1
|
Poinsignon L, Lefrère B, Ben Azzouz A, Chissey A, Colombel J, Djelidi R, Ferecatu I, Fournier T, Beaudeux JL, Lespes G, Zerrad-Saadi A. Exposure of the human placental primary cells to nanoplastics induces cytotoxic effects, an inflammatory response and endocrine disruption. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137713. [PMID: 40037196 DOI: 10.1016/j.jhazmat.2025.137713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/06/2025]
Abstract
Humans are inevitably exposed to micro- and nanoplastics (MP/NP). These particles are able to cross the biological barriers and enter the bloodstream with levels close to 1.6 µg mL-1; MP/NP have been detected in placentas and meconium of newborns. However, the consequences of this exposure on the integrity, development and functions of the human placenta are not documented. In this study, trophoblasts purified from human placentas at term were exposed for 48 h, to two different sizes of polystyrene nanoparticles (PS-NP) of 20 nm (PS-NP20) and 100 nm (PS-NP100), at environmental and supra-environmental concentrations (0.01-100 µg mL-1). Cell viability, oxidative stress, mitochondrial dynamics, lysosomal degradation processes, autophagy, inflammation/oxidative responses and consequences for placental endocrine and angiogenic functions were assessed. PS-NP size determines their internalization rate and their behavior in trophoblasts. Indeed, PS-NP20 are more rapidly translocated, and accumulated in lysosomes as shown by confocal and TEM imaging. They induce higher cytotoxicity than PS-NP100, as early as 1 µg mL-1 (p < 0.05). In addition, they induce a pro-inflammatory cytokines response: IL-1ß is induced from 0.01 µg mL-1 for the both nanoparticle sizes; IL-6, and TNF-α are overexpressed at 100 µg mL-1 only for PS-NP20 (p < 0.05). For the first time, we report that PS-NP disrupt endocrine function, as observed by a decreased hCG release at concentrations found in human blood. This work, provides an in-depth in vitro assessment of the effects of PS-NP on the human placenta.
Collapse
Affiliation(s)
- Léa Poinsignon
- Université Paris-Cité, INSERM U1139 (FPRM), Faculté de Pharmacie, FHU Prem'impact, Paris 75006, France
| | - Bertrand Lefrère
- Université Paris-Cité, INSERM U1139 (FPRM), Faculté de Pharmacie, FHU Prem'impact, Paris 75006, France; Service de Biochimie, AP-HP, Hôpital Necker Enfants Malades, Paris F-75006, France
| | - Amani Ben Azzouz
- IPREM, CNRS, Université de Pau et des pays d'Adour, Pau 64000, France
| | - Audrey Chissey
- Université Paris-Cité, INSERM U1139 (FPRM), Faculté de Pharmacie, FHU Prem'impact, Paris 75006, France
| | - Juliette Colombel
- Université Paris-Cité, INSERM U1139 (FPRM), Faculté de Pharmacie, FHU Prem'impact, Paris 75006, France
| | - Raja Djelidi
- Université Paris-Cité, INSERM U1139 (FPRM), Faculté de Pharmacie, FHU Prem'impact, Paris 75006, France
| | - Ioana Ferecatu
- Université Paris-Cité, INSERM U1139 (FPRM), Faculté de Pharmacie, FHU Prem'impact, Paris 75006, France
| | - Thierry Fournier
- Université Paris-Cité, INSERM U1139 (FPRM), Faculté de Pharmacie, FHU Prem'impact, Paris 75006, France
| | - Jean-Louis Beaudeux
- Université Paris-Cité, INSERM U1139 (FPRM), Faculté de Pharmacie, FHU Prem'impact, Paris 75006, France; Service de Biochimie, AP-HP, Hôpital Necker Enfants Malades, Paris F-75006, France
| | - Gaëtane Lespes
- IPREM, CNRS, Université de Pau et des pays d'Adour, Pau 64000, France
| | - Amal Zerrad-Saadi
- Université Paris-Cité, INSERM U1139 (FPRM), Faculté de Pharmacie, FHU Prem'impact, Paris 75006, France.
| |
Collapse
|
2
|
Shi L, Wu C, Wang Y, Wang L, Tian P, Shang KX, Zhao J, Wang G. Lactobacillus plantarum reduces polystyrene microplastic induced toxicity via multiple pathways: A potentially effective and safe dietary strategy to counteract microplastic harm. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137669. [PMID: 39978201 DOI: 10.1016/j.jhazmat.2025.137669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/02/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Plastic materials, ubiquitous in daily life, degrade into microplastics (MPs) that can accumulate in humans through the food chain, leading to health issues. While some antioxidants have been shown to mitigate the toxicity caused by MPs exposure, they are only effective at high doses, which can be harmful to human health when ingested in excess. Concurrently, Lactobacillus species have demonstrated the ability to adsorb onto micro- and nano-plastics (MNPs), with certain strains exhibiting high antioxidant activity. In this study, Lactobacillus plantarum strains with varying antioxidant capacities and affinities for polystyrene nanoparticles (PS-NPs) were utilized to investigate their effects on toxicity induced by exposure to PS-MPs. The results indicated that the antioxidant capabilities of Lactobacillus plantarum can reduce oxidative damage caused by PS-MPs exposure, and their ability to bind with PS-MNPs can reduce the body's PS-MPs content and increase fecal PS-MPs content, thereby reducing toxicity. Notably, the strain 89-L1, which possesses low antioxidant activity and low binding affinity for PS-MNPs, also reduced toxicity, potentially through repairing the intestinal barrier and modulating bile acid (BAs) metabolism. Our findings suggest that the mechanisms by which Lactobacillus plantarum reduces PS-MPs-induced toxicity extend beyond antioxidant and binding capabilities; the repair of the intestinal barrier and modulation of BAs metabolism also play significant roles in reducing toxicity caused by PS-MPs exposure and may act partially independently of these capacities. This study provides a theoretical basis for the future development of strategies for Lactobacillus plantarum to reduce toxicity caused by exposure to MPs.
Collapse
Affiliation(s)
- Liuting Shi
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Changyin Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yuye Wang
- School of Food Science, Shihezi University, Shihezi, Xinjiang 832099, PR China
| | - Linlin Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Peijun Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Ke-Xin Shang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, PR China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, PR China.
| |
Collapse
|
3
|
Yi X, Cao H, Liao J, Yu W, Hu G, Tang Z, Yang F. Metabolomics analysis reveals the effects of high dietary copper on mitochondria-mediated autophagy and apoptosis in spleen of broiler chicken. Avian Pathol 2025; 54:306-316. [PMID: 39483061 DOI: 10.1080/03079457.2024.2423716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/13/2024] [Accepted: 10/27/2024] [Indexed: 11/03/2024]
Abstract
Copper (Cu) is a necessary micro-element and plays important roles in many biochemical processes. However, excessive Cu intake can lead to multi-organ toxicity, especially in the spleen. To gain further insights into the specific mechanisms of splenic toxicity associated with Cu-induced metabolic disorders, 192 one-day-old chickens were selected and randomly divided into four groups for this study. The broilers were fed with diets containing Cu at final concentrations of 11, 110, 220 and 330 mg/kg for 49 days. The results showed that high dietary Cu caused nuclear shrinkage and mitochondrial vacuolization in the spleen and induced splenic injury through regulating the glutathione metabolism, pentose and gluconate interconversion, tryptophan metabolism and glycerophosphatidylcholine metabolism pathways. Moreover, excess Cu could disorder the mitochondrial dynamics via up-regulating the levels of Drp1, Parkin PINK1, and Dynein, and down-regulating the levels of Mfn1, Mfn2 and OPA1. Cu treatment increased the levels of LC3A, LC3B, mTOR, Beclin1, and ATG5 and decreased the p62 level to promote autophagy of splenocytes. Meanwhile, a high dose of Cu promoted splenocyte apoptosis by increasing the levels of p53, BAK-1, Bax, Cyt C and Caspase-3 and decreasing the level of Bcl-2. These results demonstrated that high dietary Cu could cause autophagy and apoptosis via inducing metabolic disturbances and disordering mitochondrial dynamics in the spleen of broiler chicken.
Collapse
Affiliation(s)
- Xin Yi
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Wenlan Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| |
Collapse
|
4
|
Pettoello-Mantovani M, Bali D, Giardino I, Pop TL, Sevketoglu E, Konstantinidis G, Pastore M, Vural M. The Risk from Widespread Micro- and Nano-Plastic Contamination on a Global Scale and the Threat to Children's Health. J Pediatr 2025; 280:114512. [PMID: 39961376 DOI: 10.1016/j.jpeds.2025.114512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 02/12/2025] [Indexed: 03/14/2025]
Affiliation(s)
- Massimo Pettoello-Mantovani
- European Pediatric Association, Union of National European Pediatric societies and Associations, Berlin, Germany; Italian Academy of Pediatrics, Milan, Italy; Department of Pediatrics, Institute for Scientific Research «Casa Sollievo», University of Foggia, Foggia, Italy.
| | - Donjeta Bali
- European Pediatric Association, Union of National European Pediatric societies and Associations, Berlin, Germany; Society of Pediatrics of Albania, Tirana, Albania
| | - Ida Giardino
- European Pediatric Association, Union of National European Pediatric societies and Associations, Berlin, Germany; Department of Clinical and Experimental Sciences, University of Foggia, Foggia, Italy
| | - Tudor Lucian Pop
- European Pediatric Association, Union of National European Pediatric societies and Associations, Berlin, Germany; Romanian Society of Social Pediatrics, Cluj, Romania; Second Pediatric Clinic, University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Esra Sevketoglu
- European Pediatric Association, Union of National European Pediatric societies and Associations, Berlin, Germany; Department of Pediatrics, University of Health Sciences, Istanbul, Turkey
| | - Georgios Konstantinidis
- European Pediatric Association, Union of National European Pediatric societies and Associations, Berlin, Germany; Department of Pediatrics, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia; Pediatric Society of Serbia, Belgrade, Serbia
| | - Maria Pastore
- European Pediatric Association, Union of National European Pediatric societies and Associations, Berlin, Germany; Department of Pediatrics, Institute for Scientific Research «Casa Sollievo», University of Foggia, Foggia, Italy
| | - Mehmet Vural
- European Pediatric Association, Union of National European Pediatric societies and Associations, Berlin, Germany; Department of Pediatrics, Cerrapasha University, Istanbul, Turkey; Turkish Pediatric Association, Istanbul, Turkey
| |
Collapse
|
5
|
Heim W, Holtmannspötter C, Heim RJ, Meinken M, Niemann N, Temme L, Michler-Kozma D, Gabel F. High microplastic pollution in birds of urban waterbodies revealed by non-invasively collected faecal samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 975:179306. [PMID: 40185008 DOI: 10.1016/j.scitotenv.2025.179306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/25/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
Plastic waste concentrates in aquatic environments, where wildlife can ingest or absorb it. In birds, plastic particles have been identified in hundreds of aquatic and terrestrial species leading to adverse effects. Most studies investigating microplastic pollution in birds use dead individuals or invasive techniques. However, microplastic ingestion can also be determined by analysing birds' faeces. There is a lack of information regarding microplastic pollution of birds inhabiting urban freshwaters, where very high pollution levels are expected. We analysed body condition of individual birds inhabiting freshwaters in the city of Münster (Germany) and microplastic contamination in their faeces. We found microplastic particles (mainly fibres) in all species (Mallard Anas platyrhynchos, Jack Snipe Lymnocryptes minimus, Black-headed Gull Chroicocephalus ridibundus and Common Moorhen Gallinula chloropus) and most samples (98 %). Microplastic pollution ranged from 0.26 to 72.03 particles per mg faeces. The observed microplastic pollution frequency and pollution levels were much higher compared to other studies of birds in freshwater environments, probably resulting from the high contamination of urban waters. We found no effect of the number of microplastic particles on body condition. As all investigated species are at least partially migratory, a long-distance transport of microplastic particles may increase the probability that migratory birds transport (and excrete) microplastic particles to remote locations that otherwise suffer from little anthropogenic pollution. We demonstrate that non-invasively collected faecal samples collected during bird ringing/banding can be used as indicators of microplastic pollution, and call for more studies investigating the effects of microplastics on birds - with a special focus on urban freshwaters.
Collapse
Affiliation(s)
- Wieland Heim
- Institute of Landscape Ecology, University of Münster, Münster, Germany; Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany.
| | - Clara Holtmannspötter
- Institute of Landscape Ecology, University of Münster, Münster, Germany; Untere Naturschutzbehörde Gelsenkirchen, Gelsenkirchen, Germany
| | - Ramona Julia Heim
- Institute of Landscape Ecology, University of Münster, Münster, Germany
| | - Moritz Meinken
- Institute of Landscape Ecology, University of Münster, Münster, Germany
| | - Nick Niemann
- Institute of Landscape Ecology, University of Münster, Münster, Germany
| | - Laurin Temme
- Institute of Landscape Ecology, University of Münster, Münster, Germany
| | - Diana Michler-Kozma
- Institute of Landscape Ecology, University of Münster, Münster, Germany; Übersee-Museum, Bremen, Germany
| | - Friederike Gabel
- Institute of Landscape Ecology, University of Münster, Münster, Germany
| |
Collapse
|
6
|
Zangene S, Goorani S, Morovvati H, Anbara H. Effects of polystyrene microplastics on mice cardiac tissue structure: Protective role of resveratrol. CHEMOSPHERE 2025; 379:144406. [PMID: 40262232 DOI: 10.1016/j.chemosphere.2025.144406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/30/2025] [Accepted: 04/09/2025] [Indexed: 04/24/2025]
Abstract
Microplastics, as ubiquitous environmental particles, can influence cardiac function both directly and indirectly. We examined the beneficial effects of resveratrol on the cardiotoxicity induced by 2-μm polystyrene microplastics in murine models. Male NMRI mice (n = 27) Control, PS-MPs (1 mg/kg), and PS-MPs + RV (1 mg/kg PS-MPs+2.5 mg/kg RV) were randomly grouped into three. Histological and antioxidant parameters were assessed after 90 days of exposure. Our findings indicated that PS-MPs induce toxicity via oxidative stress, catalase (CAT), Total antioxidant capacity, superoxide dismutase (SOD), and a reduction in glutathione (GSH) levels, while concentrations of malondialdehyde (MDA) increased relative to controls. We also found that cardiac abnormality in PS-MPs treated mice was accompanied by reduced antioxidant capacity, elevated oxidative stress, and elevated apoptotic signaling. Nevertheless, the protective effects of RV against disruptions in endoplasmic reticulum stress and antioxidant profiles resulting from PS-MPs exposure were evident, as RV normalized HSP40, HSP25, and HSP70 levels and enhanced antioxidant defenses. This implies that RV is a promising protective agent against toxicity induced by environmental contaminants such as microplastics.
