1
|
Li H, Yu K, Zhang X, Li J, Hu H, Deng X, Zeng S, Dong X, Zhao J, Zhang Y. YTHDF1 shapes immune-mediated hepatitis via regulating inflammatory cell recruitment and response. Genes Dis 2025; 12:101327. [PMID: 40092485 PMCID: PMC11910365 DOI: 10.1016/j.gendis.2024.101327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/07/2024] [Accepted: 03/31/2024] [Indexed: 03/19/2025] Open
Abstract
Severe immune responses regulate the various clinical hepatic injuries, including autoimmune hepatitis and acute viral hepatitis. N6-methyladenosine (m6A) modification is a crucial regulator of immunity and inflammation. However, the precise role of YTHDF1 in T cell-mediated hepatitis remains incompletely characterized. To address this, we utilized Concanavalin A (ConA)-induced mouse liver damage as an experimental model for T cell-mediated hepatitis. Our findings found that hepatic YTHDF1 protein rapidly decreased during ConA-induced hepatitis, and YTHDF1-deficient (Ythdf1 -/- ) mice showed more susceptibility to ConA-induced liver injury, along with an intensified inflammatory storm accompanied by aggravated hepatic inflammatory response via ERK and NF-κB pathways. Interestingly, hepatic-specific over-expression or deletion of YTHDF1 exhibited redundancy in ConA-induced liver injury. Validation in bone marrow chimeric mice confirmed the necessity of YTHDF1 in hematopoietic cells for controlling the response to ConA-induced hepatitis. Additionally, our data revealed that YTHDF1 deletion in macrophages exacerbated the inflammatory response induced by lipopolysaccharide. In summary, our study uncovered that YTHDF1 deficiency exacerbates the immune response in ConA-induced hepatitis by modulating the expression of inflammatory mediators, highlighting the potential of YTHDF1 as a therapeutic target for clinical hepatitis.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Kailun Yu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiandan Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jiawen Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Huilong Hu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xusheng Deng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Siyu Zeng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaoning Dong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Junru Zhao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yongyou Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
- National Institute for Data Science in Health and Medicine Engineering, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
2
|
Han X, Yang D, Su Y, Wang Q, Li M, Du N, Jiang J, Tian X, Liu J, Jia J, Yang Z, Zhao X, Ma H. Identification of abdominal MRI features associated with histopathological severity and treatment response in autoimmune hepatitis. Eur Radiol 2025:10.1007/s00330-025-11578-1. [PMID: 40278875 DOI: 10.1007/s00330-025-11578-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 02/16/2025] [Accepted: 03/13/2025] [Indexed: 04/26/2025]
Abstract
To identify abdominal contrast magnetic resonance imaging (MRI) features associated with histopathological severity, and treatment response in autoimmune hepatitis (AIH). PATIENTS AND METHODS AIH patients who had abdominal contrast MRI within 3 months of liver biopsy were retrospectively enrolled. Histopathological severity, liver volume, MRI features, laboratory tests, and treatment response were collected. MRI and serum models were constructed through stepwise univariate and multivariate logistic regression for diagnosing severe histopathology and predicting insufficient response (IR). RESULTS One hundred AIH patients were included (median age: 57.0 years, 79.0% female). For diagnosing severe portal inflammation, reticular fibrosis and volume ratio of segment V-VIII to total liver (SV-SVIII/TLV) achieved an area under the receiver operating characteristic curve (AUROC) of 0.765 (95% CI 0.670-0.860). Severe confluent necrosis was modeled using hepatic fissure widening, reticular fibrosis, and volume ratio of segment I-III to segments IV-VIII, achieving an AUROC of 0.796 (95% CI 0.708-0.885). Severe histological activity was modeled using ascites, and SV-SVIII/TLV achieved an AUROC of 0.748 (95% CI 0.649-0.847). To diagnose cirrhosis, ascites, reticular fibrosis, and the volume ratio of segment I to the total liver were employed, yielding an AUROC of 0.833 (95% CI 0.716-0.949); IR (transaminases and/or immunoglobulin G remaining unnormal after 6 months of immunosuppressive treatment) was modeled using ascites, gallbladder wall edema, and transient hepatic attenuation difference, achieving an AUROC of 0.796 (95% CI 0.691-0.902). CONCLUSION The MRI models demonstrated relatively good performance in evaluating histopathological severity and treatment response. Combining MRI and serum models could enhance diagnostic and prognostic efficacy. KEY POINTS Question Abdominal contrast MRI may help clinicians better evaluate the histopathological severity and treatment response of autoimmune hepatitis (AIH), but there is currently limited research. Findings Models based on MRI features perform well in diagnosing severe portal inflammation, confluent necrosis, histological activity, and cirrhosis, as well as predicting insufficient response. Clinical relevance Abdominal contrast MRI, combined with serological parameters, provides a new and stronger noninvasive method for clinically assessing AIH progression and treatment.
Collapse
Affiliation(s)
- Xiao Han
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Dawei Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yu Su
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qianyi Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Min Li
- Department of Clinical Epidemiology and Evidence Base Medicine Unit, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Nianhao Du
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jiahui Jiang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xin Tian
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jimin Liu
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Canada
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Xinyan Zhao
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Hong Ma
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Myoteri D, Sakellariou S, Tiniakos DG. Histopathology of Autoimmune Hepatitis: An Update. Adv Anat Pathol 2025:00125480-990000000-00148. [PMID: 40255040 DOI: 10.1097/pap.0000000000000500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Autoimmune hepatitis (AIH) is a rare immune-mediated chronic liver disease that is diagnosed based on a combination of biochemical, immunologic, and histologic features and the exclusion of other causes of liver disease. According to the new consensus criteria of the International Autoimmune Hepatitis Pathology Group (IAIHPG), the likely histologic features include a chronic hepatitis pattern of injury with a lymphoplasmacytic portal infiltrate, interface activity, and portal-based fibrosis. More than mild lobular hepatitis with any of the above features can also be diagnosed as likely AIH in the absence of features of another liver disease. Centrilobular injury with prominent hepatocellular necrosis and mononuclear inflammation may represent an acute-onset disease and indicate possible AIH in the absence of concurrent liver disease. Kupffer cell hyaline bodies and portal lymphocyte apoptosis are significantly associated with AIH, whereas emperipolesis and hepatocellular rosette formation are nonspecific features indicative of disease severity. Liver histology is an integral part of the clinical diagnostic scoring system and is required to confirm or support AIH diagnosis. Substitution of the histologic component of the simplified AIH scoring system with the consensus IAIHPG criteria has been proposed to optimize clinical diagnosis. This review explores the significant role of histopathology in AIH by analyzing its main features and current histologic diagnostic criteria, different AIH presentations, differential diagnosis, assessment of concurrent liver disease, and identification of AIH variants with primary cholangiopathy.
Collapse
Affiliation(s)
| | - Stratigoula Sakellariou
- 1st Department of Pathology, Medical School, Laiko General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Dina G Tiniakos
- Department of Pathology, Aretaieion Hospital, Medical School
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
4
|
Carnazzo V, Rigante D, Restante G, Basile V, Pocino K, Basile U. The entrenchment of NLRP3 inflammasomes in autoimmune disease-related inflammation. Autoimmun Rev 2025; 24:103815. [PMID: 40233890 DOI: 10.1016/j.autrev.2025.103815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/24/2025] [Accepted: 04/08/2025] [Indexed: 04/17/2025]
Abstract
Autoinflammation and autoimmunity are almost "opposite" phenomena characterized by chronic activation of the immune system, 'innate' in the first and 'adaptive' in the second, leading to inflammation of several tissues with specific protean effectors of tissue damage. The mechanism of involvement of multiprotein complexes called 'inflammasomes' within autoimmune pictures, differently from autoinflammatory conditions, is yet undeciphered. In this review we provide a comprehensive overview on NLRP3 inflammasome contribution into the pathogenesis of some autoimmune diseases. In response to autoantibodies against nucleic acids or tissue-specific antigens the NLRP3 inflammasome is activated within dendritic cells and macrophages of patients with systemic lupus erythematosus. Crucial is NLRP3 inflammasome to amplify tissue inflammation with interleukin-1 overexpression and matrix metalloproteinase production at the joint level in rheumatoid arthritis. A deregulated NLRP3 inflammasome activation occurs in the serous acini of salivary and lacrimal glands prone to Sjogren's syndrome, but also in the inflammatory process involving endothelial cells, leucocyte recruitment, and platelet plugging of vasculitides. Furthermore, organ-specific autoimmune diseases such as thyroiditis and hepatitis may display hyperactive NLRP3 inflammasomes at the level of resident immune cells within thyroid or liver, respectively. Therefore, it is not unexpected that preclinical studies have shown how specific inflammasome inhibitors may significantly overthrow the severity of different autoimmune diseases and slow down their trend towards an ominous progression. Specific markers of inflammasome activation could also reveal subclinical inflammatory components escaping conventional diagnostic approaches or improve monitoring of autoimmune diseases and personalizing their treatment.
Collapse
Affiliation(s)
- Valeria Carnazzo
- Department of Clinical Pathology, Santa Maria Goretti Hospital, Latina, Italy.
| | - Donato Rigante
- Department of Life Sciences and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Università Cattolica Sacro Cuore, Rome, Italy.
| | - Giuliana Restante
- Department of Experimental Medicine, University "La Sapienza", Rome, Italy
| | - Valerio Basile
- Clinical Pathology Unit and Cancer Biobank, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Krizia Pocino
- Unit of Clinical Pathology, Ospedale San Pietro Fatebenefratelli, Rome, Italy
| | - Umberto Basile
- Department of Clinical Pathology, Santa Maria Goretti Hospital, Latina, Italy.
| |
Collapse
|
5
|
Chen Y, Chen R, Li H, Shuai Z. Clinical management of autoimmune liver diseases: juncture, opportunities, and challenges ahead. Immunol Res 2025; 73:67. [PMID: 40195209 PMCID: PMC11976385 DOI: 10.1007/s12026-025-09622-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/14/2025] [Indexed: 04/09/2025]
Abstract
The three major autoimmune liver diseases are autoimmune hepatitis (AIH), primary biliary cholangitis (PBC), and primary sclerosing cholangitis (PSC).These conditions are assumed to result from a breakdown in immunological tolerance, which leads to an inflammatory process that causes liver damage.The self-attack is started by T-helper cell-mediated identification of liver autoantigens and B-cell production of autoantibodies,and it is maintained by a reduction in the number and activity of regulatory T-cells.Infections and environmental factors have been explored as triggering factors for these conditions, in addition to a genetic predisposition.Allelic mutations in the HLA locus have been linked to vulnerability, as have relationships with single nucleotide polymorphisms in non-HLA genes.Despite the advances in the management of these diseases, there is no curative treatment for these disorders, and a significant number of patients eventually progress to an end-stage liver disease requiring liver transplantation.In this line, tailored immune-therapeutics have emerged as possible treatments to control the disease.In addition, early diagnosis and treatment are pivotal for reducing the long-lasting effects of these conditions and their burden on quality of life.Herein we present a review of the etiology, clinical presentation, diagnosis, and challenges on ALDs and the feasible solutions for these complex diseases.
Collapse
MESH Headings
- Humans
- Hepatitis, Autoimmune/therapy
- Hepatitis, Autoimmune/diagnosis
- Hepatitis, Autoimmune/immunology
- Hepatitis, Autoimmune/etiology
- Cholangitis, Sclerosing/therapy
- Cholangitis, Sclerosing/diagnosis
- Cholangitis, Sclerosing/immunology
- Liver Cirrhosis, Biliary/therapy
- Liver Cirrhosis, Biliary/diagnosis
- Liver Cirrhosis, Biliary/immunology
- Animals
- Immunotherapy/methods
- Autoimmune Diseases/therapy
- Autoimmune Diseases/diagnosis
- Disease Management
- Genetic Predisposition to Disease
Collapse
Affiliation(s)
- Yangfan Chen
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Ruofei Chen
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Haiyan Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Zongwen Shuai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, 230032, China.
| |
Collapse
|
6
|
Ikeda K, Fukui S, Kobayashi M, Shimada Y, Nakazawa Y, Mizutani H, Nisiura Y, Suga D, Moritani I, Yamanaka Y, Inoue H, Fukutome K, Shiraki K. Clinicopathological characteristics of autoimmune‑like hepatitis after drug‑induced liver injury. Biomed Rep 2025; 22:75. [PMID: 40083601 PMCID: PMC11904752 DOI: 10.3892/br.2025.1953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/10/2025] [Indexed: 03/16/2025] Open
Abstract
Autoimmune hepatitis (AIH) can be induced by drugs, but the underlying mechanisms remain unclear. The present study attempted to elucidate the clinicopathological characteristics of autoimmune-like hepatitis following drug-induced liver injury (DILI-ALH). The medical records of 57 patients diagnosed with AIH at Mie General Medical Center (Yokkaichi, Japan) were retrospectively reviewed, paying particular attention to the history of drug administration. Patients were classified into three groups: De novo AIH, drug-induced ALH (DI-ALH) and DILI-ALH. DILI-ALH was newly defined as cases in which the patient had a history of DILI and where the liver injury initially improved after drug discontinuation, but later worsened and was diagnosed as AIH. Of the 57 patients diagnosed with AIH, 42 patients were included in this study. De novo AIH was diagnosed in 29 patients, DI-ALH in 10 patients and DILI-ALH in 3 patients. Suspected causative drugs for drug-related pathologies were variable, including statins, health foods and supplements. No significant differences in sex or mean age were observed for DI-ALH and DILI-ALH compared with those for AIH. Distinguishing DI-ALH or DILI-ALH from AIH serologically and pathologically is difficult. No significant differences in the number of steroids used or the recurrence rate were observed between any groups. These findings suggest that drugs may present a more diverse cause of ALH than generally predicted. In particular, some AIH cases clearly present with DILI-ALH. Clarifying the involvement of drugs in the pathogenesis of AIH and establishing guidelines for diagnosis and treatment represent important issues for the future.
Collapse
Affiliation(s)
- Kohei Ikeda
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, Mie 510-8561, Japan
| | - Shunsuke Fukui
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, Mie 510-8561, Japan
| | - Mayu Kobayashi
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, Mie 510-8561, Japan
| | - Yasuaki Shimada
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, Mie 510-8561, Japan
| | - Yuichi Nakazawa
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, Mie 510-8561, Japan
| | - Hiroki Mizutani
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, Mie 510-8561, Japan
| | - Yuki Nisiura
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, Mie 510-8561, Japan
| | - Daisuke Suga
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, Mie 510-8561, Japan
| | - Isao Moritani
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, Mie 510-8561, Japan
| | - Yutaka Yamanaka
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, Mie 510-8561, Japan
| | - Hidekazu Inoue
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, Mie 510-8561, Japan
| | - Kazuo Fukutome
- Department of Pathology, Mie Prefectural General Medical Center, Yokkaichi, Mie 510-8561, Japan
| | - Katsuya Shiraki
- Department of Gastroenterology, Mie Prefectural General Medical Center, Yokkaichi, Mie 510-8561, Japan
| |
Collapse
|
7
|
Appell ML, Hindorf U, Almer S, Haglund S. Response to azathioprine treatment in autoimmune hepatitis is dependent on glutathione transferase genotypes. Dig Liver Dis 2025; 57:885-892. [PMID: 39863504 DOI: 10.1016/j.dld.2024.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/23/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025]
Abstract
BACKGROUND Azathioprine (AZA) is part of the standard treatment for autoimmune hepatitis (AIH). The first step in the complex bioconversion of AZA to active metabolites is mediated by glutathione transferases (GSTs). AIMS Elucidate the association between GSTM1 and GSTT1 copy number variation (CNV), genetic variation in GSTA2, GSTP1, and inosine-triphosphate-pyrophosphatase, and the response to AZA in AIH. METHODS Genotyping was performed in AIH patients (n = 131) on AZA, and in a Swedish background population (n = 283). Thiopurine metabolites in blood erythrocytes were determined by high performance liquid chromatography. RESULTS GSTM1 and GSTT1 CNV were associated with treatment response to AZA. Gene deletion of GSTM1-but not of GSTT1-was associated with the liver transaminase levels. None of the studied genetic variants were associated with the thiopurine metabolite concentrations, suggesting non-enzymatic mechanisms of GSTM1 and GSTT1 in the context of AZA efficacy in AIH. The prevalence of GSTM1 and GSTT1 CNV genotypes was similar in AIH and in the background population. CONCLUSION This study shows the effects of GSTM1 and GSTT1 CNV on AZA efficacy in AIH, not previously described. It also elaborates on the impact of the definition of treatment response, on the importance of the various GSTs studied. Furthermore, the GSTM1 and GSTT1 CNV frequencies previously reported in European populations were confirmed.
