1
|
Dou S, Huo Y, Gao M, Li Q, Kou B, Chai M, Liu X. Patient-derived xenograft model: Applications and challenges in liver cancer. Chin Med J (Engl) 2025; 138:1313-1323. [PMID: 40387157 DOI: 10.1097/cm9.0000000000003480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Indexed: 05/20/2025] Open
Abstract
ABSTRACT Liver cancer is one of the most common malignant tumors worldwide. Currently, the available treatment methods cannot fully control its recurrence and mortality rate. Establishing appropriate animal models for liver cancer is crucial for developing new treatment technologies and strategies. The patient-derived xenograft (PDX) model preserves the tumor's microenvironment and heterogeneity, which makes it advantageous for biological research, drug evaluation, personalized medicine, and other purposes. This article reviews the development, preparation techniques, application fields, and challenges of PDX models in liver cancer, providing insights for the research and exploration of PDX models in diagnostic and therapeutic strategies of liver cancer.
Collapse
Affiliation(s)
- Shuangshuang Dou
- Beijing Institute of Hepatology, Beijing You'an Hospital, Capital Medical University, Beijing 100069, China
| | | | | | | | | | | | | |
Collapse
|
2
|
Jiang C, He X, Chen X, Huang J, Liu Y, Zhang J, Chen H, Sui X, Lv X, Zhao X, Xiao C, Xiao J, Zhang J, Lu T, Chen H, Li H, Wang H, Lv G, Ye L, Li R, Zheng J, Yao J, Kang Y, Wang T, Li H, Wang J, Zhang Y, Chen G, Cai J, Xiang AP, Yang Y. Lactate accumulation drives hepatocellular carcinoma metastasis through facilitating tumor-derived exosome biogenesis by Rab7A lactylation. Cancer Lett 2025; 627:217636. [PMID: 40120799 DOI: 10.1016/j.canlet.2025.217636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/04/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
Previous studies have demonstrated that lactate accumulation, a common hallmark for metabolic deprivation in solid tumors, could actively drive tumor invasion and metastasis. However, whether lactate influences the biogenesis of tumor-derived exosomes (TDEs), the prerequisite for distant metastasis formation, remains unknown. Here, we demonstrated that extracellular lactate, after taken up by tumor cells via lactate transporter MCT1, drove the release of TDE mainly through facilitating multivesicular body (MVB) trafficking towards plasma membrane instead of lysosome. Mechanistically, lactate promoted p300-mediated Rab7A lactylation, which hereafter inhibited its GTPase activity and promoted MVB docking with plasma membrane. Moreover, lactate administration enriched integrin β4 and ECM remodeling-related proteins in TDE cargos, which promoted pulmonary pre-metastatic niche formation. Combinatorial inhibition of MCT1 and p300 significantly abrogated HCC metastasis in a clinical-relevant PDX model. In summary, we demonstrated that lactate promote TDE biogenesis and HCC pulmonary metastasis, and proposed a potential clinical strategy targeting TDEs to prevent HCC metastasis.
Collapse
Affiliation(s)
- Chenhao Jiang
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, China
| | - Xinyi He
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Xialin Chen
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Jianyang Huang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Yasong Liu
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, China
| | - Jianhao Zhang
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, China
| | - Huaxin Chen
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xin Sui
- Surgical ICU, The Third Affiliated Hospital of Sun Yat-sen University, China
| | - Xing Lv
- Surgical ICU, The Third Affiliated Hospital of Sun Yat-sen University, China
| | - Xuegang Zhao
- Surgical ICU, The Third Affiliated Hospital of Sun Yat-sen University, China
| | - Cuicui Xiao
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiaqi Xiao
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, China
| | - Jiebin Zhang
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, China
| | - Tongyu Lu
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, China
| | - Haitian Chen
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, China
| | - Haibo Li
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, China
| | - Hongmiao Wang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Guo Lv
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, China
| | - Linsen Ye
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, China
| | - Rong Li
- Guangdong Provincial Key Laboratory of Liver Disease Research, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Zheng
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, China
| | - Jia Yao
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, China
| | - Yinqian Kang
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Tao Wang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Hua Li
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, China
| | - Jiancheng Wang
- Scientific Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yingcai Zhang
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, China
| | - Guihua Chen
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, China
| | - Jianye Cai
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, China.
| | - Andy Peng Xiang
- Centre for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China.
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Key Laboratory of Liver Disease Research, Guangdong Engineering Laboratory for Transplantation, China.
| |
Collapse
|
3
|
Cornet M, Brulle-Soumare L, Bisio V, Deas O, Mussini C, Guettier C, Fabre M, Pigazzi M, Judde JG, Tordjmann T, Branchereau S, Cairo S. Modelling the impact of liver regeneration on hepatoblastoma patient-derived-xenograft tumor growth. Pediatr Res 2024; 96:668-677. [PMID: 38263451 DOI: 10.1038/s41390-024-03020-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 11/18/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Twenty percent of children with hepatoblastoma (HB) have lung metastasis at diagnosis. Treatment protocols recommend surgical removal of chemotherapy-refractory lung nodules, however no chronological order is established. As hepatectomy is followed by release of growth factors, it has been proposed that partial hepatectomy (PH) could boost local or distant residual tumor growth. METHODS To evaluate the impact of PH on distant tumor growth, PH was performed in mice subcutaneously implanted with a HB patient-derived xenograft (PDX). The influence of PH on tumor growth at primary site was assessed by performing PH concomitantly to HB PDXs orthotopic implantation. RESULTS Subcutaneously implanted HB PDX failed to show any influence of hepatectomy on tumor growth. Instead, intrahepatic tumor growth of one of the 4 HB PDXs implanted orthotopically was clearly enhanced. Cells derived from the hepatectomy-sensitive HB PDX exposed to hepatic growth factor (HGF) showed increased proliferation rate compared to cells derived from a hepatectomy-insensitive model, suggesting that the HGF/MET pathway could be one of the effectors of the crosstalk between liver regeneration and HB growth. CONCLUSION These results suggest that hepatectomy can contribute to HB growth in some patients, further studies will be necessary to identify biomarkers predictive of patient risk of PH-induced HB recurrence. IMPACT Key message: Cytokines and growth factors secreted following partial hepatectomy can contribute to intrahepatic tumor growth in some hepatoblastoma models. What does it add to the existing literature: It is the first article about the impact of liver regeneration induced by partial hepatectomy on hepatoblastoma local or distant tumoral growth in nude mice. What is the impact: It is important to identify the secreted factors that enhance tumor growth and to define biomarkers predictive of patient risk of partial hepatectomy-induced hepatoblastoma recurrence.
Collapse
Affiliation(s)
- Marianna Cornet
- Department of Paediatric Surgery, Paris-Saclay University, Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin Bicêtre, France.
- XenTech, Evry-Courcouronnes, France.
| | | | - Valeria Bisio
- Institut de Recherche Saint Louis, Inserm U1160, Saint Louis Hospital, Paris, France
- Onco-Hematology Clinic and Lab, Women's and Children's Health department, University-Hospital of Padova, Padova, Italy
| | | | - Charlotte Mussini
- Department of Pathology, Paris-Saclay University, Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin Bicêtre, France
| | - Catherine Guettier
- Department of Pathology, Paris-Saclay University, Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin Bicêtre, France
| | - Monique Fabre
- Department of Pathology, Paris Cité University, Assistance Publique-Hôpitaux de Paris, Necker-Enfants Malades Hospital, Paris, France
| | - Martina Pigazzi
- Onco-Hematology Clinic and Lab, Women's and Children's Health department, University-Hospital of Padova, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica (IRP), Padova, Italy
| | | | - Thierry Tordjmann
- Université Paris Saclay, Faculté des Sciences d'Orsay, INSERM U.1193, Orsay, France
| | - Sophie Branchereau
- Department of Paediatric Surgery, Paris-Saclay University, Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin Bicêtre, France
| | - Stefano Cairo
- XenTech, Evry-Courcouronnes, France.
- Fondazione Istituto di Ricerca Pediatrica (IRP), Padova, Italy.
- Champions Oncology, Hackensack, NJ, USA.
| |
Collapse
|
4
|
Espinoza AF, Patel RH, Patel KR, Badachhape AA, Whitlock R, Srivastava RK, Govindu SR, Duong A, Kona A, Kureti P, Armbruster B, Kats D, Srinivasan RR, Dobrolecki LE, Yu X, Najaf Panah MJ, Zorman B, Sarabia SF, Urbicain M, Major A, Bissig KD, Keller C, Lewis MT, Heczey A, Sumazin P, López-Terrada DH, Woodfield SE, Vasudevan SA. A novel treatment strategy utilizing panobinostat for high-risk and treatment-refractory hepatoblastoma. J Hepatol 2024; 80:610-621. [PMID: 38242326 DOI: 10.1016/j.jhep.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/21/2024]
Abstract
BACKGROUND & AIMS Patients with metastatic, treatment-refractory, and relapsed hepatoblastoma (HB) have survival rates of less than 50% due to limited treatment options. To develop new therapeutic strategies for these patients, our laboratory has developed a preclinical testing pipeline. Given that histone deacetylase (HDAC) inhibition has been proposed for HB, we hypothesized that we could find an effective combination treatment strategy utilizing HDAC inhibition. METHODS RNA sequencing, microarray, NanoString, and immunohistochemistry data of patient HB samples were analyzed for HDAC class expression. Patient-derived spheroids (PDSp) were used to screen combination chemotherapy with an HDAC inhibitor, panobinostat. Patient-derived xenograft (PDX) mouse models were developed and treated with the combination therapy that showed the highest efficacy in the PDSp drug screen. RESULTS HDAC RNA and protein expression were elevated in HB tumors compared to normal livers. Panobinostat (IC50 of 0.013-0.059 μM) showed strong in vitro effects and was associated with lower cell viability than other HDAC inhibitors. PDSp demonstrated the highest level of cell death with combination treatment of vincristine/irinotecan/panobinostat (VIP). All four models responded to VIP therapy with a decrease in tumor size compared to placebo. After 6 weeks of treatment, two models demonstrated necrotic cell death, with lower Ki67 expression, decreased serum alpha fetoprotein and reduced tumor burden compared to paired VI- and placebo-treated groups. CONCLUSIONS Utilizing a preclinical HB pipeline, we demonstrate that panobinostat in combination with VI chemotherapy can induce an effective tumor response in models developed from patients with high-risk, relapsed, and treatment-refractory HB. IMPACT AND IMPLICATIONS Patients with treatment-refractory hepatoblastoma have limited treatment options with survival rates of less than 50%. Our manuscript demonstrates that combination therapy with vincristine, irinotecan, and panobinostat reduces the size of high-risk, relapsed, and treatment-refractory tumors. With this work we provide preclinical evidence to support utilizing this combination therapy as an arm in future clinical trials.
Collapse
Affiliation(s)
- Andres F Espinoza
- Pediatric Surgical Oncology Laboratory, Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Texas Children's Surgical Oncology Program, Texas Children's Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Roma H Patel
- Pediatric Surgical Oncology Laboratory, Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Texas Children's Surgical Oncology Program, Texas Children's Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kalyani R Patel
- Department of Pathology and Immunology, Baylor College of Medicine, Texas Children's Department of Pathology, Houston, TX 77030, USA
| | - Andrew A Badachhape
- Department of Radiology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Richard Whitlock
- Pediatric Surgical Oncology Laboratory, Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Texas Children's Surgical Oncology Program, Texas Children's Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rohit K Srivastava
- Pediatric Surgical Oncology Laboratory, Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Texas Children's Surgical Oncology Program, Texas Children's Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Saiabhiroop R Govindu
- Pediatric Surgical Oncology Laboratory, Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Texas Children's Surgical Oncology Program, Texas Children's Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ashley Duong
- Pediatric Surgical Oncology Laboratory, Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Texas Children's Surgical Oncology Program, Texas Children's Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Abhishek Kona
- Pediatric Surgical Oncology Laboratory, Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Texas Children's Surgical Oncology Program, Texas Children's Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Pavan Kureti
- Pediatric Surgical Oncology Laboratory, Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Texas Children's Surgical Oncology Program, Texas Children's Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bryan Armbruster
- Pediatric Surgical Oncology Laboratory, Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Texas Children's Surgical Oncology Program, Texas Children's Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dina Kats
- Pediatric Cancer Biology, Children's Cancer Therapy Development Institute, Beaverton, OR, United States
| | | | - Lacey E Dobrolecki
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xinjian Yu
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Mohammad J Najaf Panah
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Barry Zorman
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Stephen F Sarabia
- Department of Pathology and Immunology, Baylor College of Medicine, Texas Children's Department of Pathology, Houston, TX 77030, USA
| | - Martin Urbicain
- Department of Pathology and Immunology, Baylor College of Medicine, Texas Children's Department of Pathology, Houston, TX 77030, USA
| | - Angela Major
- Department of Pathology and Immunology, Baylor College of Medicine, Texas Children's Department of Pathology, Houston, TX 77030, USA
| | - Karl-Dimiter Bissig
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC, USA
| | - Charles Keller
- Pediatric Cancer Biology, Children's Cancer Therapy Development Institute, Beaverton, OR, United States
| | - Michael T Lewis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Andras Heczey
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Pavel Sumazin
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital and Cancer Center, Houston, TX, USA
| | - Dolores H López-Terrada
- Department of Pathology and Immunology, Baylor College of Medicine, Texas Children's Department of Pathology, Houston, TX 77030, USA
| | - Sarah E Woodfield
- Pediatric Surgical Oncology Laboratory, Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Texas Children's Surgical Oncology Program, Texas Children's Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sanjeev A Vasudevan
- Pediatric Surgical Oncology Laboratory, Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Texas Children's Surgical Oncology Program, Texas Children's Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
5
|
Patel KR, Espinoza AF, Urbicain M, Patel RH, Major A, Sarabia SF, Lopez-Terrada D, Vasudevan SA, Woodfield SE. Histopathologic and immunophenotypic characterization of patient-derived pediatric malignant hepatocellular tumor xenografts (PDXs). Pathol Res Pract 2024; 255:155163. [PMID: 38394806 DOI: 10.1016/j.prp.2024.155163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 01/20/2024] [Indexed: 02/25/2024]
Abstract
Advances in targeted therapies for pediatric hepatocellular tumors have been limited due to a paucity of clinically relevant models. Establishment and validation of intrahepatic patient-derived xenograft (PDX) models would help bridging this gap. The aim of this study is to compare the histomorphologic and immunophenotypic fidelity of patient tumors and their corresponding intrahepatic PDX models. Murine PDX models were established by intrahepatic implantation of patient tumors. Pathology slides from both patients and their corresponding PDX models were reviewed and quantitatively assessed for various histologic components and immunophenotypic markers. Ten PDX models were successfully established from nine patients with pre- (n=3) and post- (n=6) chemotherapy samples; diagnosed of hepatoblastoma (n=8) and hepatocellular neoplasm, not otherwise specified (n=1). Two of nine (22.2%) patients showed ≥75% fetal component; however, the corresponding PDX models did not maintain this fetal differentiation. High grade histology was seen in three patients (33.3%) and overrepresented in six PDX models (60%). Within the subset of three PDXs that were further characterized, significant IHC concordance was seen in all 3 models for CK7, CK19, Ki-67, and p53; and 2 of 3 models for Sox9 and Beta-catenin. GPC-3 and GS showed variable to moderate concordance, while Hepar was the least concordant. Our study shows that in general, the PDX models appear to represent the higher-grade component of the original tumor and show significant concordance for Ki-67, making them appropriate tools for testing new therapies for the most aggressive, therapy-resistant tumors.
