1
|
Wei D, Zhang X, Guo Y, Saleem K, Jia J, Li M, Yu H, Hu Y, Yao X, Wang Y, Chang X, Song C. CuO nanoparticles facilitate soybean suppression of Fusarium root rot by regulating antioxidant enzymes, isoflavone genes, and rhizosphere microbiome. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109788. [PMID: 40096759 DOI: 10.1016/j.plaphy.2025.109788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND Fusarium root rot is a widespread soil-borne disease severely impacting soybean yield and quality. Compared to traditional fertilizers' biological and environmental toxicity, CuO nanoparticles (NPs) hold promise for disease control in a low dose and high efficiency manner. METHODS We conducted both greenhouse and field experiments, employing enzymatic assays, elemental analysis, qRT-PCR, and microbial sequencing (16S rRNA, ITS) to explore the potential of CuO NPs for sustainable controlling Fusarium-induced soybean disease. RESULTS Greenhouse experiments showed that foliar spraying of CuO NPs (10, 100, and 500 mg L-1) promoted soybean growth more effectively than EDTA-CuNa2 at the same dose, though 500 CuO NPs caused mild phytotoxicity. CuO NPs effectively controlled root rot, while EDTA-CuNa2 worsened the disease severity by 0.85-34.04 %. CuO NPs exhibited more substantial antimicrobial effects, inhibiting F. oxysporum mycelial growth and spore germination by 5.04-17.55 % and 10.24-14.41 %, respectively. 100 mg L-1 CuO NPs was the optimal concentration for balancing soybean growth and disease resistance. Additionally, CuO NPs boosted antioxidant enzyme activity (CAT, POD, and SOD) in leaves and roots, aiding in ROS clearance during pathogen invasion. Compared to the pathogen control, 100 mg L-1 CuO NPs upregulated the relative expression of seven isoflavone-related genes (Gm4CL, GmCHS8, GmCHR, GmCHI1a, GmIFS1, GmUGT1, and GmMYB176) by 1.18-4.51 fold, thereby enhancing soybean disease resistance in place of progesterone-receptor (PR) genes. Field trials revealed that CuO NPs' high leaf-to-root translocation modulated soybean rhizosphere microecology. Compared to the pathogen control, 100 mg L-1 CuO NPs increased nitrogen-fixing bacteria (Rhizobium, Azospirillum, Azotobacter) and restored disease-resistant bacteria (Pseudomonas, Burkholderia) and fungi (Trichoderma, Penicillium) to healthy levels. Furthermore, 100 mg L-1 CuO NPs increased beneficial bacteria (Pedosphaeraceae, Xanthobacteraceae, SCI84, etc.) and fungi (Trichoderma, Curvularia, Hypocreales, etc.), which negatively correlated with F. oxysporum, while recruiting functional microbes to enhance soybean yield. CONCLUSION 100 mg L-1 CuO NPs effectively promoting soybean growth and providing strong resistance against root rot disease by improving antioxidant enzyme activity, regulating the relative expression of isoflavone-related genes, increasing beneficial bacteria and fungi and restoring disease-resistant. Our findings suggest that CuO NPs offer an environmentally sustainable strategy for managing soybean disease, with great potential for green production.
Collapse
Affiliation(s)
- Dengqin Wei
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xingyuan Zhang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuantian Guo
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Khansa Saleem
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Juntao Jia
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mengshuang Li
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hanghang Yu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuanyuan Hu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xia Yao
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yu Wang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoli Chang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chun Song
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
2
|
He D, Kaleem Z, Ali S, Shahbaz H, Zhang K, Li J, Sheteiwy MS, Ulhassan Z, Zhou W. Impact of iron oxide nanoparticles on cadmium toxicity mitigation in Brassica napus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109500. [PMID: 39813760 DOI: 10.1016/j.plaphy.2025.109500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
Cadmium (Cd) contamination greatly hinders plant productivity. Nanotechnology offers a promising solution for Cd phytotoxicity. The novelty of this study lies in the limited research on the effects of nanoiron (Fe3O4NPs) in regulating Cd toxicity in oilseed crops. This study examined how Fe3O4NPs regulated the Cd-exposure in B. napus. Foliar spray of 10 mg L-1 Fe3O4NPs was applied to 50 μM Cd-stressed B. napus seedlings via leaf exposure in hydroponic system. Under Cd stress, Fe3O4NPs decreased the Cd-accumulation (25-37%) due to adsorption followed by more root Cd-immobilization, and increased the plant height (23-31%) and biomass (17-24%). These findings were directly correlated with better photosynthetic activity (chlorophylls, gas exchanges and photosynthetic efficiency), leaf stomata opening and nutrients accumulation (20-29%). Subcellular localization revealed that Fe3O4NPs enhanced the binding capacity of cell wall for Cd to hinder its entry into cell organalles and facilitated vacoular sequestration. Additionally, Fe3O4NPs decreased the oxidative stress (21-33%) and peroxidation of lipids (24-31%) by regulating the genes-associated to superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, glutathione reductase, reduced glutathione, phytochelation, chlorophyll synthesis and Cd-transporters. Fe3O4NPs protected plant roots from Cd-induced cell structural damages and cell death. Among studied parameters, ZD 635 exhibited greater tolerance to Cd stress when compared to ZD 622 cultivar. Findings revealed that Fe3O4NPs effectively mitigate Cd toxicity by improving the photosynthesis, antioxidant defense mechanisms, cellular protection, nutrients accumulation and limiting Cd accumulation. This research offers a benchmark for the practical applicability of Fe3O4NPs to enhance the quality of canola production in Cd-contaminated soils.
Collapse
Affiliation(s)
- Di He
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Zohaib Kaleem
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Sharafat Ali
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Hafsah Shahbaz
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Kangni Zhang
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Juanjuan Li
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Mohamed Salah Sheteiwy
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, Al-Ain, United Arab Emirates University, Abu-Dhabi, United Arab Emirates; Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - Zaid Ulhassan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China.
| | - Weijun Zhou
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Gopalsamy A, Tamilmani E, Shanmugam K, Koilpitchai NN, Durairaj V, Mylsamy P, Jaganathavarma A, Ranganathan U. Seeds of Excellence: Review on impact of seed quality enhancement on babygreens biomass production. JOURNAL OF AGRICULTURE AND FOOD RESEARCH 2025; 19:101597. [DOI: 10.1016/j.jafr.2024.101597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Ulhassan Z, Ali S, Kaleem Z, Shahbaz H, He D, Khan AR, Salam A, Hamid Y, Sheteiwy MS, Zhou W, Huang Q. Effects of Nanosilica Priming on Rapeseed ( Brassica napus) Tolerance to Cadmium and Arsenic Stress by Regulating Cellular Metabolism and Antioxidant Defense. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4518-4533. [PMID: 39937631 DOI: 10.1021/acs.jafc.4c08246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
The mechanisms by which seed-primed silicon dioxide nanoparticles (nSi) alleviated arsenic (As) and cadmium (Cd) toxicity in Brassica napus L. remain unclear. A pot study examined the physico-biochemical, cellular, and molecular responses of B. napus exposed to Cd (10 mg/kg soil) and As (50 mg/kg soil) doses with or without nSi priming. The results showed that nSi priming improved photosynthesis, seedling biomass, and metabolite accumulation, and restored the cell structure. Upon Cd and As stress, nSi diminished oxidative stress by downplaying H2O2 (24-32%) and O2•- (29-36%), MDA, and activating antioxidant defenses. Also, nSi relieved Cd and As accumulation (27-36%) by enhancing root-vacuolar sequestration (upregulating BnHMA3, BnPCs, and BnABCC1), cell wall chelation, and downregulating root transporters (BnNRAMP5, BnIRTI, BnHMA2, BnHMA4, BnPHT1.1, and BnPHT1.4). Our findings revealed that nSi priming effectively enhanced canola tolerance to Cd and As toxicity by strengthening multiple oxidative defense mechanisms and limiting their accumulation.
Collapse
Affiliation(s)
- Zaid Ulhassan
- Institute of Crop Science, Ministry of Agriculture, and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Sharafat Ali
- Institute of Crop Science, Ministry of Agriculture, and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Zohaib Kaleem
- Institute of Crop Science, Ministry of Agriculture, and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Hafsah Shahbaz
- Institute of Animal and Dairy Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Di He
- Institute of Crop Science, Ministry of Agriculture, and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Ali Raza Khan
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Abdul Salam
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Yasir Hamid
- Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, China
| | - Mohamed S Sheteiwy
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, Al-Ain, United Arab Emirates University, Abu Dhabi 15551, United Arab Emirates
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Weijun Zhou
- Institute of Crop Science, Ministry of Agriculture, and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Qian Huang
- Institute of Crop Science, Ministry of Agriculture, and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Muhammad S, Ulhassan Z, Munir R, Yasin MU, Islam F, Zhang K, Chen W, Jan M, Afzal M, Muhammad A, Hannan F, Zhou W. Nanosilica and salicylic acid synergistically regulate cadmium toxicity in rice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125331. [PMID: 39551376 DOI: 10.1016/j.envpol.2024.125331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/19/2024]
Abstract
Cadmium (Cd) toxicity negatively impacts plant health and productivity. Nanosilica (SiO2NPs) and salicylic acid (SA) enhance plant performance and alleviate heavy metals stress. Yet, their combined effects against Cd-toxicity in rice remained less-explored. Thus, a hydroponic study investigated the individual and combined effects of SiO2NPs and SA on Cd-stress mitigation in rice at physio-biochemical, cellular, and molecular levels. Results indicated that Cd-alone treatment caused a significant reduction in rice growth and biomass and photosynthetic efficiency, which was associated with oxidative damage caused by enhanced Cd-accumulation in plant tissues. Cd-induction also potentiated its phytotoxicity by triggering enzymatic antioxidants against the extra production of reactive oxygen species (ROS). The addition of SiO2NPs and/or SA markedly minimized the Cd-induced toxicity by reducing Cd-bioaccumulation (42-56%), protecting photosynthetic efficiency, which were directly correlated with seedling biomass and restored cellular structures (leaf ultrastructure and surface morphology). The combined application of SiO2NPs and SA was more effective in activating antioxidant enzymes, phytohormones biosynthesis, and reducing oxidative damages caused by Cd than sole application. This was evident in the decreased production of ROS, malondialdehyde contents (29-37%), and recovered membrane stability. Moreover, SiO2NPs and/or SA relieved Cd-bioaccumulation (41-56%) by downregulating the Cd-related transporter genes (OsNramp1, OsNramp5, OsHMA2, and OsHMA3). Altogether, the cellular Cd-accumulation, photosynthesis, antioxidant defense, and phytohormones against oxidative stress can be ideal markers for cultivating rice in Cd-contaminated soils.