Collapse
Affiliation(s)
- Somaye Zangene
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Samaneh Goorani
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Hassan Morovvati
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hojat Anbara
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
7
|
Luo J, Lin S. Association between microplastics exposure and depressive symptoms in college students. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 295:118142. [PMID: 40185030 DOI: 10.1016/j.ecoenv.2025.118142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Microplastics (MP) are pervasive environmental pollutants that have raised concerns regarding their potential health effects. However, limited studies have investigated the relationship between MP exposure and depression, particularly in college students. Our study aims to examine the association between MP exposure and depressive symptoms in college students. METHODS A total of 1420 college students from Jiangsu College of Nursing, China, were included in this cross-sectional study. Depressive symptoms were assessed using the Patient Health Questionnaire-2 (PHQ-2), and MP exposure was estimated based on daily airborne MP concentration and drinking-water MP levels. Multivariate logistic regression models were used to estimate the associations between MP exposure and depressive symptoms. RESULTS The prevalence of depressive symptoms among college students was 61.8 %. The median (interquartile range) of total MP exposure was 17403.7 (14174.8-20995.9) particles/day. Airborne MP exposure exhibited positive associations with depressive symptoms, while no significant association was found between drinking-water MP exposure and depressive symptoms. Compared with participants in the lowest quartile of MP exposure, those in the highest quartile of total MP exposure had 38 % higher odds of experiencing depressive symptoms (odds ratio [OR] = 1.38, 95 % CI: 1.21-1.57). When treated as a continuous variable, each 1000-particle increase in total MP exposure was associated with a 7.0 % increase in the odds of depressive symptoms (OR = 1.07, 95 % CI: 1.04-1.10). Stratified analyses indicated that the association between MP exposure and depressive symptoms was stronger among male students and freshmen. CONCLUSION This study suggests MP exposure is a contributing factor for depressive symptoms in college students.
Collapse
Affiliation(s)
- Jing Luo
- School of Rehabilitation, Jiangsu College of Nursing, Huai'an, Jiangsu 223003, China
| | - Song Lin
- Department of Clinical Nutrition, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, China.
| |
Collapse
|
8
|
Song Q, Meng Q, Meng X, Wang X, Zhang Y, Zhao T, Cong J. Size- and duration-dependent toxicity of heavy vehicle tire wear particles in zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138299. [PMID: 40253784 DOI: 10.1016/j.jhazmat.2025.138299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025]
Abstract
Tire wear particles (TWPs), as a pervasive environmental pollutant, pose significant risks to aquatic ecosystems. This study investigates the effects of small (HS) and large (HL) TWPs produced by heavy vehicles on zebrafish, focusing on physiological, microbial, and transcriptomic levels, as well as their intergenerational consequences, under short-term (15 days) and long-term (90 days) exposure. Short-term exposure to small particles (HS15) significantly reduced body width and triggered widespread oxidative stress, while long-term exposure to large particles (HL90) increased gut weight and decreased gill weight, reflecting respiratory and digestive disruptions. Tissue-level analyses revealed that smaller particles accumulated more readily in internal organs, whereas larger particles caused localized physiological stress. Gut microbiota profiling indicated a marked decline in microbial diversity, compositional shifts, and network simplification, with HL15 enriched in Acinetobacter and xenobiotic metabolism pathways, and HS15 exhibiting Proteobacteria-dominated dysbiosis and enrichment of LPS biosynthesis genes. Liver transcriptomics revealed group-specific responses: HL15 exposure activated innate immunity via the NOD-MAPK axis, while HS15 induced atypical PI3K-NF-κB signaling, potentially linked to microbial LPS. Notably, all TWP-exposed groups showed enrichment of the herpes simplex virus 1 (HSV-1) infection pathway, suggesting a conserved antiviral-like host response. Transgenerational effects were evidenced by impaired growth and significant downregulation of GH/IGF signaling and upregulation of apoptotic genes in offspring, despite only subtle transcriptomic changes in long-term exposed parents. These findings underscore the importance of particle size, exposure duration, and microbiota-gut-liver axis interactions in mediating TWP toxicity and highlight potential transgenerational risks associated with environmental microplastic exposure.
Collapse
Affiliation(s)
- Qianqian Song
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Qingxuan Meng
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Xinrui Meng
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Xiaolong Wang
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Yun Zhang
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Tianyu Zhao
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Jing Cong
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China.
| |
Collapse
|
9
|
Wu Y, Yang F. Co-exposure to microplastics enhances the allergenic potentials of house dust mite allergen Der p 1. ENVIRONMENTAL RESEARCH 2025; 277:121613. [PMID: 40239735 DOI: 10.1016/j.envres.2025.121613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/31/2025] [Accepted: 04/13/2025] [Indexed: 04/18/2025]
Abstract
Air pollution is believed to exacerbate the prevalence of allergic diseases. But the underlying processes and mechanisms are not fully understood. In this study, the effects of polystyrene microplastics (PS-MPs) with a diameter of 0.1 μm, 1 μm, and 5 μm were investigated on the allergenic potentials of house dust mite allergen Der p 1. The results reveal that co-exposure to PS-MPs promoted the IgE-binding capacity of Der p 1 by altering the conformation, elevating the ligand-binding activity, and strengthening the aggregation of Der p 1. PS-MPs also exacerbated the damage to airway epithelial barrier by increasing the permeability of bronchial epithelial cells. Ultimately, co-exposure to PS-MPs aggravated the Th2-mediated immune responses and allergic sensitization induced by Der p 1. These evidences indicate that co-exposure to PS-MPs enhanced the allergenic potentials of Der p 1. Moreover, the PS-MPs-induced enhancement of the allergenic potential of Der p 1 is size-dependent, with smaller PS-MPs exhibiting greater promotion on the allergenic potential of Der p 1. Given the ubiquitous occurrence of PS-MPs in the environment, the co-exposure of allergens and PS-MPs should be seriously considered when assessing the allergenic risk of allergens in the real environment, especially for the PS-MPs with smaller size.
Collapse
Affiliation(s)
- Yiting Wu
- State Key Laboratory of Soil Pollution Control and Safety, Zhejiang University, 310058, Hangzhou, China
| | - Fangxing Yang
- State Key Laboratory of Soil Pollution Control and Safety, Zhejiang University, 310058, Hangzhou, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, 310058, Hangzhou, China; Innovation Center of Yangtze River Delta, Zhejiang University, 314100, Jiashan, China.
| |
Collapse
|
10
|
Zou X, Pan M, Liu Y, Wang S, Xu H, Chu X. Effects of co-exposure to microplastics and perfluorooctanoic acid on the Caco-2 cells. Toxicology 2025; 515:154152. [PMID: 40220582 DOI: 10.1016/j.tox.2025.154152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/26/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
As plastics are produced and used, humans are inevitably exposed to microplastics (MPs) on a daily basis. The pollution of MPs has aroused widespread human concern. Perfluorooctanoic acid (PFOA), a persistent organic pollutant (POP), can be adsorbed by microplastics and may exacerbate human health hazards. In this study, we investigated the effects of co-exposure of PET MPs and PFOA on the human intestinal tract in terms of both cytotoxicity and intestinal barrier through in vitro experiments. The results showed that PFOA induced cellular oxidative stress, mitochondrial dysfunction exerted cytotoxic effects, and inhibited tight junction (TJ) protein expression causing intestinal barrier damage. PET MPs can synergize with PFOA to exacerbate the deleterious effects on the intestinal tract by decreasing cell membrane permeability to increase PFOA accumulation in the cell and enhancing the ability of PFOA to inhibit zonula occludens-1 (ZO-1) proteins.
Collapse
Affiliation(s)
- Xingyu Zou
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Mengjun Pan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yue Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Shuai Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Hongye Xu
- Tongling Institutes for Food and Drug Control, Tongling 244000, China.
| | - Xiaoqin Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Hefei, Anhui Province 230012, China.
| |
Collapse
|
11
|
Wei YY, Chen TT, Zhang DW, Zhang Y, Li F, Ding YC, Wang MY, Zhang L, Chen KG, Fei GH. Microplastics exacerbate ferroptosis via mitochondrial reactive oxygen species-mediated autophagy in chronic obstructive pulmonary disease. Autophagy 2025:1-27. [PMID: 40114310 DOI: 10.1080/15548627.2025.2481126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/09/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025] Open
Abstract
Microplastics (MPs) induce mitochondrial dysfunction and iron accumulation, contributing to mitochondrial macroautophagy/autophagy and ferroptosis, which has increased susceptibility to the exacerbation of chronic obstructive pulmonary disease (COPD); however, the underlying mechanism remains unclear. We demonstrated that MPs intensified inflammation in COPD by enhancing autophagy-dependent ferroptosis (ADF) in vitro and in vivo. In the lung tissues of patients with COPD, the concentrations of MPs, especially polystyrene microplastics (PS-MPs), were significantly higher than that of the control group, as detected by pyrolysis gas chromatography mass spectrometry (Py-GCMS), with increased iron accumulation. The exposure to PS-MPs, 2 μm in size, resulted in their being deposited in the lungs of COPD model mice detected by optical in vivo imaging, and observed in bronchial epithelial cells traced by GFP-labeled PS-MPs. There were mitochondrial impairments accompanied by mitochondrial reactive oxygen species (mito-ROS) overproduction and significantly increased levels of lysosome biogenesis and acidification in pDHBE cells with PS-MP stimulation, triggering occurrence of ferritinophagy and enhancing ADF in COPD, which triggered acute exacerbation of COPD (AECOPD). Reestablishing autophagy-dependent ferroptosis via mitochondria-specific ROS scavenging or ferroptosis inhibition alleviated excessive inflammation and ameliorated AECOPD induced by PS-MPs. Collectively, our data initially revealed that MPs exacerbate ferroptosis via mito-ROS-mediated autophagy in COPD, which sheds light on further hazard assessments of MPs on human respiratory health and potential therapeutic agents for patients with COPD.Abbreviations: ADF: autophagy-dependent ferroptosis; AECOPD: acute exacerbation of chronic obstructive pulmonary disease; Cchord: static compliance; COPD: chronic obstructive pulmonary disease; CQ: chloroquine; CS: cigarette smoke; DEGs: differentially expressed genes; Fer-1: ferrostatin-1; FEV 0.1: forced expiratory volume in first 100 ms; FVC: forced vital capacity; GSH: glutathione; HE: hematoxylin and eosin; IL1B/IL-1β: interleukin 1 beta; IL6: interleukin 6; MDA: malondialdehyde; Mito-ROS: mitochondrial reactive oxygen species; MMA: methyl methacrylate; MMF: maximal mid-expiratory flow curve; MMP: mitochondrial membrane potential; MOI: multiplicity of infection; MPs: microplastics; MV: minute volume; PA: polyamide; PBS: phosphate-buffered saline; PC: polycarbonate; pDHBE: primary human bronchial epithelial cell from COPD patients; PET: polyethylene terephthalate; PIF: peak inspiratory flow; PLA: polylactic acid; pNHBE: primary normal human bronchial epithelial cell; PS-MPs: polystyrene microplastics; PVA: polyvinyl acetate; PVC: polyvinyl chloride; Py-GCMS: pyrolysis gas chromatography mass spectrometry; SEM: scanning electron microscopy; Te: expiratory times; Ti: inspiratory times; TNF/TNF-α: tumor necrosis factor.
Collapse
Affiliation(s)
- Yuan Yuan Wei
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, Anhui, P.R. China
| | - Ting Ting Chen
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, Anhui, P.R. China
| | - Da Wei Zhang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, Anhui, P.R. China
| | - Ying Zhang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, Anhui, P.R. China
| | - Fang Li
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, Anhui, P.R. China
| | - Yi Chuan Ding
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, Anhui, P.R. China
| | - Ming Yu Wang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, Anhui, P.R. China
| | - Ling Zhang
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, Anhui, P.R. China
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Ke Gong Chen
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, Anhui, P.R. China
- Department of Thoracic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Guang He Fei
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, Anhui, P.R. China
| |
Collapse
|
12
|
Vanetti C, Broggiato M, Pezzana S, Clerici M, Fenizia C. Effects of microplastics on the immune system: How much should we worry? Immunol Lett 2025; 272:106976. [PMID: 39900298 DOI: 10.1016/j.imlet.2025.106976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/05/2025]
Abstract
Plastics are everywhere. It is widely recognized that they represent a global problem, the extent of which is yet to be defined. Humans are broadly exposed to plastics, whose effects and consequences are poorly characterized so far. The main route of exposure is via alimentary and respiratory intake. Plastics pollutions may come from both: water and food contamination itself, and their packaging. The smaller sizes (i.e. microplastics <150 µm - MPs) are considered to be the most pervasive of living organisms and, therefore, potentially the most harmful. As humans occupy one of the apex positions of the food chain, we are exposed to bioaccumulation and biomagnification effects of MPs. In fact, MPs are commonly found in human stools and blood. However, there are no data available yet on their ability to accumulate and to produce detrimental consequences on biological systems. Even though the effects of plastics pollution are poorly studied in mammals, including humans, they appear to have inflammatory effects, which is rather concerning as many etiologies of disease are based on a pro-inflammatory status.
