1
|
Fu Y, Huang R, Qin G, Huang S, Li J, Zhan W, Bai F, Xie X, Ling J, Cai Y, Xie Y, Wu Y, Cai R, Huang X, Deng Y. TRIM29 promotes liver metastasis via enhancing hepatic colonization by stabilizing FAM83H to regulate keratin network in colorectal cancer. Cell Signal 2025:111871. [PMID: 40389046 DOI: 10.1016/j.cellsig.2025.111871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/30/2025] [Accepted: 05/14/2025] [Indexed: 05/21/2025]
Abstract
Liver metastasis is a frequent and severe event of colorectal cancer (CRC), and patients with liver metastases typically exhibit poor prognosis, high recurrence rates and low responsiveness to treatment. However, the precise molecular mechanisms underlying the liver metastasis in CRC remain poorly understood. In this study, through a comprehensive multi-omics approach, we here identify CRC cells with high tripartite motif-containing protein 29 (TRIM29) expression as the critical subset responsible for liver metastasis. Omics-sequencing pathway analyses combined with in vitro functional assays revealed that CRC cells expressing high TRIM29 expression displayed enhanced cell adhesion, proliferation and liver metastasis capabilities. Mechanistically, TRIM29 interacts with FAM83H and stabilizes it by reducing its ubiquitination and degradation, thereby redistributing cellular keratins, which activates the NF-κB pathway and upregulates PLXNB2 expression to enhance cell adhesion and proliferation to promote hepatic colonization and drive CRC liver metastasis. Interestingly, TRIM29 upregulates the expression of PLXNB2 that can bind to the hepatocyte-specific ligand SEMA4G. Importantly, targeting TRIM29-FAM83H-elicited keratin redistribution and PLXNB2 elevation effectively abrogated CRC liver metastasis. Our findings position TRIM29 as a central driver of liver metastasis in CRC and highlight its potential as a therapeutic target for reducing the risk of liver metastasis in patients.
Collapse
Affiliation(s)
- Yang Fu
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Runqing Huang
- School of Life Science, Huizhou University, Huizhou 516007, China
| | - Ge Qin
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Shishi Huang
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Jianxia Li
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Weixiang Zhan
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Fan Bai
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Xiaoyu Xie
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Jiayu Ling
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Yue Cai
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Yuqian Xie
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - You Wu
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Runkai Cai
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Xinrun Huang
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Yanhong Deng
- Department of Medical Oncology, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; State Key Laboratory of Oncology in South China, Guangzhou 510060, China.
| |
Collapse
|
2
|
Hammond NL, Murtuza Baker S, Georgaka S, Al-Anbaki A, Jokl E, Simpson K, Sanchez-Alvarez R, Athwal VS, Purssell H, Siriwardena AK, Spiers HVM, Dixon MJ, Bere LD, Jones AP, Haley MJ, Couper KN, Bobola N, Sharrocks AD, Hanley NA, Rattray M, Piper Hanley K. Spatial gene regulatory networks driving cell state transitions during human liver disease. EMBO Mol Med 2025:10.1038/s44321-025-00230-6. [PMID: 40281306 DOI: 10.1038/s44321-025-00230-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
Liver fibrosis is a major cause of death worldwide. As a progressive step in chronic liver disease, fibrosis is almost always diagnosed too late with limited treatment options. Here, we uncover the spatial transcriptional landscape driving human liver fibrosis using single nuclei RNA and Assay for Transposase-Accessible Chromatin (ATAC) sequencing to deconvolute multi-cell spatial transcriptomic profiling in human liver cirrhosis. Through multi-modal data integration, we define molecular signatures driving cell state transitions in liver disease and define an impaired cellular response and directional trajectory between hepatocytes and cholangiocytes associated with disease remodelling. We identify pro-fibrogenic signatures in non-parenchymal cell subpopulations co-localised within the fibrotic niche and localise transitional cell states at the scar interface. This combined approach provides a spatial atlas of gene regulation and defines molecular signatures associated with liver disease for targeted therapeutics or as early diagnostic markers of progressive liver disease.
Collapse
Affiliation(s)
- Nigel L Hammond
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Syed Murtuza Baker
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Sokratia Georgaka
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Ali Al-Anbaki
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Elliot Jokl
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Kara Simpson
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Rosa Sanchez-Alvarez
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Varinder S Athwal
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
- Manchester University NHS Foundation Trust, Oxford Road, Manchester, UK
| | - Huw Purssell
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
- Manchester University NHS Foundation Trust, Oxford Road, Manchester, UK
| | - Ajith K Siriwardena
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
- Manchester University NHS Foundation Trust, Oxford Road, Manchester, UK
| | | | - Mike J Dixon
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Leoma D Bere
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Adam P Jones
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Michael J Haley
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Kevin N Couper
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Nicoletta Bobola
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Andrew D Sharrocks
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Neil A Hanley
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
- College of Medical & Dental Sciences, University of Birmingham, Birmingham, UK
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2GW, UK
| | - Magnus Rattray
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Karen Piper Hanley
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK.
| |
Collapse
|
3
|
Bao J, Zhang X, Ye M, Yang Y, Xu L, He L, Guo J, Yao D, Wang S, Zhang J, Tian X. Exploration of Novel Metabolic Mechanisms Underlying Primary Biliary Cholangitis Using Hepatic Metabolomics, Lipidomics, and Proteomics Analysis. J Proteome Res 2025; 24:562-578. [PMID: 39792460 DOI: 10.1021/acs.jproteome.4c00708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Metabolic reprogramming is important in primary biliary cholangitis (PBC) development. However, studies investigating the metabolic signature within the liver of PBC patients are limited. In this study, liver biopsies from 31 PBC patients and 15 healthy controls were collected, and comprehensive metabolomics, lipidomics, and proteomics analysis were conducted to characterize the metabolic landscape in PBC. We observed distinct lipidome remodeling in PBC with increased polyunsaturated fatty acid levels and augmented fatty acid β-oxidation (FAO), evidenced by the increased acylcarnitine levels and upregulated expression of proteins involved in FAO. Notably, PBC patients exhibited an increase in glucose-6-phosphate (G6P) and purines, alongside a reduction in pyruvate, suggesting impaired glycolysis and increased purines biosynthesis in PBC. Additionally, the accumulation of bile acids as well as a decrease in branched chain amino acids and aromatic amino acids were observed in PBC liver. We also observed an aberrant upregulation of proteins associated with ductular reaction, apoptosis, and autophagy. In conclusion, our study highlighted substantial metabolic reprogramming in glycolysis, fatty acid metabolism, and purine biosynthesis, coupled with aberrant upregulation of proteins associated with apoptosis and autophagy in PBC patients. Targeting the specific metabolic reprogramming may offer potential targets for the therapeutic intervention of PBC.
Collapse
Affiliation(s)
- Jie Bao
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xuan Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Mao Ye
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Yiqin Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Leiming Xu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Lulu He
- Department of Biobank, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jixin Guo
- School of Stomatology, Wuhan University, Wuhan 430072, China
| | - Daoke Yao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Suhua Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Ji Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
4
|
Outla Z, Prechova M, Korelova K, Gemperle J, Gregor M. Mechanics of cell sheets: plectin as an integrator of cytoskeletal networks. Open Biol 2025; 15:240208. [PMID: 39875099 PMCID: PMC11774597 DOI: 10.1098/rsob.240208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
Epithelia are multicellular sheets that form barriers defining the internal and external environments. The constant stresses acting at this interface require that epithelial sheets are mechanically robust and provide a selective barrier to the hostile exterior. These properties are mediated by cellular junctions which are physically linked with heavily crosslinked cytoskeletal networks. Such hardwiring is facilitated by plakins, a family of giant modular proteins which serve as 'molecular bridges' between different cytoskeletal filaments and multiprotein adhesion complexes. Dysfunction of cytoskeletal crosslinking compromises epithelial biomechanics and structural integrity. Subsequent loss of barrier function leads to disturbed tissue homeostasis and pathological consequences such as skin blistering or intestinal inflammation. In this article, we highlight the importance of the cytolinker protein plectin for the functional organization of epithelial cytoskeletal networks. In particular, we focus on the ability of plectin to act as an integrator of the epithelial cytoarchitecture that defines the biomechanics of the whole tissue. Finally, we also discuss the role of cytoskeletal crosslinking in emerging aspects of epithelial mechanobiology that are critical for the maintenance of epithelial homeostasis.
Collapse
Affiliation(s)
- Zuzana Outla
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Magdalena Prechova
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Katerina Korelova
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Jakub Gemperle
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Martin Gregor
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
5
|
Gribben C, Galanakis V, Calderwood A, Williams EC, Chazarra-Gil R, Larraz M, Frau C, Puengel T, Guillot A, Rouhani FJ, Mahbubani K, Godfrey E, Davies SE, Athanasiadis E, Saeb-Parsy K, Tacke F, Allison M, Mohorianu I, Vallier L. Acquisition of epithelial plasticity in human chronic liver disease. Nature 2024; 630:166-173. [PMID: 38778114 PMCID: PMC11153150 DOI: 10.1038/s41586-024-07465-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
For many adult human organs, tissue regeneration during chronic disease remains a controversial subject. Regenerative processes are easily observed in animal models, and their underlying mechanisms are becoming well characterized1-4, but technical challenges and ethical aspects are limiting the validation of these results in humans. We decided to address this difficulty with respect to the liver. This organ displays the remarkable ability to regenerate after acute injury, although liver regeneration in the context of recurring injury remains to be fully demonstrated. Here we performed single-nucleus RNA sequencing (snRNA-seq) on 47 liver biopsies from patients with different stages of metabolic dysfunction-associated steatotic liver disease to establish a cellular map of the liver during disease progression. We then combined these single-cell-level data with advanced 3D imaging to reveal profound changes in the liver architecture. Hepatocytes lose their zonation and considerable reorganization of the biliary tree takes place. More importantly, our study uncovers transdifferentiation events that occur between hepatocytes and cholangiocytes without the presence of adult stem cells or developmental progenitor activation. Detailed analyses and functional validations using cholangiocyte organoids confirm the importance of the PI3K-AKT-mTOR pathway in this process, thereby connecting this acquisition of plasticity to insulin signalling. Together, our data indicate that chronic injury creates an environment that induces cellular plasticity in human organs, and understanding the underlying mechanisms of this process could open new therapeutic avenues in the management of chronic diseases.