Collapse
Affiliation(s)
- Sajid Muhammad
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zaid Ulhassan
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Raheel Munir
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Umair Yasin
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Faisal Islam
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Kangni Zhang
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Weiqi Chen
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Mehmood Jan
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Muhammad Afzal
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Ali Muhammad
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Fakhir Hannan
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Weijun Zhou
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Rehman M, Salam A, Ali B, Ahmad I, Javaid MH, Haider Z, Munir R, Yasin MU, Ali I, Yang C, Muhammad S, Gan Y. Titanium dioxide nanoparticles seed priming as a remedy for nickel-induced stress in maize through antioxidant enhancement and ultrastructural optimization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123487. [PMID: 39616783 DOI: 10.1016/j.jenvman.2024.123487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/08/2024] [Accepted: 11/24/2024] [Indexed: 01/15/2025]
Abstract
Heavy metals (HMs) have emerged as a critical global concern, not only limiting crop productivity but also posing risks to public health. Among them, nickel (Ni) is an essential micronutrient for plant growth; however, it becomes toxic at higher concentrations. Nano-enabled approaches, on the other hand, have emerged as promising eco-friendly alternatives for mitigating the negative impact associated with HMs. Here, we investigated the potential of titanium dioxide nanoparticles (TiO2 NPs) against Ni-induced stress in maize. Our results showed that Ni stress caused negative changes in maize by the excessive production of reactive oxygen species (ROS), inhibiting photosynthetic attributes, and damaging cellular ultrastructure. In contrast, TiO2 NPs priming significantly enhanced the antioxidant mechanism, photosynthetic efficacy, and nutrient uptake while reducing ultrastructural damage caused by Ni stress. Furthermore, TiO2 NPs efficiently reduced Ni accumulation, MDA (28%/32%), H2O2 (23%/26%), and O2•‒ (31%/34%) levels in shoot/root tissues, respectively, compared to Ni treatment. Moreover, TiO2 NPs priming has modulated the expression of antioxidant and defense-related genes, thereby restoring cellular redox homeostasis. Collectively, this is the first piece of evidence demonstrating the potential of TiO2 NPs as an efficient and sustainable alternative for enhancing crop tolerance in Ni-contaminated areas.
Collapse
Affiliation(s)
- Muhammad Rehman
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Abdul Salam
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Bahar Ali
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Irshan Ahmad
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Haseeb Javaid
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zulqarnain Haider
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Raheel Munir
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Umair Yasin
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Imran Ali
- Department of Botany, Kohat University Science and Technology, Kohat, 26000, Pakistan
| | - Chunyan Yang
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Sajid Muhammad
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yinbo Gan
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
7
|
Shelar A, Singh AV, Chaure N, Jagtap P, Chaudhari P, Shinde M, Nile SH, Chaskar M, Patil R. Nanoprimers in sustainable seed treatment: Molecular insights into abiotic-biotic stress tolerance mechanisms for enhancing germination and improved crop productivity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175118. [PMID: 39097019 DOI: 10.1016/j.scitotenv.2024.175118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/18/2024] [Accepted: 07/27/2024] [Indexed: 08/05/2024]
Abstract
Abiotic and biotic stresses during seed germination are typically managed with conventional agrochemicals, known to harm the environment and reduce crop yields. Seeking sustainable alternatives, nanotechnology-based agrochemicals leverage unique physical and chemical properties to boost seed health and alleviate stress during germination. Nanoprimers in seed priming treatment are advanced nanoscale materials designed to enhance seed germination, growth, and stress tolerance by delivering bioactive compounds and nutrients directly to seeds. Present review aims to explores the revolutionary potential of nanoprimers in sustainable seed treatment, focusing on their ability to enhance crop productivity by improving tolerance to abiotic and biotic stresses. Key objectives include understanding the mechanisms by which nanoprimers confer resistance to stresses such as drought, salinity, pests, and diseases, and assessing their impact on plant physiological and biochemical pathways. Key findings reveal that nanoprimers significantly enhance seedling vigor and stress resilience, leading to improved crop yields. These advancements are attributed to the precise delivery of nanomaterials that optimize plant growth conditions and activate stress tolerance mechanisms. However, the study also highlights the importance of comprehensive toxicity and risk assessments. Current review presents a novel contribution, highlighting both the advantages and potential risks of nanoprimers by offering a comprehensive overview of advancements in seed priming with metal and metal oxide nanomaterials, addressing a significant gap in the existing literature. By delivering advanced molecular insights, the study underscores the transformative potential of nanoprimers in fostering sustainable agricultural practices and responsibly meeting global food demands.
Collapse
Affiliation(s)
- Amruta Shelar
- Department of Technology, Savitribai Phule Pune University, Pune 411007, MH, India
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse, 10589 Berlin, Germany
| | - Nandu Chaure
- Department of Physics, Savitribai Phule Pune University, Pune 411007, MH, India
| | - Pramod Jagtap
- Zonal Agricultural Research Station, Mahatma Phule Krishi Vidyapeeth, Ganeshkhind, Pune 411007, MH, India
| | - Pramod Chaudhari
- Zonal Agricultural Research Station, Mahatma Phule Krishi Vidyapeeth, Ganeshkhind, Pune 411007, MH, India
| | - Manish Shinde
- Centre for Materials for Electronics Technology (C-MET), Panchawati, Pune 411008, MH, India
| | - Shivraj Hariram Nile
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Mohali 140306, PB, India.
| | - Manohar Chaskar
- Swami Ramanand Teerth Marathwada University, Nanded 431606 (MS) India.
| | - Rajendra Patil
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, MH, India.
| |
Collapse
|
8
|
Irshad MK, Ansari JR, Noman A, Javed W, Lee JC, Aqeel M, Waseem M, Lee SS. Seed priming with Fe 3O 4-SiO 2 nanocomposites simultaneously mitigate Cd and Cr stress in spinach (Spinacia oleracea L.): A way forward for sustainable environmental management. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117195. [PMID: 39447293 DOI: 10.1016/j.ecoenv.2024.117195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024]
Abstract
Seed priming with a composite of iron oxide (Fe3O4) and silicon dioxide (SiO2) nanoparticles (NPs) is an innovative technique to mitigate cadmium (Cd) and chromium (Cr) uptake in plants from rooting media. The current study explored the impact of seed priming with varying levels of Fe3O4 NPs, SiO2 NPs, and Fe3O4-SiO2 nanocomposites on Cd and Cr absorption and phytotoxicity, metal-induced oxidative stress mitigation, growth and biomass yield of spinach (Spinacia oleracea L.). The results showed that seed priming with the optimum level of 100 mg L-1 of Fe3O4-SiO2 nanocomposites significantly (p ≤ 0.05) increased root dry weight (144 %), shoot dry weight (243 %) and leaf area (34.4 %) compared to the control, primarily by safeguarding plant's photosynthetic machinery, oxidative stress and phytotoxicity of metals. Plants treated with this highest level of Fe3O4-SiO2 nanocomposites exhibited a substantial increase in photosynthetic and gas exchange indices of spinach plants and enhanced activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) antioxidant enzymes by 45 %, 48 %, and 60 %, respectively. Correspondingly, the relative gene expression levels of SOD, CAT, and APX also rose by 109 %, 181 %, and 137 %, respectively, compared to non-primed plants. This nanocomposite application also boosted the levels of phenolics (28 %), ascorbic acid (68 %), total sugars (129 %), flavonoids (39 %), and anthocyanin (29 %) in spinach leaves, while significantly reducing Cd (34.7 %, 53.4 %) and Cr (20.2 %, 28.8 %) contents in plant roots and shoots, respectively. These findings suggest that seed priming with Fe3O4-SiO2 nanocomposites effectively mitigated the toxic effects of Cd and Cr, enhancing the growth and biomass yield of spinach in Cd and Cr co-contaminated environments, offering a promising sustainable approach for producing metal-free crops.
Collapse
Affiliation(s)
- Muhammad Kashif Irshad
- Department of Environmental and Energy Engineering, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do 26493, Republic of Korea; Department of Environmental Sciences, Government College University Faisalabad, Pakistan
| | - Jamilur R Ansari
- Department of Packaging & Logistics, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do 26493, Republic of Korea
| | - Ali Noman
- Department of Botany, Government College University Faisalabad, Pakistan
| | - Wasim Javed
- Water Management Research Centre, University of Agriculture Faisalabad, Pakistan
| | - Jong Cheol Lee
- Department of Environmental and Energy Engineering, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do 26493, Republic of Korea
| | - Muhammad Aqeel
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Muhammad Waseem
- Department of Environmental Sciences, Government College University Faisalabad, Pakistan
| | - Sang Soo Lee
- Department of Environmental and Energy Engineering, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do 26493, Republic of Korea.
| |
Collapse
|
9
|
Imran S, Sarker P, Mahamud MA, Paul NC, Chakrobortty J, Harine IJ, Rahman MA, Rahimi M. Copper mitigates salinity stress by regulating water status, photosynthetic pigments and ion homeostasis and increases the yield of Eggplant (Solanum melongena). BMC PLANT BIOLOGY 2024; 24:927. [PMID: 39367326 PMCID: PMC11453016 DOI: 10.1186/s12870-024-05625-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024]
Abstract
Eggplant (Solanum melongena) is moderately sensitive to salinity. Seed priming and exogenous supplementation are technique that enhances germination, growth, and crop yield by overcoming salt stress. Therefore, this study was designed to understand the role of seed priming and copper (Cu) supplementation in modulating salt tolerance in eggplant. When exposed to salt stress, eggplant seedlings showed significantly higher Na+ content, an increased Na/K ratio, prolonged mean germination time, higher relative water loss, more days to flower bud initiation and first flowering, along with decreased germination rate, growth factors, water content, photosynthetic pigments, ionic contents (K+, Ca2+, Mg2+), and yield. The results demonstrated that the germination rate, final germination percentage, germination index, germination energy, and seed vigor index significantly improved, while the mean germination time decreased in Cu-primed seeds. The results also revealed that Cu supplementations increased seedling traits, leaf water content, photosynthetic pigment contents, ionic contents (K+, Ca2+, and Mg2+), and yield while decreasing the contents of Na+, and Na/K ratio, mean germination time, relative water loss, days to flower bud initiation, and days to 1st flowering under salt stress. Germination of seeds, seedlings growth traits, plant water status, plant pigments, yield, and ionic contents with the NaCl and Cu treatments were found to substantially interact with each other according to both hierarchical clustering and PCA. Overall, Cu seed priming and exogenous supplementation emerged as a promising strategy to enhance salt tolerance and promote germination, growth, and yield by regulating water status, photosynthetic pigments, and ion homeostasis in eggplant seedlings under NaCl stress. These findings provide valuable insights into the mechanisms of Cu-mediated stress alleviation in eggplant, with implications for sustainable crop production in saline environments.