Collapse
Affiliation(s)
- Claudia Vanetti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Martina Broggiato
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Stefania Pezzana
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Fondazione Don Carlo Gnocchi, IRCCS Milan Italy
| | - Claudio Fenizia
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
13
|
Zhang Y, Hales BF, Robaire B. Exposure to polystyrene nanoplastics induces lysosomal enlargement and lipid droplet accumulation in KGN human ovarian granulosa cells. Arch Toxicol 2025; 99:1445-1454. [PMID: 39900702 DOI: 10.1007/s00204-025-03969-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/15/2025] [Indexed: 02/05/2025]
Abstract
Given the ubiquitous presence of plastic products in daily life, human exposure to nanoplastics (NPs) is inevitable. Previous studies have suggested that exposure to polystyrene nanoplastics (PSNPs) may contribute to reproductive disorders; however, the underlying mechanism remains elusive. The goal of this study was to investigate the impact of PSNPs on KGN human ovarian granulosa cells. KGN cells were exposed to varying concentrations of PSNPs (0-400 μg/mL) for 48 h; alterations in cell survival and morphology were assessed to elucidate potential toxic effects. PSNPs were shown to enter KGN cells. Exposure to PSNPs did not induce significant changes in cytotoxicity, Calcein intensity, or active mitochondria levels in KGN cells. However, PSNP exposure did induce a dose-dependent increase in cytoplasmic vacuoles and an increase in total lysosome area and in the numbers of lipid droplets in KGN cells. Our findings provide compelling evidence that PSNPs can penetrate cell cytoplasm and induce toxicity, resulting in an elevation in the numbers of lysosomes and lipid droplets. This may represent one mechanism by which PSNPs exert damage on the reproductive system.
Collapse
Affiliation(s)
- Yunbo Zhang
- Department of Environmental Hygiene, Public Health College, Harbin Medical University, Harbin, 150081, China
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada
| | - Barbara F Hales
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada
| | - Bernard Robaire
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada.
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, H3G 1Y6, Canada.
| |
Collapse
|
14
|
Luo L, Ge M, Sun Y, Hu Y, Yang X, Zhang R. New findings on the antagonism of the environmental chemical toxicity 2-ethylhexyl diphenyl phosphate: Glycyrrhizic acid as an Nrf2 activator targets Nrf2/ROS/STAT3 signalling crosstalk to alleviate thymic injury in chicks. Poult Sci 2025; 104:104918. [PMID: 40024011 PMCID: PMC11919435 DOI: 10.1016/j.psj.2025.104918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/25/2025] [Accepted: 02/16/2025] [Indexed: 03/04/2025] Open
Abstract
2-Ethylhexyl diphenyl phosphate (EHDPHP) is a pervasive environmental pollutant known to induce oxidative damage in organisms; however, its precise mechanisms of toxicity remain unclear. Furthermore, limited research has been conducted on potential therapeutic agents to counteract EHDPHP toxicity. Glycyrrhizic acid (GA), a triterpenoid saponin compound with recognized antioxidant, anti-inflammatory, and immunomodulatory properties, represents a promising candidate for mitigating EHDPHP-induced oxidative injury. In chickens, the thymus is the main immune organ. This study aims to investigate the mechanism of EHDPHP-induced thymus damage and the role and mechanism of GA intervention in this process. A potential 'EHDPHP/GA-Target-Oxidative Stress (OS)' network was constructed using network biology. A model of EHDPHP-induced chicken thymic injury was established by continuous oral administration of EHDPHP (160 mg/kg) for 42 days. Moreover, the mechanism of action by which GA antagonizes EHDPHP-induced oxidative damage was explored using MDCC-MSB1 cells in vitro. Network biology analyses showed that 'EHDPHP/GA-OS' targets were mainly enriched in the adipocytokine and apoptotic signaling pathways. Molecular docking demonstrated the binding interactions of GA and EHDPHP with Kelch-like ECH-associated protein 1 (Keap1), nuclear factor erythroid 2-related factor 2 (Nrf2), and signal transducer and activator of transcription 3 (STAT3) proteins. Both in vitro and in vivo experiments revealed that GA attenuated EHDPHP-induced damage to thymus and MDCC-MSB1 cells, as evidenced by reductions in oxidative stress markers (ROS, MDA, T-AOC, SOD, and GSH-Px), inflammation factors (NF-κB, IL-6, and TNF-α), and the apoptotic factor (Caspase 3) expression. GA treatment increased the expression of Nrf2 and HO-1 while reducing the expression of Keap1, JAK1, Phospho-JAK1 (P-JAK1), STAT3, and Phospho-STAT3 (P-STAT3). Furthermore, the protective effect of GA against EHDPHP-induced MDCC-MSB1 cell injury, as well as its inhibition of the JAK1/STAT3 pathway, was diminished by the Nrf2 inhibitor ML385. These findings suggest that GA exerts its protective effects through Nrf2 and mitigates EHDPHP-induced thymic injury in chickens by modulating the crosstalk between the Nrf2/ROS/STAT3 signaling pathways. Overall, this study highlights the novel role of GA in treating EHDPHP-induced injury and underscores its potential application in diseases treatable with Nrf2 activators.
Collapse
Affiliation(s)
- Linghuan Luo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, PR China
| | - Ming Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, PR China
| | - Yiming Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, PR China
| | - Yihan Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, PR China
| | - Xiaoyi Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, PR China
| | - Ruili Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, PR China.
| |
Collapse
|
15
|
Sun J, Geng L, Zhou D, Teng X, Chen M. Gut microbiota participates in polystyrene microplastics-induced defective implantation through impairing uterine receptivity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:124997. [PMID: 40101486 DOI: 10.1016/j.jenvman.2025.124997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/22/2025] [Accepted: 03/13/2025] [Indexed: 03/20/2025]
Abstract
Microplastics (MPs) are widespread in global ecosystems and could pose risks to human health. However, crucial information on the impact of MP exposure on female reproductive health remains insufficient. In this study, we constructed an MP-exposure mice model through oral administration of polystyrene microplastics (PS-MPs) and found that it resulted in impaired uterine receptivity and defective implantation. An accumulation of plastic particles was detected in MP mice intestines. Metagenomic sequencing of feces samples indicated a structural and functional alteration of gut microbiota. Alistipes played a prominent role in MP biodegradation, while among the biodegradable functional genes, ACSL made the greatest contribution. Both had a significant increase in MP group, suggesting a potential occurrence of ferroptosis. Ferroptosis, a form of programmed cell death, is closely associated with uterine receptivity impairment and defective implantation. We detected MDA contents and ferroptosis-related proteins, and the results indicated the activation of ferroptosis in the process. Our research is the first to elucidate that exposure to MPs impairs uterine receptivity and results in deficient implantation, while also providing initial evidence that gut microbiota plays a critical role in this process.
Collapse
Affiliation(s)
- Jiani Sun
- Centre for Assisted Reproduction, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Lulu Geng
- Centre for Assisted Reproduction, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Dan Zhou
- Centre for Assisted Reproduction, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xiaoming Teng
- Centre for Assisted Reproduction, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Miaoxin Chen
- Centre for Assisted Reproduction, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
16
|
Cui J, Teng J, Xiang P, Liu F, Cao Z, Lu J, Deng Y, Li Y, Peng C, Dehaen W, Fang Y. A potent fluorescent probe for HOCl with dual NIR emissions: Achieving the early diagnosis of polystyrene microplastics-induced liver injury involved in ferroptosis. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138087. [PMID: 40187259 DOI: 10.1016/j.jhazmat.2025.138087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/07/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
Polystyrene microplastics (PS-MPs) are ubiquitous environmental contaminants that pose a significant threat to ecosystems and human health. The toxicity of PS-MPs to the liver is associated with a surge of reactive oxygen species (ROS). However, the specific type of ROS triggered by PS-MPs in the injured liver tissue remains inadequately known. In this study, a dual-channel near-infrared (NIR) fluorescent probe TPAC-B with distinct aggregation-induced emission (AIE) properties was contructed, which can specifically detect HOCl and target dual organelles (mitochondria and lipid droplets). Firstly, TPAC-B exhibited selective detection of HOCl with dual-channel imaging in PS-MPs-treated cells, thus eliciting a 40-fold ratiometric fluorescence enhancement. Probe TPAC-B was also prone to accumulate in the liver, and real-time monitoring of elevated HOCl levels in a mouse model of PS-MPs-induced liver injury was thus achieved. As confirmed by western blot analysis, PS-MPs could suppress the expression of ferroptosis regulatory proteins glutathione peroxidase 4 (GPX4) and Ferritin in liver cells and upregulate the expression of heme oxygenase-1 (HO-1, a marker protein for oxidative stress). Therefore, the work shown here represents the first fluorescent probe capable of tracking the fluctuation of HOCl levels in PS-MPs-induced liver injury, providing a potent imaging tool for the early diagnosis of this disease.
Collapse
Affiliation(s)
- Jianwei Cui
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Tradi-tional Chinese Medicine, Chengdu 611137, China
| | - Jiaji Teng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Tradi-tional Chinese Medicine, Chengdu 611137, China
| | - Peini Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Tradi-tional Chinese Medicine, Chengdu 611137, China
| | - Fuyang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Tradi-tional Chinese Medicine, Chengdu 611137, China
| | - Zhixing Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Tradi-tional Chinese Medicine, Chengdu 611137, China.
| | - Jun Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Tradi-tional Chinese Medicine, Chengdu 611137, China
| | - Yun Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Tradi-tional Chinese Medicine, Chengdu 611137, China
| | - Yuzhi Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Tradi-tional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Tradi-tional Chinese Medicine, Chengdu 611137, China
| | - Wim Dehaen
- Department of Chemistry, Division of Sustainable Chemistry for Metals and Molecules, KU Leuven, Celestijnenlaan 200f-bus 02404, Leuven 3001, Belgium
| | - Yuyu Fang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Tradi-tional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
17
|
Xiao B, Yang W, Dong H, Liu T, Li C, Wang Y, Gao D, Han G, Kiran F, Wang A, Jin Y, Yuan Y, Chen H. Co-Exposure to Polystyrene Microplastics and Bisphenol A Contributes to the Formation of Liver Fibrosis in Mice through Inhibition of the BMAL1/E-Cad Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7405-7422. [PMID: 40073227 DOI: 10.1021/acs.jafc.4c08790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
The food safety risks posed by exposure to polystyrene microplastics (PS-MPs) and bisphenol A (BPA) have become an issue worldwide. However, the toxic effects of PS-MPs and BPA coexposure on the mammalian liver remain elusive. In this study, we found that PS-MPs and BPA coexposure have synergistic toxic effects on AML12 cells and the mouse liver. Histopathological staining revealed excessive accumulation of the extracellular matrix in the coexposure liver. Co-exposure to PS-MPs and BPA downregulated Bmal1 and E-cad both in vitro and in vivo. Additionally, Bmal1-/- AML12 cells and liver-specific Bmal1-/- mice exhibited significantly reduced E-cad levels, with no significant reduction under PS-MPs and BPA coexposure. Notably, overexpression of BMAL1 and CLOCK significantly enhanced luciferase activity driven by the E-cad gene intron region (containing an E-box cis-element). These results demonstrated that coexposure to PS-MPs and BPA contributed to the development of liver fibrosis by inhibiting the BMAL1/E-cad signaling pathway.
Collapse
Affiliation(s)
- Bonan Xiao
- Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wanghao Yang
- Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hao Dong
- Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tian Liu
- Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Li
- Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yiqun Wang
- Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dengke Gao
- Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guohao Han
- Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fouzia Kiran
- Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Aihua Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Preventative Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yaping Jin
- Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yalin Yuan
- Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huatao Chen
- Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
18
|
Guo X, Shen M, Jiang S, Xing X, Zhang C, Yin S, Zhang K. Novel insights into copper-induced Chinese mitten crab hepatopancreas mitochondrial toxicity: Oxidative stress, apoptosis and BNIP3L-mediated mitophagy. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 283:107335. [PMID: 40168791 DOI: 10.1016/j.aquatox.2025.107335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/03/2025]
Abstract
Copper (Cu) is an important metal pollutant commonly found in aquatic environment. Cu-based nanoparticles (NPs) have been increasingly fabricated, and led to cytotoxicity in aquatic animals. Herein, the mechanisms underlying the CuSO4/Cu-NPs-mediated perturbation of the hepatopancreatic mitochondrial function at different concentrations were investigated and compared. After exposing Eriocheir sinensis to 0 (control), 5, 50, and 500 μg/L CuSO4 and 10 μg/L Cu-NPs for 21 days, hepatopancreases were retrieved. The results revealed that Cu-NPs or excess CuSO4 induced ultrastructural damage following a time-dose effect, as indicated by swelling and degeneration of the lumen of hepatic tubules. Cu-NPs or excess CuSO4 exposure decreased the antioxidative capacity and led to the over-accumulation of reactive oxygen species (ROS). Moreover, the mitochondrial membrane potential (MMP) was reduced and apoptosis induced. Additionally, both CuSO4 and Cu-NPs increased the numbers of mitophagosomes and the mRNA and protein levels of microtubule associated protein 1 light chain 3 beta (LC3B), and triggered mitophagy through BCL2 interacting protein 3 like (BNIP3L)/Beclin1 pathway. Altogether, this study provides a basis for exploring Cu-mediated potential mitochondrial autophagy activation mechanisms, uncovered the difference between CuSO4 and Cu-NPs.
