1
|
Li J, Lyu W, Mi X, Yu J, Liu Y, Torad NL, Ayad MM, Feng J, Liao Y. Carbonized nitrogen-containing conjugated microporous polymers: Versatile platforms for high-performance carbon catalytic membranes and their angstrom-confined activation mechanism on peroxymonosulfate. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137862. [PMID: 40088670 DOI: 10.1016/j.jhazmat.2025.137862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/17/2025]
Abstract
Engineering high-performance N-doped carbon catalysts for peroxymonosulfate (PMS) activation and elucidating their activation mechanism are crucial for the degradation of emerging pollutants. In this study, we propose a novel self-template carbonization strategy (NSCS) based on a N-containing conjugated microporous polymer (NCMP, poly(triphenylamine)) to fabricate high-performance N-doped porous carbon catalysts. Owing to the unique N-mediated catalytic sites within the confined micropores of the NCMP precursor, the NSCS approach enables the investigation of reactive oxygen species evolution and their formation mechanisms as carbonization temperature increases from 200 to 1400 °C. The catalyst carbonized at 1000 °C exhibited high degradation activity (k = 0.170 min-1), driven primarily by O2•- and 1O2, with minor contributions from •OH and SO4•-. Additionally, a PMS self-decomposition and ¹O2 generation mechanism within angstrom-confined spaces was identified. A self-supported carbon catalytic membrane was fabricated from CPTPA-1000 (CPTPA-CNT) due to its high conjugation and thermal stability. This membrane demonstrated efficient removal of organic pollutant (k = 123.54 min-1, 220.3 L m-2 h-1 bar-1, 120 h, 99.4 %), outperforming the carbonized CNT membrane (k = 19.54 min-1, 67.5 L m-2 h-1 bar-1, 120 h, 14.8 %). This work paves an avenue for the design of high-performance carbon-based membranes and gives new insights into the 1O2 generation mechanism in N-doped carbon catalysts.
Collapse
Affiliation(s)
- Jiaqiang Li
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Wei Lyu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Xuejin Mi
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Junrong Yu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yanbiao Liu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China
| | - Nagy L Torad
- Center for Catalysis and Separations (CeCas) and Chemistry Department, Khalifa University of Science and Technology, PO. Box 127788, Abu Dhabi, United Arab Emirates; Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mohamad M Ayad
- Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Jiangtao Feng
- Department of Environmental Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yaozu Liao
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
2
|
Moradi H, Vanlalhmingmawia C, Kim DS, Yang JK. Plasma-catalytic remediation of pharmaceutical-contaminated wastewater: Catalyst design and mechanistic insights from DFT. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125281. [PMID: 40203717 DOI: 10.1016/j.jenvman.2025.125281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/18/2025] [Accepted: 04/04/2025] [Indexed: 04/11/2025]
Abstract
Contaminants of emerging concern (CECs), characterized by persistence, poor biodegradability, and high toxicity, pose significant risks to aquatic ecosystems and human health. Plasma-catalytic processes may eliminate CECs, particularly micropollutants, from wastewater. However, discharge-zone thermalization and heavy-metal leaching from metal-based catalysts pose challenges for industrial adoption of cold plasma technology. This study presents a novel coaxial plasma electrode and a heteroatom-doped carbonaceous catalyst that overcome these limitations. Catalysts with varying boron and oxygen contents are synthesized through the pyrolysis of waste wood, boric acid, and zinc borate at 1000 °C. Boron-doped graphene-like carbon with 15-wt.% boric acid and 15-wt.% zinc borate exhibits superior ozone degradation and hydrogen-peroxide formation. The plasma-catalytic system demonstrates high-efficacy micropollutant degradation, achieving complete naproxen degradation in less than 30 min with a 0.1112 degradation rate and 75.67 % mineralization. Additionally, it effectively removed naproxen, rhodamine B, and Congo red from real wastewater spiked with 10 ppm of each pollutant. Density functional theory calculations elucidate the high affinity of armchair BC2O for ozone adsorption. Moreover, the dual role of zinc borate as both an activator and dopant in the synthesis of boron-doped graphene-like carbon is revealed. As the synthesized metal-free catalyst exhibits high performance for treatment of real wastewater samples, and the plasma setup is simple and efficient, this system has scalability and practical applicability in wastewater treatment plants.