Collapse
Affiliation(s)
- Kalyani R Patel
- Department of Pathology and Immunology, Anatomic Pathology Division, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA.
| | - Andres F Espinoza
- Department of General Surgery, Division of Pediatric Surgery, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA
| | - Martin Urbicain
- Department of Pathology and Immunology, Genomic Medicine Division, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA
| | - Roma H Patel
- Department of General Surgery, Division of Pediatric Surgery, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA
| | - Angela Major
- Department of Pathology and Immunology, Anatomic Pathology Division, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA
| | - Stephen F Sarabia
- Department of Pathology and Immunology, Genomic Medicine Division, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA
| | - Dolores Lopez-Terrada
- Department of Pathology and Immunology, Genomic Medicine Division, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA
| | - Sanjeev A Vasudevan
- Department of General Surgery, Division of Pediatric Surgery, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA
| | - Sarah E Woodfield
- Department of General Surgery, Division of Pediatric Surgery, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
6
|
Glaser K, Schepers EJ, Zwolshen HM, Lake CM, Timchenko NA, Karns RA, Cairo S, Geller JI, Tiao GM, Bondoc AJ. EZH2 is a key component of hepatoblastoma tumor cell growth. Pediatr Blood Cancer 2024; 71:e30774. [PMID: 37990130 PMCID: PMC10842061 DOI: 10.1002/pbc.30774] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/17/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Enhancer of zeste homolog 2 (EZH2) catalyzes the trimethylation of histone H3 at lysine 27 via the polycomb recessive complex 2 (PRC2) and plays a time-specific role in normal fetal liver development. EZH2 is overexpressed in hepatoblastoma (HB), an embryonal tumor. EZH2 can also promote tumorigenesis via a noncanonical, PRC2-independent mechanism via proto-oncogenic, direct protein interaction, including β-catenin. We hypothesize that the pathological activation of EZH2 contributes to HB propagation in a PRC2-independent manner. METHODS AND RESULTS We demonstrate that EZH2 promotes proliferation in HB tumor-derived cell lines through interaction with β-catenin. Although aberrant EZH2 expression occurs, we determine that both canonical and noncanonical EZH2 signaling occurs based on specific gene-expression patterns and interaction with SUZ12, a PRC2 component, and β-catenin. Silencing and inhibition of EZH2 reduce primary HB cell proliferation. CONCLUSIONS EZH2 overexpression promotes HB cell proliferation, with both canonical and noncanonical function detected. However, because EZH2 directly interacts with β-catenin in human tumors and EZH2 overexpression is not equal to SUZ12, it seems that a noncanonical mechanism is contributing to HB pathogenesis. Further mechanistic studies are necessary to elucidate potential pathogenic downstream mechanisms and translational potential of EZH2 inhibitors for the treatment of HB.
Collapse
Affiliation(s)
- Kathryn Glaser
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Emily J Schepers
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Harrison M Zwolshen
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Charissa M Lake
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Nikolai A Timchenko
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Rebekah A Karns
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Stefano Cairo
- Champions Oncology, US Research Headquarters, Rockville, Maryland, USA
| | - James I Geller
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Gregory M Tiao
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Alexander J Bondoc
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
7
|
Rogojina A, Klesse LJ, Butler E, Kim J, Zhang H, Xiao X, Guo L, Zhou Q, Hartshorne T, Garcia D, Weldon K, Holland T, Bandyopadhyay A, Prado LP, Wang S, Yang DM, Langevan AM, Zou Y, Grimes AC, Assanasen C, Gidvani-Diaz V, Zheng S, Lai Z, Chen Y, Xie Y, Tomlinson GE, Skapek SX, Kurmasheva RT, Houghton PJ, Xu L. Comprehensive characterization of patient-derived xenograft models of pediatric leukemia. iScience 2023; 26:108171. [PMID: 37915590 PMCID: PMC10616347 DOI: 10.1016/j.isci.2023.108171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/25/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023] Open
Abstract
Patient-derived xenografts (PDX) remain valuable models for understanding the biology and for developing novel therapeutics. To expand current PDX models of childhood leukemia, we have developed new PDX models from Hispanic patients, a subgroup with a poorer overall outcome. Of 117 primary leukemia samples obtained, successful engraftment and serial passage in mice were achieved in 82 samples (70%). Hispanic patient samples engrafted at a rate (51/73, 70%) that was similar to non-Hispanic patient samples (31/45, 70%). With a new algorithm to remove mouse contamination in multi-omics datasets including methylation data, we found PDX models faithfully reflected somatic mutations, copy-number alterations, RNA expression, gene fusions, whole-genome methylation patterns, and immunophenotypes found in primary tumor (PT) samples in the first 50 reported here. This cohort of characterized PDX childhood leukemias represents a valuable resource in that germline DNA sequencing has allowed the unambiguous determination of somatic mutations in both PT and PDX.
Collapse
Affiliation(s)
- Anna Rogojina
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Laura J. Klesse
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Gill Center for Cancer and Blood Disorders, Children’s Health Children’s Medical Center, Dallas, TX, USA
| | - Erin Butler
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Gill Center for Cancer and Blood Disorders, Children’s Health Children’s Medical Center, Dallas, TX, USA
| | - Jiwoong Kim
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - He Zhang
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xue Xiao
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lei Guo
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qinbo Zhou
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Taylor Hartshorne
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dawn Garcia
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Korri Weldon
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Trevor Holland
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Abhik Bandyopadhyay
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Luz Perez Prado
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Shidan Wang
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Donghan M. Yang
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anne-Marie Langevan
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Texas Health San Antonio, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Yi Zou
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Allison C. Grimes
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Texas Health San Antonio, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Chatchawin Assanasen
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Texas Health San Antonio, San Antonio, TX, USA
| | | | - Siyuan Zheng
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Zhao Lai
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Yidong Chen
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Yang Xie
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gail E. Tomlinson
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Texas Health San Antonio, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Stephen X. Skapek
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Gill Center for Cancer and Blood Disorders, Children’s Health Children’s Medical Center, Dallas, TX, USA
| | - Raushan T. Kurmasheva
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Peter J. Houghton
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Lin Xu
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
8
|
Wang W, Li Y, Lin K, Wang X, Tu Y, Zhuo Z. Progress in building clinically relevant patient-derived tumor xenograft models for cancer research. Animal Model Exp Med 2023; 6:381-398. [PMID: 37679891 PMCID: PMC10614132 DOI: 10.1002/ame2.12349] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/03/2023] [Indexed: 09/09/2023] Open
Abstract
Patient-derived tumor xenograft (PDX) models, a method involving the surgical extraction of tumor tissues from cancer patients and subsequent transplantation into immunodeficient mice, have emerged as a pivotal approach in translational research, particularly in advancing precision medicine. As the first stage of PDX development, the patient-derived orthotopic xenograft (PDOX) models implant tumor tissue in mice in the corresponding anatomical locations of the patient. The PDOX models have several advantages, including high fidelity to the original tumor, heightened drug sensitivity, and an elevated rate of successful transplantation. However, the PDOX models present significant challenges, requiring advanced surgical techniques and resource-intensive imaging technologies, which limit its application. And then, the humanized mouse models, as well as the zebrafish models, were developed. Humanized mouse models contain a human immune environment resembling the tumor and immune system interplay. The humanized mouse models are a hot topic in PDX model research. Regarding zebrafish patient-derived tumor xenografts (zPDX) and patient-derived organoids (PDO) as promising models for studying cancer and drug discovery, zPDX models are used to transplant tumors into zebrafish as novel personalized medical animal models with the advantage of reducing patient waiting time. PDO models provide a cost-effective approach for drug testing that replicates the in vivo environment and preserves important tumor-related information for patients. The present review highlights the functional characteristics of each new phase of PDX and provides insights into the challenges and prospective developments in this rapidly evolving field.
Collapse
Affiliation(s)
- Weijing Wang
- Department of Clinical MedicineShantou University Medical CollegeShantouChina
| | - Yongshu Li
- College of Life SciencesHubei Normal UniversityHuangshiChina
- Shenzhen Institute for Technology InnovationNational Institute of MetrologyShenzhenChina
| | - Kaida Lin
- Department of Clinical MedicineShantou University Medical CollegeShantouChina
| | - Xiaokang Wang
- Department of PharmacyShenzhen Longhua District Central HospitalShenzhenChina
| | - Yanyang Tu
- Research Center, Huizhou Central People's HospitalGuangdong Medical UniversityHuizhou CityChina
| | - Zhenjian Zhuo
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
- Laboratory Animal Center, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| |
Collapse
|
9
|
Fang J, Singh S, Cheng C, Natarajan S, Sheppard H, Abu-Zaid A, Durbin AD, Lee HW, Wu Q, Steele J, Connelly JP, Jin H, Chen W, Fan Y, Pruett-Miller SM, Rehg JE, Koo SC, Santiago T, Emmons J, Cairo S, Wang R, Glazer ES, Murphy AJ, Chen T, Davidoff AM, Armengol C, Easton J, Chen X, Yang J. Genome-wide mapping of cancer dependency genes and genetic modifiers of chemotherapy in high-risk hepatoblastoma. Nat Commun 2023; 14:4003. [PMID: 37414763 PMCID: PMC10326052 DOI: 10.1038/s41467-023-39717-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
A lack of relevant genetic models and cell lines hampers our understanding of hepatoblastoma pathogenesis and the development of new therapies for this neoplasm. Here, we report an improved MYC-driven hepatoblastoma-like murine model that recapitulates the pathological features of embryonal type of hepatoblastoma, with transcriptomics resembling the high-risk gene signatures of the human disease. Single-cell RNA-sequencing and spatial transcriptomics identify distinct subpopulations of hepatoblastoma cells. After deriving cell lines from the mouse model, we map cancer dependency genes using CRISPR-Cas9 screening and identify druggable targets shared with human hepatoblastoma (e.g., CDK7, CDK9, PRMT1, PRMT5). Our screen also reveals oncogenes and tumor suppressor genes in hepatoblastoma that engage multiple, druggable cancer signaling pathways. Chemotherapy is critical for human hepatoblastoma treatment. A genetic mapping of doxorubicin response by CRISPR-Cas9 screening identifies modifiers whose loss-of-function synergizes with (e.g., PRKDC) or antagonizes (e.g., apoptosis genes) the effect of chemotherapy. The combination of PRKDC inhibition and doxorubicin-based chemotherapy greatly enhances therapeutic efficacy. These studies provide a set of resources including disease models suitable for identifying and validating potential therapeutic targets in human high-risk hepatoblastoma.
Collapse
Affiliation(s)
- Jie Fang
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shivendra Singh
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Changde Cheng
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sivaraman Natarajan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Heather Sheppard
- Comparative Pathology Core, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ahmed Abu-Zaid
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Adam D Durbin
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ha Won Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Qiong Wu
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jacob Steele
- Center for Advanced Genome Engineering (CAGE), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jon P Connelly
- Center for Advanced Genome Engineering (CAGE), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongjian Jin
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wenan Chen
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yiping Fan
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering (CAGE), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jerold E Rehg
- Comparative Pathology Core, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Selene C Koo
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Teresa Santiago
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Joseph Emmons
- VPC Diagnostic Laboratory, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stefano Cairo
- Champions Oncology, 1330 Piccard dr, Rockville, MD, USA
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Disease, Hematology/Oncology & BMT, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Evan S Glazer
- Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave., Suite 325, Memphis, TN, USA
| | - Andrew J Murphy
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave., Suite 325, Memphis, TN, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Andrew M Davidoff
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave., Suite 325, Memphis, TN, USA
- St Jude Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Carolina Armengol
- Childhood Liver Oncology Group, Germans Trias i Pujol Research Institute (IGTP), Translational Program in Cancer Research (CARE), Badalona, Spain
- CIBER, Hepatic and Digestive Diseases, Barcelona, Spain
- CIBERehd, Madrid, Spain
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- St Jude Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Jun Yang
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA.
- St Jude Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Pathology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
10
|
Xun C, Zhang Y, Zheng X, Qin S. A novel AKR1C3 specific prodrug AST-3424 and its combination therapy in hepatocellular carcinoma. J Pharmacol Sci 2023; 152:69-75. [PMID: 37169481 DOI: 10.1016/j.jphs.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/08/2023] [Accepted: 03/27/2023] [Indexed: 05/13/2023] Open
Abstract
OBJECTIVE AST-3424 is a novel specific aldo-keto reductase 1C3 (AKR1C3) prodrug that releases a DNA alkylating reagent upon reduction by AKR1C3. This study aimed to evaluate the efficacy and safety of AST-3424 in patient-derived tumor xenograft (PDTX) model and orthotopic model against hepatocellular carcinoma (HCC). MATERIALS AND METHOD PDTX models derived from three HCC patients and orthotopic mice models using HepG2 cells were developed. The mice were treated with AST-3424 alone or combined with other drugs (oxaliplatin, apatinib, sorafenib and elemene in PDTX models, oxaliplatin and 5- fluorouracil in orthotopic models). The tumor volume and weight, as well as the mice weight were assessed. The liver tumor and transplanted tumor were removed for histological, immunohistochemical and Western blot detection in orthotopic model experiments. RESULTS AST-3424 could inhibit tumor growth in HCC PDTX models and orthotopic models, with no difference in safety compared with other marketed drugs, and the drug combination did not increase toxicity. The inhibitory effect of combination treatment was more obvious than which used alone. The reduction of AKR1C3 expression was negatively correlated with AST-3424 dose. CONCLUSION AST-3424 had a promising effect against HCC in PDTX model and orthotopic model with good safety. It could promote the sensitivity of other drugs without increasing toxicity. Clinical trials are warranted to further certify its antitumor effect and safety.
