1
|
Andrade GM, Malbouisson LMS, Vezozzo DP, Andraus W, Mesquita PS, D'Albuquerque LAC, Farias AQ, Carrilho FJ. Can elastography predict early allograft dysfunction or loss after liver transplantation? A prospective study of diagnostic accuracy. Clinics (Sao Paulo) 2025; 80:100634. [PMID: 40315798 DOI: 10.1016/j.clinsp.2025.100634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 02/04/2025] [Accepted: 03/21/2025] [Indexed: 05/04/2025] Open
Abstract
INTRODUCTION The imbalance between the demand for liver transplants and the shortage of donors can be addressed by expanding the donor pool, including using extended criteria donors. This strategy may reduce waiting time and list mortality but can increase poor graft function rates, affecting short-term outcomes. Tools to predict and diagnose Early Allograft Dysfunction (EAD) are crucial. Elastography for Liver Stiffness Measurement (LSM) may predict EAD and graft loss early post-transplant. METHODS In this prospective observational study, the authors assessed the diagnostic accuracy of elastography for predicting EAD or loss in liver transplant recipients admitted to the ICU of Hospital das Clínicas, Universidade de São Paulo, from 2016 to 2018. Patients underwent daily LSM from ICU admission to day 7 post-transplant. EAD was defined by Olthoff et al.'s criteria, and allograft loss was defined by the need for retransplantation or death within 180 days. RESULTS EAD developed in 27 patients (44.3 %). The median LSM was 2.12 m/s (IQR 1.87-2.67 m/s) for the EAD group and 1.70 m/s (IQR 1.55-1.90 m/s) for the non-EAD group. For predicting EAD, elastography on day 1 had a c-statistic of 0.83, sensitivity 41 %, specificity 97 %, and accuracy 83 % at a cutoff of 2.39 m/s. For predicting early allograft loss, the c-statistic was 0.93, with a sensitivity 76 %, specificity 100 %, and accuracy 93 % at a cutoff of 2.25 m/s on day 1. CONCLUSION Elastography demonstrated robust performance in predicting EAD and early graft loss post-transplant, outperforming traditional prognostic scores. Further multicenter studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Guilherme Marques Andrade
- Department of Gastroenterology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Luiz Marcelo Sá Malbouisson
- Department of Gastroenterology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil; Division of Anesthesiology, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Denise Paranaguá Vezozzo
- Department of Gastroenterology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Wellington Andraus
- Department of Gastroenterology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Paula Sepulveda Mesquita
- Department of Gastroenterology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | | | - Alberto Queiroz Farias
- Department of Gastroenterology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil.
| | - Flair José Carrilho
- Department of Gastroenterology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| |
Collapse
|
2
|
Wang Z, Dai L, Zhao D, Lan P, Zhao Y, Wei L, Chen D, Zhang B, Du D, Chen Z. Optimizing the mouse orthotopic liver transplantation model: Learning curve, technical enhancements, and keys to success. Liver Transpl 2025:01445473-990000000-00593. [PMID: 40130965 DOI: 10.1097/lvt.0000000000000612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/13/2025] [Indexed: 03/26/2025]
Abstract
Due to the easier availability of transgenic mice and reagents, the mouse orthotopic liver transplantation model offers significant advantages in liver transplantation research. However, technical challenges have limited its broader application. The most challenging steps of the procedure include manual anastomosis of the suprahepatic vena cava, cuff anastomosis of the portal vein, and maintaining the anhepatic phase within 20 minutes. This study aims to provide detailed solutions to overcome these bottlenecks and introduces a modified magnetic device to facilitate safer and more efficient cuff anastomosis. We also describe the learning curve for beginners to achieve a 30-day survival rate exceeding 90% in mouse orthotopic liver transplantation. We demonstrate that mouse orthotopic liver transplantation can be mastered within 8 months of continuous practice, with 7-day and 30-day survival rates improving from 0% to 96.7% and 0% to 93.3%, respectively. The entire procedure can be completed within 80 minutes. We believe these technical improvements will provide more practical guidance for mouse liver transplantation.
Collapse
Affiliation(s)
- Zipei Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences; Organ Transplantation Clinical Medical Research Center of Hubei Province, Wuhan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Zhang S, Sun Z, Chen Z, Bi Y, Wei S, Mao Z, Jin J, Ding Y, Wang W. Endothelial YAP/TEAD1-CXCL17 signaling recruits myeloid-derived suppressor cells against liver ischemia-reperfusion injury. Hepatology 2025; 81:888-902. [PMID: 38407233 PMCID: PMC11825485 DOI: 10.1097/hep.0000000000000773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND AND AIMS Liver ischemia-reperfusion injury (IRI) is a common complication of liver transplantation and hepatectomy and causes acute liver dysfunction and even organ failure. Myeloid-derived suppressor cells (MDSCs) accumulate and play immunosuppressive function in cancers and inflammation. However, the role of MDSCs in liver IRI has not been defined. APPROACH AND RESULTS We enrolled recipients receiving OLT and obtained the pre-OLT/post-OLT blood and liver samples. The proportions of MDSCs were significantly elevated after OLT and negatively associated with liver damage. In single-cell RNA-sequencing analysis of liver samples during OLT, 2 cell clusters with MDSC-like phenotypes were identified and showed maturation and infiltration in post-OLT livers. In the mouse model, liver IRI mobilized MDSCs and promoted their infiltration in the damaged liver, and intrahepatic MDSCs were possessed with enhanced immunosuppressive function by upregulation of STAT3 signaling. Under treatment with αGr-1 antibody or adoptive transfer MDSCs to change the proportion of MDSCs in vivo, we found that intrahepatic MDSCs alleviated liver IRI-induced inflammation and damage by inhibiting M1 macrophage polarization. Mechanistically, bulk RNA-sequencing analysis and in vivo experiments verified that C-X-C motif chemokine ligand 17 (CXCL17) was upregulated by YAP/TEAD1 signaling and subsequently recruited MDSCs through binding with GPR35 during liver IRI. Moreover, hepatic endothelial cells were the major cells responsible for CXCL17 expression in injured livers, among which hypoxia-reoxygenation stimulation activated the YAP/TEAD1 complex to promote CXCL17 transcription. CONCLUSIONS Endothelial YAP/TEAD1-CXCL17 signaling recruited MDSCs to attenuate liver IRI, providing evidence of therapeutic potential for managing IRI in liver surgery.
Collapse
Affiliation(s)
- Sitong Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, P.R. China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, P.R. China
| | - Zhongquan Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, P.R. China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, P.R. China
| | - Zhenhua Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, P.R. China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, P.R. China
| | - Yanli Bi
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, P.R. China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, P.R. China
| | - Shenyu Wei
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, P.R. China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, P.R. China
| | - Zhengwei Mao
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Jin Jin
- MOE Laboratory of Biosystem Homeostasis and Protection and Life Sciences Institute, Department of Life Science, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, P.R. China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, P.R. China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
- National Innovation Center for Fundamental Research on Cancer Medicine, Hangzhou, Zhejiang, P.R. China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
4
|
Hu Z, Chen S, Zhang E, Wei L, Wang J, Shang Q, Gao X, Huang Y. Novel inflammatory markers in intracerebral hemorrhage: Results from Olink proteomics analysis. FASEB J 2025; 39:e70341. [PMID: 39853806 PMCID: PMC11760662 DOI: 10.1096/fj.202402183rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/04/2025] [Accepted: 01/13/2025] [Indexed: 01/26/2025]
Abstract
Inflammation is a crucial factor in intracerebral hemorrhage (ICH) pathophysiology, but specific inflammatory biomarkers in ICH patients remain unclear. This study aimed to identify novel circulating inflammatory biomarkers for improved ICH prediction and diagnosis. We profiled expression levels of 92 cardiovascular disease related proteins in plasma from 26 matched ICH patients and controls using Olink technology. Differentially expressed proteins were validated using ELISA and RT-qPCR in a second matched cohort. Receiver operating characteristic (ROC) curves evaluated how well the diagnostic tests performed. The study identified 18 inflammatory-related proteins with significantly different expression levels between ICH patients and controls. These proteins participate in critical biological processes and pathways, such as the regulation of inflammatory mediator secretion, cell death, immune cell proliferation and differentiation, pathogen response, and PI3K-Akt and JAK-STAT pathways. Notably, we discovered for the first time that Kidney Injury Molecule-1 (KIM1) is significantly upregulated in the plasma of ICH patients, suggesting its potential as a predictive and diagnostic biomarker for ICH. Validation results from ELISA and RT-qPCR showed that Interleukin-6 (IL-6), Pentraxin 3 (PTX3), KIM1, and Galectin-9 (Gal-9) concentrations were markedly increased in the blood plasma and white matter of individuals with ICH. ROC analysis showed that the combined marker of IL-6, PTX3, KIM1 and Gal-9 had a high diagnostic efficacy (AUC = 0.941). This study identified a novel biomarker panel (IL-6, PTX3, KIM1, Gal-9) for ICH diagnosis. KIM1 upregulation in ICH patients is a novel finding, further investigation is needed into its expression and function in ICH.
Collapse
Affiliation(s)
- Ziliang Hu
- Cixi Biomedical Research InstituteWenzhou Medical UniversityNingboZhejiangChina
- Department of Neurosurgery, Ningbo Key Laboratory of Nervous System and Brain FunctionThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboZhejiangChina
| | - Siqi Chen
- Department of Neurosurgery, Ningbo Key Laboratory of Nervous System and Brain FunctionThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboZhejiangChina
| | - Enhao Zhang
- Department of Neurosurgery, Ningbo Key Laboratory of Nervous System and Brain FunctionThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboZhejiangChina
| | - Liangzhe Wei
- Department of Neurosurgery, Ningbo Key Laboratory of Nervous System and Brain FunctionThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboZhejiangChina
| | - Jieyi Wang
- Department of Clinical LaboratoryThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
| | - Qing Shang
- Department of NeurologyThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
| | - Xiang Gao
- Cixi Biomedical Research InstituteWenzhou Medical UniversityNingboZhejiangChina
- Department of Neurosurgery, Ningbo Key Laboratory of Nervous System and Brain FunctionThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboZhejiangChina
| | - Yi Huang
- Department of Neurosurgery, Ningbo Key Laboratory of Nervous System and Brain FunctionThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboZhejiangChina
| |
Collapse
|
5
|
Tao J, Shen X, Qian H, Ding Q, Wang L. TIM proteins and microRNAs: distinct impact and promising interactions on transplantation immunity. Front Immunol 2024; 15:1500228. [PMID: 39650660 PMCID: PMC11621082 DOI: 10.3389/fimmu.2024.1500228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/06/2024] [Indexed: 12/11/2024] Open
Abstract
Achieving sustained activity and tolerance in of allogeneic grafts after post-transplantation remains a substantial challenge. The response of the immune system to "non-self" MHC-antigenic peptides initiates a crucial phase, wherein blocking positive co-stimulatory signals becomes imperative to ensure graft survival and tolerance. MicroRNAs (miRNAs) inhibit mRNA translation or promote mRNA degradation by complementary binding of mRNA seed sequences, which ultimately affects protein synthesis. These miRNAs exhibit substantial promise as diagnostic, prognostic, and therapeutic candidates for within the realm of solid organ transplantations. Current research has highlighted three members of the T cell immunoglobulin and mucin domain (TIM) family as a novel therapeutic avenue in transplantation medicine and alloimmunization. The interplay between miRNAs and TIM proteins has been extensively explored in viral infections, inflammatory responses, and post-transplantation ischemia-reperfusion injuries. This review aims to elucidate the distinct roles of miRNAs and TIM in transplantation immunity and delineate their interdependent relationships in terms of targeted regulation. Specifically, this investigation sought seeks to uncover the potential of miRNA interaction with TIM, aiming to induce immune tolerance and bolster allograft survival after transplantation. This innovative strategy holds substantial promise in for the future of transplantation science and practice.
Collapse
Affiliation(s)
- Jialing Tao
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
| | - Xiaoxuan Shen
- Department of Endocrinology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
| | - Haiqing Qian
- Department of Reproduction, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, Zhangjiagang, China
| | - Qing Ding
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Lihong Wang
- Department of Reproduction, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, Zhangjiagang, China
| |
Collapse
|
6
|
Ge J, Meng Y, Guo J, Chen P, Wang J, Shi L, Wang D, Qu H, Wu P, Fan C, Zhang S, Liao Q, Zhou M, Xiang B, Wang F, Tan M, Gong Z, Xiong W, Zeng Z. Human papillomavirus-encoded circular RNA circE7 promotes immune evasion in head and neck squamous cell carcinoma. Nat Commun 2024; 15:8609. [PMID: 39366979 PMCID: PMC11452643 DOI: 10.1038/s41467-024-52981-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 09/27/2024] [Indexed: 10/06/2024] Open
Abstract
Immune evasion represents a crucial milestone in the progression of cancer and serves as the theoretical foundation for tumor immunotherapy. In this study, we reveal a negative association between Human Papillomavirus (HPV)-encoded circular RNA, circE7, and the infiltration of CD8+ T cells in head and neck squamous cell carcinoma (HNSCC). Both in vitro and in vivo experiments demonstrate that circE7 suppresses the function and activity of T cells by downregulating the transcription of LGALS9, which encodes the galectin-9 protein. The molecular mechanism involves circE7 binding to acetyl-CoA carboxylase 1 (ACC1), promoting its dephosphorylation and thereby activating ACC1. Activated ACC1 reduces H3K27 acetylation at the LGALS9 gene promoter, leading to decreased galectin-9 expression. Notably, galectin-9 interacts with immune checkpoint molecules TIM-3 and PD-1, inhibiting the secretion of cytotoxic cytokines by T cells and promoting T cell apoptosis. Here, we demonstrate a mechanism by which HPV promotes immune evasion in HNSCC through a circE7-driven epigenetic modification and propose a potential immunotherapy strategy for HNSCC that involves the combined use of anti-PD-1 and anti-TIM-3 inhibitors.
