlarz and Jane A. Hoppin are with the Department of Biological Sciences, North Carolina State University, Raleigh. David A. Holcomb and Lawrence S. Engel are with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill. A. B. M. Tanvir Pasha, Judith Kays, Yi-Chun Lai, Sean Daly, Francis L. de los Reyes III, and Angela Harris are with the Department of Civil, Construction, and Environmental Engineering, North Carolina State University. Stacie Reckling and Helena Mitasova are with the Center for Geospatial Analytics, North Carolina State University. Sivaranjani Palani is with the Department of Plant and Microbial Biology, North Carolina State University. Erika Bailey is with Raleigh Water, Raleigh, NC. Virginia T. Guidry, Ariel Christensen, and Steven Berkowitz are with the Division of Public Health, North Carolina Department of Health and Human Services, Raleigh
| | - Judith Kays
- Nadine Kotlarz and Jane A. Hoppin are with the Department of Biological Sciences, North Carolina State University, Raleigh. David A. Holcomb and Lawrence S. Engel are with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill. A. B. M. Tanvir Pasha, Judith Kays, Yi-Chun Lai, Sean Daly, Francis L. de los Reyes III, and Angela Harris are with the Department of Civil, Construction, and Environmental Engineering, North Carolina State University. Stacie Reckling and Helena Mitasova are with the Center for Geospatial Analytics, North Carolina State University. Sivaranjani Palani is with the Department of Plant and Microbial Biology, North Carolina State University. Erika Bailey is with Raleigh Water, Raleigh, NC. Virginia T. Guidry, Ariel Christensen, and Steven Berkowitz are with the Division of Public Health, North Carolina Department of Health and Human Services, Raleigh
| | - Yi-Chun Lai
- Nadine Kotlarz and Jane A. Hoppin are with the Department of Biological Sciences, North Carolina State University, Raleigh. David A. Holcomb and Lawrence S. Engel are with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill. A. B. M. Tanvir Pasha, Judith Kays, Yi-Chun Lai, Sean Daly, Francis L. de los Reyes III, and Angela Harris are with the Department of Civil, Construction, and Environmental Engineering, North Carolina State University. Stacie Reckling and Helena Mitasova are with the Center for Geospatial Analytics, North Carolina State University. Sivaranjani Palani is with the Department of Plant and Microbial Biology, North Carolina State University. Erika Bailey is with Raleigh Water, Raleigh, NC. Virginia T. Guidry, Ariel Christensen, and Steven Berkowitz are with the Division of Public Health, North Carolina Department of Health and Human Services, Raleigh
| | - Sean Daly
- Nadine Kotlarz and Jane A. Hoppin are with the Department of Biological Sciences, North Carolina State University, Raleigh. David A. Holcomb and Lawrence S. Engel are with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill. A. B. M. Tanvir Pasha, Judith Kays, Yi-Chun Lai, Sean Daly, Francis L. de los Reyes III, and Angela Harris are with the Department of Civil, Construction, and Environmental Engineering, North Carolina State University. Stacie Reckling and Helena Mitasova are with the Center for Geospatial Analytics, North Carolina State University. Sivaranjani Palani is with the Department of Plant and Microbial Biology, North Carolina State University. Erika Bailey is with Raleigh Water, Raleigh, NC. Virginia T. Guidry, Ariel Christensen, and Steven Berkowitz are with the Division of Public Health, North Carolina Department of Health and Human Services, Raleigh
| | - Sivaranjani Palani
- Nadine Kotlarz and Jane A. Hoppin are with the Department of Biological Sciences, North Carolina State University, Raleigh. David A. Holcomb and Lawrence S. Engel are with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill. A. B. M. Tanvir Pasha, Judith Kays, Yi-Chun Lai, Sean Daly, Francis L. de los Reyes III, and Angela Harris are with the Department of Civil, Construction, and Environmental Engineering, North Carolina State University. Stacie Reckling and Helena Mitasova are with the Center for Geospatial Analytics, North Carolina State University. Sivaranjani Palani is with the Department of Plant and Microbial Biology, North Carolina State University. Erika Bailey is with Raleigh Water, Raleigh, NC. Virginia T. Guidry, Ariel Christensen, and Steven Berkowitz are with the Division of Public Health, North Carolina Department of Health and Human Services, Raleigh
| | - Erika Bailey