Collapse
Affiliation(s)
- Chen Xun
- Department of Medical Oncology Center, Bayi Affiliated Hospital of Nanjing University of Chinese Medicine; Yanggongjing 34 Biao No. 34, Qinhuai Distrct, Nanjing City, Jiangsu Province, 210002, China
| | - Yu Zhang
- Nanjing University of Chinese Medicine; No. 138 Xianlin Road, Qixia District, Nanjing City, Jiangsu Province, 210023, China
| | - Xia Zheng
- Department of Oncology, Jiangsu Provincial Hospital of Chinese Medicine; No. 200 Xianlin Road, Qixia District, Nanjing City, Jiangsu Province, 210023, China
| | - Shukui Qin
- Department of Medical Oncology Center, Bayi Affiliated Hospital of Nanjing University of Chinese Medicine; Yanggongjing 34 Biao No. 34, Qinhuai Distrct, Nanjing City, Jiangsu Province, 210002, China.
| |
Collapse
|
11
|
Chen K, Li Y, Wang B, Yan X, Tao Y, Song W, Xi Z, He K, Xia Q. Patient-derived models facilitate precision medicine in liver cancer by remodeling cell-matrix interaction. Front Immunol 2023; 14:1101324. [PMID: 37215109 PMCID: PMC10192760 DOI: 10.3389/fimmu.2023.1101324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Liver cancer is an aggressive tumor originating in the liver with a dismal prognosis. Current evidence suggests that liver cancer is the fifth most prevalent cancer worldwide and the second most deadly type of malignancy. Tumor heterogeneity accounts for the differences in drug responses among patients, emphasizing the importance of precision medicine. Patient-derived models of cancer are widely used preclinical models to study precision medicine since they preserve tumor heterogeneity ex vivo in the study of many cancers. Patient-derived models preserving cell-cell and cell-matrix interactions better recapitulate in vivo conditions, including patient-derived xenografts (PDXs), induced pluripotent stem cells (iPSCs), precision-cut liver slices (PCLSs), patient-derived organoids (PDOs), and patient-derived tumor spheroids (PDTSs). In this review, we provide a comprehensive overview of the different modalities used to establish preclinical models for precision medicine in liver cancer.
Collapse
Affiliation(s)
- Kaiwen Chen
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Yanran Li
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Bingran Wang
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Xuehan Yan
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiying Tao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weizhou Song
- Ottawa-Shanghai Joint School of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhifeng Xi
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Kang He
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| |
Collapse
|
12
|
Wang D, Wang L, Zheng L, Chen J, Zhang W, Zhou W, Yang X, Jiang L, Jin X, Yu X, Liu X, Chen H, Xu J. Enhancing the Management of Metastatic Tumors by Robust Co-Delivery of 5-Fluorouracil/MicroRNA-10b Inhibitor Using EGFR-Targeted Nanovehicles. Adv Healthc Mater 2023:e2202989. [PMID: 36740892 DOI: 10.1002/adhm.202202989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/26/2023] [Indexed: 02/07/2023]
Abstract
Invasion and metastasis are the leading causes of death of patients with CRC. 5-Fluorouracil is widely used in clinic practice as the basic chemotherapy drug for CRC. However, it is inefficient in inhibiting tumor metastasis. MicroRNA-10b is uninvolved in regulating the growth of primary tumors; however, it could induce early tumor metastases and is a key regulator of chemotherapeutic resistance to 5-FU. A multifunctional nanovehicle that can carry small molecule drugs not only through the hydrophobic pockets of conjugated β-cyclodextrin but also through electrostatic interaction between the conjugated peptides and siRNA to target functional genes is previously developed. In this study, a nanovehicle, named GCD, with epithelium growth factor receptor (EGFR)-targeted characteristics to simultaneously deliver chemotherapeutic and nucleotide drugs to distinct targets in CRC, is employed. These data show that co-delivery of 5-FU and anti-miR-10b can be effectively applied to targeted therapy of EGFR-overexpressed CRC, particularly inhibiting the metastasis of CRC. Furthermore, the therapeutic effect of this combination on tumor xenograft models derived from patients with CRC is evaluated. Taken together, this study may provide insights into the inhibition of tumor growth and metastasis simultaneously.
Collapse
Affiliation(s)
- Di Wang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Clinical Research Center of Motor System Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
| | - Liwei Wang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Clinical Research Center of Motor System Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
| | - Liming Zheng
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Clinical Research Center of Motor System Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
| | - Jiaxin Chen
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Clinical Research Center of Motor System Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
| | - Wei Zhang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
| | - Wei Zhou
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
| | - Xiaobo Yang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Clinical Research Center of Motor System Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
| | - Lifeng Jiang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Clinical Research Center of Motor System Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
| | - Xiaoqiang Jin
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Clinical Research Center of Motor System Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
| | - Xiaohua Yu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Clinical Research Center of Motor System Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
| | - Xin Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
| | - Heng Chen
- School of Material Science and Engineering, Dongguan University of Technology, Dongguan City, Guangdong Province, 523000, P. R. China
| | - Jianbin Xu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, 310000, P. R. China.,Clinical Research Center of Motor System Disease of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310000, P. R. China
| |
Collapse
|
13
|
Bi Y, Li S, Tang H, Wang Q, Wang Q, Yang Y, Zhang X, Shu Z, Duan Z, Chen Y, Hong F. A novel xenograft model of human hepatocellular carcinoma in immunocompetent mice based on the microcarrier-6. Transpl Immunol 2023; 76:101738. [PMID: 36368468 DOI: 10.1016/j.trim.2022.101738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/25/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignant tumors that threaten human health; thus, the establishment of an animal model with clinical features similar to human hepatocellular carcinoma is of important practical significance. METHODS Taking advantage of the novel microcarrier-6, human HCC cells were injected into immunocompetent mice to establish a novel human HCC patient-derived xenograft (PDX) model. Primary HCC cells were isolated from fresh hepatocellular carcinoma tissues, which were subsequently co-cultured with microcarrier-6 to construct a three-dimensional tumor cell culture model in vitro. The HCC-microcarrier complex was implanted into mice by subcutaneous inoculation, and the tumor formation time, tumor formation rate, and pathological manifestation were recorded. Changes of immune parameters in mice were detected by flow cytometry. RESULTS The success rate was 60% (6/10) in the establishment of hepatocellular carcinoma PDX mouse model, and the total tumor formation rate of the tumor-forming model is 90-100%. H&E staining and immunohistochemical experiments indicate that the model well retained the characteristics of the primary tumor. Interestingly, M2 macrophages in tumor-bearing mice increased significantly, and the levels of CD4+ T cells were significantly reduced. CONCLUSIONS Through the application of the microcarrier-6 in immunocompetent mice, we successfully established a novel human HCC PDX model, which can be used to better study and further elucidate the occurrence and pathogenic mechanism of HCC, improve the predictability of toxicity and drug sensitivity in HCC.
Collapse
Affiliation(s)
- Yanzhen Bi
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao, Shandong, PR China
| | - Shanshan Li
- The Fourth Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, PR China; Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, PR China
| | - Huixin Tang
- The Fourth Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, PR China; Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, PR China
| | - Quanquan Wang
- Department of Neurology, Qilu Hospital of Shandong University (Qingdao), Qingdao, Shandong, PR China
| | - Quanyi Wang
- Institute of Liver Diseases, Affiliated Hospital of Jining Medical University, Shandong, PR China
| | - Yonghong Yang
- Institute of Liver Diseases, Affiliated Hospital of Jining Medical University, Shandong, PR China
| | - Xiaobei Zhang
- Institute of Liver Diseases, Affiliated Hospital of Jining Medical University, Shandong, PR China
| | - Zhenfeng Shu
- Shanghai Meifeng Biotechnology Co., Ltd, Shanghai, PR China
| | - Zhongping Duan
- The Fourth Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, PR China; Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, PR China
| | - Yu Chen
- The Fourth Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, PR China; Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, PR China.
| | - Feng Hong
- Institute of Liver Diseases, Affiliated Hospital of Jining Medical University, Shandong, PR China.
| |
Collapse
|
14
|
State of the art and perspectives in pediatric hepatocellular carcinoma. Biochem Pharmacol 2023; 207:115373. [PMID: 36513143 DOI: 10.1016/j.bcp.2022.115373] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Hepatoblastoma (HB) and pediatric hepatocellular carcinoma (HCC) are rare primary malignant liver cancers in children and young adults. HB is the most common and accounts for about 70 % cases; it is usually diagnosed during the first 3 years of life. Instead, pediatric HCC is uncommon, and it is associated with a poor prognosis. Overall, the prognosis of pediatric HCC is dismal with 5-year event-free survival of <30 % as compared to >80 % for HB. Surgery approaches, either resection or transplant, remain the best chance for the cure of pediatric HCC. However, chemotherapy can be helpful as an adjuvant or neoadjuvant treatment. International groups have done trials in pediatric HCC with a chemotherapy regimen, based on cisplatin and doxorubicin (PLADO) as for HB, but the efficacy is limited. Sorafenib, a multi-kinase inhibitor, following positive results in adults and in a pilot study in children, is now tested in conjunction with chemotherapy in the PHITT phase III clinical trial. Some studies have been exploring the genetic profiles of patients to find biological hallmarks that determine the aggressiveness of pediatric HCC. Pathways involved in growth and differentiation are dysregulated and as demonstrated in HB and adult HCC, an important role of the Wnt/CTNNB1 pathway in the pathogenesis of pediatric HCC is also emerging. An extended molecular analysis of tumor samples could give information about pathways as possible targets of biological and immunotherapeutic agents bringing new pharmacological options for the treatment of pediatric HCC.
Collapse
|
15
|
Aizawa Y, Takada K, Aoyama J, Sano D, Yamanaka S, Seki M, Kuze Y, Ramilowski JA, Okuda R, Ueno Y, Nojima Y, Inayama Y, Hatakeyama H, Hatano T, Takahashi H, Nishimura G, Fujii S, Suzuki Y, Taniguchi H, Oridate N. Establishment of experimental salivary gland cancer models using organoid culture and patient-derived xenografting. Cell Oncol (Dordr) 2022; 46:409-421. [PMID: 36538240 DOI: 10.1007/s13402-022-00758-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Abstract
Purpose
Depending on its histological subtype, salivary gland carcinoma (SGC) may have a poor prognosis. Due to the scarcity of preclinical experimental models, its molecular biology has so far remained largely unknown, hampering the development of new treatment modalities for patients with these malignancies. The aim of this study was to generate experimental human SGC models of multiple histological subtypes using patient-derived xenograft (PDX) and organoid culture techniques.
Methods
Tumor specimens from surgically resected SGCs were processed for the preparation of PDXs and patient-derived organoids (PDOs). Specimens from SGC PDXs were also processed for PDX-derived organoid (PDXO) generation. In vivo tumorigenicity was assessed using orthotopic transplantation of SGC organoids. The pathological characteristics of each model were compared to those of the original tumors using immunohistochemistry. RNA-seq was used to analyze the genetic traits of our models.
Results
Three series of PDOs, PDXs and PDXOs of salivary duct carcinomas, one series of PDOs, PDXs and PDXOs of mucoepidermoid carcinomas and PDXs of myoepithelial carcinomas were successfully generated. We found that PDXs and orthotopic transplants from PDOs/PDXOs showed similar histological features as the original tumors. Our models also retained their genetic traits, i.e., transcription profiles, genomic variants and fusion genes of the corresponding histological subtypes.
Conclusion
We report the generation of SGC PDOs, PDXs and PDXOs of multiple histological subtypes, recapitulating the histological and genetical characteristics of the original tumors. These experimental SGC models may serve as a useful resource for the development of novel therapeutic strategies and for investigating the molecular mechanisms underlying the development of these malignancies.