Collapse
Affiliation(s)
- Junshang Ge
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yi Meng
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jiayue Guo
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Pan Chen
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jie Wang
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Lei Shi
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dan Wang
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Hongke Qu
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Pan Wu
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Chunmei Fan
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Shanshan Zhang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Fuyan Wang
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Ming Tan
- Institute of Biochemistry & Molecular Biology and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
- Furong Laboratory, Changsha, Hunan, China.
| | - Zhaoyang Zeng
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
- Furong Laboratory, Changsha, Hunan, China.
| |
Collapse
|
7
|
Ramírez Hernández E, Hernández Zimbrón LF, Segura Pérez E, Sánchez Salgado JL, Pereyra Morales MA, Zenteno E. Galectin-9 and Tim-3 are upregulated in response to microglial activation induced by the peptide Amyloid-β (25-35). Neuropeptides 2024; 105:102426. [PMID: 38527407 DOI: 10.1016/j.npep.2024.102426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
Galectins are a group of β-galactoside-binding lectins associated with regulating immunological response. In the brains of AD patients and 5xFAD (familial AD) mice, galectin-3 (Gal-3) was highly upregulated and found to be expressed in microglia associated with Aβ plaques. However, the participation of other galectins, specifically galectin-9 (Gal-9) and T-cell immunoglobulin and mucin domain 3 (Tim-3) receptors, are unknown in the inflammatory response. The experimental model of the Aβ25-35 peptide will allow us to study the mechanisms of neuroinflammation and describe the changes in the expression of the Gal-9 and Tim-3 receptor. This study aimed to evaluate whether Aβ25-35 peptide administration into the lateral ventricles of rats upregulated Gal-9 and Tim-3 implicated in the modulation of neuroinflammation. The vehicle or Aβ25-35 peptide (1 μg/μL) was bilaterally administered into the lateral ventricles of the rat, and control group. After the administration of the Aβ25-35 peptide, animals were tested for learning (day 29) and spatial memory (day 30) in the novel object recognition test (NOR). On day 31, hippocampus was examined for morphological changes by Nilss stain, biochemical changes by NO2 and MDA, immunohistochemical analysis by astrocytes (GFAP), microglia (Iba1), Gal-9 and Tim-3, and western blot. Our results show the administration of the Aβ25-35 peptide into the lateral ventricles of rats induce memory impairment in the NOR by increases the oxidative stress and inflammatory response. This result is associated with an upregulation of Gal-9 and Tim-3 predominantly detected in the microglia cells of Aβ25-35-treated rats with respect to the control group. Gal-9 and Tim-3 are upregulated in activated microglia that could modulate the inflammatory response and damage in neurodegenerative processes induced by the Aβ25-35 peptide. Therefore, we suggest that Gal-9 and Tim-3 participate in the inflammatory process induced by the administration of the Aβ25-35 peptide.
Collapse
Affiliation(s)
- Eleazar Ramírez Hernández
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | | | - Emmanuel Segura Pérez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Luis Sánchez Salgado
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mohamed Ali Pereyra Morales
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
8
|
Xi F, Sun H, Peng H, Lian Z, Wei H, Tian Z, Sun R, Chen Y. Hepatocyte-derived FGL1 accelerates liver metastasis and tumor growth by inhibiting CD8+ T and NK cells. JCI Insight 2024; 9:e173215. [PMID: 38973608 PMCID: PMC11383586 DOI: 10.1172/jci.insight.173215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 05/17/2024] [Indexed: 07/09/2024] Open
Abstract
Fibrinogen-like protein 1 (FGL1) contributes to the proliferation and metabolism of hepatocytes; however, as a major ligand of the immune checkpoint, its role in the liver regional immune microenvironment is poorly understood. Hepatocytes specifically and highly expressed FGL1 under normal physiological conditions. Increases in hepatic CD8+ T and NK cell numbers and functions were found in Fgl1-deficient (Fgl1-/-) mice, but not in the spleen or lymph node, similar to findings in anti-FGL1 mAb-treated wild-type mice. Furthermore, Fgl1 deficiency or anti-FGL1 mAb blockade restrained liver metastasis and slowed the growth of orthotopic tumors, with significantly prolonged survival of tumor-bearing mice. Tumor-infiltrating hepatic CD8+ T and NK cells upregulated the expression of lymphocyte activation gene-3 (LAG-3) and exhibited stronger antitumor activities after anti-FGL1 treatment. The antitumor efficacy of FGL1 blockade depended on cytotoxic T lymphocytes and NK cells, demonstrated by using a cell-deficient mouse model and cell transfer in vivo. In vitro, FGL1 directly inhibited hepatic T and NK cells related to the receptor LAG-3. In conclusion, hepatocyte-derived FGL1 played critical immunoregulatory roles in the liver and contributed to liver metastasis and tumor growth by inhibiting CD8+ T and NK cell functions via the receptor LAG-3, providing a new strategy for liver cancer immunotherapy.
Collapse
Affiliation(s)
- Fengjia Xi
- Key Laboratory of Immune Response and Immunotherapy, the Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Research Unit of NK Cell Study, Chinese Academy of Medical Sciences, Hefei, China
| | - Haoyu Sun
- Key Laboratory of Immune Response and Immunotherapy, the Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Research Unit of NK Cell Study, Chinese Academy of Medical Sciences, Hefei, China
| | - Hui Peng
- Key Laboratory of Immune Response and Immunotherapy, the Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Research Unit of NK Cell Study, Chinese Academy of Medical Sciences, Hefei, China
| | - Zhexiong Lian
- Key Laboratory of Immune Response and Immunotherapy, the Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Research Unit of NK Cell Study, Chinese Academy of Medical Sciences, Hefei, China
| | - Haiming Wei
- Key Laboratory of Immune Response and Immunotherapy, the Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Research Unit of NK Cell Study, Chinese Academy of Medical Sciences, Hefei, China
| | - Zhigang Tian
- Key Laboratory of Immune Response and Immunotherapy, the Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Research Unit of NK Cell Study, Chinese Academy of Medical Sciences, Hefei, China
| | - Rui Sun
- Key Laboratory of Immune Response and Immunotherapy, the Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Research Unit of NK Cell Study, Chinese Academy of Medical Sciences, Hefei, China
| | - Yongyan Chen
- Key Laboratory of Immune Response and Immunotherapy, the Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Research Unit of NK Cell Study, Chinese Academy of Medical Sciences, Hefei, China
| |
Collapse
|
9
|
Li Y, Sang Y, Chang Y, Xu C, Lin Y, Zhang Y, Chiu PCN, Yeung WSB, Zhou H, Dong N, Xu L, Chen J, Zhao W, Liu L, Yu D, Zang X, Ye J, Yang J, Wu Q, Li D, Wu L, Du M. A Galectin-9-Driven CD11c high Decidual Macrophage Subset Suppresses Uterine Vascular Remodeling in Preeclampsia. Circulation 2024; 149:1670-1688. [PMID: 38314577 DOI: 10.1161/circulationaha.123.064391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 01/09/2024] [Indexed: 02/06/2024]
Abstract
BACKGROUND Preeclampsia is a serious disease of pregnancy that lacks early diagnosis methods or effective treatment, except delivery. Dysregulated uterine immune cells and spiral arteries are implicated in preeclampsia, but the mechanistic link remains unclear. METHODS Single-cell RNA sequencing and spatial transcriptomics were used to identify immune cell subsets associated with preeclampsia. Cell-based studies and animal models including conditional knockout mice and a new preeclampsia mouse model induced by recombinant mouse galectin-9 were applied to validate the pathogenic role of a CD11chigh subpopulation of decidual macrophages (dMφ) and to determine its underlying regulatory mechanisms in preeclampsia. A retrospective preeclampsia cohort study was performed to determine the value of circulating galectin-9 in predicting preeclampsia. RESULTS We discovered a distinct CD11chigh dMφ subset that inhibits spiral artery remodeling in preeclampsia. The proinflammatory CD11chigh dMφ exhibits perivascular enrichment in the decidua from patients with preeclampsia. We also showed that trophoblast-derived galectin-9 activates CD11chigh dMφ by means of CD44 binding to suppress spiral artery remodeling. In 3 independent preeclampsia mouse models, placental and plasma galectin-9 levels were elevated. Galectin-9 administration in mice induces preeclampsia-like phenotypes with increased CD11chigh dMφ and defective spiral arteries, whereas galectin-9 blockade or macrophage-specific CD44 deletion prevents such phenotypes. In pregnant women, increased circulating galectin-9 levels in the first trimester and at 16 to 20 gestational weeks can predict subsequent preeclampsia onset. CONCLUSIONS These findings highlight a key role of a distinct perivascular inflammatory CD11chigh dMφ subpopulation in the pathogenesis of preeclampsia. CD11chigh dMφ activated by increased galectin-9 from trophoblasts suppresses uterine spiral artery remodeling, contributing to preeclampsia. Increased circulating galectin-9 may be a biomarker for preeclampsia prediction and intervention.
Collapse
Affiliation(s)
- Yanhong Li
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
- Department of Obstetrics, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Clinical Institute of Shantou University Medical College), Shenzhen, Guangdong, China (Y. Li, Y. Lin, W.Z., J. Yang, M.D.)
- Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University Shanghai, China (Y. Li, M.D.)
| | - Yifei Sang
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
| | - Yunjian Chang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China (Y.C., Y.Z., H.Z., L.W.)
| | - Chunfang Xu
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
| | - Yikong Lin
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
| | - Yao Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China (Y.C., Y.Z., H.Z., L.W.)
| | - Philip C N Chiu
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, China (P.C.N.C., W.S.B.Y.)
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China (P.C.N.C., W.S.B.Y.)
| | - William S B Yeung
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, China (P.C.N.C., W.S.B.Y.)
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China (P.C.N.C., W.S.B.Y.)
| | - Haisheng Zhou
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China (Y.C., Y.Z., H.Z., L.W.)
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China (N.D., Q.W.)
| | - Ling Xu
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
| | - Jiajia Chen
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
| | - Weijie Zhao
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
- Department of Obstetrics, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Clinical Institute of Shantou University Medical College), Shenzhen, Guangdong, China (Y. Li, Y. Lin, W.Z., J. Yang, M.D.)
| | - Lu Liu
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
| | - Di Yu
- The University of Queensland Diamantina Institute (D.Y.), Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre (D.Y.), Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY (X.Z.)
| | - Jiangfeng Ye
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore City, Singapore (J. Ye)
| | - Jinying Yang
- Department of Obstetrics, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Clinical Institute of Shantou University Medical College), Shenzhen, Guangdong, China (Y. Li, Y. Lin, W.Z., J. Yang, M.D.)
| | - Qingyu Wu
- Cyrus Tang Hematology Center, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China (N.D., Q.W.)
| | - Dajin Li
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
| | - Ligang Wu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China (Y.C., Y.Z., H.Z., L.W.)
| | - Meirong Du
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China (Y. Li, Y.S., C.X., Y. Lin, L.X., J.C., W.Z., L.L., D.L., M.D.)
- Department of Obstetrics, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Clinical Institute of Shantou University Medical College), Shenzhen, Guangdong, China (Y. Li, Y. Lin, W.Z., J. Yang, M.D.)
- Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University Shanghai, China (Y. Li, M.D.)
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau SAR, China (M.D.)
| |
Collapse
|
10
|
Pang N, Yu M, Xu J, Yuan H, Chen G, Wang D, Han C, Wang W, Ding J, Jiang M. The level of Tim-3+CD8+ T cells can serve as a potential marker for evaluating the severity of acute graft-versus-host disease after haplo-PBSCT. Braz J Med Biol Res 2023; 56:e12997. [PMID: 38126537 PMCID: PMC10729645 DOI: 10.1590/1414-431x2023e12997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/29/2023] [Indexed: 12/23/2023] Open
Abstract
Early and accurate diagnosis of acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation is crucial for the prognosis of patients. This study identified a potential biomarker for the severity of aGVHD after human leukocyte antigen (HLA)-haploidentical peripheral blood hematopoietic stem cell transplantation (haplo-PBSCT). We included 20 healthy subjects and 57 patients who underwent haplo-PBSCT. Of these patients, 22 developed aGVHD after haplo-PBSCT. The results showed that patients with aGVHD had significantly increased levels of Tim-3+/Perforin+/Granzyme B+CD8+ T cells, but significantly decreased Galectin-9. The differences in Galectin-9 and Tim-3+/Granzyme B+CD8+ T cells between grade I-II aGVHD and III-IV aGVHD were also significant. In vitro, the apoptosis of CD8+ T cells from aGVHD patients was significantly increased after Tim-3/Galectin-9 pathway activation, which decreased Granzyme B secretion. As revealed by univariate analysis, the level of Tim-3+CD8+ T cells was a risk factor for severe aGVHD. ROC analysis demonstrated that high levels of Tim-3+CD8+ T cells had a significant diagnostic value for severe aGVHD, with an area under the curve of 0.854 and cut-off value of 14.155%. In conclusion, the binding of Tim-3 with exogenous Galectin-9 can promote apoptosis of CD8+ T cells and affect the secretion of Granzyme B. Tim-3+CD8+ T cells have the potential to serve as immunological markers for assessing the severity of aGVHD after haplo-PBSCT and identifying patients at a higher risk for severe aGVHD.