- Nadine Kotlarz and Jane A. Hoppin are with the Department of Biological Sciences, North Carolina State University, Raleigh. David A. Holcomb and Lawrence S. Engel are with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill. A. B. M. Tanvir Pasha, Judith Kays, Yi-Chun Lai, Sean Daly, Francis L. de los Reyes III, and Angela Harris are with the Department of Civil, Construction, and Environmental Engineering, North Carolina State University. Stacie Reckling and Helena Mitasova are with the Center for Geospatial Analytics, North Carolina State University. Sivaranjani Palani is with the Department of Plant and Microbial Biology, North Carolina State University. Erika Bailey is with Raleigh Water, Raleigh, NC. Virginia T. Guidry, Ariel Christensen, and Steven Berkowitz are with the Division of Public Health, North Carolina Department of Health and Human Services, Raleigh
| | - Virginia T Guidry
- Nadine Kotlarz and Jane A. Hoppin are with the Department of Biological Sciences, North Carolina State University, Raleigh. David A. Holcomb and Lawrence S. Engel are with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill. A. B. M. Tanvir Pasha, Judith Kays, Yi-Chun Lai, Sean Daly, Francis L. de los Reyes III, and Angela Harris are with the Department of Civil, Construction, and Environmental Engineering, North Carolina State University. Stacie Reckling and Helena Mitasova are with the Center for Geospatial Analytics, North Carolina State University. Sivaranjani Palani is with the Department of Plant and Microbial Biology, North Carolina State University. Erika Bailey is with Raleigh Water, Raleigh, NC. Virginia T. Guidry, Ariel Christensen, and Steven Berkowitz are with the Division of Public Health, North Carolina Department of Health and Human Services, Raleigh
| | - Ariel Christensen
- Nadine Kotlarz and Jane A. Hoppin are with the Department of Biological Sciences, North Carolina State University, Raleigh. David A. Holcomb and Lawrence S. Engel are with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill. A. B. M. Tanvir Pasha, Judith Kays, Yi-Chun Lai, Sean Daly, Francis L. de los Reyes III, and Angela Harris are with the Department of Civil, Construction, and Environmental Engineering, North Carolina State University. Stacie Reckling and Helena Mitasova are with the Center for Geospatial Analytics, North Carolina State University. Sivaranjani Palani is with the Department of Plant and Microbial Biology, North Carolina State University. Erika Bailey is with Raleigh Water, Raleigh, NC. Virginia T. Guidry, Ariel Christensen, and Steven Berkowitz are with the Division of Public Health, North Carolina Department of Health and Human Services, Raleigh
| | - Steven Berkowitz
- Nadine Kotlarz and Jane A. Hoppin are with the Department of Biological Sciences, North Carolina State University, Raleigh. David A. Holcomb and Lawrence S. Engel are with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill. A. B. M. Tanvir Pasha, Judith Kays, Yi-Chun Lai, Sean Daly, Francis L. de los Reyes III, and Angela Harris are with the Department of Civil, Construction, and Environmental Engineering, North Carolina State University. Stacie Reckling and Helena Mitasova are with the Center for Geospatial Analytics, North Carolina State University. Sivaranjani Palani is with the Department of Plant and Microbial Biology, North Carolina State University. Erika Bailey is with Raleigh Water, Raleigh, NC. Virginia T. Guidry, Ariel Christensen, and Steven Berkowitz are with the Division of Public Health, North Carolina Department of Health and Human Services, Raleigh
| | - Jane A Hoppin
- Nadine Kotlarz and Jane A. Hoppin are with the Department of Biological Sciences, North Carolina State University, Raleigh. David A. Holcomb and Lawrence S. Engel are with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill. A. B. M. Tanvir Pasha, Judith Kays, Yi-Chun Lai, Sean Daly, Francis L. de los Reyes III, and Angela Harris are with the Department of Civil, Construction, and Environmental Engineering, North Carolina State University. Stacie Reckling and Helena Mitasova are with the Center for Geospatial Analytics, North Carolina State University. Sivaranjani Palani is with the Department of Plant and Microbial Biology, North Carolina State University. Erika Bailey is with Raleigh Water, Raleigh, NC. Virginia T. Guidry, Ariel Christensen, and Steven Berkowitz are with the Division of Public Health, North Carolina Department of Health and Human Services, Raleigh
| | - Helena Mitasova
- Nadine Kotlarz and Jane A. Hoppin are with the Department of Biological Sciences, North Carolina State University, Raleigh. David A. Holcomb and Lawrence S. Engel are with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill. A. B. M. Tanvir Pasha, Judith Kays, Yi-Chun Lai, Sean Daly, Francis L. de los Reyes III, and Angela Harris are with the Department of Civil, Construction, and Environmental Engineering, North Carolina State University. Stacie Reckling and Helena Mitasova are with the Center for Geospatial Analytics, North Carolina State University. Sivaranjani Palani is with the Department of Plant and Microbial Biology, North Carolina State University. Erika Bailey is with Raleigh Water, Raleigh, NC. Virginia T. Guidry, Ariel Christensen, and Steven Berkowitz are with the Division of Public Health, North Carolina Department of Health and Human Services, Raleigh