Collapse
Affiliation(s)
- Malin Lindqvist Appell
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| | - Ulf Hindorf
- Department of Gastroenterology and Nutrition, University Hospital Lund, Lund, Sweden.
| | - Sven Almer
- Centre for Digestive Health, Department of Gastroenterology, Dermatology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden; Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden.
| | - Sofie Haglund
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Department of Laboratory Medicine, Region Jönköping County, Jönköping, Sweden.
| |
Collapse
|
8
|
Zhou F, Deng S, Luo Y, Liu Z, Liu C. Research Progress on the Protective Effect of Green Tea Polyphenol (-)-Epigallocatechin-3-Gallate (EGCG) on the Liver. Nutrients 2025; 17:1101. [PMID: 40218859 PMCID: PMC11990830 DOI: 10.3390/nu17071101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/15/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025] Open
Abstract
The liver, as the primary metabolic organ, is susceptible to an array of factors that can harm liver cells and give rise to different liver diseases. Epigallocatechin gallate (EGCG), a natural compound found in green tea, exerts numerous beneficial effects on the human body. Notably, EGCG displays antioxidative, antibacterial, antiviral, anti-inflammatory, and anti-tumor properties. This review specifically highlights the pivotal role of EGCG in liver-related diseases, focusing on viral hepatitis, autoimmune hepatitis, fatty liver disease, and hepatocellular carcinoma. EGCG not only inhibits the entry and replication of hepatitis B and C viruses within hepatocytes, but also mitigates hepatocytic damage caused by hepatitis-induced inflammation. Furthermore, EGCG exhibits significant therapeutic potential against hepatocellular carcinoma. Combinatorial use of EGCG and anti-hepatocellular carcinoma drugs enhances the sensitivity of drug-resistant cancer cells to chemotherapeutic agents, leading to improved therapeutic outcomes. Thus, the combination of EGCG and anti-hepatocellular carcinoma drugs holds promise as an effective approach for treating drug-resistant hepatocellular carcinoma. In conclusion, EGCG possesses hepatoprotective properties against various forms of liver damage and emerges as a potential drug candidate for liver diseases.
Collapse
Affiliation(s)
- Fang Zhou
- School of Chemistry and Environmental Sciences, Xiangnan University, Chenzhou 423000, China;
| | - Sengwen Deng
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (S.D.); (C.L.)
| | - Yong Luo
- School of Chemistry and Environmental Sciences, Xiangnan University, Chenzhou 423000, China;
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China;
| | - Changwei Liu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (S.D.); (C.L.)
| |
Collapse
|
9
|
Li X, Zhang J, Malik S, Jain A, Wang M, Niu C. Maternal and fetal outcomes of autoimmune hepatitis in pregnancy: A United States hospitalized patient study. Clin Res Hepatol Gastroenterol 2025; 49:102544. [PMID: 39894344 DOI: 10.1016/j.clinre.2025.102544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Autoimmune hepatitis (AIH) is a chronic inflammatory disease primarily affecting the liver, with a higher prevalence among women of reproductive age. The latest nationwide statistics regarding its impact on maternal and fetal outcomes during pregnancy are lacking. AIMS To analyze the real impact of AIH on maternal and fetal outcomes in hospitalized delivery patients, and provide theoretical guidance for comprehensive clinical management. METHODS A retrospective analysis was conducted using data from the 2016-2020 National Inpatient Sample database in the United States. Multivariate logistic regression analysis was used to assess the influence of AIH on maternal and fetal outcomes during pregnancy. RESULTS A total of 17,825,445 hospitalized delivery patients were included, among which 1,185 had AIH. After adjusting for potential confounding factors, compared to hospitalized delivery patients without AIH, the AIH group exhibited significantly higher rates of adverse maternal and fetal outcomes, including hypertension complications of pregnancy (AOR 1.68, 95 % CI 1.09-2.58), preterm birth (AOR 2.89, 95 % CI 1.91-4.38), fetal growth restriction (AOR 2.21, 95 % CI 1.34-3.64), and fetal death (AOR 4.13, 95 % CI 1.33-12.83). AIH showed no association with cesarean section or large fetus. In the group of delivery in patients with AIH, patients who develop hypertensive disorders have a higher probability of concomitant diabetes mellitus (OR 6.85, 95 % CI 2.19-21.45), hypertension (OR 4.64, 95 % CI 1.68-12.82), and obesity (OR 3.06, 95 % CI 1.26-7.42). Additionally, AIH patients incurred higher total costs and longer hospital stays during the delivery hospitalization. CONCLUSION Patients with AIH face an increased risk of hypertensive disorders of pregnancy, preterm birth, fetal growth restriction, and fetal death during delivery. It is crucial to enhance awareness of these potential occurrence risks.
Collapse
Affiliation(s)
- Xi Li
- Department of General Surgery, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China
| | - Jing Zhang
- Rainier Springs Behavioral Health Hospital, 2805 NE 129th St, Vancouver, WA 98686, USA
| | - Sheza Malik
- Internal medicine residency program, Rochester General Hospital, Rochester, NY 14621, USA
| | - Aakriti Jain
- Internal medicine residency program, Rochester General Hospital, Rochester, NY 14621, USA
| | - Mingyuan Wang
- Department of General Surgery, Xiangya Hospital, Central South University, 410008 Changsha, Hunan, China.
| | - Chengu Niu
- Internal medicine residency program, Rochester General Hospital, Rochester, NY 14621, USA.
| |
Collapse
|
10
|
Kuo SL, Su CH, Lai KH, Chang YC, You JS, Peng HH, Chen CH, Lin CC, Chen PJ, Hwang TL. Guizhi Fuling Wan ameliorates concanavalin A-induced autoimmune hepatitis in mice. Biomed J 2025; 48:100731. [PMID: 38677491 PMCID: PMC11745949 DOI: 10.1016/j.bj.2024.100731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Autoimmune hepatitis (AIH) is an immune-mediated hepatic disease associated with intense complications. AIH is more common in females and needs effective drugs to treat. Guizhi Fuling Wan (GZFLW) is a traditional Chinese herbal formula for treating various gynecologic diseases. In this study, we aim to extend the new use of GZFLW for AIH. METHODS The tandem MS-based analysis was used to identify secondary metabolites in GZFLW. Therapeutic effects of GZFLW were tested in a concanavalin A (Con A)-induced AIH model in mice. Ethnopharmacological mechanisms underlying the antiapoptotic, antioxidant, and immunomodulatory protective effects were determined. RESULTS Oral administration of GZFLW attenuates AIH in a Con A-induced hepatotoxic model in vivo. The tandem MS-based analysis identified 15 secondary metabolites in GZFLW. The Con A-induced AIH syndromes, including hepatic apoptosis, inflammation, reactive oxygen species accumulation, function failure, and mortality, were significantly alleviated by GZFLW in mice. Mechanistically, GZFLW restrained the caspase-dependent apoptosis, restored the antioxidant system, and decreased pro-inflammatory cytokine production in the livers of Con A-treated mice. Besides, GZFLW repressed the Con A-induced hepatic infiltration of inflammatory cells, splenic T cell activation, and splenomegaly in mice. CONCLUSIONS Our findings demonstrate the applicable potential of GZFLW in treating AIH. It prompts further investigation of GZFLW as a treatment option for AIH and possibly other hepatic diseases.
Collapse
Affiliation(s)
- Shun-Li Kuo
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Division of Chinese Medicine Obstetrics and Gynecology, Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Han Su
- Department of Food Science, College of Human Ecology, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Kuei-Hung Lai
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yu-Chia Chang
- Research Center for Chinese Herbal Medicine and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Jyh-Sheng You
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Taoyuan, Taiwan
| | - Hsin-Hsin Peng
- Division of Chinese Medicine Obstetrics and Gynecology, Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan; Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Chun-Hong Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan
| | - Chi-Chen Lin
- Program in Translational Medicine, National Chung-Hsing University, Taichung, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung, Taiwan; Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Po-Jen Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan; Graduate Institute of Medicine, I-Shou University, Kaohsiung, Taiwan.
| | - Tsong-Long Hwang
- Research Center for Chinese Herbal Medicine and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan; Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
11
|
Yu C, Wang W, Zhang Q, Jin Z. Autoimmune hepatitis under the COVID-19 veil: an analysis of the nature of potential associations. Front Immunol 2025; 16:1510770. [PMID: 39958350 PMCID: PMC11825795 DOI: 10.3389/fimmu.2025.1510770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/14/2025] [Indexed: 02/18/2025] Open
Abstract
In recent years, the novel coronavirus infectious disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has led to over 670 million infections and nearly 7 million deaths worldwide. The global pandemic of COVID-19 has precipitated a significant public health crisis. The prevalence of liver function abnormalities associated with SARS-CoV-2 is as high as 53% among healthy individuals or patients with autoimmune hepatitis (AIH) and shows a positive correlation with disease severity; moreover, specific adaptive immune responses can influence the trajectory and outcomes of COVID-19. For instance, SARS-CoV-2 may impact autoimmunity through mechanisms such as excessive stimulation of immune responses and molecular mimicry, particularly in genetically predisposed individuals. Currently, the overall mutational trend of SARS-CoV-2 indicates heightened infectivity and immune evasion capabilities. Consequently, vaccination remains crucial for universal protection against this disease. Nevertheless, alongside the widespread implementation of vaccination programs globally, an increasing number of cases have been documented where COVID-19 vaccination appears to trigger new-onset autoimmune hepatitis; yet definitive evidence is still pending elucidation regarding causality. In this review, we analyse the clinical-immunological characteristics, risks associated with severe disease progression, and prognosis for AIH patients infected with SARS-CoV-2; discuss the detrimental effects exerted by SARS-CoV-2 on hepatic function; summarise the mechanisms and attributes leading to new-onset AIH; as well as provide insights into how vaccination may interfere with autoimmunity processes. We continue to underscore the significance of vaccination while aiming to enhance awareness concerning potential risks associated with it-this could facilitate better management strategies for autoimmune diseases along with appropriate adjustments in vaccination protocols. Although the precise triggering mechanism linking COVID-19-related events to AIH remains unclear, existing evidence suggests that this relationship is far from coincidental.
Collapse
Affiliation(s)
| | | | | | - Zhenjing Jin
- Department of Hepatopancreatobiliary Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
12
|
Taheri M, Dargah AH, Ramezani P, Anafje M, Nasrollahizadeh A, Ebrahimi P, Mandegar MH. Immediate management of a cirrhosis-induced severe pericardial effusion: a case report and review of the literature. J Med Case Rep 2025; 19:5. [PMID: 39780164 PMCID: PMC11707975 DOI: 10.1186/s13256-024-05016-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
INTRODUCTION Cardiac tamponade is a life-threatening condition resulting from fluid accumulation in the pericardial sac, leading to decreased cardiac output and shock. Various etiologies can cause cardiac tamponade, including liver cirrhosis, which may be induced by autoimmune hepatitis. Autoimmune hepatitis is a chronic inflammatory liver disease characterized by interface hepatitis, elevated transaminase levels, autoantibodies, and increased immunoglobulin G levels. This case report details a 60-year-old male with autoimmune hepatitis-induced cirrhosis presenting with severe pericardial effusion and cardiac tamponade, emphasizing the interplay between liver and cardiac pathologies. METHODS A 60-year-old Persian man presented with progressive dyspnea, chest pain, and significant weight gain due to fluid retention. Physical examination revealed pallor, jaundice, elevated jugular venous pressure, muffled heart sounds, and tachycardia. Laboratory tests indicated severe hepatic and renal dysfunction, with elevated liver enzymes, bilirubin, and blood urea nitrogen. Imaging studies, including electrocardiogram, computed tomography angiography, and transthoracic echocardiogram, confirmed large pericardial effusion with signs of cardiac tamponade. Emergency pericardiocentesis was performed, aspirating 500 mL of serosanguinous fluid. Post-procedural management included continuous monitoring, repeat echocardiography, and a comprehensive pharmacological regimen addressing fluid overload, autoimmune hepatitis, and cardiac function. CONCLUSION This case underscores the importance of timely diagnosis and management of cardiac tamponade, particularly in patients with concomitant conditions like autoimmune hepatitis and cirrhosis. Multidisciplinary management involving hepatologists, cardiologists, and critical care specialists is crucial for improving patient outcomes. Early recognition and treatment contribute substantially to the prevention of recurrence and better long-term management of underlying conditions.
Collapse
Affiliation(s)
- Maryam Taheri
- Tehran Heart Center, Cardiovascular Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Pedram Ramezani
- Endocrinology and Metabolism Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Anafje
- Rajaei Cardiovascular Medical and Research Rajaie Cardiovascular Medical and Research institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Nasrollahizadeh
- Tehran Heart Center, Cardiovascular Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Pouya Ebrahimi
- Tehran Heart Center, Cardiovascular Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Mandegar
- Cardiac Surgery Department, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Costaguta A, Costaguta G, Álvarez F. Autoimmune hepatitis: Towards a personalized treatment. World J Hepatol 2024; 16:1225-1242. [PMID: 39606175 PMCID: PMC11586748 DOI: 10.4254/wjh.v16.i11.1225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/02/2024] [Accepted: 10/11/2024] [Indexed: 11/06/2024] Open
Abstract
Autoimmune hepatitis is an uncommon condition that affects both adults and children and is characterized by chronic and recurrent inflammatory activity in the liver. This inflammation is accompanied by elevated IgG and autoantibody levels. Historically, treatment consists of steroids with the addition of azathioprine, which results in remission in approximately 80% of patients. Despite significant advancements in our understanding of the immune system over the past two decades, few modifications have been made to treatment algorithms, which have remained largely unchanged since they were first proposed more than 40 years ago. This review summarized the various treatment options currently available as well as our experiences using them. Although steroids are the standard treatment for induction therapy, other medications may be considered. Cyclosporin A, a calcineurin inhibitor that decreases T cell activation, has proven effective for induction of remission, but its long-term side effects limit its appeal for maintenance. Tacrolimus, a drug belonging to the same family, has been used in patients with refractory diseases with fewer side effects. Sirolimus and everolimus have interesting effects on regulatory T cell populations and may become viable options in the future. Mycophenolate mofetil is not effective for induction but is a valid alternative for patients who are intolerant to azathioprine. B cell-depleting drugs, such as rituximab and belimumab, have been successfully used in refractory cases and are useful in both the short and long term. Other promising treatments include anti-tumor necrosis factors, Janus kinases inhibitors, and chimeric antigen receptor T cell therapy. This growing armamentarium allows us to imagine a more tailored approach to the treatment of autoimmune hepatitis in the near future.