Collapse
Affiliation(s)
- Shahin Imran
- Department of Agronomy, Khulna Agricultural University, Khulna, 9100, Bangladesh.
| | - Prosenjit Sarker
- Department of Genetics and Plant Breeding, Khulna Agricultural University, Khulna, 9100, Bangladesh
| | - Md Asif Mahamud
- Department of Agricultural Chemistry, Khulna Agricultural University, Khulna, 9100, Bangladesh
| | - Newton Chandra Paul
- Department of Agronomy, Khulna Agricultural University, Khulna, 9100, Bangladesh
| | - Jotirmoy Chakrobortty
- Department of Soil Science, Khulna Agricultural University, Khulna, 9100, Bangladesh
| | - Israt Jahan Harine
- Department of Soil Science, Khulna Agricultural University, Khulna, 9100, Bangladesh
| | - Md Arifur Rahman
- Department of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Mehdi Rahimi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| |
Collapse
|
10
|
Jin Q, Yang K, Zhang Y, Zhang S, Liu Z, Guan Y, Zhang L, Zhang Y, Wang Q. Physiological and molecular mechanisms of silicon and potassium on mitigating iron-toxicity stress in Panax ginseng. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108975. [PMID: 39084170 DOI: 10.1016/j.plaphy.2024.108975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/01/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Iron plays a crucial role in plant chlorophyll synthesis, respiration, and plant growth. However, excessive iron content can contribute to ginseng poisoning. We previously discovered that the application of silicon (Si) and potassium (K) can mitigate the iron toxicity on ginseng. To elucidate the molecular mechanism of how Si and K alleviate iron toxicity stress in ginseng. We investigated the physiological and transcriptional effects of exogenous Si and K on Panax ginseng. The results suggested that the leaves of ginseng with Si and K addition under iron stress increased antioxidant enzyme activity or secondary metabolite content, such as phenylalanine amino-lyase, polyphenol oxidase, ascorbate peroxidase, total phenols and lignin, by 6.21%-25.94%, 30.12%-309.19%, 32.26%-38.82%, 7.81%-23.66%, and 4.68%-48.42%, respectively. Moreover, Si and K increased the expression of differentially expressed genes (DEGs) associated with resistance to both biotic and abiotic stress, including WRKY (WRKY1, WRKY5, and WRKY65), bHLH (bHLH35, bHLH66, bHLH128, and bHLH149), EREBP, ERF10 and ZIP. Additionally, the amount of DEGs of ginseng by Si and K addition was enriched in metabolic processes, single-organism process pathways, signal transduction, metabolism, synthesis and disease resistance. In conclusion, the utilization of Si and K can potentially reduce the accumulation of iron in ginseng, regulate the expression of iron tolerance genes, and enhance the antioxidant enzyme activity and secondary metabolite production in both leaves and roots, thus alleviating the iron toxicity stress in ginseng.
Collapse
Affiliation(s)
- Qiao Jin
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China
| | - Kexin Yang
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China
| | - Yayu Zhang
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China; College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Shuna Zhang
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China
| | - Zhengbo Liu
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China
| | - Yiming Guan
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China
| | - Linlin Zhang
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China
| | - Yue Zhang
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China
| | - Qiuxia Wang
- Institute of Special Wild Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China; Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, 130112, China.
| |
Collapse
|
11
|
Kaleem Z, Xu W, Ulhassan Z, Shahbaz H, He D, Naeem S, Ali S, Shah AM, Sheteiwy MS, Zhou W. Harnessing the potential of copper-based nanoparticles in mitigating abiotic and biotic stresses in crops. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59727-59748. [PMID: 39373837 DOI: 10.1007/s11356-024-35174-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024]
Abstract
The demand for crops production continues to intensify with the rapid increase in population. Agricultural crops continue to encounter abiotic and biotic stresses, which can substantially hamper their productivity. Numerous strategies have been focused to tackle the abiotic and biotic stress factors in various plants. Nanotechnology has displayed great potential to minimize the phytotoxic impacts of these environmental constraints. Copper (Cu)-based nanoparticles (NPs) have displayed beneficial effects on plant growth and stress tolerance. Cu-based NPs alone or in combination with plant growth hormones or microorganisms have been documented to induce plant tolerance and mitigate abiotic or biotic stresses in different plants. In this review, we have comprehensively discussed the uptake and translocation of Cu-based NPs in plants, and beneficial roles in improving the plant growth and development at various growth stages. Moreover, we have discussed how Cu-based NPs mechanistically modulate the physiological, biochemical, metabolic, cellular, and metabolic functions to enhance plant tolerance against both biotic (viruses, bacterial and fungal diseases, etc.) and abiotic stresses (heavy metals or metalloids, salt, and drought stress, etc.). We elucidated recent advancements, knowledge gaps, and recommendations for future research. This review would help plant and soil scientists to adapt Cu-based novel strategies such as nanofertilizers and nanopesticides to detoxify the abiotic or biotic stresses. These outcomes may contribute to the promotion of healthy food production and food security, thus providing new avenues for sustainable agriculture production.
Collapse
Affiliation(s)
- Zohaib Kaleem
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Wan Xu
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 325005, China
| | - Zaid Ulhassan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Hafsah Shahbaz
- Institute of Animal and Dairy Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Di He
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Shoaib Naeem
- Agriculture Officer (Extension) Jauharabad, Office of Assistant Director Agriculture (Extension) Khushab, Punjab, 41000, Pakistan
| | - Sharafat Ali
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Aamir Mehmood Shah
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Mohamed S Sheteiwy
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, Al-Ain, United Arab Emirates University, Abu-Dhabi, United Arab Emirates
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Weijun Zhou
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
12
|
Tian Y, Xie L, Hao S, Zhou X. Application of selenium to reduce heavy metal(loid)s in plants based on meta-analysis. CHEMOSPHERE 2024; 364:143150. [PMID: 39181458 DOI: 10.1016/j.chemosphere.2024.143150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Agricultural soils are currently at risk of pollution from toxic heavy metal(loid)s (HMs) due to human activities, resulting in the excessive accumulation of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), mercury (Hg), manganese (Mn), lead (Pb) and zinc (Zn) in food plants. This poses significant risks to human health. Exogenous selenium (Se) has been proposed as a potential solution to reduce HMs accumulation in plants. However, there is currently a lack of comprehensive quantitative overview regarding its influence on the accumulation of HMs in plants. This study utilized meta-analysis to consolidate the existing knowledge on the impact of Se amendments on plant HMs accumulation from contaminated soil media. The present study conducted a comprehensive meta-analysis on literature published prior to December 2023, investigating the effects of different factors on HMs accumulation by meta-subgroup analysis and meta-regression model. Se application showed an inhibitory effect on plant uptake of Hg (28.9%), Cr (25.5%), Cd (25.2%), Pb (22.0%), As (18.3%) and Cu (6.00%) concentration. There was a significant difference in the levels of HMs between treatments with Se application and those without Se application in various plant organs. The percentage changes in the HMs contents of the organs varied from -13.0% to -22.0%. Compared with alkaline soil (pH > 8), Se application can reduce more HMs contents in plants in acidic soil (pH < 5.5) and neutral soil (pH = 5.5-8). For daily food plants(e.g. rice, wheat and corn), Se application can reduce HMs contents in Oryza sp., Triticum sp. and Zea sp., ranging from 14.0-20.0%. Our study emphasizes that the impact of Se on reducing HMs depends on the single or combined effects of Se concentration, plant organs, plant genera and soil pH condition.
Collapse
Affiliation(s)
- Ye Tian
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Linzhi Xie
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Shangyan Hao
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Xinbin Zhou
- College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
13
|
Zafar S, Khan IM, Ashraf MA, Zafar M, Ahmad M, Rasheed R, Mehmood A, Ahmad KS. Insights into trehalose mediated physiological and biochemical mechanisms in Zea mays L. under chromium stress. BMC PLANT BIOLOGY 2024; 24:783. [PMID: 39152388 PMCID: PMC11330127 DOI: 10.1186/s12870-024-05514-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Chromium (Cr) toxicity significantly threatens agricultural ecosystems worldwide, adversely affecting plant growth and development and reducing crop productivity. Trehalose, a non-reducing sugar has been identified as a mitigator of toxic effects induced by abiotic stressors such as drought, salinity, and heavy metals. The primary objective of this study was to investigate the influence of exogenously applied trehalose on maize plants exposed to Cr stress. RESULTS Two maize varieties, FH-1046 and FH-1453, were subjected to two different Cr concentrations (0.3 mM, and 0.5 mM). The results revealed significant variations in growth and biochemical parameters for both maize varieties under Cr-induced stress conditions as compared to the control group. Foliar application of trehalose at a concentration of 30 mM was administered to both maize varieties, leading to a noteworthy reduction in the detrimental effects of Cr stress. Notably, the Cr (0.5 mM) stress more adversely affected the shoot length more than 0.3mM of Cr stress. Cr stress (0.5 mM) significantly reduced the shoot length by 12.4% in FH-1046 and 24.5% in FH-1453 while Trehalose increased shoot length by 30.19% and 4.75% in FH-1046 and FH-1453 respectively. Cr stress significantly constrained growth and biochemical processes, whereas trehalose notably improved plant growth by reducing Cr uptake and minimizing oxidative stress caused by Cr. This reduction in oxidative stress was evidenced by decreased production of proline, SOD, POD, MDA, H2O2, catalase, and APX. Trehalose also enhanced photosynthetic activities under Cr stress, as indicated by increased values of chlorophyll a, b, and carotenoids. Furthermore, the ameliorative potential of trehalose was demonstrated by increased contents of proteins and carbohydrates and a decrease in Cr uptake. CONCLUSIONS The study demonstrates that trehalose application substantially improved growth and enhanced photosynthetic activities in both maize varieties. Trehalose (30 mM) significantly increased the plant biomass, reduced ROS production and enhanced resilience to Cr stress even at 0.5 mM.