| | - Lawrence S Engel
- Nadine Kotlarz and Jane A. Hoppin are with the Department of Biological Sciences, North Carolina State University, Raleigh. David A. Holcomb and Lawrence S. Engel are with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill. A. B. M. Tanvir Pasha, Judith Kays, Yi-Chun Lai, Sean Daly, Francis L. de los Reyes III, and Angela Harris are with the Department of Civil, Construction, and Environmental Engineering, North Carolina State University. Stacie Reckling and Helena Mitasova are with the Center for Geospatial Analytics, North Carolina State University. Sivaranjani Palani is with the Department of Plant and Microbial Biology, North Carolina State University. Erika Bailey is with Raleigh Water, Raleigh, NC. Virginia T. Guidry, Ariel Christensen, and Steven Berkowitz are with the Division of Public Health, North Carolina Department of Health and Human Services, Raleigh
| | - Francis L de Los Reyes
- Nadine Kotlarz and Jane A. Hoppin are with the Department of Biological Sciences, North Carolina State University, Raleigh. David A. Holcomb and Lawrence S. Engel are with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill. A. B. M. Tanvir Pasha, Judith Kays, Yi-Chun Lai, Sean Daly, Francis L. de los Reyes III, and Angela Harris are with the Department of Civil, Construction, and Environmental Engineering, North Carolina State University. Stacie Reckling and Helena Mitasova are with the Center for Geospatial Analytics, North Carolina State University. Sivaranjani Palani is with the Department of Plant and Microbial Biology, North Carolina State University. Erika Bailey is with Raleigh Water, Raleigh, NC. Virginia T. Guidry, Ariel Christensen, and Steven Berkowitz are with the Division of Public Health, North Carolina Department of Health and Human Services, Raleigh
| | - Angela Harris
- Nadine Kotlarz and Jane A. Hoppin are with the Department of Biological Sciences, North Carolina State University, Raleigh. David A. Holcomb and Lawrence S. Engel are with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill. A. B. M. Tanvir Pasha, Judith Kays, Yi-Chun Lai, Sean Daly, Francis L. de los Reyes III, and Angela Harris are with the Department of Civil, Construction, and Environmental Engineering, North Carolina State University. Stacie Reckling and Helena Mitasova are with the Center for Geospatial Analytics, North Carolina State University. Sivaranjani Palani is with the Department of Plant and Microbial Biology, North Carolina State University. Erika Bailey is with Raleigh Water, Raleigh, NC. Virginia T. Guidry, Ariel Christensen, and Steven Berkowitz are with the Division of Public Health, North Carolina Department of Health and Human Services, Raleigh
| |
Collapse
|
40
|
Zhang X, Zhang L, Wang Y, Zhang M, Zhou J, Liu X, Wang Y, Qu C, Han W, Hou M, Deng F, Luo Y, Mao Y, Gu W, Dong Z, Pan Y, Zhang D, Tang S, Zhang L. Detection of the SARS-CoV-2 Delta Variant in the Transboundary Rivers of Yunnan, China. ACS ES&T WATER 2022; 2:2367-2377. [PMID: 37552741 PMCID: PMC9631342 DOI: 10.1021/acsestwater.2c00224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 05/30/2023]
Abstract
Ruili and Longchuan, two border counties in southwestern China, are facing epidemic control challenges due to the high rate of COVID-19 infections originating from neighboring Myanmar. Here, we aimed to establish the applicability of wastewater and environmental water surveillance of SARS-CoV-2 and conduct whole-genome sequencing (WGS) to trace the possible infection origin. In August 2021, total 72 wastewater and river water samples were collected from 32 sampling sites. SARS-CoV-2 ORF1ab and N genes were measured by RT-qPCR. We found that 19 samples (26.39%) were positive, and the viral loads of ORF1ab and N genes were 6.62 × 102-2.55×105 and 1.86 × 103-2.32 × 105 copies/L, respectively. WGS further indicated the sequences in two transboundary river samples, and one hospital wastewater sample belonged to the delta variant, suggesting that the infection source might be areas with high COVID-19 delta variant incidence in Southeast Asia (e.g., Myanmar). We reported for the first time the detection and quantification of SARS-CoV-2 RNA in the transboundary rivers of Myanmar-China. Our findings demonstrate that wastewater and environmental water may provide independent and nonintrusive surveillance points to monitor the global spread of emerging COVID-19 variants of concern, particularly in high-risk regions or border areas with considerable epidemic challenges and poor wastewater treatment facilities.