Collapse
Affiliation(s)
- Christopher Gribben
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Open Targets, Wellcome Genome Campus, Hinxton, UK
| | - Vasileios Galanakis
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Open Targets, Wellcome Genome Campus, Hinxton, UK
- Liver Unit, Department of Medicine, Cambridge NIHR Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Alexander Calderwood
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Eleanor C Williams
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Ruben Chazarra-Gil
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Miguel Larraz
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Carla Frau
- Berlin Institute of Health Centre for Regenerative Therapies, Berlin, Germany
| | - Tobias Puengel
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Adrien Guillot
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | | | - Edmund Godfrey
- Department of Radiology, Addenbrooke's Hospital, Cambridge, UK
| | - Susan E Davies
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Emmanouil Athanasiadis
- Greek Genome Centre, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Medical Image and Signal Processing Laboratory, Department of Biomedical Engineering, University of West Attica, Athens, Greece
| | | | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Allison
- Open Targets, Wellcome Genome Campus, Hinxton, UK.
- Liver Unit, Department of Medicine, Cambridge NIHR Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | - Irina Mohorianu
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| | - Ludovic Vallier
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Open Targets, Wellcome Genome Campus, Hinxton, UK.
- Berlin Institute of Health Centre for Regenerative Therapies, Berlin, Germany.
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
6
|
Hrncir HR, Hantelys F, Gracz AD. Panic at the Bile Duct: How Intrahepatic Cholangiocytes Respond to Stress and Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1440-1454. [PMID: 36870530 PMCID: PMC10548281 DOI: 10.1016/j.ajpath.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/16/2023] [Accepted: 02/15/2023] [Indexed: 03/06/2023]
Abstract
In the liver, biliary epithelial cells (BECs) line intrahepatic bile ducts (IHBDs) and are primarily responsible for modifying and transporting hepatocyte-produced bile to the digestive tract. BECs comprise only 3% to 5% of the liver by cell number but are critical for maintaining choleresis through homeostasis and disease. To this end, BECs drive an extensive morphologic remodeling of the IHBD network termed ductular reaction (DR) in response to direct injury or injury to the hepatic parenchyma. BECs are also the target of a broad and heterogenous class of diseases termed cholangiopathies, which can present with phenotypes ranging from defective IHBD development in pediatric patients to progressive periductal fibrosis and cancer. DR is observed in many cholangiopathies, highlighting overlapping similarities between cell- and tissue-level responses by BECs across a spectrum of injury and disease. The following core set of cell biological BEC responses to stress and injury may moderate, initiate, or exacerbate liver pathophysiology in a context-dependent manner: cell death, proliferation, transdifferentiation, senescence, and acquisition of neuroendocrine phenotype. By reviewing how IHBDs respond to stress, this review seeks to highlight fundamental processes with potentially adaptive or maladaptive consequences. A deeper understanding of how these common responses contribute to DR and cholangiopathies may identify novel therapeutic targets in liver disease.
Collapse
Affiliation(s)
- Hannah R Hrncir
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia; Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, Georgia
| | - Fransky Hantelys
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia
| | - Adam D Gracz
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia; Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, Georgia.
| |
Collapse
|
7
|
Aguilar-Bravo B, Ariño S, Blaya D, Pose E, Martinez García de la Torre RA, Latasa MU, Martínez-Sánchez C, Zanatto L, Sererols-Viñas L, Cantallops-Vilà P, Affo S, Coll M, Thillen X, Dubuquoy L, Avila MA, Argemi J, Paz AL, Nevzorova YA, Cubero FJ, Bataller R, Lozano JJ, Ginès P, Mathurin P, Sancho-Bru P. Hepatocyte dedifferentiation profiling in alcohol-related liver disease identifies CXCR4 as a driver of cell reprogramming. J Hepatol 2023; 79:728-740. [PMID: 37088308 PMCID: PMC10540088 DOI: 10.1016/j.jhep.2023.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 03/17/2023] [Accepted: 04/08/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND & AIMS Loss of hepatocyte identity is associated with impaired liver function in alcohol-related hepatitis (AH). In this context, hepatocyte dedifferentiation gives rise to cells with a hepatobiliary (HB) phenotype expressing biliary and hepatocyte markers and showing immature features. However, the mechanisms and impact of hepatocyte dedifferentiation in liver disease are poorly understood. METHODS HB cells and ductular reaction (DR) cells were quantified and microdissected from liver biopsies from patients with alcohol-related liver disease (ArLD). Hepatocyte-specific overexpression or deletion of C-X-C motif chemokine receptor 4 (CXCR4), and CXCR4 pharmacological inhibition were assessed in mouse liver injury. Patient-derived and mouse organoids were generated to assess plasticity. RESULTS Here, we show that HB and DR cells are increased in patients with decompensated cirrhosis and AH, but only HB cells correlate with poor liver function and patients' outcome. Transcriptomic profiling of HB cells revealed the expression of biliary-specific genes and a mild reduction of hepatocyte metabolism. Functional analysis identified pathways involved in hepatocyte reprogramming, inflammation, stemness, and cancer gene programs. The CXCR4 pathway was highly enriched in HB cells and correlated with disease severity and hepatocyte dedifferentiation. In vitro, CXCR4 was associated with a biliary phenotype and loss of hepatocyte features. Liver overexpression of CXCR4 in chronic liver injury decreased the hepatocyte-specific gene expression profile and promoted liver injury. CXCR4 deletion or its pharmacological inhibition ameliorated hepatocyte dedifferentiation and reduced DR and fibrosis progression. CONCLUSIONS This study shows the association of hepatocyte dedifferentiation with disease progression and poor outcome in AH. Moreover, the transcriptomic profiling of HB cells revealed CXCR4 as a new driver of hepatocyte-to-biliary reprogramming and as a potential therapeutic target to halt hepatocyte dedifferentiation in AH. IMPACT AND IMPLICATIONS Here, we show that hepatocyte dedifferentiation is associated with disease severity and a reduced synthetic capacity of the liver. Moreover, we identify the CXCR4 pathway as a driver of hepatocyte dedifferentiation and as a therapeutic target in alcohol-related hepatitis. Therefore, this study reveals the importance of preserving strict control over hepatocyte plasticity in order to preserve liver function and promote tissue repair.
Collapse
Affiliation(s)
- Beatriz Aguilar-Bravo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Silvia Ariño
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Delia Blaya
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elisa Pose
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Liver Unit, Hospital Clínic, Barcelona, Spain
| | | | - María U Latasa
- Hepatology Program, Liver Unit, Instituto de Investigación de Navarra (IdisNA), Clínica Universidad de Navarra and Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
| | - Celia Martínez-Sánchez
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Laura Zanatto
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Laura Sererols-Viñas
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Paula Cantallops-Vilà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Silvia Affo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mar Coll
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain; Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Xavier Thillen
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Laurent Dubuquoy
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
| | - Matías A Avila
- Hepatology Program, Liver Unit, Instituto de Investigación de Navarra (IdisNA), Clínica Universidad de Navarra and Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Josepmaria Argemi
- Hepatology Program, Liver Unit, Instituto de Investigación de Navarra (IdisNA), Clínica Universidad de Navarra and Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Arantza Lamas Paz
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain; Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | - Yulia A Nevzorova
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain; Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | - Francisco Javier Cubero
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain; Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | - Ramon Bataller
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Liver Unit, Hospital Clínic, Barcelona, Spain; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Juan José Lozano
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Pere Ginès
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Liver Unit, Hospital Clínic, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain; Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Philippe Mathurin
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
| | - Pau Sancho-Bru
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain; Faculty of Medicine, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
8
|
Aguilar-Bravo B, Ariño S, Blaya D, Pose E, Martinez García de la Torre RA, Latasa MU, Martínez-Sánchez C, Zanatto L, Sererols-Viñas L, Cantallops P, Affo S, Coll M, Thillen X, Dubuquoy L, Avila MA, Argemi JM, Paz AL, Nevzorova YA, Cubero J, Bataller R, Lozano JJ, Ginès P, Mathurin P, Sancho-Bru P. Hepatocyte Dedifferentiation Profiling In Alcohol-Related Liver Disease Identifies CXCR4 As A Driver Of Cell Reprogramming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.04.535566. [PMID: 37066245 PMCID: PMC10104068 DOI: 10.1101/2023.04.04.535566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Background and Aims Loss of hepatocyte identity is associated with impaired liver function in alcohol-related hepatitis (AH). In this context, hepatocyte dedifferentiation gives rise to cells with a hepatobiliary (HB) phenotype expressing biliary and hepatocytes markers and showing immature features. However, the mechanisms and the impact of hepatocyte dedifferentiation in liver disease are poorly understood. Methods HB cells and ductular reaction (DR) cells were quantified and microdissected from liver biopsies from patients with alcohol-related liver disease (ALD). Hepatocyte- specific overexpression or deletion of CXCR4, and CXCR4 pharmacological inhibition were assessed in mouse liver injury. Patient-derived and mouse organoids were generated to assess plasticity. Results Here we show that HB and DR cells are increased in patients with decompensated cirrhosis and AH, but only HB cells correlate with poor liver function and patients' outcome. Transcriptomic profiling of HB cells revealed the expression of biliary-specific genes and a mild reduction of hepatocyte metabolism. Functional analysis identified pathways involved in hepatocyte reprogramming, inflammation, stemness and cancer gene programs. CXCR4 pathway was highly enriched in HB cells, and correlated with disease severity and hepatocyte dedifferentiation. In vitro , CXCR4 was associated with biliary phenotype and loss of hepatocyte features. Liver overexpression of CXCR4 in chronic liver injury decreased hepatocyte specific gene expression profile and promoted liver injury. CXCR4 deletion or its pharmacological inhibition ameliorated hepatocyte dedifferentiation and reduced DR and fibrosis progression. Conclusions This study shows the association of hepatocyte dedifferentiation with disease progression and poor outcome in AH. Moreover, the transcriptomic profiling of HB cells revealed CXCR4 as a new driver of hepatocyte-to-biliary reprogramming and as a potential therapeutic target to halt hepatocyte dedifferentiation in AH. Lay summary Here we describe that hepatocyte dedifferentiation is associated with disease severity and a reduced synthetic capacity of the liver. Moreover, we identify the CXCR4 pathway as a driver of hepatocyte dedifferentiation and as a therapeutic target in alcohol-related hepatitis.