Collapse
Affiliation(s)
- Yoshihiro Aizawa
- Department of Otorhinolaryngology, Head and Neck Surgery, School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Kentaro Takada
- Department of Otorhinolaryngology, Head and Neck Surgery, School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Jun Aoyama
- Department of Otorhinolaryngology, Head and Neck Surgery, School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Daisuke Sano
- Department of Otorhinolaryngology, Head and Neck Surgery, School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan.
| | - Shoji Yamanaka
- Department of Pathology, Yokohama City University Hospital, Yokohama, Kanagawa, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Yuta Kuze
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | | | - Ryo Okuda
- Roche Innovation Center, Roche Institute for Translational Bioengineering, Roche Pharma Research and Early Development, Basel, Switzerland
| | - Yasuharu Ueno
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Yusuke Nojima
- Department of Otorhinolaryngology, Head and Neck Surgery, School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Yoshiaki Inayama
- Department of Pathology, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| | - Hiromitsu Hatakeyama
- Department of Otolaryngology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Takashi Hatano
- Department of Otorhinolaryngology, Head and Neck Surgery, School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Hideaki Takahashi
- Department of Otorhinolaryngology, Head and Neck Surgery, School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Goshi Nishimura
- Department of Otorhinolaryngology, Head and Neck Surgery, School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Satoshi Fujii
- Department of Molecular Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Hideki Taniguchi
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Nobuhiko Oridate
- Department of Otorhinolaryngology, Head and Neck Surgery, School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| |
Collapse
|
16
|
Liu G, Chen T, Zhang X, Ma X, Shi H. Small molecule inhibitors targeting the cancers. MedComm (Beijing) 2022; 3:e181. [PMID: 36254250 PMCID: PMC9560750 DOI: 10.1002/mco2.181] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Compared with traditional therapies, targeted therapy has merits in selectivity, efficacy, and tolerability. Small molecule inhibitors are one of the primary targeted therapies for cancer. Due to their advantages in a wide range of targets, convenient medication, and the ability to penetrate into the central nervous system, many efforts have been devoted to developing more small molecule inhibitors. To date, 88 small molecule inhibitors have been approved by the United States Food and Drug Administration to treat cancers. Despite remarkable progress, small molecule inhibitors in cancer treatment still face many obstacles, such as low response rate, short duration of response, toxicity, biomarkers, and resistance. To better promote the development of small molecule inhibitors targeting cancers, we comprehensively reviewed small molecule inhibitors involved in all the approved agents and pivotal drug candidates in clinical trials arranged by the signaling pathways and the classification of small molecule inhibitors. We discussed lessons learned from the development of these agents, the proper strategies to overcome resistance arising from different mechanisms, and combination therapies concerned with small molecule inhibitors. Through our review, we hoped to provide insights and perspectives for the research and development of small molecule inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Gui‐Hong Liu
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| | - Tao Chen
- Department of CardiologyThe First Affiliated Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xin Zhang
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| | - Xue‐Lei Ma
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| | - Hua‐Shan Shi
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
17
|
Fan L, Pan Q, Yang W, Koo SC, Tian C, Li L, Lu M, Brown A, Ju B, Easton J, Ranganathan S, Shin S, Bondoc A, Yang JJ, Yu J, Zhu L. A developmentally prometastatic niche to hepatoblastoma in neonatal liver mediated by the Cxcl1/Cxcr2 axis. Hepatology 2022; 76:1275-1290. [PMID: 35179799 PMCID: PMC9385889 DOI: 10.1002/hep.32412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS Hepatoblastoma (HB) is the most common pediatric liver cancer. Its predominant occurrence in very young children led us to investigate whether the neonatal liver provides a protumorigenic niche to HB development. APPROACH AND RESULTS HB development was compared between orthotopic transplantation models established in postnatal day 5 (P5) and 60 (P60) mice (P5Tx and P60Tx models). Single-cell RNA-sequencing (sc-RNAseq) was performed using tumor and liver tissues from both models and the top candidate cell types and genes identified are investigated for their roles in HB cell growth, migration, and survival. CONCLUSIONS We found that various HB cell lines including HepG2 cells were consistently and considerably more tumorigenic and metastatic in the P5Tx model than in the P60Tx models. Sc-RNAseq of the P5Tx and P60Tx HepG2 models revealed that the P5Tx tumor was more hypoxic and had a larger number of activated hepatic stellate cells (aHSCs) in the tumor-surrounding liver that express significantly higher levels of Cxcl1 than those from the P60Tx model. We found these differences were developmentally present in normal P5 and P60 liver. We showed that the Cxcl1/Cxcr2 axis mediated HB cell migration and was critical to HB cell survival under hypoxia. Treating HepG2 P60Tx model with recombinant CXCL1 protein induced intrahepatic and pulmonary metastasis and CXCR2 knockout (KO) in HepG2 cells abolished their metastatic potential in the P5Tx model. Lastly, we showed that in tumors from patients with metastatic HB, there was a similar larger population of aHSCs in the tumor-surrounding liver than in localized tumors, and tumor hypoxia was uniquely associated with prognosis of patients with HB among pediatric cancers. We demonstrated that the neonatal liver provides a prometastatic niche to HB development through the Cxcl1/Cxcr2 axis.
Collapse
Affiliation(s)
- Li Fan
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Qingfei Pan
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Wentao Yang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Selene C. Koo
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Cheng Tian
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Liyuan Li
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Meifen Lu
- Veterinary Pathology Core, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Anthony Brown
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Bensheng Ju
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - John Easton
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Sarangarajan Ranganathan
- Department of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital, Cincinnati, Ohio, United States
| | - Soona Shin
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Alexander Bondoc
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Jun J. Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Liqin Zhu
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| |
Collapse
|
18
|
Shao C, Zhang Q, Kuang G, Fan Q, Ye F. Construction and application of liver cancer models in vitro. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
19
|
Marayati R, Julson JR, Bownes LV, Quinn CH, Hutchins SC, Williams AP, Markert HR, Beierle AM, Stewart JE, Hjelmeland AB, Mroczek-Musulman E, Beierle EA. Metastatic human hepatoblastoma cells exhibit enhanced tumorigenicity, invasiveness and a stem cell-like phenotype. J Pediatr Surg 2022; 57:1018-1025. [PMID: 35300860 PMCID: PMC9119922 DOI: 10.1016/j.jpedsurg.2022.01.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 01/31/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND/PURPOSE Metastatic hepatoblastoma continues to pose a significant treatment challenge, primarily because the precise mechanisms involved in metastasis are not fully understood, making cell lines and preclinical models that depict the progression of disease and metastasis-related biology paramount. We aimed to generate and characterize a metastatic hepatoblastoma cell line to create a model for investigation of the molecular mechanisms associated with metastasis. MATERIALS/METHODS Using a murine model of serial tail vein injections of the human hepatoblastoma HuH6 cell line, non-invasive bioluminescence imaging, and dissociation of metastatic pulmonary lesions, we successfully established and characterized the metastatic human hepatoblastoma cell line, HLM_3. RESULTS The HLM_3 cells exhibited enhanced tumorigenicity and invasiveness, both in vitro and in vivo compared to the parent HuH6 cell line. Moreover, HLM_3 metastatic hepatoblastoma cells exhibited a stem cell-like phenotype and were more resistant to the standard chemotherapeutic cisplatin. CONCLUSION This newly described metastatic hepatoblastoma cell line offers a novel tool to study mechanisms of tumor metastasis and evaluate new therapeutic strategies for metastatic hepatoblastoma.
Collapse
Affiliation(s)
- Raoud Marayati
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Janet R Julson
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Laura V Bownes
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Colin H Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Sara C Hutchins
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Adele P Williams
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Hooper R Markert
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Andee M Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Jerry E Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Anita B Hjelmeland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Elizabeth Mroczek-Musulman
- Department of Pathology, The Children's Hospital of Alabama, Birmingham, AL 35233, United States of America
| | - Elizabeth A Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America.
| |
Collapse
|
20
|
Zhu D, Fang C, Yang Z, Ren Y, Yang F, Zheng S, Jiang M, Miao X, Liu D, Chen B, Yao X, Chen Y. Tubulin-binding peptide RR-171 derived from human umbilical cord serum displays antitumor activity against hepatocellular carcinoma via inducing apoptosis and activating the NF-kappa B pathway. Cell Prolif 2022; 55:e13241. [PMID: 35504605 PMCID: PMC9136518 DOI: 10.1111/cpr.13241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/28/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022] Open
Abstract
Objectives Hepatocellular carcinoma (HCC) still presents a high incidence of malignant tumours with poor prognosis. There is an urgent need for new therapeutic agents with high specificity, low toxicity and favourable solubility for the clinical treatment of HCC. Materials and Methods The bioactivity of human umbilical cord serum was investigated by proteomics biotechnology and a primitive peptide with certain biological activity was identified. The antitumour effect of RR‐171 was detected by cell viability assay in vitro, and determined by subcutaneous xenograft models assay and miniPDX assay in vivo. Pull‐down experiments were conducted to identify the potential targeting proteins of RR‐171. Immunofluorescence assay and tubulin polymerization assay were conducted to explore the relationship between RR‐171 and α‐tubulin. Fluorescence imaging in xenograft models was used to explore the biodistribution of RR‐171 in vivo. A phosphospecific protein microarray was performed to uncover the underlying signalling pathway by which RR‐171 induces tumour cell death. Results The results indicated that RR‐171 could be effective in the treatment of HCC in vivo and in vitro. RR‐171 could aggregate significantly in solid tumours and had no obvious systemic toxicity in vivo. RR‐171 could interact with α‐tubulin and activate the NF‐Kappa B pathway in HCC cells. Conclusions Taken together, RR‐171 exhibited significant antitumour activity against HCC in vivo and in vitro and could potentially be used in the clinical application of HCC.
Collapse
Affiliation(s)
- Donglie Zhu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Hand and Foot Surgery, The Air Force Hospital of Northern Theater of People's Liberation Army of China, Shenyang, China
| | - Cheng Fang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Zelong Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yanjie Ren
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, China
| | - Fengrui Yang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Shi Zheng
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Mingzuo Jiang
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiangxia Miao
- Department of General Practice, Xianyang Central Hospital, Xianyang, China
| | - Duoduo Liu
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, China
| | - Biliang Chen
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Yong Chen
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
21
|
Woodfield SE, Mistretta BJ, Patel RH, Ibarra AM, Fisher KE, Sarabia SF, Gandhi I, Reuther J, Starosolski Z, Badachhape A, Epps J, Zorman B, Shah AP, Larson SR, Srivastava RK, Shi Y, Espinoza AF, Govindu SR, Whitlock RS, Holloway K, Roy A, Sumazin P, Ghaghada KB, Lopez-Terrada D, Gunaratne PH, Vasudevan SA. HepT1-derived murine models of high-risk hepatoblastoma display vascular invasion, metastasis, and circulating tumor cells. Biol Open 2022; 11:276557. [PMID: 35451474 PMCID: PMC9493725 DOI: 10.1242/bio.058973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 03/22/2022] [Indexed: 11/20/2022] Open
Abstract
Hepatoblastoma (HB) is the most common pediatric primary liver malignancy, and survival for high-risk disease approaches 50%. Mouse models of HB fail to recapitulate hallmarks of high-risk disease. The aim of this work was to generate murine models that show high-risk features including multifocal tumors, vascular invasion, metastasis, and circulating tumor cells (CTCs). HepT1 cells were injected into the livers or tail veins of mice, and tumor growth was monitored with magnetic resonance and bioluminescent imaging. Blood was analyzed with fluorescence-activated cell sorting to identify CTCs. Intra- and extra-hepatic tumor samples were harvested for immunohistochemistry and RNA and DNA sequencing. Cell lines were grown from tumor samples and profiled with RNA sequencing. With intrahepatic injection of HepT1 cells, 100% of animals grew liver tumors and showed vascular invasion, metastasis, and CTCs. Mutation profiling revealed genetic alterations in seven cancer-related genes, while transcriptomic analyses showed changes in gene expression with cells that invade vessels. Tail vein injection of HepT1 cells resulted in multifocal, metastatic disease. These unique models will facilitate further meaningful studies of high-risk HB. This article has an associated First Person interview with the first author of the paper. Summary: In this work, we developed and thoroughly characterized several unique models of hepatoblastoma derived from the HepT1 cell line that show high-risk features.
Collapse
Affiliation(s)
- Sarah E Woodfield
- Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Pediatric Surgical Oncology Laboratory, Texas Children's Surgical Oncology Program, Texas Children's Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brandon J Mistretta
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Roma H Patel
- Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Pediatric Surgical Oncology Laboratory, Texas Children's Surgical Oncology Program, Texas Children's Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aryana M Ibarra
- Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Pediatric Surgical Oncology Laboratory, Texas Children's Surgical Oncology Program, Texas Children's Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kevin E Fisher
- Department of Pathology and Immunology, Baylor College of Medicine, Texas Children's Hospital Department of Pathology, Houston, TX 77030, USA
| | - Stephen F Sarabia
- Department of Pathology and Immunology, Baylor College of Medicine, Texas Children's Hospital Department of Pathology, Houston, TX 77030, USA
| | - Ilavarasi Gandhi
- Department of Pathology and Immunology, Baylor College of Medicine, Texas Children's Hospital Department of Pathology, Houston, TX 77030, USA
| | - Jacquelyn Reuther
- Department of Pathology and Immunology, Baylor College of Medicine, Texas Children's Hospital Department of Pathology, Houston, TX 77030, USA
| | - Zbigniew Starosolski
- Singleton Department of Radiology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Andrew Badachhape
- Singleton Department of Radiology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Jessica Epps
- Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Barry Zorman
- Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aayushi P Shah
- Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Pediatric Surgical Oncology Laboratory, Texas Children's Surgical Oncology Program, Texas Children's Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Samuel R Larson
- Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Pediatric Surgical Oncology Laboratory, Texas Children's Surgical Oncology Program, Texas Children's Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rohit K Srivastava
- Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Pediatric Surgical Oncology Laboratory, Texas Children's Surgical Oncology Program, Texas Children's Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yan Shi
- Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Pediatric Surgical Oncology Laboratory, Texas Children's Surgical Oncology Program, Texas Children's Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andres F Espinoza
- Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Pediatric Surgical Oncology Laboratory, Texas Children's Surgical Oncology Program, Texas Children's Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Saiabhiroop R Govindu
- Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Pediatric Surgical Oncology Laboratory, Texas Children's Surgical Oncology Program, Texas Children's Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard S Whitlock
- Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Pediatric Surgical Oncology Laboratory, Texas Children's Surgical Oncology Program, Texas Children's Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kimberly Holloway
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Angshumoy Roy
- Department of Pathology and Immunology, Baylor College of Medicine, Texas Children's Hospital Department of Pathology, Houston, TX 77030, USA
| | - Pavel Sumazin
- Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ketan B Ghaghada
- Singleton Department of Radiology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Dolores Lopez-Terrada
- Department of Pathology and Immunology, Baylor College of Medicine, Texas Children's Hospital Department of Pathology, Houston, TX 77030, USA
| | - Preethi H Gunaratne
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sanjeev A Vasudevan
- Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Pediatric Surgical Oncology Laboratory, Texas Children's Surgical Oncology Program, Texas Children's Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
22
|
Wu PV, Rangaswami A. Current Approaches in Hepatoblastoma-New Biological Insights to Inform Therapy. Curr Oncol Rep 2022; 24:1209-1218. [PMID: 35438389 DOI: 10.1007/s11912-022-01230-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2021] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW As the most common pediatric primary liver cancer with rising incidence, hepatoblastoma remains challenging to treat. Here, we review the current understanding of the biology of hepatoblastoma and discuss how recent advances may lead to new treatment modalities. RECENT FINDINGS Standard chemotherapy regimens including cisplatin, in addition to surgery, have led to high cure rates among patients with low stage hepatoblastoma; however, metastatic and relapsed disease continue to have poor outcomes. Recent genomics and functional studies in cell lines and mouse models have established a central role for the Wnt/β-catenin pathway in tumorigenesis. Targeted agents and immunotherapy approaches are emerging as potential treatment avenues. With recent gains in knowledge of the genomic and transcriptomic landscape of hepatoblastoma, new therapeutic mechanisms can now be explored to improve outcomes for metastatic and relapsed hepatoblastoma and to reduce the toxicity of current treatments.