Collapse
Affiliation(s)
- Xinping Guo
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, Nanjing 210023, PR China
| | - Minghao Shen
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, Nanjing 210023, PR China
| | - Su Jiang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, Nanjing 210023, PR China
| | - Xiumei Xing
- Nanjing Gaochun District Qingsong Aquatic Professional Cooperative, Nanjing 211300, PR China
| | - Cong Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, Nanjing 210023, PR China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, Jiangsu 222005, PR China
| | - Shaowu Yin
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, Nanjing 210023, PR China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, Jiangsu 222005, PR China.
| | - Kai Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, Nanjing 210023, PR China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, Jiangsu 222005, PR China.
| |
Collapse
|
19
|
Gill K, Bindal E, Garg P, Kumar D, Bhattacharyya R, Banerjee D. Exposure of Bisphenols (BPA, BPB and BPC) in HepG2 Cells Results in Lysosomal Dysfunction and Lipid Accumulation. Cell Biol Int 2025. [PMID: 40099744 DOI: 10.1002/cbin.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/18/2025] [Accepted: 03/04/2025] [Indexed: 03/20/2025]
Abstract
Nonalcoholic fatty liver disease poses a significant public health concern, as do the issues surrounding plastic usage. The bisphenols are reported to cause fat accumulation in the liver. However, literature is scanty about the effect of bisphenols on lysosomes or lysosomal functions. We predicted the interaction of bisphenols with lysosomal proteins available in the online databases using in silico tools. Molecular docking revealed that chosen Bisphenols interact with critical lysosomal proteins including lipid hydrolyzing enzymes. Following exposure of BPA, BPB and BPC to HepG2 cells fat accumulation and lysosomal functions were evaluated. Exposure to BPB and BPC results intracellular fat accumulation under experimental conditions like BPA. All three Bisphenols disturb lysosomal homeostasis perhaps by different mechanisms. Overall our results suggest that Bisphenols can also cause fat accumulation in liver by disturbing lysosomal homeostasis.
Collapse
Affiliation(s)
- Kiran Gill
- Experimental Medicine and Biotechnology Department, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Eshika Bindal
- Experimental Medicine and Biotechnology Department, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Parul Garg
- Experimental Medicine and Biotechnology Department, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Deepak Kumar
- Experimental Medicine and Biotechnology Department, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajasri Bhattacharyya
- Experimental Medicine and Biotechnology Department, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Dibyajyoti Banerjee
- Experimental Medicine and Biotechnology Department, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
20
|
Wang M, Liu Q, Zhang X, Jiang H, Zhang X. Identification and analysis of microplastics in human penile cancer tissues. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178815. [PMID: 40015124 DOI: 10.1016/j.scitotenv.2025.178815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/25/2025] [Accepted: 02/08/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Widespread pollution from microplastics (MPs) has been identified as a significant contributor to adverse health effects in humans. This research aimed to investigate the presence of MPs in human penile cancer. METHODS The Laser Infrared Imaging Spectrometer (LDIR) was employed to detect and analyze MPs in the cancerous tissue (CT) and adjacent normal tissue (ANT) of 17 patients diagnosed with penile cancer. Subsequently, the abundance, sizes and types of MPs in CT were compared to those in the corresponding ANT. RESULTS Nine types of MPs were identified in 85.3 % of the samples analyzed, with an average abundance of 6.42 particles per gram. The most prevalent types of MPs were polyethylene (PE), polypropylene (PP), and polyvinyl chloride (PVC), primarily falling within the 20-50 μm size range. MPs exhibited higher abundance and diversity in CT compared to ANT, with comparable size distributions evident in both of two areas. CONCLUSION Our study firstly confirm the presence of MPs in tissue samples from patients with penile cancer. Additionally, the abundance and variety of MPs in cancerous tissue are significantly higher than in adjacent normal tissue, although they had similar size distributions.
Collapse
Affiliation(s)
- Ming Wang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Qiushi Liu
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Xueping Zhang
- Department of Urology, Weifang People's Hospital, No. 151, Guangwen Street, Kuiwen District, Weifang 261041, China.
| | - Hui Jiang
- Department of Urology, Peking University First Hospital Institute of Urology, Peking University Andrology Center, Beijing 100034, China.
| | - Xiansheng Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
21
|
Zhang Y, Lu H, Hou L, Zhang X, Guo T, Wang R, Wang Q, Xing M. GPR120 exacerbates the immune-inflammatory response in chicken liver by mediating acetochlor induced macrophage M1 polarization. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136928. [PMID: 39709819 DOI: 10.1016/j.jhazmat.2024.136928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Acetochlor is a widely used and highly effective herbicide. Its overuse poses significant threats to biosecurity and ecological integrity, particularly affecting free-ranging birds. Data on its impact, especially mechanisms of liver toxicity in chickens, are lacking. Thus, we established an animal-cell-animal model to explore intrinsic mechanisms at multiple levels. We found that acetochlor exposure caused liver cell swelling, inflammatory cell accumulation, and lipid deposition. Transcriptomic analyses revealed that differential gene were mainly enriched in hepatic immune, inflammatory, and programmed cell death pathways. We next focused on the gene GPR120, conducting transfection and agonism experiments in LMH, HD11, and co-cultured cells. Acetochlor significantly increased ROS accumulation, activated the NLRP3 inflammasome, and which induced PANoptosis. HD11 cells exhibited M1 polarization with upregulated pro-inflammatory factors. Silencing GPR120 exacerbated cellular damage and immune responses, whereas its agonist, GSK7A, dramatically reduced macrophage M1 polarization and mitigated immune damage to LMH cells. Finally, we returned to animal studies, adding Omega-3-a known GPR120 agonist-to the diet. Omega-3 effectively reversed acetochlor-induced hepatitis and PANoptosis. Given that acetochlor residues pose potential threats to ecosystems and avian health, it is crucial to strengthen residue control, conduct risk assessments, and explore targeted pathways and nutritional supplementation to counteract these negative impacts.
Collapse
Affiliation(s)
- Yue Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Hongmin Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Lulu Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Xin Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Tiantian Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Ruoqi Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Qi Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang 150040, PR China.
| |
Collapse
|
22
|
Bianchi MG, Casati L, Sauro G, Taurino G, Griffini E, Milani C, Ventura M, Bussolati O, Chiu M. Biological Effects of Micro-/Nano-Plastics in Macrophages. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:394. [PMID: 40072197 PMCID: PMC11901536 DOI: 10.3390/nano15050394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
The environmental impact of plastics is worsened by their inadequate end-of-life disposal, leading to the ubiquitous presence of micro- (MPs) and nanosized (NPs) plastic particles. MPs and NPs are thus widely present in water and air and inevitably enter the food chain, with inhalation and ingestion as the main exposure routes for humans. Many recent studies have demonstrated that MPs and NPs gain access to several body compartments, where they are taken up by cells, increase the production of reactive oxygen species, and lead to inflammatory changes. In most tissues, resident macrophages engage in the first approach to foreign materials, and this interaction largely affects the subsequent fate of the material and the possible pathological outcomes. On the other hand, macrophages are the main organizers and controllers of both inflammatory responses and tissue repair. Here, we aim to summarize the available information on the interaction of macrophages with MPs and NPs. Particular attention will be devoted to the consequences of this interaction on macrophage viability and functions, as well as to possible implications in pathology.
Collapse
Affiliation(s)
- Massimiliano G. Bianchi
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.B.); (G.T.); (E.G.)
- Microbiome Research Hub, University of Parma, 43125 Parma, Italy; (C.M.); (M.V.)
| | - Lavinia Casati
- Department of Health Sciences, University of Milan, 20122 Milan, Italy; (L.C.); (G.S.)
| | - Giulia Sauro
- Department of Health Sciences, University of Milan, 20122 Milan, Italy; (L.C.); (G.S.)
| | - Giuseppe Taurino
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.B.); (G.T.); (E.G.)
| | - Erika Griffini
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.B.); (G.T.); (E.G.)
| | - Christian Milani
- Microbiome Research Hub, University of Parma, 43125 Parma, Italy; (C.M.); (M.V.)
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43125 Parma, Italy
| | - Marco Ventura
- Microbiome Research Hub, University of Parma, 43125 Parma, Italy; (C.M.); (M.V.)
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43125 Parma, Italy
| | - Ovidio Bussolati
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.B.); (G.T.); (E.G.)
- Microbiome Research Hub, University of Parma, 43125 Parma, Italy; (C.M.); (M.V.)
| | - Martina Chiu
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.B.); (G.T.); (E.G.)
| |
Collapse
|
23
|
Zheng Y, Li J, Zhu H, Hu J, Sun Y, Xu G. Endocytosis, endoplasmic reticulum, actin cytoskeleton affected in tilapia liver under polystyrene microplastics and BDE 153 acute co-exposure. Comp Biochem Physiol C Toxicol Pharmacol 2025; 289:110117. [PMID: 39725183 DOI: 10.1016/j.cbpc.2024.110117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Studies showed that contaminants adhered to the surface of nano-polystyrene microplastics (NPs) have a toxicological effect. Juveniles tilapia were dispersed into four groups: the control group A, 75 nm NPs exposed group B, 5 ng·L-1 2,2',4,4',5,5'-hexabromodiphenyl ether group C (BDE153), and 5 ng·L-1 BDE153 + 75 nm MPs group D, and acutely exposed for 2, 4 and 8 days. The hepatic histopathological change, enzymatic activities, transcriptomics, and proteomics, have been performed in tilapia. The results showed that the enzymatic activities of anti-oxidative (ROS, SOD, EROD), energy (ATP), lipid metabolism (TC, TG, FAS, LPL, ACC), pro-inflammatory (TNFα, IL-1β) and apoptosis (caspase 3) significantly increased at 2 d in BDE153 and the combined group and together in BDE153 group at 8 d. Histological slice showed displaced nucleus by BDE153 exposure and vacuoles appeared in the combined groups. KEGG results revealed that pathways associated with endocytosis, protein processing in endoplasmic reticulum and regulation of actin cytoskeleton were significantly enriched. The selected genes associated with neurocentral development (ganab, diaph3/baiap2a/ddost decreased and increased), lipid metabolism (ldlrap1a decreased, stt3b increased), energy (agap2 decreased, uggt1 increased) were affected under co-exposure, and fibronectin significantly increased via proteome. Our study indicated that endocytosis, protein processing in endoplasmic reticulum, regulation of actin cytoskeleton were affected in tilapia liver under NPs and BDE153 co-exposure.
Collapse
Affiliation(s)
- Yao Zheng
- Wuxi Fishery College, Nanjing Agricultural University, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China.
| | - Jiajia Li
- Wuxi Fishery College, Nanjing Agricultural University, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China
| | - Haojun Zhu
- Wuxi Fishery College, Nanjing Agricultural University, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China
| | - Jiawen Hu
- Wuxi Fishery College, Nanjing Agricultural University, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China
| | - Yi Sun
- Wuxi Fishery College, Nanjing Agricultural University, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China
| | - Gangchun Xu
- Wuxi Fishery College, Nanjing Agricultural University, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu 214081, China.
| |
Collapse
|
24
|
Wang C, Shen J. Deep learning-driven behavioral analysis reveals adaptive responses in Drosophila offspring after long-term parental microplastic exposure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124502. [PMID: 39933380 DOI: 10.1016/j.jenvman.2025.124502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/25/2025] [Accepted: 02/06/2025] [Indexed: 02/13/2025]
Abstract
Microplastics are widely distributed in the environment and pose potential hazards to organisms. However, our understanding of the transgenerational effects of microplastics on terrestrial organisms remains limited. In this study, we focused on the model organism Drosophila melanogaster. We exposed parental flies to polystyrene microplastics (PS-MPs) continuously and collected offspring larvae at different time points (day 2, day 8, day 14). We then employed deep learning techniques to track and analyze the behavior of the offspring larvae to assess the transgenerational effects of PS-MPs on fruit flies. First, we observed a decline in the mobility of offspring larvae as parental flies aged under non-PS-MP exposure conditions. Second, acute exposure of parental flies to PS-MPs did not result in significant transgenerational effects, but after long-term exposure, offspring larvae showed increased crawling speed and decreased crawling angular velocity, indicating enhanced locomotor ability compared to the control group. This suggests that long-term exposure of parental flies to PS-MPs may help offspring adapt to new environments. Our findings not only support the hypothesis of adaptive parental effects, where parents facing environmental pressure challenges may foster offspring better adapted to the environment, but also provide new insights into the transgenerational effects of PS-MPs on terrestrial organisms.