Collapse
|
9
|
A Kaleidoscope of Keratin Gene Expression and the Mosaic of Its Regulatory Mechanisms. Int J Mol Sci 2023; 24:ijms24065603. [PMID: 36982676 PMCID: PMC10052683 DOI: 10.3390/ijms24065603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Keratins are a family of intermediate filament-forming proteins highly specific to epithelial cells. A combination of expressed keratin genes is a defining property of the epithelium belonging to a certain type, organ/tissue, cell differentiation potential, and at normal or pathological conditions. In a variety of processes such as differentiation and maturation, as well as during acute or chronic injury and malignant transformation, keratin expression undergoes switching: an initial keratin profile changes accordingly to changed cell functions and location within a tissue as well as other parameters of cellular phenotype and physiology. Tight control of keratin expression implies the presence of complex regulatory landscapes within the keratin gene loci. Here, we highlight patterns of keratin expression in different biological conditions and summarize disparate data on mechanisms controlling keratin expression at the level of genomic regulatory elements, transcription factors (TFs), and chromatin spatial structure.
Collapse
|
10
|
Atkinson SR, Aly M, Remih K, Tyson LD, Guldiken N, Goldin R, Quaglia A, Thursz M, Strnad P. Serum keratin 19 (CYFRA21-1) is a prognostic biomarker in severe alcoholic hepatitis. Liver Int 2022; 42:1049-1057. [PMID: 35220651 DOI: 10.1111/liv.15218] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/11/2021] [Accepted: 01/04/2022] [Indexed: 02/13/2023]
Abstract
BACKGROUND AND AIMS Up to 30% of patients with severe alcoholic hepatitis (sAH) die within 3 months of presentation. The degree of ductular reaction, characterized by accumulation of biliary and liver progenitor cells, confers a poor prognosis. Keratin fragments are established serological surrogates of liver injury and keratin 19 (K19) is a histological marker of the ductular reaction. We assessed the relationship between serum K19 levels (viz. CYFRA21-1), histology and outcome in patients with sAH. METHODS Serum CYFRA21-1 was quantified in pre-treatment serum samples from 824 patients enrolled in the STOPAH trial. The cohort was randomly divided into two groups to test mortality associations; histological analyses were performed using the 87 cases with suitable samples. RESULTS CYFRA21-1 levels were elevated in sAH and strongly predicted alcoholic steatohepatitis (ASH) on biopsy (area under the receiver operated characteristic [AUROC] 0.785 [95% Confidence Interval 0.602-0.967]) and 90-day survival (AUROC 0.684/0.693). The predictive ability of CYFRA21-1 was comparable with the model of end-stage liver disease (MELD) score and was independently associated with survival in multivariable analysis. CYFRA21-1 moderately correlated with hepatocellular injury markers M30/M65 but displayed a more robust predictive ability. A combination of MELD and CYFRA21-1 conferred a modest improvement in the AUROC value (0.731/0.743). CONCLUSIONS In sAH serum, CYFRA21-1 levels associate with the presence of ASH on biopsy and independently predict 90-day survival. As a single marker performance is comparable to established scoring systems. Therefore, CYFRA21-1, which is available in many clinical laboratories, may become a useful component of prognostic models.
Collapse
Affiliation(s)
- Stephen Rahul Atkinson
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Mahmoud Aly
- Medical Clinic III, Gastroenterology, Metabolic diseases and Intensive Care, University Hospital RWTH, Aachen, Germany
- Faculty of Veterinary Medicine, Department of Medicine and Infectious Diseases, University of Sadat City, Sadat City, Egypt
| | - Katharina Remih
- Medical Clinic III, Gastroenterology, Metabolic diseases and Intensive Care, University Hospital RWTH, Aachen, Germany
| | - Luke David Tyson
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Nurdan Guldiken
- Medical Clinic III, Gastroenterology, Metabolic diseases and Intensive Care, University Hospital RWTH, Aachen, Germany
| | - Robert Goldin
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Alberto Quaglia
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London, UK
| | - Mark Thursz
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Pavel Strnad
- Medical Clinic III, Gastroenterology, Metabolic diseases and Intensive Care, University Hospital RWTH, Aachen, Germany
| |
Collapse
|
11
|
Alam CM, Baghestani S, Pajari A, Omary MB, Toivola DM. Keratin 7 Is a Constituent of the Keratin Network in Mouse Pancreatic Islets and Is Upregulated in Experimental Diabetes. Int J Mol Sci 2021; 22:ijms22157784. [PMID: 34360548 PMCID: PMC8346022 DOI: 10.3390/ijms22157784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
Keratin (K) 7 is an intermediate filament protein expressed in ducts and glands of simple epithelial organs and in urothelial tissues. In the pancreas, K7 is expressed in exocrine ducts, and apico-laterally in acinar cells. Here, we report K7 expression with K8 and K18 in the endocrine islets of Langerhans in mice. K7 filament formation in islet and MIN6 β-cells is dependent on the presence and levels of K18. K18-knockout (K18‒/‒) mice have undetectable islet K7 and K8 proteins, while K7 and K18 are downregulated in K8‒/‒ islets. K7, akin to F-actin, is concentrated at the apical vertex of β-cells in wild-type mice and along the lateral membrane, in addition to forming a fine cytoplasmic network. In K8‒/‒ β-cells, apical K7 remains, but lateral keratin bundles are displaced and cytoplasmic filaments are scarce. Islet K7, rather than K8, is increased in K18 over-expressing mice and the K18-R90C mutation disrupts K7 filaments in mouse β-cells and in MIN6 cells. Notably, islet K7 filament networks significantly increase and expand in the perinuclear regions when examined in the streptozotocin diabetes model. Hence, K7 represents a significant component of the murine islet keratin network and becomes markedly upregulated during experimental diabetes.
Collapse
Affiliation(s)
- Catharina M. Alam
- Department of Biosciences, Cell Biology, Åbo Akademi University, Tykistökatu 6A, BioCity 2nd Floor, FIN-20520 Turku, Finland; (S.B.); (A.P.)
- Correspondence: (C.M.A.); (D.M.T.)
| | - Sarah Baghestani
- Department of Biosciences, Cell Biology, Åbo Akademi University, Tykistökatu 6A, BioCity 2nd Floor, FIN-20520 Turku, Finland; (S.B.); (A.P.)
| | - Ada Pajari
- Department of Biosciences, Cell Biology, Åbo Akademi University, Tykistökatu 6A, BioCity 2nd Floor, FIN-20520 Turku, Finland; (S.B.); (A.P.)
| | - M. Bishr Omary
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854, USA;
| | - Diana M. Toivola
- Department of Biosciences, Cell Biology, Åbo Akademi University, Tykistökatu 6A, BioCity 2nd Floor, FIN-20520 Turku, Finland; (S.B.); (A.P.)
- Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland
- Correspondence: (C.M.A.); (D.M.T.)
