1
|
She Y, Wu L, Qi X, Sun S, Li Z. Aging behaviors intensify the impacts of microplastics on nitrate bioreduction-driven nitrogen cycling in freshwater sediments. WATER RESEARCH 2025; 279:123448. [PMID: 40064141 DOI: 10.1016/j.watres.2025.123448] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/17/2025] [Accepted: 03/05/2025] [Indexed: 05/06/2025]
Abstract
Microplastics (MPs) inevitably undergo aging processes in natural environments; however, how aging behaviors influence the interactions between MPs exposures and nitrate bioreduction in freshwater sediments remains poorly understood. Here, we explored the distinct impacts of virgin and aged MPs (polystyrene (PS) and polylactic acid (PLA)) on nitrate bioreduction processes in lake sediments through a long-term microcosm experiment utilizing the 15N isotope tracing technique and molecular analysis. Compared to virgin MPs, aged PLA significantly increased the rates of denitrification, anaerobic ammonium oxidation (anammox), and dissimilatory nitrate reduction to ammonium (DNRA) (p < 0.05), facilitating sediment nitrogen loss, while aged PS only significantly improved the rates of DNRA by 272-297 % and contributed to nitrogen retention in sediments. Metagenomic sequencing demonstrated that a more significant enrichment of functional genes responsible for nitrate bioreduction pathways occurred with aged MPs exposures than with virgin MPs. By combining analyses of MPs aging traits and the key drivers of nitrate bioreduction, we revealed that aging behaviors directly regulated sediment nutrient status (e.g., DOC/NOx- ratio) and microbiological properties (from genes to bacteria), thereby further determining the activity of nitrate bioreduction. This work provides new insights into the impacts of aged MPs on sediment nitrate reduction and highlights the role of MPs aging in future assessments of long-term MPs pollution in freshwater ecosystems.
Collapse
Affiliation(s)
- Yuecheng She
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing University, Nanjing 210023, China
| | - Liying Wu
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, 241002, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xin Qi
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing University, Nanjing 210023, China
| | - Siyu Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zhengkui Li
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China; School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
2
|
Li X, Du X, Jones DL, He Z, Liu J, Guo X, Tang Z. Nanoplastic and phthalate induced stress responses in rhizosphere soil: Microbial communities and metabolic networks. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137591. [PMID: 39954428 DOI: 10.1016/j.jhazmat.2025.137591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/07/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
The widespread use of plastic products in agriculture has introduced micro-nano plastics (MNPs) and dibutyl phthalate (DBP) into soil ecosystems, disrupting microbial communities and altering metabolite profiles. However, their effects on the rhizosphere soil characteristics of medicinal plants like dandelion remain understudied. This study systematically examined the impact of PS NPs and DBP on rhizosphere microbial communities and metabolites by integrating high-throughput sequencing with liquid chromatography-mass spectrometry. Results demonstrated that individual and combined exposures to PS NPs and DBP decreased soil pH, organic matter content, and enzyme activities while reshaping the diversity, structure, and composition of rhizosphere bacteria and fungi. Notably, bacterial network stability and complexity increased under combined exposure, while fungal networks became more simplified, with a 33.72 % decrease in positive correlations. We identified potential PS NPs and DBP-degrading bacteria and biomarkers, including Nocardioides, Pseudarthrobacter, and Arenimonas. We revealed that co-exposure elevated differential soil metabolites associated with tyrosine metabolism and steroid biosynthesis. The significant positive associations between rhizosphere microorganisms and metabolites highlighted that metabolite accumulation was a key microbial response mechanism to stress. However, within the complex soil environment, the compensatory actions of microorganisms and metabolites were insufficient to mitigate the detrimental effects of PS NPs and DBP, resulting in continued inhibition of dandelion growth by 38.66 %. Consequently, these findings highlight that soil fungi and metabolism play key roles in responding to stress and influencing crop growth, providing novel insights into the impact of nanoparticle and plasticizer exposure on medicinal plant cultivation.
Collapse
Affiliation(s)
- Xingfan Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; School of Environmental and Natural Sciences, Bangor University, Bangor LL57 2UW, UK.
| | - Xinyi Du
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Davey L Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor LL57 2UW, UK.
| | - Zhiqiang He
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Jia Liu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150040, China.
| | - Xiaorui Guo
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Zhonghua Tang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
3
|
Ijaz S, Liu G, Rehman A, Haider MIS, Safeer R, Sattar B, Gulzar MZ, Nosheen S, Yousaf B. Organic matter and microplastics nexus: A comprehensive understanding of the synergistic impact on soil health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 978:179420. [PMID: 40245505 DOI: 10.1016/j.scitotenv.2025.179420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 04/19/2025]
Abstract
The interactional nexus of microplastics (MPs) and organic matter (OM) can subtly disrupt the delicate balance of soil ecosystems, influencing nutrient dynamics, biodiversity, and overall soil health. To explore this complex interplay between MPs and OM concerning several perspectives, a comprehensive keyword search was conducted across key scientific databases, and the retrieved data was curated according to the PRISMA guidelines to reflect the objectives. Several studies have highlighted that organic-based inputs, such as manures, composts, and sewage sludge, widely used for soil amendment, are potential sources of MPs to soil contamination. These coinciding sources of MPs and OM raise potential concerns about their impact on overall soil health. MPs and OM have parallel characteristics and play a critical role in the soil organic carbon (SOC) and dissolved organic matter (DOM), critical for biogeochemical transformations and nutrient cycling. In light of this, the present review explores the multifaceted nexus between MPs and OM, explaining their interaction mechanisms and their effects on the biological and physicochemical properties of the soil. Despite significant implications on soil ecosystem, challenges remain in accurately quantifying the effects of MPs due to the complexities introduced by DOM. The intricate interaction between MPs and DOM can obscure analytical results, complicating efforts to separate and identify these pollutants effectively. Given these challenges, this review underscores the urgent need for innovative methods to characterize and quantify MPs in complex environmental matrices. Finally, we discuss emerging research directions aimed at advancing the detection and management of MPs in soil ecosystems.