Collapse
Affiliation(s)
- Xiao Zhang
- China CDC Key Laboratory of Environment and Population
Health, National Institute of Environmental Health, Chinese Center for
Disease Control and Prevention, Beijing100021,
China
| | - Liang Zhang
- China CDC Key Laboratory of Environment and Population
Health, National Institute of Environmental Health, Chinese Center for
Disease Control and Prevention, Beijing100021,
China
| | - Yuanyuan Wang
- China CDC Key Laboratory of Environment and Population
Health, National Institute of Environmental Health, Chinese Center for
Disease Control and Prevention, Beijing100021,
China
| | - Meiling Zhang
- Acute Infectious Disease Prevention and Control
Institute, Yunnan Center for Disease Control and Prevention,
Kunming, Yunnan650022, China
| | - Jienan Zhou
- Acute Infectious Disease Prevention and Control
Institute, Yunnan Center for Disease Control and Prevention,
Kunming, Yunnan650022, China
| | - Xin Liu
- Ruili Center for Disease Control and
Prevention, Ruili, Yunnan678599, China
| | - Yan Wang
- Ruili Center for Disease Control and
Prevention, Ruili, Yunnan678599, China
| | - Changsheng Qu
- Longchuan Center for Disease Control and
Prevention, Longchuan, Yunnan678799, China
| | - Wenxiang Han
- Longchuan Center for Disease Control and
Prevention, Longchuan, Yunnan678799, China
| | - Min Hou
- China CDC Key Laboratory of Environment and Population
Health, National Institute of Environmental Health, Chinese Center for
Disease Control and Prevention, Beijing100021,
China
| | - Fuchang Deng
- China CDC Key Laboratory of Environment and Population
Health, National Institute of Environmental Health, Chinese Center for
Disease Control and Prevention, Beijing100021,
China
| | - Yueyun Luo
- China CDC Key Laboratory of Environment and Population
Health, National Institute of Environmental Health, Chinese Center for
Disease Control and Prevention, Beijing100021,
China
| | - Yixin Mao
- China CDC Key Laboratory of Environment and Population
Health, National Institute of Environmental Health, Chinese Center for
Disease Control and Prevention, Beijing100021,
China
| | - Wen Gu
- China CDC Key Laboratory of Environment and Population
Health, National Institute of Environmental Health, Chinese Center for
Disease Control and Prevention, Beijing100021,
China
| | - Zhaomin Dong
- School of Space and Environment, Beihang
University, Beijing100191, China
| | - Yang Pan
- Institute for Infectious Disease and Endemic Disease Control,
Beijing Center for Disease Prevention and Control,
Beijing100013, China
| | - Daitao Zhang
- Institute for Infectious Disease and Endemic Disease Control,
Beijing Center for Disease Prevention and Control,
Beijing100013, China
| | - Song Tang
- China CDC Key Laboratory of Environment and Population
Health, National Institute of Environmental Health, Chinese Center for
Disease Control and Prevention, Beijing100021,
China
| | - Lan Zhang
- China CDC Key Laboratory of Environment and Population
Health, National Institute of Environmental Health, Chinese Center for
Disease Control and Prevention, Beijing100021,
China
| |
Collapse
|
41
|
He C, Wang X, Shui A, Zhou X, Liu S. Is the virus-laden standing water change the transmission intensity of SARS-CoV-2 after precipitation? A framework for empirical studies. ENVIRONMENTAL RESEARCH 2022; 215:114127. [PMID: 36041541 PMCID: PMC9419435 DOI: 10.1016/j.envres.2022.114127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Understanding the relationship between precipitation and SARS-CoV-2 is significant for combating COVID-19 in the wet season. However, the causes for the variation of SARS-CoV-2 transmission intensity after precipitation is unclear. Starting from "the Zhengzhou event," we found that the virus-laden standing water formed after precipitation might trigger some additional routes for SARS-CoV-2 transmission and thus change the transmission intensity of SARS-CoV-2. Then, we developed an interdisciplinary framework to examine whether the health risk related to the virus-laden standing water needs to be a concern. The framework enables the comparison of the instant and lag effects of precipitation on the transmission intensity of SARS-CoV-2 between city clusters with different formation risks of the virus-laden standing water. Based on the city-level data of China between January 01, 2020, and December 31, 2021, we conducted an empirical study. The result showed that in the cities with a high formation risk of the virus-laden standing water, heavy rain increased the instant transmission intensity of SARS-CoV-2 by 6.2% (95%CI: 4.85-10.2%), while in the other cities, precipitation was uninfluential to SARS-CoV-2 transmission, revealing that the health risk of the virus-laden standing water should not be underestimated during the COVID-19 pandemic. To reduce the relevant risk, virus-laden water control and proper disinfection are feasible response strategies.