Collapse
Affiliation(s)
- Hiresh Moradi
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | | | - Dong-Su Kim
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea.
| | - Jae-Kyu Yang
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea.
| |
Collapse
|
3
|
Song W, Ji Y, Yu Z, Li H, Li X, Ren X, Li Y, Xu X, Zhao Y, Yan L. Microenvironment modulation of biocatalyst derived from natural cellulose of wheat straw for enhancing p-nitrophenol degradation via boosting peroxymonosulfate activation. Int J Biol Macromol 2024; 281:136525. [PMID: 39396592 DOI: 10.1016/j.ijbiomac.2024.136525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/09/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Defect-rich nitrogen-doped biocatalyst (B-NC) was synthesized from natural cellulose of wheat straw using straightforward mechanical method and one-step pyrolysis approach. In contrast to the nitrogen-doped biocatalyst (NC), by leveraging the synergistic effects of nitrogen dopants and surface defects, the microenvironment-modulated B-NC exhibited the enhanced mass transfer efficiency and a significant improvement in reactivity for p-nitrophenol degradation (111 %-196 %). The catalyst's exceptional performance primarily arose from graphitic N, pyridinic N and CO active sites, which mainly derived from the cellulose structure of wheat straw and nitrogen dopants. Electron paramagnetic resonance and quenching tests confirmed that the B-NC/peroxymonosulfate system generated more reactive species (SO4•-, •OH, O2•-, and 1O2) during p-nitrophenol degradation, surpassing the NC/peroxymonosulfate system. Additionally, both density functional theory calculations and electrochemical experiments provided evidence of peroxymonosulfate strongly adsorbing onto B-NC's defect sites, facilitating the formation of catalyst/peroxymonosulfate* complexes and promoting electron transfer processes. This research provides valuable insights into the regulation of defects in nitrogen-doped biocatalyst derived from natural cellulose, presenting a promising solution for remediating refractory organic pollutants.
Collapse
Affiliation(s)
- Wen Song
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, People's Republic of China
| | - Yuqi Ji
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, People's Republic of China
| | - Zihan Yu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, People's Republic of China
| | - Hang Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, People's Republic of China
| | - Xuguang Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, People's Republic of China
| | - Xiaohua Ren
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, People's Republic of China
| | - Yanfei Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, People's Republic of China
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, Shandong, People's Republic of China
| | - Yanxia Zhao
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, People's Republic of China
| | - Liangguo Yan
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, People's Republic of China.
| |
Collapse
|
4
|
Zhong H, Gong Z, Yu J, Hou Y, Tao Y, Fu Q, Yang H, Xiao X, Cao X, Wang J, Ouyang G. Remarkable Active Site Utilization in Edge-Hosted-N Doped Carbocatalysts for Fenton-Like Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404958. [PMID: 39258821 PMCID: PMC11538648 DOI: 10.1002/advs.202404958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/30/2024] [Indexed: 09/12/2024]
Abstract
Improving the utilization of active sites in carbon catalysts is significant for various catalytic reactions, but still challenging, mainly due to the lack of strategies for controllable introduction of active dopants. Herein, a novel "Ar plasma etching-NH3 annealing" strategy is developed to regulate the position of active N sites, while maintaining the same nitrogen species and contents. Theoretical and experimental results reveal that the edge-hosted-N doped carbon nanotubes (E-N-CNT), with only 0.29 at.% N content, show great affinity to peroxymonosulfate (PMS), and exhibit excellent Fenton-like activity by generating singlet oxygen (1O2), which can reach as high as 410 times higher than the pristine CNT. The remarkable utilization of edge-hosted nitrogen atom is further verified by the edge-hosted-N enriched carbocatalyst, which shows superior capability for 4-chlorophenol degradation with a turnover frequency (TOF) value as high as 3.82 min-1, and the impressive TOF value can even surpass those of single-atom catalysts. This work proposes a controllable position regulation of active sites to improve atom utilization, which provides a new insight into the design of excellent Fenton-like catalysts with remarkable atom utilization efficiency.