Collapse
Affiliation(s)
- Chengpeng Wang
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Jie Shen
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, 310018, China.
| |
Collapse
|
25
|
Li K, Wang K, Xu T, Lyu C, Yang X, Lin H, Xu S. New insights into quercetin's attenuation of TBBPA-induced injury to MCEC cells: Involvement of the p38/NF-κB pathway and pyroptosis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124425. [PMID: 39933375 DOI: 10.1016/j.jenvman.2025.124425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/15/2024] [Accepted: 01/31/2025] [Indexed: 02/13/2025]
Abstract
With the widespread application of the brominated flame retardant tetrabromobisphenol A (TBBPA), it poses a threat to human health, especially intestinal health. Quercetin (Que) is a flavonol compound with anti-inflammatory and antioxidant properties. However, whether Que can prevent TBBPA-induced intestinal toxicity remains unknown. Therefore, in this study, a TBBPA (75 μM) exposure model and a Que (0.1 μM) treatment model were established using mouse colon epithelial cells (MCEC). The p38 pathway, pyroptosis, and intestinal barrier function-related indicators were analyzed using an oxidative stress reagent kit, immunofluorescence staining, western blotting, and qRT-PCR. The results showed that TBBPA exposure dose-dependently reduced cell viability, impaired the antioxidant function of cells, promoted ROS accumulation, activated the p38 signalling pathway, induced pyroptosis, and decreased the expression levels of ZO-1, Occludin, and Claudin-1. Notably, Que treatment significantly restored the antioxidant enzyme activity in MCEC cells, reduced the ROS level, inhibited the p38 axis, alleviated MCEC cell pyroptosis, and recovered the intestinal barrier function. Further studies found that using LX-3 (a p38 activator) treatment disrupted the therapeutic effect of Que. In summary, Que can exert a protective effect by inhibiting the ROS-mediated p38 pathway, thereby alleviating the damage of TBBPA to MCEC cells.
Collapse
Affiliation(s)
- Ke Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Kun Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Chencong Lyu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xuejiao Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
26
|
Xia Y, Wang Y, Chen K, Zhang M, Jiang Q, Xu T. Quercetin attenuated necroptosis and apoptosis caused by LPS-induced mitochondrial function dysfunction through the METTL3-mediated PTEN m 6A methylation/PI3K/AKT signaling in broiler livers. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156551. [PMID: 40020631 DOI: 10.1016/j.phymed.2025.156551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/10/2025] [Accepted: 02/19/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND Quercetin (QUE), a natural flavonoid, offered an efficient protection against organism injury. N6-methyladenosine (m6A) methylation is considered to be the most prevalent and abundant modifications involved in various diseases. PURPOSE We sought to explore protective roles of QUE in mitigating necroptosis and apoptosis triggered by LPS-induced imbalances in mitochondria dynamic and energy metabolism in broiler livers, with a focus on m6A methylation modulation. STUDY DESIGN/METHODS We used LPS as a stimulus and treated with QUE to establish this in vivo and in vitro. In addition, we treated LMH cells with siMETTL3 (80 nM) to determine its detailed mechanism. RESULTS Our findings revealed QUE significantly decreased METTL3 expression, leading to a decrease in PTEN m6A methylation and factors related to mitochondria fission, necroptosis, and apoptosis in the QUE+LPS group. In contrast, QUE treatment promoted the expression levels of marker factors for mitochondria fusion, energy metabolism, anti-apoptosis, and PI3K/AKT compared with the LPS group. Additionally, an increase of ΔΨm, ATP content, and ATPase activity was observed. AO/EB staining, Flow cytometry and TUNEL assays confirmed QUE inhibited LPS-induced apoptosis and necroptosis. Molecular docking analysis and cellular thermal shift assay supported an interaction between QUE and METTL3. CONCLUSION In summary, QUE mitigated necroptosis and apoptosis triggered by LPS-induced disorders of mitochondrial kinetic and metabolic processes in broiler livers through its interaction with METTL3, regulating PTEN m6A methylation/PI3K/AKT signaling pathway. This study enhances our understanding of biological functions for QUE and lays a theoretical foundation for developing new therapeutic interventions, highlighting its potential value.
Collapse
Affiliation(s)
- Yu Xia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou 075000, PR China
| | - Yidan Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Kai Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Muyue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Qihang Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
27
|
Jia Y, Zhang X, Zhao C, Ma Z, Sun K, Sun Y, Du X, Liu M, Liang X, Yu X, Gao Y. miR-212-5p Regulates PM 2.5-Induced Apoptosis by Targeting LAMC2 and LAMA3. Int J Mol Sci 2025; 26:1761. [PMID: 40004224 PMCID: PMC11855808 DOI: 10.3390/ijms26041761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/11/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Fine particulate matter (PM2.5) is often linked to a range of respiratory diseases and cellular damage. Although studies have shown that the expression profiles of microRNAs (miRNAs) are altered during lung damage brought on by PM2.5, the underlying functions of miRNAs remain poorly understood. In this research, we explored the role of PM2.5-induced apoptosis in detail and focused on the miRNA (miR-212-5p) that regulates apoptosis. Through a dual-luciferase assay, a direct targeting connection between laminin subunits γ2 (LAMC2) and α3 (LAMA3) and miR-212-5p was successfully demonstrated. This study focused on revealing the negative regulatory relationship between miR-212-5p and LAMC2 and LAMA3, providing important clues for a deeper understanding of the relevant physiological and pathological mechanisms. The present study showed that LAMC2 and LAMA3 positively regulate the PI3K-AKT pathway and negatively regulate the NF-κB pathway, which directly leads to significant changes in apoptosis rates. This study reveals a previously unrecognized molecular mechanism by showing that miR-212-5p directly targets LAMC2 and LAMA3 and thus associates with PM2.5-induced apoptosis via the PI3K/AKT/NF-κB pathway. These findings not only redefine the role of miR-212-5p in apoptosis but also open up new avenues for future research.
Collapse
Affiliation(s)
- Yunna Jia
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (Y.J.); (X.Z.); (C.Z.); (Z.M.); (K.S.); (Y.S.); (X.D.); (M.L.)
| | - Xiqing Zhang
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (Y.J.); (X.Z.); (C.Z.); (Z.M.); (K.S.); (Y.S.); (X.D.); (M.L.)
| | - Cuizhu Zhao
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (Y.J.); (X.Z.); (C.Z.); (Z.M.); (K.S.); (Y.S.); (X.D.); (M.L.)
| | - Zhenhua Ma
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (Y.J.); (X.Z.); (C.Z.); (Z.M.); (K.S.); (Y.S.); (X.D.); (M.L.)
| | - Ke Sun
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (Y.J.); (X.Z.); (C.Z.); (Z.M.); (K.S.); (Y.S.); (X.D.); (M.L.)
| | - Yize Sun
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (Y.J.); (X.Z.); (C.Z.); (Z.M.); (K.S.); (Y.S.); (X.D.); (M.L.)
| | - Xiaohui Du
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (Y.J.); (X.Z.); (C.Z.); (Z.M.); (K.S.); (Y.S.); (X.D.); (M.L.)
| | - Meng Liu
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (Y.J.); (X.Z.); (C.Z.); (Z.M.); (K.S.); (Y.S.); (X.D.); (M.L.)
| | - Xiaojun Liang
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry, Yinchuan 750002, China;
| | - Xiuzhen Yu
- Institute of Agricultural Mechanisation, Xinjiang Academy of Agricultural Sciences, Wulumuqi 830091, China
| | - Yunhang Gao
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (Y.J.); (X.Z.); (C.Z.); (Z.M.); (K.S.); (Y.S.); (X.D.); (M.L.)
| |
Collapse
|
28
|
Shi L, Teng X, Wu C, Zhang T, Jin X, Wang L, Tian P, Shang KX, Zhao J, Rao C, Wang G. Lactic acid bacteria reduce polystyrene micro- and nanoplastics-induced toxicity through their bio-binding capacity and gut environment repair ability. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125288. [PMID: 39638230 DOI: 10.1016/j.envpol.2024.125288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/10/2024] [Accepted: 11/09/2024] [Indexed: 12/07/2024]
Abstract
Microplastics and nanoplastics (MNPs) are emerging environmental contaminants that have received significant attention in recent years. Currently, there are more studies on the toxic effects of MNPs exposure on animals (especially aquatic organisms and mammals), but data on the reduction of toxic effects caused by MNPs exposure are still very limited. Lactic acid bacteria (LAB), recognized as safe food-grade microorganisms, possess the capability to bioconjugate harmful substances. In this experiment, we chose lactic acid bacteria (LAB) with different binding capacities to MNPs in vitro to intervene in MNPs-exposed mice to investigate the reducing effect on the toxicity caused by MNPs exposure. Our study showed that LAB with a high intercalation capacity with MNPs in vitro were more effective in alleviating the toxicity caused by MNPs exposure. Notably, Lactobacillus plantarum DT22, despite its low inter-adsorption with MNPs, played a pivotal role in upregulating the relative expression of tight junction proteins and modulating the intestinal microbiota. Thus, LAB strains' mitigation of MNPs toxicity extends beyond bio-binding; their capacity to repair the damaged gut environment is also crucial. LAB strains are proposed as a dietary intervention to reduce MNPs-induced toxicity.
Collapse
Affiliation(s)
- Liuting Shi
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Xin Teng
- Bluepha Co., Ltd., Shanghai, 200434, PR China
| | - Changyin Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | | | - Xing Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Linlin Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Peijun Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Ke-Xin Shang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, 225004, PR China
| | - Chitong Rao
- Bluepha Co., Ltd., Shanghai, 200434, PR China.
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, 225004, PR China.
| |
Collapse
|
29
|
Sun J, Peng S, Yang Q, Yang J, Dai Y, Xing L. Microplastics/nanoplastics and neurological health: An overview of neurological defects and mechanisms. Toxicology 2025; 511:154030. [PMID: 39653181 DOI: 10.1016/j.tox.2024.154030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/27/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024]
Abstract
The widespread use of plastic products worldwide has brought about serious environmental issues. In natural environments, it's difficult for plastic products to degrade completely, and so they exist in the form of micro/nanoplastics (M/NPs), which have become a new type of pollutant. Prolonged exposure to M/NPs can lead to a series of health problems in humans, particularly toxicity to the nervous system, with consequences including neurodevelopmental abnormalities, neuronal death, neurological inflammation, and neurodegenerative diseases. Although direct evidence from humans is still limited, model organisms and organoids serve as powerful tools to provide important insights. This article summarizes the effects of M/NPs on the nervous system, focusing on cognitive function, neural development, and neuronal death. Mechanisms such as neurotransmitter synthesis and release, inflammatory responses, oxidative stress, the gut-brain axis, and the liver-brain axis are covered. The neurotoxicity induced by M/NPs may exacerbate or directly trigger neurodegenerative diseases and neurodevelopmental disorders. We particularly emphasize potential therapeutic agents that may counteract the neurotoxic effects induced by M/NPs, highlighting a novel future research direction. In summary, this paper cites evidence and provides mechanistic perspectives on the effects of M/NPs on neurological health, providing clues for eliminating M/NP hazards to human health in the future.
Collapse
Affiliation(s)
- Junjie Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University,Nantong, Jiangsu Province 226001, China
| | - Siwan Peng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University,Nantong, Jiangsu Province 226001, China
| | - Qiongxia Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University,Nantong, Jiangsu Province 226001, China
| | - Jiawei Yang
- Department of Neurology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu Province 226000, China
| | - Yanfei Dai
- Nantong Geriatric Rehabilitation Hospital, Branch of Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Lingyan Xing
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University,Nantong, Jiangsu Province 226001, China.
| |
Collapse
|
30
|
Guo C, Li R, Wang X, Peng X. Aspartate aminotransferase to platelet ratio correlates with poor prognosis and metabolic alterations in Dabie bandavirus infection. Front Immunol 2025; 15:1471511. [PMID: 39896801 PMCID: PMC11781988 DOI: 10.3389/fimmu.2024.1471511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 12/18/2024] [Indexed: 02/04/2025] Open
Abstract
Introduction Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease with a high mortality rate caused by Dabie bandavirus. The aspartate aminotransferase to platelet ratio index (APRI) is a biomarker of liver injury and inflammation. This study aimed to examine the correlation between APRI and SFTS prognosis using clinical data analysis and attempt to explain its prognostic significance through metabolic analysis. Methods Data from hospitalized patients with a confirmed diagnosis of SFTS virus infection at Wuhan Union Hospital were retrospectively collected. The low and high APRI groups were 1:1 matched using propensity score matching (PSM) analysis. Fresh plasma was collected from patients with SFTS on admission and used for metabolic tests. Results A total of 617 patients with SFTS who met the inclusion criteria were selected for analysis. Survival analysis revealed that patients with SFTS with high APRI (> 35.3) had a substantially higher death rate than those with low APRI (≤ 35.3). Receiver operating characteristic analysis showed the predictive performance of APRI for SFTS prognosis is 0.77, with a 95% CI of 0.73-0.80, which was superior to NLR (area under the curve (AUC): 0.65), platelet-to-lymphocyte ratio (AUC: 0.54), and systemic immune-inflammation index (AUC: 0.58). The prognostic value and predictive performance of APRI were more substantial after PSM than before PSM. Metabolomic testing identified several differential serum metabolites, with alanine, aspartate, glutamate, glycerophospholipid, and tryptophan metabolism being the most important metabolic pathways. Conclusion A high APRI score was associated with relatively higher mortality in patients with SFTS, and its predictive performance for the survival outcome of SFTS was superior to that of well-recognized inflammatory scores. Alanine, aspartate, and glutamate metabolism are involved in the progression of SFTS.