| |
Collapse
|
12
|
Kuscuoglu D, Bewersdorf L, Wenzel K, Gross A, Kobazi Ensari G, Luo Y, Kilic K, Hittatiya K, Golob-Schwarzl N, Leube RE, Preisinger C, George J, Metwally M, Eslam M, Lampertico P, Petta S, Mangia A, Berg T, Boonstra A, Brouwer WP, Abate ML, Loglio A, Sutton A, Nahon P, Schaefer B, Zoller H, Aigner E, Trautwein C, Haybaeck J, Strnad P. Dual proteotoxic stress accelerates liver injury via activation of p62-Nrf2. J Pathol 2021; 254:80-91. [PMID: 33586163 DOI: 10.1002/path.5643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 01/29/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023]
Abstract
Protein accumulation is the hallmark of various neuronal, muscular, and other human disorders. It is also often seen in the liver as a major protein-secretory organ. For example, aggregation of mutated alpha1-antitrypsin (AAT), referred to as PiZ, is a characteristic feature of AAT deficiency, whereas retention of hepatitis B surface protein (HBs) is found in chronic hepatitis B (CHB) infection. We investigated the interaction of both proteotoxic stresses in humans and mice. Animals overexpressing both PiZ and HBs (HBs-PiZ mice) had greater liver injury, steatosis, and fibrosis. Later they exhibited higher hepatocellular carcinoma load and a more aggressive tumor subtype. Although PiZ and HBs displayed differing solubility properties and distinct distribution patterns, HBs-PiZ animals manifested retention of AAT/HBs in the degradatory pathway and a marked accumulation of the autophagy adaptor p62. Isolation of p62-containing particles revealed retained HBs/AAT and the lipophagy adapter perilipin-2. p62 build-up led to activation of the p62-Nrf2 axis and emergence of reactive oxygen species. Our results demonstrate that the simultaneous presence of two prevalent proteotoxic stresses promotes the development of liver injury due to protein retention and activation of the p62-Nrf2 axis. In humans, the PiZ variant was over-represented in CHB patients with advanced liver fibrosis (unadjusted odds ratio = 9.92 [1.15-85.39]). Current siRNA approaches targeting HBs/AAT should be considered for these individuals. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Deniz Kuscuoglu
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | - Lisa Bewersdorf
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | - Kathrin Wenzel
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | - Annika Gross
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | | | - Yizhao Luo
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | - Konrad Kilic
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | | | | | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Christian Preisinger
- Proteomics Facility, Interdisciplinary Centre for Clinical Research (IZKF), Medical School, RWTH Aachen University, Aachen, Germany
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, Australia
| | - Mayada Metwally
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, Australia
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, Australia
| | - Pietro Lampertico
- CRC 'A. M. e A. Migliavacca' Center for Liver Disease Division of Gastroenterology and Hepatology Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Università di Milano, Milan, Italy
| | - Salvatore Petta
- Sezione di Gastroenterologia e Epatologia, DiBiMIS, University of Palermo, Palermo, Italy
| | - Alessandra Mangia
- Division of Hepatology, Ospedale Casa Sollievo della Sofferenza, IRCCS, San Giovanni Rotondo, Italy
| | - Thomas Berg
- Section of Hepatology, Clinic for Gastroenterology and Rheumatology, University Clinic Leipzig, Leipzig, Germany
| | - Andre Boonstra
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Willem P Brouwer
- Department of Gastroenterology and Hepatology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Maria Lorena Abate
- Division of Gastroenterology and Hepatology, Department of Medical Science, University of Turin, Turin, Italy
| | - Alessandro Loglio
- CRC 'A. M. e A. Migliavacca' Center for Liver Disease Division of Gastroenterology and Hepatology Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Università di Milano, Milan, Italy
| | - Angela Sutton
- Centre de Ressources Biologiques (Liver Disease Biobank) Groupe Hospitalier Paris, Seine-Saint-Denis, France
- AP-HP Hôpital Jean Verdier, Service de Biochimie, Bondy, France
- Inserm U1148, Université Paris 13, Bobigny, France
| | - Pierre Nahon
- AP-HP, Hôpital Jean Verdier, Service d'Hépatologie, Bondy, France
- Université Paris 13, Sorbonne Paris Cité, 'Equipe Labellisée Ligue Contre le Cancer', Saint-Denis, France
- Inserm, UMR-1162, 'Génomique Fonctionnelle des Tumeur Solides', Paris, France
| | - Benedikt Schaefer
- Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Austria
| | - Heinz Zoller
- Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Austria
| | - Elmar Aigner
- First Department of Medicine, Paracelsus Medical University, Salzburg, Austria
| | | | - Johannes Haybaeck
- Department of Pathology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Department of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - Pavel Strnad
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| |
Collapse
|
13
|
Serum transferrin as a biomarker of hepatocyte nuclear factor 4 alpha activity and hepatocyte function in liver diseases. BMC Med 2021; 19:39. [PMID: 33593348 PMCID: PMC7887823 DOI: 10.1186/s12916-021-01917-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/18/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Serum transferrin levels represent an independent predictor of mortality in patients with liver failure. Hepatocyte nuclear factor 4 alpha (HNF4α) is a master regulator of hepatocyte functions. The aim of this study was to explore whether serum transferrin reflects HNF4α activity. METHODS Factors regulating transferrin expression in alcoholic hepatitis (AH) were assessed via transcriptomic/methylomic analysis as well as chromatin immunoprecipitation coupled to DNA sequencing. The findings were corroborated in primary hepatocytes. Serum and liver samples from 40 patients with advanced liver disease of multiple etiologies were also studied. RESULTS In patients with advanced liver disease, serum transferrin levels correlated with hepatic transferrin expression (r = 0.51, p = 0.01). Immunohistochemical and biochemical tests confirmed reduced HNF4α and transferrin protein levels in individuals with cirrhosis. In AH, hepatic gene-gene correlation analysis in liver transcriptome revealed an enrichment of HNF4α signature in transferrin-correlated transcriptome while transforming growth factor beta 1 (TGFβ1), tumor necrosis factor α (TNFα), interleukin 1 beta (IL-1β), and interleukin 6 (IL-6) negatively associated with transferrin signature. A key regulatory region in transferrin promoter was hypermethylated in patients with AH. In primary hepatocytes, treatment with TGFβ1 or the HNF4α inhibitor BI6015 suppressed transferrin production, while exposure to TNFα, IL-1β, and IL-6 had no effect. The correlation between hepatic HNF4A and transferrin mRNA levels was also seen in advanced liver disease. CONCLUSIONS Serum transferrin levels constitute a prognostic and mechanistic biomarker. Consequently, they may serve as a surrogate of impaired hepatic HNF4α signaling and liver failure.
Collapse
|
14
|
Keratin intermediate filaments in the colon: guardians of epithelial homeostasis. Int J Biochem Cell Biol 2020; 129:105878. [PMID: 33152513 DOI: 10.1016/j.biocel.2020.105878] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022]
Abstract
Keratin intermediate filament proteins are major cytoskeletal components of the mammalian simple layered columnar epithelium in the gastrointestinal tract. Human colon crypt epithelial cells express keratins 18, 19 and 20 as the major type I keratins, and keratin 8 as the type II keratin. Keratin expression patterns vary between species, and mouse colonocytes express keratin 7 as a second type II keratin. Colonic keratin patterns change during cell differentiation, such that K20 increases in the more differentiated crypt cells closer to the central lumen. Keratins provide a structural and mechanical scaffold to support cellular stability, integrity and stress protection in this rapidly regenerating tissue. They participate in central colonocyte processes including barrier function, ion transport, differentiation, proliferation and inflammatory signaling. The cell-specific keratin compositions in different epithelial tissues has allowed for the utilization of keratin-based diagnostic methods. Since the keratin expression pattern in tumors often resembles that in the primary tissue, it can be used to recognize metastases of colonic origin. This review focuses on recent findings on the biological functions of mammalian colon epithelial keratins obtained from pivotal in vivo models. We also discuss the diagnostic value of keratins in chronic colonic disease and known keratin alterations in colon pathologies. This review describes the biochemical properties of keratins and their molecular actions in colonic epithelial cells and highlights diagnostic data in colorectal cancer and inflammatory bowel disease patients, which may facilitate the recognition of disease subtypes and the establishment of personal therapies in the future.
Collapse
|
15
|
The Overexpression of Keratin 23 Promotes Migration of Ovarian Cancer via Epithelial-Mesenchymal Transition. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8218735. [PMID: 33204716 PMCID: PMC7652601 DOI: 10.1155/2020/8218735] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/28/2020] [Accepted: 10/14/2020] [Indexed: 01/13/2023]
Abstract
Background Keratin 23 (KRT23) is a new member of the KRT gene family and known to be involved in the development and migration of various types of tumors. However, the role of KRT23 in ovarian cancer (OC) remains unclear. This study is aimed at investigating the function of KRT23 in OC. Methods The expression of KRT23 in normal ovarian and OC tissues was determined using the Oncomine database and immunohistochemical staining. Reverse transcription quantitative polymerase chain reaction assay was used to analyze the expression of KRT23 in normal ovarian epithelial cell lines and OC cell lines. Small interfering RNA (siRNA), wound healing assay, and transwell assay were conducted to detect the effects of KRT23 on OC cell migration and invasion. Further mechanistic studies were verified by the Gene Expression Profiling Interactive Analysis platform, Western blotting, and immunofluorescence staining. Results KRT23 was highly expressed in OC tissues and cell lines. High KRT23 expression could regulate OC cell migration and invasion, and the reduction of KRT23 by siRNA inhibited the migration and invasion of OC cells in vitro. Furthermore, KRT23 mediated epithelial-mesenchymal transition (EMT) by regulating p-Smad2/3 levels in the TGF-β/Smad signaling pathway. Conclusions These results demonstrate that KRT23 plays an important role in OC migration via EMT by regulating the TGF-β/Smad signaling pathway.
Collapse
|
16
|
An Q, Liu T, Wang MY, Yang YJ, Zhang ZD, Lin ZJ, Yang B. circKRT7-miR-29a-3p-COL1A1 Axis Promotes Ovarian Cancer Cell Progression. Onco Targets Ther 2020; 13:8963-8976. [PMID: 32982288 PMCID: PMC7490051 DOI: 10.2147/ott.s259033] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Background Circular RNA (circRNA) has emerged as an important regulator in the progression of human diseases. However, the role of circRNAs in ovarian cancer remains largely unknown. Materials and Methods DNA sequencing and PCR were used to identify the existence and expression of circKRT7. The targeting relationship between circKRT7/miR-29a-3p and miR-29a-3p/COL1A1 was verified by fluorescence reporter assay. In vitro, colony formation, transwell and wound healing assay were used to detect the effects of circKRT7 and miR-29a-3p on the proliferation, migration and invasion ability of ovarian cancer cells. In vivo, xenograft tumor model was performed to validate the role of circKRT7 and miR-29a-3p in tumor growth. Results We found that circKRT7 can promote the proliferation and metastasis of ovarian cancer cells by absorbing miR-29a-3p, which leads to the up-regulation of COL1A1. In vitro, knock-down of circKRT7 can inhibit the migration and invasion of ovarian cancer cells. This effect of circKRT7 is achieved by adsorbing miR-29a-3p and subsequently COL1A1 release. In vivo experiments, the reduction of circKRT7 expression can also slow tumor growth, and this inhibition was partly counteracted after miR-29a-3p repression. Conclusion Overall, circKRT7 promotes EMT-related cell progression by absorbing miR-29a-3p in ovarian cancer. This suggests the crucial role of circular RNA in the malignant evolution in cancer.
Collapse
Affiliation(s)
- Qiang An
- Department of Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China
| | - Ting Liu
- Department of Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China
| | - Ming-Yang Wang
- Department of Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China
| | - Yu-Jia Yang
- Department of Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China
| | - Zhen-Dong Zhang
- Department of Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China
| | - Zhen-Jiang Lin
- Department of Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China
| | - Bing Yang
- Department of Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, People's Republic of China
| |
Collapse
|
17
|
Safarikia S, Carpino G, Overi D, Cardinale V, Venere R, Franchitto A, Onori P, Alvaro D, Gaudio E. Distinct EpCAM-Positive Stem Cell Niches Are Engaged in Chronic and Neoplastic Liver Diseases. Front Med (Lausanne) 2020; 7:479. [PMID: 32984373 PMCID: PMC7492539 DOI: 10.3389/fmed.2020.00479] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
In normal human livers, EpCAMpos cells are mostly restricted in two distinct niches, which are (i) the bile ductules and (ii) the mucous glands present inside the wall of large intrahepatic bile ducts (the so-called peribiliary glands). These EpCAMpos cell niches have been proven to harbor stem/progenitor cells with great importance in liver and biliary tree regeneration and in the pathophysiology of human diseases. The EpCAMpos progenitor cells within bile ductules are engaged in driving regenerative processes in chronic diseases affecting hepatocytes or interlobular bile ducts. The EpCAMpos population within peribiliary glands is activated when regenerative needs are finalized to repair large intra- or extra-hepatic bile ducts affected by chronic pathologies, including primary sclerosing cholangitis and ischemia-induced cholangiopathies after orthotopic liver transplantation. Finally, the presence of distinct EpCAMpos cell populations may explain the histological and molecular heterogeneity characterizing cholangiocarcinoma, based on the concept of multiple candidate cells of origin. This review aimed to describe the precise anatomical distribution of EpCAMpos populations within the liver and the biliary tree and to discuss their contribution in the pathophysiology of human liver diseases, as well as their potential role in regenerative medicine of the liver.