Collapse
Affiliation(s)
- Samra Ijaz
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China
| | - Guijian Liu
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China.
| | - Abdul Rehman
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Muhammad Irtaza Sajjad Haider
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China
| | - Rabia Safeer
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China
| | - Bisma Sattar
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China
| | - Muhammad Zeeshan Gulzar
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China
| | - Sofia Nosheen
- Department of Environmental Sciences, Lahore College of Women University, Lahore, Pakistan
| | - Balal Yousaf
- Department of Technologies and Installations for Waste Management, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Gliwice, Poland
| |
Collapse
|
4
|
Zhao F, Tian S, Liu J, Wang Y, Cui G, Ha X, Ma Z, Ping H, Li C. Traditional and novel organophosphate esters in atmosphere of greenhouse covered with mulch films: Seasonal variations, partitioning and exposure risks. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138633. [PMID: 40381343 DOI: 10.1016/j.jhazmat.2025.138633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/23/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Abstract
Mulch films play a critical role in the accumulation of organophosphate esters (OPEs) in greenhouse soils. However, their impact on the occurrence, partitioning and health risks of atmospheric OPEs is unclear. This study fully investigated multi-media distributions of eleven traditional OPEs and four novel OPEs in greenhouses covered with degradable mulch films. The atmospheric concentrations exhibited substantial variability, ranging from 539 to 14821 pg/m³ in the gas phase and from 242 to 8320 pg/m³ in the particle phase, with summer levels higher than winter levels. Significant correlations (p < 0.05) were detected between OPE concentrations in mulch films and in air, indicating mulch films as a major source. First-order kinetic model effectively characterized the release patterns of dominant congeners including triphenyl phosphate and tris(2,4-ditert-butylphenyl) phosphate from degradable films. The Li-Ma-Yang model showed superior predictive capability for gas-particle partitioning than the Harner-Bidleman model. Total concentrations of OPEs in uncoated soils were at a range of 274-955 μg/kg. Soil-air exchange behaviors of OPEs governed by inherent volatility exhibited a seasonal dependence. While non-carcinogenic risks of OPEs for greenhouse farmers via air inhalation and dermal contact were negligible, holistic health assessments should integrate other uptake pathways and consider transformation products of OPEs.
Collapse
Affiliation(s)
- Fang Zhao
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Laboratory of Quality & Safety Risk Assessment for Agro-products(Beijing), Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Sinuo Tian
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Laboratory of Quality & Safety Risk Assessment for Agro-products(Beijing), Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Jing Liu
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Laboratory of Quality & Safety Risk Assessment for Agro-products(Beijing), Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Yingjun Wang
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Laboratory of Quality & Safety Risk Assessment for Agro-products(Beijing), Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Guanglu Cui
- Daxing District Planting Technology Promotion Station, Beijing 102600, China
| | - Xuejiao Ha
- Daxing District Planting Technology Promotion Station, Beijing 102600, China
| | - Zhihong Ma
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Laboratory of Quality & Safety Risk Assessment for Agro-products(Beijing), Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Hua Ping
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Laboratory of Quality & Safety Risk Assessment for Agro-products(Beijing), Ministry of Agriculture and Rural Affairs, Beijing 100097, China.
| | - Cheng Li
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Laboratory of Quality & Safety Risk Assessment for Agro-products(Beijing), Ministry of Agriculture and Rural Affairs, Beijing 100097, China.
| |
Collapse
|
5
|
Han Y, Fu M, Yang Y, Zhang Z, Liu T, Zhou S, Qiao Z, Wang G, Peng C, Zhang W. Microbial metabolism in wormcast affected the perturbation on soil organic matter by microplastics under decabromodiphenyl ethane stress. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137387. [PMID: 39874765 DOI: 10.1016/j.jhazmat.2025.137387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/12/2025] [Accepted: 01/24/2025] [Indexed: 01/30/2025]
Abstract
Large-scale plastic wastes annually inevitably induce co-pollution of microplastics (MPs) and novel brominated flame retardants (NBFRs), while gaps remain concerning their effect on terrestrial function. We investigated the impact of polylactic acid (PLA) or polyethylene (PE) MPs after aging in soil-earthworm microcosms under decabromodiphenyl ethane (DBDPE) contamination. MPs altered the food (i.e. soil) of earthworms and affected cast composition, which in turn further affected soil function. After 28 days of exposure, MPs, especially UV-aged MPs, caused the significant enrichment of plastics-degrading bacteria and C/N cycling functions in wormcast, with increased dissolved organic matter consumption after co-exposure (1 % MPs accompanied by 10 mg kg-1 DBDPE). Aging significantly affected soil carbon sequestration, while its effects varied depending on the types of MPs. Notably, soil organic matter was the most impactor affecting wormcast bacteria, highlighting the importance of earthworm's activity on soil carbon. In comparison, PLA-MPs induced stronger responses to the C/N cycling process based on its biodegradable property than PE-MPs, however, aging had a greater effect on PE-MPs due to the formation of oxygen molecules from nothing in the structure. This study expands our current understanding of the interactions of aged MPs and DBDPE in the terrestrial ecosystem. SYNOPSIS: This study highlighted that both MPs before and aging altered the bacterial communities in wormcast and further affected soil ecology during earthworm feeding and excretion.
Collapse
Affiliation(s)
- Yanna Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mengru Fu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuhe Yang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhiyin Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tianzi Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shanqi Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhihua Qiao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Gehui Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
6
|
Wu S, Gao M, Fang B, Rong L, Ge Z, Chen H, Yao Y, Wang Y, Sun H. Synthetic phenolic antioxidant contamination in farmland soils induced by mulching films: Distribution and transformation pathways. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137392. [PMID: 39879778 DOI: 10.1016/j.jhazmat.2025.137392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 01/04/2025] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
The occurrence and distribution of synthetic phenolic antioxidants (SPAs) originating from mulch film in farmland soils, along with their transformation characteristics and pathways, remain largely unknown. This study is the first to investigate nineteen SPAs and four transformation products (TPs) in farmland soils across China. In film-mulching soils, concentrations of SPAs (median, range: 83.6 ng/g, 20.6-863 ng/g) and TPs (46.4 ng/g, 8.36-489 ng/g) were found significantly higher than in nonfilm-mulching soils, suggesting that mulch film is an important SPA source in farmlands. The ecological risk posed by SPAs was considerable, with estimated risk quotients (RQs) reaching up to 14.7. Furthermore, a laboratory soil incubation experiment was conducted on pentaerythritol tetrakis(3-(3,5-di-tert-butyl-4-hydroxyphenyl)-propionate) (Ir1010), a typical SPA with high estimated ecological risk (RQs up to 3.01). The half-life of Ir1010 in unsterilized soil was 6.73 days, much shorter than in sterilized soils, suggesting that soil microbes effectively promoted its transformation rate. Importantly, ten TPs of Ir1010 were identified in soil through nontargeted screening using high-resolution mass spectrometry, indicating aromatic epoxidation, hydroxylation, and hydrolysis as transformation pathways. This study firstly reveals the occurrence SPAs and TPs in farmland soils and suggests their transformation mechanism, highlighting the complex risks posed by these emerging agricultural contaminants.