Collapse
Affiliation(s)
- Huajie Zhong
- School of Chemical Engineering and TechnologySun Yat‐Sen UniversityZhuhaiGuangdong519082P. R. China
| | - Zeyu Gong
- School of Chemical Engineering and TechnologySun Yat‐Sen UniversityZhuhaiGuangdong519082P. R. China
| | - Jiaxing Yu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhouGuangdong510275P. R. China
| | - Yu Hou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhouGuangdong510275P. R. China
| | - Yuan Tao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhouGuangdong510275P. R. China
| | - Qi Fu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhouGuangdong510275P. R. China
| | - Huangsheng Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhouGuangdong510275P. R. China
| | - Xinzhe Xiao
- School of Chemical Engineering and TechnologySun Yat‐Sen UniversityZhuhaiGuangdong519082P. R. China
| | - Xingzhong Cao
- Institute of High Energy PhysicsChinese Academy of SciencesBeijing100049P. R. China
| | - Junhui Wang
- School of Chemical Engineering and TechnologySun Yat‐Sen UniversityZhuhaiGuangdong519082P. R. China
| | - Gangfeng Ouyang
- School of Chemical Engineering and TechnologySun Yat‐Sen UniversityZhuhaiGuangdong519082P. R. China
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhouGuangdong510275P. R. China
- College of Chemistry & Molecular EngineeringCenter of Advanced Analysis and Computational ScienceZhengzhou UniversityZhengzhou450001P. R. China
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous ChemicalsGuangdong Institute of Analysis (China National Analytical Center Guangzhou)Guangdong Academy of Science100 Xianlie Middle RoadGuangzhou510070P. R. China
| |
Collapse
|
5
|
Yang Y, Tong Y, Han Q, Feng L, Gao P, Zhang L. Effects of coexisting nanomaterials on the photodegradation behavior and ecotoxicity of antibiotics in the aqueous. CHEMOSPHERE 2024; 366:143509. [PMID: 39384139 DOI: 10.1016/j.chemosphere.2024.143509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/11/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
Nanomaterials (NPs) and antibiotics, as two emergent pollutants, forms a complex contamination through their interaction, potentially causing adverse effects on the organism. This study systematically examined the influence of two NPs (CuO NPs and carbon nanotubes, CNTs) on the photodegradation behavior of tetracycline (TC) and their combined toxic effects on Chlorella vulgaris. The results showed that CuO NPs significantly accelerated TC photodegradation compared to CNTs, increasing the TC photodegradation rate constant by187.6%. Electron spin resonance (ESR) indicated that under the coexistence of CuO NPs or CNTs, 1O2、O2•- and •OH were the main active species promoting TC photodegradation. Probe and quenching experiments confirmed the predominant role of O2•- and 1O2 in the presence of CuO NPs and CNTs. Additionally, three possible TC photodegradation pathways were proposed for the coexistence of CuO NPs and CNTs. In the Chlorella vulgaris growth inhibition experiment, the combined toxicity of CuO NPs or CNTs and TC was higher than that of individual substance, indicating significant synergistic effects, especially with the combination of CNTs and TC. This study provides a new perspective on accurately assessing the environmental behaviors and risks when NPs and antibiotics coexist.
Collapse
Affiliation(s)
- Yang Yang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yao Tong
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Qi Han
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Li Feng
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Peng Gao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Liqiu Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
6
|
Zhao R, Chen D, Liu H, Tian H, Li R, Huang Y. FePO 4/WB as an efficient heterogeneous Fenton-like catalyst for rapid removal of neonicotinoid insecticides: ROS quantification, mechanistic insights and degradation pathways. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135068. [PMID: 39002487 DOI: 10.1016/j.jhazmat.2024.135068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/15/2024]
Abstract
Iron-based catalysts for peroxymonosulfate (PMS) activation hold considerable potential in water treatment. However, the slow conversion of Fe(III) to Fe(II) restricts its large-scale application. Herein, an iron phosphate tungsten boride composite (FePO4/WB) was synthesized by a simple hydrothermal method to facilitate the Fe(III)/Fe(II) redox cycle and realize the efficient degradation of neonicotinoid insecticides (NEOs). Based on electron paramagnetic resonance (EPR) characterization, scavenging experiments, chemical probe approaches, and quantitative tests, both radicals (HO• and SO4⋅-) and non-radicals (1O2 and Fe(IV)) were produced in the FePO4/WB-PMS system, with relative contributions of 3.02 %, 3.58 %, 6.24 %, and 87.16 % to the degradation of imidacloprid (IMI), respectively. Mechanistic studies revealed that tungsten boride (WB) promoted the reduction of FePO4, and the generated Fe(II) dominantly activated PMS through a two-electron transfer to form Fe(IV), while a minority of Fe(II) engaged in a one-electron transfer with PMS to produce SO4⋅-, HO•, and 1O2. In addition, four degradation pathways of NEOs were proposed by analyzing the byproducts using UPLC-Q-TOF-MS/MS. Besides, seed germination experiments revealed the biotoxicity of NEOs was significantly reduced after degradation via the FePO4/WB-PMS system. Meanwhile, the recycling experiments and continuous flow reactor experiments showed that FePO4/WB exhibited high stability. Overall, this study provided a new perspective on water remediation by Fenton-like reaction. ENVIRONMENTAL IMPLICATION: Neonicotinoids (NEOs) are a type of insecticide used widely around the world. They've been found in many aquatic environments, raising concerns about their possible negative effects on the environment and health. Iron-based catalysts for peroxymonosulfate (PMS) activation hold great promise for water purification. However, the slow conversion of Fe(III) to Fe(II) restricts its large-scale application. Herein, iron phosphate tungsten boride composite (FePO4/WB) was synthesized by a simple hydrothermal method to facilitate the Fe(III)/Fe(II) redox cycle and realize the efficient degradation of NEOs. The excellent stability and reusability provided a great prospect for water remediation.