Collapse
Affiliation(s)
- Chengyu He
- School of Environment, Tsinghua University, 100084, Beijing, China
| | - Xiaoting Wang
- School of Environment, Tsinghua University, 100084, Beijing, China
| | - Ailun Shui
- School of Environment, Tsinghua University, 100084, Beijing, China
| | - Xiao Zhou
- School of Environment, Tsinghua University, 100084, Beijing, China
| | - Shuming Liu
- School of Environment, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
42
|
Maidana-Kulesza MN, Poma HR, Sanguino-Jorquera DG, Reyes SI, Del Milagro Said-Adamo M, Mainardi-Remis JM, Gutiérrez-Cacciabue D, Cristóbal HA, Cruz MC, Aparicio González M, Rajal VB. Tracking SARS-CoV-2 in rivers as a tool for epidemiological surveillance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022. [PMID: 35908692 DOI: 10.1101/2021.06.17.21259122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The aim of this work was to evaluate if rivers could be used for SARS-CoV-2 surveillance. Five sampling points from three rivers (AR-1 and AR-2 in Arenales River, MR-1 and MR-2 in Mojotoro River, and CR in La Caldera River) from Salta (Argentina), two of them receiving discharges from wastewater plants (WWTP), were monitored from July to December 2020. Fifteen water samples from each point (75 in total) were collected and characterized physico-chemically and microbiologically and SARS-CoV-2 was quantified by RT-qPCR. Also, two targets linked to human contributions, human polyomavirus (HPyV) and RNase P, were quantified and used to normalize SARS-CoV-2 concentration, which was compared to reported COVID-19 cases. Statistical analyses allowed us to verify the correlation between SARS-CoV-2 and the concentration of fecal indicator bacteria (FIB), as well as to find similarities and differences between sampling points. La Caldera River showed the best water quality; FIBs were within acceptable limits for recreational activities. Mojotoro River's water quality was not affected by the northern WWTP of the city. Instead, Arenales River presented the poorest water quality; at AR-2 was negatively affected by the discharges of the southern WWTP, which contributed to significant increase of fecal contamination. SARS-CoV-2 was found in about half of samples in low concentrations in La Caldera and Mojotoro Rivers, while it was high and persistent in Arenales River. No human tracers were detected in CR, only HPyV was found in MR-1, MR-2 and AR-1, and both were quantified in AR-2. The experimental and normalized viral concentrations strongly correlated with reported COVID-19 cases; thus, Arenales River at AR-2 reflected the epidemiological situation of the city. This is the first study showing the dynamic of SARS-CoV-2 concentration in an urban river highly impacted by wastewater and proved that can be used for SARS-CoV-2 surveillance to support health authorities.
Collapse
Affiliation(s)
- María Noel Maidana-Kulesza
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Hugo Ramiro Poma
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Diego Gastón Sanguino-Jorquera
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Sarita Isabel Reyes
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - María Del Milagro Said-Adamo
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina; Facultad de Ciencias Naturales, UNSa, Av. Bolivia 5150, Salta 4400, Argentina
| | - Juan Martín Mainardi-Remis
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina; Facultad de Ingeniería, UNSa, Av. Bolivia 5150, Salta 4400, Argentina
| | - Dolores Gutiérrez-Cacciabue
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina; Facultad de Ingeniería, UNSa, Av. Bolivia 5150, Salta 4400, Argentina
| | - Héctor Antonio Cristóbal
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina; Facultad de Ciencias Naturales, UNSa, Av. Bolivia 5150, Salta 4400, Argentina
| | - Mercedes Cecilia Cruz
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Mónica Aparicio González
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Verónica Beatriz Rajal
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina; Facultad de Ingeniería, UNSa, Av. Bolivia 5150, Salta 4400, Argentina; Singapore Centre for Environmental Life Science Engineering (SCELSE), Nanyang Technological University, Singapore.