Collapse
Affiliation(s)
- Nannan Pang
- Department of Pathology, the First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Mingkai Yu
- School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Jianli Xu
- Center of Hematology, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region Research Institute of Hematology, Urumqi, China
| | - Hailong Yuan
- Center of Hematology, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region Research Institute of Hematology, Urumqi, China
| | - Gang Chen
- Center of Hematology, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region Research Institute of Hematology, Urumqi, China
| | - Dong Wang
- Center of Hematology, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region Research Institute of Hematology, Urumqi, China
| | - Chunxia Han
- Center of Hematology, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region Research Institute of Hematology, Urumqi, China
| | - Weiguo Wang
- Department of Urology, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Jianbing Ding
- School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Ming Jiang
- Center of Hematology, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region Research Institute of Hematology, Urumqi, China
| |
Collapse
|
11
|
Kojima H, Kadono K, Hirao H, Dery KJ, Torgerson T, Yao S, Kaldas FM, Farmer DG, Blumberg RS, Kupiec-Weglinski JW. T Cell CEACAM1-TIM-3 Crosstalk Alleviates Liver Transplant Injury in Mice and Humans. Gastroenterology 2023; 165:1233-1248.e9. [PMID: 37479191 PMCID: PMC10592295 DOI: 10.1053/j.gastro.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/26/2023] [Accepted: 07/04/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND & AIMS Carcinoembryonic antigen-related cell adhesion molecule 1 (CC1) acts through homophilic and heterophilic interactions with T cell immunoglobulin domain and mucin domain-containing protein 3 (TIM-3), which regulates innate immune activation in orthotopic liver transplantation (OLT). We investigated whether cluster of differentiation (CD) 4+ T cell-dependent CC1-TIM-3 crosstalk may affect OLT outcomes in mice and humans. METHODS Wild-type (WT) and CC1-deficient (CC1 knock-out [KO]) mouse livers were transplanted into WT, CC1KO, or T-cell TIM-3 transgenic (TIM-3Tg)/CC1KO double-mutant recipients. CD4+ T cells were adoptively transferred into T/B cell-deficient recombination activating gene 2 protein (Rag2) KO recipients, followed by OLT. The perioperative liver-associated CC1 increase was analyzed in 50 OLT patients. RESULTS OLT injury in WT livers deteriorated in CC1KO compared with CC1-proficient (WT) recipients. The frequency of TIM-3+CD4+ T cells was higher in WT than CC1KO hosts. Reconstitution of Rag2KO mice with CC1KO-T cells increased nuclear factor (NF)-κB phosphorylation and OLT damage compared with recipients repopulated with WT T cells. T-cell TIM-3 enhancement in CC1KO recipients (WT → TIM3Tg/CC1KO) suppressed NF-κB phosphorylation in Kupffer cells and mitigated OLT injury. However, TIM-3-mediated protection was lost by pharmacologic TIM-3 blockade or an absence of CC1 in the donor liver (CC1KO → TIM-3Tg/CC1KO). The perioperative CC1 increase in human OLT reduced hepatocellular injury, early allograft dysfunction, and the cumulative rejection rate. CONCLUSIONS This translational study identifies T cell-specific CC1 signaling as a therapeutic means to alleviate OLT injury by promoting T cell-intrinsic TIM-3, which in turn interacts with liver-associated CC1 to suppress NF-κB in Kupffer cells. By suppressing peritransplant liver damage, promoting T-cell homeostasis, and improving OLT outcomes, recipient CC1 signaling serves as a novel cytoprotective sentinel.
Collapse
Affiliation(s)
- Hidenobu Kojima
- The Dumont-University of California Los Angeles Transplantation Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | - Kentaro Kadono
- The Dumont-University of California Los Angeles Transplantation Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | - Hirofumi Hirao
- The Dumont-University of California Los Angeles Transplantation Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | - Kenneth J Dery
- The Dumont-University of California Los Angeles Transplantation Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | - Taylor Torgerson
- The Dumont-University of California Los Angeles Transplantation Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | - Siyuan Yao
- The Dumont-University of California Los Angeles Transplantation Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | - Fady M Kaldas
- The Dumont-University of California Los Angeles Transplantation Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | - Douglas G Farmer
- The Dumont-University of California Los Angeles Transplantation Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | - Richard S Blumberg
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jerzy W Kupiec-Weglinski
- The Dumont-University of California Los Angeles Transplantation Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California.
| |
Collapse
|
12
|
Del Bello A, Treiner E. Immune Checkpoints in Solid Organ Transplantation. BIOLOGY 2023; 12:1358. [PMID: 37887068 PMCID: PMC10604300 DOI: 10.3390/biology12101358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Allogenic graft acceptance is only achieved by life-long immunosuppression, which comes at the cost of significant toxicity. Clinicians face the challenge of adapting the patients' treatments over long periods to lower the risks associated with these toxicities, permanently leveraging the risk of excessive versus insufficient immunosuppression. A major goal and challenge in the field of solid organ transplantation (SOT) is to attain a state of stable immune tolerance specifically towards the grafted organ. The immune system is equipped with a set of inhibitory co-receptors known as immune checkpoints (ICs), which physiologically regulate numerous effector functions. Insufficient regulation through these ICs can lead to autoimmunity and/or immune-mediated toxicity, while excessive expression of ICs induces stable hypo-responsiveness, especially in T cells, a state sometimes referred to as exhaustion. IC blockade has emerged in the last decade as a powerful therapeutic tool against cancer. The opposite action, i.e., subverting IC for the benefit of establishing a state of specific hypo-responsiveness against auto- or allo-antigens, is still in its infancy. In this review, we will summarize the available literature on the role of ICs in SOT and the relevance of ICs with graft acceptance. We will also discuss the possible influence of current immunosuppressive medications on IC functions.
Collapse
Affiliation(s)
- Arnaud Del Bello
- Department of Nephrology, University Hospital of Toulouse, 31400 Toulouse, France
- Metabolic and Cardiovascular Research Institute (I2MC), Inserm UMR1297, CEDEX 4, 31432 Toulouse, France
- Faculty of Medicine, University Toulouse III Paul Sabatier, 31062 Toulouse, France
| | - Emmanuel Treiner
- Faculty of Medicine, University Toulouse III Paul Sabatier, 31062 Toulouse, France
- Laboratory of Immunology, University Hospital of Toulouse, 31300 Toulouse, France
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Inserm UMR1291, 31024 Toulouse, France
| |
Collapse
|
13
|
Gal-9/Tim-3 signaling pathway activation suppresses the generation of Th17 cells and promotes the induction of Foxp3 + regulatory T cells in renal ischemia-reperfusion injury. Mol Immunol 2023; 156:136-147. [PMID: 36921488 DOI: 10.1016/j.molimm.2023.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/03/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023]
Abstract
CD4+ T cells mediate the pathogenesis of renal ischemia-reperfusion injury (IRI). Emerging research suggests that a Th17/regulatory T cell (Treg) imbalance plays a pivotal role in the development of renal IRI. A recently identified negative checkpoint protein, T cell immunoglobulin domain and mucin domain family 3 (Tim-3), inhibits the immune response by binding to its ligand, galectin-9 (Gal-9). However, the role of the Gal-9/Tim-3 signaling pathway in the regulation of CD4+ T cell subsets in renal IRI remains unclear. In this study, we investigated the effect of the Gal-9/Tim-3 signaling pathway on Th17/Treg subsets in renal IRI using a mouse model. Renal IRI induced the expression of Gal-9 in renal tubular epithelial cells and increased the proportion of Tim-3+ Th17 cells and Tim-3+ forkhead box P3 (Foxp3)+ Treg cells in the ischemia-reperfusion (IR) kidneys. Administration of rAAV9-Gal-9 suppressed kidney inflammation, reduced the mortality of mice with renal IRI, increased Foxp3+ Treg cells, and reduced Th17 cells. In contrast, the blockade of Tim-3 in vivo using an anti-Tim-3 monoclonal antibody aggravated renal inflammation, decreased Foxp3+ Treg cells, and promoted Th17 cells. Thus, Gal-9/Tim-3 signaling pathway activation may protect against renal IRI by inhibiting Th17 cell production and inducing Foxp3+ Treg cell expansion. Our study suggests that the Gal-9/Tim-3 signaling pathway may be targeted by immunotherapy in renal IRI.
Collapse
|
14
|
Jiang S, Huang X. Host responses against the fish parasitizing ciliate Cryptocaryon irritans. Parasite Immunol 2023; 45:e12967. [PMID: 36606416 DOI: 10.1111/pim.12967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/05/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
The parasitic ciliate Cryptocaryon irritans, which infects almost all marine fish species occurring in both tropical and subtropical regions throughout the world. The disease, cryptocaryonosis, accounts for significant economic losses to the aquaculture industry. This review attempts to provide a comprehensive overview of the biology of the parasite, host-parasite interactions and both specific and non-specific host defense mechanisms are responsible for the protection of fish against challenge infections with this ciliate. Also, this article reflects the current interest in this subject area and the quest to develop an available vaccine against the disease. Due to the high frequency of clinical fish cryptocaryonosis, the study of fish immune responses to C. irritans provides an optimal experimental model for understanding immunity against extracellular protozoa.
Collapse
Affiliation(s)
- Shuiqing Jiang
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Xiaohong Huang
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
15
|
Wang J, Xia S, Ren H, Shi X. The role and function of CD4+ T cells in hepatic ischemia-reperfusion injury. Expert Rev Gastroenterol Hepatol 2022; 16:5-11. [PMID: 34931553 DOI: 10.1080/17474124.2022.2020642] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Hepatic ischemia-reperfusion injury (IRI) is a severe complication frequently encountered in liver surgery, seriously affecting the therapeutic effects, tissue function. Various immune cells are involved in hepatic IRI, including macrophages, NKT cells, DCs, CD4 + T cells, and CD8 + T cells, among which CD4 + T cells play a critical role in this process. This article aims to summarize the functions and changes in various CD4 + T cell type counts and related cytokine levels in hepatic IRI and to review the possible mechanisms of mutual conversion between T cell types. AREAS COVERED We have covered the functions and changes that occur in Th1, Th17, and Treg cells in liver IRI, as well as the pathways and factors associated with them. We also discuss the prospects of clinical application and future directions for therapeutic advances. EXPERT OPINION This section explores the current clinical trials involving CD4 + T cells, especially Tregs, explains the limitations of their application, and summarizes the future development trends of cell engineering and their combination with the CAT technology. We also provide new ideas and therapeutic targets for alleviating liver IRI or other liver inflammatory diseases.
Collapse
Affiliation(s)
- Jinglin Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Hepatobiliary Institute of Nanjing University, Nanjing, China
| | - Senzhe Xia
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Hepatobiliary Institute of Nanjing University, Nanjing, China
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, China
| | - Haozhen Ren
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Hepatobiliary Institute of Nanjing University, Nanjing, China
| | - Xiaolei Shi
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Hepatobiliary Institute of Nanjing University, Nanjing, China
| |
Collapse
|
16
|
Li R, Xie L, Li L, Chen X, Yao T, Tian Y, Li Q, Wang K, Huang C, Li C, Li Y, Zhou H, Kaplowitz N, Jiang Y, Chen P. The gut microbial metabolite, 3,4-dihydroxyphenylpropionic acid, alleviates hepatic ischemia/reperfusion injury via mitigation of macrophage pro-inflammatory activity in mice. Acta Pharm Sin B 2022; 12:182-196. [PMID: 35127379 PMCID: PMC8799880 DOI: 10.1016/j.apsb.2021.05.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatic ischemia/reperfusion injury (HIRI) is a serious complication that occurs following shock and/or liver surgery. Gut microbiota and their metabolites are key upstream modulators of development of liver injury. Herein, we investigated the potential contribution of gut microbes to HIRI. Ischemia/reperfusion surgery was performed to establish a murine model of HIRI. 16S rRNA gene sequencing and metabolomics were used for microbial analysis. Transcriptomics and proteomics analysis were employed to study the host cell responses. Our results establish HIRI was significantly increased when surgery occurred in the evening (ZT12, 20:00) when compared with the morning (ZT0, 08:00); however, antibiotic pretreatment reduced this diurnal variation. The abundance of a microbial metabolite 3,4-dihydroxyphenylpropionic acid was significantly higher in ZT0 when compared with ZT12 in the gut and this compound significantly protected mice against HIRI. Furthermore, 3,4-dihydroxyphenylpropionic acid suppressed the macrophage pro-inflammatory response in vivo and in vitro. This metabolite inhibits histone deacetylase activity by reducing its phosphorylation. Histone deacetylase inhibition suppressed macrophage pro-inflammatory activation and diminished the diurnal variation of HIRI. Our findings revealed a novel protective microbial metabolite against HIRI in mice. The potential underlying mechanism was at least in part, via 3,4-dihydroxyphenylpropionic acid-dependent immune regulation and histone deacetylase (HDAC) inhibition in macrophages.
Collapse
Affiliation(s)
- Rui Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Li Xie
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lei Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaojiao Chen
- Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Tong Yao
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yuanxin Tian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Qingping Li
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Kai Wang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chenyang Huang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Cui Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yifan Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hongwei Zhou
- Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Neil Kaplowitz
- USC Research Center for Liver Disease, Department of Medicine, Keck School of Medicine of USC, Los Angeles, CA 90089, USA
| | - Yong Jiang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Corresponding authors.
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Corresponding authors.
| |
Collapse
|
17
|
Wang T, Yeh MM, Avigan MI, Pelosof L, Feldman GM. Deciphering the Dynamic Complexities of the Liver Microenvironment - Toward a Better Understanding of Immune-Mediated liver Injury Caused by Immune Checkpoint Inhibitors (ILICI). AAPS JOURNAL 2021; 23:99. [PMID: 34401948 DOI: 10.1208/s12248-021-00629-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/26/2021] [Indexed: 11/30/2022]
Abstract
Immune checkpoint inhibitors (ICIs) represent a promising therapy for many types of cancer. However, only a portion of patients respond to this therapy and some patients develop clinically significant immune-mediated liver injury caused by immune checkpoint inhibitors (ILICI), an immune-related adverse event (irAE) that may require the interruption or termination of treatment and administration of systemic corticosteroids or other immunosuppressive agents. Although the incidence of ILICI is lower with monotherapy, the surge in combining ICIs with chemotherapy, targeted therapy, and combination of different ICIs has led to an increase in the incidence and severity of ILICI - a major challenge for development of effective and safe ICI therapy. In this review, we highlight the importance and contribution of the liver microenvironment to ILICI by focusing on the emerging roles of resident liver cells in modulating immune homeostasis and hepatocyte regeneration, two important decisive factors that dictate the initiation, progression, and recovery from ILICI. Based on the proposed contribution of the liver microenvironment on ICILI, we discuss the clinical characteristics of ILICI in patients with preexisting liver diseases, as well as the challenges of identifying prognostic biomarkers to guide the clinical management of severe ILICI. A better understanding of the liver microenvironment may lead to novel strategies and identification of novel biomarkers for effective management of ILICI.