Collapse
Affiliation(s)
- Chunxia Guo
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ruixue Li
- Department of Internal Medicine, The Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xia Wang
- Department of Pharmacy, The Second Affiliated Hospital of Jianghan University, Wuhan, Hubei, China
| | - Xiulan Peng
- Department of Oncology, The Second Affiliated Hospital of Jianghan University, Wuhan, Hubei, China
| |
Collapse
|
31
|
Saha U, Jena S, Simnani FZ, Singh D, Choudhury A, Naser SS, Lenka SS, Kirti A, Nandi A, Sinha A, Patro S, Kujawska M, Suar M, Kaushik NK, Ghosh A, Verma SK. The unseen perils of oral-care products generated micro/nanoplastics on human health. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117526. [PMID: 39674028 DOI: 10.1016/j.ecoenv.2024.117526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/23/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
The extensive use of plastics in modern dentistry, including oral care products and dental materials, has raised significant concerns due to the increasing evidence of potential harm to human health and the environment caused by the unintentional release of microplastics (MPs) and nanoplastics (NPs). Particles from sources like toothpaste, toothbrushes, orthodontic implants, and denture materials are generated through mechanical friction, pH changes, and thermal fluctuations. These processes cause surface stress, weaken material integrity, and induce wear, posing health risks such as exposure to harmful monomers and additives, while contributing to environmental contamination. MPs/NPs released during dental procedures can be ingested, leading to immune suppression, tissue fibrosis, and systemic toxicities. The gut epithelium absorbs some particles, while others are excreted, entering ecosystems, accumulating through the food chain, and causing ecological damage. Although analytical techniques have advanced in detecting MPs/NPs in oral care products, more robust methods are needed to understand their release mechanisms. This review explores the prevalence of MPs/NPs in dentistry, the mechanisms by which MPs/NPs are released into the oral environment, and their implications for human and ecological health. It underscores the urgency of public awareness and sustainable dental practices to mitigate these risks and promote environmental well-being.
Collapse
Affiliation(s)
- Utsa Saha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Snehasmita Jena
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | | | - Dibyangshee Singh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Anmol Choudhury
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Shaikh Sheeran Naser
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Sudakshya S Lenka
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Apoorv Kirti
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Aditya Nandi
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Swadheena Patro
- Kalinga Institute of Dental Sciences, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, South Korea.
| | - Aishee Ghosh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India; Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala SE-751 20, Sweden.
| | - Suresh K Verma
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India; Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
32
|
Chen D, Pan L, Ran X, Huang J, Teng X, Yang F, Liu H. Microbial diversity and metabolomics analysis of colon contents exposed to cadmium and polystyrene microplastics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117585. [PMID: 39709704 DOI: 10.1016/j.ecoenv.2024.117585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
Cadmium and microplastics, common pollutants, can accumulate in the body, impacting the intestinal barrier and harming livestock breeding. In order to explore the damage mechanism of cadmium and cadmium combined microplastic on the colon of mice, 60 mice were divided into three groups: The control group (0.2 mL of saline), cadmium group (Cd group, 0.2 mL of 4.8 mg/kg/d CdCl2) and mixed group (Mix group, 0.2 mL of mixed solution containing 4.8 mg/kg/d CdCl2 and 10.0 mg/d MPs) were fed for 42 d. The changes of colon histopathology were observed, and the changes of microbial diversity and metabolomics of colon contents were analyzed. Pathological sections of the colon showed abnormal mucosal hyperemia with mixed exposure compared to cadmium exposure. Microbial diversity analysis showed increased abundances of Enterococcus, Adlercreutzia, and Bifidobacterium in the Cd and Mix groups, with Dubosiella being the most significantly increased. Metabolomic analysis indicated significant differences in nucleotide and purine metabolism between the Cd and control groups, and in linoleic acid and bile acid metabolism between the Mix and control groups. The ABC transporter metabolites increased with Cd exposure, while the PPAR pathway metabolites were enriched with MPs exposure. Correlation analysis highlighted several key findings: Pasteurella exhibited a notably negative association with pantothenate. Conversely, Enterococcus demonstrated a significant positive link with palmitoylcarnitine. Additionally, both Adlercreutzia and norank_f_Eggerthellaceae showed a positive correlation with azelaic acid. These findings suggest that Cd and MPs disrupt intestinal microbiota and metabolic pathways, providing insights into potential treatments for such exposures.
Collapse
Affiliation(s)
- Dechun Chen
- Key Laboratory of Animal Medicine of Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Liyu Pan
- Key Laboratory of Animal Medicine of Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Xuan Ran
- Key Laboratory of Animal Medicine of Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Junyu Huang
- Key Laboratory of Animal Medicine of Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Falong Yang
- Key Laboratory of Animal Medicine of Sichuan Province, Southwest Minzu University, Chengdu 610041, China.
| | - Haifeng Liu
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
33
|
Wang Q, Zhang S, Ding J, Zhang Z, Li X, Chen Y, Zhu Y, Zeng D, Dong J, Liu Y. Ferulic acid alleviates cardiac injury by inhibiting avermectin-induced oxidative stress, inflammation and apoptosis. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110058. [PMID: 39442783 DOI: 10.1016/j.cbpc.2024.110058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/21/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Avermectin (AVM) is a broad-spectrum antibiotic from the macrolide class, extensively employed in fisheries and aquaculture. Nevertheless, its indiscriminate utilisation has resulted in a substantial accumulation of remnants in the aquatic ecosystem, potentially inflicting significant harm to the cardiovascular system of aquatic species. Ferulic acid (FA) is a naturally occurring compound in wheat grain husks. It possesses potent anti-inflammatory and antioxidant properties, which can help reduce cardiovascular damage. Additionally, its affordability makes it an excellent option for aquaculture usage as a feed additive. This article explored the potential of FA as a feed additive to protect against AVM-induced heart damage in carp. We subjected carp to AVM for 30 days and provided them with a diet of 400 mg/kg of FA. FA substantially reduced the pathogenic damage to heart tissue caused by AVM, as shown through hematoxylin-eosin staining. The biochemical analysis revealed that FA markedly enhanced the activity of antioxidant enzymes catalase (CAT), glutathione (GSH), and total antioxidant capacity (T-AOC) while reducing the malondialdehyde (MDA) content. Furthermore, qPCR analysis demonstrated a substantial increase in the mRNA levels of transforming growth factor-β1 (tgf-β1) and interleukin-10 (il-10) simultaneously, significantly reducing the expression levels of interleukin-10 (il-6), interleukin-1β (il-1β), tumor necrosis factor-α (tnf-α) and inductible nitric oxide synthase (inos). Through the mitochondrial apoptotic route, FA reduced AVM-induced cell death in carp heart cells by upregulating bcl-2 while downregulating the mRNA expression levels of bax, fas, caspase8 and caspase9. In summary, FA alleviated cardiac injury by inhibiting AVM-induced oxidative stress, inflammatory response, and apoptosis in carp heart tissue.
Collapse
Affiliation(s)
- Qiao Wang
- Department of Pathology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang 222000, China
| | - Shasha Zhang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jiahao Ding
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhiqiang Zhang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xinxuan Li
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yuxin Chen
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yangye Zhu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Danping Zeng
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Yi Liu
- Department of Pathology, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang 222000, China.
| |
Collapse
|
34
|
Chia RW, Atem NV, Lee JY, Cha J. Microplastic and human health with focus on pediatric well-being: a comprehensive review and call for future studies. Clin Exp Pediatr 2025; 68:1-15. [PMID: 39533740 PMCID: PMC11725616 DOI: 10.3345/cep.2023.01739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 11/16/2024] Open
Abstract
Although humans are highly dependent on plastics from infancy to adolescence, these materials can degrade into ubiquitous microplastics (MPs) that affect individuals at every stage of life. However, information on the sources, mechanisms, detection techniques, and detrimental effects of MPs on children's health from infancy to adolescence is limited. Hence, here we identified and reviewed original research papers published in 2017-2023 across 11 database categories in PubMed, Google Scholar, Scopus, and Web of Science to improve our understanding of MPs with a focus on pediatric well-being. These studies found that milk and infant formulas are common sources of MP exposure in infants. Infant formula is the dominant source of MPs in babies, while plastic toys are a common source of MPs in toddlers. Adolescents are frequently exposed to MPs through the consumption of food contaminated with MPs and the use of plastics in food packaging. Water and air are sources of MP exposure in children from infancy through adolescence. This study thoroughly summarized how MP exposure in children of all ages causes cell damage and leads to adverse health effects such as cancer. With appropriate authorization from the relevant authorities, small amounts of human biological samples (10 g of feces) were collected from volunteers to assess the amounts of MPs in children with the aim of promoting pediatric well-being. The samples were then treated with Fenton's reagent, stored in glass jars, and filtered through nonplastic filters. Finally, MPs in children were quantified using stereomicroscopy and characterized using micro-Fourier transform infrared spectroscopy.
Collapse
Affiliation(s)
- Rogers Wainkwa Chia
- Department of Geology, Kangwon National University, Chuncheon, Korea
- Research Institute for Earth Resources, Kangwon National University, Chuncheon, Korea
| | | | - Jin-Yong Lee
- Department of Geology, Kangwon National University, Chuncheon, Korea
- Research on Microplastics in Groundwater (RMPG), Kangwon National University, Chuncheon, Korea
| | - Jihye Cha
- Department of Geology, Kangwon National University, Chuncheon, Korea
- School of Science and Engineering, University of Missouri, Kansas City, MO, USA
| |
Collapse
|
35
|
Dan KB, Yoo JY, Min H. The Emerging Threat of Micro- and Nanoplastics on the Maturation and Activity of Immune Cells. Biomol Ther (Seoul) 2025; 33:95-105. [PMID: 39663987 PMCID: PMC11704408 DOI: 10.4062/biomolther.2024.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/11/2024] [Accepted: 11/16/2024] [Indexed: 12/13/2024] Open
Abstract
With the increasing use of plastics worldwide, the amount of plastic waste being discarded has also risen. This plastic waste undergoes physical and chemical processes, breaking down into smaller particles known as microplastics (MPs) or nanoplastics (NPs). Advances in technology have enhanced our ability to detect these smaller particles, and it has been confirmed that plastics can be found in marine organisms as well as within the human body. However, research on the effects of MPs or NPs on living organisms has only recently been started, and our understanding remains limited. Studies on the immunological impacts are still ongoing, revealing that MPs and NPs can differentially affect various immune cells based on the material, size, and shape of the plastic particles. In this review, we aim to provide a comprehensive understanding of the effects of MPs and NPs on the immune system. We will also explore the methods for plastic removal through physicochemical, microbial, or biological means.
Collapse
Affiliation(s)
- Kang-Bin Dan
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ji Yoon Yoo
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyeyoung Min
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
36
|
Chen X, Lin X. Sodium selenite antagonizes trimethyl tin-induced chicken hepatotoxic hepatitis through the RNS/NF-κB/NLRP3 pathway. Poult Sci 2025; 104:104449. [PMID: 39577171 PMCID: PMC11617673 DOI: 10.1016/j.psj.2024.104449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/10/2024] [Accepted: 10/27/2024] [Indexed: 11/24/2024] Open
Abstract
Trimethyl tin (TMT) is a good stabilizer for plastic products but is also a toxic environmental pollutant. Selenium has good antioxidant and anti-inflammatory properties and has been widely used in the poultry industry. However, it has not been reported whether selenium enrichment can antagonize TMT-induced viral hepatitis in poultry. To fill this gap, AA broiler models exposed to TMT for 42 d were established and fed a Se-enriched diet at the same time. H&E staining showed that selenium could significantly alleviate TMT-induced liver inflammation. Further analysis of the underlying mechanism revealed that TMT induced nitrosation stress (RNS), increased NO content and iNOS expression, which in turn activated the NF-κB/NLRP3 pathway and induced pyroptosis. However, selenium enrichment can reverse this situation, that is, reduce the occurrence of RNS, reduce the degree of pyroptosis, and thus alleviate the occurrence of inflammation. In our study, we demonstrated for the first time that TMT could induce hepatotoxicity other than neurotoxicity in poultry and that selenium could antagonize TMT-induced hepatotoxic hepatitis in chickens through the RNS/NF-κB/NLRP3 pathway.
Collapse
Affiliation(s)
- Xinzhang Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Animal Science Faculty of Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Xu Lin
- Animal Science Faculty of Technology, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
37
|
Li K, Yang X, Xu T, Shi X, Xu S. Quercetin Protects against Silicon dioxide Particles-induced spleen ZBP1-Mediated PANoptosis by regulating the Nrf2/Drp1/mtDNA axis. Int Immunopharmacol 2024; 143:113546. [PMID: 39488923 DOI: 10.1016/j.intimp.2024.113546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Silicon dioxide particles (SiO2) are a widely used novel material, and SiO2 that enter the body can accumulate in the spleen and cause spleen injury. Quercetin (Que) has a strong antioxidant activity and can also regulate and improve immune function, but whether Que can improve SiO2-induced spleen injury and its underlying mechanism remain to be explored. Herein, we established a C57BL/6 mice model with SiO2 exposure (10 mg/kg) and treated with Que (25 mg/kg). We also cultured CTLL-2 cells for in vitro experiments. Studies in vivo and in vitro showed that SiO2 exposure caused oxidative stress and mitochondrial dynamics disorder, which led to decrease of mitochondrial membrane potential (ΔΨm) and mitochondrial DNA (mtDNA) leakage. mtDNA was recognized by Z-DNA binding protein 1 (ZBP1) in the cytoplasm and increased the expression of ZBP1. This process further promoted the assembly of the ZBP1-mediated PANoptosome, which subsequently induced PANoptosis. Interestingly, supplementation with Que significantly reversed these changes. Specifically, Que mitigated spleen ZBP-1 mediated PANoptosis through preventing mtDNA leakage via regulating nuclear factor erythroid 2-related factor 2/reactive oxygen species/dynamin-related protein 1 (Nrf2/ROS/Drp1) axis. This study enriches the understanding of the toxicological mechanisms of SiO2 and provides evidence for the protective effects of Que against SiO2-induced splenic toxicity.