Collapse
Affiliation(s)
- Sadia Zafar
- Department of Botany, Division of Science and Technology, University of Education Lahore, Punjab, 54770, Pakistan.
| | - Inam Mehdi Khan
- Department of Botany, Division of Science and Technology, University of Education Lahore, Punjab, 54770, Pakistan
| | | | - Muhammad Zafar
- Department of Plant Systematics and Biodiversity Lab, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Mushtaq Ahmad
- Department of Plant Systematics and Biodiversity Lab, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Rizwan Rasheed
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan
| | - Ansar Mehmood
- Department of Botany, University of Poonch Rawalakot, Rawalakot, 12350, Pakistan
| | | |
Collapse
|
14
|
Zou Y, Liu Y, Li W, Cao Q, Wang X, Hu Z, Cai Q, Lou L. Ethylene is the key phytohormone to enhance arsenic resistance in Arabidopsis thaliana. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116644. [PMID: 38944009 DOI: 10.1016/j.ecoenv.2024.116644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024]
Abstract
The toxic metalloid arsenic is prevalent in the environment and poses a threat to nearly all organisms. However, the mechanism by which phytohormones modulate arsenic resistance is not well-understood. Therefore, we analyzed multiple phytohormones based on the results of transcriptome sequencing, content changes, and related mutant growth under arsenic stress. We found that ethylene was the key phytohormone in Arabidopsis thaliana response to arsenic. Further investigation showed the ethylene-overproducing mutant eto1-1 generated less malondialdehyde (MDA), H2O2, and O2•- under arsenic stress compared to wild-type, while the ethylene-insensitive mutant ein2-5 displayed opposite patterns. Compared to wild-type, eto1-1 accumulated a smaller amount of arsenic and a larger amount of non-protein thiols. Additionally, the immediate ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), enhanced resistance to arsenic in wide-type, but not in mutants with impaired detoxification capability (i.e., cad1-3, pad2-1, abcc1abcc2), which confirmed that ethylene regulated arsenic detoxification by enhancing arsenic chelation. ACC also upregulated the expression of gene(s) involved in arsenic detoxification, among which ABCC2 was directly transcriptionally activated by the ethylene master transcription factor ethylene-insensitive 3 (EIN3). Overall, our study shows that ethylene is the key phytohormone to enhance arsenic resistance by reducing arsenic accumulation and promoting arsenic detoxification at both physiological and molecular levels.
Collapse
Affiliation(s)
- Yiping Zou
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yaping Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingqing Cao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xue Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhubing Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Qingsheng Cai
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Laiqing Lou
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
15
|
Yin H, Jing Y, Lin Y, Song N, Zong H, Wang F, Li S, Song X, Hou H, Guan YS, Zong Q, Liu J. Phosphorus and selenium compounding mitigates Cr stress in peanut seedlings by enhancing growth homeostasis and antioxidant properties. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50929-50941. [PMID: 39107637 DOI: 10.1007/s11356-024-34193-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/26/2024] [Indexed: 09/01/2024]
Abstract
Peanut is an economically important crop, but it is susceptible to Cr contamination. In this study, we used peanut as experimental material to investigate the effects of exogenous P, Se interacting with Cr on the nutrient growth and antioxidant system of peanut seedlings by simulating Cr (0 μM, 50 μM, and 100 μM) stress environment. The results showed that exogenous P, Se supply could mitigate irreversible damage to peanut seedlings by altering the distribution of Cr in roots and aboveground, changing root conformation, and repairing damaged cells to promote growth. When the Cr concentration is 100 μM, it exhibits the highest toxicity. Compared to the control group P and Se (0 MM), the treatment with simultaneous addition of P + Se (0.5 + 6.0) resulted in a significant increase in root length and root tip number by 248.7% and 127.4%, respectively. Additionally, there was a 46.9% increase in chlorophyll content, a 190.2% increase in total surface area of the seedlings, and a respective increase of 149.1% and 180.3% in soluble protein content in the shoot and roots. In addition, by restricting the absorption of Cr and reducing the synthesis of superoxide dismutase SOD (Superoxide dismutase), CAT (Catalase), POD (Peroxidase), and MDA (Malonaldehyde), it effectively alleviates the oxidative stress on the antioxidant system. Therefore, the exogenous addition of P (0.5 MM) and Se (6.0 MM) prevented the optimal concentration of chromium toxicity to peanuts. Our research provides strong evidence that the exogenous combination of P and Se reduces the risk of peanut poisoning by Cr, while also exploring the optimal concentration of exogenous P and Se under laboratory conditions, providing a basis for further field experiments.
Collapse
Affiliation(s)
- Hongliang Yin
- School of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yongping Jing
- Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yunqing Lin
- Qingdao Environmental Protection Sciences Research and Design Co. Ltd, Qingdao, 266003, China
- Qingdao Research Academy of Environmental Sciences, Qingdao, 266003, China
| | - Ningning Song
- School of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Haiying Zong
- School of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fangli Wang
- School of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shaojing Li
- Science and Information College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xin Song
- School of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hong Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yuxian Shang Guan
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Quanli Zong
- School of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jun Liu
- School of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
16
|
Yadav N, Bora S, Devi B, Upadhyay C, Singh P. Nanoparticle-mediated defense priming: A review of strategies for enhancing plant resilience against biotic and abiotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108796. [PMID: 38901229 DOI: 10.1016/j.plaphy.2024.108796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/18/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024]
Abstract
Nanotechnology has emerged as a promising field with the potential to revolutionize agriculture, particularly in enhancing plant defense mechanisms. Nanoparticles (NPs) are instrumental in plant defense priming, where plants are pre-exposed to controlled levels of stress to heighten their alertness and responsiveness to subsequent stressors. This process improves overall plant performance by enabling quicker and more effective responses to secondary stimuli. This review explores the application of NPs as priming agents, utilizing their unique physicochemical properties to bolster plants' innate defense mechanisms. It discusses key findings in NP-based plant defense priming, including various NP types such as metallic, metal oxide, and carbon-based NPs. The review also investigates the intricate mechanisms by which NPs interact with plants, including uptake, translocation, and their effects on plant physiology, morphology, and molecular processes. Additionally, the review examines how NPs can enhance plant responses to a range of stressors, from pathogen attacks and herbivore infestations to environmental stresses. It also discusses NPs' ability to improve plants' tolerance to abiotic stresses like drought, salinity, and heavy metals. Safety and regulatory aspects of NP use in agriculture are thoroughly addressed, emphasizing responsible and ethical deployment for environmental and human health safety. By harnessing the potential of NPs, this approach shows promise in reducing crop losses, increasing yields, and enhancing global food security while minimizing the environmental impact of traditional agricultural practices. The review concludes by emphasizing the importance of ongoing research to optimize NP formulations, dosages, and delivery methods for practical application in diverse agricultural settings.
Collapse
Affiliation(s)
- Nidhi Yadav
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, UP, India
| | - Sunayana Bora
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Bandana Devi
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, UP, India
| | - Chandan Upadhyay
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Prashant Singh
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, UP, India.
| |
Collapse
|
17
|
Roy R, Hossain A, Sultana S, Deb B, Ahmod MM, Sarker T. Microplastics increase cadmium absorption and impair nutrient uptake and growth in red amaranth (Amaranthus tricolor L.) in the presence of cadmium and biochar. BMC PLANT BIOLOGY 2024; 24:608. [PMID: 38926861 PMCID: PMC11202365 DOI: 10.1186/s12870-024-05312-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Microplastic (MP) pollution in terrestrial ecosystems is gaining attention, but there is limited research on its effects on leafy vegetables when combined with heavy metals. This study examines the impact of three MP types-polyethylene (PE), polyethylene terephthalate (PET), and polystyrene (PS)-at concentrations of 0.02, 0.05, and 0.1% w/w, along with cadmium (Cd) and biochar (B), on germination, growth, nutrient absorption, and heavy metal uptake in red amaranth (Amaranthus tricolor L.). We found that different MP types and concentrations did not negatively affect germination parameters like germination rate, relative germination rate, germination vigor, relative germination vigor, and germination speed. However, they increased phytotoxicity and decreased stress tolerance compared to an untreated control (CK1). The presence of MPs, particularly the PS type, reduced phosphorus and potassium uptake while enhancing Cd uptake. For example, treatments PS0.02CdB, PS0.05CdB, and PS0.1CdB increased Cd content in A. tricolor seedlings by 158%, 126%, and 44%, respectively, compared to the treatment CdB (CK2). Additionally, MP contamination led to reduced plant height, leaf dry matter content, and fresh and dry weights, indicating adverse effects on plant growth. Moreover, the presence of MPs increased bioconcentration factors and translocation factors for Cd, suggesting that MPs might act as carriers for heavy metal absorption in plants. On the positive side, the addition of biochar improved several root parameters, including root length, volume, surface area, and the number of root tips in the presence of MPs, indicating potential benefits for plant growth. Our study shows that the combination of MPs and Cd reduces plant growth and increases the risk of heavy metal contamination in food crops. Further research is needed to understand how different MP types and concentrations affect various plant species, which will aid in developing targeted mitigation strategies and in exploring the mechanisms through which MPs impact plant growth and heavy metal uptake. Finally, investigating the potential of biochar application in conjunction with other amendments in mitigating these effects could be key to addressing MP and heavy metal contamination in agricultural systems.
Collapse
Affiliation(s)
- Rana Roy
- Institute of Plant Nutrition and Soil Science, Christian-Albrechts-Universität zu Kiel, 24118, Kiel, Germany.
- Department of Agroforestry and Environmental Science, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
| | - Akram Hossain
- Department of Agroforestry and Environmental Science, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Shirin Sultana
- Open School, Bangladesh Open University, Gazipur, 1705, Bangladesh
| | - Biplob Deb
- Department of Agricultural Extension Education, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Md Moudud Ahmod
- Department of Crop Botany & Tea Production Technology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Tanwne Sarker
- Department of Sociology and Rural Development, Khulna Agricultural University, Khulna, 9100, Bangladesh
| |
Collapse
|
18
|
Mahmood Ur Rehman M, Liu J, Nijabat A, Alsudays IM, Saleh MA, Alamer KH, Attia H, Ziaf K, Zaman QU, Amjad M. Seed priming with potassium nitrate alleviates the high temperature stress by modulating growth and antioxidant potential in carrot seeds and seedlings. BMC PLANT BIOLOGY 2024; 24:606. [PMID: 38926658 PMCID: PMC11201870 DOI: 10.1186/s12870-024-05292-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Early season carrot (Daucus carota) production is being practiced in Punjab, Pakistan to meet the market demand but high temperature hampers the seed germination and seedling establishment which cause marked yield reduction. Seed priming with potassium nitrate breaks the seed dormancy and improves the seed germination and seedling growth potential but effects vary among the species and ecological conditions. The mechanism of KNO3 priming in high temperature stress tolerance is poorly understood yet. Thus, present study aimed to evaluate high temperature stress tolerance potential of carrot seeds primed with potassium nitrate and impacts on growth, physiological, and antioxidant defense systems. Carrot seeds of a local cultivar (T-29) were primed with various concentration of KNO3 (T0: unprimed (negative control), T1: hydroprimed (positive control), T2: 50 mM, T3:100mM, T4: 150 mM, T5: 200 mM, T6: 250 mM and T7: 300 mM) for 12 h each in darkness at 20 ± 2℃. Seed priming with 50 mM of KNO3 significantly enhanced the seed germination (36%), seedling growth (28%) with maximum seedling vigor (55%) and also exhibited 16.75% more carrot root biomass under high temperature stress as compared to respective control. Moreover, enzymatic activities including peroxidase, catalase, superoxidase dismutase, total phenolic contents, total antioxidants contents and physiological responses of plants were also improved in response to seed priming under high temperature stress. By increasing the level of KNO3, seed germination, growth and root biomass were reduced. These findings suggest that seed priming with 50 mM of KNO3 can be an effective strategy to improve germination, growth and yield of carrot cultivar (T-29) under high temperature stress in early cropping. This study also proposes that KNO3 may induces the stress memory by heritable modulations in chromosomal structure and methylation and acetylation of histones that may upregulate the hormonal and antioxidant activities to enhance the stress tolerance in plants.