Collapse
Affiliation(s)
- Shanxing Wu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Meng Gao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Bo Fang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lili Rong
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhanpeng Ge
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
7
|
Liu W, Yang X, Li Z, Liu Y, Yao M, Pei M, Zhang L, Zhang C, Zhu L, Gao P, Wang J. Soil enzyme activities and bacterial communities respond to co-exposure of butyl benzyl phthalate and TiO 2 nanomaterials: Earthworm-mediated effects. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:126049. [PMID: 40081457 DOI: 10.1016/j.envpol.2025.126049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/10/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Phthalic acid esters (PAEs) are widely used due to their advantageous properties, which enhance the durability, flexibility, and transparency of plastic products. Nanomaterials are also commonly used in plastic additives and agricultural fertilizers. However, both are easy to fall off, diffuse, and release into the environment during production, use, and disposal. The adsorption and transportation of PAEs by nanomaterials may jointly affect soil health. However, less attention is paid to the soil microorganisms caused by co-exposure between PAEs and nanomaterials, especially mediated by earthworms. The present study investigated the effects of BBP (1 mg kg-1) and nTiO2 (1 mg kg-1), alone and in combination, on soil enzyme activities, microbial composition, and bacterial community diversity, with and without mediation by the earthworm Metaphire guillelmi. Results showed that co-exposure to BBP and nTiO2 activated enzyme activities in earthworm-mediated soil. Both contaminants, individually and combined, altered the composition, distribution, diversity, and complexity of the soil bacterial community mediated by earthworms. Bacteroidetes, Proteobacteria, and Actinobacteria were the dominant phyla. However, the complexity of soil bacterial community networks decreased. The findings highlight the importance of considering co-exposure and soil fauna mediation when evaluating the ecological impacts of emerging contaminants and fill the lack of ecotoxicity data on the co-exposure of PAEs and nanomaterials, thus promoting the design and synthesis of safer and more efficient nanomaterials.
Collapse
Affiliation(s)
- Wanjing Liu
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China
| | - Xiaoqing Yang
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China
| | - Zhuofan Li
- School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yao Liu
- School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Mengyao Yao
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China
| | - Mengyuan Pei
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China
| | - Lanlan Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China
| | - Cheng Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China.
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China
| | - Peng Gao
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, United States
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China
| |
Collapse
|
8
|
Song K, Gao SH, Pan Y, Gao R, Li T, Xiao F, Zhang W, Fan L, Guo J, Wang A. Ecological and Health Risk Mediated by Micro(nano)plastics Aging Process: Perspectives and Challenges. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5878-5896. [PMID: 40108891 DOI: 10.1021/acs.est.4c11813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Aged micro(nano)plastics (MNPs) are normally the ultimate state of plastics in the environment after aging. The changes in the physical and chemical characteristics of aged MNPs significantly influence their environmental behavior by releasing additives, forming byproducts, and adsorbing contaminants. However, a systematic review is lacking on the effects of aged MNPs on ecological and human health regarding the increasing but scattered studies and results. This Review first summarizes the unique characteristics of aged MNPs and methods for quantifying their aging degree. Then we focused on the potential impacts on organisms, ecosystems, and human health, including the "Trojan horse" under real environmental conditions. Through combining meta-analysis and analytic hierarchy process (AHP) model, we demonstrated that, compared to virgin MNPs, aged MNPs would result in biomass decrease and oxidative stress increase on organisms and lead to total N/P decrease and greenhouse gas emissions increase on ecosystems while causing cell apoptosis, antioxidant system reaction, and inflammation in human health. Within the framework of ecological and human health risk assessment, we used the risk quotient (RQ) and physiologically based pharmacokinetic (PBK) models as examples to illustrate the importance of considering aging characteristics and the degree of MNPs in the process of data acquisition, model building, and formula evaluation. Given the ecological and health risks of aged MNPs, our urgent call for more studies of aged MNPs is to understand the potential hazards of MNPs in real-world environments.
Collapse
Affiliation(s)
- Kexiao Song
- State Key Laboratory of Urban-rural Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shu-Hong Gao
- State Key Laboratory of Urban-rural Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Yusheng Pan
- State Key Laboratory of Urban-rural Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Rui Gao
- State Key Laboratory of Urban-rural Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tianyao Li
- State Key Laboratory of Urban-rural Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Fan Xiao
- State Key Laboratory of Urban-rural Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Wanying Zhang
- State Key Laboratory of Urban-rural Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Lu Fan
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Aijie Wang
- State Key Laboratory of Urban-rural Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
- State Key Laboratory of Urban-rural Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| |
Collapse
|
9
|
Fang S, Hua C, Yang J, Liu F, Wang L, Wu D, Ren L. Combined pollution of soil by heavy metals, microplastics, and pesticides: Mechanisms and anthropogenic drivers. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136812. [PMID: 39675088 DOI: 10.1016/j.jhazmat.2024.136812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024]
Abstract
Soil is the foundation of terrestrial ecosystems and a critical resource for agricultural activities. This study investigated internal mechanism and interaction of heavy metals, pesticides (atrazine, pyrimazole and chlorpyrifos) and microplastics in soil. Specifically, certain sampling points exhibited elevated levels of individual heavy metals (Cd, Cr, Zn), exceeding the screening values, while both microplastics and pesticides demonstrated high variability, increasing the potential ecological risks. The interaction between microplastics, heavy metals, and pesticides is complex, involving electrostatic adsorption, surface complexation, biofilm mediation, and physical absorption. From a broader perspective, both heavy metals and microplastics were found to exacerbate the ecological risks posed by pesticides. Further, structural equation model and geographical weighted regression were used to reveal the driving mechanism behind complex pollution, with economic development emerging as a significant factor influencing pollution levels. These findings enhance our understanding of the combined pollution of heavy metals, microplastics, and pesticides.