Collapse
Affiliation(s)
- Alejandro Costaguta
- Department of Hepatology and Liver Transplant Unit, Sanatorio de Niños de Rosario, Rosario 2000, Santa Fe, Argentina.
| | - Guillermo Costaguta
- Department of Gastroenterology, Hepatology, and Nutrition, CHU Sainte-Justine, Montreal H3T 1C5, Quebec, Canada
| | - Fernando Álvarez
- Department of Pediatrics, CHU Sainte-Justine, Montreal H3T 1C5, Quebec, Canada
| |
Collapse
|
14
|
Xiong A, Li S, Dou X, Yao Y. Cyclophosphamide in refractory autoimmune hepatitis and autoimmune hepatitis coexisting extrahepatic autoimmune disorders. Am J Med Sci 2024; 368:446-454. [PMID: 38876435 DOI: 10.1016/j.amjms.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 12/19/2023] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
INTRODUCTION AND OBJECTIVES Despite tacrolimus (TAC) or mycophenolate mofetil (MMF) for alternate approaches, a proportion of patients still required further exploration of other therapeutic options due to uncontrolled autoimmune hepatitis(AIH). The role of cyclophosphamide (CYC) for AIH has been explored in isolated case reports and small series. We present a review of CYC therapy in AIH patients. MATERIALS AND METHODS A search for studies with keywords 'autoimmune hepatitis' and 'cyclophosphamide' was performed. Data recorded included gender, age, laboratory parameters and histological findings at the time of AIH diagnosis and before initiation of CYC therapy. RESULTS We identified 13 patients across 7 studies who met criteria for study inclusion, of whom around 69.2% (9/13) were primary refractory; 30.8% (4/13) patients used CYC as rescue therapy due to their coexisting autoimmune complications. The main findings of the study were that CYC appears to have an acceptable safety profile in difficult-to-treat AIH patients, with an overall remission rate of 88.9% (8/9). The other four patients with AIH accompanied by extrahepatic autoimmune disorders also achieved remission of transaminase levels and stability of liver function after the addition of CYC. A positive response to CYC treatment was seen in 12(92.3%) patients and none of them relapsed during the follow-up. CONCLUSIONS We cautiously recommend that CYC could be a conditioning alternative to starting second-line therapy after unsuccessful intensification of first-line treatment. Pharmacogenetic methods may play a role in guiding cyclophosphamide therapy. Given our small sample size, results should be considered preliminary.
Collapse
Affiliation(s)
- AnJi Xiong
- Department of Rheumatology and Immunology, Nanchong Central Hospital, The Affiliated Nanchong Central Hospital of North Sichuan Medical College, Nanchong Hospital of Bejjing Anzhen Hospital Capital Medical University, Nanchong, Sichuan Province, China; Inflammation and Immunology Key Laboratory of Nanchong City, Nanchong, Sichuan Province, China; Nanchong Central Hospital (Nanchong Clinical Research Center), Nanchong, Sichuan Province, China.
| | - SuTing Li
- Department of Ophthalmology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province 518035, China; Shenzhen University Health Science Center, 3688 Nanhai Avenue, Shenzhen, Guangdong Province 518060, China
| | - XiaoYan Dou
- Department of Ophthalmology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province 518035, China
| | - YuFeng Yao
- Department of Ophthalmology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province 518035, China; Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong Province 515031, China
| |
Collapse
|
15
|
Klepper A, Asaki J, Kung AF, Vazquez SE, Bodansky A, Mitchell A, Mann SA, Zorn K, Avila-Vargas I, Kari S, Tekeste M, Castro J, Lee B, Duarte M, Khalili M, Yang M, Wolters P, Price J, Perito E, Feng S, Maher JJ, Lai JC, Weiler-Normann C, Lohse AW, DeRisi J, Tana M. Novel autoantibody targets identified in patients with autoimmune hepatitis (AIH) by PhIP-Seq reveals pathogenic insights. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.06.12.23291297. [PMID: 37398174 PMCID: PMC10312872 DOI: 10.1101/2023.06.12.23291297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Background and Aims Autoimmune hepatitis (AIH) is a severe disease characterized by elevated immunoglobin levels. However, the role of autoantibodies in the pathophysiology of AIH remains uncertain. Methods Phage Immunoprecipitation-Sequencing (PhIP-seq) was employed to identify autoantibodies in the serum of patients with AIH (n = 115), compared to patients with other liver diseases (metabolic associated steatotic liver disease (MASH) n = 178, primary biliary cholangitis (PBC), n = 26, or healthy controls, n = 94). Results Logistic regression using PhIP-seq enriched peptides as inputs yielded a classification AUC of 0.81, indicating the presence of a predictive humoral immune signature for AIH. Embedded within this signature were disease relevant targets, including SLA/LP, the target of a well-recognized autoantibody in AIH, disco interacting protein 2 homolog A (DIP2A), and the relaxin family peptide receptor 1 (RXFP1). The autoreactive fragment of DIP2A was a 9-amino acid stretch nearly identical to the U27 protein of human herpes virus 6 (HHV-6). Fine mapping of this epitope suggests the HHV-6 U27 sequence is preferentially enriched relative to the corresponding DIP2A sequence. Antibodies against RXFP1, a receptor involved in anti-fibrotic signaling, were also highly specific to AIH. The enriched peptides are within a motif adjacent to the receptor binding domain, required for signaling and serum from AIH patients positive for anti-RFXP1 antibody was able to significantly inhibit relaxin-2 singling. Depletion of IgG from anti-RXFP1 positive serum abrogated this effect. Conclusions These data provide evidence for a novel serological profile in AIH, including a possible functional role for anti-RXFP1, and antibodies that cross react with HHV6 U27 protein.
Collapse
Affiliation(s)
- Arielle Klepper
- Department of Medicine, University of California, San Francisco, USA
- UCSF Liver Center
| | - James Asaki
- Department of Biochemistry, University of California, San Francisco, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, USA
| | - Andrew F Kung
- Department of Biochemistry, University of California, San Francisco, USA
| | - Sara E Vazquez
- Department of Dermatology, Mass General Hospital, Boston, MA
| | - Aaron Bodansky
- Department of Pediatrics, University of California, San Francisco, USA
| | | | - Sabrina A Mann
- Department of Biochemistry, University of California, San Francisco, USA
- Chan Zuckerberg Biohub; San Francisco, CA, USA
| | - Kelsey Zorn
- Department of Biochemistry, University of California, San Francisco, USA
| | | | - Swathi Kari
- Department of Medicine, University of California, San Francisco, USA
| | - Melawit Tekeste
- Department of Medicine, University of California, San Francisco, USA
| | - Javier Castro
- Department of Medicine, University of California, San Francisco, USA
| | - Briton Lee
- Department of Medicine, University of California, San Francisco, USA
| | - Maria Duarte
- Department of Medicine, University of California, San Francisco, USA
- UCSF Liver Center
| | - Mandana Khalili
- Department of Medicine, University of California, San Francisco, USA
- UCSF Liver Center
| | - Monica Yang
- Department of Medicine, University of California, San Francisco, USA
| | - Paul Wolters
- Department of Medicine, University of California, San Francisco, USA
| | - Jennifer Price
- Department of Medicine, University of California, San Francisco, USA
- UCSF Liver Center
| | - Emily Perito
- Department of Pediatrics, University of California, San Francisco, USA
- UCSF Liver Center
| | - Sandy Feng
- Department of Surgery, University of California, San Francisco, USA
- UCSF Liver Center
| | - Jacquelyn J Maher
- Department of Medicine, University of California, San Francisco, USA
- UCSF Liver Center
| | - Jennifer C Lai
- Department of Medicine, University of California, San Francisco, USA
- UCSF Liver Center
| | | | - Ansgar W Lohse
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joseph DeRisi
- Department of Biochemistry, University of California, San Francisco, USA
- Chan Zuckerberg Biohub; San Francisco, CA, USA
| | - Michele Tana
- Department of Medicine, University of California, San Francisco, USA
- UCSF Liver Center
| |
Collapse
|
16
|
Zhao G, Qi H, Liu M, Zhou T, Chen L, Wu C, Zhang X, Zeng N, Tong Y. Rhoifolin Attenuates Concanavalin A-Induced Autoimmune Hepatitis in Mice via JAKs/STATs Mediated Immune and Apoptotic Processes. ACS OMEGA 2024; 9:43233-43251. [PMID: 39464476 PMCID: PMC11500133 DOI: 10.1021/acsomega.4c07915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/29/2024]
Abstract
Rhoifolin (ROF) exhibits a diverse range of biological activities, encompassing anticancer, hepatoprotective, antidiabetic, antirheumatic, and antiviral properties. However, the specific protective effects and possible mechanisms of the compound against T-cell-mediated autoimmune hepatitis have not been previously elucidated. In the present study, adult male mice were administered Con A (20 mg/kg, intravenously) for 8 h. In the treated groups, mice were pretreated with ROF daily (20 mg/kg and 40 mg/kg, orally) for 7 days before Con A intoxication. The results showed that ROF significantly decreased serum biochemical indices (ALT, AST, ALP, and LDH) and regulated related oxidative stress indicators (MDA, SOD, and GSH), reduced hepatic necrosis areas and immune cells infiltration, inhibited the release of various inflammatory factors (TNF-α, IFN-γ, IL-2, and IL-17), and improved hepatic tissue apoptosis, thereby alleviating hepatic damage induced by Con A. Additionally, we have also confirmed that ROF efficiently inhibited Th1/Th17 cells polarization via modulation of the JAK2/JAK3/STAT1/STAT3 signaling pathways both in vivo and in vitro. Moreover, the molecular mechanism examination also demonstrated that ROF regulated apoptotic cascade signaling through IL-6/JAK2/STAT1/STAT3 controlling BNIP3 activity in primary hepatocytes. These effects were in good agreement with the bioinformatics analysis of ROF treatment for AIH. In conclusion, our findings provide new insights into the potential use of ROF for AIH therapy, which may result from the specific regulation of the T cell subtype polarization and the apoptosis of liver cells via modulation of the JAKs/STATs signaling pathways.
Collapse
Affiliation(s)
- Ge Zhao
- Department
of Pharmacy, The Affiliated Hospital, Southwest
Medical University, Luzhou, Sichuan 646000, P. R. China
- State Key
Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Hu Qi
- State Key
Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Minghua Liu
- Department
of Pharmacology, School of Pharmacy, Southwest
Medical University, Luzhou, Sichuan 646000, P. R. China
| | - Ting Zhou
- State Key
Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Li Chen
- Department
of Pharmacy, Clinical Medical College and
The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P. R. China
| | - Chunhong Wu
- Information
Centre, Chengdu University, Chengdu, Sichuan 610106, P. R. China
| | - Xiongwei Zhang
- State Key
Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Nan Zeng
- State Key
Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Yue Tong
- Department
of Gastroenterology, Xinqiao Hospital, Third
Military Medical University (Army Medical University), Chongqing 400037, P. R. China
| |
Collapse
|
17
|
Rojas M, Acosta-Ampudia Y, Heuer LS, Zang W, M Monsalve D, Ramírez-Santana C, Anaya JM, M Ridgway W, A Ansari A, Gershwin ME. Antigen-specific T cells and autoimmunity. J Autoimmun 2024; 148:103303. [PMID: 39141985 DOI: 10.1016/j.jaut.2024.103303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Autoimmune diseases (ADs) showcase the intricate balance between the immune system's protective functions and its potential for self-inflicted damage. These disorders arise from the immune system's erroneous targeting of the body's tissues, resulting in damage and disease. The ability of T cells to distinguish between self and non-self-antigens is pivotal to averting autoimmune reactions. Perturbations in this process contribute to AD development. Autoreactive T cells that elude thymic elimination are activated by mimics of self-antigens or are erroneously activated by self-antigens can trigger autoimmune responses. Various mechanisms, including molecular mimicry and bystander activation, contribute to AD initiation, with specific triggers and processes varying across the different ADs. In addition, the formation of neo-epitopes could also be implicated in the emergence of autoreactivity. The specificity of T cell responses centers on the antigen recognition sequences expressed by T cell receptors (TCRs), which recognize peptide fragments displayed by major histocompatibility complex (MHC) molecules. The assortment of TCR gene combinations yields a diverse array of T cell populations, each with distinct affinities for self and non-self antigens. However, new evidence challenges the traditional notion that clonal expansion solely steers the selection of higher-affinity T cells. Lower-affinity T cells also play a substantial role, prompting the "two-hit" hypothesis. High-affinity T cells incite initial responses, while their lower-affinity counterparts perpetuate autoimmunity. Precision treatments that target antigen-specific T cells hold promise for avoiding widespread immunosuppression. Nevertheless, detection of such antigen-specific T cells remains a challenge, and multiple technologies have been developed with different sensitivities while still harboring several drawbacks. In addition, elements such as human leukocyte antigen (HLA) haplotypes and validation through animal models are pivotal for advancing these strategies. In brief, this review delves into the intricate mechanisms contributing to ADs, accentuating the pivotal role(s) of antigen-specific T cells in steering immune responses and disease progression, as well as the novel strategies for the identification of antigen-specific cells and their possible future use in humans. Grasping the mechanisms behind ADs paves the way for targeted therapeutic interventions, potentially enhancing treatment choices while minimizing the risk of systemic immunosuppression.
Collapse
Affiliation(s)
- Manuel Rojas
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA; Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia.
| | - Yeny Acosta-Ampudia
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Luke S Heuer
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Weici Zang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Diana M Monsalve
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Carolina Ramírez-Santana
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | | | - William M Ridgway
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Aftab A Ansari
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
18
|
Ma D, Liu X, Ai G, Pan W, Liu L, Huang Y, Liao Y, Lu Y, Zhang Z, Zhou H, Huang Z, Hao X, Shu S, Fang F. The etiology and differential diagnosis of "autoimmune hepatitis-like liver disease" in children: a single-center retrospective study. Front Pediatr 2024; 12:1377333. [PMID: 38818349 PMCID: PMC11137199 DOI: 10.3389/fped.2024.1377333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024] Open
Abstract
Background Children with autoimmune hepatitis (AIH) often present with symptoms similar to those of other liver diseases. This study consists of a comparison between the clinical and histological characteristics of AIH and those of other four AIH-like liver diseases [i.e., drug-induced liver injury (DILI), gene deficiency, infectious liver disease and other etiology of liver disease], as well as an evaluation of the AIH scoring system's diagnostic performance. Methods All children with AIH-like liver disease at our center from January 2013 to December 2022 were included. The clinical and histological characteristics of the AIH group were retrospectively analyzed and compared with those of the other four groups. Results A total of 208 children were included and divided into AIH group (18 patients), DILI group (38 patients), gene deficiency group (44 patients), infectious liver disease group (74 patients), and other etiology group (34 patients). The antinuclear antibodies (ANA) ≥ 1:320 rate was significantly higher in the AIH compared to the other four groups after multiple testing correction (p < 0.0125), while patients with positive antibodies to liver-kidney microsomal-1 (anti-LKM1, n = 3) and smooth muscle antibodies (SMA, n = 2) were only observed in the AIH group. The positive rates of antibodies to liver cytosol type1 (anti-LC1) and Ro52 were higher than those in the other four groups. The serum immunoglobulin G (IgG) and globulin levels, as well as the proportions of portal lymphoplasmacytic infiltration, lobular hepatitis with more than moderate interface hepatitis, and lobular hepatitis with lymphoplasmacytic infiltration, were significantly higher in the AIH group than in the other four groups after multiple testing correction (p < 0.0125). The cirrhosis rate in the AIH group was higher than that in the DILI and infectious liver disease groups (p < 0.0125). Both the simplified (AUC > 0.73) and the revised systems (AUC > 0.93) for AIH have good diagnostic performance, with the latter being superior (p < 0.05). Conclusion Positive autoantibodies (ANA ≥ 1:320 or anti-LKM1 positive, or accompanied by SMA, anti-LC1 or Ro-52 positive) and elevated serum IgG or globulin levels contribute to early recognition of AIH. The presence of lobular hepatitis with more than moderate interface hepatitis and lymphoplasmacytic infiltration contribute to the diagnosis of AIH.