Collapse
Affiliation(s)
- Samira Safarikia
- Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico," Rome, Italy
| | - Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Rosanna Venere
- Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Domenico Alvaro
- Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
18
|
Chen H, Zhao W, Zhang Y, Guo Y, Luo W, Wang X, Nie Y, Ye M, Huang C, Wang D, Chen M, He X, Zhao Q. Systematic analysis on multiple Gene Expression Omnibus data sets reveals fierce immune response in hepatitis B virus-related acute liver failure. J Cell Mol Med 2020; 24:9798-9809. [PMID: 32686296 PMCID: PMC7520256 DOI: 10.1111/jcmm.15561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/26/2020] [Accepted: 06/14/2020] [Indexed: 12/17/2022] Open
Abstract
Acute liver failure (ALF) caused by hepatitis B virus (HBV) is common type of liver failure in the world, with high morbidity and mortality rates. However, the prevalence, genetic background and factors determining the development of HBV‐related ALF are rarely studied. In this study, we examined three Gene Expression Omnibus (GEO) data sets by bioinformatics analysis to identify differentially expressed genes (DEGs), key biological processes and pathways. Immune infiltration analysis showed high immune cells infiltration in HBV‐related ALF tissue. We then confirmed natural killer cells and macrophages infiltration in clinical samples by immunohistochemistry assay, implying these cells play a significant role in HBV‐ALF. We found 1277 genes were co‐up‐regulated and that 1082 genes were co‐down‐regulated in the 3 data sets. Inflammation‐related pathways were enriched in the co‐up‐regulated genes and synthetic metabolic pathways were enriched in the co‐down‐regulated genes. WGCNA also revealed a key module enriching in immune inflammation response and identified 10 hub genes, differentially expressed in an independent data set. In conclusion, we identified fierce immune inflammatory response to elucidate the immune‐driven mechanism of HBV‐ALF and 10 hub genes based on gene expression profiles.
Collapse
Affiliation(s)
- Huadi Chen
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Wenting Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yixi Zhang
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yiwen Guo
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Weixin Luo
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Xiaobo Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Yu Nie
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Maodong Ye
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Changjun Huang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Dongping Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Maogen Chen
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Xiaoshun He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Qiang Zhao
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| |
Collapse
|
19
|
Krishnan A, Katsumi T, Guicciardi ME, Azad AI, Ozturk NB, Trussoni CE, Gores GJ. Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Receptor Deficiency Promotes the Ductular Reaction, Macrophage Accumulation, and Hepatic Fibrosis in the Abcb4 -/- Mouse. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1284-1297. [PMID: 32240619 PMCID: PMC7280758 DOI: 10.1016/j.ajpath.2020.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/21/2020] [Accepted: 02/25/2020] [Indexed: 12/15/2022]
Abstract
The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL; TNFSF10) receptor (TR) is a pro-apoptotic receptor whose contribution to chronic cholestatic liver disease is unclear. Herein, we examined TRAIL receptor signaling in a mouse model of cholestatic liver injury. TRAIL receptor-deficient (Tnsf10 or Tr-/-) mice were crossbred with ATP binding cassette subfamily B member 4-deficient (Abcb4-/-, alias Mdr2-/-) mice. Male and female wild-type, Tr-/-, Mdr2-/-, and Tr-/-Mdr2-/- mice were assessed for liver injury, fibrosis, and ductular reactive (DR) cells. Macrophage subsets were examined by high-dimensional mass cytometry (time-of-flight mass cytometry). Mdr2-/- and Tr-/-Mdr2-/- mice had elevated liver weights and serum alanine transferase values. However, fibrosis was primarily periductular in Mdr2-/- mice, compared with extensive bridging fibrosis in Tr-/-Mdr2-/- mice. DR cell population was greatly expanded in the Tr-/-Mdr2-/- versus Mdr2-/- mice. The expanded DR cell population in Tr-/-Mdr2-/- mice was due to decreased cell loss by apoptosis and not enhanced proliferation. As assessed by time-of-flight mass cytometry, total macrophages were more abundant in Tr-/-Mdr2-/- versus Mdr2-/- mice, suggesting the DR cell population promotes macrophage-associated hepatic inflammation. Inhibition of monocyte-derived recruited macrophages using the CCR2/CCR5 antagonist cenicriviroc in the Mdr2-/- mice resulted in further expansion of the DR cell population. In conclusion, genetic deletion of TRAIL receptor increased the DR cell population, macrophage accumulation, and hepatic fibrosis in the Mdr2-/- model of cholestasis.
Collapse
Affiliation(s)
- Anuradha Krishnan
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Tomohiro Katsumi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Maria E Guicciardi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Adiba I Azad
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Nazli B Ozturk
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Christy E Trussoni
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
20
|
Puengel T, De Vos S, Hundertmark J, Kohlhepp M, Guldiken N, Pujuguet P, Auberval M, Marsais F, Shoji KF, Saniere L, Trautwein C, Luedde T, Strnad P, Brys R, Clément-Lacroix P, Tacke F. The Medium-Chain Fatty Acid Receptor GPR84 Mediates Myeloid Cell Infiltration Promoting Steatohepatitis and Fibrosis. J Clin Med 2020; 9:E1140. [PMID: 32316235 PMCID: PMC7231190 DOI: 10.3390/jcm9041140] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/05/2020] [Accepted: 04/14/2020] [Indexed: 12/17/2022] Open
Abstract
Medium-chain fatty acids (MCFAs) have been associated with anti-steatotic effects in hepatocytes. Expression of the MCFA receptor GPR84 (G protein-coupled receptor 84) is induced in immune cells under inflammatory conditions and can promote fibrogenesis. We aimed at deciphering the role of GPR84 in the pathogenesis of non-alcoholic steatohepatitis (NASH), exploring its potential as a therapeutic target. GPR84 expression is upregulated in liver from patients with non-alcoholic fatty liver disease (NAFLD), correlating with the histological degree of inflammation and fibrosis. In mouse and human, activated monocytes and neutrophils upregulate GPR84 expression. Chemotaxis of these myeloid cells by GPR84 stimulation is inhibited by two novel, small molecule GPR84 antagonists. Upon acute liver injury in mice, treatment with GPR84 antagonists significantly reduced the hepatic recruitment of neutrophils, monocytes, and monocyte-derived macrophages (MoMF). We, therefore, evaluated the therapeutic inhibition of GPR84 by these two novel antagonists in comparison to selonsertib, an apoptosis signal-regulating kinase 1 (ASK1) inhibitor, in three NASH mouse models. Pharmacological inhibition of GPR84 significantly reduced macrophage accumulation and ameliorated inflammation and fibrosis, to an extent similar to selonsertib. In conclusion, our findings support that GPR84 mediates myeloid cell infiltration in liver injury and is a promising therapeutic target in steatohepatitis and fibrosis.
Collapse
Affiliation(s)
- Tobias Puengel
- Department of Medicine III, RWTH-University Hospital Aachen, 52074 Aachen, Germany; (T.P.); (N.G.); (C.T.); (T.L.); (P.S.)
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, 13353 Berlin, Germany; (J.H.); (M.K.)
| | - Steve De Vos
- Galapagos SA, 102 avenue Gaston Roussel, 93230 Romainville, France; (S.D.V.); (P.P.); (M.A.); (F.M.); (K.F.S.); (L.S.); (P.C.-L.)
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium;
| | - Jana Hundertmark
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, 13353 Berlin, Germany; (J.H.); (M.K.)
| | - Marlene Kohlhepp
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, 13353 Berlin, Germany; (J.H.); (M.K.)
| | - Nurdan Guldiken
- Department of Medicine III, RWTH-University Hospital Aachen, 52074 Aachen, Germany; (T.P.); (N.G.); (C.T.); (T.L.); (P.S.)
| | - Philippe Pujuguet
- Galapagos SA, 102 avenue Gaston Roussel, 93230 Romainville, France; (S.D.V.); (P.P.); (M.A.); (F.M.); (K.F.S.); (L.S.); (P.C.-L.)
| | - Marielle Auberval
- Galapagos SA, 102 avenue Gaston Roussel, 93230 Romainville, France; (S.D.V.); (P.P.); (M.A.); (F.M.); (K.F.S.); (L.S.); (P.C.-L.)
| | - Florence Marsais
- Galapagos SA, 102 avenue Gaston Roussel, 93230 Romainville, France; (S.D.V.); (P.P.); (M.A.); (F.M.); (K.F.S.); (L.S.); (P.C.-L.)
| | - Kenji F. Shoji
- Galapagos SA, 102 avenue Gaston Roussel, 93230 Romainville, France; (S.D.V.); (P.P.); (M.A.); (F.M.); (K.F.S.); (L.S.); (P.C.-L.)
| | - Laurent Saniere
- Galapagos SA, 102 avenue Gaston Roussel, 93230 Romainville, France; (S.D.V.); (P.P.); (M.A.); (F.M.); (K.F.S.); (L.S.); (P.C.-L.)
| | - Christian Trautwein
- Department of Medicine III, RWTH-University Hospital Aachen, 52074 Aachen, Germany; (T.P.); (N.G.); (C.T.); (T.L.); (P.S.)
| | - Tom Luedde
- Department of Medicine III, RWTH-University Hospital Aachen, 52074 Aachen, Germany; (T.P.); (N.G.); (C.T.); (T.L.); (P.S.)
| | - Pavel Strnad
- Department of Medicine III, RWTH-University Hospital Aachen, 52074 Aachen, Germany; (T.P.); (N.G.); (C.T.); (T.L.); (P.S.)
| | - Reginald Brys
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium;
| | - Philippe Clément-Lacroix
- Galapagos SA, 102 avenue Gaston Roussel, 93230 Romainville, France; (S.D.V.); (P.P.); (M.A.); (F.M.); (K.F.S.); (L.S.); (P.C.-L.)