Collapse
Affiliation(s)
- Muhammad Mahmood Ur Rehman
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, China.
- Institute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan.
| | - Jizhan Liu
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Aneela Nijabat
- Department of Botany, University of Mianwali, Mianwali, 42200, Pakistan
| | - Ibtisam M Alsudays
- Department of Biology, College of Science, Qassim University, Burydah, 52571, Saudi Arabia
| | - Muneera A Saleh
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Khalid H Alamer
- Biological Sciences Department, Faculty of Science and Arts, King Abdulaziz University, Rabigh, 21911, Saudi Arabia
| | - Houneida Attia
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Khurram Ziaf
- Institute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan.
| | - Qamar Uz Zaman
- Department of Environmental Sciences, The University of Lahore, Lahore, 54590, Pakistan.
| | - Muhammad Amjad
- Institute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| |
Collapse
|
19
|
Kumar D, Mariyam S, Gupta KJ, Thiruvengadam M, Sampatrao Ghodake G, Xing B, Seth CS. Comparative investigation on chemical and green synthesized titanium dioxide nanoparticles against chromium (VI) stress eliciting differential physiological, biochemical, and cellular attributes in Helianthus annuus L. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172413. [PMID: 38631632 DOI: 10.1016/j.scitotenv.2024.172413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
Nanotechnology is a new scientific area that promotes unique concepts to comprehend the optimal mechanics of nanoparticles (NPs) in plants under heavy metal stress. The present investigation focuses on effects of synthetic and green synthesized titanium dioxide nanoparticles (TiO2 NPs and gTiO2 NPs) against Cr(VI). Green TiO2 NPs have been produced from plant leaf extract (Ricinus communis L.). Synthesis was confirmed employing an array of optical spectroscopic and electron microscopic techniques. Chromium strongly accelerated H2O2 and MDA productions by 227 % and 266 % at highest chromium concentration (60 mg/kg of soil), respectively, and also caused DNA damage, and decline in photosynthesis. Additionally, anomalies were observed in stomatal cells with gradual increment in chromium concentrations. Conversely, foliar applications of TiO2 NPs and gTiO2 NPs considerably mitigated chromium stress. Sunflower plants treated with modest amounts of green TiO2 NPs had significantly better growth index compared to chemically synthesized ones. Principal component analysis highlighted the variations among photosynthetic attributes, oxidative stress markers, and antioxidant defense systems. Notably, gTiO2 supplementation to the Cr(VI) strained plants minimized PC3 production which is a rare report so far. Conclusively, gTiO2 NPs have been identified to be promising nano-based nutrition resource for farming applications.
Collapse
Affiliation(s)
- Dharmendra Kumar
- Department of Botany, University of Delhi, New Delhi 110007, Delhi, India
| | - Safoora Mariyam
- Department of Botany, University of Delhi, New Delhi 110007, Delhi, India
| | | | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Gajanan Sampatrao Ghodake
- Department of Biological and Environmental Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| | | |
Collapse
|
20
|
Wu Y, Wang Y, Liu X, Zhang C. Unveiling key mechanisms: Transcriptomic meta-analysis of diverse nanomaterial applications addressing biotic and abiotic stresses in Arabidopsis Thaliana. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172476. [PMID: 38621536 DOI: 10.1016/j.scitotenv.2024.172476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/27/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
The potential applications of nanomaterials in agriculture for alleviating diverse biotic and abiotic stresses have garnered significant attention. The reported mechanisms encompass promoting plant growth and development, alleviating oxidative stress, inducing defense responses, modulating plant-microbe interactions, and more. However, individual studies may not fully uncover the common pathways or distinguish the effects of different nanostructures. We examined Arabidopsis thaliana transcriptomes exposed to biotic, abiotic, and metal or carbon-based nanomaterials, utilizing 24 microarray chipsets and 17 RNA-seq sets. The results showed that: 1) from the perspective of different nanostructures, all metal nanomaterials relieved biotic/abiotic stresses via boosting metal homeostasis, particularly zinc and iron. Carbon nanomaterials induce hormone-related immune responses in the presence of both biotic and abiotic stressors. 2) Considering the distinct features of various nanostructures, metal nanomaterials displayed unique characteristics in seed priming for combating abiotic stresses. In contrast, carbon nanomaterials exhibited attractive features in alleviating water deprivation and acting as signaling amplifiers during biotic stress. 3) For shared pathway analysis, response to hypoxia emerges as the predominant and widely shared regulatory mechanism governing diverse stress responses, including those induced by nanomaterials. By deciphering shared and specific pathways and responses, this research opens new avenues for precision nano-agriculture, offering innovative strategies to optimize plant resilience, improve stress management, and advance sustainable crop production practices.
Collapse
Affiliation(s)
- Yining Wu
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yvjie Wang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xian Liu
- Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chengdong Zhang
- School of Environment, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
21
|
Vignesh A, Amal TC, Sivalingam R, Selvakumar S, Vasanth K. Unraveling the impact of nanopollution on plant metabolism and ecosystem dynamics. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108598. [PMID: 38608503 DOI: 10.1016/j.plaphy.2024.108598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/09/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
Nanopollution (NPOs), a burgeoning consequence of the widespread use of nanoparticles (NPs) across diverse industrial and consumer domains, has emerged as a critical environmental issue. While extensive research has scrutinized the repercussions of NPs pollution on ecosystems and human health, scant attention has been directed towards unraveling its implications for plant life. This comprehensive review aims to bridge this gap by delving into the nuanced interplay between NPOs and plant metabolism, encompassing both primary and secondary processes. Our exploration encompasses an in-depth analysis of the intricate mechanisms governing the interaction between plants and NPs. This involves a thorough examination of how physicochemical properties such as size, shape, and surface characteristics influence the uptake and translocation of NPs within plant tissues. The impact of NPOs on primary metabolic processes, including photosynthesis, respiration, nutrient uptake, and water transport. Additionally, this study explored the multifaceted alterations in secondary metabolism, shedding light on the synthesis and modulation of secondary metabolites in response to NPs exposure. In assessing the consequences of NPOs for plant life, we scrutinize the potential implications for plant growth, development, and environmental interactions. The intricate relationships revealed in this review underscore the need for a holistic understanding of the plant-NPs dynamics. As NPs become increasingly prevalent in ecosystems, this investigation establishes a fundamental guide that underscores the importance of additional research to shape sustainable environmental management strategies and address the extensive effects of NPs on the development of plant life and environmental interactions.
Collapse
Affiliation(s)
- Arumugam Vignesh
- Department of Botany, Nallamuthu Gounder Mahalingam College (Autonomous), Bharathiar University (Affiliated), Pollachi, 642 001, Tamil Nadu, India
| | - Thomas Cheeran Amal
- ICAR - Central Institute for Cotton Research, RS, Coimbatore, 641 003, Tamil Nadu, India
| | | | - Subramaniam Selvakumar
- Department of Biochemistry, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Krishnan Vasanth
- Department of Botany, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| |
Collapse
|
22
|
Zhang N, Ali S, Huang Q, Yang C, Ali B, Chen W, Zhang K, Ali S, Ulhassan Z, Zhou W. Seed pretreatment with brassinosteroids stimulates sunflower immunity against parasitic weed (Orobanche cumana) infection. PHYSIOLOGIA PLANTARUM 2024; 176:e14324. [PMID: 38705866 DOI: 10.1111/ppl.14324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/13/2024] [Indexed: 05/07/2024]
Abstract
Broomrape (Orobanche cumana) negatively affects sunflower, causing severe yield losses, and thus, there is a need to control O. cumana infestation. Brassinosteroids (BRs) play key roles in plant growth and provide resilience to weed infection. This study aims to evaluate the mechanisms by which BRs ameliorate O. cumana infection in sunflower (Helianthus annuus). Seeds were pretreated with BRs (1, 10, and 100 nM) and O. cumana inoculation for 4 weeks under soil conditions. O. cumana infection significantly reduced plant growth traits, photosynthesis, endogenous BRs and regulated the plant defence (POX, GST), BRs signalling (BAK1, BSK1 to BSK4) and synthesis (BRI1, BR6OX2) genes. O. cumana also elevated the levels of malondialdehyde (MDA), hydroxyl radical (OH-), hydrogen peroxide (H2O2) and superoxide (O2 •-) in leaves/roots by 77/112, 63/103, 56/97 and 54/89%, as well as caused ultrastructural cellular damages in both leaves and roots. In response, plants activated a few enzymes, superoxide dismutase (SOD), peroxidase (POD) and reduced glutathione but were unable to stimulate the activity of ascorbate peroxidase (APX) and catalase (CAT) enzymes. The addition of BRs (especially at 10 nM) notably recovered the ultrastructural cellular damages, lowered the production of oxidative stress, activated the key enzymatic antioxidants and induced the phenolic and lignin contents. The downregulation in the particular genes by BRs is attributed to the increased resilience of sunflower via a susceptible reaction. In a nutshell, BRs notably enhanced the sunflower resistance to O. cumana infection by escalating the plant immunity responses, inducing systemic acquired resistance, reducing oxidative or cellular damages, and modulating the expression of BR synthesis or signalling genes.