Collapse
Affiliation(s)
- Shumin Fang
- School of Environmental Science and Engineering, Shandong University, 72# Binhai Road, Jimo, Shandong Province 266235, PR China
| | - Chunyu Hua
- Linyi Vocational University of Science and Technology, Shandong Province 276000, PR China
| | - Jiaying Yang
- School of Environmental Science and Engineering, Shandong University, 72# Binhai Road, Jimo, Shandong Province 266235, PR China
| | - Feifei Liu
- School of Environmental Science and Engineering, Shandong University, 72# Binhai Road, Jimo, Shandong Province 266235, PR China
| | - Lei Wang
- School of Environmental Science and Engineering, Shandong University, 72# Binhai Road, Jimo, Shandong Province 266235, PR China
| | - Dongyue Wu
- School of Environmental Science and Engineering, Shandong University, 72# Binhai Road, Jimo, Shandong Province 266235, PR China
| | - Lijun Ren
- School of Environmental Science and Engineering, Shandong University, 72# Binhai Road, Jimo, Shandong Province 266235, PR China.
| |
Collapse
|
10
|
Xiang Y, Yao B, Peñuelas J, Sardans J, Nizzetto L, Li R, Liu Y, Luo Y, Räty M, Long J, Li Y. Microplastic effects on soil nitrogen cycling enzymes: A global meta-analysis of environmental and edaphic factors. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136677. [PMID: 39631204 DOI: 10.1016/j.jhazmat.2024.136677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Microplastic accumulation in soil ecosystems poses significant environmental concerns, potentially impacting nitrogen cycling processes and ecosystem health. This meta-analysis of 147 studies (1138 data points) assessed the impact of microplastics (MPs) on soil nitrogen-acquisition enzymes. We found that MPs exposure significantly increased soil urease (UE) and leucine aminopeptidase activities by 7.6 % and 8.0 %, respectively, while N-acetyl-β-D-glucosaminidase activity was not significantly affected. Biodegradable MPs showed more pronounced effects compared to conventional MPs. Enzyme activities were influenced by MPs properties (e.g., polymer type, size, concentration), experimental conditions (e.g., field or laboratory setting, temperature, nitrogen fertilization), and soil properties (e.g., clay content, pH, organic carbon, total nitrogen). For instance, acidic soils enhanced UE activity, while neutral soils reduced it. These findings emphasize the complex interactions between MPs and soil ecosystems, highlighting the need for context-specific environmental management strategies and policy-making approaches to mitigate the impacts of MPs pollution on soil health.
Collapse
Affiliation(s)
- Yangzhou Xiang
- Guizhou Provincial Key Laboratory of Geographic State Monitoring of Watershed, School of Geography and Resources, Guizhou Education University, Guiyang 550018, China
| | - Bin Yao
- State Key Laboratory of Tree Genetics and Breeding, Institute of Ecology Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China
| | - Josep Peñuelas
- CSIC Global Ecology Unit, CREAF-CSIC-UAB, 08193 Bellaterra, Catalonia, Spain; CREAF - Ecological and Forestry Applications Research Centre, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Jordi Sardans
- CSIC Global Ecology Unit, CREAF-CSIC-UAB, 08193 Bellaterra, Catalonia, Spain; CREAF - Ecological and Forestry Applications Research Centre, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Luca Nizzetto
- Norwegian Institute for Water Research, Økernveien 94, 0579 Oslo, Norway
| | - Rui Li
- Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Ying Liu
- School of Biological Sciences, Guizhou Education University, Guiyang 550018, China
| | - Yang Luo
- Guizhou Provincial Key Laboratory of Geographic State Monitoring of Watershed, School of Geography and Resources, Guizhou Education University, Guiyang 550018, China
| | - Mari Räty
- Grasslands and Sustainable Farming, Production Systems Unit, Natural Resources Institute Finland, Halolantie 31A, Maaninka, Kuopio FI-71750, Finland
| | - Jian Long
- Guizhou Provincial Key Laboratory of Geographic State Monitoring of Watershed, School of Geography and Resources, Guizhou Education University, Guiyang 550018, China.
| | - Yuan Li
- Grasslands and Sustainable Farming, Production Systems Unit, Natural Resources Institute Finland, Halolantie 31A, Maaninka, Kuopio FI-71750, Finland.
| |
Collapse
|
11
|
Liu M, Yu Y, Liu Y, Xue S, Tang DWS, Yang X. Effects of polyethylene and poly (butyleneadipate-co-terephthalate) contamination on soil respiration and carbon sequestration. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125315. [PMID: 39577613 DOI: 10.1016/j.envpol.2024.125315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024]
Abstract
To address plastic pollution in agricultural soils due to polyethylene plastic film mulch used, biodegradable film is being studied as a promising alternative material for sustainable agriculture. However, the impact of biodegradable and polyethylene microplastics on soil carbon remains unclear. The field experiment was conducted with Poly (butyleneadipate-co-terephthalate) debris (PBAT-D, 0.5-2 cm), low-density polyethylene debris (LDPE-D, 0.5-2 cm) and microplastic (LDPE-Mi, 500-1000 μm) contaminated soil (0% (control), 0.05%, 0.1%, 0.2%, 0.5%, 1% and 2% w:w) planted with soybean, to explore potential impacts on soil respiration (Rs), soil organic carbon (SOC) and carbon fractions (microbial biomass carbon (MBC), dissolved organic carbon (DOC), easily oxidizable carbon (EOC), particulate organic carbon (POC), mineral-associated organic carbon (MAOC)), and C-enzymes (β-glucosidase, β-xylosidase, cellobiohydrolase). Results showed that PBAT-D, LDPE-D and LDPE-Mi significantly inhibited Rs compared with the control during the flowering and harvesting stages (p < 0.05). SOC significantly increased in the PBAT-D treatments at both stages, and in the LDPE-Mi treatments at the harvesting stage, but decreased in the LDPE-D treatments at the flowering stage. In the PBAT-D treatments, POC increased but DOC and MAOC decreased at both stages. In the LDPE-D treatments, MBC, DOC and EOC significantly decreased but POC increased at both stages. In the LDPE-Mi treatments, MBC and DOC significantly decreased at the harvesting stage, while EOC and MAOC decreased but POC increased at the flowering stage. For C-enzymes, no significant inhibition was observed at the flowering stage, but they were significantly inhibited in all treatments at the harvesting stage. It is concluded that PBAT-D facilitates soil carbon sequestration, which may potentially alter the soil carbon pool and carbon emissions. The key significance of this study is to explore the overall effects of different forms of plastic pollution on soil carbon dynamics, and to inform future efforts to control plastic pollution in farmlands.