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, 13353 Berlin, Germany; (J.H.); (M.K.)
| |
Collapse
|
21
|
Ko S, Russell JO, Molina LM, Monga SP. Liver Progenitors and Adult Cell Plasticity in Hepatic Injury and Repair: Knowns and Unknowns. ANNUAL REVIEW OF PATHOLOGY 2020; 15:23-50. [PMID: 31399003 PMCID: PMC7212705 DOI: 10.1146/annurev-pathmechdis-012419-032824] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The liver is a complex organ performing numerous vital physiological functions. For that reason, it possesses immense regenerative potential. The capacity for repair is largely attributable to the ability of its differentiated epithelial cells, hepatocytes and biliary epithelial cells, to proliferate after injury. However, in cases of extreme acute injury or prolonged chronic insult, the liver may fail to regenerate or do so suboptimally. This often results in life-threatening end-stage liver disease for which liver transplantation is the only effective treatment. In many forms of liver injury, bipotent liver progenitor cells are theorized to be activated as an additional tier of liver repair. However, the existence, origin, fate, activation, and contribution to regeneration of liver progenitor cells is hotly debated, especially since hepatocytes and biliary epithelial cells themselves may serve as facultative stem cells for one another during severe liver injury. Here, we discuss the evidence both supporting and refuting the existence of liver progenitor cells in a variety of experimental models. We also debate the validity of developing therapies harnessing the capabilities of these cells as potential treatments for patients with severe and chronic liver diseases.
Collapse
Affiliation(s)
- Sungjin Ko
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA;
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Jacquelyn O Russell
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA;
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Laura M Molina
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA;
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Satdarshan P Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA;
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| |
Collapse
|
22
|
Hamesch K, Mandorfer M, Pereira VM, Moeller LS, Pons M, Dolman GE, Reichert MC, Schneider CV, Woditsch V, Voss J, Lindhauer C, Fromme M, Spivak I, Guldiken N, Zhou B, Arslanow A, Schaefer B, Zoller H, Aigner E, Reiberger T, Wetzel M, Siegmund B, Simões C, Gaspar R, Maia L, Costa D, Bento-Miranda M, van Helden J, Yagmur E, Bzdok D, Stolk J, Gleiber W, Knipel V, Windisch W, Mahadeva R, Bals R, Koczulla R, Barrecheguren M, Miravitlles M, Janciauskiene S, Stickel F, Lammert F, Liberal R, Genesca J, Griffiths WJ, Trauner M, Krag A, Trautwein C, Strnad P. Liver Fibrosis and Metabolic Alterations in Adults With alpha-1-antitrypsin Deficiency Caused by the Pi*ZZ Mutation. Gastroenterology 2019; 157:705-719.e18. [PMID: 31121167 DOI: 10.1053/j.gastro.2019.05.013] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Alpha-1 antitrypsin deficiency (AATD) is among the most common genetic disorders. Severe AATD is caused by a homozygous mutation in the SERPINA1 gene that encodes the Glu342Lys substitution (called the Pi*Z mutation, Pi*ZZ genotype). Pi*ZZ carriers may develop lung and liver diseases. Mutation-associated lung disorders have been well studied, but less is known about the effects in liver. We assessed the liver disease burden and associated features in adults with this form of AATD. METHODS We collected data from 554 Pi*ZZ adults (403 in an exploratory cohort, 151 in a confirmatory cohort), in 9 European countries, with AATD who were homozygous for the Pi*Z mutation, and 234 adults without the Pi*Z mutation (controls), all without pre-existing liver disease. We collected data on demographic parameters, comorbidities, lung- and liver-related health, and blood samples for laboratory analysis. Liver fibrosis was assessed non-invasively via the serum tests Aspartate Aminotransferase to Platelet Ratio Index and HepaScore and via transient elastography. Liver steatosis was determined via transient elastography-based controlled attenuation parameter. We performed histologic analyses of livers from transgenic mice that overexpress the AATD-associated Pi*Z variant. RESULTS Serum levels of liver enzymes were significantly higher in Pi*ZZ carriers vs controls. Based on non-invasive tests for liver fibrosis, significant fibrosis was suspected in 20%-36% of Pi*ZZ carriers, whereas signs of advanced fibrosis were 9- to 20-fold more common in Pi*ZZ carriers compared to non-carriers. Male sex; age older than 50 years; increased levels of alanine aminotransferase, aspartate aminotransferase, or γ-glutamyl transferase; and low numbers of platelets were associated with higher liver fibrosis burden. We did not find evidence for a relationship between lung function and liver fibrosis. Controlled attenuation parameter ≥280 dB/m, suggesting severe steatosis, was detected in 39% of Pi*ZZ carriers vs 31% of controls. Carriers of Pi*ZZ had lower serum concentrations of triglyceride and low- and very-low-density lipoprotein cholesterol than controls, suggesting impaired hepatic secretion of lipid. Livers from Pi*Z-overexpressing mice had steatosis and down-regulation of genes involved in lipid secretion. CONCLUSIONS In studies of AATD adults with the Pi*ZZ mutation, and of Pi*Z-overexpressing mice, we found evidence of liver steatosis and impaired lipid secretion. We identified factors associated with significant liver fibrosis in patients, which could facilitate hepatologic assessment and counseling of individuals who carry the Pi*ZZ mutation. ClinicalTrials.gov Number NCT02929940.
Collapse
Affiliation(s)
- Karim Hamesch
- Coordinating Center for Alpha1-Antitrypsin Deficiency-Related Liver Disease of the European Reference Network "Rare Liver" and the European Association for the Study of the Liver Registry Group "Alpha1-Liver," University Hospital Aachen, Aachen, Germany; Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Mattias Mandorfer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University Vienna, Vienna, Austria
| | - Vítor M Pereira
- Department of Gastroenterology, Centro Hospitalar do Funchal, Madeira, Portugal
| | - Linda S Moeller
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | - Monica Pons
- Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autonoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain
| | - Grace E Dolman
- Department of Hepatology, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, UK
| | - Matthias C Reichert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Carolin V Schneider
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Vivien Woditsch
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Jessica Voss
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Cecilia Lindhauer
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Malin Fromme
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Igor Spivak
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Nurdan Guldiken
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Biaohuan Zhou
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Anita Arslanow
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany; Department of Internal Medicine I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Benedikt Schaefer
- Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria
| | - Heinz Zoller
- Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria
| | - Elmar Aigner
- Department of Internal Medicine I, Paracelsus Medical University, Salzburg, Austria
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University Vienna, Vienna, Austria
| | - Martin Wetzel
- Department of Medicine I, Charité-Universitaetsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Britta Siegmund
- Department of Medicine I, Charité-Universitaetsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Carolina Simões
- Gastroenterology Department, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Rui Gaspar
- Gastroenterology Department, Centro Hospitalar de São João, Faculty of Medicine of Porto University, Porto, Portugal
| | - Luís Maia
- Gastroenterology Department, Centro Hospitalar do Porto, Porto, Portugal
| | - Dalila Costa
- Gastroenterology Department, Hospital de Braga, Braga, Portugal
| | - Mário Bento-Miranda
- Gastroenterology Department, Hospital Universitário de Coimbra, Coimbra, Portugal
| | - Josef van Helden
- Medical Care Centre, Dr Stein and Colleagues, Moenchengladbach, Germany
| | - Eray Yagmur
- Medical Care Centre, Dr Stein and Colleagues, Moenchengladbach, Germany
| | - Danilo Bzdok
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany; Jülich Aachen Research Alliance-Brain, Aachen, Germany
| | - Jan Stolk
- Clinic for Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Wolfgang Gleiber
- Clinic for Pulmonology, University Hospital Frankfurt, Frankfurt, Germany
| | - Verena Knipel
- Department of Pneumology, Cologne Merheim Hospital, Kliniken der Stadt Köln gGmbH, Witten/Herdecke University, Faculty of Health/School of Medicine, Cologne, Germany
| | - Wolfram Windisch
- Department of Pneumology, Cologne Merheim Hospital, Kliniken der Stadt Köln gGmbH, Witten/Herdecke University, Faculty of Health/School of Medicine, Cologne, Germany
| | - Ravi Mahadeva
- Department of Respiratory Medicine, Cambridge National Institute for Health Research, Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Robert Bals
- Department of Medicine V, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Rembert Koczulla
- Clinic for Pneumology, Marburg University Hospital, Marburg, Germany; Institute for Pulmonary Rehabilitation Research, Schoen Clinic Berchtesgadener Land, Member of the Deutsches Zentrum für Lungenforschung, Schönau am Königssee, Germany
| | - Miriam Barrecheguren
- Department of Pneumology, Vall d'Hebron University Hospital, Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Barcelona, Spain
| | - Marc Miravitlles
- Department of Pneumology, Vall d'Hebron University Hospital, Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Barcelona, Spain
| | - Sabina Janciauskiene
- Clinic for Pneumology, German Center for Lung Research, Medical University Hannover, Hannover, Germany
| | - Felix Stickel
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Rodrigo Liberal
- Gastroenterology Department, Centro Hospitalar de São João, Faculty of Medicine of Porto University, Porto, Portugal
| | - Joan Genesca
- Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autonoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain
| | - William J Griffiths
- Department of Hepatology, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, UK
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University Vienna, Vienna, Austria
| | - Aleksander Krag
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | - Christian Trautwein
- Coordinating Center for Alpha1-Antitrypsin Deficiency-Related Liver Disease of the European Reference Network "Rare Liver" and the European Association for the Study of the Liver Registry Group "Alpha1-Liver," University Hospital Aachen, Aachen, Germany; Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Pavel Strnad
- Coordinating Center for Alpha1-Antitrypsin Deficiency-Related Liver Disease of the European Reference Network "Rare Liver" and the European Association for the Study of the Liver Registry Group "Alpha1-Liver," University Hospital Aachen, Aachen, Germany; Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany.