Collapse
Affiliation(s)
- Na Zhang
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, China
| | - Skhawat Ali
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, China
| | - Qian Huang
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, China
| | - Chong Yang
- Institute of Biotechnology, Xianghu Laboratory, Hangzhou, China
| | - Basharat Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Pakistan
| | - Weiqi Chen
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, China
| | - Kangni Zhang
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, China
| | - Sharafat Ali
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, China
| | - Zaid Ulhassan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, China
| | - Weijun Zhou
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Gowtham HG, Shilpa N, Singh SB, Aiyaz M, Abhilash MR, Nataraj K, Amruthesh KN, Ansari MA, Alomary MN, Murali M. Toxicological effects of nanoparticles in plants: Mechanisms involved at morphological, physiological, biochemical and molecular levels. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108604. [PMID: 38608505 DOI: 10.1016/j.plaphy.2024.108604] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
The rapid advancement of nanotechnology has led to unprecedented innovations across diverse industries, including pharmaceuticals, agriculture, cosmetics, electronics, textiles, and food, owing to the unique properties of nanoparticles. The extensive production and unregulated release of synthetic nanoparticles may contribute to nanopollution within the ecosystem. In the agricultural sector, nanotechnology is increasingly utilized to improve plant productivity, enhance resistance to stressors, and reduce the usage of chemicals. However, the uncontrolled discharge of nanoparticles into the natural environment raises concerns regarding possible plant toxicological impacts. The review focuses on the translocation of these particles within the plants, emphasizing their phytotoxicological effects at morphological, physiological, biochemical, and molecular levels. Eventhough the beneficial aspects of these nanoparticles are evident, excessive usage of nanoparticles at higher concentrations may lead to potential adverse effects. The phytotoxicity resulting from excessive amounts of nanoparticles affects seed germination and biomass production, disrupts the photosynthesis system, induces oxidative stress, impacts cell membrane integrity, alters gene expression, causes DNA damage, and leads to epigenetic variations in plants. Nanoparticles are found to directly associate with the cell membrane and cell organelles, leading to the dissolution and release of toxic ions, generation of reactive oxygen species (ROS) and subsequent oxidative stress. The present study signifies and accumulates knowledge regarding the application of nanoparticles in agriculture and illustrates a clear picture of their possible impacts on plants and soil microbes, thereby paving the way for future developments in nano-agrotechnology. The review concludes by addressing current challenges and proposing future directions to comprehend and mitigate the possible biological risks associated with nanoparticles in agriculture.
Collapse
Affiliation(s)
- H G Gowtham
- Department of Studies and Research in Food Science and Nutrition, KSOU, Mysuru, Karnataka, 570006, India
| | - N Shilpa
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru, 570006, Karnataka, India
| | - S Brijesh Singh
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru, 570006, Karnataka, India
| | - Mohammed Aiyaz
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru, 570006, Karnataka, India
| | - M R Abhilash
- Department of Studies in Environmental Science, University of Mysore, Manasagangotri, Mysuru, 570006, Karnataka, India
| | - K Nataraj
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru, 570006, Karnataka, India
| | - K N Amruthesh
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru, 570006, Karnataka, India
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Mohammad N Alomary
- Advanced Diagnostic and Therapeutic Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| | - M Murali
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru, 570006, Karnataka, India.
| |
Collapse
|
24
|
Ghorbani A, Emamverdian A, Pehlivan N, Zargar M, Razavi SM, Chen M. Nano-enabled agrochemicals: mitigating heavy metal toxicity and enhancing crop adaptability for sustainable crop production. J Nanobiotechnology 2024; 22:91. [PMID: 38443975 PMCID: PMC10913482 DOI: 10.1186/s12951-024-02371-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/25/2024] [Indexed: 03/07/2024] Open
Abstract
The primary factors that restrict agricultural productivity and jeopardize human and food safety are heavy metals (HMs), including arsenic, cadmium, lead, and aluminum, which adversely impact crop yields and quality. Plants, in their adaptability, proactively engage in a multitude of intricate processes to counteract the impacts of HM toxicity. These processes orchestrate profound transformations at biomolecular levels, showing the plant's ability to adapt and thrive in adversity. In the past few decades, HM stress tolerance in crops has been successfully addressed through a combination of traditional breeding techniques, cutting-edge genetic engineering methods, and the strategic implementation of marker-dependent breeding approaches. Given the remarkable progress achieved in this domain, it has become imperative to adopt integrated methods that mitigate potential risks and impacts arising from environmental contamination on yields, which is crucial as we endeavor to forge ahead with the establishment of enduring agricultural systems. In this manner, nanotechnology has emerged as a viable field in agricultural sciences. The potential applications are extensive, encompassing the regulation of environmental stressors like toxic metals, improving the efficiency of nutrient consumption and alleviating climate change effects. Integrating nanotechnology and nanomaterials in agrochemicals has successfully mitigated the drawbacks associated with traditional agrochemicals, including challenges like organic solvent pollution, susceptibility to photolysis, and restricted bioavailability. Numerous studies clearly show the immense potential of nanomaterials and nanofertilizers in tackling the acute crisis of HM toxicity in crop production. This review seeks to delve into using NPs as agrochemicals to effectively mitigate HM toxicity and enhance crop resilience, thereby fostering an environmentally friendly and economically viable approach toward sustainable agricultural advancement in the foreseeable future.
Collapse
Affiliation(s)
- Abazar Ghorbani
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Islamic Republic of Iran.
| | - Abolghassem Emamverdian
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Necla Pehlivan
- Biology Department, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, Rize, 53100, Türkiye
| | - Meisam Zargar
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, Moscow, 117198, Russia
| | - Seyed Mehdi Razavi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Islamic Republic of Iran
| | - Moxian Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
25
|
Bano N, Khan S, Hamid Y, Bano F, Khan AG, Asmat Ullah M, Li T, Ullah H, Bolan N, Rinklebe J, Shaheen SM. Seed nano-priming with multiple nanoparticles enhanced the growth parameters of lettuce and mitigated cadmium (Cd) bio-toxicity: An advanced technique for remediation of Cd contaminated environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123300. [PMID: 38199483 DOI: 10.1016/j.envpol.2024.123300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/05/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Seed nano-priming can be used as an advanced technology for enhancing seed germination, plant growth, and crop productivity; however, the potential role of seed nano-priming in ameliorative cadmium (Cd) bio-toxicity under Cd stress has not yet been sufficiently investigated. Therefore, in this study we investigated the beneficial impacts of seed priming with low (L) and high (H) concentrations of nanoparticles including nSiO2 (50/100 mg L-1), nTiO2 (20/60 mg L-1), nZnO (50/100 mg L-1), nFe3O4 (100/200 mg L-1), nCuO (50/100 mg L-1), and nCeO2 (50/100 mg L-1) on lettuce growth and antioxidant enzyme activities aiming to assess their efficacy for enhancing plant growth and reducing Cd phytotoxicity. The results showed a significant increase in plant growth, biomass production, antioxidant enzyme activities, and photosynthetic efficiency in lettuce treated with nano-primed nSiH + Cd (100 mg L-1), nTiH + Cd (60 mg L-1), and nZnL + Cd (50 mg L-1) under Cd stress. Moreover, nano-priming effectively reduced the accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA) in lettuce shoots. Interestingly, nano-primed nSiH + Cd, nTiH + Cd, and nZnL + Cd demonstrated efficient reduction of Cd uptake, less translocation factor of Cd with high tolerance index, ultimately reducing toxicity by stabilizing the root morphology and superior accumulation of critical nutrients (K, Mg, Ca, Fe, and Zn). Thus, this study provides the first evidence of alleviating Cd toxicity in lettuce by using multiple nanoparticles via priming strategy. The findings highlight the potential of nanoparticles (Si, Zn, and Ti) as stress mitigation agents for improved crop growth and yield in Cd contaminated areas, thereby offering a promising and advanced approach for remediation of Cd contaminated environments.
Collapse
Affiliation(s)
- Nabila Bano
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Pakistan Tobacco Board, Ministry of National Food Security and Research, Pakistan
| | - Sangar Khan
- Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo, 315211, China
| | - Yasir Hamid
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Faiza Bano
- Kohat University of Science and Technology, Kohat, Pakistan
| | | | - Muhammad Asmat Ullah
- Pakistan Tobacco Board, Ministry of National Food Security and Research, Pakistan
| | - Tingqiang Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Habib Ullah
- Innovation Center of Yangtze River Delta, Zhejiang University, Hangzhou, Zhejiang, 311400, China
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany
| |
Collapse
|
26
|
Khan AR, Ulhassan Z, Li G, Lou J, Iqbal B, Salam A, Azhar W, Batool S, Zhao T, Li K, Zhang Q, Zhao X, Du D. Micro/nanoplastics: Critical review of their impacts on plants, interactions with other contaminants (antibiotics, heavy metals, and polycyclic aromatic hydrocarbons), and management strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169420. [PMID: 38128670 DOI: 10.1016/j.scitotenv.2023.169420] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Microplastic/nanoplastics (MPs/NPs) contamination is not only emerging threat to the agricultural system but also constitute global hazard to the environment worldwide. Recent review articles have addressed the environmental distribution of MPs/NPs and their single-exposure phytotoxicity in various plant species. However, the mechanisms of MPs/NPs-induced phytotoxicity in conjunction with that of other contaminants remain unknown, and there is a need for strategies to ameliorate such phytotoxicity. To address this, we comprehensively review the sources of MPs/NPs, their uptake by and effects on various plant species, and their phytotoxicity in conjunction with antibiotics, heavy metals, polycyclic aromatic hydrocarbons (PAHs), and other toxicants. We examine mechanisms to ameliorate MP/NP-induced phytotoxicity, including the use of phytohormones, biochar, and other plant-growth regulators. We discuss the effects of MPs/NPs -induced phytotoxicity in terms of its ability to inhibit plant growth and photosynthesis, disrupt nutrient metabolism, inhibit seed germination, promote oxidative stress, alter the antioxidant defense system, and induce genotoxicity. This review summarizes the novel strategies for mitigating MPs/NPs phytotoxicity, presents recent advances, and highlights research gaps, providing a foundation for future studies aimed at overcoming the emerging problem of MPs/NPs phytotoxicity in edible crops.
Collapse
Affiliation(s)
- Ali Raza Khan
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Zaid Ulhassan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, People's Republic of China
| | - Guanlin Li
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China.
| | - Jiabao Lou
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Babar Iqbal
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| | - Abdul Salam
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Wardah Azhar
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, People's Republic of China
| | - Sundas Batool
- Department of Plant Breeding and Genetics, Faculty of Agriculture, Gomal University, Pakistan
| | - Tingting Zhao
- Institute of Biology, Freie Universität Berlin, Berlin 14195, Germany
| | - Kexin Li
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Qiuyue Zhang
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Xin Zhao
- Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Daolin Du
- Jingjiang College, Institute of Enviroment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, School of Agricultural Engineering,Jiangsu University, Zhenjiang 212013, People's Republic of China.
| |
Collapse
|
27
|
Hussain M, Hafeez A, Al-Huqail AA, Alsudays IM, Alghanem SMS, Ashraf MA, Rasheed R, Rizwan M, Abeed AHA. Effect of hesperidin on growth, photosynthesis, antioxidant systems and uptake of cadmium, copper, chromium and zinc by Celosia argentea plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108433. [PMID: 38364631 DOI: 10.1016/j.plaphy.2024.108433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
Rapid industrialization and extensive agricultural practices are the major causes of soil heavy metal contamination, which needs urgent attention to safeguard the soils from contamination. However, the phytotoxic effects of excessive metals in plants are the primary obstacle to efficient phytoextraction. The present study evaluated the effects of hesperidin (HSP) on metals (Cu, Cd, Cr, Zn) phytoextraction by hyperaccumulator (Celosia argentea L.) plants. For this purpose, HSP, a flavonoid compound with strong antioxidant potential to assist metal phytoextraction was used under metal stress in plants. Celosia argentea plants suffered significant (P ≤ 0.001) oxidative damage due to the colossal accumulation of metals (Cu, Cd, Cr, Zn). However, HSP supplementation notably (P ≤ 0.001) abated ROS generation (O2•‒, •OH, H2O2), lipoxygenase activity, methylglyoxal production, and relative membrane permeability that clearly indicated HSP-mediated decline in oxidative injury in plants. Exogenous HSP improved (P ≤ 0.001) the production of non-protein thiol, phytochelatins, osmolytes, and antioxidant compounds. Further, HSP enhanced (P ≤ 0.001) H2S and NO endogenous production, which might have improved the GSH: GSSG ratio. Consequently, HSP-treated C. argentea plants had higher biomass alongside elevated metal accumulation mirrored as profound modifications in translocation factor (TF), bioaccumulation coefficient (BAC), and bioconcentration factor (BCF). In this context, HSP significantly enhanced TF of Cr (P ≤ 0.001), Cd (P ≤ 0.001), and Zn (P ≤ 0.01), while BAC of Cr (P ≤ 0.001), Cd (P ≤ 0.001), and Zn (P ≤ 0.001). Further, BCF was significant (P ≤ 0.05) only in plants grown under Cr-spiked soil. Overall, HSP has the potential for phytoremediation of metals by C. argentea, which might be a suitable strategy for metal-polluted soils.