Collapse
Affiliation(s)
- Rongrong Zhao
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China
| | - Danyi Chen
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China
| | - Honglin Liu
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China.
| | - Hailin Tian
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China; College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China
| | - Ruiping Li
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China
| | - Yingping Huang
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
7
|
Zhao X, Liu S, Tong Y, Sun L, Han Q, Feng L, Zhang L. Comparative study on the activation of peroxymonosulfate and peroxydisulfate by Ar plasma-etching CNTs for sulfamethoxazole degradation: Efficiency and mechanisms. CHEMOSPHERE 2024; 359:142287. [PMID: 38723685 DOI: 10.1016/j.chemosphere.2024.142287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024]
Abstract
Sulfamethoxazole (SMX), a widely utilized antibiotic, was continually detected in the environment, causing serious risks to aquatic ecology and water security. In this study, carbon nanotubes (CNTs) with abundant defects were developed by argon plasma-etching technology to enhance the activation of persulfate (PS, including peroxymonosulfate (PMS) and peroxydisulfate (PDS)) for SMX degradation while reducing environmental toxicity. Obviously, the increase of ID/IG value from 0.980 to 1.333 indicated that Ar plasma-etching successfully introduced rich defects into CNTs. Of note, Ar-90-CNT, whose Ar plasma-etching time was 90 min with optimum catalytic performance, exhibited a significant discrepancy between PMS activation and PDS activation. Interestingly, though the Ar-90-CNT/PDS system (kobs = 0.0332 min-1) was more efficient in SMX elimination than the Ar-90-CNT/PMS system (kobs = 0.0190 min-1), Ar plasma-etching treatment had no discernible enhancement in the catalytic efficiency of MWCNT for PDS activation. Then the discrepancy on activation mechanism between PMS and PDS was methodically investigated through quenching experiments, electron spin resonance (ESR), chemical probes, electrochemical measurements and theoretical calculations, and the findings unraveled that the created vacancy defects were the ruling active sites for the production of dominated singlet oxygen (1O2) in the Ar-90-CNT/PMS system to degrade SMX, while the electron transfer pathway (ETP), originated from PDS activation by the inherent edge defects, was the central pathway for SMX removal in the Ar-90-CNT/PDS system. Based on the toxicity test of Microcystis aeruginosa, the Ar-90-CNT/PDS system was more effective in alleviating environmental toxicity during SMX degradation. These findings not only provide insights into the discrepancy between PMS activation and PDS activation via carbon-based materials with controlled defects regulated by the plasma-etching strategy, but also efficiently degrade sulfonamide antibiotics and reduce the toxicity of their products.
Collapse
Affiliation(s)
- Xuecong Zhao
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Shiqi Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yao Tong
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Lei Sun
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Qi Han
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Li Feng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Liqiu Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
8
|
Li Z, Feng L, Zhang L, Gao P, Liu Y. Fabrication of porous and defect-rich BiOI/MWCNTs photocatalyst by Ar plasma-etching for emerging pollutants degradation. ENVIRONMENTAL RESEARCH 2024; 252:119015. [PMID: 38692423 DOI: 10.1016/j.envres.2024.119015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
Carbon material modification and defect engineering are indispensable for bolstering the photocatalytic effectiveness of bismuth halide oxide (BiOX). In this study, a novel porous and defect-rich Ar-CB-2 photocatalyst was synthesized for emerging pollutants degradation. Leveraging the interfacial coupling effect of multi-walled carbon nanotubes (MWCNTs), we expanded the absorption spectrum of BiOI nanosheets and significantly suppressed the recombination of charge carriers. Introducing defects via Argon (Ar) plasma-etching further bolstered the adsorption efficacy and electron transfer properties of photocatalyst. In comparison to the pristine BiOI and CB-2, the Ar-CB-2 photocatalyst demonstrated superior photodegradation efficiency, with the first-order reaction rates for the photodegradation of tetracycline (TC) and bisphenol A (BPA) increasing by 2.83 and 4.53 times, respectively. Further probe experiments revealed that the steady-state concentrations of ·O2- and 1O2 in the Ar-CB-2/light system were enhanced by a factor of 1.67 and 1.28 compared to CB-2/light system. This result confirmed that the porous and defect-rich structure of Ar-CB-2 inhibited electron-hole recombination and boosted photocatalyst-oxygen interaction, swiftly transforming O2 into active oxygen species, thus accelerating their production. Furthermore, the possible degradation pathways for TC and BPA in the Ar-CB-2/light system were predicted. Overall, these findings offered a groundbreaking approach to the development of highly effective photocatalysts, capable of swiftly breaking down emerging pollutants.