Collapse
Affiliation(s)
- Peng V Wu
- Division of Hematology/Oncology/Stem Cell Transplantation & Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, 1000 Welch Rd. Suite 300, Palo Alto, CA, 94304, USA
| | - Arun Rangaswami
- Division of Hematology/Oncology, Department of Pediatrics, University of California San Francisco, 550 16th St., 3rd Floor, San Francisco, CA, 94158, USA.
| |
Collapse
|
23
|
Zhao F, Chen Y, Li SW, Zhang J, Zhang S, Zhao XB, Yang ZJ, Wang B, He QY, Wang LM, Xu L, Liu PN. Novel patient-derived xenograft and cell line models for therapeutic screening in NF2-associated schwannoma. J Pathol 2022; 257:620-634. [PMID: 35394061 DOI: 10.1002/path.5908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 11/06/2022]
Abstract
Treatment of schwannomas in patients with neurofibromatosis type 2 (NF2) is extremely unsatisfactory, and innovative therapeutic approaches are urgently needed. However, the lack of clinically relevant NF2-associated schwannoma models has severely hampered drug discovery in this rare disease. Here, we report the first establishment and characterization of patient-derived xenograft (PDX) and cell line models of NF2-associated schwannoma, which recapitulate the morphological and histopathological features of patient tumors, retain patient NF2 mutations, and maintain gene expression profiles resembling patient tumor profiles with the preservation of multiple key signaling pathways commonly dysregulated in human schwannomas. Using gene expression profiling, we identified elevated PI3K/AKT/mTOR networks in human NF2-associated vestibular schwannomas. Using high-throughput screening of 157 inhibitors targeting the PI3K/AKT/mTOR pathways in vitro, we identified a dozen inhibitors (such as BEZ235, LY2090314, and AZD8055) with significant growth-suppressive effects. Interestingly, we observed that three cell lines displayed differential therapeutic responses to PI3K/AKT/mTOR inhibitors. Furthermore, we demonstrated two orally bioavailable inhibitors AZD8055 and PQR309 suppressed NF2-associated schwannoma growth both in vitro and in vivo. In conclusion, our novel patient-derived models of NF2-associated schwannoma closely mimic the phenotypes and genotypes of patient tumors, making them reliable preclinical tools for testing novel personalized therapies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Fu Zhao
- Department of Neural Reconstruction, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yang Chen
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shi-Wei Li
- Department of Neural Reconstruction, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jing Zhang
- Department of Neural Reconstruction, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Shun Zhang
- Department of Neural Reconstruction, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xiao-Bin Zhao
- Department of Nuclear Medicine, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Zhi-Jun Yang
- Department of Neural Reconstruction, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qi-Yang He
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Lei-Ming Wang
- Departments of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lei Xu
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Pi-Nan Liu
- Department of Neural Reconstruction, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
24
|
Pan B, Wei X, Xu X. Patient-derived xenograft models in hepatopancreatobiliary cancer. Cancer Cell Int 2022; 22:41. [PMID: 35090441 PMCID: PMC8796540 DOI: 10.1186/s12935-022-02454-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 01/04/2022] [Indexed: 12/20/2022] Open
Abstract
Animal models are crucial tools for evaluating the biological progress of human cancers and for the preclinical investigation of anticancer drugs and cancer prevention. Various animals are widely used in hepatopancreatobiliary cancer research, and mouse models are the most popular. Generally, genetic tools, graft transplantation, and chemical and physical measures are adopted to generate sundry mouse models of hepatopancreatobiliary cancer. Graft transplantation is commonly used to study tumour progression. Over the past few decades, subcutaneous or orthotopic cell-derived tumour xenograft models (CDX models) have been developed to simulate distinct tumours in patients. However, two major limitations exist in CDX models. One model poorly simulates the microenvironment of tumours in humans, such as the vascular, lymphatic and immune environments. The other model loses genetic heterogeneity compared with the corresponding primary tumour. Increased efforts have focused on developing better models for hepatopancreatobiliary cancer research. Hepatopancreatobiliary cancer is considered a tumour with high molecular heterogeneity, making precision medicine challenging in cancer treatment. Developing a new animal model that can better mimic tumour tissue and more accurately predict the efficacy of anticancer treatments is urgent. For the past several years, the patient-derived xenograft model (PDX model) has emerged as a promising tool for translational research. It can retain the genetic and histological stability of their originating tumour at limited passages and shed light on precision cancer medicine. In this review, we summarize the methodology, advantages/disadvantages and applications of PDX models in hepatopancreatobiliary cancer research.
Collapse
|
25
|
Zhu X, Zhu Y, Chen N, Tang C, Shi J. The drugs screened by OncoVeeTM-Mini-PDX have significantly benefited the patient with HER2-positive advanced gastric cancer. J Oncol Pharm Pract 2022; 28:1435-1440. [PMID: 35068264 DOI: 10.1177/10781552221074973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Introduction At present, the prognosis of HER2-positive advanced gastric cancer is extremely poor, and some patients fail to benefit from first-line Herceptin treatment, thus facing difficulties in choosing second-line drugs. Case Report Here, we report a 61-year-old male patient with HER2-positive advanced gastric cancer who is primarily resistant to Herceptin and has poor therapeutic effect. Management & Outcome Afterwards, the OncoVeeTM-MiniPDX-guided anticancer method was used to screen drugs for second-line treatment, which resulted in liquefaction and necrosis of the patient's lesions and improved liver function indicators, as well as rapid relief of the patient's clinical symptoms. Discussion In the treatment of the Herceptin-resistant patient with advanced gastric cancer, OncoVeeTM-MiniPDX method screened drugs and brought clinical benefits.
Collapse
Affiliation(s)
- Xuedan Zhu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yinxing Zhu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Nan Chen
- Department of Outpatient, General Hospital of Eastern Theater Command, PLA, Nanjing, China
| | - Cuiju Tang
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Junfeng Shi
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
26
|
Larson EL, Joo DJ, Nelson ED, Amiot BP, Aravalli RN, Nyberg SL. Fumarylacetoacetate hydrolase gene as a knockout target for hepatic chimerism and donor liver production. Stem Cell Reports 2021; 16:2577-2588. [PMID: 34678209 PMCID: PMC8581169 DOI: 10.1016/j.stemcr.2021.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/15/2022] Open
Abstract
A reliable source of human hepatocytes and transplantable livers is needed. Interspecies embryo complementation, which involves implanting donor human stem cells into early morula/blastocyst stage animal embryos, is an emerging solution to the shortage of transplantable livers. We review proposed mutations in the recipient embryo to disable hepatogenesis, and discuss the advantages of using fumarylacetoacetate hydrolase knockouts and other genetic modifications to disable hepatogenesis. Interspecies blastocyst complementation using porcine recipients for primate donors has been achieved, although percentages of chimerism remain persistently low. Recent investigation into the dynamic transcriptomes of pigs and primates have created new opportunities to intimately match the stage of developing animal embryos with one of the many varieties of human induced pluripotent stem cell. We discuss techniques for decreasing donor cell apoptosis, targeting donor tissue to endodermal structures to avoid neural or germline chimerism, and decreasing the immunogenicity of chimeric organs by generating donor endothelium.
Collapse
Affiliation(s)
- Ellen L Larson
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Dong Jin Joo
- Department of Surgery, Division of Transplantation, Yonsei University College of Medicine, Seoul, South Korea
| | - Erek D Nelson
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Bruce P Amiot
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Rajagopal N Aravalli
- Department of Electrical and Computer Engineering, College of Science and Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Scott L Nyberg
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
27
|
Yin Z, Maswikiti EP, Liu Q, Bai Y, Li X, Qi W, Liu L, Ma Y, Chen H. Current research developments of patient-derived tumour xenograft models (Review). Exp Ther Med 2021; 22:1206. [PMID: 34584551 DOI: 10.3892/etm.2021.10640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 05/04/2021] [Indexed: 11/06/2022] Open
Abstract
Patient-derived tumor xenograft (PDTX) models are established by transferring patient tumors into immunodeficient mice. In these murine models, the characteristics of the primary tumor are retained, including the microenvironment of tumor cell growth and histopathology. Due to this, it has become the most reliable in vivo human cancer model. However, the success rates differ by type of tumor, site of transplantation and tumor aggressiveness. Subcutaneous transplantation is a standard method for PDTX, and subrenal capsule transplantation improves the engraftment rate. Recently, PDTX models are frequently used in the fields of precision medicine, predictive biomarkers, evaluation of drug efficacy and preclinical research on tumor immunotherapeutic drugs. The aim of the present article was to review the establishment, clinical applications and limitations of the PDTX model in tumor research.
Collapse
Affiliation(s)
- Zhenyu Yin
- The Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Ewetse Paul Maswikiti
- The Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Qian Liu
- The Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Yuping Bai
- The Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Xiaomei Li
- The Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Wenbo Qi
- The Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Le Liu
- The Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Yanling Ma
- The Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Hao Chen
- Department of Oncology, Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|
28
|
Bondoc A, Glaser K, Jin K, Lake C, Cairo S, Geller J, Tiao G, Aronow B. Identification of distinct tumor cell populations and key genetic mechanisms through single cell sequencing in hepatoblastoma. Commun Biol 2021; 4:1049. [PMID: 34497364 PMCID: PMC8426487 DOI: 10.1038/s42003-021-02562-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 08/16/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatoblastoma (HB) is the most common primary liver malignancy of childhood, and molecular investigations are limited and effective treatment options for chemoresistant disease are lacking. There is a knowledge gap in the investigation of key driver cells of HB in tumor. Here we show single cell ribonucleic acid sequencing (scRNAseq) analysis of human tumor, background liver, and patient derived xenograft (PDX) to demonstrate gene expression patterns within tumor and to identify intratumor cell subtype heterogeneity to define differing roles in pathogenesis based on intracellular signaling in pediatric HB. We have identified a driver tumor cell cluster in HB by genetic expression which can be examined to define disease mechanism and treatments. Identification of both critical mechanistic pathways combined with unique cell populations provide the basis for discovery and investigation of novel treatment strategies in vitro and in vivo.
Collapse
Affiliation(s)
- Alexander Bondoc
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital, Medical Center, Cincinnati, OH, USA.
| | - Kathryn Glaser
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital, Medical Center, Cincinnati, OH, USA
| | - Kang Jin
- Division of Biomedical Informatics, Developmental Biology, and Pediatrics, Cincinnati, Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Biomedical Informatics, University of Cincinnati, Cincinnati, OH, USA
| | - Charissa Lake
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital, Medical Center, Cincinnati, OH, USA
| | - Stefano Cairo
- Research and Development Unit, XenTech, Genopole-Campus 3, Fontaine, France
- Istituto di Ricerca Pediatrica (IRP), Corso Stati Uniti, Padua, Italy
| | - James Geller
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Gregory Tiao
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital, Medical Center, Cincinnati, OH, USA
| | - Bruce Aronow
- Division of Biomedical Informatics, Developmental Biology, and Pediatrics, Cincinnati, Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Biomedical Informatics, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
29
|
Wang X, Sun Y, Xu Y, Wen D, An N, Leng X, Fu G, Lu S, Chen Z. Mini-patient-derived xenograft assay based on microfluidic technology promises to be an effective tool for screening individualized chemotherapy regimens for advanced non-small cell lung cancer. Cell Biol Int 2021; 45:1887-1896. [PMID: 33945662 DOI: 10.1002/cbin.11622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/08/2021] [Accepted: 05/01/2021] [Indexed: 12/18/2022]
Abstract
Patient-derived xenograft (PDX) assay has been widely used in preclinical research in patients with multidrug-resistant lung cancer. One hundred patients with non-small cell lung cancer (NSCLC) were divided into MiniPDX group and conventional group, with 50 cases in each group. The MiniPDX assay was established by enriching high-purity tumor cells using microfluidic technology to detect the drug sensitivity of NSCLC cells. All patients underwent conventional computed tomography (CT) scans of lung and mediastinum at baseline and during follow-up. Kaplan-Meier method was used to compare the overall survival and progression-free survival of two groups. The sensitivity of the same drug in different tumor xenograft varied greatly. The overall survival, progression-free survival, and clinical benefit rate of patients in the MiniPDX-guided chemotherapy group were significantly longer than those in the conventional chemotherapy group. MiniPDX assay may be an effective tool for screening chemotherapy regimens in NSCLC patients.
Collapse
Affiliation(s)
- Xue Wang
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yile Sun
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yunhua Xu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Danyi Wen
- Shanghai LIDE Biotech Co., LTD, 3F, Shanghai, China
| | - Na An
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xuejiao Leng
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Guolong Fu
- Shanghai LIDE Biotech Co., LTD, 3F, Shanghai, China
| | - Shun Lu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiwei Chen
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
30
|
MDM4 inhibition: a novel therapeutic strategy to reactivate p53 in hepatoblastoma. Sci Rep 2021; 11:2967. [PMID: 33536467 PMCID: PMC7859402 DOI: 10.1038/s41598-021-82542-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022] Open
Abstract
Hepatoblastoma (HB) is the most common pediatric liver malignancy. High-risk patients have poor survival, and current chemotherapies are associated with significant toxicities. Targeted therapies are needed to improve outcomes and patient quality of life. Most HB cases are TP53 wild-type; therefore, we hypothesized that targeting the p53 regulator Murine double minute 4 (MDM4) to reactivate p53 signaling may show efficacy. MDM4 expression was elevated in HB patient samples, and increased expression was strongly correlated with decreased expression of p53 target genes. Treatment with NSC207895 (XI-006), which inhibits MDM4 expression, or ATSP-7041, a stapled peptide dual inhibitor of MDM2 and MDM4, showed significant cytotoxic and antiproliferative effects in HB cells. Similar phenotypes were seen with short hairpin RNA (shRNA)-mediated inhibition of MDM4. Both NSC207895 and ATSP-7041 caused significant upregulation of p53 targets in HB cells. Knocking-down TP53 with shRNA or overexpressing MDM4 led to resistance to NSC207895-mediated cytotoxicity, suggesting that this phenotype is dependent on the MDM4-p53 axis. MDM4 inhibition also showed efficacy in a murine model of HB with significantly decreased tumor weight and increased apoptosis observed in the treatment group. This study demonstrates that inhibition of MDM4 is efficacious in HB by upregulating p53 tumor suppressor signaling.