Collapse
Affiliation(s)
- Mazhar Hussain
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Arslan Hafeez
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Arwa Abdulkreem Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | | | | | - Muhammad Arslan Ashraf
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Rizwan Rasheed
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Amany H A Abeed
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| |
Collapse
|
28
|
Ali S, Ulhassan Z, Ali S, Kaleem Z, Yousaf MA, Sheteiwy MS, Ali S, Waseem M, Jalil S, Wang J, Zhou W. Differential responses of Brassica napus cultivars to dual effects of magnesium oxide nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12446-12466. [PMID: 38231326 DOI: 10.1007/s11356-024-31977-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/08/2024] [Indexed: 01/18/2024]
Abstract
Magnesium oxide nanoparticles (MgO NPs) have great potential to enhance the crop productivity and sustainability of agriculture. Still, a thorough understanding is lacking about its essentiality or toxicity and precise dose for the safe cultivation of oilseed crops. Thus, we assessed the dual effects of MgO NPs (control, 5, 10, 20, 40, 80, and 200 mg/L) on the seed germination, growth performance, photosynthesis, total soluble protein, total carbohydrates, oxidative stress markers (hydrogen peroxide as H2O2 and superoxide anion as O2•‒), lipid peroxidation as MDA, and antioxidant defence machinery (SOD, CAT, APX, and GR activities, and GSH levels) of seven different oilseeds (Brassica napus L.) cultivars (ZY 758, ZD 649, ZD 635, ZD 619, GY 605, ZD 622, and ZD 630). Our findings revealed that low doses of MgO NPs (mainly at 10 mg/L) markedly boosted the seed germination, plant growth (shoot and root lengths) (15‒22%), and biomass (fresh and dry) (11‒19%) by improving the levels of photosynthetic pigments (14‒27%), net photosynthetic rate, stomatal conductance, photosynthetic efficiency (Fv/Fm), total soluble protein and total carbohydrates (16‒36%), antioxidant defence, and reducing the oxidative stress in B. napus tissues. Among all B. napus cultivars, these beneficial effects of MgO NPs were pronounced in ZD 635. ile, elevated levels of MgO NPs (particularly at 200 mg/L) induced oxidative stress, impaired antioxidant scavenging potential, photosynthetic inhibition, protein oxidation, and carbohydrate degradation and lead to inhibit the plant growth attributes. These inhibitory effects were more pronounced in ZD 622. Collectively, low-dose MgO NPs reinforced the Mg contents, protected the plant growth, photosynthesis, total soluble carbohydrates, enzyme activities, and minimized the oxidative stress. While, the excessive MgO NP levels impaired the above-reported traits. Overall, ZD 622 was highly susceptible to MgO NP toxicity and ZD 635 was found most tolerant to MgO NP toxicity.
Collapse
Affiliation(s)
- Sharafat Ali
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Zaid Ulhassan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Skhawat Ali
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Zohaib Kaleem
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Arslan Yousaf
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Mohamed S Sheteiwy
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, Al‑Ain, United Arab Emirates University, Abu‑Dhabi, United Arab Emirates
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan
| | - Muhammad Waseem
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Sanaullah Jalil
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Jian Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Weijun Zhou
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
29
|
Zhang L, Liu Z, Song Y, Sui J, Hua X. Advances in the Involvement of Metals and Metalloids in Plant Defense Response to External Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:313. [PMID: 38276769 PMCID: PMC10820295 DOI: 10.3390/plants13020313] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
Plants, as sessile organisms, uptake nutrients from the soil. Throughout their whole life cycle, they confront various external biotic and abiotic threats, encompassing harmful element toxicity, pathogen infection, and herbivore attack, posing risks to plant growth and production. Plants have evolved multifaceted mechanisms to cope with exogenous stress. The element defense hypothesis (EDH) theory elucidates that plants employ elements within their tissues to withstand various natural enemies. Notably, essential and non-essential trace metals and metalloids have been identified as active participants in plant defense mechanisms, especially in nanoparticle form. In this review, we compiled and synthetized recent advancements and robust evidence regarding the involvement of trace metals and metalloids in plant element defense against external stresses that include biotic stressors (such as drought, salinity, and heavy metal toxicity) and abiotic environmental stressors (such as pathogen invasion and herbivore attack). We discuss the mechanisms underlying the metals and metalloids involved in plant defense enhancement from physiological, biochemical, and molecular perspectives. By consolidating this information, this review enhances our understanding of how metals and metalloids contribute to plant element defense. Drawing on the current advances in plant elemental defense, we propose an application prospect of metals and metalloids in agricultural products to solve current issues, including soil pollution and production, for the sustainable development of agriculture. Although the studies focused on plant elemental defense have advanced, the precise mechanism under the plant defense response still needs further investigation.
Collapse
Affiliation(s)
- Lingxiao Zhang
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China; (Z.L.); (J.S.)
| | - Zhengyan Liu
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China; (Z.L.); (J.S.)
| | - Yun Song
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China;
| | - Junkang Sui
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China; (Z.L.); (J.S.)
| | - Xuewen Hua
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China; (Z.L.); (J.S.)
| |
Collapse
|
30
|
Hussain M, Kaousar R, Haq SIU, Shan C, Wang G, Rafique N, Shizhou W, Lan Y. Zinc-oxide nanoparticles ameliorated the phytotoxic hazards of cadmium toxicity in maize plants by regulating primary metabolites and antioxidants activity. FRONTIERS IN PLANT SCIENCE 2024; 15:1346427. [PMID: 38304740 PMCID: PMC10830903 DOI: 10.3389/fpls.2024.1346427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024]
Abstract
Cadmium stress is a major threat to plant growth and survival worldwide. The current study aims to green synthesis, characterization, and application of zinc-oxide nanoparticles to alleviate cadmium stress in maize (Zea mays L.) plants. In this experiment, two cadmium levels (0, 0.6 mM) were applied to check the impact on plant growth attributes, chlorophyll contents, and concentration of various primary metabolites and antioxidants under exogenous treatment of zinc-oxide nanoparticles (25 and 50 mg L-1) in maize seedlings. Tissue sampling was made 21 days after the zinc-oxide nanoparticles application. Our results showed that applying cadmium significantly reduced total chlorophyll and carotenoid contents by 52.87% and 23.31% compared to non-stress. In comparison, it was increased by 53.23%, 68.49% and 9.73%, 37.53% with zinc-oxide nanoparticles 25, 50 mg L-1 application compared with cadmium stress conditions, respectively. At the same time, proline, superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase contents were enhanced in plants treated with cadmium compared to non-treated plants with no foliar application, while it was increased by 12.99 and 23.09%, 23.52 and 35.12%, 27.53 and 36.43%, 14.19 and 24.46%, 14.64 and 37.68% by applying 25 and 50 mg L-1 of zinc-oxide nanoparticles dosages, respectively. In addition, cadmium toxicity also enhanced stress indicators such as malondialdehyde, hydrogen peroxide, and non-enzymatic antioxidants in plant leaves. Overall, the exogenous application of zinc-oxide nanoparticles (25 and 50 mg L-1) significantly alleviated cadmium toxicity in maize. It provides the first evidence that zinc-oxide nanoparticles 25 ~ 50 mg L-1 can be a candidate agricultural strategy for mitigating cadmium stress in cadmium-polluted soils for safe agriculture practice.
Collapse
Affiliation(s)
- Mujahid Hussain
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
| | - Rehana Kaousar
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
| | - Syed Ijaz Ul Haq
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
| | - Changfeng Shan
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
| | - Guobin Wang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
| | - Nadia Rafique
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
| | - Wang Shizhou
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
| | - Yubin Lan
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
- National Center for International Collaboration Research on Precision Agricultural Aviation Pesticides Spraying Technology (NPAAC), Ministry of Science and Technology, College of Electronics Engineering, South China Agricultural University, Guangzhou, China
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX, United States
| |
Collapse
|
31
|
Munir R, Yasin MU, Afzal M, Jan M, Muhammad S, Jan N, Nana C, Munir F, Iqbal H, Tawab F, Gan Y. Melatonin alleviated cadmium accumulation and toxicity by modulating phytohormonal balance and antioxidant metabolism in rice. CHEMOSPHERE 2024; 346:140590. [PMID: 37914045 DOI: 10.1016/j.chemosphere.2023.140590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/22/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023]
Abstract
Cadmium (Cd) contamination is an eminent dilemma that jeopardizes global food safety and security, especially through its phytotoxicity in rice; one of the most edible crops. Melatonin (MET) has emerged as a protective phytohormone in stress conditions, but the defensive role and underlying mechanisms of MET against Cd toxicity in rice still remain unclear. To fulfill this knowledge gap, the present study is to uncover the key mechanisms for MET-mediated Cd-stress tolerance in rice. Cd toxicity significantly reduced growth by hindering the process of photosynthesis, cellular redox homeostasis, phytohormonal imbalance, and ultrastructural damages. Contrarily, MET supplementation considerably improved growth attributes, photosynthetic efficiency, and cellular ultrastructure as measured by gas exchange elements, chlorophyll content, reduced Cd accumulation, and ultrastructural analysis via transmission electron microscopy (TEM). MET treatment significantly reduced Cd accumulation (39.25%/31.58%), MDA (25.87%/19.45%), H2O2 (17.93%/9.56%), and O2 (29.11%/27.14%) levels in shoot/root tissues, respectively, when compared with Cd treatment. More importantly, MET manifested association with stress responsive phytohormones (ABA and IAA) and boosted the defense mechanisms of plant by enhancing the activities of ROS-scavenging antioxidant enzymes (SOD; superoxide dismutase, POD; peroxidase, CAT; catalase, APX; ascorbate peroxidase) and as well as regulating the key stress-responsive genes (OsSOD1, OsPOD1, OsCAT2, OsAPX1), thereby reinstate cellular membrane integrity and confer tolerance to ultrastructural damages under Cd-induced phytotoxicity. Overall, our findings emphasized the potential of MET as a long-term and cost-effective approach to Cd remediation in paddy soils, which can pave the way for a healthier and more environmentally conscious agricultural sector.