| |
Collapse
|
23
|
Kim D, Brocker CN, Takahashi S, Yagai T, Kim T, Xie G, Wang H, Qu A, Gonzalez FJ. Keratin 23 Is a Peroxisome Proliferator-Activated Receptor Alpha-Dependent, MYC-Amplified Oncogene That Promotes Hepatocyte Proliferation. Hepatology 2019; 70:154-167. [PMID: 30697791 PMCID: PMC6597269 DOI: 10.1002/hep.30530] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 01/04/2019] [Indexed: 12/30/2022]
Abstract
Chronic activation of the nuclear receptor peroxisome proliferator-activated receptor alpha (PPARA) promotes MYC-linked hepatocellular carcinoma (HCC) in mice. Recent studies have shown that MYC can function as an amplifier of transcription where MYC does not act as an "on-off" switch for gene expression but rather accelerates transcription rates at active promoters by stimulating transcript elongation. Considering the possibility that MYC may amplify the expression of PPARA target genes to potentiate cell proliferation and liver cancer, gene expression was analyzed from livers of wild-type and liver-specific Myc knockout (MycΔHep ) mice treated with the PPARA agonist pirinixic acid. A subset of PPARA target genes was amplified in the presence of MYC, including keratin 23 (Krt23). The induction of Krt23 was significantly attenuated in MycΔHep mice and completely abolished in Ppara-null mice. Reporter gene assays and chromatin immunoprecipitation confirmed direct binding of both PPARA and MYC to sites within the Krt23 promoter. Forced expression of KRT23 in primary hepatocytes induced cell cycle-related genes. These data indicate that PPARA activation elevates MYC expression, which in turn potentiates the expression of select PPARA target genes involved in cell proliferation. Finally, KRT23 protein is highly elevated in human HCCs. Conclusion: These results revealed that MYC-mediated transcriptional potentiation of select PPARA target genes, such as Krt23, may remove rate-limiting constraints on hepatocyte growth and proliferation leading to liver cancer.
Collapse
Affiliation(s)
- Donghwan Kim
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Chad N. Brocker
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Shogo Takahashi
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Tomoki Yagai
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Taehyeong Kim
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA,Deceased
| | - Guomin Xie
- Department of Pharmacy, Anhui Medical University; Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Hua Wang
- Department of Pharmacy, Anhui Medical University; Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100069, China
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
24
|
Identification of Keratin 23 as a Hepatitis C Virus-Induced Host Factor in the Human Liver. Cells 2019; 8:cells8060610. [PMID: 31216713 PMCID: PMC6628310 DOI: 10.3390/cells8060610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/05/2019] [Accepted: 06/15/2019] [Indexed: 02/06/2023] Open
Abstract
Keratin proteins form intermediate filaments, which provide structural support for many tissues. Multiple keratin family members are reported to be associated with the progression of liver disease of multiple etiologies. For example, keratin 23 (KRT23) was reported as a stress-inducible protein, whose expression levels correlate with the severity of liver disease. Hepatitis C virus (HCV) is a human pathogen that causes chronic liver diseases including fibrosis, cirrhosis, and hepatocellular carcinoma. However, a link between KRT23 and hepatitis C virus (HCV) infection has not been reported previously. In this study, we investigated KRT23 mRNA levels in datasets from liver biopsies of chronic hepatitis C (CHC) patients and in primary human hepatocytes experimentally infected with HCV, in addition to hepatoma cells. Interestingly, in each of these specimens, we observed an HCV-dependent increase of mRNA levels. Importantly, the KRT23 protein levels in patient plasma decreased upon viral clearance. Ectopic expression of KRT23 enhanced HCV infection; however, CRIPSPR/Cas9-mediated knockout did not show altered replication efficiency. Taken together, our study identifies KRT23 as a novel, virus-induced host-factor for hepatitis C virus.
Collapse
|
25
|
Ehrlich F, Fischer H, Langbein L, Praetzel-Wunder S, Ebner B, Figlak K, Weissenbacher A, Sipos W, Tschachler E, Eckhart L. Differential Evolution of the Epidermal Keratin Cytoskeleton in Terrestrial and Aquatic Mammals. Mol Biol Evol 2019; 36:328-340. [PMID: 30517738 PMCID: PMC6367960 DOI: 10.1093/molbev/msy214] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Keratins are the main intermediate filament proteins of epithelial cells. In keratinocytes of the mammalian epidermis they form a cytoskeleton that resists mechanical stress and thereby are essential for the function of the skin as a barrier against the environment. Here, we performed a comparative genomics study of epidermal keratin genes in terrestrial and fully aquatic mammals to determine adaptations of the epidermal keratin cytoskeleton to different environments. We show that keratins K5 and K14 of the innermost (basal), proliferation-competent layer of the epidermis are conserved in all mammals investigated. In contrast, K1 and K10, which form the main part of the cytoskeleton in the outer (suprabasal) layers of the epidermis of terrestrial mammals, have been lost in whales and dolphins (cetaceans) and in the manatee. Whereas in terrestrial mammalian epidermis K6 and K17 are expressed only upon stress-induced epidermal thickening, high levels of K6 and K17 are consistently present in dolphin skin, indicating constitutive expression and substitution of K1 and K10. K2 and K9, which are expressed in a body site-restricted manner in human and mouse suprabasal epidermis, have been lost not only in cetaceans and manatee but also in some terrestrial mammals. The evolution of alternative splicing of K10 and differentiation-dependent upregulation of K23 have increased the complexity of keratin expression in the epidermis of terrestrial mammals. Taken together, these results reveal evolutionary diversification of the epidermal cytoskeleton in mammals and suggest a complete replacement of the quantitatively predominant epidermal proteins of terrestrial mammals by originally stress-inducible keratins in cetaceans.
Collapse
Affiliation(s)
- Florian Ehrlich
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Heinz Fischer
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Lutz Langbein
- Department of Genetics of Skin Carcinogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Silke Praetzel-Wunder
- Department of Genetics of Skin Carcinogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Bettina Ebner
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Katarzyna Figlak
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | | | - Wolfgang Sipos
- Clinical Department for Farm Animals and Herd Management, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Erwin Tschachler
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
26
|
Zhao C, Lou Y, Wang Y, Wang D, Tang L, Gao X, Zhang K, Xu W, Liu T, Xiao J. A gene expression signature-based nomogram model in prediction of breast cancer bone metastases. Cancer Med 2018; 8:200-208. [PMID: 30575323 PMCID: PMC6346244 DOI: 10.1002/cam4.1932] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/24/2018] [Accepted: 11/27/2018] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is prone to form bone metastases and subsequent skeletal‐related events (SREs) dramatically decrease patients’ quality of life and survival. Prediction and early management of bone lesions are valuable; however, proper prognostic models are inadequate. In the current study, we reviewed a total of 572 breast cancer patients in three microarray data sets including 191 bone metastases and 381 metastases‐free. Gene set enrichment analysis (GSEA) indicated less aggressive and low‐grade features of patients with bone metastases compared with metastases‐free ones, while luminal subtypes are more prone to form bone metastases. Five bone metastases‐related genes (KRT23, REEP1, SPIB, ALDH3B2, and GLDC) were identified and subjected to construct a gene expression signature‐based nomogram (GESBN) model. The model performed well in both training and testing sets for evaluation of breast cancer bone metastases (BCBM). Clinically, the model may help in prediction of early bone metastases, prevention and management of SREs, and even help to prolong survivals for patients with BCBM. The five‐gene GESBN model showed some implications as molecular diagnostic markers and therapeutic targets. Furthermore, our study also provided a way for analysis of tumor organ‐specific metastases. To the best of our knowledge, this is the first published model focused on tumor organ‐specific metastases.
Collapse
Affiliation(s)
- Chenglong Zhao
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yan Lou
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yao Wang
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Dongsheng Wang
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Liang Tang
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xin Gao
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Kun Zhang
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wei Xu
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Tielong Liu
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jianru Xiao
- Spine Tumor Center, Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
27
|
Levada K, Guldiken N, Zhang X, Vella G, Mo FR, James LP, Haybaeck J, Kessler SM, Kiemer AK, Ott T, Hartmann D, Hüser N, Ziol M, Trautwein C, Strnad P. Hsp72 protects against liver injury via attenuation of hepatocellular death, oxidative stress, and JNK signaling. J Hepatol 2018; 68:996-1005. [PMID: 29331340 PMCID: PMC9252261 DOI: 10.1016/j.jhep.2018.01.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 12/27/2017] [Accepted: 01/03/2018] [Indexed: 02/01/2023]
Abstract
BACKGROUND & AIMS Heat shock protein (Hsp) 72 is a molecular chaperone that has broad cytoprotective functions and is upregulated in response to stress. To determine its hepatic functions, we studied its expression in human liver disorders and its biological significance in newly generated transgenic animals. METHODS Double transgenic mice overexpressing Hsp72 (gene Hspa1a) under the control of a tissue-specific tetracycline-inducible system (Hsp72-LAP mice) were produced. Acute liver injury was induced by a single injection of acetaminophen (APAP). Feeding with either a methionine choline-deficient (MCD; 8 weeks) or a 3,5-diethoxycarbonyl-1,4-dihydrocollidine-supplemented diet (DDC; 12 weeks) was used to induce lipotoxic injury and Mallory-Denk body (MDB) formation, respectively. Primary hepatocytes were treated with palmitic acid. RESULTS Patients with non-alcoholic steatohepatitis and chronic hepatitis C infection displayed elevated HSP72 levels. These levels increased with the extent of hepatic inflammation and HSP72 expression was induced after treatment with either interleukin (IL)-1β or IL-6. Hsp72-LAP mice exhibited robust, hepatocyte-specific Hsp72 overexpression. Primary hepatocytes from these animals were more resistant to isolation-induced stress and Hsp72-LAP mice displayed lower levels of hepatic injury in vivo. Mice overexpressing Hsp72 had fewer APAP protein adducts and were protected from oxidative stress and APAP-/MCD-induced cell death. Hsp72-LAP mice and/or hepatocytes displayed significantly attenuated Jnk activation. Overexpression of Hsp72 did not affect steatosis or the extent of MDB formation. CONCLUSIONS Our results demonstrate that HSP72 induction occurs in human liver disease, thus, HSP72 represents an attractive therapeutic target owing to its broad hepatoprotective functions. LAY SUMMARY HSP72 constitutes a stress-inducible, protective protein. Our data demonstrate that it is upregulated in patients with chronic hepatitis C and non-alcoholic steatohepatitis. Moreover, Hsp72-overexpressing mice are protected from various forms of liver stress.