Collapse
|
31
|
Xu J, Zhang G, Luo X, Wang D, Zhou W, Zhang Y, Zhang W, Chen J, Meng Q, Chen E, Chen H, Song Z. Co-delivery of 5-fluorouracil and miRNA-34a mimics by host-guest self-assembly nanocarriers for efficacious targeted therapy in colorectal cancer patient-derived tumor xenografts. Theranostics 2021; 11:2475-2489. [PMID: 33500737 PMCID: PMC7797688 DOI: 10.7150/thno.52076] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/02/2020] [Indexed: 01/06/2023] Open
Abstract
Rationale: A co-delivery system that can transport chemotherapeutic drugs and nucleotide drugs to distinct targets in tumors is an attractive strategy for cancer therapy. In this study, well-defined targeted quantum dot (QD)-based multifunctional nanocarriers were developed through self-assembly driven by host-guest interactions. 5-fluorouracil (5-FU) and microRNA-34a mimics (miR-34a(m)) were co-administered to achieve synergistic effects for colorectal cancer (CRC) therapy for the first time. Furthermore, the CRC patient-derived tumor xenograft (PDX) model, which closely mimics human CRC tumor pathological properties, was used for evaluating the therapeutic effect in this research. Methods: Multiple β-cyclodextrin (CD)-attached QD nanoparticles were used as host molecules. An adamantane (ADA)-modified TCP1 peptide-targeting ligand (TCP1) was used as the guest molecule. 5-FU and miR-34a(m) were loaded into TCP1-CD-QD nanocarriers, which were used to treat CRC in vitro and in vivo. In addition, the CRC PDX model was used to evaluate the treatment efficacy of this co-delivery system. Results: 5-FU and miR-34a(m) can be efficiently encapsulated into TCP1-CD-QD nanocarriers and delivered into CRC cells, which led to the inhibition of the proliferation and migration of CRC cells in vitro and suppression of tumor growth in a CRC cell-derived tumor xenograft model. The obtained data further suggested that co-delivery of 5-FU and miR-34a(m) could achieve synergistic effects for CRC therapy. Notably, targeted therapy via the co-delivery of 5-FU and miR-34a(m) by TCP1-CD-QD nanocarriers significantly inhibited the growth of PDX tumors. Conclusions: These studies strongly indicate that such a nanocarrier-based co-delivery system is a promising combined therapeutic strategy that utilizes chemotherapeutic drugs and nucleotide drugs for enhancing colorectal cancer targeting and synergistic therapy.
Collapse
|
32
|
Cai J, Sun X, Guo H, Qu X, Huang H, Yu C, Wu H, Gao Y, Kong X, Xia Q. Non-metabolic role of UCK2 links EGFR-AKT pathway activation to metastasis enhancement in hepatocellular carcinoma. Oncogenesis 2020; 9:103. [PMID: 33277463 PMCID: PMC7718876 DOI: 10.1038/s41389-020-00287-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/17/2020] [Accepted: 09/02/2020] [Indexed: 12/24/2022] Open
Abstract
Up-regulation of Uridine-cytidine kinase 2 (UCK2), a rate-limiting enzyme of the pyrimidine salvage pathway, has been suggested in HCC, but the detailed molecular mechanisms and therapic role of UCK2 remain elusive. Bioinformatic analyses revealed that UCK2 might be a key up-regulated metabolic gene in HCCs. The expressional pattern and prognostic value of UCK2 were further examined in a large number of clinical samples. Functional assays based on site-directed mutagenesis showed that UCK2 promoted cell proliferation in a metabolic manner, but non-catalytically facilitates HCC metastasis. Mechanistically, in response to EGF, UCK2 interacted with EGFR to block EGF-induced EGFR ubiquitination and degradation, which resulted in elevated EGFR-AKT pathway activation and metastasis enhancement in HCCs. Concurrent pharmacological targeting on UCK2 and EGFR showed synergistic effects on HCC treatment. This study disclosed the non-metabolic role of UCK2 and suggested the therapeutic potential of concurrent blocking the metabolic and non-metabolic roles of UCK2 in HCC treatment.
Collapse
Affiliation(s)
- Jie Cai
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuehua Sun
- Institute of Clinical Immunology, Department of Liver Diseases, Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Han Guo
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoye Qu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hongting Huang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chang Yu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hailong Wu
- Shanghai Key Laboratory of Molecular Imaging, Collaborative Research Center, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yueqiu Gao
- Institute of Clinical Immunology, Department of Liver Diseases, Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China.
| | - Xiaoni Kong
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. .,Institute of Clinical Immunology, Department of Liver Diseases, Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China.
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
33
|
Hee E, Wong MK, Tan SH, Choo Z, Kuick CH, Ling S, Yong MH, Jain S, Lian DWQ, Ng EHQ, Yong YFL, Ren MH, Syed Sulaiman N, Low SYY, Chua YW, Syed MF, Lim TKH, Soh SY, Iyer P, Seng MSF, Lam JCM, Tan EEK, Chan MY, Tan AM, Chen Y, Chen Z, Chang KTE, Loh AHP. Neuroblastoma patient-derived cultures are enriched for a mesenchymal gene signature and reflect individual drug response. Cancer Sci 2020; 111:3780-3792. [PMID: 32777141 PMCID: PMC7540996 DOI: 10.1111/cas.14610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
Ex vivo evaluation of personalized models can facilitate individualized treatment selection for patients, and advance the discovery of novel therapeutic options. However, for embryonal malignancies, representative primary cultures have been difficult to establish. We developed patient‐derived cell cultures (PDCs) from chemo‐naïve and post–treatment neuroblastoma tumors in a consistent and efficient manner, and characterized their in vitro growth dynamics, histomorphology, gene expression, and functional chemo‐response. From 34 neuroblastoma tumors, 22 engrafted in vitro to generate 31 individual PDC lines, with higher engraftment seen with metastatic tumors. PDCs displayed characteristic immunohistochemical staining patterns of PHOX2B, TH, and GD2 synthase. Concordance of MYCN amplification, 1p and 11q deletion between PDCs and patient tumors was 83.3%, 72.7%, and 80.0% respectively. PDCs displayed a predominantly mesenchymal‐type gene expression signature and showed upregulation of pro‐angiogenic factors that were similarly enriched in culture medium and paired patient serum samples. When tested with standard‐of‐care cytotoxics at human Cmax‐equivalent concentrations, MYCN‐amplified and non‐MYCN‐amplified PDCs showed a differential response to cyclophosphamide and topotecan, which mirrored the corresponding patients’ responses, and correlated with gene signatures of chemosensitivity. In this translational proof‐of‐concept study, early‐phase neuroblastoma PDCs enriched for the mesenchymal cell subpopulation recapitulated the individual molecular and phenotypic profile of patient tumors, and highlighted their potential as a platform for individualized ex vivo drug‐response testing.
Collapse
Affiliation(s)
- Esther Hee
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, KK Women's and Children's Hospital, Singapore, Singapore
| | - Meng Kang Wong
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, KK Women's and Children's Hospital, Singapore, Singapore
| | - Sheng Hui Tan
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, KK Women's and Children's Hospital, Singapore, Singapore
| | - Zhang'E Choo
- Neurodevelopment and Cancer Laboratory, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chik Hong Kuick
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Sharon Ling
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Min Hwee Yong
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Sudhanshi Jain
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Derrick W Q Lian
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Eileen H Q Ng
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Yvonne F L Yong
- KK Research Centre, KK Women's and Children's Hospital, Singapore, Singapore
| | - Mee Hiong Ren
- KK Research Centre, KK Women's and Children's Hospital, Singapore, Singapore
| | - Nurfarhanah Syed Sulaiman
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, KK Women's and Children's Hospital, Singapore, Singapore.,Department of Neurosurgery, National Neuroscience Institute, Singapore, Singapore
| | - Sharon Y Y Low
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, KK Women's and Children's Hospital, Singapore, Singapore.,Neurosurgical Service, KK Women's and Children's Hospital, Singapore, Singapore.,SingHealth Duke-NUS Neuroscience Academic Clinical Program, Singapore, Singapore
| | - Yong Wei Chua
- Department of Anatomic Pathology, Singapore General Hospital, Singapore, Singapore
| | - Muhammad Fahmy Syed
- Department of Anatomic Pathology, Singapore General Hospital, Singapore, Singapore
| | - Tony K H Lim
- Department of Anatomic Pathology, Singapore General Hospital, Singapore, Singapore
| | - Shui Yen Soh
- Department of Paediatric Subspecialties Haematology Oncology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Prasad Iyer
- Department of Paediatric Subspecialties Haematology Oncology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Michaela S F Seng
- Department of Paediatric Subspecialties Haematology Oncology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Joyce C M Lam
- Department of Paediatric Subspecialties Haematology Oncology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Enrica E K Tan
- Department of Paediatric Subspecialties Haematology Oncology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Mei Yoke Chan
- Department of Paediatric Subspecialties Haematology Oncology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Ah Moy Tan
- Department of Paediatric Subspecialties Haematology Oncology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Yong Chen
- Department of Paediatric Surgery, KK Women's and Children's Hospital, Singapore, Singapore
| | - Zhixiong Chen
- Neurodevelopment and Cancer Laboratory, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kenneth T E Chang
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Amos Hong Pheng Loh
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, KK Women's and Children's Hospital, Singapore, Singapore.,Department of Paediatric Surgery, KK Women's and Children's Hospital, Singapore, Singapore
| |
Collapse
|
34
|
Feng F, Huang C, Xiao M, Wang H, Gao Q, Chen Z, Xu X, Zhou J, Li F, Li Y, Zhang D, Chang Y, Jiang X. Establishment and characterization of patient-derived primary cell lines as preclinical models for gallbladder carcinoma. Transl Cancer Res 2020; 9:1698-1710. [PMID: 35117518 PMCID: PMC8798768 DOI: 10.21037/tcr.2020.02.04] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/18/2020] [Indexed: 01/18/2023]
Abstract
Background Gallbladder carcinoma (GBC) is one of the most lethal malignancies which do not have a targeted drug in the clinic. Patient-derived primary cell lines (PDCs) are useful in assessment of cancer complexity and heterogeneity, drug-sensitivity tests, and personalized-drug-selection guidance. The aim of this study is to establish GBC PDCs and characterize their biological features. Methods The characterization of PDCs was defined by morphology, growth kinetics, chromosomal analysis, short tandem repeat (STR) analysis, RNA-seq and tumorigenicity. Glycosylation of PDCs derived from GBC was first studied, and the PDC model’s performance were also tested and evaluated using seven molecular target inhibitors. Results Three novel GBC cell lines from three GBC patients were successfully established and denoted as JXQ-3D-902R4, JXQ-3D-4494R, and JXQ-3D-4786R. These cell lines demonstrated the heterogeneous characteristics of tumor morphology and phenotypes which are consistent with primary GBC, such as irregular cell shape, varied chromosomal numbers, and different STR patterns. Moreover, the growth activity and tumorigenicity ability varied among the cell lines, of which JXQ-3D-4494R exhibited the best growth rate. Furthermore, glycan profiling of whole proteins were detected and characterized. Unique N-glycans of each PDC were identified, JXQ-3D-902R4, JXQ-3D-4494R and JXQ-3D-4786R contained ten, four and seven unique glycans, respectively. The epithelial origins of three PDCs were confirmed using RNA-seq based on the highly expressed typical epithelial marker genes. Moreover, the drug-sensitivity results demonstrated that the three PDCs exhibited different responses to the seven-most commonly used targeted medicines belonging to three groups: cell-cycle inhibitors, PI3K/AKT/mTOR signaling-pathway inhibitors, and ErbB inhibitors. JXQ-3D-4494R was sensitive to most of the inhibitors, JXQ-3D-4786R was sensitive to ErbB inhibitors, and JXQ-3D-902R4 was sensitive to PI3K/AKT/mTOR inhibitors. Conclusions These results indicate that PDCs may be efficient preclinical models for further investigation of the biological behaviors and potential targeted therapies of human GBC.
Collapse
Affiliation(s)
- Feiling Feng
- Department of Biliary I, Shanghai Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai 200438, China
| | - Chuncui Huang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Mingjia Xiao
- Department of Biliary I, Shanghai Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai 200438, China
| | - Huizhen Wang
- Research and Development Institute of Precision Medicine, 3D Medicines Inc., Shanghai 201114, China
| | - Qingxiang Gao
- Department of Biliary I, Shanghai Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai 200438, China
| | - Zishuo Chen
- Research and Development Institute of Precision Medicine, 3D Medicines Inc., Shanghai 201114, China
| | - Xiaoya Xu
- Research and Development Institute of Precision Medicine, 3D Medicines Inc., Shanghai 201114, China
| | - Jun Zhou
- Research and Development Institute of Precision Medicine, 3D Medicines Inc., Shanghai 201114, China
| | - Fugen Li
- Research and Development Institute of Precision Medicine, 3D Medicines Inc., Shanghai 201114, China
| | - Yan Li
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dadong Zhang
- Research and Development Institute of Precision Medicine, 3D Medicines Inc., Shanghai 201114, China
| | - Yanxin Chang
- Biliary Tract Surgery Department, Shanghai Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai 200438, China
| | - Xiaoqing Jiang
- Department of Biliary I, Shanghai Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai 200438, China
| |
Collapse
|
35
|
Novel patient-derived preclinical models of liver cancer. J Hepatol 2020; 72:239-249. [PMID: 31954489 DOI: 10.1016/j.jhep.2019.09.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/24/2019] [Accepted: 09/28/2019] [Indexed: 12/25/2022]
Abstract
Preclinical models of cancer based on the use of human cancer cell lines and mouse models have enabled discoveries that have been successfully translated into patients. And yet the majority of clinical trials fail, emphasising the urgent need to improve preclinical research to better interrogate the potential efficacy of each therapy and the patient population most likely to benefit. This is particularly important for liver malignancies, which lack highly efficient treatments and account for hundreds of thousands of deaths around the globe. Given the intricate network of genetic and environmental factors that contribute to liver cancer development and progression, the identification of new druggable targets will mainly depend on establishing preclinical models that mirror the complexity of features observed in patients. The development of new 3D cell culture systems, originating from cells/tissues isolated from patients, might create new opportunities for the generation of more specific and personalised therapies. However, these systems are unable to recapitulate the tumour microenvironment and interactions with the immune system, both proven to be critical influences on therapeutic outcomes. Patient-derived xenografts, in particular with humanised mouse models, more faithfully mimic the physiology of human liver cancer but are costly and time-consuming, which can be prohibitive for personalising therapies in the setting of an aggressive malignancy. In this review, we discuss the latest advances in the development of more accurate preclinical models to better understand liver cancer biology and identify paradigm-changing therapies, stressing the importance of a bi-directional communicative flow between clinicians and researchers to establish reliable model systems and determine how best to apply them to expanding our current knowledge.