Collapse
Affiliation(s)
- Zexin Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Li Feng
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Liqiu Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Peng Gao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Yongze Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
9
|
Zhang Y, Zhao W, Zhang X, Wang S. Highly efficient targeted adsorption and catalytic degradation of ciprofloxacin by a novel molecularly imprinted bimetallic MOFs catalyst for persulfate activation. CHEMOSPHERE 2024; 357:141894. [PMID: 38615958 DOI: 10.1016/j.chemosphere.2024.141894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 04/16/2024]
Abstract
Given the presence of emerging pollutants at low concentrations in water bodies, which are inevitably affected by background substances during the removal process. In this study, we synthesized molecularly imprinted catalysts (Cu/Ni-MOFs@MIP) based on bimetallic metal-organic frameworks for the targeted degradation of ciprofloxacin (CIP) in advanced oxidation processes (AOPs). The electrostatic interaction and functional group binding of CIP with specific recognition sites on Cu/Ni-MOFs@MIP produced excellent selective recognition (Qmax was 14.82 mg g-1), which enabled the active radicals to approach and remove the contaminants faster. Electron paramagnetic resonance (EPR) analysis and quenching experiments revealed the coexistence of ∙OH, SO42-, and 1O2, with ∙OH dominating the system. Based on experimental and theoretical calculations, the reaction sites of CIP were predicted and the possible degradation pathways and mechanisms of Cu/Ni-MOFs@MIP/PMS systems were proposed. This study opens up a new platform for the targeted removal of target pollutants in AOPs.
Collapse
Affiliation(s)
- Yang Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Wenqian Zhao
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Xiaodong Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Shuguang Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| |
Collapse
|
10
|
Xie J, Latif J, Yang K, Wang Z, Zhu L, Yang H, Qin J, Ni Z, Jia H, Xin W, Li X. A state-of-art review on the redox activity of persistent free radicals in biochar. WATER RESEARCH 2024; 255:121516. [PMID: 38552490 DOI: 10.1016/j.watres.2024.121516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/04/2024] [Accepted: 03/23/2024] [Indexed: 04/24/2024]
Abstract
Biochar-bound persistent free radicals (biochar-PFRs) attract much attention because they can directly or indirectly mediate the transformation of contaminants in large-scale wastewater treatment processes. Despite this, a comprehensive top-down understanding of the redox activity of biochar-PFRs, particularly consumption and regeneration mechanisms, as well as challenges in redox activity assessment, is still lacking. To tackle this challenge, this review outlines the identification and determination methods of biochar-PFRs, which serve as a prerequisite for assessing the redox activity of biochar-PFRs. Recent developments concerning biochar-PFRs are discussed, with a main emphasis on the reaction mechanisms (both non-free radical and free radical pathways) and their effectiveness in removing contaminants. Importantly, the review delves into the mechanism of biochar-PFRs regeneration, triggered by metal cations, reactive oxygen species, and ultraviolet radiations. Furthermore, this review thoroughly explores the dilemma in appraising the redox activity of biochar-PFRs. Components with unpaired electrons (particular defects and metal ions) interfere with biochar-PFRs signals in electron paramagnetic resonance spectra. Scavengers and extractants of biochar-PFRs also inevitably modify the active ingredients of biochar. Based on these analyses, a practical strategy is proposed to precisely determine the redox activity of biochar-PFRs. Finally, the review concludes by presenting current gaps in knowledge and offering suggestions for future research. This comprehensive examination aims to provide new and significant insights into the redox activity of biochar-PFRs.
Collapse
Affiliation(s)
- Jia Xie
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Junaid Latif
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Kangjie Yang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Zhiqiang Wang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Lang Zhu
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Huiqiang Yang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Jianjun Qin
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Zheng Ni
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Hanzhong Jia
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China.
| | - Wang Xin
- College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhhot 010022, China
| | - Xing Li
- College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhhot 010022, China
| |
Collapse
|
11
|
Ma C, Liu Y, Wang J, Evrard Deric NT, Li Y, Fan X, Peng W. Facile synthesis of pyrite FeS 2 on carbon spheres for high-efficiency Fenton-like reaction. CHEMOSPHERE 2024; 355:141799. [PMID: 38554876 DOI: 10.1016/j.chemosphere.2024.141799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/23/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
Designing iron-based catalysts for Fenton-like reactions with peroxymonosulfate (PMS) as oxidants have attracted growing attentions. Herein, pyrite FeS2 supported on carbon spheres (FeS2@C) is synthesized by a facile low-temperature method. The FeS2@C/PMS system can degrade carbamazepine (CBZ) effectively in a wide pH range. Sulfate radicals (SO4·-), hydroxyl radicals (·OH), superoxide radical (O2·-), and singlet oxygen (1O2) are the responsible reactive oxygen species (ROSs) for CBZ degradation. Moreover, in the simulated fixed-bed reactor, the FeS2@C/PMS system can maintain a high CBZ removal ratio of >95% for than 8 h, exhibiting its excellent stability. The outstanding performance of FeS2@C/PMS system is attributed to the presence of carbon spheres and lattice S2-, which together promote the Fe(III)/Fe(II) redox cycle. The FeS2@C is a promising catalyst due to its facile synthesis, low cost, high efficiency, and excellent stability to activate PMS for organics degradation.