Collapse
Affiliation(s)
- Mengyu Liu
- College of Natural Resources and Environment, Northwest A&F University, 712100, Yangling, China
| | - Yao Yu
- College of Natural Resources and Environment, Northwest A&F University, 712100, Yangling, China; College of Soil and Water Conservation Science and Engineering, Northwest A&F University, 712100, Yangling, China
| | - Ying Liu
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, 712100, Yangling, China
| | - Sha Xue
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, 712100, Yangling, China
| | - Darrell W S Tang
- Water, Energy, and Environmental Engineering, University of Oulu, Finland
| | - Xiaomei Yang
- College of Natural Resources and Environment, Northwest A&F University, 712100, Yangling, China; Soil Physics and Land Management, Wageningen University & Research, 6700AA Wageningen, the Netherlands.
| |
Collapse
|
12
|
Macan GPF, Munhoz DR, Willems LAJ, Monkley C, Lloyd CEM, Hageman J, Geissen V, Landa BB, Harkes P. Macro- and microplastics leachates: Characterization and impact on seed germination. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136013. [PMID: 39423638 DOI: 10.1016/j.jhazmat.2024.136013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/02/2024] [Accepted: 09/28/2024] [Indexed: 10/21/2024]
Abstract
Although plastic mulch enhances crop yield, its removal and disposal present significant challenges, contributing to macro- and microplastic pollution in agricultural soils. The adverse effects of this pollution on soil and plant health are not fully understood but may stem from the plastic particles or the toxicity of leached chemical additives. This study assessed the impact of macro- and microplastics from nondegradable LDPE-based (LDPEb) and biodegradable PBAT-based (PBATb) mulch films, along with their leachates, on the germination of three plant species. After seven days of incubation, PBAT mulch leached compounds that significantly inhibited Arabidopsis germination, while cotton and tomato exhibited notable tolerance. Notably, PBATb mulch released a higher concentration of compounds, whereas LDPEb mulch exhibited a greater diversity of leached chemicals. Microplastic particles alone did not hinder seed germination, indicating that plastic toxicity primarily arises from the leachates. Many of these leached compounds lack global regulation and hazard information, underscoring the urgent need for further investigation into their environmental impacts and the development of appropriate regulatory frameworks to mitigate the potential toxicity of chemicals from conventional and biodegradable mulches.
Collapse
Affiliation(s)
- Giovana P F Macan
- Institute for Sustainable Agriculture, Spanish National Research Council (IAS-CSIC), 14004 Córdoba, Spain; Programa de Doctorado de Ingeniería Agraria, Alimentaria, Forestal y de Desarrollo Rural Sostenible, Universidad de Córdoba, Córdoba, Spain.
| | - Davi R Munhoz
- Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708PB Wageningen, the Netherlands.
| | - Leo A J Willems
- Wageningen Seed Science Centre, Laboratory of Plant Physiology, Wageningen University, 6708PB Wageningen, the Netherlands
| | - Charlie Monkley
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol, UK
| | - Charlotte E M Lloyd
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol, UK; School of Geographical Sciences, University of Bristol, Bristol, UK
| | - Jos Hageman
- Biometris, Applied Statistics, Wageningen University & Research, Wageningen, the Netherlands
| | - Violette Geissen
- Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708PB Wageningen, the Netherlands
| | - Blanca B Landa
- Institute for Sustainable Agriculture, Spanish National Research Council (IAS-CSIC), 14004 Córdoba, Spain
| | - Paula Harkes
- Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708PB Wageningen, the Netherlands
| |
Collapse
|
13
|
Liu Y, Wang W, He J. Microplastic effects on carbon cycling in terrestrial soil ecosystems: Storage, formation, mineralization, and microbial mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176658. [PMID: 39370001 DOI: 10.1016/j.scitotenv.2024.176658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/16/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
Soil is the largest environmental reservoir of microplastics (MPs) on the earth. Incremental accumulation of MPs in the soil can cause significant changes in soil physicochemical and microbial traits, which may in turn interfere with soil biogeochemical processes such as carbon cycling. With published research regarding MPs impacts on soil carbon cycling growing rapidly, a systematic review summarizing the current knowledge and highlighting future research needs is warranted. As carbon-rich polymers, MPs can contribute to soil organic carbon (SOC) storage via degradation and leaching. MPs can also affect the humification of dissolved organic matters (DOM), consequently influencing the stability of SOC. Exposure to MPs can cause substantial impacts on the growth performance, litter decomposition, and root secretion of terrestrial plants as well as soil microbial carbon turnover, inducing changes in the formation of SOC. The presence of MPs has contrasting effects on the emissions of both CO2 and CH4 from the soil. The diverse effects of MPs on soil carbon metabolism could be partly attributed to the varying changes in soil microbial community structure, functional gene expression, and enzyme activity under MPs exposure. Further research is still highly needed to clarify the pathways of MPs impacts on soil carbon cycling and the driving biological and physicochemical factors behind these processes.
Collapse
Affiliation(s)
- Yan Liu
- College of Geographic Sciences, Changchun Normal University, Changchun 130032, China
| | - Wenfeng Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130012, China.
| | - Jianzhou He
- Department of Biochemistry, Chemistry & Physics, Georgia Southern University, Savannah, GA 31419, USA
| |
Collapse
|
14
|
Wei F, Wei E, Chen Y, Li J, Tan Q. Recycle or Not? An Exploration of Microplastic Generation During Plastic Processing via a Local Case Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39569931 DOI: 10.1021/acs.est.4c07430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Microplastic (MP), an emerging pollutant, has been identified as a critical target in tackling plastic pollution. Although a plethora of studies have explored MP generation from various sources, limited attention has been paid to plastic processing. This study investigated MP (10 μm-5 mm) generation in virgin and waste plastic extrusion processing. MPs at a density of 2.13 × 105-9.79 × 107 (approximately 0.01-10.85 g) were generated when processing 1 t of plastic. Feedstock sources, polymer types, and pelletizing techniques were found to influence the process. With a moderate weight (270.58-527.34 t) but enormous amount (1.34 × 1016-2.63 × 1016) of MPs generated globally in 2022, plastic processing is an underestimated but vital source of MPs, emphasizing the need for MP inspection and appropriate removal technologies in the industry, especially for virgin plastic processing and water ring pelletizing. Further simulation indicated that up to 84.35% of MPs could be removed using commonly available materials in the investigated plastic processing facility, with a higher removal efficiency for larger-sized particles. In this regard, plastic recycling was superior to virgin plastic processing with fewer and larger-sized MPs generated, which could facilitate MP removal and should be fostered.