Collapse
|
36
|
Whitlock RS, Yang T, Vasudevan SA, Woodfield SE. Animal Modeling of Pediatric Liver Cancer. Cancers (Basel) 2020; 12:cancers12020273. [PMID: 31979130 PMCID: PMC7072332 DOI: 10.3390/cancers12020273] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/19/2020] [Accepted: 01/19/2020] [Indexed: 01/09/2023] Open
Abstract
Hepatoblastoma (HB) is the most common pediatric liver malignancy. Management of HB requires multidisciplinary efforts. The 5-year overall survival of this disease is about 80% in developed countries. Despite advances in the care of these patients, survival in recurrent or treatment-refractory disease is lower than 50%. This is due to more complex tumor biology, including hepatocellular carcinoma (HCC)-like mutations and expression of aggressive gene signatures leading to chemoresistance, vascular invasion, and metastatic spread. The current treatment protocols for pediatric liver cancer do not incorporate targeted therapies, and the ability to test these therapies is limited due to the inaccessibility of cell lines and mouse models. In this review, we discuss the current status of preclinical animal modeling in pediatric liver cancer, primarily HB. Although HB is a rare cancer, the research community has worked together to develop a range of interesting and relevant mouse models for diverse preclinical studies.
Collapse
Affiliation(s)
- Richard S. Whitlock
- Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Pediatric Surgical Oncology Laboratory, Texas Children’s Surgical Oncology Program, Texas Children’s Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; (R.S.W.); (S.A.V.)
| | - Tianyou Yang
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Sanjeev A. Vasudevan
- Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Pediatric Surgical Oncology Laboratory, Texas Children’s Surgical Oncology Program, Texas Children’s Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; (R.S.W.); (S.A.V.)
| | - Sarah E. Woodfield
- Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Pediatric Surgical Oncology Laboratory, Texas Children’s Surgical Oncology Program, Texas Children’s Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; (R.S.W.); (S.A.V.)
- Correspondence: ; Tel.: +1-832-824-4591
| |
Collapse
|
37
|
Du X, He K, Huang Y, Xu Z, Kong M, Zhang J, Cao J, Teng L. Establishment of a novel human cell line retaining the characteristics of the original pancreatic adenocarcinoma, and evaluation of MEK as a therapeutic target. Int J Oncol 2020; 56:761-771. [PMID: 32124956 PMCID: PMC7010221 DOI: 10.3892/ijo.2020.4965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer is a lethal solid malignancy with limited therapeutic options. The development of novel therapeutic drugs requires adequate new cell line models. A new pancreatic cancer cell line, designated PDXPC1, was established from one pancreatic ductal adenocarcinoma (PDAC) patient-derived xenograft. The PDXPC1 cells were stably cultured for >2 years and had a stable short tandem repeat profile. The PDXPC1 cell line retained the key mutations of the primary tumor, along with the epithelial origin and other important protein expression. The PDXPC1 cells induced rapid in vivo tumor growth, both subcutaneously and orthotopically, in a mouse model with an elevated CA199 level. The PDXPC1 cells showed weak growth, invasion and migration potency compared to another pancreatic cancer cell line, but were relatively resistant to multiple anti-cancer drugs. Interestingly, the MEK inhibitor trametinib significantly inhibited the proliferation of PDXPC1 cells, and not that of Panc-1 cells, by inactivating MEK/ERK/MYC signaling and activating the apoptotic pathway via Bcl-2 degradation. In conclusion, the PDXPC1 cell line, capturing the major characteristics of the primary tumor, may be a suitable tool for studying the underlying mechanisms of chemo-resistance in PDAC and developing new targeted therapeutic options.
Collapse
Affiliation(s)
- Xiaoxiao Du
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Kuifeng He
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yingying Huang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Zhenzhen Xu
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Mei Kong
- Department of Pathology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jing Zhang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jiang Cao
- Clinical Research Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
38
|
Song C, Li F, Wang S, Wang J, Wei W, Ma G. Recent Advances in Particulate Adjuvants for Cancer Vaccination. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Cui Song
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Feng Li
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Shuang Wang
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
| | - Jianghua Wang
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wei Wei
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
39
|
Long noncoding RNA GSTM3TV2 upregulates LAT2 and OLR1 by competitively sponging let-7 to promote gemcitabine resistance in pancreatic cancer. J Hematol Oncol 2019; 12:97. [PMID: 31514732 PMCID: PMC6739963 DOI: 10.1186/s13045-019-0777-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 08/16/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Chemoresistance is one of the main causes of poor prognosis in pancreatic cancer patients. Understanding the mechanisms implicated in chemoresistance of pancreatic cancer is critical to improving patient outcomes. Recent evidences indicate that the long noncoding RNAs (lncRNAs) are involving in chemoresistance of pancreatic cancer. However, the mechanisms of lncRNAs contribute to resistance in pancreatic cancer and remain largely unknown. The objective of this study is to construct a chemoresistance-related lncRNA-associated competing endogenous RNA (ceRNA) network of pancreatic cancer and identify the key lncRNAs in regulating chemoresistance of the network. METHODS Firstly, lncRNA expression profiling of gemcitabine-resistant pancreatic cancer cells was performed to identify lncRNAs related to chemoresistance by microarray analysis. Secondly, with insights into the mechanism of ceRNA, we used a bioinformatics approach to construct a chemoresistance-related lncRNAs-associated ceRNA network. We then identified the topological key lncRNAs in the ceRNA network and demonstrated its function or mechanism in chemoresistance of pancreatic cancer using molecular biological methods. Further studies evaluated its expression to assess its potential association with survival in patients with pancreatic cancer. RESULTS Firstly, we demonstrated that lncRNAs were dysregulated in gemcitabine-resistant pancreatic cancer cells. We then constructed a chemoresistance-related lncRNA-associated ceRNA network and proposed that lncRNA Homo sapiens glutathione S-transferase mu 3, transcript variant 2 and noncoding RNA (GSTM3TV2; NCBI Reference Sequence: NR_024537.1) might act as a key ceRNA to enhance chemoresistance by upregulating L-type amino acid transporter 2 (LAT2) and oxidized low-density lipoprotein receptor 1(OLR1) in pancreatic cancer. Further studies demonstrated that GSTM3TV2, overexpressed in gemcitabine-resistant cells, enhanced the gemcitabine resistance of pancreatic cancer cells in vitro and in vivo. Mechanistically, we identified that GSTM3TV2 upregulated LAT2 and OLR1 by competitively sponging let-7 to promote gemcitabine resistance. In addition, we revealed that the expression levels of GSTM3TV2 were significantly increased in pancreatic cancer tissues and were associated with poor prognosis. CONCLUSION Our results suggest that GSTM3TV2 is a crucial oncogenic regulator involved in chemoresistance and could be a new therapeutic target or prognostic marker in pancreatic cancer.
Collapse
|
40
|
Aasen SN, Parajuli H, Hoang T, Feng Z, Stokke K, Wang J, Roy K, Bjerkvig R, Knappskog S, Thorsen F. Effective Treatment of Metastatic Melanoma by Combining MAPK and PI3K Signaling Pathway Inhibitors. Int J Mol Sci 2019; 20:E4235. [PMID: 31470659 PMCID: PMC6747502 DOI: 10.3390/ijms20174235] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/17/2019] [Accepted: 08/23/2019] [Indexed: 12/20/2022] Open
Abstract
Malignant melanoma is the most aggressive type of skin cancer and is closely associated with the development of brain metastases. Despite aggressive treatment, the prognosis has traditionally been poor, necessitating improved therapies. In melanoma, the mitogen activated protein kinase and the phosphoinositide 3-kinase signaling pathways are commonly altered, and therapeutically inhibiting one of the pathways often upregulates the other, leading to resistance. Thus, combined treatment targeting both pathways is a promising strategy to overcome this. Here, we studied the in vitro and in vivo effects of the PI3K inhibitor buparlisib and the MEK1/2 inhibitor trametinib, used either as targeted monotherapies or in combination, on patient-derived melanoma brain metastasis cell lines. Scratch wound and trans-well assays were carried out to assess the migratory capacity of the cells upon drug treatment, whereas flow cytometry, apoptosis array and Western blots were used to study apoptosis. Finally, an in vivo treatment experiment was carried out on NOD/SCID mice. We show that combined therapy was more effective than monotherapy. Combined treatment also more effectively increased apoptosis, and inhibited tumor growth in vivo. This suggests a clinical potential of combined treatment to overcome ceased treatment activity which is often seen after monotherapies, and strongly encourages the evaluation of the treatment strategy on melanoma patients with brain metastases.
Collapse
Affiliation(s)
- Synnøve Nymark Aasen
- Kristian Gerhard Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
- Department of Oncology and Medical Physics, Haukeland University Hospital, Jonas Lies vei 65, 5021 Bergen, Norway
| | - Himalaya Parajuli
- Kristian Gerhard Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Tuyen Hoang
- Kristian Gerhard Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Zichao Feng
- Kristian Gerhard Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
- Brain Science Research Institute, Shandong University, 44 Wenhuaxi Road, Jinan 250100, China
| | - Krister Stokke
- Kristian Gerhard Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Jiwei Wang
- Kristian Gerhard Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
- Brain Science Research Institute, Shandong University, 44 Wenhuaxi Road, Jinan 250100, China
| | - Kislay Roy
- Kristian Gerhard Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Rolf Bjerkvig
- Kristian Gerhard Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 84 Val Fleuri, 1526 Luxembourg, Luxembourg
| | - Stian Knappskog
- Department of Oncology and Medical Physics, Haukeland University Hospital, Jonas Lies vei 65, 5021 Bergen, Norway
- Section of Oncology, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Frits Thorsen
- Kristian Gerhard Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway.
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 84 Val Fleuri, 1526 Luxembourg, Luxembourg.
- The Molecular Imaging Center, Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway.
| |
Collapse
|
41
|
Zhou X, Zhu A, Gu X, Xie G. Inhibition of MEK suppresses hepatocellular carcinoma growth through independent MYC and BIM regulation. Cell Oncol (Dordr) 2019; 42:369-380. [DOI: 10.1007/s13402-019-00432-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2019] [Indexed: 12/26/2022] Open
|
42
|
Zhan M, Yang RM, Wang H, He M, Chen W, Xu SW, Yang LH, Liu Q, Long MM, Wang J. Guided chemotherapy based on patient-derived mini-xenograft models improves survival of gallbladder carcinoma patients. Cancer Commun (Lond) 2018; 38:48. [PMID: 30016995 PMCID: PMC6050666 DOI: 10.1186/s40880-018-0318-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 07/06/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Gallbladder carcinoma is highly aggressive and resistant to chemotherapy, with no consistent strategy to guide first line chemotherapy. However, patient-derived xenograft (PDX) model has been increasingly used as an effective model for in preclinical study of chemosensitivity. METHODS Mini-PDX model was established using freshly resected primary lesions from 12 patients with gallbladder to examine the sensitivity with five of the most commonly used chemotherapeutic agents, namely gemcitabine, oxaliplatin, 5-fluorouracil, nanoparticle albumin-bound (nab)-paclitaxel, and irinotecan. The results were used to guide the selection of chemotherapeutic agents for adjunctive treatment after the surgery. Kaplan-Meier method was used to compare overall survival (OS) and disease free survival (DFS) with 45 patients who received conventional chemotherapy with gemcitabine and oxaliplatin. RESULTS Cell viability assays based on mini-PDX model revealed significant heterogeneities in drug responsiveness. Kaplan-Meier analysis showed that patients in the PDX-guided chemotherapy group had significantly longer median OS (18.6 months; 95% CI 15.9-21.3 months) than patients in the conventional chemotherapy group (13.9 months; 95% CI 11.7-16.2 months) (P = 0.030; HR 3.18; 95% CI 1.47-6.91). Patients in the PDX-guided chemotherapy group also had significantly longer median DFS (17.6 months; 95% CI 14.5-20.6 months) than patients in the conventional chemotherapy group (12.0 months; 95% CI 9.7-14.4 months) (P = 0.014; HR 3.37; 95% CI 1.67-6.79). CONCLUSION The use of mini-PDX model to guide selection of chemotherapeutic regimens could improve the outcome in patients with gallbladder carcinoma.
Collapse
Affiliation(s)
- Ming Zhan
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127 P. R. China
| | - Rui-meng Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127 P. R. China
| | - Hui Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127 P. R. China
| | - Min He
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127 P. R. China
| | - Wei Chen
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127 P. R. China
| | - Sun-wang Xu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127 P. R. China
| | - Lin-hua Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127 P. R. China
| | - Qiang Liu
- Department of Pathology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 P. R. China
| | - Man-mei Long
- Department of Pathology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011 P. R. China
| | - Jian Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127 P. R. China
| |
Collapse
|
43
|
Cao XY, Xiao SY. Chronic lung disease, lung regeneration and future therapeutic strategies. Chronic Dis Transl Med 2018; 4:103-108. [PMID: 29988916 PMCID: PMC6034004 DOI: 10.1016/j.cdtm.2018.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Indexed: 11/21/2022] Open
Abstract
Chronic lung diseases have been recognized as one of the world's leading causes of death in recent decades. Lacking effective treatments brings the patients not only bad quality of life but also higher risk for lung cancer development. By increasing the understanding of deeper mechanism of how lung develops and regenerates, researchers now focus on studying lung regenerative medicine, aiming to apply different and more efficient therapies to treat chronic lung diseases. This review will provide a wide picture of both basic lung developmental, regeneration mechanism and different designed strategies for treating chronic lung diseases in the future decades.