Collapse
Affiliation(s)
- Di Ma
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinglou Liu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guo Ai
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Pan
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingling Liu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Huang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Liao
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Lu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhan Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Zhou
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhihua Huang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingjie Hao
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sainan Shu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Fang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Awad SM, Elgazzar HM, Hassan EH, Allam ET, Zaid AB, Elkhadry SW, Rizk SK, Fotoh DS, Salem TAEH. Leptin gene Polymorphism and Leptin protein levels in Pediatric Autoimmune Hepatitis. J Immunoassay Immunochem 2024; 45:210-232. [PMID: 38808600 DOI: 10.1080/15321819.2024.2360083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
BACKGROUND Leptin plays a role in regulating energy balance, immunity, and inflammation. Studies suggest higher leptin levels might be associated with various autoimmune diseases. Most of them were in adult. To our knowledge, our study is one of the few that describe serum leptin level and leptin gene polymorphism in children with autoimmune hepatitis (AIH). OBJECTIVE Our study aims to explore the association between serum leptin level and genetic variations in leptin gene with the likelihood of AIH in children. PATIENTS AND METHODS Thirty-one children with AIH and 29 healthy children serving as a control group were included. Serum leptin levels were measured by ELISA assays. Leptin rs2167270 genotyping was done using the real time-PCR. The relationship of serum leptin level and leptin gene polymorphism with patients' data was studied. Patients follow up to assess treatment response. RESULTS Children with AIH had significantly higher levels of leptin compared to healthy controls. GG genotype was significantly more prevalent in the AIH group compared to controls. CONCLUSION High serum leptin levels and leptin gene polymorphism may play a role in AIH development. It is worthy to recognize if leptin can serve as diagnostic and/or therapeutic target in AIH in children.
Collapse
Affiliation(s)
- Samah M Awad
- Department of Clinical microbiology and immunology, National Liver Institute, Menoufia University, Shebin El-koom, Menoufia, Egypt
| | - Hanaa M Elgazzar
- Department of Clinical microbiology and immunology, National Liver Institute, Menoufia University, Shebin El-koom, Menoufia, Egypt
| | - Eman H Hassan
- Department of Clinical microbiology and immunology, National Liver Institute, Menoufia University, Shebin El-koom, Menoufia, Egypt
| | - Esraa T Allam
- Department of Clinical pathology, National Liver Institute, Menoufia University, Shebin El-koom, Menoufia, Egypt
| | - Ahmed B Zaid
- Immunology department, National Liver Institute, Menoufia University, Shebin El-koom, Menoufia, Egypt
| | - Sally W Elkhadry
- Department of Epidemiology and preventive medicine, National Liver Institute, Menoufia University, Shebin El-koom, Menoufia, Egypt
| | - Sara K Rizk
- Medical Biochemistry and Molecular Biology department, Faculty of Medicine, Menofia University, Shebin El-koom, Egypt
| | - Dina S Fotoh
- Physical Medicine, Rheumatology and Rehabilitation department, Faculty of Medicine, Menofia University, Shebin El-koom, Egypt
| | - Tahany Abd El Hamid Salem
- Department of Pediatric Hepatology, Gastroenterology and Nutrition, National Liver Institute, Menoufia University, Shebin El-koom, Menoufia, Egypt
| |
Collapse
|
20
|
Floreani A, Gabbia D, De Martin S. Are Gender Differences Important for Autoimmune Liver Diseases? Life (Basel) 2024; 14:500. [PMID: 38672770 PMCID: PMC11050899 DOI: 10.3390/life14040500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Gender Medicine has had an enormous expansion over the last ten years. Autoimmune liver diseases include several conditions, i.e., autoimmune hepatitis (AIH), primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC), and conditions involving the liver or biliary tree overlapping with AIH, as well as IgG4-related disease. However, little is known about the impact of sex in the pathogenesis and natural history of these conditions. The purpose of this review is to provide an update of the gender disparities among the autoimmune liver diseases by reviewing the data published from 1999 to 2023. The epidemiology of these diseases has been changing over the last years, due to the amelioration of knowledge in their diagnosis, pathogenesis, and treatment. The clinical data collected so far support the existence of sex differences in the natural history of autoimmune liver diseases. Notably, their history could be longer than that which is now known, with problems being initiated even at a pediatric age. Moreover, gender disparity has been observed during the onset of complications related to end-stage liver disease, including cancer incidence. However, there is still an important debate among researchers about the impact of sex and the pathogenesis of these conditions. With this review, we would like to emphasize the urgency of basic science and clinical research to increase our understanding of the sex differences in autoimmune liver diseases.
Collapse
Affiliation(s)
- Annarosa Floreani
- Scientific Consultant IRCCS Negrar, 37024 Verona, Italy
- University of Padova, 35122 Padova, Italy
| | - Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (D.G.); (S.D.M.)
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (D.G.); (S.D.M.)
| |
Collapse
|
21
|
Luo M, Zhao F, Cheng H, Su M, Wang Y. Macrophage polarization: an important role in inflammatory diseases. Front Immunol 2024; 15:1352946. [PMID: 38660308 PMCID: PMC11039887 DOI: 10.3389/fimmu.2024.1352946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Macrophages are crucial cells in the human body's innate immunity and are engaged in a variety of non-inflammatory reactions. Macrophages can develop into two kinds when stimulated by distinct internal environments: pro-inflammatory M1-like macrophages and anti-inflammatory M2-type macrophages. During inflammation, the two kinds of macrophages are activated alternatively, and maintaining a reasonably steady ratio is critical for maintaining homeostasis in vivo. M1 macrophages can induce inflammation, but M2 macrophages suppress it. The imbalance between the two kinds of macrophages will have a significant impact on the illness process. As a result, there are an increasing number of research being conducted on relieving or curing illnesses by altering the amount of macrophages. This review summarizes the role of macrophage polarization in various inflammatory diseases, including autoimmune diseases (RA, EAE, MS, AIH, IBD, CD), allergic diseases (allergic rhinitis, allergic dermatitis, allergic asthma), atherosclerosis, obesity and type 2 diabetes, metabolic homeostasis, and the compounds or drugs that have been discovered or applied to the treatment of these diseases by targeting macrophage polarization.
Collapse
Affiliation(s)
| | | | | | | | - Yuanmin Wang
- The Third Affiliated Hospital of Zunyi Medical University, The First People’s Hospital of Zunyi, Zunyi, Guizhou, China
| |
Collapse
|
22
|
Huang Z, Pan T, Xu L, Shi L, Ma X, Zhou L, Wang L, Wang J, Zhu G, Chen D, Song L, Pan X, Wang X, Li X, Luo Y, Chen Y. FGF4 protects the liver from immune-mediated injury by activating CaMKK β-PINK1 signal pathway to inhibit hepatocellular apoptosis. Acta Pharm Sin B 2024; 14:1605-1623. [PMID: 38572102 PMCID: PMC10985030 DOI: 10.1016/j.apsb.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 04/05/2024] Open
Abstract
Immune-mediated liver injury (ILI) is a condition where an aberrant immune response due to various triggers causes the destruction of hepatocytes. Fibroblast growth factor 4 (FGF4) was recently identified as a hepatoprotective cytokine; however, its role in ILI remains unclear. In patients with autoimmune hepatitis (type of ILI) and mouse models of concanavalin A (ConA)- or S-100-induced ILI, we observed a biphasic pattern in hepatic FGF4 expression, characterized by an initial increase followed by a return to basal levels. Hepatic FGF4 deficiency activated the mitochondria-associated intrinsic apoptotic pathway, aggravating hepatocellular apoptosis. This led to intrahepatic immune hyper-reactivity, inflammation accentuation, and subsequent liver injury in both ILI models. Conversely, administration of recombinant FGF4 reduced hepatocellular apoptosis and rectified immune imbalance, thereby mitigating liver damage. The beneficial effects of FGF4 were mediated by hepatocellular FGF receptor 4, which activated the Ca2+/calmodulin-dependent protein kinasekinase 2 (CaMKKβ) and its downstream phosphatase and tensin homologue-induced putative kinase 1 (PINK1)-dependent B-cell lymphoma 2-like protein 1-isoform L (Bcl-XL) signalling axis in the mitochondria. Hence, FGF4 serves as an early response factor and plays a protective role against ILI, suggesting a therapeutic potential of FGF4 and its analogue for treating clinical immune disorder-related liver injuries.
Collapse
Affiliation(s)
- Zhifeng Huang
- Hepatology Diagnosis and Treatment Center, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Tongtong Pan
- Hepatology Diagnosis and Treatment Center, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Liang Xu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University & Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou 325035, China
| | - Lu Shi
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Liya Zhou
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Luyao Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jiaojiao Wang
- Hepatology Diagnosis and Treatment Center, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Guoqing Zhu
- Hepatology Diagnosis and Treatment Center, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Dazhi Chen
- Hangzhou Medical College, Hangzhou 311300, China
| | - Lingtao Song
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaomin Pan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaodong Wang
- Hepatology Diagnosis and Treatment Center, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaokun Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yongde Luo
- Hepatology Diagnosis and Treatment Center, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yongping Chen
- Hepatology Diagnosis and Treatment Center, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
23
|
Lashgari NA, Khayatan D, Roudsari NM, Momtaz S, Dehpour AR, Abdolghaffari AH. Therapeutic approaches for cholestatic liver diseases: the role of nitric oxide pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1433-1454. [PMID: 37736835 DOI: 10.1007/s00210-023-02684-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023]
Abstract
Cholestasis describes bile secretion or flow impairment, which is clinically manifested with fatigue, pruritus, and jaundice. Neutrophils play a crucial role in many diseases such as cholestasis liver diseases through mediating several oxidative and inflammatory pathways. Data have been collected from clinical, in vitro, and in vivo studies published between 2000 and December 2021 in English and obtained from the PubMed, Google Scholar, Scopus, and Cochrane libraries. Although nitric oxide plays an important role in the pathogenesis of cholestatic liver diseases, excessive levels of NO in serum and affected tissues, mainly synthesized by the inducible nitric oxide synthase (iNOS) enzyme, can exacerbate inflammation. NO induces the inflammatory and oxidative processes, which finally leads to cell damage. We found that natural products such as baicalin, curcumin, resveratrol, and lycopene, as well as chemical likes ursodeoxycholic acid, dexamethasone, rosuvastatin, melatonin, and sildenafil, are able to markedly attenuate the NO production and iNOS expression, mainly through inducing the nuclear factor κB (NF-κB), Janus kinase and signal transducer and activator of transcription (JAK/STAT), and toll like receptor-4 (TLR4) signaling pathways. This study summarizes the latest scientific data about the bile acid signaling pathway, the neutrophil chemotaxis recruitment process during cholestasis, and the role of NO in cholestasis liver diseases. Literature review directed us to propose that suppression of NO and its related pathways could be a therapeutic option for preventing or treating cholestatic liver diseases.
Collapse
Affiliation(s)
- Naser-Aldin Lashgari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., Tehran, Iran, P. O. Box: 19419-33111
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Danial Khayatan
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., Tehran, Iran, P. O. Box: 19419-33111
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nazanin Momeni Roudsari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., Tehran, Iran, P. O. Box: 19419-33111
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran, Iran
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., Tehran, Iran, P. O. Box: 19419-33111.
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
24
|
Zhang G, Wu S, Xia G. MiR-326 sponges TET2 triggering imbalance of Th17/Treg differentiation to exacerbate pyroptosis of hepatocytes in concanavalin A-induced autoimmune hepatitis. Ann Hepatol 2024; 29:101183. [PMID: 38043702 DOI: 10.1016/j.aohep.2023.101183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/30/2023] [Accepted: 11/04/2023] [Indexed: 12/05/2023]
Abstract
INTRODUCTION AND OBJECTIVES MicroRNA-326 is abnormally expressed in autoimmune diseases, but its roles in autoimmune hepatitis (AIH) are unknown. In this study, we aimed to investigate the effect of miR-326 on AIH and the underlying mechanism. MATERIALS AND METHODS Concanavalin A was administrated to induce AIH in mice and the expression levels of miR-326 and TET2 was evaluated by qRT-PCR and western blot, respectively. The percentages of Th17 and Treg cells were evaluated by flow cytometry and their marker proteins were determined by western blot and ELISA. The mitochondrial membrane potential (MMP) and ROS level were tested with the JC-1 kit and DCFH-DA assay. The binding relationships between miR-326 and TET2 were verified by dual-luciferase reporter assay. The liver tissues were stained by the HE staining. In vitro, AML12 cells were cocultured with mouse CD4+T cells. The expression levels of pyroptosis-related proteins were assessed by western blot. RESULTS Concanavalin A triggered AIH and enhanced the expression level of miR-326 in mice. It increased both Th17/Treg ratio and the levels of their marker proteins. The expression of TET2 was decreased in AIH mice. Knockdown of miR-326 could decrease the levels of pyroptosis-related proteins, the ROS level and increase MMP. In mouse CD4+T cells, miR-326 sponged TET2 to release IL-17A. Coculture of AML12 cells with isolated CD4+T cells from miR-326 knockdown AIH mice could relieve pyroptosis. CONCLUSIONS Knockdown of miR-326 exerted anti-pyroptosis effects via suppressing TET2 and downstream NF-κB signaling to dampen AIH. We highlighted a therapeutic target in AIH.
Collapse
Affiliation(s)
- Genglin Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences; Key Lab for Biotech-Drugs of National Health Commission; Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan city, Shandong province 250062, PR China
| | - Sensen Wu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan city, Shandong province 250012, PR China
| | - Guangtao Xia
- Department of Rheumatology and Immunology, Shandong Provincial Hospital Affiliated to Shandong First Medical University (Shandong Provincial Hospital), No. 324, Jingwuweiqi Road, Jinan city, Shandong province 250021, PR China.
| |
Collapse
|
25
|
Sun C, Zhu D, Zhu Q, He Z, Lou Y, Chen D. The significance of gut microbiota in the etiology of autoimmune hepatitis: a narrative review. Front Cell Infect Microbiol 2024; 14:1337223. [PMID: 38404291 PMCID: PMC10884129 DOI: 10.3389/fcimb.2024.1337223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/04/2024] [Indexed: 02/27/2024] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic inflammatory disease of the liver that is mediated by autoimmunity and has complex pathogenesis. Its prevalence has increased globally. Since the liver is the first organ to be exposed to harmful substances, such as gut-derived intestinal microbiota and its metabolites, gut health is closely related to liver health, and the "liver-gut axis" allows abnormalities in the gut microbiota to influence the development of liver-related diseases such as AIH. Changes in the composition of the intestinal microbiota and its resultant disruption of the intestinal barrier and microbial transport are involved in multiple ways in the disruption of immune homeostasis and inflammation, thereby influencing the development of AIH. In terms of the mechanisms involved in immune, the gut microbiota or its metabolites, which is decreased in secondary bile acids, short-chain fatty acids (SCFAs), and polyamines, and increased in lipopolysaccharide (LPS), branched-chain amino acids (BCAA), tryptophan metabolite, amino acid, and bile acid, can disrupt immune homeostasis by activating various immune cells and immune-related signaling pathways, resulting in aberrant activation of the immune system. Clarifying this mechanism has significant clinical implications for the treatment of AIH with drugs that target intestinal microbiota and related signaling pathways. Therefore, this narrative review summarizes the progress in exploring the involvement of gut microbiota in the pathogenesis of AIH, with the aim of helping to improve the precise targeting of therapeutic treatments against AIH for the benefit of clinical AIH treatment.