Collapse
Affiliation(s)
- Chengbo Ma
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300050, China
| | - Yuexu Liu
- Peric Special Gases Co., Ltd., Handan, 057550, China
| | - Jun Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300050, China
| | | | - Yang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300050, China
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300050, China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300050, China.
| |
Collapse
|
12
|
Wang X, Li D, Dai J, Xue Q, Yang C, Xia L, Qi X, Bao B, Yang S, Xu Y, Yuan C, Luo W, Cabot A, Dai L. Blocking Metal Nanocluster Growth through Ligand Coordination and Subsequent Polymerization: The Case of Ruthenium Nanoclusters as Robust Hydrogen Evolution Electrocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309176. [PMID: 38150625 DOI: 10.1002/smll.202309176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/03/2023] [Indexed: 12/29/2023]
Abstract
Metal nanoclusters providing maximized atomic surface exposure offer outstanding hydrogen evolution activities but their stability is compromised as they are prone to grow and agglomerate. Herein, a possibility of blocking metal ion diffusion at the core of cluster growth and aggregation to produce highly active Ru nanoclusters supported on an N, S co-doped carbon matrix (Ru/NSC) is demonstrated. To stabilize the nanocluster dispersion, Ru species are initially coordinated through multiple Ru─N bonds with N-rich 4'-(4-aminophenyl)-2,2:6',2''-terpyridine (TPY-NH2) ligands that are subsequently polymerized using a Schiff base. After the pyrolysis of the hybrid composite, highly dispersed ultrafine Ru nanoclusters with an average size of 1.55 nm are obtained. The optimized Ru/NSC displays minimal overpotentials and high turnover frequencies, as well as robust durability both in alkaline and acidic electrolytes. Besides, outstanding mass activities of 3.85 A mg-1 Ru at 50 mV, i.e., 16 fold higher than 20 wt.% Pt/C are reached. Density functional theory calculations rationalize the outstanding performance by revealing that the low d-band center of Ru/NSC allows the desorption of *H intermediates, thereby enhancing the alkaline HER activity. Overall, this work provides a feasible approach to engineering cost-effective and robust electrocatalysts based on carbon-supported transition metal nanoclusters for future energy technologies.
Collapse
Affiliation(s)
- Xiaohong Wang
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, 361005, China
| | - DongXu Li
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, 361005, China
| | - Juguo Dai
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, 361005, China
- Catalonia Institute for Energy Research (IREC), Sant Adrià de Besòs, Barcelona, Catalonia, 08930, Spain
| | - Qian Xue
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Chunying Yang
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, 361005, China
| | - Long Xia
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, 361005, China
| | - Xueqiang Qi
- Catalonia Institute for Energy Research (IREC), Sant Adrià de Besòs, Barcelona, Catalonia, 08930, Spain
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Bingtao Bao
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, 361005, China
| | - Siyu Yang
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, 361005, China
| | - Yiting Xu
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, 361005, China
| | - Conghui Yuan
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, 361005, China
| | - Weiang Luo
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, 361005, China
| | - Andreu Cabot
- Catalonia Institute for Energy Research (IREC), Sant Adrià de Besòs, Barcelona, Catalonia, 08930, Spain
- ICREA, Pg. Lluis Companys 23, Barcelona, Catalonia, 08010, Spain
| | - Lizong Dai
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
13
|
Wang Y, Lin Y, He S, Wu S, Yang C. Singlet oxygen: Properties, generation, detection, and environmental applications. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132538. [PMID: 37734310 DOI: 10.1016/j.jhazmat.2023.132538] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
Singlet oxygen (1O2) is molecular oxygen in the excited state with high energy and electrophilic properties. It is widely found in nature, and its important role is gradually extending from chemical syntheses and medical techniques to environmental remediation. However, there exist ambiguities and controversies regarding detection methods, generation pathways, and reaction mechanisms which have hindered the understanding and applications of 1O2. For example, the inaccurate detection of 1O2 has led to an overestimation of its role in pollutant degradation. The difficulty in detecting multiple intermediate species obscures the mechanism of 1O2 production. The applications of 1O2 in environmental remediation have also not been comprehensively commented on. To fill these knowledge gaps, this paper systematically discussed the properties and generation of 1O2, reviewed the state-of-the-art detection methods for 1O2 and long-standing controversies in the catalytic systems. Future opportunities and challenges were also discussed regarding the applications of 1O2 in the degradation of pollutants dissolved in water and volatilized in the atmosphere, the disinfection of drinking water, the gas/solid sterilization, and the self-cleaning of filter membranes. This review is expected to provide a better understanding of 1O2-based advanced oxidation processes and practical applications in the environmental protection of 1O2.
Collapse
Affiliation(s)
- Yue Wang
- College of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Yan Lin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shanying He
- College of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China.
| | - Shaohua Wu
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China.