Collapse
Affiliation(s)
- Fan Wei
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Enjing Wei
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yuan Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jinhui Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Quanyin Tan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
15
|
Ma X, Wei Z, Wang X, Li C, Feng X, Shan J, Yan X, Ji R. Microplastics from polyvinyl chloride agricultural plastic films do not change nitrogenous gas emission but enhance denitrification potential. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135758. [PMID: 39244981 DOI: 10.1016/j.jhazmat.2024.135758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/04/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
The effects of microplastics (MPs) from agricultural plastic films on soil nitrogen transformation, especially denitrification, are still obscure. Here, using a robotized flow-through system, we incubated vegetable upland soil cores for 66 days with MPs from PE mulching film (F-PE) and PVC greenhouse film (F-PVC) and directly quantified the emissions of nitrogenous gases from denitrification under oxic conditions, as well as the denitrification potential under anoxic conditions. The impact of MPs on soil nitrogen transformation was largely determined by the concentration of the additive phthalate esters (PAEs) containing in the MPs. The F-PE MPs with low level of PAEs (about 0.006 %) had no significant effect on soil mineral nitrogen content and nitrogenous gas emissions under oxic conditions. In contrast, the F-PVC MPs with high levels of PAEs (about 11 %) reduced soil nitrate content under oxic conditions, probably owing to promoted microbial assimilation of nitrogen, as the emissions of denitrification products (N2, NO, and N2O) was not affected. However, the F-PVC MPs significantly enhanced the denitrification potential of the soil due to the increased abundance of denitrifiers under anoxic conditions. These findings highlight the disturbance of MPs from agricultural films, particularly the additive PAEs on nitrogen transformation in soil ecosystems.
Collapse
Affiliation(s)
- Xiaofang Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhijun Wei
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomin Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenglin Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueying Feng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Shan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaoyuan Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
16
|
Yan Z, Chen Y, Su P, Liu S, Jiang R, Wang M, Zhang L, Lu G, Yuan S. Microbial carbon metabolism patterns of microplastic biofilm in the vertical profile of urban rivers. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122422. [PMID: 39243653 DOI: 10.1016/j.jenvman.2024.122422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/06/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Microplastics (MPs) can provide a unique niche for microbiota in waters, thus regulating the nutrients and carbon cycling. Following the vertical transport of MPs in waters, the compositions of attached biofilm may be dramatically changed. However, few studies have focused on the related ecological function response, including the carbon metabolism. In this study, we investigated the microbial carbon metabolism patterns of attached biofilm on different MPs in the vertical profile of urban rivers. The results showed that the carbon metabolism capacity of biofilm on the degradable polylactic acid (PLA) MPs was higher than that in the non-degradable polyethylene terephthalate (PET) MPs. In the vertical profile, the carbon metabolism rates of biofilm on two MPs both decreased with water depth, being 0.74 and 0.91 folds in bottom waters of that in surface waters. Specifically, the utilization of polymers, carbohydrate, and amine of PLA biofilm was significantly inhibited in the bottom waters, which were not altered on the PET. Compared with surface waters, the microbial metabolism function index of PLA biofilm was inhibited in deep waters, but elevated in the PET biofilm. In addition, the water quality parameters (e.g., nutrients) in the vertical profile largely shaped carbon metabolism patterns. These findings highlight the distinct carbon metabolism patterns in aquatic environments in the vertical profile, providing new insights into the effects of MPs on global carbon cycle.
Collapse
Affiliation(s)
- Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| | - Yufang Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Pengpeng Su
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China
| | - Shiqi Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Runren Jiang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Min Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Leibo Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Saiyu Yuan
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China
| |
Collapse
|
17
|
Woodford L, Fellows R, White HL, Ormsby MJ, Pow CJ, Quilliam RS. Survival and transfer potential of Salmonella enterica serovar Typhimurium colonising polyethylene microplastics in contaminated agricultural soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51353-51363. [PMID: 39107647 PMCID: PMC11374834 DOI: 10.1007/s11356-024-34491-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/22/2024] [Indexed: 09/06/2024]
Abstract
Agricultural environments are becoming increasingly contaminated with plastic pollution. Plastics in the environment can also provide a unique habitat for microbial biofilm, termed the 'plastisphere', which can also support the persistence of human pathogens such as Salmonella. Human enteric Salmonella enterica serovar Typhimurium can enter agricultural environments via flooding or from irrigation with contaminated water. Using soil mesocosms we quantified the ability of S. Typhimurium to persist on microplastic beads in two agriculturally relevant soils, under ambient and repeat flood scenarios. S. Typhimurium persisted in the plastisphere for 35 days in both podzol and loamy soils; while during multiple flood events was able to survive in the plastisphere for up to 21 days. S. Typhimurium could dissociate from the plastisphere during flooding events and migrate through soil in leachate, and importantly could colonise new plastic particles in the soil, suggesting that plastic pollution in agricultural soils can aid S. Typhimurium persistence and facilitate further dissemination within the environment. The potential for increased survival of enteric human pathogens in agricultural and food production environments due to plastic contamination poses a significant public health risk, particularly in potato or root vegetable systems where there is the potential for direct contact with crops.
Collapse
Affiliation(s)
- Luke Woodford
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| | - Rosie Fellows
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Hannah L White
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Michael J Ormsby
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Chloe J Pow
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
18
|
Fan L, Ma J, Liu W, Shang C, Xie Y, Zhou X, Zhang M, Hou J, Feng Y. A study on the performance, structure, composition, and release behavior changes of polybutylene adipate terephthalic acid (PBAT) film during food contact. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134603. [PMID: 38749243 DOI: 10.1016/j.jhazmat.2024.134603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/30/2024]
Abstract
Polybutylene adipate terephthalic acid (PBAT) is an emerging biodegradable material in food packaging. However, concerns have been raised regarding the potential hazards it could pose to food safety. In this study, the changes of PBAT films during food contact and the release of small molecules were inestigated by a multiscale approach. On a macro-scale, the surface roughness of the films increased with the reduction in the concentration of food simulants and the increase in contact temperatures, especially after immersion in acidic food environments. On a micro-scale, the crystallinity (Xc) and degradation indexes (DI) of the films increased by 5.7-61.2% and 7.8-48.6%, respectively, which led to a decrease in thermal stability. On a scale approaching the molecular level, 2,4-di-tert-butylphenol (2,4-DTBP) was detected by gas chromatography-mass spectrometry (GC-MS/MS) with the highest migration content, and the release behavior of 2,4-DTBP was further investigated by migration kinetics. In addition, terephthalic acid (TPA), a hydrolysis product of PBAT, was detected in acidic food environments by liquid chromatography-mass spectrometry (LC-MS/MS). The results of this study could provide practical guidance and assistance to promote sustainable development in the field of food packaging.