Collapse
Affiliation(s)
- Ke Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xuejiao Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
38
|
Xie X, Fang F. The METTL3/m6A Reader Protein YTHDF1 Regulates Endothelial Cell Pyroptosis by Enhancing NLRP3 Expression to Affect Soft Tissue Injury. J Inflamm Res 2024; 17:11331-11346. [PMID: 39722730 PMCID: PMC11669061 DOI: 10.2147/jir.s479276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Background Pyroptosis is inflammation-associated programmed cell death triggered by activation of the NOD-like receptor protein 3 (NLRP3) inflammasome, which plays a crucial role in acute soft tissue injury (ASTI). This study aimed to explore whether methyltransferase-like 3 (METTL3) can regulate NLRP3 expression through N6-methyladenosine (m6A) modification to mediate endothelial cell pyroptosis and thus affect soft tissue injury. Methods An experimental ASTI rat model was created by inducing muscle injury through striking the rat muscle. In vitro, an ASTI cell model was established using human umbilical vein endothelial cells (HUVECs) stimulated with lipopolysaccharide (LPS) and ATP. The severity of ASTI in rats was evaluated using H&E staining. To assess protein levels, Western blot and Immunohistochemistry (IHC) analyses were performed, focusing on METTL3, pyroptosis-associated proteins, and m6A reader proteins. Immunofluorescence (IF) assay was conducted to examine the expression of NLRP3 and CD31. The levels of inflammatory cytokines were measured using an ELISA assay, while flow cytometry was used to detect levels of ROS and cellular pyroptosis. The m6A levels in cells were analyzed by RNA m6A colorimetry. The interactions between METTL3 and NLRP3, and YTHDF1 and NLRP3 were analyzed using RIP and RNA pull-down assays, respectively. Results METTL3 and YTHDF1 were significantly upregulated in ASTI rats and LPS-ATP-induced HUVECs. Knockdown of METTL3 ameliorated ASTI and inhibited cellular pyroptosis. Knockdown of METTL3 reduced the levels of total m6A and NLRP3 m6A in HUVECs and suppressed NLRP3 expression. Meanwhile, knockdown of YTHDF1 decreased NLRP3 protein expression without affecting NLRP3 mRNA levels. In addition, overexpression of NLRP3 was able to reverse the effect of METTL3 on LPS-ATP-induced endothelial cell pyroptosis. Conclusion The METTL3/m6A reader protein YTHDF1 regulates endothelial cell pyroptosis by enhancing NLRP3 expression to affect soft tissue injury.
Collapse
Affiliation(s)
- Xuesong Xie
- Department of Orthopedics, Xiangtan Central Hospital, Xiangtan, 411100, People’s Republic of China
| | - Fang Fang
- Department of Anorectal, Xiangtan Central Hospital, Xiangtan, 411100, People’s Republic of China
| |
Collapse
|
39
|
Chen J, Dai X, Xing C, Zhang Y, Cao H, Hu G, Guo X, Gao X, Liu P, Yang F. Cooperative application of transcriptomics and ceRNA hypothesis: lncRNA-00742/miR-116 targets CD74 to mediate vanadium-induced mitochondrial apoptosis in duck liver. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135904. [PMID: 39303616 DOI: 10.1016/j.jhazmat.2024.135904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Vanadium (V) is a poisonous metallic environmental pollutant which poses hazard to the animal health of the liver. Competitive endogenous ribonucleic acids (ceRNAs) are essential elements of mitochondrial function and apoptosis, and their effects have been associated with the metal toxicity mechanism. However, the specific mechanism of ceRNAs in V-induced mitochondrial apoptosis in the liver has not been adequately investigated. Hence, we established an in vivo model of ducks exposed to V for 44 days and an in vitro model of V exposure duck hepatocyte knockdown/overexpression. Results showed that V exposure triggered the differential expression of 1106 lncRNAs and 11 miRNAs in the liver. Besides, we established the lncRNA-00742/miR-116/CD74 regulatory network by the dual luciferase reporter gene. Our results also found that V induced mitochondrial injury and up-regulated the expression levels of mitochondrial apoptosis-related factors. Furthermore, knockdown of miR-116 attenuated V-induced mitochondrial injury and apoptosis in hepatocytes. In contrast, overexpression of miR-116 and knockdown of CD74 exacerbated mitochondrial injury and apoptosis. BTZO-1 upregulated the CD74 level and alleviated V-induced mitochondrial apoptosis. In summary, V induced mitochondrial damage and apoptosis in duck liver by activating the lncRNA-00742/miR-116/CD74 axis. This research firstly revealed the mechanism of lncRNA-related ceRNAs regulating V-induced mitochondrial apoptosis.
Collapse
Affiliation(s)
- Jing Chen
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Yike Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Xiaona Gao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China.
| |
Collapse
|
40
|
Liao Y, Wang Y, Lin Y, Xiao Y, Mohan M, Jaman R, Dong H, Zhu J, Li X, Zhang C, Chen G, Zhou J. Molecular mechanisms of tetrabromobisphenol A (TBBPA) toxicity: Insights from various biological systems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117418. [PMID: 39612681 DOI: 10.1016/j.ecoenv.2024.117418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/03/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Tetrabromobisphenol A (TBBPA) is a ubiquitous brominated flame retardant extensively incorporated into a wide range of products. As its utilization has escalated, its environmental exposure risks have concomitantly increased. The molecular properties of TBBPA allow it to persist in the environment and within organisms. In this review, we comprehensively examine the toxicity of TBBPA across different organ systems and elucidate the underlying molecular mechanisms. We particularly emphasize TBBPA's impact on biological signaling pathways, protein functionality, cellular architecture, and epigenetic regulation, which collectively lead to disruptions in endocrine, hepatic, neurological, reproductive, and other biological systems. The analysis of these toxicological phenomena and their fundamental molecular mechanisms has substantially enhanced our understanding of TBBPA's hazardous characteristics. This review also examines potential avenues for future research, with a focus on uncovering novel molecular mechanisms and assessing the toxicological impacts of TBBPA exposure, particularly in relation to interactions with other environmental contaminants. We propose a greater focus on examining the toxic effects and molecular mechanisms of long-term TBBPA exposure at environmentally relevant concentrations to facilitate more accurate assessments of human health risks.
Collapse
Affiliation(s)
- Yuxing Liao
- School of Basic Medical Sciences, Dali University, Dali, Yunnan 671000, China
| | - Yilin Wang
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - YaJie Lin
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Yuxi Xiao
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Mohith Mohan
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Rummana Jaman
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Hao Dong
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Jiao Zhu
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Xuerui Li
- College of Clinical Medicine, Dali University, Dali, Yunnan 671000, China
| | - Conglin Zhang
- Department rehabilitation medicine, the First Affiliated Hospital of Dali University, Dali, Yunnan 671000, China
| | - Guiyuan Chen
- School of Basic Medical Sciences, Dali University, Dali, Yunnan 671000, China
| | - Jiaqi Zhou
- School of Basic Medical Sciences, Dali University, Dali, Yunnan 671000, China.
| |
Collapse
|
41
|
Papp PP, Hoffmann OI, Libisch B, Keresztény T, Gerőcs A, Posta K, Hiripi L, Hegyi A, Gócza E, Szőke Z, Olasz F. Effects of Polyvinyl Chloride (PVC) Microplastic Particles on Gut Microbiota Composition and Health Status in Rabbit Livestock. Int J Mol Sci 2024; 25:12646. [PMID: 39684357 DOI: 10.3390/ijms252312646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
The widespread use of polyvinyl chloride (PVC) and its entry into humans and livestock is of serious concern. In our study, we investigated the impact of PVC treatments on physiological, pathological, hormonal, and microbiota changes in female rabbits. Trend-like alterations in weight were observed in the spleen, liver, and kidney in both low (P1) and high dose (P2) PVC treatment groups. Histopathological examination revealed exfoliation of the intestinal mucosa in the treated groups compared to the control, and microplastic particles were penetrated and embedded in the spleen. Furthermore, both P1 and P2 showed increased 17-beta-estradiol (E2) hormone levels, indicating early sexual maturation. Moreover, the elevated tumor necrosis factor alpha (TNF-α) levels suggest inflammatory reactions associated with PVC treatment. Genus-level analyses of the gut microbiota in group P2 showed several genera with increased or decreased abundance. In conclusion, significant or trend-like correlations were demonstrated between the PVC content of feed and physiological, pathological, and microbiota parameters. To our knowledge, this is the first study to investigate the broad-spectrum effects of PVC microplastic exposure in rabbits. These results highlight the potential health risks associated with PVC microplastic exposure, warranting further investigations in both animals and humans.
Collapse
Affiliation(s)
- Péter P Papp
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Orsolya Ivett Hoffmann
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Balázs Libisch
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Tibor Keresztény
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
- Doctoral School of Biological Sciences, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Annamária Gerőcs
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
- Doctoral School of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
| | - Katalin Posta
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - László Hiripi
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
- Laboratory Animal Science Coordination Center, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary
| | - Anna Hegyi
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Elen Gócza
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Zsuzsanna Szőke
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Ferenc Olasz
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| |
Collapse
|
42
|
Schwenger KJP, Ghorbani Y, Bharatselvam S, Chen L, Chomiak KM, Tyler AC, Eddingsaas NC, Fischer SE, Jackson TD, Okrainec A, Allard JP. Links between fecal microplastics and parameters related to metabolic dysfunction-associated steatotic liver disease (MASLD) in humans: An exploratory study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176153. [PMID: 39260480 DOI: 10.1016/j.scitotenv.2024.176153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Microplastics (MPs) can persist in the environment and human body. Murine studies showed that exposure to MPs could cause metabolic dysregulation, contributing metabolic dysfunction-associated steatotic liver disease (MASLD) or steatohepatitis (MASH). However, research on the role of MPs in humans is limited. Thus, we aimed to assess links between human fecal MPs and liver histology, gene expression, immune cells and intestinal microbiota (IM). We included 6 lean healthy liver donors and 6 normal liver (obese) and 11 MASH patients. Overall, pre-BSx, we observed no significant differences in fecal MPs between groups. However, fecal MP fibers and total MPs positively correlated with portal and total macrophages and total killer T cells while total fecal MPs were positively correlated with natural killer cells. Additionally, 19 genes related to immune system and apoptosis correlated with fecal MPs at baseline. Fecal MP fibers correlated positively with fecal Bifidobacterium and negatively with Lachnospiraceae. Patients with MASH (n = 11) were re-assessed 12-months post-bariatric surgery (BSx) and we found that those with persistent disease (n = 4) had higher fecal MP fragments than those with normalized liver histology (n = 7). At 12-month post-BSx, MP fragments positively correlated with helper T cells and total MPs positively correlated with natural killer T cells and B cells. Our study is the first to look at 1) the role of MPs in MASH and its association with IM, immune cells and hepatic gene expression and 2) look at the role of MPs longitudinally in MASH persistence following BSx. Future research should further explore this relationship.
Collapse
Affiliation(s)
| | - Yasaman Ghorbani
- Toronto General Hospital, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada
| | | | - Lina Chen
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Kristina M Chomiak
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States of America
| | - Anna Christina Tyler
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States of America
| | - Nathan C Eddingsaas
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY, United States of America
| | - Sandra E Fischer
- Toronto General Hospital, University Health Network, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Timothy D Jackson
- Division of Surgery, University of Toronto, Toronto, Canada; Division of General Surgery, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Allan Okrainec
- Division of Surgery, University of Toronto, Toronto, Canada; Division of General Surgery, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Johane P Allard
- Toronto General Hospital, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Medicine, Division of Gastroenterology, University of Toronto, Toronto, Canada.
| |
Collapse
|
43
|
Zhang Y, Zhao T, Zhang Y, Song Q, Meng Q, Zhou S, Wei L, Qi Y, Guo Y, Cong J. Accumulation and depuration of tire wear particles in zebrafish (Danio rerio) and toxic effects on gill, liver, and gut. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175625. [PMID: 39163933 DOI: 10.1016/j.scitotenv.2024.175625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/15/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
The toxic effects of tire wear particles (TWPs) in the environment are a growing concern for a variety of aquatic organisms. However, studies about TWPs toxicity on aquatic organisms are limited. This study investigated the accumulation and depuration of TWPs in zebrafish at three different concentrations (5 mg/L, 10 mg/L, and 20 mg/L), as well as the toxic effects on the gill, liver, and gut. We found that TWPs could accumulate in the gill and gut for a long time, and the number of TWPs at the high-concentration (20 mg/L) was higher than at the low-concentration (5 mg/L). TWPs induced oxidative stress in the gill and liver. The liver transcriptome profiles indicated that the high concentration of TWPs tended to up-regulate metabolic processes, whereas the low concentration of TWPs was inclined to down-regulate cellular processes. The high-concentration treatment significantly increased xenobiotic biodegradation and metabolism, and lipid metabolism-related pathways, whereas the low-concentration treatment distinctly altered amino acid metabolism-related pathways. The expression of gstt1b, ugt1a1, mgst3b, miox, hsd17b3, and cyp8b1 gene was up-regulated in all TWPs treatments. In addition, Gemmobacter and Shinella enriched in the high-concentration treatment were closely correlated with the degradation of TWPs. These findings provided objective evidence for the toxicity evaluation of TWPs on zebrafish.