Collapse
Affiliation(s)
- Tao Wang
- Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993, USA.
| | - Matthew M Yeh
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, 98195, USA
| | - Mark I Avigan
- Office of Surveillance and Epidemiology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Lorraine Pelosof
- Office of New Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Gerald M Feldman
- Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993, USA
| |
Collapse
|
18
|
Chen Z, Dong D, Zhu Y, Pang N, Ding J. The role of Tim-3/Galectin-9 pathway in T-cell function and prognosis of patients with human papilloma virus-associated cervical carcinoma. FASEB J 2021; 35:e21401. [PMID: 33559190 DOI: 10.1096/fj.202000528rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 12/29/2020] [Accepted: 01/14/2021] [Indexed: 12/26/2022]
Abstract
The interaction between Tim-3 on T cell and its ligand, Galectin-9, negatively regulates cellular immune responses. However, the role of Tim-3/Galectin-9 pathway in the immune evasion of cervical cancer remains unknown. This study is to investigate the expression, function, and regulation of Tim-3/Galectin-9 signaling pathway in human papilloma virus (HPV) positive cervical cancer. Flow cytometry showed that Tim-3 expression on T cell and Galectin-9 expression on monocytes in HPV positive cervical cancer patients were significantly higher compared to cervical intraepithelial neoplasia and benign uterine fibroids Tim-3 + CD4+ Th1 cells and Tim-3 + CD8+ T cells in HPV positive cervical cancer patients were significantly reduced after surgery. Serum TGF-β and IL-10 levels were positively correlated with Tim-3 + Treg cells, while IFN-γ and IL-2 were negatively correlated with Tim-3 + Th1 cells. Additionally, Tim-3 + CD4+ T cells were positively correlated with Galectin-9 + monocytes. Survival curve analysis showed that Tim-3 + CD4+ T cells were negatively correlated with patient survival, and closely related to FIGO stage, degree of differentiation, and lymph node metastasis of HPV positive cervical cancer. In vitro experiments showed that by blocking the Tim-3/Galectin-9 pathway, the proliferation of T cells and their ability to express IFN-γ, IL-2, perforin, and granzyme B was significantly restored. In conclusion, high levels of Tim-3 and Galectin-9 in HPV positive cervical cancer patients play roles in the progression of disease by promoting Treg cells to inhibit the cytotoxic function of Th1 and CD8+ T cells. Tim-3/Galectin-9 may serve as a new immunotherapy target for patients with HPV positive cervical cancer.
Collapse
Affiliation(s)
- Zhifang Chen
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, PR China.,Department of Gynecology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Di Dong
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, PR China
| | - Yuejie Zhu
- Department of Gynecology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Nannan Pang
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, PR China
| | - Jianbing Ding
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, PR China.,Department of Immunology, College of Basic Medicine of Xinjiang Medical University, Urumqi, PR China
| |
Collapse
|
19
|
Zhai Y, Moosavi R, Chen M. Immune Checkpoints, a Novel Class of Therapeutic Targets for Autoimmune Diseases. Front Immunol 2021; 12:645699. [PMID: 33968036 PMCID: PMC8097144 DOI: 10.3389/fimmu.2021.645699] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/02/2021] [Indexed: 12/14/2022] Open
Abstract
Autoimmune diseases, such as multiple sclerosis and type-1 diabetes, are the outcomes of a failure of immune tolerance. Immune tolerance is sustained through interplays between two inter-dependent clusters of immune activities: immune stimulation and immune regulation. The mechanisms of immune regulation are exploited as therapeutic targets for the treatment of autoimmune diseases. One of these mechanisms is immune checkpoints (ICPs). The roles of ICPs in maintaining immune tolerance and hence suppressing autoimmunity were revealed in animal models and validated by the clinical successes of ICP-targeted therapeutics for autoimmune diseases. Recently, these roles were highlighted by the clinical discovery that the blockade of ICPs causes autoimmune disorders. Given the crucial roles of ICPs in immune tolerance, it is plausible to leverage ICPs as a group of therapeutic targets to restore immune tolerance and treat autoimmune diseases. In this review, we first summarize working mechanisms of ICPs, particularly those that have been utilized for therapeutic development. Then, we recount the agents and approaches that were developed to target ICPs and treat autoimmune disorders. These agents take forms of fusion proteins, antibodies, nucleic acids, and cells. We also review and discuss safety information for these therapeutics. We wrap up this review by providing prospects for the development of ICP-targeting therapeutics. In summary, the ever-increasing studies and results of ICP-targeting of therapeutics underscore their tremendous potential to become a powerful class of medicine for autoimmune diseases.
Collapse
Affiliation(s)
- Yujia Zhai
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Reza Moosavi
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Mingnan Chen
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
20
|
Dai Q, Jiang W, Liu H, Qing X, Wang G, Huang F, Yang Z, Wang C, Gu E, Zhao H, Zhang J, Liu X. Kupffer cell-targeting strategy for the protection of hepatic ischemia/reperfusion injury. NANOTECHNOLOGY 2021; 32:265101. [PMID: 33472187 DOI: 10.1088/1361-6528/abde02] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
The aim of this study is to evaluate the effect of rare earth upconversion nanoparticles (UCNs) on hepatic ischemia reperfusion injury (IRI) and explore its possible mechanism. Hepatic IRI seriously affects the prognosis of patients undergoing liver surgery. Liver-resident Kupffer cells have been reported to promote IRI. Nanomedicines are known to be effective in the treatment of liver diseases, however, Kupffer cell-targeting nanomedicines for the treatment of IRI are yet to be developed. As potential bioimaging nanomaterials, UCNs have been found to specifically deplete Kupffer cells, but the underlying mechanism is unknown. In this study, we found that UCNs specifically depleted Kupffer cells by pyroptosis, while the co-administration of the caspase-1 inhibitor VX-765 rescued the UCN-induced Kupffer cell pyroptosis in mice. Furthermore, the pre-depletion of Kupffer cells by the UCNs significantly suppressed the release of inflammatory cytokines and effectively improved hepatic IRI. The rescue of the pyroptosis of the Kupffer cells by VX-765 abrogated the protective effect of UCNs on the liver. These results suggest that UCNs are highly promising for the development of Kupffer cell-targeting nanomedicines for intraoperative liver protection.
Collapse
Affiliation(s)
- Qingqing Dai
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, People's Republic of China
- Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, People's Republic of China
| | - Wei Jiang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, People's Republic of China
| | - Hu Liu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, People's Republic of China
| | - Xin Qing
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, People's Republic of China
| | - Guobin Wang
- Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, People's Republic of China
| | - Fan Huang
- Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, People's Republic of China
| | - Zhilai Yang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, People's Republic of China
| | - Chunhui Wang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, People's Republic of China
| | - Erwei Gu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, People's Republic of China
| | - Hongchuan Zhao
- Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, People's Republic of China
| | - Jiqian Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, People's Republic of China
| | - Xuesheng Liu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, People's Republic of China
| |
Collapse
|
21
|
Ju C, Wang M, Tak E, Kim B, Emontzpohl C, Yang Y, Yuan X, Kutay H, Liang Y, Hall DR, Dar WA, Bynon JS, Carmeliet P, Ghoshal K, Eltzschig HK. Hypoxia-inducible factor-1α-dependent induction of miR122 enhances hepatic ischemia tolerance. J Clin Invest 2021; 131:140300. [PMID: 33792566 PMCID: PMC8011886 DOI: 10.1172/jci140300] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 02/10/2021] [Indexed: 12/29/2022] Open
Abstract
Hepatic ischemia and reperfusion (IR) injury contributes to the morbidity and mortality associated with liver transplantation. microRNAs (miRNAs) constitute a family of noncoding RNAs that regulate gene expression at the posttranslational level through the repression of specific target genes. Here, we hypothesized that miRNAs could be targeted to enhance hepatic ischemia tolerance. A miRNA screen in a murine model of hepatic IR injury pointed us toward the liver-specific miRNA miR122. Subsequent studies in mice with hepatocyte-specific deletion of miR122 (miR122loxP/loxP Alb-Cre+ mice) during hepatic ischemia and reperfusion revealed exacerbated liver injury. Transcriptional studies implicated hypoxia-inducible factor-1α (HIF1α) in the induction of miR122 and identified the oxygen-sensing prolyl hydroxylase domain 1 (PHD1) as a miR122 target. Further studies indicated that HIF1α-dependent induction of miR122 participated in a feed-forward pathway for liver protection via the enhancement of hepatic HIF responses through PHD1 repression. Moreover, pharmacologic studies utilizing nanoparticle-mediated miR122 overexpression demonstrated attenuated liver injury. Finally, proof-of-principle studies in patients undergoing orthotopic liver transplantation showed elevated miR122 levels in conjunction with the repression of PHD1 in post-ischemic liver biopsies. Taken together, the present findings provide molecular insight into the functional role of miR122 in enhancing hepatic ischemia tolerance and suggest the potential utility of pharmacologic interventions targeting miR122 to dampen hepatic injury during liver transplantation.
Collapse
Affiliation(s)
- Cynthia Ju
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Texas, USA
| | - Meng Wang
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Texas, USA
| | - Eunyoung Tak
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Boyun Kim
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Texas, USA
| | - Christoph Emontzpohl
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Texas, USA
| | - Yang Yang
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Texas, USA
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Texas, USA
| | - Huban Kutay
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Yafen Liang
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Texas, USA
| | - David R. Hall
- Department of Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Wasim A. Dar
- Department of Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - J. Steve Bynon
- Department of Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, and
- Center for Cancer Biology, Department of Oncology, Katholieke University Leuven, Leuven, Belgium
| | - Kalpana Ghoshal
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Holger K. Eltzschig
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Texas, USA
| |
Collapse
|
22
|
Wang Y, Yang Y, Wang M, Wang S, Jeong JM, Xu L, Wen Y, Emontzpohl C, Atkins CL, Duong K, Moreno NF, Yuan X, Hall DR, Dar W, Feng D, Gao B, Xu Y, Czigany Z, Colgan SP, Bynon JS, Akira S, Brown JM, Eltzschig HK, Jacobsen EA, Ju C. Eosinophils attenuate hepatic ischemia-reperfusion injury in mice through ST2-dependent IL-13 production. Sci Transl Med 2021; 13:eabb6576. [PMID: 33536281 PMCID: PMC8167890 DOI: 10.1126/scitranslmed.abb6576] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 09/28/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022]
Abstract
Eosinophils are a myeloid cell subpopulation that mediates type 2 T helper cell immune responses. Unexpectedly, we identified a rapid accumulation of eosinophils in 22 human liver grafts after hepatic transplantation. In contrast, no eosinophils were detectable in healthy liver tissues before transplantation. Studies with two genetic mouse models of eosinophil deficiency and a mouse model of antibody-mediated eosinophil depletion revealed exacerbated liver injury after hepatic ischemia and reperfusion. Adoptive transfer of bone marrow-derived eosinophils normalized liver injury of eosinophil-deficient mice and reduced hepatic ischemia and reperfusion injury in wild-type mice. Mechanistic studies combining genetic and adoptive transfer approaches identified a critical role of suppression of tumorigenicity (ST2)-dependent production of interleukin-13 by eosinophils in the hepatoprotection against ischemia-reperfusion-induced injury. Together, these data provide insight into a mechanism of eosinophil-mediated liver protection that could serve as a therapeutic target to improve outcomes of patients undergoing liver transplantation.
Collapse
Affiliation(s)
- Yaochun Wang
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Center for Translational Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yang Yang
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Meng Wang
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Shuhong Wang
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jong-Min Jeong
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Long Xu
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yankai Wen
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Christoph Emontzpohl
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Constance Lynn Atkins
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kevin Duong
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Nicolas F Moreno
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - David R Hall
- Department of Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Wasim Dar
- Department of Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Dechun Feng
- Laboratory of Liver Disease, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Bin Gao
- Laboratory of Liver Disease, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zoltan Czigany
- Department of Surgery and Transplantation, Faculty of Medicine, University Hospital RWTH Aachen, Aachen 52074, Germany
| | - Sean P Colgan
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - J Steve Bynon
- Department of Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Shizuo Akira
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Jared M Brown
- School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Holger K Eltzschig
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Elizabeth A Jacobsen
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| | - Cynthia Ju
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
23
|
Wang W, Xu Z, Zhang J, Wang S, Ge W, Li X, Mou W, Wang X, Chai W, Zhao J, Wang G, Xi Y, Qiu Y, Ji T, Gui J, Tai J, Ni X. Tim-3 is a potential regulator that inhibits monocyte inflammation in response to intermittent hypoxia in children with obstructive sleep apnea syndrome. Clin Immunol 2020; 222:108641. [PMID: 33271370 DOI: 10.1016/j.clim.2020.108641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
The mechanism of the characteristic intermittent hypoxia (IH) of obstructive sleep apnea syndrome (OSAS) on monocyte remain unclear. Our study found that OSAS children had a significantly upregulated expression in circulating proinflammatory cytokines IL-6 and IL-12, and endothelial injury markers VEGF and ICAM1. Association analysis revealed that the plasma TNFα, IL-1β, IL-6, IL-10 and IL-12 concentration were negatively associated with the minimal SpO2, a negative index for disease severity. OSAS monocytes presented an inflammatory phenotype with higher mRNA levels of inflammatory cytokines. Importantly, we noted a significant decrease in T-cell immunoglobulin and mucin domain (Tim)-3 expression in OSAS monocytes with the increase of the plasma proinflammatory cytokines. In vitro assay demonstrated that IH induced THP-1 cell overactivation via NF-κB dependent pathway was inhibited by the Tim-3 signal. Our results indicated that activation of monocyte inflammatory responses is closely related to OSAS-induced IH, and negatively mediated by a Tim-3 signaling pathway.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Major Disease in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China; Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China; Beijing Key Laboratory for Genetics of Birth Defects, MOE Key Laboratory of Major Diseases in Children, Center for Medical Genetics, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Zhifei Xu
- Respiratory Department, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Jie Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Shengcai Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Wentong Ge
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xiaodan Li
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Wenjun Mou
- Key Laboratory of Major Disease in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China; Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China; Beijing Key Laboratory for Genetics of Birth Defects, MOE Key Laboratory of Major Diseases in Children, Center for Medical Genetics, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xiaolin Wang
- Key Laboratory of Major Disease in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China; Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China; Beijing Key Laboratory for Genetics of Birth Defects, MOE Key Laboratory of Major Diseases in Children, Center for Medical Genetics, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Wenjia Chai
- Key Laboratory of Major Disease in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China; Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China; Beijing Key Laboratory for Genetics of Birth Defects, MOE Key Laboratory of Major Diseases in Children, Center for Medical Genetics, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Jing Zhao
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Guixiang Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yue Xi
- Key Laboratory of Major Disease in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China; Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China; Beijing Key Laboratory for Genetics of Birth Defects, MOE Key Laboratory of Major Diseases in Children, Center for Medical Genetics, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yue Qiu
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Tingting Ji
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Jingang Gui
- Key Laboratory of Major Disease in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China; Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China; Beijing Key Laboratory for Genetics of Birth Defects, MOE Key Laboratory of Major Diseases in Children, Center for Medical Genetics, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.