Collapse
Affiliation(s)
- Chen Sun
- Clinical Research Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongzi Zhu
- Department of General Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Zhu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zeping He
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yichao Lou
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Desheng Chen
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Altamimi E, Al Omari D, Obeidat H, Barham K. Retrospective, single-center analysis of autoimmune hepatitis in Jordanian children: clinical features, treatments, and outcomes. BMC Pediatr 2024; 24:102. [PMID: 38331749 PMCID: PMC10851525 DOI: 10.1186/s12887-024-04590-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/24/2024] [Indexed: 02/10/2024] Open
Abstract
OBJECTIVES This study describes clinical, biochemical, and histological features and long-term outcomes in pediatric patients diagnosed with autoimmune hepatitis (AIH) at King Abdullah University Hospital, Jordan. DESIGN Retrospective, single-center study. SETTING King Abdullah University Hospital, Jordan. PARTICIPANTS Inclusion of all pediatric patients with AIH diagnosed at our hospital from 2015 to 2023. Exclusion criteria was patients aged over 18 at time of diagnosis and those diagnosed elsewhere. OUTCOME MEASURES Understanding clinical, biochemical, and histological AIH features in children, evaluating treatment responses, and reporting short- and long-term complications, including mortality. RESULTS Sixteen pediatric cases were diagnosed, with an average age of 9.84 ± 4.13 years. Females comprised 75% of patients, and 31.3% presented with acute liver failure. Jaundice was the most common symptom, and hepatosplenomegaly was observed in 18% of cases. Most patients had elevated transaminase levels, along with positive anti-smooth muscle antibody (ASMA) and antinuclear antibodies (ANA). Common hematological abnormalities included anemia (56.3%) and thrombocytopenia (37.5%). All patients underwent liver biopsy, with interface hepatitis present in 81.3% of cases. Treatment mainly involved prednisone and azathioprine. Three patients died, one discontinued therapy, two patients were lost to follow-up, and 10 remained on treatment. CONCLUSION Autoimmune hepatitis affects Jordanian children, primarily female children. Jaundice is the most common presenting symptoms. Only Type I AIH occurred in our cohort. Although of good response to conventional treatment with steroids and immunosuppression, mortality reached 18.8%.
Collapse
Affiliation(s)
- Eyad Altamimi
- Pediatric and Neonatology Department, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan.
| | - Dana Al Omari
- Pediatric and Neonatology Department, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Hanadi Obeidat
- Pediatric and Neonatology Department, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Kamleh Barham
- Pediatric and Neonatology Department, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
27
|
Zhang L, Liu M, Sun Q, Cheng S, Chi Y, Zhang J, Wang B, Zhou L, Zhao J. Engineering M2 type macrophage-derived exosomes for autoimmune hepatitis immunotherapy via loading siRIPK3. Biomed Pharmacother 2024; 171:116161. [PMID: 38244330 DOI: 10.1016/j.biopha.2024.116161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 01/22/2024] Open
Abstract
Autoimmune hepatitis (AIH) is a progressive liver disease mediated by the immune system that involves an imbalance in pro-inflammatory and regulatory mechanisms including regulatory T cells (Tregs), T helper 17 (Th17) cells, Th1, macrophages, and many other immune cells. Current steroid therapy for AIH has significant systemic side effects and is poorly tolerated by some individuals. Therefore, there is an urgent need for alternative treatments. Maintaining homeostasis in macrophage differentiation and activation is crucial for regulating immune responses in hepatitis. In this study, we loaded small interfering RNA (siRNA) targeting receptor-interacting protein kinase 3 (RIPK3) into M2-type macrophage-derived exosomes (M2 Exos) to create functionalized exosomes called M2 Exos/siRIPK3. These exosomes demonstrated a natural ability to target the liver in mice, as they were efficiently taken up by hepatic macrophages and showed significant and stable accumulation. M2 Exos/siRIPK3 effectively mitigated immune-mediated hepatitis by suppressing the expression of RIPK3, resulting in a reduced release of pro-inflammatory cytokines and chemokines in both liver tissues and serum. Additionally, M2 Exos/siRIPK3 exhibited immunomodulatory effects, as its administration resulted in a decreased proportion of hepatic and splenic Th17 cells, along with an increased ratio of Tregs. Overall, this study suggests that loading small molecule drugs onto M2 Exos could be a promising approach for developing immunomodulators that specifically target liver macrophages to treat AIH. This strategy has the potential to provide a safer and more effective alternative to current therapy for AIH patients.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin 300052, China
| | - Man Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin 300052, China
| | - Qiu Sun
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin 300052, China
| | - Shuqin Cheng
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin 300052, China
| | - Yirong Chi
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin 300052, China
| | - Jie Zhang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin 300052, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin 300052, China
| | - Lu Zhou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin 300052, China.
| | - Jingwen Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin 300052, China.
| |
Collapse
|
28
|
Grønbæk L, Omeife H, Ban L, Crooks CJ, Card TR, Jepsen P, West J. Smoking is a Risk Factor for Autoimmune Hepatitis: An English Registry-Based Case-Control Study. Clin Epidemiol 2024; 16:23-30. [PMID: 38313042 PMCID: PMC10838502 DOI: 10.2147/clep.s439219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/18/2024] [Indexed: 02/06/2024] Open
Abstract
Purpose Smoking is a risk factor for some autoimmune diseases, but its association with autoimmune hepatitis remains unknown. We conducted a population-based matched case-control study to examine the association between tobacco smoking and the risk of autoimmune hepatitis in England. Patients and Methods From the Clinical Practice Research Datalink and linked Hospital Episode Statistics, 2005-2017, we included 987 cases diagnosed with autoimmune hepatitis after age 18 years and up to 10 frequency-matched population controls per case. We used multiple logistic regression to estimate the odds ratio of autoimmune hepatitis in ever-smokers vs never-smokers, adjusting for sex, age, general practice, calendar time of registration with the general practice, and socioeconomic status. Results The autoimmune hepatitis cases were more likely to be ever-smokers than the controls (44% vs 37%). The ever-smokers had an increased risk of autoimmune hepatitis compared with the never-smokers (adjusted odds ratio = 1.20, 95% confidence interval 1.03-1.39). Conclusion Smoking was associated with an increased risk of autoimmune hepatitis.
Collapse
Affiliation(s)
- Lisbet Grønbæk
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
- Department of Medicine, Regional Hospital Horsens, Horsens, Denmark
- Lifespan and Population Health, School of Medicine, University of Nottingham, Nottingham, UK
| | - Harmony Omeife
- Lifespan and Population Health, School of Medicine, University of Nottingham, Nottingham, UK
| | - Lu Ban
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, the Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
| | - Colin J Crooks
- Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Timothy R Card
- Lifespan and Population Health, School of Medicine, University of Nottingham, Nottingham, UK
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, the Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
| | - Peter Jepsen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
- Lifespan and Population Health, School of Medicine, University of Nottingham, Nottingham, UK
| | - Joe West
- Lifespan and Population Health, School of Medicine, University of Nottingham, Nottingham, UK
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, the Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
29
|
Enciso J, Vasavada-Patel R, Lien K. A Rare Presentation of Drug-Induced Autoimmune Hepatitis and the Role of Male Enhancement Supplements. Cureus 2024; 16:e51770. [PMID: 38322090 PMCID: PMC10844770 DOI: 10.7759/cureus.51770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/06/2024] [Indexed: 02/08/2024] Open
Abstract
Autoimmune hepatitis (AIH) is a condition characterized by an autoimmune response resulting in chronic inflammatory liver disease. Its presentation is marked by significant increases in serum immunoglobulins and the production of active autoantibodies that target liver tissue. AIH is often associated with other autoimmune disorders, which can lead to overlapping clinical syndromes. However, alternative theories propose that exposure to specific environmental triggers can initiate this autoimmune cascade. We present the case of a 45-year-old male who sought evaluation for abdominal discomfort and was subsequently diagnosed with drug-induced AIH (DIAIH) following prolonged use of an over-the-counter male-enhancing supplement.
Collapse
Affiliation(s)
- Juan Enciso
- Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, USA
| | - Ruhi Vasavada-Patel
- Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, USA
| | - Kyle Lien
- Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, USA
| |
Collapse
|
30
|
Ahn S, Jeong SH, Cho EJ, Lee K, Kim G, Kim H. Comparison of four histological scoring systems for autoimmune hepatitis to improve diagnostic sensitivity. Clin Mol Hepatol 2024; 30:37-48. [PMID: 37953068 PMCID: PMC10776291 DOI: 10.3350/cmh.2023.0325] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/20/2023] [Accepted: 11/10/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND/AIMS The histological criteria in the 1999 and 2008 scoring systems proposed by the International Autoimmune Hepatitis Group (IAIHG) have their inherent limitations in diagnosing autoimmune hepatitis (AIH). In this study, we evaluated the histology components of four scoring systems (1. revised original scoring system ["1999 IAIHG"], 2. simplified scoring system ["2008 IAIHG"], 3. modified histologic criteria ["2017 UCSF"], and 4. a new histologic criteria proposed by the International AIH Pathology Group ["2022 IAHPG"]) in AIH patients. METHODS Medical records and liver biopsies were retrospectively reviewed for 68 patients from two independent medical institutions, diagnosed with AIH based on the 1999 IAIHG system between 2006 and 2016. The histological features were reviewed in detail, and the four histological scoring systems were compared. RESULTS Out of the 68 patients, 56 (82.4%) patients met the "probable" or "definite" AIH criteria of the 2008 IAIHG system, and the proportion of histologic score 2 (maximum) was 40/68 (58.8%). By applying the 2017 UCSF criteria, the number of histology score 2 increased to 60/68 (88.2%), and "probable" or "definite" AIH cases increased to 61/68 (89.7%). Finally, applying the 2022 IAHPG histology score resulted in the highest number of cases with histologic score 2 (64/68; 94.1%) and with a diagnosis of "probable" or "definite" AIH (62/68; 91.2%). CONCLUSION The recently proposed UCSF/IAHPG histological criteria increased the histology score of AIH. Substituting the histology component of the 2008 IAIHG system with the 2022 IAHPG criteria increased the sensitivity for diagnosing AIH (≥"Probable AIH") from 82.4% to 91.2%.
Collapse
Affiliation(s)
- Soomin Ahn
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sook-Hyang Jeong
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Eun Ju Cho
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Kyoungbun Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Gilhyang Kim
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
- Department of Pathology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Haeryoung Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
31
|
Lee DU, Schuster K, Bahadur A, Schellhammer S, Ponder R, Mitchell-Sparke E, Fan GH, Lee KJ, Chou H, Lominadze Z. Trends of Costs and Admission Rates Among Patients Admitted With Autoimmune Hepatitis: Analysis of US Hospitals Using the NIS Database. J Clin Exp Hepatol 2024; 14:101279. [PMID: 38076380 PMCID: PMC10709195 DOI: 10.1016/j.jceh.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/27/2023] [Indexed: 01/05/2025] Open
Abstract
Background and aim Autoimmune hepatitis (AIH) is a prominent cause of chronic liver disease in the United States. This study aims to characterize the incidence, mortality, and cost implications of this condition using a national database. Method The 2016-2019 National Inpatient Sample was used to select patients with AIH. After adjusting for inflation, weighted charge data were used to calculate the admission costs using charge-to-cost ratios. Demographic, socioeconomic status, and comorbidity values were used to build strata to characterize admission incidence, mortality data and aggregate and per-capita cost values. Furthermore, additional sensitivity analysis was performed using a stratified set of patients with AIH as one of the top 10 diagnosis (AIH-specific subsample). Multinomial regression curves were graphed and assessed to derive goodness-of-fit for each trend. R2 and P-values were calculated. Results From 2016 to 2019, the total admissions related to AIH were approximately 20,984, 21,905, 22,055, and 22,680 cases, respectively (R2: 0.93, P-value: 0.03). AIH-related hospitalization aggregate costs came to $338.18, $369.17, $355.98, and $387.25 million dollars (R2: 0.75, P-value: 0.17). Significant admission growth was seen in the Southern region (R2: 0.91, P-value: 0.05). Most notably, increasing trends in total admissions were found across older age, those of White and Hispanic descent, and those with comorbidities. On the other hand, the AIH-specific subsample illustrated decreasing trends in admissions across demographics (i.e., age, gender, and race) and comorbidities; however, those with hepatic complications saw a rise in the admission trends (cirrhosis - R2: 0.98, P-value: 0.009; multiple liver complications - R2: 0.95, P-value: 0.03). Conclusion Among AIH-specific admissions, there was a decreasing trend overall; however, there was an exceptional increase in the admissions among those with hepatic complications.
Collapse
Affiliation(s)
- David U. Lee
- Division of Gastroenterology and Hepatology, University of Maryland, 22 S. Greene St, Baltimore, MD, 21201, USA
| | - Kimberly Schuster
- Department of Medicine, Tufts University School of Medicine, Washington St, Boston, MA, 02111, USA
| | - Aneesh Bahadur
- Department of Medicine, Tufts University School of Medicine, Washington St, Boston, MA, 02111, USA
| | | | - Reid Ponder
- Department of Medicine, Tufts University School of Medicine, Washington St, Boston, MA, 02111, USA
| | - Emma Mitchell-Sparke
- Department of Medicine, Tufts University School of Medicine, Washington St, Boston, MA, 02111, USA
| | - Gregory H. Fan
- Department of Medicine, Tufts University School of Medicine, Washington St, Boston, MA, 02111, USA
| | - Ki J. Lee
- Department of Medicine, Tufts University School of Medicine, Washington St, Boston, MA, 02111, USA
| | - Harrison Chou
- Department of Medicine, Tufts University School of Medicine, Washington St, Boston, MA, 02111, USA
| | - Zurabi Lominadze
- Division of Gastroenterology and Hepatology, University of Maryland, 22 S. Greene St, Baltimore, MD, 21201, USA
| |
Collapse
|
32
|
Liu Y, Li G, Lu F, Guo Z, Cai S, Huo T. Excess iron intake induced liver injury: The role of gut-liver axis and therapeutic potential. Biomed Pharmacother 2023; 168:115728. [PMID: 37864900 DOI: 10.1016/j.biopha.2023.115728] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023] Open
Abstract
Excessive iron intake is detrimental to human health, especially to the liver, which is the main organ for iron storage. Excessive iron intake can lead to liver injury. The gut-liver axis (GLA) refers to the bidirectional relationship between the gut and its microbiota and the liver, which is a combination of signals generated by dietary, genetic and environmental factors. Excessive iron intake disrupts the GLA at multiple interconnected levels, including the gut microbiota, gut barrier function, and the liver's innate immune system. Excessive iron intake induces gut microbiota dysbiosis, destroys gut barriers, promotes liver exposure to gut microbiota and its derived metabolites, and increases the pro-inflammatory environment of the liver. There is increasing evidence that excess iron intake alters the levels of gut microbiota-derived metabolites such as secondary bile acids (BAs), short-chain fatty acids, indoles, and trimethylamine N-oxide, which play an important role in maintaining homeostasis of the GLA. In addition to iron chelators, antioxidants, and anti-inflammatory agents currently used in iron overload therapy, gut barrier intervention may be a potential target for iron overload therapy. In this paper, we review the relationship between excess iron intake and chronic liver diseases, the regulation of iron homeostasis by the GLA, and focus on the effects of excess iron intake on the GLA. It has been suggested that probiotics, fecal microbiota transfer, farnesoid X receptor agonists, and microRNA may be potential therapeutic targets for iron overload-induced liver injury by protecting gut barrier function.