| |
Collapse
|
43
|
Maidana-Kulesza MN, Poma HR, Sanguino-Jorquera DG, Reyes SI, Del Milagro Said-Adamo M, Mainardi-Remis JM, Gutiérrez-Cacciabue D, Cristóbal HA, Cruz MC, Aparicio González M, Rajal VB. Tracking SARS-CoV-2 in rivers as a tool for epidemiological surveillance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157707. [PMID: 35908692 PMCID: PMC9334864 DOI: 10.1016/j.scitotenv.2022.157707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 07/04/2022] [Accepted: 07/26/2022] [Indexed: 05/22/2023]
Abstract
The aim of this work was to evaluate if rivers could be used for SARS-CoV-2 surveillance. Five sampling points from three rivers (AR-1 and AR-2 in Arenales River, MR-1 and MR-2 in Mojotoro River, and CR in La Caldera River) from Salta (Argentina), two of them receiving discharges from wastewater plants (WWTP), were monitored from July to December 2020. Fifteen water samples from each point (75 in total) were collected and characterized physico-chemically and microbiologically and SARS-CoV-2 was quantified by RT-qPCR. Also, two targets linked to human contributions, human polyomavirus (HPyV) and RNase P, were quantified and used to normalize SARS-CoV-2 concentration, which was compared to reported COVID-19 cases. Statistical analyses allowed us to verify the correlation between SARS-CoV-2 and the concentration of fecal indicator bacteria (FIB), as well as to find similarities and differences between sampling points. La Caldera River showed the best water quality; FIBs were within acceptable limits for recreational activities. Mojotoro River's water quality was not affected by the northern WWTP of the city. Instead, Arenales River presented the poorest water quality; at AR-2 was negatively affected by the discharges of the southern WWTP, which contributed to significant increase of fecal contamination. SARS-CoV-2 was found in about half of samples in low concentrations in La Caldera and Mojotoro Rivers, while it was high and persistent in Arenales River. No human tracers were detected in CR, only HPyV was found in MR-1, MR-2 and AR-1, and both were quantified in AR-2. The experimental and normalized viral concentrations strongly correlated with reported COVID-19 cases; thus, Arenales River at AR-2 reflected the epidemiological situation of the city. This is the first study showing the dynamic of SARS-CoV-2 concentration in an urban river highly impacted by wastewater and proved that can be used for SARS-CoV-2 surveillance to support health authorities.
Collapse
Affiliation(s)
- María Noel Maidana-Kulesza
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Hugo Ramiro Poma
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Diego Gastón Sanguino-Jorquera
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Sarita Isabel Reyes
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - María Del Milagro Said-Adamo
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina; Facultad de Ciencias Naturales, UNSa, Av. Bolivia 5150, Salta 4400, Argentina
| | - Juan Martín Mainardi-Remis
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina; Facultad de Ingeniería, UNSa, Av. Bolivia 5150, Salta 4400, Argentina
| | - Dolores Gutiérrez-Cacciabue
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina; Facultad de Ingeniería, UNSa, Av. Bolivia 5150, Salta 4400, Argentina
| | - Héctor Antonio Cristóbal
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina; Facultad de Ciencias Naturales, UNSa, Av. Bolivia 5150, Salta 4400, Argentina
| | - Mercedes Cecilia Cruz
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Mónica Aparicio González
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Verónica Beatriz Rajal
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina; Facultad de Ingeniería, UNSa, Av. Bolivia 5150, Salta 4400, Argentina; Singapore Centre for Environmental Life Science Engineering (SCELSE), Nanyang Technological University, Singapore.
| |
Collapse
|
44
|
Mahlknecht J. Presence and persistence of SARS-CoV-2 in aquatic environments: A mini-review. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2022; 29:100385. [PMID: 35992049 PMCID: PMC9382236 DOI: 10.1016/j.coesh.2022.100385] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The introduction of SARS-CoV-2 into water bodies via sewage raises public health concerns. For the assessment of public health risks, it is necessary to know the presence and persistence of infectious SARS-CoV-2 in water and wastewater. The present mini-review documents the occurrence and decay rates of viable infectious SARS-CoV-2 and SARS-CoV-2 RNA in different water matrices including wastewater, river water, groundwater, tap water, and seawater. Persistence of viable SARS-CoV-2 is mainly temperature dependent. A rapid inactivation of infectious SARS-CoV-2 is found in river water, sea water, and wastewater compared to tap water. SARS-CoV-2 RNA was found to be considerably more stable than infectious SARS-CoV-2, indicating that the environmental detection of RNA alone does not prove risk of infection. Persistence assays need to consider physicochemical and biological water composition as well as the effect of detergents, enzymes, and filtering particulate matter.