| | - Jun Tai
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.
| | - Xin Ni
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.
| |
Collapse
|
24
|
Hirao H, Dery KJ, Kageyama S, Nakamura K, Kupiec-Weglinski JW. Heme Oxygenase-1 in liver transplant ischemia-reperfusion injury: From bench-to-bedside. Free Radic Biol Med 2020; 157:75-82. [PMID: 32084514 PMCID: PMC7434658 DOI: 10.1016/j.freeradbiomed.2020.02.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/02/2020] [Accepted: 02/17/2020] [Indexed: 12/16/2022]
Abstract
Hepatic ischemia-reperfusion injury (IRI), a major risk factor for early allograft dysfunction (EAD) and acute or chronic graft rejection, contributes to donor organ shortage for life-saving orthotopic liver transplantation (OLT). The graft injury caused by local ischemia (warm and/or cold) leads to parenchymal cell death and release of danger-associated molecular patterns (DAMPs), followed by reperfusion-triggered production of reactive oxygen species (ROS), activation of inflammatory cells, hepatocellular damage and ultimate organ failure. Heme oxygenase 1 (HO-1), a heat shock protein-32 induced under IR-stress, is an essential component of the cytoprotective mechanism in stressed livers. HO-1 regulates anti-inflammatory responses and may be crucial in the pathogenesis of chronic diseases, such as arteriosclerosis, hypertension, diabetes and steatosis. An emerging area of study is macrophage-derived HO-1 and its pivotal intrahepatic homeostatic function played in IRI-OLT. Indeed, ectopic hepatic HO-1 overexpression activates intracellular SIRT1/autophagy axis to serve as a key cellular self-defense mechanism in both mouse and human OLT recipients. Recent translational studies in rodents and human liver transplant patients provide novel insights into HO-1 mediated cytoprotection against sterile hepatic inflammation. In this review, we summarize the current bench-to-bedside knowledge on HO-1 molecular signaling and discuss their future therapeutic potential to mitigate IRI in OLT.
Collapse
Affiliation(s)
- Hirofumi Hirao
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Kenneth J Dery
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Shoichi Kageyama
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Kojiro Nakamura
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA; Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Surgery, Nishi-Kobe Medical Center, 5-7-1 Koji-dai, Nishi-ku, Kobe, Hyogo, 651-2273, Japan
| | - Jerzy W Kupiec-Weglinski
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
25
|
Sun MJ, Cao ZQ, Leng P. The roles of galectins in hepatic diseases. J Mol Histol 2020; 51:473-484. [PMID: 32734557 DOI: 10.1007/s10735-020-09898-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/14/2020] [Indexed: 12/24/2022]
Abstract
Hepatic diseases include all diseases that occur in the liver, including hepatitis, cirrhosis, hepatocellular carcinoma, etc. Hepatic diseases worldwide are characterized by high incidences of digestive system diseases, which present with subtle symptoms, are difficult to treat and have high mortality. Galectins are β-galactoside-binding proteins that have been found to be aberrantly expressed during hepatic disease progression. An increasing number of studies have shown that abnormal expression of galectins is extensively involved in hepatic diseases, such as hepatocellular carcinoma (HCC), liver cirrhosis, hepatitis and liver fibrosis. Galectins function as intracellular and extracellular hepatic disease regulators mainly through the binding of their carbohydrate recognition domain to glycoconjugates expressed in hepatocytes. In this review, we summarize current research on the various roles of galectins in cirrhosis, hepatitis, liver fibrosis and HCC, which may provide a preliminary theoretical basis for the exploration of new targets for the treatment of hepatic diseases.
Collapse
Affiliation(s)
- Mei-Juan Sun
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, No. 16 Jiang Su Road, Qingdao, 266003, People's Republic of China
| | - Zhan-Qi Cao
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, No. 16 Jiang Su Road, Qingdao, 266003, People's Republic of China
| | - Ping Leng
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, No. 16 Jiang Su Road, Qingdao, 266003, People's Republic of China.
| |
Collapse
|
26
|
Wang L, Zhang J, Zhao X, Pei C, Li L, Kong X. Molecular characterization and biological function of a tandem-repeat galectin-9 in Qihe crucian carp Carassius auratus. FISH & SHELLFISH IMMUNOLOGY 2020; 103:366-376. [PMID: 32442500 DOI: 10.1016/j.fsi.2020.04.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Galectin-9, as one of the important PRRs in host, could initiate the immune defense responses through recognizing and binding PAMPs on the surface of invading microorganisms. In this study, a new galectin-9 cDNA was identified and characterized in Qihe crucian carp Carassius auratus (named as CaGal-9). The complete cDNA sequence of CaGal-9 was 1318 bp, with an open reading frame (ORF) of 963 bp encoding 320 amino acids. The predicted CaGal-9 protein contained two non-identical carbohydrate recognition domains (CRDs), which possessed the representative motifs H-NPR and WG-EER to bind with β-galactoside. Based on the RT-qPCR detection, CaGal-9 was ubiquitously expressed at mRNA level in various tested tissues, and predominately expressed in spleen. Upon Aeromonas hydrophila and poly I: C challenge, the expressions of CaGal-9 were remarkably up-regulated in liver, spleen, kidney and head kidney in a time-depended manner. The recombinant CaGal-9 (rCaGal-9), purified from Escherichia coli BL21 (DE3), exhibited strong binding ability with lipopolysaccharide (LPS), peptidoglycan (PGN) and β-Glucan, as well as the examined microorganisms including fungus, Gram-negative bacteria, and Gram-positive bacteria. With regard to the agglutinating activity of rCaGal-9, it could agglutinate erythrocytes of rabbit and crucian carp, and the examined microorganisms. Taken together, in this study, it was suggested that CaGal-9 could play an important role in immune defense against pathogenic microorganisms in C. auratus, which functions as an important PRR to recognize PAMPs and agglutinate pathogenic microorganisms.
Collapse
Affiliation(s)
- Li Wang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China; College of Animal Science and Technology, Henan Institute of Science and Technology, Henan province, PR China
| | - Jie Zhang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Xianliang Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Chao Pei
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Li Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan province, PR China.
| |
Collapse
|
27
|
Mo R, Feng XX, Wu YN, Wang H, He YP, Sun HH, Guo F, Chen Q, Yan W, Li PY, Liu M, Zhang GM, Tian DA, Feng ZH. Hepatocytes paradoxically affect intrahepatic IFN-γ production in autoimmune hepatitis due to Gal-9 expression and TLR2/4 ligand release. Mol Immunol 2020; 123:106-115. [PMID: 32485469 DOI: 10.1016/j.molimm.2020.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 05/09/2020] [Accepted: 05/13/2020] [Indexed: 02/08/2023]
Abstract
Hepatocytes are the targets in autoimmune hepatitis (AIH) that results in T cell-dependent liver injury. However, hepatocytes may also affect the hepatic T cells in AIH, but the underlying mechanisms are not fully understood. Here we report that hepatocytes could secrete galectin-9 (Gal-9) to suppress the intrahepatic production of Th1 cytokine IFN-γ and restrict AIH development, but hepatocyte damage resulted in opposite effects due to release of TLR2/4 ligands that promoted the intrahepatic production of IL-1β, IL-6, and IL-12. Through Tim-3, Gal-9 could efficiently suppress the intrahepatic T cell activation despite presence of TLR2/4 ligands, thus attenuating Th1 response in AIH. Intriguingly, intrahepatic IL-6/IL-12 suppressed the effect of TGF-β on Treg cells. Therefore, in AIH, Gal-9 promoted Foxp3 expression and function of hepatic Treg cells through TL1A signaling, although Treg function was still impaired, compared with that in naive state. Due to its promoting effect on Treg function, together with its effect on T effector cells in a Tim-3-independent way, Gal-9 could attenuate intrahepatic IFN-γ production by hindering the increase of hepatic CD4+CD43+ T cells resulting from extrahepatic T cell activation. TLR2/4 ligands attenuated the effects of Gal-9 on Treg cells and CD4+CD43+ T cells by increasing intrahepatic IL-6 and IL-12. Blocking TLR2/4 ligands could efficiently suppress intrahepatic IFN-γ production, liver injury, and hepatic fibrosis. These findings suggest that hepatocytes paradoxically affect Th1 response in AIH due to Gal-9 expression and TLR2/4 ligands release, and that targeting TLR2/4 signaling may provide an important approach in the therapeutic strategy for AIH.
Collapse
Affiliation(s)
- Ran Mo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, People's Republic of China
| | - Xin-Xia Feng
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, People's Republic of China.
| | - Ya-Nan Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, People's Republic of China
| | - Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, People's Republic of China
| | - Yong-Pei He
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, People's Republic of China
| | - Huan-Huan Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, People's Republic of China
| | - Fang Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, People's Republic of China
| | - Qian Chen
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, People's Republic of China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, People's Republic of China
| | - Pei-Yuan Li
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, People's Republic of China
| | - Mei Liu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, People's Republic of China
| | - Gui-Mei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, People's Republic of China
| | - De-An Tian
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, People's Republic of China
| | - Zuo-Hua Feng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
28
|
Nakamura K, Kageyama S, Kaldas FM, Hirao H, Ito T, Kadono K, Dery KJ, Kojima H, Gjertson DW, Sosa RA, Kujawski M, Busuttil RW, Reed EF, Kupiec-Weglinski JW. Hepatic CEACAM1 expression indicates donor liver quality and prevents early transplantation injury. J Clin Invest 2020; 130:2689-2704. [PMID: 32027621 PMCID: PMC7190917 DOI: 10.1172/jci133142] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/30/2020] [Indexed: 12/16/2022] Open
Abstract
Although CEACAM1 (CC1) glycoprotein resides at the interface of immune liver injury and metabolic homeostasis, its role in orthotopic liver transplantation (OLT) remains elusive. We aimed to determine whether/how CEACAM1 signaling may affect hepatic ischemia-reperfusion injury (IRI) and OLT outcomes. In the mouse, donor liver CC1 null mutation augmented IRI-OLT (CC1-KO→WT) by enhancing ROS expression and HMGB1 translocation during cold storage, data supported by in vitro studies where hepatic flush from CC1-deficient livers enhanced macrophage activation in bone marrow-derived macrophage cultures. Although hepatic CC1 deficiency augmented cold stress-triggered ASK1/p-p38 upregulation, adjunctive ASK1 inhibition alleviated IRI and improved OLT survival by suppressing p-p38 upregulation, ROS induction, and HMGB1 translocation (CC1-KO→WT), whereas ASK1 silencing (siRNA) promoted cytoprotection in cold-stressed and damage-prone CC1-deficient hepatocyte cultures. Consistent with mouse data, CEACAM1 expression in 60 human donor liver biopsies correlated negatively with activation of the ASK1/p-p38 axis, whereas low CC1 levels associated with increased ROS and HMGB1 translocation, enhanced innate and adaptive immune responses, and inferior early OLT function. Notably, reduced donor liver CEACAM1 expression was identified as one of the independent predictors for early allograft dysfunction (EAD) in human OLT patients. Thus, as a checkpoint regulator of IR stress and sterile inflammation, CEACAM1 may be considered as a denominator of donor hepatic tissue quality, and a target for therapeutic modulation in OLT recipients.
Collapse
Affiliation(s)
- Kojiro Nakamura
- Department of Surgery, Division of Liver and Pancreas Transplantation, Dumont-UCLA Liver Transplant Center
| | - Shoichi Kageyama
- Department of Surgery, Division of Liver and Pancreas Transplantation, Dumont-UCLA Liver Transplant Center
| | - Fady M. Kaldas
- Department of Surgery, Division of Liver and Pancreas Transplantation, Dumont-UCLA Liver Transplant Center
| | - Hirofumi Hirao
- Department of Surgery, Division of Liver and Pancreas Transplantation, Dumont-UCLA Liver Transplant Center
| | - Takahiro Ito
- Department of Surgery, Division of Liver and Pancreas Transplantation, Dumont-UCLA Liver Transplant Center
| | - Kentaro Kadono
- Department of Surgery, Division of Liver and Pancreas Transplantation, Dumont-UCLA Liver Transplant Center
| | - Kenneth J. Dery
- Department of Surgery, Division of Liver and Pancreas Transplantation, Dumont-UCLA Liver Transplant Center
| | - Hidenobu Kojima
- Department of Surgery, Division of Liver and Pancreas Transplantation, Dumont-UCLA Liver Transplant Center
| | - David W. Gjertson
- Department of Biostatistics, UCLA School of Public Health
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Rebecca A. Sosa
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Maciej Kujawski
- Department of Molecular Immunology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Ronald W. Busuttil
- Department of Surgery, Division of Liver and Pancreas Transplantation, Dumont-UCLA Liver Transplant Center
| | - Elaine F. Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jerzy W. Kupiec-Weglinski
- Department of Surgery, Division of Liver and Pancreas Transplantation, Dumont-UCLA Liver Transplant Center
| |
Collapse
|
29
|
Tim-3: A co-receptor with diverse roles in T cell exhaustion and tolerance. Semin Immunol 2020; 42:101302. [PMID: 31604535 DOI: 10.1016/j.smim.2019.101302] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022]
Abstract
T cell inhibitory co-receptors play a crucial role in maintaining the balance between physiologic immune responses and maladaptive ones. T cell immunoglobulin and mucin domain-containing-3 (Tim-3) is a unique inhibitory co-receptor in that its expression is chiefly restricted to interferon (IFN)γ-producing CD4+ and CD8+ T cells. Early reports firmly established its importance in maintaining peripheral tolerance in transplantation and autoimmunity. However, it has become increasingly clear that Tim-3 expression on T cells, together with other check-point molecules, in chronic infections and cancers can hinder productive immune responses. In this review, we outline what is currently known about the regulation of Tim-3 expression, its ligands and signaling. We discuss both its salutary and deleterious function in immune disorders, as well as the T cell-extrinsic and -intrinsic factors that regulate its function.