Collapse
Affiliation(s)
- Yu Liu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Guangyan Li
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Fayu Lu
- School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Ziwei Guo
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Shuang Cai
- The First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| | - Taoguang Huo
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
33
|
Shi Z, Zhao X, Song F, Hou Z, Hao X, Guo J, Sun L, Feng H, Wu M, Xie P, Tan X, Chen G, Qi C, Zhang Y. Prenyllongnols A-D, New Prenylated Acylphloroglucinols that Fight Concanavalin A-Induced Autoimmune Hepatitis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17801-17809. [PMID: 37944165 DOI: 10.1021/acs.jafc.3c05245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Autoimmune hepatitis is a serious hepatic disorder with unknown nosogenesis, and natural products have been deemed to be one of the most significant sources of new drugs against this disease. Prenyllongnols A-D (1-4), four undescribed prenylated acylphloroglucinols, were isolated from Hypericum longistylum. Compounds 1-4 exhibited remarkable immunosuppressive activities in murine splenocyte proliferation under the induction of concanavalin A (Con A), and IC50 values ranged from 2.98 ± 0.21 to 6.34 ± 0.72 μM. Furthermore, in a Con A-challenged autoimmune hepatitis mouse model, the mice in the group that were pretreated with isolate 2 significantly ameliorated liver injury and decreased proinflammatory cytokine production. Notably, natural product 2 was the first prenylated acylphloroglucinol to protect against concanavalin A-induced autoimmune hepatitis. This finding underscores the potential of prenylated acylphloroglucinol-type metabolites as promising candidates for designing novel immunosuppressors in the quest for new antiautoimmune hepatitis drugs.
Collapse
Affiliation(s)
- Zhengyi Shi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiangli Zhao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Fei Song
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhangrong Hou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xincai Hao
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei Engineering Technology Center for Comprehensive Utilization of Medicinal Plants, College of Pharmacy, Hubei University of Medicine, Shiyan 442000, China
| | - Jieru Guo
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430033, Hubei, China
| | - Lingjuan Sun
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Hao Feng
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Meng Wu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Peiling Xie
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Xiaosheng Tan
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Gang Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Changxing Qi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
34
|
Ji W, Wang W, Li P, Liu Y, Zhang B, Qi F. sFgl2 gene-modified MSCs regulate the differentiation of CD4 + T cells in the treatment of autoimmune hepatitis. Stem Cell Res Ther 2023; 14:316. [PMID: 37924141 PMCID: PMC10625288 DOI: 10.1186/s13287-023-03550-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 10/27/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Autoimmune hepatitis (AIH) is a T-cell-mediated autoimmune liver disease that can lead to liver injury and has a poor long-term prognosis. Mesenchymal stromal cells (MSCs) have immunosuppressive effects and can treat AIH. CD4+ T cells express the unique inhibitory Fcγ receptor (FcγRIIB), which is the only receptor for the immunosuppressive factor soluble fibrinogen-like protein 2 (sFgl2). This study aimed to examine the therapeutic effect of sFgl2 gene-modified MSCs (sFgl2-MSCs) on AIH. METHODS MSCs were obtained from the inguinal fat of mice and cocultured with CD4+ T cells sorted from mouse spleens. FcγRIIB expression on CD4+ T cells was determined by flow cytometry. sFgl2 expression in MSCs transfected with lentiviral vectors carrying the Fgl2 gene and a green fluorescent protein-encoding sequence was determined by enzyme-linked immunosorbent assay. The percentages of Th1 cells Th17 cells and regulatory T cells (Tregs) were determined by flow cytometry And the levels of p-SHP2 and p-SMAD2/3 were detected by Western blotting after the cells were cocultured with MSCs for 72 h. After locating MSCs by in vivo imaging Con A-induced experimental AIH mice were randomly divided into 4 groups and administered different treatments. After 24 h histopathological scores liver function and cytokine levels were examined and the proportions of CD4+ T cells CD8+ T cells Tregs Th17 cells and Th1 cells in the spleen and liver were determined by flow cytometry. In addition immunohistochemical staining was used to detect the liver infiltration of T-bet-, Foxp3- and RORγ-positive cells. RESULTS FcγRIIB expression on CD4+ T cells was upregulated after coculture with MSCs. After coculture with sFgl2-MSCs, the proportion of Tregs among CD4+ T cells increased, the proportion of Th17 and Th1 cells decreased, and the levels of p-SHP2 and p-SMAD2/3 increased. In vivo, sFgl2-MSCs significantly improved liver function, decreased liver necrosis area, decreased tumor necrosis factor-α, interleukin (IL)-1β and IL-6 expression, increased IL-10 expression, reduced liver infiltration of CD4+ T and CD8+ T cells, increased the proportion of Tregs and reduced the proportions of Th17 and Th1 cells in mice. CONCLUSION By promoting Tregs differentiation and inhibiting Th17 and Th1 cell differentiation, sFgl2 gene-modified MSCs have a more powerful therapeutic effect on Con A-induced experimental AIH and may represent a strategy for the clinical treatment of AIH.
Collapse
Affiliation(s)
- Wenbin Ji
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Weiwei Wang
- Department of General Surgery, Tianjin Medical University Baodi Clinical College, Guangchuan Road, Baodi, Tianjin, 301800, China
| | - Peiyuan Li
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Yanhong Liu
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, 300121, China
| | - Baotong Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Feng Qi
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China.
| |
Collapse
|
35
|
Lynch K, Mega A, Daves M, Sadiq A, Fogarty H, Piccin A. Liver Disease and Sickle Cell Disease: Auto-Immune Hepatitis more than a Coincidence; A Systematic Review of the Literature. Mediterr J Hematol Infect Dis 2023; 15:e2023060. [PMID: 38028400 PMCID: PMC10631714 DOI: 10.4084/mjhid.2023.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/14/2023] [Indexed: 12/01/2023] Open
Abstract
In patients with SCD, chronic liver damage is a common manifestation. More than 50% of SCD patients have elevated liver enzymes. Common underlying aetiologies include sickle cell hepatic crisis, viral hepatitis, sickle cell intrahepatic cholestasis and hepatic sequestration in the acute setting, and cholelithiasis and iron overload in the chronic setting. Autoimmune hepatitis (AIH) is a rare disease that appears to occur more commonly in the sickle cell disease (SCD) population than in the general population. There are many schools of thought as to why this is the case, including the phosphatidylserine hypothesis, the heme inflammatory hypothesis, the complement generation hypothesis, and the transfusion alloimmunization hypothesis. Due to the natural history of the two illnesses, SCD is almost always diagnosed first in cases of dual pathology. Symptoms such as jaundice, fatigue, and abdominal pain are common in SCD, as are abnormal liver function tests (LFTs). These abnormalities, attributed to the other more frequent liver involvements in SCD, can lead to delays in AIH diagnosis in this population. Corticosteroids, sometimes with other immunosuppressive agents, such as azathioprine, are the cornerstone of acute AIH treatment. However, corticosteroid use in the SCD population has been shown to carry an increased risk of vaso-occlusive crises, providing a treatment dilemma. The following is a review of AIH in the SCD population, where we explore the pathophysiology behind the association between the two disorders, discuss an approach to investigating abnormal LFTs in SCD, and examine treatment options in this population with co-existing diseases.
Collapse
Affiliation(s)
- Kelvin Lynch
- Dept of Gastroenterology, Cork University Hospital, Cork, Ireland
| | - Andrea Mega
- Dept of Gastroenterology, Provincial Hospital of Bolzano (SABES-ASDAA), Bolzano, Italy
| | - Massimo Daves
- Dept of Laboratory Medicine, Provincial Hospital of Bolzano (SABES-ASDAA), Bolzano, Italy
| | - Asma Sadiq
- Northern Ireland Blood Transfusion Service, Belfast, UK
| | - Helen Fogarty
- Department of Haematology, Children's Health Ireland at Crumlin, Dublin
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin
| | - Andrea Piccin
- Northern Ireland Blood Transfusion Service, Belfast, UK
- Dept of Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria
- Dept of Industrial Engineering, University of Trento, Trento, Italy
| |
Collapse
|
36
|
Xiang Y, Zhang M, Jiang D, Su Q, Shi J. The role of inflammation in autoimmune disease: a therapeutic target. Front Immunol 2023; 14:1267091. [PMID: 37859999 PMCID: PMC10584158 DOI: 10.3389/fimmu.2023.1267091] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023] Open
Abstract
Autoimmune diseases (AIDs) are immune disorders whose incidence and prevalence are increasing year by year. AIDs are produced by the immune system's misidentification of self-antigens, seemingly caused by excessive immune function, but in fact they are the result of reduced accuracy due to the decline in immune system function, which cannot clearly identify foreign invaders and self-antigens, thus issuing false attacks, and eventually leading to disease. The occurrence of AIDs is often accompanied by the emergence of inflammation, and inflammatory mediators (inflammatory factors, inflammasomes) play an important role in the pathogenesis of AIDs, which mediate the immune process by affecting innate cells (such as macrophages) and adaptive cells (such as T and B cells), and ultimately promote the occurrence of autoimmune responses, so targeting inflammatory mediators/pathways is one of emerging the treatment strategies of AIDs. This review will briefly describe the role of inflammation in the pathogenesis of different AIDs, and give a rough introduction to inhibitors targeting inflammatory factors, hoping to have reference significance for subsequent treatment options for AIDs.
Collapse
Affiliation(s)
- Yu Xiang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingxue Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Die Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Qian Su
- Department of Health Management & Institute of Health Management, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
37
|
Qin H, Sun C, Kong D, Zhu Y, Shao B, Ren S, Wang H, Zhang J, Xu Y, Wang H. CD73 mediates the therapeutic effects of endometrial regenerative cells in concanavalin A-induced hepatitis by regulating CD4 + T cells. Stem Cell Res Ther 2023; 14:277. [PMID: 37775797 PMCID: PMC10543328 DOI: 10.1186/s13287-023-03505-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND As a kind of mesenchymal-like stromal cells, endometrial regenerative cells (ERCs) have been demonstrated effective in the treatment of Concanavalin A (Con A)-induced hepatitis. However, the therapeutic mechanism of ERCs is not fully understood. Ecto-5`-nucleotidase (CD73), an enzyme that could convert immune-stimulative adenosine monophosphate (AMP) to immune-suppressive adenosine (ADO), was identified highly expressed on ERCs. The present study was conducted to investigate whether the expression of CD73 on ERCs is critical for its therapeutic effects in Con A-induced hepatitis. METHODS ERCs knocking out CD73 were generated with lentivirus-mediated CRISPR-Cas9 technology and identified by flow cytometry, western blot and AMPase activity assay. CD73-mediated immunomodulatory effects of ERCs were investigated by CD4+ T cell co-culture assay in vitro. Besides, Con A-induced hepatitis mice were randomly assigned to the phosphate-buffered saline treated (untreated), ERC-treated, negative lentiviral control ERC (NC-ERC)-treated, and CD73-knockout-ERC (CD73-KO-ERC)-treated groups, and used to assess the CD73-mediated therapeutic efficiency of ERCs. Hepatic histopathological analysis, serum transaminase concentrations, and the proportion of CD4+ T cell subsets in the liver and spleen were performed to assess the progression degree of hepatitis. RESULTS Expression of CD73 on ERCs could effectively metabolize AMP to ADO, thereby inhibiting the activation and function of conventional CD4+ T cells was identified in vitro. In addition, ERCs could markedly reduce levels of serum and liver transaminase and attenuate liver damage, while the deletion of CD73 on ERCs dampens these effects. Furthermore, ERC-based treatment achieved less infiltration of CD4+ T and Th1 cells in the liver and reduced the population of systemic Th1 and Th17 cells and the levels of pro-inflammatory cytokines such as IFN-γ and TNF-α, while promoting the generation of Tregs in the liver and spleen, while deletion of CD73 on ERCs significantly impaired their immunomodulatory effects locally and systemically. CONCLUSION Taken together, it is concluded that CD73 is critical for the therapeutic efficiency of ERCs in the treatment of Con A-induced hepatitis.
Collapse
Affiliation(s)
- Hong Qin
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Chenglu Sun
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Dejun Kong
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yanglin Zhu
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Bo Shao
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Shaohua Ren
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Hongda Wang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jingyi Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yini Xu
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
38
|
Chen Y, Lei Y, Wang H, Wang L, Xu J, Wang S, Yu M, Peng Z, Xiao F, Tian D, Liu M. Sophoricoside attenuates autoimmune‑mediated liver injury through the regulation of oxidative stress and the NF‑κB signaling pathway. Int J Mol Med 2023; 52:78. [PMID: 37477163 PMCID: PMC10555480 DOI: 10.3892/ijmm.2023.5281] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/04/2023] [Indexed: 07/22/2023] Open
Abstract
The prevalence of autoimmune hepatitis (AIH) is increasing, yet specific pharmacotherapies remain to be explored. The present study aimed to investigate the effects of sophoricoside (SOP), a bioactive component of medical herbs, on AIH and to elucidate the underlying mechanisms. Bioinformatic approaches were used to predict the potential targets and underlying regulatory mechanisms of SOP on AIH. The effects of SOP on AIH were evaluated by determining the expression levels of inflammatory cytokines, histological liver injury and hepatic fibrosis in an improved chronic cytochrome P450 2D6 (CYP2D6)‑AIH mouse model and in a model of concanavalin‑A (ConA)‑induced acute immune‑mediated liver injury. The antioxidant activity of SOP was detected in in vivo and in vitro experiments. The selected signal targeted by SOP in AIH was further confirmed using western blot analysis and immunofluorescence staining. The results of bioinformatic analysis revealed that the targets of SOP in AIH were related to oxidative stress and the NF‑κB gene set. The NF‑κB transcription factor family is a key player that controls both innate and adaptive immunity. The activation of the NF‑κB signaling pathway is often associated with autoimmune disorders. In the animal experiments, SOP attenuated CYP2D6/ConA‑induced AIH, as evidenced by a significant reduction in the levels of hepatic enzymes in serum, inflammatory cytokine expression and histological lesions in the liver. The oxidative response in AIH was also significantly inhibited by SOP, as evidenced by a decrease in the levels of hepatic malondialdehyde, and elevations in the total antioxidant capacity and glutathione peroxidase levels. The results of the in vivo and in vitro experiments revealed that SOP significantly reduced the enhanced expression and nuclear translocation of phosphorylated p65 NF‑κB in the livers of mice with AIH and in lipopolysaccharide‑stimulated AML12 cells. On the whole, the present study demonstrates the protective role of SOP in AIH, which may be mediated by limiting the oxidative response and the activation of the NF‑κB signaling pathway in hepatocytes.