Collapse
Affiliation(s)
- Yun Zhang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Tianyu Zhao
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Yanan Zhang
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao 266000, China
| | - Qianqian Song
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Qingxuan Meng
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Siyu Zhou
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Lijuan Wei
- School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Yinuo Qi
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Yinyuan Guo
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China
| | - Jing Cong
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266000, China.
| |
Collapse
|
44
|
Yang M, Wang R, Wei L, Liu H, Wang Y, Tang H, Liu Q, Tang Z. PLA plastic particles disrupt bile acid metabolism leading to hepatic inflammatory injury in male mice. Biochem Biophys Res Commun 2024; 732:150410. [PMID: 39032413 DOI: 10.1016/j.bbrc.2024.150410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Microplastics, such as polylactic acid (PLA), are ubiquitous environmental pollutants with unclear implications for health impact. This study aims to elucidate the mechanisms of PLA-induced inflammatory liver injury, focusing on disturbance of bile acid metabolism. The in vitro PLA exposure experiment was conducted using HepG2 cells to assess cell viability, cytokine secretion, and effects on bile acid metabolism. In vivo, male C57BL/6 J mice were exposed to PLA for ten days continuously, liver function and histopathological assessment were evaluated after the mice sacrificed. Molecular analyses including quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blotting, were applied to evaluate the expression of bile acid metabolizing enzymes and transporters. PLA exposure resulted in decreased cell viability in HepG2 cells, increased inflammation and altered bile acid metabolism. In mice, PLA exposure resulted in decreased body weight and food intake, impaired liver function, increased hepatic inflammation, altered bile acid profiles, and dysregulated expression of bile acid metabolic pathways. PLA exposure disrupts bile acid metabolism through inhibition of the CYP7A1 enzyme and activation of the FGF-JNK/ERK signaling pathway, contributing to liver injury. These findings highlight the potential hepatotoxic effects of environmentally friendly plastics PLA and underscore the need for further research on their biological impact.
Collapse
Affiliation(s)
- Meiting Yang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Ruirui Wang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Lisi Wei
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Han Liu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Yutian Wang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Huanwen Tang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Zhi Tang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
45
|
Zheng PC, Li R, Lai KP, Zhang XX. Biological exposure to microplastics and nanoplastics and plastic additives: impairment of glycolipid metabolism and adverse effects on metabolic diseases. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60778-60791. [PMID: 39412714 DOI: 10.1007/s11356-024-35220-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024]
Abstract
Microplastics and nanoplastics (M-NPs) are widespread pollutants in the environment, posing growing risks to human health and garnering increasing concern from researchers. Due to their small particle size, ease of adsorption, and resistance to degradation, M-NPs can retain and migrate in the environment for long-term periods. Upon entering organisms, M-NPs have been reported to cause inflammation and oxidative stress and result in abnormalities in glycolipid metabolism. Furthermore, research suggests that exposure to M-NPs may act as a causative agent for metabolic and cardiovascular diseases such as diabetes, obesity, and atherosclerosis. This paper aims to review the consequences of exposure to M-NPs on animal and cellular glycolipid metabolism and discusses the disruption of gut microbial homeostasis and the subsequent emergence of insulin resistance. PPAR signaling pathway activation after exposure to M-NPs was found to lead to increased hepatic fat accumulation and impaired lipid metabolism. Additionally, the paper highlights how M-NPs exacerbate the progression of obesity and diabetes in patients, induce damage to vascular endothelial cells, trigger oxidative stress, and contribute to the development of atherosclerosis. Despite the growing concern, the toxicity and molecular mechanism of M-NPs on glycolipid metabolism remain understudied, and effective methods for removing plastic pollutants deposited in the body are yet to be established. These findings provide valuable insights for future research in this field.
Collapse
Affiliation(s)
- Peng Chen Zheng
- College of Basic Medical Sciences, Guilin Medical University, Guilin, 541100, China
| | - Rong Li
- College of Basic Medical Sciences, Guilin Medical University, Guilin, 541100, China
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, 541100, China
| | - Keng Po Lai
- College of Basic Medical Sciences, Guilin Medical University, Guilin, 541100, China
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, 541100, China
| | - Xiao Xi Zhang
- College of Basic Medical Sciences, Guilin Medical University, Guilin, 541100, China.
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, 541100, China.
| |
Collapse
|
46
|
Shen Y, Shi R, Lu S, Wang Y, Zhou Z, Wu C, You Q, Fan H, Wu J. Role of Peptidyl Arginine Deiminase 4-Dependent Macrophage Extracellular Trap Formation in Type 1 Diabetes Pathogenesis. Diabetes 2024; 73:1862-1874. [PMID: 39137121 DOI: 10.2337/db23-1000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
Excessive formation of macrophage extracellular trap (MET) has been implicated in several autoimmune disease pathogeneses; however, its impact on type 1 diabetes (T1D) and related mechanisms remains enigmatic. We demonstrated the pivotal role of peptidyl arginine deiminase 4 (PAD4) in driving profuse MET formation and macrophage M1 polarization in intestinal inflammation in NOD mice. Genetic knockout of PAD4 or adoptive transfer of METs altered the proportion of proinflammatory T cells in the intestine, subsequently influencing their migration to the pancreas. Combining RNA sequencing and CUT&Tag analysis, we found activated PAD4 transcriptionally regulated CXCL10 expression. This study comprehensively investigated how excessive PAD4-mediated MET formation in the colon increases the aggravation of intestinal inflammation and proinflammatory T-cell migration and finally is involved in T1D progression, suggesting that inhibition of MET formation may be a potential therapeutic target in T1D. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Yiming Shen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Ruiya Shi
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - ShiPing Lu
- Center for Translational Research in Infection and Inflammation, Tulane University, New Orleans, LA
| | - Yan Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Ziqi Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Chenhua Wu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Qi You
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Hongye Fan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jie Wu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
47
|
Ma Y, Tao Q, Huang L, Wang Q. Comparative cytotoxicity and mitochondrial disruption in H9c2 cardiomyocytes induced by common pesticides. CHEMOSPHERE 2024; 367:143627. [PMID: 39461436 DOI: 10.1016/j.chemosphere.2024.143627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
Chronic exposure to pesticides is believed to be associated with various human diseases, including cardiovascular diseases. However, the mechanisms by which pesticides lead to cardiovascular diseases remain unclear. In our study, we selected the following commonly used pesticides as typical examples: the herbicides glyphosate (GLY) and glufosinate ammonium (GLA); the insecticides imidacloprid (IMI) and thiamethoxam (THM); and the fungicides pyraclostrobin (PYR) and azoxystrobin (AZO). We employed H9c2 cells as a model to investigate the cytotoxic effects of these pesticides on myocardial cells at concentrations of 1, 10, 100, and 1000 mg/L. The results indicate that these pesticides can affect cell viability, alter the cell cycle, and significantly impact ATP content and mitochondrial complex levels, ultimately triggering oxidative stress responses in the cells. However, compared to herbicides GLY and GLA, insecticides IMI and THM, and fungicides PYR and AZO pesticides are more toxic to H9c2 cells. Additionally, GLY, GLA, IMI, THM, PYR, and AZO were found to cause structural changes in the mitochondria of H9c2 cells. Molecular docking results suggest that these pesticides can bind to proteins related to mitochondrial dynamics. Furthermore, IMI, THM, PYR, and AZO exhibit stronger binding abilities to mitochondrial dynamics-related proteins. These findings indicate that these pesticides significantly adverse effects on myocardial cells, mainly by causing mitochondrial dysfunction and inducing oxidative stress. Our findings highlight the importance of considering the differential toxicity of various classes of pesticides when assessing their risks to human health, particularly concerning cardiovascular diseases.
Collapse
Affiliation(s)
- Yuqing Ma
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, China
| | - Qiao Tao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, China
| | - Lei Huang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, China
| | - Qiangwei Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
48
|
Liu M, Gao M, Shi X, Yin Y, Liu H, Xie R, Huang C, Zhang W, Xu S. Quercetin attenuates SiO 2-induced ZBP-1-mediated PANoptosis in mouse neuronal cells via the ROS/TLR4/NF-κb pathway. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122948. [PMID: 39423623 DOI: 10.1016/j.jenvman.2024.122948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
With the increasing development of the society, silicon dioxide (SiO2) has been used in various fields, such as agriculture, food industry, etc., and its residues can pose a potential health threat to organisms. Quercetin (Que) is a potent free radical scavenger commonly found in plants. C57BL/6 mice were chosen to established a mouse model of SiO2 exposure and Que antagonism to investigate the mechanism of action of Que in rescuing the toxic damage of SiO2 on mouse cerebellum tissue. The results showed that cytoplasmic vacuolization, and inflammatory cell infiltration caused by SiO2 were alleviated by the addition of Que, and reduced oxidative stress in mouse cerebellum, alleviated the activation of TLR4 pathway induced by SiO2, and substantially reduced the occurrence of ZBP-1-mediated PANoptosis induced by SiO2 exposure in mouse cerebellum. In NS20Y cells, the oxidative stress activator (Elesclomol) and inhibitor N-acetyl cysteine (NAC), and the NF-κB activator 2 (NA2) were added. Elesclomol and NAC confirm the involvement of ROS in regulating the TLR4/NF-κB pathway, the TLR4/NF-κB pathway regulated ZBP-1-mediated PANoptosis in cerebellum and NS20Y cells induced by SiO2 exposure. In conclusion, the present experimental data suggest that Que mitigates the onset of ZBP-1-mediated PANoptosis in neuronal cells induced by SiO2 through the ROS/TLR4/NF-κB pathway. The present experimental findings help to understand the detoxification effect of Que in more tissues and provide an important reference for the rescue of organisms in long-term SiO2 environment.
Collapse
Affiliation(s)
- Meichen Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Meichen Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yilin Yin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Huanyi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ruirui Xie
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Chenxi Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Wenwen Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin, PR China.
| |
Collapse
|
49
|
Lee JY, Chia RW, Veerasingam S, Uddin S, Jeon WH, Moon HS, Cha J, Lee J. A comprehensive review of urban microplastic pollution sources, environment and human health impacts, and regulatory efforts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174297. [PMID: 38945237 DOI: 10.1016/j.scitotenv.2024.174297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
Microplastic (MP) pollution in urban environments is a pervasive and complex problem with significant environmental and human health implications. Although studies have been conducted on MP pollution in urban environments, there are still research gaps in understanding the exact sources, regulation, and impact of urban MP on the environment and public health. Therefore, the goal of this study is to provide a comprehensive overview of the complex pathways, harmful effects, and regulatory efforts of urban MP pollution. It discusses the research challenges and suggests future directions for addressing MPs related to environmental issues in urban settings. In this study, original research papers published from 2010 to 2024 across ten database categories, including PubMed, Google Scholar, Scopus, and Web of Science, were selected and reviewed to improve our understanding of urban MP pollution. The analysis revealed multifaceted sources of MPs, including surface runoff, wastewater discharge, atmospheric deposition, and biological interactions, which contribute to the contamination of aquatic and terrestrial ecosystems. MPs pose a threat to marine and terrestrial life, freshwater organisms, soil health, plant communities, and human health through ingestion, inhalation, and dermal exposure. Current regulatory measures for MP pollution include improved waste management, upgraded wastewater treatment, stormwater management, product innovation, public awareness campaigns, and community engagement. Despite these regulatory measures, several challenges such as; the absence of standardized MPs testing methods, MPs enter into the environment through a multitude of sources and pathways, countries struggle in balancing trade interests with environmental concerns have hindered effective policy implementation and enforcement. Addressing MP pollution in urban environments is essential for preserving ecosystems, safeguarding public health, and advancing sustainable development. Interdisciplinary collaboration, innovative research, stringent regulations, and public participation are vital for mitigating this critical issue and ensuring a cleaner and healthier future for urban environments and the planet.
Collapse
Affiliation(s)
- Jin-Yong Lee
- Department of Geology, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Rogers Wainkwa Chia
- Department of Geology, Kangwon National University, Chuncheon 24341, Republic of Korea; Research Institute for Earth Resources, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - S Veerasingam
- Environmental Science Center, Qatar University, Doha, P.O. Box 2713, Qatar
| | - Saif Uddin
- Environment and Life Sciences Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Woo-Hyun Jeon
- Groundwater Environment Research Center, Climate Change Response Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Republic of Korea
| | - Hee Sun Moon
- Groundwater Environment Research Center, Climate Change Response Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Republic of Korea
| | - Jihye Cha
- Department of Geology, Kangwon National University, Chuncheon 24341, Republic of Korea; School of Science and Engineering, University of Missouri, Kansas City, MO 64110, USA
| | - Jejung Lee
- School of Science and Engineering, University of Missouri, Kansas City, MO 64110, USA
| |
Collapse
|
50
|
Ma Y, Zeng Y, Sun M, Ding R, Yu Y, Duan J. Untargeted lipidomics uncover hepatic lipid signatures induced by long-term exposure to polystyrene microplastics in vivo. Toxicol Lett 2024; 400:49-57. [PMID: 39084329 DOI: 10.1016/j.toxlet.2024.07.914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/14/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
OBJECTIVE This study evaluated the effects of long-term polystyrene microplastics (PS-MPs) exposure on hepatic lipid metabolism in vivo by lipidomics. RESULTS H&E staining showed long-term PS-MPs exposure could trigger the hepatic inflammatory cell infiltration and hepatic steatosis in SD rats, indicating long-term PS-MPs exposure caused hepatoxicity. Lipidomics revealed that the concentrations of 8 lipid metabolites in the liver were altered after exposure to PS-MPs for both 6 and 12 months, namely LdMePE (16:0), LPC (18:1), LPC (18:2), LPC (20:4), PC (17:0_20:4), PC (18:2_22:6), PC (22:6_13:0) and SM (d18:1_24:0), which were all statistically different from the control groups detected at both time points after PS-MPs exposure, suggesting the mainly metabolic pathway was glycerolipid metabolism. CONCLUSION This study showed chronic exposure to PS-MPs could cause hepatotoxicity and induce hepatic lipidomics alterations in vivo, which could provide an essential clue for the safety assessment of PS-MPs.
Collapse
Affiliation(s)
- Yiming Ma
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yao Zeng
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Ruiyang Ding
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yang Yu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|