Collapse
|
30
|
Zhang C, Lin R, Li Z, Yang S, Bi X, Wang H, Aini A, Zhang N, Abulizi A, Sun C, Li L, Zhao Z, Qin R, Li X, Li L, Aji T, Shao Y, Vuitton DA, Tian Z, Wen H. Immune Exhaustion of T Cells in Alveolar Echinococcosis Patients and Its Reversal by Blocking Checkpoint Receptor TIGIT in a Murine Model. Hepatology 2020; 71:1297-1315. [PMID: 31410870 DOI: 10.1002/hep.30896] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 08/07/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS The cestode Echinococcus multilocularis infection, a serious health problem worldwide, causes alveolar echinococcosis (AE), a tumor-like disease predominantly located in the liver and able to spread to any organs. Until now, there have been few studies that explore how T-cell exhaustion contributes to the parasite's escape from immune attack and how it might be reversed. APPROACH AND RESULTS In this study, we found that liver T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT) expression was significantly enhanced and positively correlated with lesion activity in AE patients. High TIGIT expression in both liver-infiltrating and blood T cells was associated with their functional exhaustion, and its ligand CD155 was highly expressed by hepatocytes surrounding the infiltrating lymphocytes. In co-culture experiments using human blood T cells and hepatic cell line HL-7702, CD155 induced functional impairment of TIGIT+ T cells, and in vitro blockade with TIGIT antibody restored the function of AE patients' T cells. Similar TIGIT-related functional exhaustion of hepatic T cells and an abundant CD155 expression on hepatocytes were observed in E. multilocularis-infected mice. Importantly, in vivo blocking TIGIT prevented T-cell exhaustion and inhibited disease progression in E. multilocularis-infected mice. Mechanistically, CD4+ T cells were totally and CD8+ T cells partially required for anti-TIGIT-induced regression of parasite growth in mice. CONCLUSIONS This study demonstrates that E. multilocularis can induce T-cell exhaustion through inhibitory receptor TIGIT, and that blocking this checkpoint may reverse the functional impairment of T cells and represent a possible approach to immunotherapy against AE.
Collapse
Affiliation(s)
- Chuanshan Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,Basic Medical College, Xinjiang Medical University, Urumqi, China
| | - Renyong Lin
- Xinjiang Key Laboratory of Echinococcosis, Clinical Medicine Institute, WHO Collaborating Centre on Prevention and Case Management of Echinococcosis, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zhide Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Shuting Yang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiaojuan Bi
- Xinjiang Key Laboratory of Echinococcosis, Clinical Medicine Institute, WHO Collaborating Centre on Prevention and Case Management of Echinococcosis, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hui Wang
- Xinjiang Key Laboratory of Echinococcosis, Clinical Medicine Institute, WHO Collaborating Centre on Prevention and Case Management of Echinococcosis, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Abudusalamu Aini
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Ning Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Abuduaini Abulizi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Cheng Sun
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Diseases, University of Science and Technology of China, Hefei, China
| | - Liang Li
- Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhibin Zhao
- Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Rongde Qin
- Department of Nuclear Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiaohong Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Liang Li
- Xinjiang Key Laboratory of Echinococcosis, Clinical Medicine Institute, WHO Collaborating Centre on Prevention and Case Management of Echinococcosis, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Tuerganaili Aji
- Department of Hepatic Hydatid and Hepatobiliary Surgery, Digestive and Vascular Surgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yingmei Shao
- Department of Hepatic Hydatid and Hepatobiliary Surgery, Digestive and Vascular Surgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Dominique A Vuitton
- WHO-Collaborating Centre for the Prevention and Treatment of Human Echinococcosis, Department of Parasitology, University Hospital, University Bourgogne Franche-Comté, Besançon, France
| | - Zhigang Tian
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Diseases, University of Science and Technology of China, Hefei, China
| | - Hao Wen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
31
|
Xue Z, Zhang Y, Liu Y, Zhang C, Shen XD, Gao F, Busuttil RW, Zheng S, Kupiec-Weglinski JW, Ji H. PACAP neuropeptide promotes Hepatocellular Protection via CREB-KLF4 dependent autophagy in mouse liver Ischemia Reperfusion Injury. Am J Cancer Res 2020; 10:4453-4465. [PMID: 32292507 PMCID: PMC7150481 DOI: 10.7150/thno.42354] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/02/2020] [Indexed: 12/13/2022] Open
Abstract
Organ ischemia reperfusion injury (IRI), associated with acute hepatocyte death, remains an unresolved problem in clinical orthotopic liver transplantation (OLT). Autophagy, an intracellular self-digesting progress, is responsible for cell reprograming required to regain post-stress homeostasis. Methods: Here, we analyzed the cytoprotective mechanism of pituitary adenylate cyclase-activating polypeptide (PACAP)-promoted hepatocellular autophagy in a clinically relevant mouse model of extended hepatic cold storage (4 °C UW solution for 20 h) followed by syngeneic OLT. Results: In contrast to 41.7% of liver graft failure by day 7 post-transplant in control group, PACAP treatment significantly improved graft survival (91.7% by day 14), and promoted autophagy-associated regeneration programs in OLT. In parallel in vitro studies, PACAP-enhanced autophagy ameliorated cellular damage (LDH/ALT levels), and diminished necrosis in H2O2-stressed primary hepatocytes. Interestingly, PACAP not only induced nuclear cAMP response element-binding protein (CREB), but also triggered reprogramming factor Kruppel-like factor 4 (KLF4) expression in IR-stressed OLT. Indeed, CREB inhibition attenuated hepatic autophagy and recreated hepatocellular injury in otherwise PACAP-protected livers. Furthermore, CREB inhibition suppressed PACAP-induced KLF4 expression, whereas KLF4 blockade abolished PACAP-promoted autophagy and neutralized PACAP-mediated hepatoprotection both in vivo and in vitro. Conclusion: Current study documents the essential neural regulation of PACAP-promoted autophagy in hepatocellular homeostasis in OLT, which provides the emerging therapeutic principle to combat hepatic IRI in OLT.
Collapse
|
32
|
Zhao L, Yu G, Han Q, Cui C, Zhang B. TIM-3: An emerging target in the liver diseases. Scand J Immunol 2020; 91:e12825. [PMID: 31486085 DOI: 10.1111/sji.12825] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/27/2019] [Accepted: 08/31/2019] [Indexed: 12/17/2022]
Abstract
T cell immunoglobulin domain and mucin domain-containing molecule 3 (TIM-3) is found expression in the surface of terminally differentiated T cells and belongs to the TIM family of type Ⅰ transmembrane proteins. It binds to the ligand Galectin-9 and mediates T cell apoptosis. As the research progresses, TIM-3 is also expressed in Th17, NK, monocyte, which binds to ligand and induce immune peripheral tolerance in both mice and man. Numerous researches have demonstrated that TIM-3 influences liver diseases, including liver-associated chronic viral infection, liver fibrosis, liver cancer et al and suggest new approaches to intervention. Currently, targeted therapy of TIM-3 is a new treatment in the field of immunization. Although many studies have proven that TIM-3 has an inhibitory effect in vivo, the specific mechanism is not clear. Herein, we summarize the important role of TIM-3 in the regulation of liver disease and prospects for future clinical research. TIM-3 will provide new targets for improving clinical liver disease.
Collapse
Affiliation(s)
- Lizhen Zhao
- Department of Immunology, Medical College of Qingdao University, Qingdao, China
| | - Guoyi Yu
- Editorial Office of Journal of Qingdao University (Medical Science), Qingdao, China
| | - Qi Han
- Department of Immunology, Medical College of Qingdao University, Qingdao, China
| | - Congxian Cui
- Affiliated Hospital of Qingdao University Medical College, Qingdao, China
| | - Bei Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, China
| |
Collapse
|
33
|
Zheng L, Ling W, Zhu D, Li Z, Kong L. Roquin-1 Regulates Macrophage Immune Response and Participates in Hepatic Ischemia-Reperfusion Injury. THE JOURNAL OF IMMUNOLOGY 2020; 204:1322-1333. [PMID: 31996460 DOI: 10.4049/jimmunol.1900053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 12/23/2019] [Indexed: 12/19/2022]
Abstract
With the development of liver surgery, ischemia-reperfusion (IR) injury has received increasing attention. Roquin-1 has been shown to play an important role in innate immune and immune balance. We demonstrate that Roquin-1 expression increased at 1 h after IR and then decreased in C57B/L mice. The immunofluorescence double-label showed that Roquin-1 was mainly expressed in macrophages (mø). Furthermore, we used clodronate liposomes to remove mø, and injected the bone marrow-derived mø (BMDM) through the tail vein in 1 h before IR. We found that liver IR injury was aggravated by Roquin-1 interference. The results of PCR and ELISA suggested that after interference with Roquin-1, mø increased toward M1 and decreased toward M2. Then, interference with Roquin-1 promoted the polarization of mø to M1 and inhibited the polarization of M2. By Western blot technology and AMPKα and mTOR inhibitors, we found that Roquin-1 promotes the phosphorylation of mTOR and STAT3 by inhibiting the phosphorylation of AMPKα. We used AICAR to activate AMPKα in mø and found that the level of ubiquitination of AMPKα was decreased after activation of AMPKα. Furthermore, by bioinformatics methods, we identified potential ubiquitination sites on AMPKα. By the point mutation experiments in vitro, we confirmed that the ubiquitination of these sites is regulated by Roquin-1. Meanwhile, Roquin-1 interference inhibited the activation and function of AMPKα. This topic describes the protection of liver IR injury by Roquin-1 and discusses its main mechanism for regulating AMPKα activity through ubiquitination and affecting the polarization of mø.
Collapse
Affiliation(s)
- Lei Zheng
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 200011 Shanghai, People's Republic of China; and
| | - Wei Ling
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, People's Republic of China
| | - Deming Zhu
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, People's Republic of China
| | - Zhi Li
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, People's Republic of China
| | - Lianbao Kong
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, People's Republic of China
| |
Collapse
|
34
|
Vagus Nerve Stimulation Alleviates Hepatic Ischemia and Reperfusion Injury by Regulating Glutathione Production and Transformation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1079129. [PMID: 32064020 PMCID: PMC6996675 DOI: 10.1155/2020/1079129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/02/2019] [Accepted: 01/02/2020] [Indexed: 01/01/2023]
Abstract
Inflammation and oxidative stress are pivotal mechanisms for the pathogenesis of ischemia and reperfusion injury (IRI). Vagus nerve stimulation (VNS) may participate in maintaining oxidative homeostasis and response to external stimulus or injury. We investigated whether the in vivo VNS can protect the liver from IRI. In this study, hepatic IRI were induced by ligating the vessels supplying the left and middle lobes of the liver, which underwent 1 h occlusion followed with 24 h reperfusion. VNS was initiated 15 min after ischemia and continued 30 min. Hepatic function, histology, and apoptosis rates were evaluated after 24 h reperfusion. Compared with the IRI group, VNS significantly improved hepatic function. The protective effect was accompanied by a reduction in histological damage in the ischemic area, and the apoptosis rate of hepatocytes has considerable reduction. To find the underlying mechanism, proteomic analysis was performed and differential expression of glutathione synthetase (GSS) and glutathione S-transferase (GST) was observed. Subsequently, test results indicated that VNS upregulated the expression of mRNA and protein of GSS and GST. Meanwhile, VNS increased the plasma levels of glutathione and glutathione peroxidases. We found that VNS alleviated hepatic IRI by upregulating the antioxidant glutathione via the GSS/glutathione/GST signaling pathway.
Collapse
|
35
|
Robinson BS, Arthur CM, Evavold B, Roback E, Kamili NA, Stowell CS, Vallecillo-Zúniga ML, Van Ry PM, Dias-Baruffi M, Cummings RD, Stowell SR. The Sweet-Side of Leukocytes: Galectins as Master Regulators of Neutrophil Function. Front Immunol 2019; 10:1762. [PMID: 31440233 PMCID: PMC6693361 DOI: 10.3389/fimmu.2019.01762] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/11/2019] [Indexed: 12/13/2022] Open
Abstract
Among responders to microbial invasion, neutrophils represent one of the earliest and perhaps most important factors that contribute to initial host defense. Effective neutrophil immunity requires their rapid mobilization to the site of infection, which requires efficient extravasation, activation, chemotaxis, phagocytosis, and eventual killing of potential microbial pathogens. Following pathogen elimination, neutrophils must be eliminated to prevent additional host injury and subsequent exacerbation of the inflammatory response. Galectins, expressed in nearly every tissue and regulated by unique sensitivity to oxidative and proteolytic inactivation, appear to influence nearly every aspect of neutrophil function. In this review, we will examine the impact of galectins on neutrophils, with a particular focus on the unique biochemical traits that allow galectin family members to spatially and temporally regulate neutrophil function.