Collapse
Affiliation(s)
- Jürgen Mahlknecht
- Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501, Monterrey, 64849, Nuevo Leon, Mexico
| |
Collapse
|
45
|
Mousazadeh M, Kabdaşlı I, Khademi S, Sandoval MA, Moussavi SP, Malekdar F, Gilhotra V, Hashemi M, Dehghani MH. A critical review on the existing wastewater treatment methods in the COVID-19 era: What is the potential of advanced oxidation processes in combatting viral especially SARS-CoV-2? JOURNAL OF WATER PROCESS ENGINEERING 2022; 49:103077. [PMID: 35990175 PMCID: PMC9381433 DOI: 10.1016/j.jwpe.2022.103077] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/19/2022] [Accepted: 08/15/2022] [Indexed: 06/01/2023]
Abstract
The COVID-19 epidemic has put the risk of virus contamination in water bodies on the horizon of health authorities. Hence, finding effective ways to remove the virus, especially SARS-CoV-2, from wastewater treatment plants (WWTPs) has emerged as a hot issue in the last few years. Herein, this study first deals with the fate of SARS-CoV-2 genetic material in WWTPs, then critically reviews and compares different wastewater treatment methods for combatting COVID-19 as well as to increase the water quality. This critical review sheds light the efficiency of advanced oxidation processes (AOPs) to inactivate virus, specially SARS-CoV-2 RNA. Although several physicochemical treatment processes (e.g. activated sludge) are commonly used to eliminate pathogens, AOPs are the most versatile and effective virus inactivation methods. For instance, TiO2 is the most known and widely studied photo-catalyst innocuously utilized to degrade pollutants as well as to photo-induce bacterial and virus disinfection due to its high chemical resistance and efficient photo-activity. When ozone is dissolved in water and wastewater, it generates a wide spectrum of the reactive oxygen species (ROS), which are responsible to degrade materials in virus membranes resulting in destroying the cell wall. Furthermore, electrochemical advanced oxidation processes act through direct oxidation when pathogens react at the anode surface or by indirect oxidation through oxidizing species produced in the bulk solution. Consequently, they represent a feasible choice for the inactivation of a wide range of pathogens. Nonetheless, there are some challenges with AOPs which should be addressed for application at industrial-scale.
Collapse
Affiliation(s)
- Milad Mousazadeh
- Social Determinants of Health Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Environmental Health Engineering, School of Health, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Işık Kabdaşlı
- İstanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, Ayazağa Campus, 34469 Maslak, İstanbul, Turkey
| | - Sara Khademi
- Health, Safety, and Environment Specialist, North Drilling Company, Ahvaz, Iran
| | - Miguel Angel Sandoval
- Universidad de Santiago de Chile USACH, Facultad de Química y Biología, Departamento de Química de los Materiales, Laboratorio de Electroquímica Medio Ambiental, LEQMA, Casilla 40, Correo 33, Santiago, Chile
- Universidad de Guanajuato, División de Ciencias Naturales y Exactas, Departamento de Ingeniería Química, Noria Alta S/N, 36050, Guanajuato, Guanajuato, Mexico
| | | | - Fatemeh Malekdar
- Department of Foot and Mouth Disease Vaccine Production, Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Vishakha Gilhotra
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Marjan Hashemi
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Institute for Environmental Research, Center for Solid Waste Research, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Robins PE, Dickson N, Kevill JL, Malham SK, Singer AC, Quilliam RS, Jones DL. Predicting the dispersal of SARS-CoV-2 RNA from the wastewater treatment plant to the coast. Heliyon 2022; 8:e10547. [PMID: 36091966 PMCID: PMC9448708 DOI: 10.1016/j.heliyon.2022.e10547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/22/2022] [Accepted: 09/01/2022] [Indexed: 11/28/2022] Open
Abstract
Viral pathogens including SARS-CoV-2 RNA have been detected in wastewater treatment effluent, and untreated sewage overflows, that pose an exposure hazard to humans. We assessed whether SARS-CoV-2 RNA was likely to have been present in detectable quantities in UK rivers and estuaries during the first wave of the Covid-19 pandemic. We simulated realistic viral concentrations parameterised on the Camel and Conwy catchments (UK) and their populations, showing detectable SARS-CoV-2 RNA concentrations for untreated but not for treated loading, but also being contingent on viral decay, hydrology, catchment type/shape, and location. Under mean or low river flow conditions, viral RNA concentrated within the estuaries allowing for viral build-up and caused a lag by up to several weeks between the peak in community infections and the viral peak in the environment. There was an increased hazard posed by SARS-CoV-2 RNA with a T 90 decay rate >24 h, as the estuarine build-up effect increased. High discharge events transported the viral RNA downstream and offshore, increasing the exposure risk to coastal bathing waters and shellfisheries - although dilution in this case reduced viral concentrations well below detectable levels. Our results highlight the sensitivity of exposure to viral pathogens downstream of wastewater treatment, across a range of viral loadings and catchment characteristics - with implications to environmental surveillance.