Collapse
Affiliation(s)
- Linwang Fan
- School of Materials Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Jiaxin Ma
- School of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Wenyan Liu
- School of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Chaonan Shang
- School of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Yanli Xie
- Analytical & Testing Center, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Xueqing Zhou
- Analytical & Testing Center, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Mingnan Zhang
- Analytical & Testing Center, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Jinjian Hou
- School of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Yuhong Feng
- School of Materials Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China.
| |
Collapse
|
19
|
Feng Z, Zhu N, Wu H, Li M, Chen J, Yuan X, Li J, Wang Y. Microplastic coupled with soil dissolved organic matter mediated changes in the soil chemical and microbial characteristics. CHEMOSPHERE 2024; 359:142361. [PMID: 38761827 DOI: 10.1016/j.chemosphere.2024.142361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/20/2024]
Abstract
The abundance of microplastics (MPs) in soil environments has attracted significant attentions, due to their impact on soil physico-chemical properties. However, limited information is available on the influences of MPs on soil carbon composition and microbial utilization characteristics. Therefore, a two-month incubation experiment was conducted to add polyethylene microplastics (PE-MPs) with different levels (1%, 10%) and sizes (150-300 μm and 75-150 μm) into different soils. After that, soil chemical properties including the dissolved organic carbon (DOC), spectral characteristics of dissolved organic matter (DOM) and soil microbial characteristics were analyzed. Results revealed that PE-MPs addition caused significant differences in soil chemical properties between farmland and woodland soils, particularly in soil pH, DOM composition, and soil phosphatase activity. Woodland soil always exhibited higher levels of DOC content, microbial diversity, and soil carbon source utilization compared to farmland soil, leading to increased humification in the DOM of woodland soil. PE-MPs with a larger particle size significantly increased both the soil DOC content and enzyme activity. Addition of PE-MPs altered the soil DOM composition, and the fluorescence parameters like the biological index (BIX) and humification degree. Moreover, the carbon source utilization intensity of microorganisms on PE MPs-contaminated soils is higher in woodland soils. Various analyses confirmed that compared to other soil properties, characteristics of soil DOM had a more significant impact on soil microbial community composition. Thus, PE-MPs in conjunction with soil DOM spectral characteristics regulated soil microbial diversity, which is crucial for understanding soil carbon sequestration.
Collapse
Affiliation(s)
- Zhiwang Feng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Ningyuan Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Hanzhou Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Ming Li
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, 210042, China
| | - Jian Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Xuyin Yuan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jizhou Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yimin Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
20
|
Li Y, Hou F, Sun L, Lan J, Han Z, Li T, Wang Y, Zhao Z. Ecological effect of microplastics on soil microbe-driven carbon circulation and greenhouse gas emission: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 364:121429. [PMID: 38870791 DOI: 10.1016/j.jenvman.2024.121429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/09/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
Soil organic carbon (SOC) pool, the largest part of terrestrial ecosystem, controls global terrestrial carbon balance and consequently presented carbon cycle-climate feedback in climate projections. Microplastics, (MPs, <5 mm) as common pollutants in soil ecosystems, have an obvious impact on soil-borne carbon circulation by affecting soil microbial processes, which play a central role in regulating SOC conversion. In this review, we initially presented the sources, properties and ecological risks of MPs in soil ecosystem, and then the differentiated effects of MPs on the component of SOC, including dissolved organic carbon, soil microbial biomass carbon and easily oxidized organic carbon varying with the types and concentrations of MPs, the soil types, etc. As research turns into a broader perspective, greenhouse gas emissions dominated by the mineralization of SOC coming into view since it can be significantly affected by MPs and is closely associated with soil microbial respiration. The pathways of MPs impacting soil microbes-driven carbon conversion include changing microbial community structure and composition, the functional enzyme's activity and the abundance and expression of functional genes. However, numerous uncertainties still exist regarding the microbial mechanisms in the deeper biochemical process. More comprehensive studies are necessary to explore the affected footprint and provide guidance for finding the evaluation criterion of MPs affecting climate change.
Collapse
Affiliation(s)
- Yaru Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Fangwei Hou
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao, 266071, China
| | - Lulu Sun
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Jing Lan
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Zhanghua Han
- Shandong Provincial Key Laboratory of Optics and Photonic Devices, Center of Light Manipulation and Applications, School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China
| | - Tongtong Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yiming Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Zongshan Zhao
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
21
|
Sun Q, Liu C, Zhang X, Wang Z, Guan P, Wang Z, Wang Z, Shi M. Phthalate ester (PAEs) accumulation in wheat tissues and dynamic changes of rhizosphere microorganisms in the field with plastic-film residue. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172833. [PMID: 38688369 DOI: 10.1016/j.scitotenv.2024.172833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Phthalates acid esters (PAEs) have accumulated in soil and crops like wheat as a result of the widespread usage of plastic films. It is yet unclear, nevertheless, how these dynamic variations in PAE accumulation in wheat tissues relate to rhizosphere bacteria in the field. In this work, a field root-bag experiment was conducted to examine the changes of PAEs accumulation in the rhizosphere soil and wheat tissues under film residue conditions at four different growth stages of wheat, and to clarify the roles played by the microbial community in the alterations. Results showed that the plastic film residues significantly increased the concentrations of PAEs in soils, wheat roots, straw and grains. The maximum ΣPAEs concentration in soils and different wheat tissues appeared at the maturity, with the ΣPAEs concentration of 1.57 mg kg-1, 4.77 mg kg-1, 5.21 mg kg-1, 1.81 mg kg-1 for rhizosphere soils, wheat roots, straw and grains, respectively. The plastic film residues significantly changed the functions and components of the bacterial community, increased the stochastic processes of the bacterial community assembly, and reduced the complexity and stability of the bacterial network. In addition, the present study identified some bacteria associated with plastic film residues and PAEs degradation in key-stone taxa, and their relative abundances were positive related to the ΣPAEs concentration in soils. The PAEs content and key-stone taxa in rhizosphere soil play a crucial role in the formation of rhizosphere soil bacterial communities. This field study provides valuable information for better understanding the role of microorganisms in the complex system consisting of film residue, soil and crops.