Collapse
Affiliation(s)
- Brian S Robinson
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Connie M Arthur
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Birk Evavold
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Ethan Roback
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Nourine A Kamili
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | - Caleb S Stowell
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| | | | - Pam M Van Ry
- Department of Biochemistry, Brigham Young University, Provo, UT, United States
| | - Marcelo Dias-Baruffi
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, São Paulo, Brazil
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Sean R Stowell
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
36
|
Chen ZQ, Yu H, Li HY, Shen HT, Li X, Zhang JY, Zhang ZW, Wang Z, Chen G. Negative regulation of glial Tim-3 inhibits the secretion of inflammatory factors and modulates microglia to antiinflammatory phenotype after experimental intracerebral hemorrhage in rats. CNS Neurosci Ther 2019; 25:674-684. [PMID: 30677253 PMCID: PMC6515709 DOI: 10.1111/cns.13100] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/19/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022] Open
Abstract
AIMS To investigate the critical role of Tim-3 in the polarization of microglia in intracerebral hemorrhage (ICH)-induced secondary brain injury (SBI). METHODS An in vivo ICH model was established by autologous whole blood injection into the right basal ganglia in rats. The primary cultured microglia were treated with oxygen-hemoglobin (OxyHb) to mimic ICH in vitro. In this experiment, specific siRNA for Tim-3 and recombinant human TIM-3 were exploited both in vivo and in vitro. RESULTS Tim-3 was increased in the brain after ICH, which mainly distributed in microglia, but not neurons and astrocytes. However, the blockade of Tim-3 by siRNA markedly reduced secretion of inflammatory factors, neuronal degeneration, neuronal cell death, and brain edema. Meanwhile, downregulation of Tim-3 promoted the transformation of microglia phenotype from M1 to M2 after ICH. Furthermore, upregulation of Tim-3 can increase the interaction between Tim-3 and Galectin-9 (Gal-9) and activate Toll-like receptor 4 (TLR-4) pathway after ICH. Increasing the expression of Tim-3 may be related to the activation of HIF-1α. CONCLUSION Tim-3 may be an important link between neuroinflammation and microglia polarization through Tim-3/Gal-9 and TLR-4 signaling pathways which induced SBI after ICH.
Collapse
Affiliation(s)
- Zhou-Qing Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hao Yu
- Department of Neurosurgery, Nantong No.1 People Hospital, Nantong, China
| | - Hai-Ying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hai-Tao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ju-Yi Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhu-Wei Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
37
|
Li G, Hou C, Dou S, Zhang J, Zhang Y, Liu Y, Wang Z, Xiao H, Wang R, Chen G, Li Y, Feng J, Shen B, Han G. Monoclonal antibody against human Tim-3 enhances antiviral immune response. Scand J Immunol 2019; 89:e12738. [DOI: 10.1111/sji.12738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Ge Li
- Institute of Beijing Brain Sciences; Beijing China
- Wenzhou Medical University; Wenzhou China
| | - Chunmei Hou
- Institute of Beijing Brain Sciences; Beijing China
| | - Shuaijie Dou
- Institute of Beijing Brain Sciences; Beijing China
| | | | | | - Yiqiong Liu
- Institute of Beijing Brain Sciences; Beijing China
| | - Zhiding Wang
- Institute of Beijing Brain Sciences; Beijing China
| | - He Xiao
- Institute of Beijing Brain Sciences; Beijing China
| | - Renxi Wang
- Institute of Beijing Brain Sciences; Beijing China
| | | | - Yan Li
- Institute of Beijing Brain Sciences; Beijing China
| | - Jiannan Feng
- Institute of Beijing Brain Sciences; Beijing China
| | - Beifen Shen
- Institute of Beijing Brain Sciences; Beijing China
| | - Gencheng Han
- Institute of Beijing Brain Sciences; Beijing China
| |
Collapse
|
38
|
Zhang P, Ming Y, Cheng K, Niu Y, Ye Q. Gene Expression Profiling in Ischemic Postconditioning to Alleviate Mouse Liver Ischemia/Reperfusion Injury. Int J Med Sci 2019; 16:343-354. [PMID: 30745817 PMCID: PMC6367534 DOI: 10.7150/ijms.29393] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/17/2018] [Indexed: 12/16/2022] Open
Abstract
Ischemic postconditioning (IPO) attenuates hepatic ischemia/reperfusion (I/R) injury. However, little is known about the underlying biological pathophysiology, which could be, at least in part, informed by exploring the transcriptomic changes using next-generation RNA sequencing (RNA-Seq). In this study, 18 mice (C57BL/6) were involved and randomly assigned to three groups: normal (n=6), I/R (n=6, subjected to 70% hepatic I/R), and IR+IPO (n=6, applying IPO to mice with I/R injury). We randomly selected 3 mice per group and extracted their liver tissues for next-generation RNA-Seq. We performed a bioinformatics analysis for two comparisons: normal vs. I/R and I/R vs. IR+IPO. From the analysis, 2416 differentially expressed genes (DEGs) were identified (p < 0.05 and fold change ≥ 1.5). Gene ontology (GO) analysis revealed that these genes were mainly related to cellular metabolic processes, nucleic acids and protein binding processes. The enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for the DEGs were the mitogen-activated protein kinase (MAPK), IL-17 signalling pathway, regulating pluripotency of stem cells, and insulin resistance pathway. Validation of 12 selected DEGs by qRT-PCR showed that Cyr61, Atf3, Nr4a1, Gdf15, Osgin1, Egr1, Epha2, Dusp1, Dusp6, Gadd45a and Gadd45b were significantly amplified. Finally, a protein-protein interaction (PPI) network constructed to determine interactions of these 11 DEGs. In summary, by exploring gene expression profiling in regard to hepatic I/R and IPO using next-generation RNA-Seq, we suggested a few progression-related genes and pathways, providing some clues for future experimental research.
Collapse
Affiliation(s)
- Pengpeng Zhang
- Department of Transplant Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Yingzi Ming
- Department of Transplant Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Ke Cheng
- Department of Transplant Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Ying Niu
- Department of Transplant Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Qifa Ye
- Department of Transplant Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, China.,Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei 430071, China
| |
Collapse
|
39
|
Li Y, Zhang J, Zhang D, Hong X, Tao Y, Wang S, Xu Y, Piao H, Yin W, Yu M, Zhang Y, Fu Q, Li D, Chang X, Du M. Tim-3 signaling in peripheral NK cells promotes maternal-fetal immune tolerance and alleviates pregnancy loss. Sci Signal 2017; 10:10/498/eaah4323. [PMID: 28951537 DOI: 10.1126/scisignal.aah4323] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Pregnancy loss occurs in about 15% of clinically recognized pregnancies, and defective maternal-fetal immune tolerance contributes to more than 50% of these events. We found that signaling by the type I membrane protein T cell immunoglobulin and mucin-containing protein 3 (Tim-3) in natural killer (NK) cells had an essential protective role during early pregnancy. Tim-3 on peripheral NK (pNK) cells was transiently increased in abundance during the first trimester of pregnancy, which depended on interleukin-4 (IL-4)-signal transducer and activator of transcription 6 (STAT6) and progesterone signaling. Tim-3+ pNK cells displayed immunosuppressive activities, including the production of anti-inflammatory cytokines and the induction of regulatory T cells (Tregs) in a transforming growth factor-β1 (TGF-β1)-dependent manner. Tim-3 on pNK cells was stimulated by its ligand galectin-9 (Gal-9), leading to signaling by the kinases c-Jun N-terminal kinase (JNK) and AKT. In recurrent miscarriage (RM) patients, Tim-3 abundance on pNK cells was reduced and the immunosuppressive activity of Tim-3+ pNK cells was impaired. Compared to Tim-3+ pNK cells from donors with normal pregnancies, RM patient Tim-3+ pNK cells exhibited changes in DNA accessibility in certain genetic loci, which were reversed by inhibiting accessible chromatin reader proteins. Furthermore, Tim-3+ pNK cells, but not Tim-3- pNK cells, reduced fetal loss in abortion-prone and NK cell-deficient mice. Together, our findings reveal a critical role for Tim-3-Gal-9 signaling-mediated immunoregulation by pNK cells in maternal-fetal immune tolerance and suggest that Tim-3 abundance on pNK cells is a potential biomarker for RM diagnosis.
Collapse
Affiliation(s)
- Yanhong Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China.,Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Jiayuan Zhang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Di Zhang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China.,Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Xiaowu Hong
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yu Tao
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China
| | - Songcun Wang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China.,Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Yuanyuan Xu
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China
| | - Hailan Piao
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China
| | - Weijie Yin
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Min Yu
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China.,In Vitro Fertilization-Embryo Transfer Center, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China
| | - Yin Zhang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China.,Department of Obstetrics, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China
| | - Qiang Fu
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China
| | - Dajin Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China.,Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Xing Chang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| | - Meirong Du
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China. .,Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| |
Collapse
|
40
|
MicroRNA-155 Deficiency in Kupffer Cells Ameliorates Liver Ischemia-Reperfusion Injury in Mice. Transplantation 2017. [PMID: 28640790 DOI: 10.1097/tp.0000000000001765] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND MicroRNA-155 (miR-155) is known to be involved in autoimmune diseases, inflammation, and transplantation. However, its role in a warm hepatic ischemia-reperfusion (IR) model has not been fully elucidated. METHODS Partial hepatic IR was performed in wild-type and miR-155-deficient mice treated with or without GdCl3, and then the serum transaminase concentration and histology were analyzed. Kupffer cells (KCs) were isolated from the liver after IR, and immunohistochemistry was used to evaluate activation and polarization. In addition, the mRNA concentrations of various inflammatory cytokines were measured. Macrophages were obtained from the abdominal cavity and challenged with or without lipopolysaccharide to determine the influence of miR-155 deficiency on macrophage polarization in vitro. Furthermore, we used in vitro coculture assays to determine the effect of miR-155 deficiency on hepatocyte apoptosis induced directly by KCs. RESULTS miR-155 deficiency ameliorated liver IR injury, and inhibition of KCs by GdCl3 abolished this protective effect. miR-155 deficiency decreased CD80, CD86, and major histocompatibility complex class II expression in KCs after IR and tipped the M1/M2 balance toward an anti-inflammatory profile, where proinflammatory cytokine secretion was suppressed and IL-10 was enhanced. In addition, hepatocyte apoptosis was reduced in coculture with miR-155-deficient KCs in vitro. CONCLUSIONS miR-155 deficiency plays an effective role in attenuating liver IR injury likely by regulating the activation and inflammatory response, as well as modifying the polarization of KCs.
Collapse
|
41
|
唐 映, 徐 加. Tim-3在肝脏疾病中的调节作用. Shijie Huaren Xiaohua Zazhi 2017; 25:2080-2087. [DOI: 10.11569/wcjd.v25.i23.2080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
T淋巴细胞免疫球蛋白黏蛋白分子(T-cell immunoglobulin domain and mucin domain-containing molecule, Tim)-3是Tim家族中的一员, 为近年来新发现的一种在辅助Ⅰ型T淋巴细胞(Help T cell 1, Th1)上特异性表达的Ⅰ型细胞表面分子. Tim-3作为负性调节因子通过与其配体Galectin-9结合引起细胞死亡, 进而调控Th1型细胞功能. Tim-3还表达于其他类型细胞表面, 如自然杀伤细胞、树突状细胞和单核细胞, 对自身免疫性疾病和其他免疫介导的疾病进行免疫调控. 对Tim-3在不同细胞不同免疫条件下的功能以及如何调节进行研究, 将有利于研发Tim-3的潜在治疗作用. 近年来大量研究显示Tim-3通道与肝脏疾病发生发展有着密切关系, 本文就其在肝脏疾病中的调节作用做一总结.
Collapse
|
42
|
Golden-Mason L, Rosen HR. Galectin-9: Diverse roles in hepatic immune homeostasis and inflammation. Hepatology 2017; 66:271-279. [PMID: 28195343 PMCID: PMC5521806 DOI: 10.1002/hep.29106] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/27/2017] [Accepted: 02/06/2017] [Indexed: 12/11/2022]
Abstract
Glycan-binding proteins, which include galectins, are involved at all stages of immunity and inflammation, from initiation through resolution. Galectin-9 (Gal-9) is highly expressed in the liver and has a wide variety of biological functions in innate and adaptive immunity that are instrumental in the maintenance of hepatic homeostasis. In the setting of viral hepatitis, increased expression of Gal-9 drives the expansion of regulatory T cells and contraction of effector T cells, thereby favoring viral persistence. The dichotomous nature of Gal-9 is evident in hepatocellular carcinoma, where loss of expression in hepatocytes promotes tumor growth and metastasis, whereas overexpression by Kupffer cells and endothelial cells inhibits the antitumor immune response. In nonalcoholic fatty liver disease, Gal-9 is involved indirectly in the expansion of protective natural killer T-cell populations. In ischemic liver injury, hepatocyte-derived Gal-9 is both diagnostic and cytoprotective. In drug-induced acute liver failure, plasma levels correlate with outcome. Here, we offer a synthesis of recent and emerging findings on Gal-9 in the regulation of hepatic inflammation. Ongoing studies are warranted to better elucidate the pathophysiology of hepatic immune-mediated diseases and to develop new therapeutic interventions using glycan-binding proteins. (Hepatology 2017;66:271-279).
Collapse
Affiliation(s)
- Lucy Golden-Mason
- Division of Gastroenterology & Hepatology, University of Colorado Denver Medical Center, Aurora, CO
| | - Hugo R Rosen
- Division of Gastroenterology & Hepatology, University of Colorado Denver Medical Center, Aurora, CO
| |
Collapse
|
43
|
Abstract
Liver ischemia reperfusion activates innate immune system to drive the full development of inflammatory hepatocellular injury. Damage-associated molecular patterns (DAMPs) stimulate myeloid and dendritic cells via pattern recognition receptors (PRRs) to initiate the immune response. Complex intracellular signaling network transduces inflammatory signaling to regulate both innate immune cell activation and parenchymal cell death. Recent studies have revealed that DAMPs may trigger not only proinflammatory but also immune regulatory responses by activating different PRRs or distinctive intracellular signaling pathways or in special cell populations. Additionally, tissue injury milieu activates PRR-independent receptors which also regulate inflammatory disease processes. Thus, the innate immune mechanism of liver ischemia-reperfusion injury involves diverse molecular and cellular interactions, subjected to both endogenous and exogenous regulation in different cells. A better understanding of these complicated regulatory pathways/network is imperative for us in designing safe and effective therapeutic strategy to ameliorate liver ischemia-reperfusion injury in patients.