Collapse
Affiliation(s)
- Peter E. Robins
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Neil Dickson
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Jessica L. Kevill
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Shelagh K. Malham
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | | | - Richard S. Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Davey L. Jones
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
- Food Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6105, Australia
| |
Collapse
|
47
|
Zhang Y, Zhu K, Huang W, Guo Z, Jiang S, Zheng C, Yu Y. Can wastewater surveillance assist China to cost-effectively prevent the nationwide outbreak of COVID-19? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154719. [PMID: 35331760 PMCID: PMC8935960 DOI: 10.1016/j.scitotenv.2022.154719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
China has controlled the nationwide spread of COVID-19 since April 2020, but it is still facing an enormous threat of disease resurgence originating from infected international travelers. Taking the rapid transmission and the mutation of SARS-CoV-2 into consideration, the current status would be easily jeopardized if sporadic locally-transmitted individuals are not identified at an early stage. Clinical diagnosis is the gold standard for COVID-19 surveillance, but it is hard to screen presymptomatic or asymptomatic cases in those who have not exhibited symptoms. Since presymptomatic or asymptomatic individuals are infectious, it is urgent to establish a surveillance system based on other tools that can profile the entire population. Infected people including those who are symptomatic, presymptomatic, and asymptomatic shed SARS-CoV-2 RNA in feces and thereby endow wastewater-based epidemiology (WBE) with an early-warning ability for mass COVID-19 surveillance. In the context of China's "COVID-zero" strategy, this work intends to discuss the practical feasibility of WBE applications as an early warning and disease surveillance system in hopes that WBE together with clinical testing would cost-effectively restrain sporadic COVID-19 outbreaks in China.
Collapse
Affiliation(s)
- Ying Zhang
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Kongquan Zhu
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Weiyi Huang
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Zhixuan Guo
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Senhua Jiang
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Chujun Zheng
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yang Yu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China.
| |
Collapse
|
48
|
Effect of Time and Temperature on SARS-CoV-2 in Municipal Wastewater Conveyance Systems. WATER 2022. [DOI: 10.3390/w14091373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Wastewater surveillance for SARS-CoV-2 is becoming a widespread public health metric, but little is known about pre-analytical influences on these measurements. We examined SARS-CoV-2 loads from two sewer service areas with different travel times that were within the same metropolitan area. Throughout the one-year study, case rates were nearly identical between the two service areas allowing us to compare differences in empirical concentrations relative to conveyance system characteristics and wastewater treatment plant parameters. We found time did not have a significant effect on degradation of SARS-CoV-2 when using average transit times (22 vs. 7.5 h) (p = 0.08), or under low flow conditions when transit times are greater (p = 0.14). Flow increased rather than decreased SARS-CoV-2 case-adjusted concentrations, but this increase was only significant in one service area. Warmer temperatures (16.8–19.8 °C) compared with colder (8.4–12.3 °C) reduced SARS-CoV-2 case-adjusted loads by ~50% in both plants (p < 0.05). Decreased concentrations in warmer temperatures may be an important factor to consider when comparing seasonal dynamics. Oxygen demand and suspended solids had no significant effect on SARS-CoV-2 case-adjusted loads overall. Understanding wastewater conveyance system influences prior to sample collection will improve comparisons of regional or national data for SARS-CoV-2 community infections.
Collapse
|