Collapse
Affiliation(s)
- Qing Sun
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture/College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chenrui Liu
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture/College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xinxin Zhang
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture/College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zilin Wang
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture/College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Peiyi Guan
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture/College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ziming Wang
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture/College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhaohui Wang
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture/College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China; State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mei Shi
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture/College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China; State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
22
|
Zhao F, Ping H, Liu J, Zhao T, Wang Y, Cui G, Ha X, Ma Z, Li C. Occurrence, potential sources, and ecological risks of traditional and novel organophosphate esters in facility agriculture soils: A case study in Beijing, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171456. [PMID: 38442758 DOI: 10.1016/j.scitotenv.2024.171456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
Although traditional organophosphate esters (OPEs) in soils have attracted widespread interest, there is little information on novel OPEs (NOPEs), especially in facility agriculture soils. In this work, we surveyed 11 traditional OPEs, four NOPEs, and four corresponding organophosphite antioxidant precursors (OPAs) for the NOPEs in soil samples collected from facility greenhouses and open fields. The median summed concentrations of traditional OPEs and NOPEs were 14.1 μg/kg (range: 5.38-115 μg/kg) and 702 μg/kg (range: 348-1952 μg/kg), respectively, in film-mulched soils from greenhouses. These concentrations were much higher than those in soils without mulch films, which suggests that OPEs in soils are associated with plastic mulch films. Tris(2,4-di-tert-butylphenyl) phosphate, which is a NOPE produced by oxidation of (2,4-di-tert-butylphenyl) phosphite, was the predominant congener in farmland soils, with concentrations several orders of magnitude greater than those of traditional OPEs. Comparisons of OPEs in different mulch films and the corresponding mulched soils revealed that degradable and black films caused more severe pollution than polyethylene and white films. Traditional OPEs, including tris(2-ethylhexyl) phosphate and tricresyl phosphate, exhibited moderate risks in farmland soils, especially in film-mulched soils. NOPEs, including trisnonylphenol phosphate, posed high ecological risks to the terrestrial ecosystem. Risk evaluations should be conducted for a broad range of NOPEs in the environment.
Collapse
Affiliation(s)
- Fang Zhao
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Risk Assessment Laboratory for Agro-Products (Beijing), Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Hua Ping
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Risk Assessment Laboratory for Agro-Products (Beijing), Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jing Liu
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Risk Assessment Laboratory for Agro-Products (Beijing), Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Tianyu Zhao
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Risk Assessment Laboratory for Agro-Products (Beijing), Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yingjun Wang
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Risk Assessment Laboratory for Agro-Products (Beijing), Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Guanglu Cui
- Daxing District Planting Technology Promotion Station, Beijing 102600, China
| | - Xuejiao Ha
- Daxing District Planting Technology Promotion Station, Beijing 102600, China
| | - Zhihong Ma
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Risk Assessment Laboratory for Agro-Products (Beijing), Ministry of Agriculture and Rural Affairs, Beijing, China.
| | - Cheng Li
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Risk Assessment Laboratory for Agro-Products (Beijing), Ministry of Agriculture and Rural Affairs, Beijing, China.
| |
Collapse
|
23
|
Zhang H, Huang Y, Shen J, Xu F, Hou H, Xie C, Wang B, An S. Mechanism of polyethylene and biodegradable microplastic aging effects on soil organic carbon fractions in different land-use types. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168961. [PMID: 38042203 DOI: 10.1016/j.scitotenv.2023.168961] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/25/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Microplastics (MPs) are widely present in terrestrial ecosystems, but knowledge about the aging characteristics of MPs in different land-use types and their impact on soil organic carbon fractions is still limited. Polyethylene (PE) and biodegradable MPs (Poly propylene carbonate and Polybutylene adipate terephthalate synthetic material (PPC + PBAT, Bio)), at 0 %, 0.03 %, and 0.3 % (w/w) dosages, were added to grassland, farmland, and facility soils for eight-week incubation. The aging degree of MPs was explored by quantifying the carbonyl index (CI). Soil organic C fractions such as SOC, particulate organic carbon (POC), mineral-associated organic carbon (MAOC), and microbial-derived C were analyzed. MPs underwent rapid aging after incubation, and the CI value for 0.03 % PE-MPs increased from 0.05 to 0.27 (farmland) and 0.26 (facility) (p < 0.05). The aging degree of 0.03 % and 0.3 % Bio-MPs was most significant in grassland, with CI decreasing by 46.6 % and 69.0 %, respectively. The CI of MPs were negatively correlated with their dosage. The 0.03 % and 0.3 % PE-MPs decreased soil organic carbon (SOC) content by 7.4 % and 8.2 % in grassland, and 3.0 % and 6.0 % in the facility (p < 0.05). POC content of farmland and facility soil was negatively correlated with PE-MPs' CI (p < 0.05). The 0.03 % PE and Bio-MPs decreased fungal necromass C (FNC) by 0.40 and 0.05 g kg-1 in grassland and 0.48 and 0.21 g kg-1 in farmland. Besides, the dosage of MPs regulated FNC content through soil pH, nutrients, and extracellular enzyme activity, either directly or indirectly, ultimately affecting the soil C pool. Therefore, this study demonstrates that MPs strongly affect SOC dynamics by influencing soil microbial enzyme activity and fungal necromass.
Collapse
Affiliation(s)
- Haixin Zhang
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, 712100, Shaanxi, China
| | - Yimei Huang
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, 712100, Shaanxi, China.
| | - Jikai Shen
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, 712100, Shaanxi, China
| | - Fengjing Xu
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, 712100, Shaanxi, China
| | - Hongyang Hou
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, 712100, Shaanxi, China
| | - Chunjiao Xie
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, 712100, Shaanxi, China
| | - Baorong Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, Shaanxi, China
| | - Shaoshan An
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|