Collapse
|
44
|
Zhang C, Zhang Y, Liu Y, Liu Y, Kageyama S, Shen XD, Gao F, Zheng S, Busuttil RW, Shaw GD, Ji H, Kupiec-Weglinski JW. A Soluble Form of P Selectin Glycoprotein Ligand 1 Requires Signaling by Nuclear Factor Erythroid 2-Related Factor 2 to Protect Liver Transplant Endothelial Cells Against Ischemia-Reperfusion Injury. Am J Transplant 2017; 17:1462-1475. [PMID: 27977895 PMCID: PMC5444987 DOI: 10.1111/ajt.14159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/01/2016] [Accepted: 11/26/2016] [Indexed: 01/25/2023]
Abstract
Liver endothelial cell (LEC) damage is essential in the pathogenesis of ischemia-reperfusion injury (IRI) in transplant recipients. We analyzed the mechanism of LEC resistance against IRI by using a novel recombinant soluble form of P selectin glycoprotein ligand 1, tandem P selectin glycoprotein ligand immunoglobulin (TSGL-Ig), in a mouse model of hepatic cold preservation (4°C in University of Wisconsin solution for 20 h) and syngeneic orthotopic liver transplantation (OLT). Unlike controls, TSGL-Ig protected orthotopic liver transplants against ischemia-reperfusion (IR) stress, shown by depressed serum alanine aminotransferase levels, well-preserved hepatic architecture, and improved survival (42% vs. 92%). TSGL-Ig suppressed neutrophil/macrophage sequestration and proinflammatory cytokine/chemokine programs in OLT. Treatment with TSGL-Ig mitigated LEC activation (P and E selectin, VCAM-1 and intercellular adhesion molecule 1 expression). In parallel in vitro studies, TSGL-Ig diminished cellular damage in H2 O2 -stressed LEC cultures (lactic acid dehydrogenase and alanine aminotransferase levels). Increased thioredoxin, glutamate-cysteine ligase, NAD(P)H quinone dehydrogenase 1, and hypoxia-inducible factor 1α expression, along with transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), implied that TSGL-Ig exerts antioxidant functions in IR-stressed OLT and H2 O2 -stressed LECs. Indeed, Nrf2-deficient livers suffered fulminant IRI compared with WT despite concomitant TSGL-Ig therapy. Thus, TSGL-Ig is not only acting as a competitive antagonist blocking leukocyte migration into IR-stressed liver, but it may also act directly as an agonist stimulating Nrf2-mediated cytoprotection in LECs. This study supports the role of P selectin signaling in hepatic homeostasis in OLT, with broad implications for tissue damage conditions.
Collapse
Affiliation(s)
- Cheng Zhang
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA,Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Zhang
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA,Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuanxing Liu
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA,Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuan Liu
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA,Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Shoichi Kageyama
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA
| | - Xiu-da Shen
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA
| | - Feng Gao
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA
| | - Shusen Zheng
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ronald W. Busuttil
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA
| | | | - Haofeng Ji
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA
| | - Jerzy W. Kupiec-Weglinski
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
45
|
Tian Y, Wang J, Wang W, Ding Y, Sun Z, Zhang Q, Wang Y, Xie H, Yan S, Zheng S. Mesenchymal stem cells improve mouse non-heart-beating liver graft survival by inhibiting Kupffer cell apoptosis via TLR4-ERK1/2-Fas/FasL-caspase3 pathway regulation. Stem Cell Res Ther 2016. [DOI: 2778867410.1186/s13287-016-0416-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract
Background
Liver transplantation is the optimal treatment option for end-stage liver disease, but organ shortages dramatically restrict its application. Donation after cardiac death (DCD) is an alternative approach that may expand the donor pool, but it faces challenges such as graft dysfunction, early graft loss, and cholangiopathy. Moreover, DCD liver grafts are no longer eligible for transplantation after their warm ischaemic time exceeds 30 min. Mesenchymal stem cells (MSCs) have been proposed as a promising therapy for treatment of certain liver diseases, but the role of MSCs in DCD liver graft function remains elusive.
Methods
In this study, we established an arterialized mouse non-heart-beating (NHB) liver transplantation model, and compared survival rates, cytokine and chemokine expression, histology, and the results of in vitro co-culture experiments in animals with or without MSC infusion.
Results
MSCs markedly ameliorated NHB liver graft injury and improved survival post-transplantation. Additionally, MSCs suppressed Kupffer cell apoptosis, Th1/Th17 immune responses, chemokine expression, and inflammatory cell infiltration. In vitro, PGE2 secreted by MSCs inhibited Kupffer cell apoptosis via TLR4-ERK1/2-caspase3 pathway regulation.
Conclusion
Our study uncovers a protective role for MSCs and elucidates the underlying immunomodulatory mechanism in an NHB liver transplantation model. Our results suggest that MSCs are uniquely positioned for use in future clinical studies owing to their ability to protect DCD liver grafts, particularly in patients for whom DCD organs are not an option according to current criteria.
Collapse
|
46
|
Tian Y, Wang J, Wang W, Ding Y, Sun Z, Zhang Q, Wang Y, Xie H, Yan S, Zheng S. Mesenchymal stem cells improve mouse non-heart-beating liver graft survival by inhibiting Kupffer cell apoptosis via TLR4-ERK1/2-Fas/FasL-caspase3 pathway regulation. Stem Cell Res Ther 2016; 7:157. [PMID: 27788674 PMCID: PMC5084468 DOI: 10.1186/s13287-016-0416-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/20/2016] [Accepted: 10/01/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Liver transplantation is the optimal treatment option for end-stage liver disease, but organ shortages dramatically restrict its application. Donation after cardiac death (DCD) is an alternative approach that may expand the donor pool, but it faces challenges such as graft dysfunction, early graft loss, and cholangiopathy. Moreover, DCD liver grafts are no longer eligible for transplantation after their warm ischaemic time exceeds 30 min. Mesenchymal stem cells (MSCs) have been proposed as a promising therapy for treatment of certain liver diseases, but the role of MSCs in DCD liver graft function remains elusive. METHODS In this study, we established an arterialized mouse non-heart-beating (NHB) liver transplantation model, and compared survival rates, cytokine and chemokine expression, histology, and the results of in vitro co-culture experiments in animals with or without MSC infusion. RESULTS MSCs markedly ameliorated NHB liver graft injury and improved survival post-transplantation. Additionally, MSCs suppressed Kupffer cell apoptosis, Th1/Th17 immune responses, chemokine expression, and inflammatory cell infiltration. In vitro, PGE2 secreted by MSCs inhibited Kupffer cell apoptosis via TLR4-ERK1/2-caspase3 pathway regulation. CONCLUSION Our study uncovers a protective role for MSCs and elucidates the underlying immunomodulatory mechanism in an NHB liver transplantation model. Our results suggest that MSCs are uniquely positioned for use in future clinical studies owing to their ability to protect DCD liver grafts, particularly in patients for whom DCD organs are not an option according to current criteria.
Collapse
Affiliation(s)
- Yang Tian
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China
| | - Jingcheng Wang
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China
| | - Wei Wang
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China
| | - Yuan Ding
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhongquan Sun
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qiyi Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yan Wang
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China
| | - Haiyang Xie
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, China
| | - Sheng Yan
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China. .,Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China. .,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, China.
| | - Shusen Zheng
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China. .,Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China. .,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
47
|
Abstract
There is a high risk for the survival of patients with an end-stage renal disease for kidney transplantation. To avoid rejection by strict medication adherence is of utmost importance to avoid the failure of a kidney transplant. It is imperative to develop non-invasive biomarkers to assess immunity risk, and to ultimately provide guidance for therapeutic decision-making following kidney transplantation. Urine biomarkers may represent the promising non-invasive tools that will help in predicting risk or success rates of kidney transplantations. Furthermore, composite urinary biomarkers or urinary biomarker panel array might be critical in improving the sensitivity and specificity in reflecting various risks of kidney failure during transplantation. This review primarily focuses on the role of such biomarkers in predicting chronic kidney disease (CKD) progression and/or cardiovascular disease (CVD) risk in renal allograft.
Collapse
Affiliation(s)
- Hongting Wang
- Department of Biomedical Engineering, University of Houston, Texas, United States of America; National Pharmacology Laboratory of Chinese Medicine, Basic Medical College. Wannan Medical College, Wuhu 241002, Anhui Province, China
| | - Zuan-Tao Lin
- Department of Biomedical Engineering, University of Houston, Texas, United States of America
| | - Yulin Yuan
- Department of Biomedical Engineering, University of Houston, Texas, United States of America; Department of Clinical Laboratory, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Tianfu Wu
- Department of Biomedical Engineering, University of Houston, Texas, United States of America
| |
Collapse
|
48
|
Sabins NC, Harman BC, Barone LR, Shen S, Santulli-Marotto S. Differential Expression of Immune Checkpoint Modulators on In Vitro Primed CD4(+) and CD8(+) T Cells. Front Immunol 2016; 7:221. [PMID: 27379090 PMCID: PMC4909735 DOI: 10.3389/fimmu.2016.00221] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/23/2016] [Indexed: 12/13/2022] Open
Abstract
PD-1, TIM-3, and LAG-3 are molecules shown to have immune modulatory properties, and although initially classified as indicators of T cell hyporesponsiveness, it has become clear that they are also associated with the normal course of T cell activation. Functional studies have focused mainly on CD8+ T cells during chronic inflammation due to interest in co-opting the cellular immune response to eliminate viral or cancerous threats; however, there remains a relative lack of data regarding the expression of these molecules on CD4+ T cells. Here, we report that expression of the immune checkpoint (IC) molecules PD-1, LAG-3, and TIM-3 are differentially expressed on CD4+ and CD8+ T cells in the allogeneic response resulting from a mixed lymphocyte reaction. In these studies, PD-1 expression is higher on CD4+ T cells compared to CD8+ T cells. In contrast, TIM-3 is expressed at higher levels on CD8+ T cells compared to CD4+ T cells with an apparent reciprocity in that PD-1+ CD4+ T cells are frequently TIM-3lo/−, while TIM-3-expressing CD8+ T cells are largely PD-1lo/−. In addition, there is a decrease in the frequency of TIM-3+ CD4+ cells producing IFN-γ and IL-5 compared to TIM-3+ CD8+ cells. Lastly, the memory T cell phenotype within each IC-expressing subset differs between CD4+ and CD8+ T cells. These findings highlight key differences in IC expression patterns between CD4+ and CD8+ T cells and may allow for more effective therapeutic targeting of these molecules in the future.
Collapse
Affiliation(s)
- Nina C Sabins
- Biologics Research, Janssen R&D , Spring House, PA , USA
| | | | - Linda R Barone
- Biologics Research, Janssen R&D , Spring House, PA , USA
| | - Shixue Shen
- Biologics Research, Janssen R&D , Spring House, PA , USA
| | | |
Collapse
|
49
|
Abstract
The ultimate outcome of alloreactivity versus tolerance following transplantation is potently influenced by the constellation of cosignaling molecules expressed by immune cells during priming with alloantigen, and the net sum of costimulatory and coinhibitory signals transmitted via ligation of these molecules. Intense investigation over the last two decades has yielded a detailed understanding of the kinetics, cellular distribution, and intracellular signaling networks of cosignaling molecules such as the CD28, TNF, and TIM families of receptors in alloimmunity. More recent work has better defined the cellular and molecular mechanisms by which engagement of cosignaling networks serve to either dampen or augment alloimmunity. These findings will likely aid in the rational development of novel immunomodulatory strategies to prolong graft survival and improve outcomes following transplantation.
Collapse
Affiliation(s)
- Mandy L Ford
- Emory Transplant Center and Department of Surgery, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
50
|
Zhang DL, Lv CH, Yu DH, Wang ZY. Characterization and functional analysis of a tandem-repeat galectin-9 in large yellow croaker Larimichthys crocea. FISH & SHELLFISH IMMUNOLOGY 2016; 52:167-178. [PMID: 26997199 DOI: 10.1016/j.fsi.2016.03.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 03/15/2016] [Accepted: 03/15/2016] [Indexed: 06/05/2023]
Abstract
Galectins are a family of endogenous lectins with β-galactosides affinity, playing significant roles in the innate immunity of vertebrates and invertebrates. In this report, a new galectin-9 cDNA was identified and characterized in large yellow croaker Larimichthys crocea (designated as LcGal-9). The complete cDNA sequence of LcGal-9 was 1795 bp, with an open reading frame (ORF) of 1032 bp encoding 343 amino acids. The putative LcGal-9 protein contained two carbohydrate recognition domains (CRDs) connected by a linker peptide, with each carrying two conserved β-galactoside binding motifs H-NPR and WG-EE-, and it possessed neither a signal peptide nor a transmembrane domain. LcGal-9 protein shared 43-74% identity with galectin-9 sequences from other species. The qRT-PCR analysis revealed that LcGal-9 mRNA was constitutively expressed in all tissues examined, predominately expressed in liver, spleen, gill, kidney, head-kidney and intestine. Western blot analysis showed that LcGal-9 protein was highly expressed in liver, spleen, intestine, kidney, head-kidney, skin, gill, and heart, but not detected in muscle and plasma. LcGal-9 mRNA transcripts were induced by poly I:C in the liver (from 6 h to 48 h), spleen (at 12 h) and head-kidney (at 12 h and 24 h). In contrast, Vibrio parahaemolyticus caused a significant down-regulation in these three tissues, except for in spleen of 48 h and head-kidney of 3 h. Post-infection with Cryptocaryon irritans, the transcripts were dramatically up-regulated in gill, skin, spleen and head-kidney during initial infection period, while significant down-regulation afterward was also observed both in spleen and head-kidney. The recombinant LcGal-9 (named as rLcGal-9) purified from Escherichia coli BL21 (DE3) demonstrated hemagglutination against human, rabbit and L. crocea in a Ca(2+)-independent manner, which was inhibited by α-Lactose and LPS. The results of bacterial agglutination assays showed that rLcGal-9 was able to agglutinate Gram-negative bacteria V. alginolyticus and Aeromonas hydrophila in a Ca(2+)-independent manner. By immunohistochemistry assay, significant increases of LcGal-9 protein appeared in the spleen stimulated with poly I:C (for 12 h) and V. parahaemolyticus (for 48 h) compared with the control. Based on the collective data, LcGal-9 might play an important role in innate immune responses, especially defense against Gram-negative bacteria in L. crocea.
Collapse
Affiliation(s)
- Dong Ling Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, PR China
| | - Chang Huan Lv
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, PR China
| | - Da Hui Yu
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China
| | - Zhi Yong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, PR China.
| |
Collapse
|