Collapse
Affiliation(s)
- Xuan-Ye Cao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Corresponding author.
| | - Si-Yu Xiao
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77004, USA
| |
Collapse
|
44
|
Dong LQ, Shi Y, Ma LJ, Yang LX, Wang XY, Zhang S, Wang ZC, Duan M, Zhang Z, Liu LZ, Zheng BH, Ding ZB, Ke AW, Gao DM, Yuan K, Zhou J, Fan J, Xi R, Gao Q. Spatial and temporal clonal evolution of intrahepatic cholangiocarcinoma. J Hepatol 2018; 69:89-98. [PMID: 29551704 DOI: 10.1016/j.jhep.2018.02.029] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 02/05/2018] [Accepted: 02/12/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Intrahepatic cholangiocarcinoma (ICC) is the second-most lethal primary liver cancer. Little is known about intratumoral heterogeneity (ITH) and its impact on ICC progression. We aimed to investigate the ITH of ICC in the hope of helping to develop new therapeutic strategies. METHODS We obtained 69 spatially distinct regions from six operable ICCs. Patient-derived primary cancer cells (PDPCs) were established for each region, followed by whole-exome sequencing (WES) and multi-level validation. RESULTS We observed widespread ITH for both somatic mutations and clonal architecture, shaped by multiple mechanisms, like clonal "illusion", parallel evolution and chromosome instability. A median of 60.3% of mutations were heterogeneous, among which 85% of the driver mutations were located on the branches of tumor phylogenetic trees. Many truncal and clonal driver mutations occurred in tumor suppressor genes, such as TP53, SMARCB1 and PBRM1 that are involved in DNA repair and chromatin-remodeling. Genome doubling occurred in most cases (5/6) after the accumulation of truncal mutations and was shared by all intratumoral sub-regions. In all cases, ongoing chromosomal instability is evident throughout the evolutionary trajectory of ICC. The recurrence of ICC1239 provided evidence to support the polyclonal metastatic seeding in ICC. The change of mutation landscape and internal diversity among subclones during metastasis, such as the loss of chemoresistance mediator, can be used for new treatment strategies. Targeted therapy against truncal alterations, such as IDH1, JAK1, and KRAS mutations and EGFR amplification, was developed in 5/6 patients. CONCLUSIONS Integrated investigations of spatial ITH and clonal evolution may provide an important molecular foundation for enhanced understanding of tumorigenesis and progression in ICC. LAY SUMMARY We applied multiregional whole-exome sequencing to investigate the evolution of intrahepatic cholangiocarcinoma (ICC). The results revealed that many factors, such as parallel evolution and chromosome instability, may participate and promote the branch diversity of ICC. Interestingly, in one patient with primary and recurrent metastatic tumors, we found evidence of polyclonal metastatic seeding, indicating that symbiotic communities of multiple clones existed and were maintained during metastasis. More realistically, some truncal alterations, such as IDH1, JAK1, and KRAS mutations and EGFR amplification, could be promising treatment targets in patients with ICC.
Collapse
Affiliation(s)
- Liang-Qing Dong
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China
| | - Yang Shi
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Li-Jie Ma
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China
| | - Liu-Xiao Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China
| | - Xiao-Ying Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China
| | - Shu Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China
| | - Zhi-Chao Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China
| | - Meng Duan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China
| | - Zhao Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China
| | - Long-Zi Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China
| | - Bo-Hao Zheng
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China
| | - Zhen-Bin Ding
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China
| | - Ai-Wu Ke
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China
| | - Da-Ming Gao
- CAS Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ke Yuan
- School of Computing Science and Institute of Cancer Science, University of Glasgow, United Kingdom
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China; Cancer Center, Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China; Cancer Center, Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| | - Ruibin Xi
- School of Mathematical Sciences and Center for Statistical Science, Peking University, Beijing, China.
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, China; State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200433, China.
| |
Collapse
|
45
|
Armengol C, Cairo S. Identification of theranostic biomarkers to improve the stratification of patients with pediatric liver cancer: Opportunities and challenges. Hepatology 2018; 68:10-12. [PMID: 29328497 DOI: 10.1002/hep.29779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/04/2018] [Indexed: 12/07/2022]
Affiliation(s)
- Carolina Armengol
- Childhood Liver Oncology Group (c-LOG)-CIBEREHD, Program for Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP) I Campus Can Ruti, Badalona, Spain
| | | |
Collapse
|
46
|
PARP1 activation increases expression of modified tumor suppressors and pathways underlying development of aggressive hepatoblastoma. Commun Biol 2018; 1:67. [PMID: 30271949 PMCID: PMC6123626 DOI: 10.1038/s42003-018-0077-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 05/21/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatoblastoma (HBL) is a pediatric liver cancer that affects children under the age of three. Reduction of tumor suppressor proteins (TSPs) is commonly seen in liver cancer. However, in our studies we find that aggressive, chemo-resistant HBLs exhibit an elevation of TSPs. HBL patients with a classic phenotype have reduced TSP levels, but patients with aggressive HBL express elevated TSPs that undergo posttranslational modifications, eliminating their tumor suppression activities. Here we identify unique aggressive liver cancer domains (ALCDs) that are activated in aggressive HBL by PARP1-mediated chromatin remodeling leading to elevation of modified TSPs and activation of additional cancer pathways: WNT signaling and β-catenin. Inhibition of PARP1 blocks activation of ALCDs and normalizes expression of corresponding genes, therefore reducing cell proliferation. Our studies reveal PARP1 activation as a mechanism for the development of aggressive HBL, further suggesting FDA-approved PARP1 inhibitors might be used for treatment of patients with aggressive HBL. Leila Valanejad et al. report increased expression of modified tumor suppressor proteins (TSPs) with loss of tumor suppressor activity in aggressive, chemotherapy-resistant hepatoblastoma. They find that TSP upregulation occurs via PARP1-mediated chromatin remodeling, leading to activation of multiple cancer-associated pathways.
Collapse
|
47
|
Stafman LL, Mruthyunjayappa S, Waters AM, Garner EF, Aye JM, Stewart JE, Yoon KJ, Whelan K, Mroczek-Musulman E, Beierle EA. Targeting PIM kinase as a therapeutic strategy in human hepatoblastoma. Oncotarget 2018; 9:22665-22679. [PMID: 29854306 PMCID: PMC5978256 DOI: 10.18632/oncotarget.25205] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/04/2018] [Indexed: 12/12/2022] Open
Abstract
Increasing incidence coupled with poor prognosis and treatments that are virtually unchanged over the past 20 years have made the need for the development of novel therapeutics for hepatoblastoma imperative. PIM kinases have been implicated as drivers of tumorigenesis in multiple cancers, including hepatocellular carcinoma. We hypothesized that PIM kinases, specifically PIM3, would play a role in hepatoblastoma tumorigenesis and that PIM kinase inhibition would affect hepatoblastoma in vitro and in vivo. Parameters including cell survival, proliferation, motility, and apoptosis were assessed in human hepatoblastoma cells following PIM3 knockdown with siRNA or treatment with the PIM inhibitor AZD1208. An in vivo model of human hepatoblastoma was utilized to study the effects of PIM inhibition alone and in combination with cisplatin. PIM kinases were found to be present in the human hepatoblastoma cell line, HuH6, and in a human hepatoblastoma patient-derived xenograft, COA67. PIM3 knockdown or inhibition with AZD1208 decreased cell survival, attachment independent growth, and motility. Additionally, inhibition of tumor growth was observed in a hepatoblastoma xenograft model in mice treated with AZD1208. Combination therapy with AZD1208 and cisplatin resulted in a significant increase in animal survival when compared to either treatment alone. The current studies showed that PIM kinase inhibition decreased human hepatoblastoma tumorigenicity both in vitro and in vivo, implying that PIM inhibitors may be useful as a novel therapeutic for children with hepatoblastoma.
Collapse
Affiliation(s)
- Laura L Stafman
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Alicia M Waters
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Evan F Garner
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jamie M Aye
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jerry E Stewart
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Karina J Yoon
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kimberly Whelan
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Elizabeth A Beierle
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
48
|
A Novel Cell Line Based Orthotopic Xenograft Mouse Model That Recapitulates Human Hepatoblastoma. Sci Rep 2017; 7:17751. [PMID: 29259231 PMCID: PMC5736579 DOI: 10.1038/s41598-017-17665-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 11/29/2017] [Indexed: 12/19/2022] Open
Abstract
Currently, preclinical testing of therapies for hepatoblastoma (HB) is limited to subcutaneous and intrasplenic xenograft models that do not recapitulate the hepatic tumors seen in patients. We hypothesized that injection of HB cell lines into the livers of mice would result in liver tumors that resemble their clinical counterparts. HepG2 and Huh-6 HB cell lines were injected, and tumor growth was monitored with bioluminescence imaging (BLI) and magnetic resonance imaging (MRI). Levels of human α-fetoprotein (AFP) were monitored in the serum of animals. Immunohistochemical and gene expression analyses were also completed on xenograft tumor samples. BLI signal indicative of tumor growth was seen in 55% of HepG2- and Huh-6-injected animals after a period of four to seven weeks. Increased AFP levels correlated with tumor growth. MRI showed large intrahepatic tumors with active neovascularization. HepG2 and Huh-6 xenografts showed expression of β-catenin, AFP, and Glypican-3 (GPC3). HepG2 samples displayed a consistent gene expression profile most similar to human HB tumors. Intrahepatic injection of HB cell lines leads to liver tumors in mice with growth patterns and biologic, histologic, and genetic features similar to human HB tumors. This orthotopic xenograft mouse model will enable clinically relevant testing of novel agents for HB.
Collapse
|
49
|
Castelli G, Pelosi E, Testa U. Liver Cancer: Molecular Characterization, Clonal Evolution and Cancer Stem Cells. Cancers (Basel) 2017; 9:cancers9090127. [PMID: 28930164 PMCID: PMC5615342 DOI: 10.3390/cancers9090127] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 12/15/2022] Open
Abstract
Liver cancer is the second most common cause of cancer-related death. The major forms of primary liver cancer are hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA). Both these tumors develop against a background of cirrhotic liver, non-alcoholic fatty liver disease, chronic liver damage and fibrosis. HCC is a heterogeneous disease which usually develops within liver cirrhosis related to various etiologies: hepatitis B virus (HBV) infection (frequent in Asia and Africa), hepatitis C virus (HCV), chronic alcohol abuse, or metabolic syndrome (frequent in Western countries). In cirrhosis, hepatocarcinogenesis is a multi-step process where pre-cancerous dysplastic macronodules transform progressively into HCC. The patterns of genomic alterations observed in these tumors were recently identified and were instrumental for the identification of potential targeted therapies that could improve patient care. Liver cancer stem cells are a small subset of undifferentiated liver tumor cells, responsible for cancer initiation, metastasis, relapse and chemoresistance, enriched and isolated according to immunophenotypic and functional properties: cell surface proteins (CD133, CD90, CD44, EpCAM, OV-6, CD13, CD24, DLK1, α2δ1, ICAM-1 and CD47); the functional markers corresponding to side population, high aldehyde dehydrogenase (ALDH) activity and autofluorescence. The identification and definition of liver cancer stem cells requires both immunophenotypic and functional properties.
Collapse
Affiliation(s)
- Germana Castelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00141, Italy.
| | - Elvira Pelosi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00141, Italy.
| | - Ugo Testa
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00141, Italy.
| |
Collapse
|
50
|
Sia D, Villanueva A, Friedman SL, Llovet JM. Liver Cancer Cell of Origin, Molecular Class, and Effects on Patient Prognosis. Gastroenterology 2017; 152:745-761. [PMID: 28043904 DOI: 10.1053/j.gastro.2016.11.048] [Citation(s) in RCA: 816] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/09/2016] [Accepted: 11/26/2016] [Indexed: 12/11/2022]
Abstract
Primary liver cancer is the second leading cause of cancer-related death worldwide and therefore a major public health challenge. We review hypotheses of the cell of origin of liver tumorigenesis and clarify the classes of liver cancer based on molecular features and how they affect patient prognosis. Primary liver cancer comprises hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (iCCA), and other rare tumors, notably fibrolamellar carcinoma and hepatoblastoma. The molecular and clinical features of HCC versus iCCA are distinct, but these conditions have overlapping risk factors and pathways of oncogenesis. A better understanding of the cell types originating liver cancer can aid in exploring molecular mechanisms of carcinogenesis and therapeutic options. Molecular studies have identified adult hepatocytes as the cell of origin. These cells have been proposed to transform directly into HCC cells (via a sequence of genetic alterations), to dedifferentiate into hepatocyte precursor cells (which then become HCC cells that express progenitor cell markers), or to transdifferentiate into biliary-like cells (which give rise to iCCA). Alternatively, progenitor cells also give rise to HCCs and iCCAs with markers of progenitor cells. Advances in genome profiling and next-generation sequencing have led to the classification of HCCs based on molecular features and assigned them to categories such as proliferation-progenitor, proliferation-transforming growth factor β, and Wnt-catenin β1. iCCAs have been assigned to categories of proliferation and inflammation. Overall, proliferation subclasses are associated with a more aggressive phenotype and poor outcome of patients, although more specific signatures have refined our prognostic abilities. Analyses of genetic alterations have identified those that might be targeted therapeutically, such as fusions in the FGFR2 gene and mutations in genes encoding isocitrate dehydrogenases (in approximately 60% of iCCAs) or amplifications at 11q13 and 6p21 (in approximately 15% of HCCs). Further studies of these alterations are needed before they can be used as biomarkers in clinical decision making.
Collapse
Affiliation(s)
- Daniela Sia
- Mount Sinai Liver Cancer Program, Divisions of Liver Diseases, Hematology, and Medical Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Augusto Villanueva
- Mount Sinai Liver Cancer Program, Divisions of Liver Diseases, Hematology, and Medical Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Scott L Friedman
- Mount Sinai Liver Cancer Program, Divisions of Liver Diseases, Hematology, and Medical Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Josep M Llovet
- Mount Sinai Liver Cancer Program, Divisions of Liver Diseases, Hematology, and Medical Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Liver Cancer Translational Research Laboratory, BCLC, Liver Unit, CIBEREHD, IDIBAPS, Hospital Clinic, University of Barcelona, Barcelona, Catalonia, Spain; Institució Catalana de Recerca i Estudis Avançats, Barcelona, Catalonia, Spain.
| |
Collapse
|