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China.
| |
Collapse
|
14
|
Liu S, Zhang Z, Lu R, Mao Y, Ge H, Liu C, Tian C, Yin S, Feng L, Liu Y, Chen C, Zhang L. O 2 plasma-modified carbon nanotube for sulfamethoxazole degradation via peroxymonosulfate activation: Synergism of radical and non-radical pathways boosting water decontamination and detoxification. CHEMOSPHERE 2023; 344:140214. [PMID: 37739128 DOI: 10.1016/j.chemosphere.2023.140214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Sulfamethoxazole (SMX), a widely used antibiotic, has triggered increasing attention due to its extensive detection in wastewater effluent, causing serious ecological threats. Herein, a carbon-based heterogeneous catalyst was developed by the O2 plasma-etching process, regulating oxygen-containing functional groups (OFGs) and defects of carbon nanotubes (O-CNT) to activate peroxymonosulfate (PMS) for highly efficient SMX abatement. Through adjusting the etching time, the desired active sites (i.e., C=O and defects) could be rationally created. Experiments collectively suggested that the degradation of SMX was owing to the contribution of synergism by radical (•OH (17.3%) and SO4•- (39.3%)) and non-radical pathways (1O2, 43.4%), which originated from PMS catalyzed by C=O and defects. In addition, the possible degradation products and transformation pathways of SMX in the system were inferred by combining the Fukui function calculations and the LC-MS/MS analysis. And the possible degradation pathway was effective in reducing the environmental toxicity of SMX, as evidenced by the T.E.S.T. software and the micronucleus experiment on Vicia faba root tip. Also, the catalytic system exhibited excellent performance for different antibiotics removal, such as amoxicillin (AMX), carbamazepine (CBZ) and isopropylphenazone (PRP). This study is expected to provide an alternative strategy for antibiotics removal in water decontamination and detoxification.
Collapse
Affiliation(s)
- Shiqi Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Zichen Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Rui Lu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yuankun Mao
- Technical Center of Solid Waste and Chemicals Management, Ministry of Ecology and Environment, Beijin, 100029, China
| | - Huiru Ge
- Technical Center of Solid Waste and Chemicals Management, Ministry of Ecology and Environment, Beijin, 100029, China
| | - Can Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Chenxi Tian
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Siyuan Yin
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Li Feng
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Yongze Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Chao Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Liqiu Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
15
|
Ma Z, Fang L, Liu L, Hu B, Wang S, Yu S, Wang X. Efficient decontamination of organic pollutants from wastewater by covalent organic framework-based materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166453. [PMID: 37607627 DOI: 10.1016/j.scitotenv.2023.166453] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/23/2023] [Accepted: 08/18/2023] [Indexed: 08/24/2023]
Abstract
Covalent organic frameworks (COFs), assembling through covalent bonds, are a rising class of porous materials. Nowadays, various COFs are widely applied in organic pollutants decontamination due to the outstanding capabilities of large surface area, multiple functional groups, porous structure, excellent absorptivity, flexible design and so on. This review concentrates on the applications of COFs in different decontamination technologies such as solid-phase extraction, membrane filtration and sieving, adsorption, and catalysis reaction. The factors influencing water chemistry, such as pH, temperature, salt concentration and natural organic matter, are summarized in terms of their impact on decontamination performance and the extraction mechanisms for the diverse analytes. The interaction mechanisms between COFs and organic pollutants were hydrogen bonding, π-π stacking, hydrophilic, hydrophobic, and electrostatic interactions. Furthermore, a perspective on current obstacles and upcoming developments of COFs for organic pollutant removal has been provided. Due to their adaptable and versatile design as well as elaborate and diverse functionalization, COFs possess significant possibility in ameliorating environmental pollution.
Collapse
Affiliation(s)
- Zixuan Ma
- School of Life Science, Shaoxing University, Shaoxing 312000, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Lin Fang
- School of Life Science, Shaoxing University, Shaoxing 312000, PR China.
| | - Lijie Liu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Shaoxing 312000, PR China
| | - Suhua Wang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China
| | - Shujun Yu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China.
| | - Xiangke Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China.