Collapse
Affiliation(s)
- Yu Chen
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yu Lei
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Han Wang
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Lijia Wang
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jiaxin Xu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Shuhui Wang
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Meiping Yu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhangqi Peng
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Fang Xiao
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Mei Liu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
39
|
Patel D, Salem A, Kania B, Lewis W, Mahmoud A, Alkomos M. Autoimmune hepatitis presenting with concomitant chronic pancreatitis. Radiol Case Rep 2023; 18:2871-2875. [PMID: 37359250 PMCID: PMC10285037 DOI: 10.1016/j.radcr.2023.05.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/13/2023] [Indexed: 06/28/2023] Open
Abstract
Autoimmune Hepatitis (AIH) is a progressive form of chronic hepatitis, with periods of remissions and exacerbations. Diagnosis includes abnormally high levels of immunoglobulins and multiple autoantibodies. Clinical presentation is variable, with a spectrum extending from asymptomatic cases to fulminant liver failure. Symptoms include abdominal pain, malaise, fatigue, and small joint arthralgia. We present a case of a 36-year-old male with a past medical history of alcohol dependence and acute pancreatitis who was diagnosed with AIH. There is limited data regarding patients with concomitant AIH and pancreatitis. Our patient presented with AIH with secondary acute on chronic pancreatitis, in the absence of additional autoimmune manifestations. The mechanism of AIH remains poorly understood; however, there is an association between the HLA gene and AIH. Genetic studies have shown HLA-DRB1*0301 and HLA-DRB1*0401 as primary and secondary genotypes susceptible to AIH, as well as genetic variants with CARD10 and SH2B3. Products secondary to metabolism of ETOH such as alcohol dehydrogenase, malondialdehyde, and acetaldehyde, can lead to development of autoantibodies. Additional research is indicated to evaluate the relationship between AIH and acute pancreatitis.
Collapse
Affiliation(s)
- Dhruv Patel
- Department of Medicine, St. Joseph's University Medical Center, 703 Main St, Paterson, NJ 07503 USA
| | - Ahmed Salem
- Department of Medicine, St. Joseph's University Medical Center, 703 Main St, Paterson, NJ 07503 USA
| | - Brooke Kania
- Department of Medicine, St. Joseph's University Medical Center, 703 Main St, Paterson, NJ 07503 USA
| | - William Lewis
- Department of Medicine, St. Joseph's University Medical Center, 703 Main St, Paterson, NJ 07503 USA
| | - Anas Mahmoud
- Department of Medicine, St. Joseph's University Medical Center, 703 Main St, Paterson, NJ 07503 USA
| | - Mina Alkomos
- Department of Medicine, St. Joseph's University Medical Center, 703 Main St, Paterson, NJ 07503 USA
| |
Collapse
|
40
|
Rinaldi L, Giorgione C, Mormone A, Esposito F, Rinaldi M, Berretta M, Marfella R, Romano C. Non-Invasive Measurement of Hepatic Fibrosis by Transient Elastography: A Narrative Review. Viruses 2023; 15:1730. [PMID: 37632072 PMCID: PMC10459581 DOI: 10.3390/v15081730] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Transient elastography by FibroScan® (Echosens, Paris, France) is a non-invasive method that can provide a reliable measurement of liver fibrosis through the evaluation of liver stiffness. Despite its limitations and risks, liver biopsy has thus far been the only procedure able to provide data to quantify fibrosis. Scientific evidence and clinical practice have made it possible to use FibroScan® in the diagnostic work-up of several liver diseases to monitor patients' long-term treatment response and for complication prevention. For these reasons, this procedure is widely used in clinical practice and is still being investigated for further applications. The aim of this narrative review is to provide a comprehensive overview of the main applications of transient elastography in the current clinical practice.
Collapse
Affiliation(s)
- Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, “Luigi Vanvitelli” University of Campania, 80131 Naples, Italy; (L.R.); (R.M.)
| | - Chiara Giorgione
- Department of Advanced Medical and Surgical Sciences, “Luigi Vanvitelli” University of Campania, 80131 Naples, Italy; (L.R.); (R.M.)
| | - Andrea Mormone
- Department of Advanced Medical and Surgical Sciences, “Luigi Vanvitelli” University of Campania, 80131 Naples, Italy; (L.R.); (R.M.)
| | - Francesca Esposito
- Department of Advanced Medical and Surgical Sciences, “Luigi Vanvitelli” University of Campania, 80131 Naples, Italy; (L.R.); (R.M.)
| | - Michele Rinaldi
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, “Federico II” University of Naples, 80131 Naples, Italy;
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, 98121 Messina, Italy;
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, “Luigi Vanvitelli” University of Campania, 80131 Naples, Italy; (L.R.); (R.M.)
| | - Ciro Romano
- Department of Advanced Medical and Surgical Sciences, “Luigi Vanvitelli” University of Campania, 80131 Naples, Italy; (L.R.); (R.M.)
| |
Collapse
|
41
|
Zhu J, Chen H, Cui J, Zhang X, Liu G. Oroxylin A inhibited autoimmune hepatitis-induced liver injury and shifted Treg/Th17 balance to Treg differentiation. Exp Anim 2023; 72:367-378. [PMID: 36927981 PMCID: PMC10435359 DOI: 10.1538/expanim.22-0171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
Autoimmune hepatitis (AIH) is a kind of autoimmune disease mediated by T cells, and its incidence is gradually increasing in the world. Oroxylin A (OA) is one of the major bioactive flavonoids that has been reported to inhibit inflammatory. Here, an AIH model of mouse was induced by Concanavalin A (Con A). It found that serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were decreased in mice with the treatment of OA. Hematoxylin-eosin staining showed that the liver injury was attenuated by OA, and TUNEL staining indicated that the cells apoptosis of liver was weakened in mice with OA treatment. ELISA analysis of cytokines and chemokines suggested that OA reduced the expression of IL-6, IL-17A, chemokine ligand 2 (CCL2), C-X-C motif chemokine ligand 1 (CXCL1) and CXCL10, but promoted the expression of IL-10 and TGF-β in mice. The mRNA levels of Il-17a in liver and spleen tissues were also significantly decreased, on the contrary, the mRNA levels of Il-10 in liver and spleen tissues were increased. The proportion of Treg/Th17 detected by flow cytometry revealed that OA promoted the differentiation of Treg and inhibited the differentiation of Th17 both in the liver and spleen. The results of this study demonstrated the inhibitory effects of OA on AIH-induced liver injury and the inflammatory response of AIH, and revealed that OA affected the balance of Treg/Th17 and shifted the balance toward Treg differentiation. It provided new potential drugs for the prevention of AIH.
Collapse
Affiliation(s)
- Jinxia Zhu
- The First Clinical Medical College, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou, Henan, 450046, P.R. China
| | - Hongxiu Chen
- The First Clinical Medical College, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou, Henan, 450046, P.R. China
| | - Jianjiao Cui
- Spleen, Stomach and Hepatobiliary Department, The First Affiliated Hospital of Henan University of Chinese Medicine, No. 19, Renmin Road, Zhengzhou, Henan, 450003, P.R. China
| | - Xiaorui Zhang
- Spleen, Stomach and Hepatobiliary Department, The First Affiliated Hospital of Henan University of Chinese Medicine, No. 19, Renmin Road, Zhengzhou, Henan, 450003, P.R. China
| | - Guangwei Liu
- Spleen, Stomach and Hepatobiliary Department, The First Affiliated Hospital of Henan University of Chinese Medicine, No. 19, Renmin Road, Zhengzhou, Henan, 450003, P.R. China
| |
Collapse
|
42
|
Karemera M, Verce M, Roumain M, Muccioli GG, Cani PD, Everard A, Stephenne X, Sokal E. Pediatric Autoimmune or Primary Sclerosing Cholangitis: Metronidazole Effectiveness on Biochemical Data, Bile Acid Profile, and Gut Microbiota: A Pilot Study. JPGN REPORTS 2023; 4:e334. [PMID: 37600615 PMCID: PMC10435019 DOI: 10.1097/pg9.0000000000000334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/25/2023] [Indexed: 08/22/2023]
Abstract
Objectives Autoimmune hepatitis and primary sclerosing cholangitis (PSC) can both be present, resulting in autoimmune sclerosing cholangitis (ASC). PSC physiopathology could be based on the cross-talk between gut microbiota and bile acids (BAs); antibiotics are an innovative therapy. This pilot study assesses metronidazole (MTZ)'s effectiveness in ASC or PSC patients according to the stage of the disease, and its effects on biochemical parameters, BA profiles, and gut microbiota. Methods ASC or PSC patients from Cliniques universitaires Saint-Luc's pediatric hepato-gastroenterology division were enrolled retrospectively and prospectively; both datasets were merged. MTZ was administered over at least 14 days on top of standard treatment (ursodeoxycholic acid, azathioprine, and steroids). Fecal and blood samples were collected before (T0) and at MTZ day 14 (T14). Sustained biochemical remission was defined by the reduction of transaminases (AST and ALT), gamma-glutamyl transferase (GGT), and CRP until 12 months post-MTZ. Results A total of 18 patients (mean age, 13.2 ± 4.5 years) were enrolled (13 ASC and 5 PSC), and divided in remission or relapse patients. CRP, AST, ALT, and GGT levels decreased post-MTZ in both groups (excepting GGT in relapse patients), with decreases between T0 and T14 being significant for AST and ALT. Relapse patients were older (P = 0.0351) and in late-disease stage, with mainly large-duct PSC (P = 0.0466). In remission patients, the mean plasma relative abundance of hydrophilic BA increased by +6.3% (P = 0.0391) after MTZ. Neither at baseline nor T14, there were significant differences in gut microbiota recorded. Conclusion These data are likely indicative of long-term benefits following MTZ therapy at early-stage ASC or PSC, with increased hydrophilic BA abundance. Multicenter prospective studies are needed.
Collapse
Affiliation(s)
- Manon Karemera
- From the Department of Pediatrics, Division of Pediatric Gastroenterology and Hepatology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Marko Verce
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and Biotechnology (WELBIO), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Martin Roumain
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Giulio G. Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Patrice D. Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and Biotechnology (WELBIO), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Amandine Everard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and Biotechnology (WELBIO), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Xavier Stephenne
- From the Department of Pediatrics, Division of Pediatric Gastroenterology and Hepatology, Cliniques universitaires Saint-Luc, Brussels, Belgium
- UCLouvain, Université catholique de Louvain, Institute of Experimental and Clinical Research - PEDI
| | - Etienne Sokal
- From the Department of Pediatrics, Division of Pediatric Gastroenterology and Hepatology, Cliniques universitaires Saint-Luc, Brussels, Belgium
- UCLouvain, Université catholique de Louvain, Institute of Experimental and Clinical Research - PEDI
| |
Collapse
|
43
|
Guadalupi G, Contini C, Iavarone F, Castagnola M, Messana I, Faa G, Onali S, Chessa L, Vitorino R, Amado F, Diaz G, Manconi B, Cabras T, Olianas A. Combined Salivary Proteome Profiling and Machine Learning Analysis Provides Insight into Molecular Signature for Autoimmune Liver Diseases Classification. Int J Mol Sci 2023; 24:12207. [PMID: 37569584 PMCID: PMC10418803 DOI: 10.3390/ijms241512207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Autoimmune hepatitis (AIH) and primary biliary cholangitis (PBC) are autoimmune liver diseases that target the liver and have a wide spectrum of presentation. A global overview of quantitative variations on the salivary proteome in presence of these two pathologies is investigated in this study. The acid-insoluble salivary fraction of AIH and PBC patients, and healthy controls (HCs), was analyzed using a gel-based bottom-up proteomic approach combined with a robust machine learning statistical analysis of the dataset. The abundance of Arginase, Junction plakoglobin, Desmoplakin, Hexokinase-3 and Desmocollin-1 decreased, while that of BPI fold-containing family A member 2 increased in AIHp compared to HCs; the abundance of Gelsolin, CD14, Tumor-associated calcium signal transducer 2, Clusterin, Heterogeneous nuclear ribonucleoproteins A2/B1, Cofilin-1 and BPI fold-containing family B member 2 increased in PBCp compared to HCs. The abundance of Hornerin decreased in both AIHp and PBCp with respect to HCs and provided an area under the ROC curve of 0.939. Machine learning analysis confirmed the feasibility of the salivary proteome to discriminate groups of subjects based on AIH or PBC occurrence as previously suggested by our group. The topology-based functional enrichment analysis performed on these potential salivary biomarkers highlights an enrichment of terms mostly related to the immune system, but also with a strong involvement in liver fibrosis process and with antimicrobial activity.
Collapse
Affiliation(s)
- Giulia Guadalupi
- Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, 09124 Cagliari, Italy; (G.G.); (C.C.); (T.C.); (A.O.)
| | - Cristina Contini
- Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, 09124 Cagliari, Italy; (G.G.); (C.C.); (T.C.); (A.O.)
| | - Federica Iavarone
- Fondazione Policlinico Universitario IRCCS “A. Gemelli”, 00168 Rome, Italy;
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Massimo Castagnola
- Laboratorio di Proteomica, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia, 00168 Rome, Italy;
| | - Irene Messana
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche, 00168 Rome, Italy;
| | - Gavino Faa
- Division of Pathology, Department of Medical Sciences and Public Health, University Hospital, 09124 Cagliari, Italy;
| | - Simona Onali
- Liver Unit, University Hospital of Cagliari, 09124 Cagliari, Italy; (S.O.); (L.C.)
| | - Luchino Chessa
- Liver Unit, University Hospital of Cagliari, 09124 Cagliari, Italy; (S.O.); (L.C.)
| | - Rui Vitorino
- iBiMED, Department of Medical Science, University of Aveiro, 3810-193 Aveiro, Portugal;
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
| | - Francisco Amado
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Giacomo Diaz
- Dipartimento di Scienze Biomediche, Università di Cagliari, 09124 Cagliari, Italy;
| | - Barbara Manconi
- Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, 09124 Cagliari, Italy; (G.G.); (C.C.); (T.C.); (A.O.)
| | - Tiziana Cabras
- Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, 09124 Cagliari, Italy; (G.G.); (C.C.); (T.C.); (A.O.)
| | - Alessandra Olianas
- Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, 09124 Cagliari, Italy; (G.G.); (C.C.); (T.C.); (A.O.)
| |
Collapse
|
44
|
Fujimori S, Chu PS, Teratani T, Harada Y, Suzuki T, Amiya T, Taniki N, Kasuga R, Mikami Y, Koda Y, Ichikawa M, Tabuchi T, Morikawa R, Yamataka K, Noguchi F, Tsujikawa H, Kurebayashi Y, Sakamoto M, Kanai T, Nakamoto N. IL-15-producing splenic B cells play pathogenic roles in the development of autoimmune hepatitis. JHEP Rep 2023; 5:100757. [PMID: 37305442 PMCID: PMC10251155 DOI: 10.1016/j.jhepr.2023.100757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 03/02/2023] [Accepted: 03/21/2023] [Indexed: 06/13/2023] Open
Abstract
Background & Aims B-cell depletion therapy with an anti-CD20 is an effective treatment strategy for patients with refractory autoimmune hepatitis (AIH). However, the mechanisms underlying B-cell action are unclear. Methods Herein, we used the adeno-associated virus IL-12 model, in which hepatic IL-12 expression triggers liver injuries characteristic of AIH. We also analysed the clinical samples of patients with AIH. Results B-cell depletion using anti-CD20 or splenectomy was found to improve liver functions and decrease the cytotoxic CD8+ T-cell (cytotoxic T lymphocyte [CTL]) count in the liver. This improvement was reversed by the adoptive transfer of splenic B cells derived from AAV IL-12-treated mice to splenectomised mice as it caused the hepatic CTL count to increase. RNA-sequencing analysis identified IL-15 as a key factor in pathogenic B cells, which promotes CTL expansion and subsequent migration to the liver via the CXCL9/CXCR3 axis. Indeed, IL-15 neutralisation ameliorated hepatitis by suppressing splenic and hepatic CTLs in vivo. The close distribution of B220+ B cells and CD8+ T cells in the spleen of AIH mice suggested mutual interactions. Mechanistically, IFNγ and CD40L/CD40 signalling were indispensable for the expression of IL-15 in B cells, and in vitro co-culture experiments revealed that splenic CD40L+CD8+ T cells promoted IL-15 production in B cells, which led to CTL expansion. In patients with AIH, high serum IL-15 concentration and IL-15+ B-cell counts, positively correlating with serum alanine aminotransferase levels, support translation and potential therapeutic targeting in human AIH. Conclusions This investigation elucidated the roles of IL-15-producing splenic B cells that occur in concert with pathogenic CD8+ T cells during the development of AIH. Impact and Implications IL-15-producing B cells were shown to exacerbate experimental AIH via cytotoxic T lymphocyte expansion. CD40L+CD8+ T cells promoted IL-15 expression in B cells, indicating the mutual interaction of both cells. High serum IL-15 concentrations, IL-15+ B-cell counts, and CD40L+IL-15Rα+CD8+ T-cell counts were confirmed in the blood of patients with AIH.