Collapse
Affiliation(s)
- Raheel Munir
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Umair Yasin
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Afzal
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Mehmood Jan
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Sajid Muhammad
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Nazia Jan
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Chen Nana
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Faisal Munir
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, 25130, Pakistan
| | - Hamza Iqbal
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, 25130, Pakistan
| | - Faiza Tawab
- Department of Botany, Shaheed Benazir Bhutto Women University, Peshawar, 25000, Pakistan
| | - Yinbo Gan
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
32
|
Ali S, Ulhassan Z, Shahbaz H, Kaleem Z, Yousaf MA, Ali S, Sheteiwy MS, Waseem M, Ali S, Zhou W. Application of magnesium oxide nanoparticles as a novel sustainable approach to enhance crop tolerance to abiotic and biotic stresses. ENVIRONMENTAL SCIENCE: NANO 2024; 11:3250-3267. [DOI: 10.1039/d4en00417e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Abiotic stresses (heavy metals, drought, salinity, etc.) or biotic pathogens (bacteria, fungi, nematodes, etc.) contribute to major losses in crop yields.
Collapse
Affiliation(s)
- Sharafat Ali
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Zaid Ulhassan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Hafsah Shahbaz
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang, China
| | - Zohaib Kaleem
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Arslan Yousaf
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Skhawat Ali
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Mohamed S. Sheteiwy
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, Abu-Dhabi, United Arab Emirates
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Muhammad Waseem
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan
| | - Weijun Zhou
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
33
|
Khan AR, Azhar W, Fan X, Ulhassan Z, Salam A, Ashraf M, Liu Y, Gan Y. Efficacy of zinc-based nanoparticles in alleviating the abiotic stress in plants: current knowledge and future perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:110047-110068. [PMID: 37807024 DOI: 10.1007/s11356-023-29993-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/16/2023] [Indexed: 10/10/2023]
Abstract
Due to sessile, plants are unable to avoid unfavorable environmental conditions which leads to inducing serious negative effects on plant growth, crop yield, and food safety. Instead, various approaches were employed to mitigate the phytotoxicity of these emerging contaminants from the soil-plant system. However, recent studies based on the exogenous application of ZnO NPs approve of their important positive potential for alleviating abiotic stress-induced phytotoxicity leads to ensuring global food security. In this review, we have comprehensively discussed the promising role of ZnO NPs as alone or in synergistic interactions with other plant growth regulators (PGRs) in the mitigation of various abiotic stresses, i.e., heavy metals (HMs), drought, salinity, cold and high temperatures from different crops. ZnO NPs have stress-alleviating effects by regulating various functionalities by improving plant growth and development. ZnO NPs are reported to improve plant growth by stimulating diverse alterations at morphological, physiological, biochemical, and ultrastructural levels under abiotic stress factors. We have explained the recent advances and pointed out research gaps in studies conducted in earlier years with future recommendations. Thus, in this review, we have also addressed the opportunities and challenges together with aims to uplift future studies toward effective applications of ZnO NPs in stress management.
Collapse
Affiliation(s)
- Ali Raza Khan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310027, China
| | - Wardah Azhar
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310027, China
| | - Xingming Fan
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, 65020, China
| | - Zaid Ulhassan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310027, China
| | - Abdul Salam
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310027, China
| | - Muhammad Ashraf
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yihua Liu
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, 276000, China
| | - Yinbo Gan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
34
|
Ahmed T, Noman M, Qi Y, Xu S, Yao Y, Masood HA, Manzoor N, Rizwan M, Li B, Qi X. Dynamic crosstalk between silicon nanomaterials and potentially toxic trace elements in plant-soil systems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115422. [PMID: 37660529 DOI: 10.1016/j.ecoenv.2023.115422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Agricultural soil pollution with potentially toxic trace elements (PTEs) has emerged as a significant environmental concern, jeopardizing food safety and human health. Although, conventional remediation approaches have been used for PTEs-contaminated soils treatment; however, these techniques are toxic, expensive, harmful to human health, and can lead to environmental contamination. Nano-enabled agriculture has gained significant attention as a sustainable approach to improve crop production and food security. Silicon nanomaterials (SiNMs) have emerged as a promising alternative for PTEs-contaminated soils remediation. SiNMs have unique characteristics, such as higher chemical reactivity, higher stability, greater surface area to volume ratio and smaller size that make them effective in removing PTEs from the environment. The review discusses the recent advancements and developments in SiNMs for the sustainable remediation of PTEs in agricultural soils. The article covers various synthesis methods, characterization techniques, and the potential mechanisms of SiNMs to alleviate PTEs toxicity in plant-soil systems. Additionally, we highlight the potential benefits and limitations of SiNMs and discusses future directions for research and development. Overall, the use of SiNMs for PTEs remediation offers a sustainable platform for the protection of agricultural soils and the environment.
Collapse
Affiliation(s)
- Temoor Ahmed
- Xianghu Laboratory, Hangzhou 311231, China; State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China
| | - Muhammad Noman
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yetong Qi
- Xianghu Laboratory, Hangzhou 311231, China
| | | | - Yanlai Yao
- Xianghu Laboratory, Hangzhou 311231, China
| | - Hafiza Ayesha Masood
- Department of Plant Breeding and Genetics, University of Agriculture, 38000 Faisalabad, Pakistan; MEU Research Unit, Middle East University, Amman, Jordan
| | - Natasha Manzoor
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China.
| | | |
Collapse
|
35
|
Rivero-Montejo SDJ, Rivera-Bustamante RF, Saavedra-Trejo DL, Vargas-Hernandez M, Palos-Barba V, Macias-Bobadilla I, Guevara-Gonzalez RG, Rivera-Muñoz EM, Torres-Pacheco I. Inhibition of pepper huasteco yellow veins virus by foliar application of ZnO nanoparticles in Capsicum annuum L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108074. [PMID: 37832367 DOI: 10.1016/j.plaphy.2023.108074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/13/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
The Pepper huasteco yellow vein virus (PHYVV) is an endemic geminivirus in Mexico causing partial or total losses in the pepper crop since the damage caused by the virus has not been fully controlled. In this work, we evaluated the effect of ZnO NPs (0, 50, 100, 150, and 200 mM) as a preventive (72 h before) and curative (72 h after) treatment of PHYVV infection in two jalapeño pepper varieties. In this study, we observed a decrease in symptoms, and it could be caused by an induction of the defense system in pepper plants and a direct action on PHYVV by foliar application of ZnO NPs. Our findings suggest that ZnO NP application significantly decreased the viral titer for both varieties at 200 mM by 15.11-fold. However, this effect was different depending on the timing of application and the variety of pepper. The greatest decrease in the viral titer in the preventive treatment in both varieties was at the concentration of 200 mM (1781.17 and 274.5 times, respectively). For curative treatment in cv. Don Pancho at the concentration of 200 mM (333.33 times) and cv. Don Benito at 100 mM (43.10 folds). compared to control. Furthermore, virus mobility was generally restricted for both varieties at 100 mM (15.13-fold) compared to the control. The results possibly delineated that ZnO NPs increased plant resistance possibly by increasing POD (2.08 and 0.25 times) and SOD (0.998 and 1.38) in cv. Don Pancho and cv. Don Benito, respectively. On the other hand, in cv. Don Pancho and cv. Don Benito presented a decrease in CAT (0.61 and 0.058) and PAL (0.78 and 0.77), respectively. Taken together, we provide the first evidence to demonstrate the effect of ZnO NPs on viral symptoms depending on the plan-virus-ZnO NP interaction.
Collapse
Affiliation(s)
- Samantha de Jesús Rivero-Montejo
- Center of Applied Research in Biosystems (CARB-CIAB), Faculty of Engineering, Campus Amazcala, Autonomous University of Queretaro, Carretera a Chichimequillas, km 1 S/N, C.P., El Marques, Queretaro, 76265, Mexico.
| | - Rafael F Rivera-Bustamante
- Plant virology laboratory, Center for Research and Advanced Studies, Irapuato unit. Libramiento Norte Carretera Irapuato León Kilometer 9.6, Carr Panamericana Irapuato León, 36821, Irapuato, Gto, Mexico.
| | - Diana L Saavedra-Trejo
- Plant virology laboratory, Center for Research and Advanced Studies, Irapuato unit. Libramiento Norte Carretera Irapuato León Kilometer 9.6, Carr Panamericana Irapuato León, 36821, Irapuato, Gto, Mexico.
| | - Marcela Vargas-Hernandez
- Faculty of Engineering, Campus Amealco, Autonomous University of Queretaro, Carretera Amealco Temazcaltzingo, km 1, Centro, C.P., Amealco de Bonfil, Queretaro, 76850, Mexico.
| | - Viviana Palos-Barba
- Department of Nanotechnology, Center of Applied Physics and Advanced Technology, National Autonomous University of Mexico, A.P. 1-1010, Querétaro, 76010, Queretaro, Mexico.
| | - Israel Macias-Bobadilla
- Faculty of Engineering, Campus Conca, Autonomous University of Queretaro, Valle Agrícola S/N, Arroyo Seco, 76410, Queretaro, Mexico.
| | - Ramon Gerardo Guevara-Gonzalez
- Center of Applied Research in Biosystems (CARB-CIAB), Faculty of Engineering, Campus Amazcala, Autonomous University of Queretaro, Carretera a Chichimequillas, km 1 S/N, C.P., El Marques, Queretaro, 76265, Mexico.
| | - Eric M Rivera-Muñoz
- Department of Nanotechnology, Center of Applied Physics and Advanced Technology, National Autonomous University of Mexico, A.P. 1-1010, Querétaro, 76010, Queretaro, Mexico.
| | - Irineo Torres-Pacheco
- Center of Applied Research in Biosystems (CARB-CIAB), Faculty of Engineering, Campus Amazcala, Autonomous University of Queretaro, Carretera a Chichimequillas, km 1 S/N, C.P., El Marques, Queretaro, 76265, Mexico.
| |
Collapse
|