| |
Collapse
|
16
|
Tong Y, Gao P, Xu J, Liu S, Yang Y, Wang Y, Feng L, Han Q, Liu Y, Zhang L. Cobalt doped nitrogen-vacancies-rich C 3N 5 with optimizing local electron distribution boosts peroxymonsulfate activation for tetracycline degradation: Multiple electron transfer mechanisms. CHEMOSPHERE 2023; 339:139549. [PMID: 37499802 DOI: 10.1016/j.chemosphere.2023.139549] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/15/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023]
Abstract
Heterogeneous photocatalysis coupled with peroxymonosulfate (PMS) activation is considered as an advanced water purification technology for emerging contaminates degradation. In this study, Cobalt (Co) doped nitrogen-vacancies-rich C3N5 photocatalysts (Co/Nv-C3N5) were designed to activate PMS for tetracycline removal. The photo-chemical oxidation system displayed superior advantage, in which the observed rate constant of tetracycline degradation (0.1488 min-1) was 10.86 and 1.82 times higher than that of photo-oxidation and chemical-oxidation systems. Density functional theory calculation results verified the reconstruction of local charge distribution during PMS activation, indicating Co doping and nitrogen-vacancy engineering not only promoted photoelectrons capture, but also boosted electron transfer from the C-N framework to PMS and the generation of active species. Furthermore, several unique multiple electron transfer mechanisms were found in nonradicals (h+, 1O2 and Co(IV)) pathways. Additionally, three possible tetracycline degradation pathways were proposed and the toxicity of the intermediates was evaluated. Overall, the findings from this study provided a novel strategy for developing high-efficient photocatalyst for the rapid degradation of organic pollutants.
Collapse
Affiliation(s)
- Yao Tong
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Peng Gao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Jiacan Xu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Shiqi Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yang Yang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yang Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Li Feng
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Qi Han
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yongze Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Liqiu Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
17
|
Sun Y, Ma C, Wu D, Liu X, Li N, Fan X, Li Y, Zhang G, Zhang F, Peng W. Coating CoFe 2O 4 shell on Fe particles to increase the utilization efficiencies of Fe and peroxymonosulfate for low-cost Fenton-like reactions. WATER RESEARCH 2023; 244:120542. [PMID: 37659176 DOI: 10.1016/j.watres.2023.120542] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/13/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
Bimetallic composites (Fe@CoFe2O4) with zero-valent Fe as the core encapsulated by CoFe2O4 layers are synthesized by a coprecipitation-calcination method, which are applied to activate PMS for the degradation of bisphenol A (BPA). Enhanced activity of Fe@CoFe2O4 is achieved with very fast degradation rate (kobs = 0.5737 min-1). In the fixed-bed reactor, the catalyst lifetime (tul) of Fe@CoFe2O4 is determined to be 22 h compared to 11 h of Fe, and the deactivation rate constant (kd) for Fe@CoFe2O4 is 0.0083 mg·L-1·h-1, only ∼1/10 of Fe (0.0731). The XPS results indicate that the core-shell structure of Fe@CoFe2O4 could promote the redox cycles of Co3+/Co2+ and Fe3+/Fe2+. It is proved that the coating of CoFe2O4 shell on Fe0 can protect the Fe0 core from being oxidized by PMS to form passivation layer. The electrons of Fe0 can therefore be used effectively for activating PMS to produce ROSs via the CoFe2O4 shell. This modification method of Fe0 would decrease the cost of PMS based wastewater remediation greatly, thus should have great potential on an industrial scale.
Collapse
Affiliation(s)
- Yuqing Sun
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Chengbo Ma
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Di Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Xiaomei Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Ning Li
- School of Environmental Science & Engineering, Tianjin University, Tianjin 300350, PR China
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China; Zhejiang Institute of Tianjin University, Shaoxing, Zhejiang 312300, PR China
| | - Yang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China; Zhejiang Institute of Tianjin University, Shaoxing, Zhejiang 312300, PR China
| | - Guoliang Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Fengbao Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China; Zhejiang Institute of Tianjin University, Shaoxing, Zhejiang 312300, PR China.
| |
Collapse
|
18
|
Wang L, Xiao K, Zhao H. The debatable role of singlet oxygen in persulfate-based advanced oxidation processes. WATER RESEARCH 2023; 235:119925. [PMID: 37028213 DOI: 10.1016/j.watres.2023.119925] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/06/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Singlet oxygen (1O2) attracts much attention in persulfate-based advanced oxidation processes (PS-AOPs), because of its wide pH tolerance and high selectivity toward electron-rich organics. However, there are conflicts about the 1O2 role in PS-AOPs on several aspects, including the formation of different key reactive oxygen species (ROS) at similar active sites, pH dependence, broad-spectrum activity, and selectivity in the elimination of organic pollutants. To a large degree, these conflicts root in the drawbacks of the methods to identify and evaluate the role of 1O2. For example, the quenchers of 1O2 have high reactivity to other ROS and persulfate as well. In addition, electron transfer process (ETP) also selectively oxidizes organics, having a misleading effect on the identification of 1O2. Therefore, in this review, we summarized and discussed some basic properties of 1O2, the debatable role of 1O2 in PS-AOPs on multiple aspects, and the methods and their drawbacks to identify and evaluate the role of 1O2. On the whole, this review aims to better understand the role of 1O2 in PS-AOPs and further help with its reasonable utilization.
Collapse
Affiliation(s)
- Liangjie Wang
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China; The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Ke Xiao
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Huazhang Zhao
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; Shanxi Laboratory for Yellow River, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|