Collapse
Affiliation(s)
- Sota Fujimori
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
- Mitsubishi Tanabe Pharma Corporation, Kanagawa, Japan
| | - Po-Sung Chu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Toshiaki Teratani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yosuke Harada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takahiro Suzuki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takeru Amiya
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
- Mitsubishi Tanabe Pharma Corporation, Kanagawa, Japan
| | - Nobuhito Taniki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Ryosuke Kasuga
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yuzo Koda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
- Mitsubishi Tanabe Pharma Corporation, Kanagawa, Japan
| | - Masataka Ichikawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takaya Tabuchi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Rei Morikawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Karin Yamataka
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Fumie Noguchi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hanako Tsujikawa
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Yutaka Kurebayashi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Michiie Sakamoto
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
- Japan Agency for Medical Research and Development, AMED, Tokyo, Japan
| | - Nobuhiro Nakamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
45
|
Buechter M, Dorn D, Möhlendick B, Siffert W, Baba HA, Gerken G, Kahraman A. Characteristics and Long-Term Outcome of 535 Patients with Autoimmune Hepatitis-The 20-Year Experience of a High-Volume Tertiary Center. J Clin Med 2023; 12:4192. [PMID: 37445225 DOI: 10.3390/jcm12134192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Background and aims: Autoimmune hepatitis (AIH) is a complex and progressive inflammatory liver disease characterized by immune-mediated destruction of the liver parenchyma, hypergammaglobulinemia, the presence of circulating autoantibodies, and good response to immunosuppressive therapy. Since the prevalence of AIH is relatively rare, data on the clinical course and the long-term outcome are scarce. Patients and methods: We retrospectively analyzed the data of 535 well-documented AIH patients treated at the University Hospital Essen between 2000 and 2020. Results: The majority of patients were middle-aged females (75% women, mean age 45 years) with AIH type 1 (97%). Approximately 32% of patients were diagnosed with cirrhosis due to AIH, 29% had concomitant autoimmune (predominantly autoimmune thyroiditis), and 10% had psychiatric diseases, respectively. Skin tumors were the most common malignant diseases (47% of all tumors), while hepatocellular carcinoma rarely occurred (only six cases). Overall long-term mortality and liver-associated mortality were 9.16% and 4.67%, respectively. However, long-term survival was strongly associated with disease remission. Conclusions: Although AIH is a silent disease and cirrhosis is present in many cases, a favorable long-term prognosis can be achieved by consequent immunosuppressive therapy. The incidence of (liver-associated) complications seems to be lower in comparison to other etiologies, such as viral hepatitis or NASH, and mainly depends on the long-term side effects of immunosuppressive therapy.
Collapse
Affiliation(s)
- Matthias Buechter
- Department of Gastroenterology and Hepatology, University Clinic of Essen, University of Duisburg-Essen, 45122 Essen, Germany
- Department of Gastroenterology and Hepatology, Elisabeth Hospital, 58638 Iserlohn, Germany
| | - Dominik Dorn
- Department of Gastroenterology and Hepatology, University Clinic of Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Birte Möhlendick
- Institute of Pharmacogenetics, University Clinic of Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Winfried Siffert
- Institute of Pharmacogenetics, University Clinic of Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Hideo A Baba
- Institute of Pathology, University Clinic of Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Guido Gerken
- Department of Gastroenterology and Hepatology, University Clinic of Essen, University of Duisburg-Essen, 45122 Essen, Germany
- Department of Gastroenterology and Hepatology, Helios Clinic, 42549 Velbert, Germany
| | - Alisan Kahraman
- Department of Gastroenterology and Hepatology, University Clinic of Essen, University of Duisburg-Essen, 45122 Essen, Germany
- Department of Gastroenterology and Hepatology, Max Grundig Clinic, 77815 Bühl, Germany
| |
Collapse
|
46
|
Bhat R, Tonutti A, Timilsina S, Selmi C, Gershwin ME. Perspectives on Mycophenolate Mofetil in the Management of Autoimmunity. Clin Rev Allergy Immunol 2023:10.1007/s12016-023-08963-3. [PMID: 37338709 DOI: 10.1007/s12016-023-08963-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2023] [Indexed: 06/21/2023]
Abstract
Before becoming a cornerstone in the treatment of numerous immune-mediated diseases, mycophenolate mofetil (MMF) was first introduced as an immunosuppressive agent in transplant immunology and later received the attention of rheumatologists and clinicians involved in the management of autoimmune diseases. MMF is now a widespread immunosuppressive drug for the treatment of several conditions, including lupus nephritis, interstitial lung disease associated with systemic sclerosis, and anti-neutrophil cytoplasm antibody (ANCA)-associated vasculitis while being efficacious also as rescue therapy in various orphan diseases, including dermatomyositis and IgA-associated nephropathy. Similarly, case reports or series support a possible use of MMF in other rare autoimmune diseases. Beyond modulating lymphocyte activation, MMF acts on other immune and non-immune cells and these effects may explain the therapeutic profile of this medication. The effects of MMF are broadly characterized by the impact on the immune system and the antiproliferative and antifibrotic changes induced. In this latter case, mechanistic data on fibroblasts may in the future allow to reevaluate the use of MMF in selected patients with inflammatory arthritis or systemic sclerosis. Attention must be paid towards the possible occurrence of adverse events, such as gastrointestinal complaints and teratogenicity, while the risk of infections and cancer related to MMF needs to be further investigated.
Collapse
Affiliation(s)
- Rithika Bhat
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, USA
| | - Antonio Tonutti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Suraj Timilsina
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, USA
| | - Carlo Selmi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.
- Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.
| | - M Eric Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, USA.
| |
Collapse
|
47
|
Zhou H, Ye Q. Clinical Features of COVID-19 Vaccine-Associated Autoimmune Hepatitis: A Systematic Review. Diseases 2023; 11:80. [PMID: 37366868 DOI: 10.3390/diseases11020080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Autoimmune hepatitis (AIH) is an inflammatory liver disease wherein the body's immune system instigates an attack on the liver, causing inflammation and hepatic impairment. This disease usually manifests in genetically predisposed individuals and is triggered by stimuli or environments such as viral infections, environmental toxins, and drugs. The causal role of COVID-19 vaccination in AIH remains uncertain. This review of 39 cases of vaccine-related AIH indicates that female patients above the age of 50 years or those with potential AIH risk factors may be susceptible to vaccine-related AIH, and the clinical features of vaccine-associated AIH are similar to those of idiopathic AIH. These features commonly manifest in patients after the first dose of vaccination, with symptom onset typically delayed by 10-14 days. The incidence of underlying liver disease in patients with potential health conditions associated to liver disease is similar to that of patients without preexisting illnesses. Steroid administration is effective in treating vaccine-related AIH-susceptible patients, with most patients experiencing improvement in their clinical symptoms. However, care should be taken to prevent bacterial infections during drug administration. Furthermore, the possible pathogenic mechanisms of vaccine-associated AIH are discussed to offer potential ideas for vaccine development and enhancement. Although the incidence of vaccine-related AIH is rare, individuals should not be deterred from receiving the COVID-19 vaccine, as the benefits of vaccination significantly outweigh the risks.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Laboratory Medicine, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310000, China
| | - Qing Ye
- Department of Laboratory Medicine, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310000, China
| |
Collapse
|
48
|
Li D, Chen J, Lin B, Guo Y, Pan J, Yu C, Wan X. Celastrol pretreatment attenuates concanavalin A-induced hepatitis in mice by suppressing interleukin-6/STAT3-interleukin-17 signaling. J Gastroenterol Hepatol 2023; 38:821-829. [PMID: 36967570 DOI: 10.1111/jgh.16183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND AND AIM Celastrol is extracted from Tripterygium wilfordii Hook F. It has been reported to have protective effects against various liver diseases and immune regulation of autoimmune diseases. However, little is known about whether celastrol protects against immune-mediated hepatitis. This study aimed to investigate the effect of celastrol on liver injury induced by concanavalin A (ConA) and the potential mechanisms. METHODS Intravenous administration of ConA was applied to induce acute liver injury in mice with or without pretreatment of celastrol. The effects of celastrol on ConA-induced liver injury were further demonstrated by biochemical and histopathological assessments, immunoblotting, and flow cytometry analysis. RESULTS Both biochemical and histopathological observations showed that pretreatment of celastrol significantly ameliorated liver injury induced by ConA. Moreover, the hepatocyte apoptosis and inflammatory responses induced by ConA were also improved in celastrol-pretreated mice. Further studies revealed that these improvements were characterized as the celastrol-mediated suppression of total interleukin (IL)-17 from liver mononuclear cells in ConA-treated mice. Flow cytometry analysis suggested that celastrol specifically decreased IL-17 production by CD4+ T cells but not by CD8+ T cells. Fundamentally, pretreatment with celastrol inhibited both the IL-6 produced by F4/80+ macrophages and the IL-6 receptor on Th17 cells in the liver, which further led to the downregulated activation of STAT3, thus accounting for blocked Th17 signaling. CONCLUSIONS Celastrol may exhibit immune regulatory effects by regulating IL-6/STAT3-IL-17 signaling in ConA-induced hepatitis, which suggested new potentials for celastrol to be applied in treating immune-mediated liver diseases.
Collapse
Affiliation(s)
- Dingwu Li
- Department of Gastroenterology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jianing Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Bingru Lin
- Department of Gastroenterology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yanjun Guo
- Department of Gastroenterology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jiaqi Pan
- Department of Gastroenterology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Chaohui Yu
- Department of Gastroenterology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xingyong Wan
- Department of Gastroenterology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| |
Collapse
|
49
|
Lu WY, Hong XP, Xie JY, Liu CL, Chen CH, Qin-Huang, Sun BD, Liu DZ, Chen YL. Clinical significance of anti-rheumatoid arthritis 33 antibody in patients with systemic lupus erythematosus. J Investig Med 2023; 71:429-438. [PMID: 36695444 DOI: 10.1177/10815589221150643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Although anti-rheumatoid arthritis (RA) 33 antibodies have been reported to be present in various connective tissue diseases (CTDs), the clinical significance of anti-RA33 in CTDs is still obscure. This study was performed to explore the clinical significance of anti-RA33 in CTDs, especially systemic lupus erythematosus (SLE). A total of 565 patients with positive anti-nuclear antibodies who had been tested for anti-RA33 were included in this study and were further classified into RA33-positive and RA33-negative groups. The association between anti-RA33 and the clinical features of CTDs was examined. Receiver operating characteristic (ROC) analysis was performed to explore the diagnostic value of anti-RA33 in SLE and SLE-related organ involvement. The results showed that SLE was the most common disease in CTD patients positive for anti-RA33 (48.8%). Compared with the RA33-negative group, higher proportions of SLE-associated antibodies and SLE patients with a high disease activity as well as lower levels of serum complement components were observed in the RA33-positive group (all p < 0.05). Furthermore, CTD patients with positive anti-RA33 were more likely to suffer from mucocutaneous and hematological involvement as well as interstitial lung disease (all p < 0.05). ROC analysis revealed an area under the curve value of 0.634 (95% confidence interval: 0.587-0.681) for anti-RA33 in the diagnosis of SLE, with a specificity and sensitivity of 92.9% and 13.5%, respectively. Taken together, this study reveals a significant association between anti-RA33 and the clinical features of CTDs, especially SLE, indicating a potential clinical significance of anti-RA33 in the management of SLE.
Collapse
Affiliation(s)
- Wen-Yi Lu
- Department of Rheumatology and Immunology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Xiao-Ping Hong
- Department of Rheumatology and Immunology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Jing-Yi Xie
- Department of Rheumatology and Immunology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Cui-Lian Liu
- Department of Rheumatology and Immunology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Cui-Hong Chen
- Department of Rheumatology and Immunology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Qin-Huang
- Department of Rheumatology and Immunology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Bao-Dong Sun
- Department of Rheumatology and Immunology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Dong-Zhou Liu
- Department of Rheumatology and Immunology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Yu-Lan Chen
- Department of Rheumatology and Immunology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| |
Collapse
|
50
|
Liu G, Zhang Y, Han S, Zhuang W, Lv J, Han M, Xie L, Jiang X, Wang C, Saimaier K, Shen J, Du C. TPN10466 ameliorates Concanavalin A-induced autoimmune hepatitis in mice via inhibiting ERK/JNK/p38 signaling pathway. Eur J Immunol 2023; 53:e2250100. [PMID: 36648433 DOI: 10.1002/eji.202250100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/30/2022] [Accepted: 01/16/2023] [Indexed: 01/18/2023]
Abstract
Autoimmune hepatitis (AIH) eventually progresses to liver fibrosis, cirrhosis, and even hepatocellular carcinoma, causing irreversible damage to the liver. Concanavalin A-induced hepatitis in mice is a well-established model with pathophysiology similar to that of immune-mediated liver injury in human viral and autoimmune hepatitis, and it has been widely used to explore the pathogenesis and clinical treatment of human immune hepatitis. Artemisinin has been shown to exhibit anti-inflammatory effects through unclear mechanisms. In this study, we aimed to assess the effect of the artemisinin derivative TPN10466 on AIH. In vitro studies showed that TPN10466 dose dependently inhibited the percentage of IFN-γ-producing T cells. Further studies showed that TPN10466 attenuated the disease severity of AIH by downregulating the ability of lymphocytes to secrete IFN-γ and by reducing lymphocyte number in the liver. In addition, we found that TPN10466 treatment reduced T-cell responses by inhibiting JNK, ERK, and p38 pathways. In conclusion, our work suggests that TPN10466 provides protection against the autoimmune disease AIH by suppressing the inflammatory response of T cells, suggesting that TPN10466 may be a promising potential agent for the treatment of AIH.
Collapse
Affiliation(s)
- Guangyu Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yan Zhang
- University of Chinese Academy of Sciences, Beijing, China
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
| | - Sansheng Han
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wei Zhuang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jie Lv
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Mengyao Han
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ling Xie
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiangrui Jiang
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China
| | - Chun Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Kaidireya Saimaier
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jingshan Shen
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China
| | - Changsheng Du
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|