Collapse
Affiliation(s)
- Kateryna Levada
- Department of Internal Medicine III, RWTH University Hospital Aachen, Germany; Interdisciplinary Center for Clinical Research (IZKF), RWTH University Hospital Aachen, Germany; Center for Functionalized Magnetic Materials (FunMagMa), Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Nurdan Guldiken
- Department of Internal Medicine III, RWTH University Hospital Aachen, Germany; Interdisciplinary Center for Clinical Research (IZKF), RWTH University Hospital Aachen, Germany
| | - Xiaoji Zhang
- Department of Internal Medicine III, RWTH University Hospital Aachen, Germany; Interdisciplinary Center for Clinical Research (IZKF), RWTH University Hospital Aachen, Germany
| | - Giovanna Vella
- Department of Internal Medicine III, RWTH University Hospital Aachen, Germany
| | - Fa-Rong Mo
- Department of Internal Medicine III, RWTH University Hospital Aachen, Germany
| | - Laura P James
- Arkansas Children's Hospital Research Institute and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AK, USA
| | - Johannes Haybaeck
- Department of Pathology, Medical Faculty, Otto-von-Guericke University Magdeburg, Germany; Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Sonja M Kessler
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Alexandra K Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Thomas Ott
- Core Facility Transgenic Animals, University of Tübingen, Tübingen, Germany
| | - Daniel Hartmann
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Norbert Hüser
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Marianne Ziol
- Pathology Department, GH Paris-Seine-Saint-Denis, APHP, Bondy, France; University Paris 13, Bobigny, France; Centre de Ressources Biologiques - Hôpital Jean Verdier, GH Paris-Seine-Saint-Denis, APHP, Bondy, France
| | - Christian Trautwein
- Department of Internal Medicine III, RWTH University Hospital Aachen, Germany
| | - Pavel Strnad
- Department of Internal Medicine III, RWTH University Hospital Aachen, Germany; Interdisciplinary Center for Clinical Research (IZKF), RWTH University Hospital Aachen, Germany.
| |
Collapse
|
28
|
Jirouskova M, Nepomucka K, Oyman-Eyrilmez G, Kalendova A, Havelkova H, Sarnova L, Chalupsky K, Schuster B, Benada O, Miksatkova P, Kuchar M, Fabian O, Sedlacek R, Wiche G, Gregor M. Plectin controls biliary tree architecture and stability in cholestasis. J Hepatol 2018; 68:1006-1017. [PMID: 29273475 DOI: 10.1016/j.jhep.2017.12.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/27/2017] [Accepted: 12/12/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND & AIMS Plectin, a highly versatile cytolinker protein, controls intermediate filament cytoarchitecture and cellular stress response. In the present study, we investigate the role of plectin in the liver under basal conditions and in experimental cholestasis. METHODS We generated liver-specific plectin knockout (PleΔalb) mice and analyzed them using two cholestatic liver injury models: bile duct ligation (BDL) and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) feeding. Primary hepatocytes and a cholangiocyte cell line were used to address the impact of plectin on keratin filament organization and stability in vitro. RESULTS Plectin deficiency in hepatocytes and biliary epithelial cells led to aberrant keratin filament network organization, biliary tree malformations, and collapse of bile ducts and ductules. Further, plectin ablation significantly aggravated biliary damage upon cholestatic challenge. Coincidently, we observed a significant expansion of A6-positive progenitor cells in PleΔalb livers. After BDL, plectin-deficient bile ducts were prominently dilated with more frequent ruptures corresponding to an increased number of bile infarcts. In addition, more abundant keratin aggregates indicated less stable keratin filaments in PleΔalb hepatocytes. A transmission electron microscopy analysis revealed a compromised tight junction formation in plectin-deficient biliary epithelial cells. In addition, protein profiling showed increased expression of the adherens junction protein E-Cadherin, and inefficient upregulation of the desmosomal protein desmoplakin in response to BDL. In vitro analyses revealed a higher susceptibility of plectin-deficient keratin networks to stress-induced collapse, paralleled by elevated activation of p38 MAP kinase. CONCLUSION Our study shows that by maintaining proper keratin network cytoarchitecture and biliary epithelial stability, plectin plays a critical role in protecting the liver from stress elicited by cholestasis. LAY SUMMARY Plectin is a cytolinker protein capable of interconnecting all three cytoskeletal filament systems and linking them to plasma membrane-bound junctional complexes. In liver, the plectin-controlled cytoskeleton mechanically stabilizes epithelial cells and provides them with the capacity to adapt to increased bile pressure under cholestasis.
Collapse
Affiliation(s)
- Marketa Jirouskova
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Katerina Nepomucka
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Gizem Oyman-Eyrilmez
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alzbeta Kalendova
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Helena Havelkova
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lenka Sarnova
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Karel Chalupsky
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Bjoern Schuster
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Oldrich Benada
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petra Miksatkova
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Martin Kuchar
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Ondrej Fabian
- Department of Pathology and Molecular Medicine, Charles University, Prague, and University Hospital Motol, Prague, Czech Republic
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Gerhard Wiche
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Austria
| | - Martin Gregor
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
29
|
Carpino G, Cardinale V, Folseraas T, Overi D, Floreani A, Franchitto A, Onori P, Cazzagon N, Berloco PB, Karlsen TH, Alvaro D, Gaudio E. Hepatic Stem/Progenitor Cell Activation Differs between Primary Sclerosing and Primary Biliary Cholangitis. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 188:627-639. [PMID: 29248458 DOI: 10.1016/j.ajpath.2017.11.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/31/2017] [Accepted: 11/16/2017] [Indexed: 02/08/2023]
Abstract
Primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC) are human primary cholangiopathies characterized by the damage of mature cholangiocytes and by the appearance of ductular reaction (DR) as the results of hepatic progenitor cell activation. This study evaluated the differences in progenitor cell niche activation between these two cholangiopathies. Liver tissue was obtained from healthy liver donors (n = 5) and from patients with PSC (n = 20) or PBC (n = 20). DR, progenitor cell phenotype, and signaling pathways were investigated by IHC analysis and immunofluorescence. Our results indicated that DR was more extended, appeared earlier, and had a higher proliferation index in PBC compared with PSC. In PBC, DR was strongly correlated with clinical prognostic scores. A higher percentage of sex determining region Y-box (SOX)9+ and cytokeratin 19+ cells but fewer features of hepatocyte fate characterized progenitor cell activation in PBC versus PSC. Lower levels of laminin and neurogenic locus notch homolog protein 1 but higher expression of wingless-related integration site (WNT) family pathway components characterize progenitor cell niche in PSC compared with PBC. In conclusion, progenitor cell activation differs between PSC and PBC and is characterized by a divergent fate commitment and different signaling pathway predominance. In PBC, DR represents a relevant histologic prognostic marker.
Collapse
Affiliation(s)
- Guido Carpino
- Division of Health Sciences, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico," Rome, Italy.
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Trine Folseraas
- Norwegian PSC Research Center, Division of Cancer, Surgery and Transplantation, Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Annarosa Floreani
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Nora Cazzagon
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Pasquale B Berloco
- Department of General Surgery and Organ Transplantation, Sapienza University of Rome, Rome, Italy
| | - Tom H Karlsen
- Norwegian PSC Research Center, Division of Cancer, Surgery and Transplantation, Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Domenico Alvaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
30
|
Govaere O, Petz M, Wouters J, Vandewynckel YP, Scott EJ, Topal B, Nevens F, Verslype C, Anstee QM, Van Vlierberghe H, Mikulits W, Roskams T. The PDGFRα-laminin B1-keratin 19 cascade drives tumor progression at the invasive front of human hepatocellular carcinoma. Oncogene 2017; 36:6605-6616. [PMID: 28783171 PMCID: PMC5702717 DOI: 10.1038/onc.2017.260] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/30/2017] [Accepted: 06/08/2017] [Indexed: 02/07/2023]
Abstract
Human hepatocellular carcinomas (HCCs) expressing the biliary/hepatic progenitor cell marker keratin 19 (K19) have been linked with a poor prognosis and exhibit an increase in platelet-derived growth factor receptor α (PDGFRα) and laminin beta 1 (LAMB1) expression. PDGFRα has been reported to induce de novo synthesis of LAMB1 protein in a Sjogren syndrome antigen B (La/SSB)-dependent manner in a murine metastasis model. However, the role of this cascade in human HCC remains unclear. This study focused on the functional role of the PDGFRα-La/SSB-LAMB1 pathway and its molecular link to K19 expression in human HCC. In surgical HCC specimens from a cohort of 136 patients, PDGFRα expression correlated with K19 expression, microvascular invasion and metastatic spread. In addition, PDGFRα expression in pre-operative needle biopsy specimens predicted poor overall survival during a 5-year follow-up period. Consecutive histological staining demonstrated that the signaling components of the PDGFRα-La/SSB-LAMB1 pathway were strongly expressed at the invasive front. K19-positive HCC cells displayed high levels of α2β1 integrin (ITG) receptor, both in vitro and in vivo. In vitro activation of PDGFRα signaling triggered the translocation of nuclear La/SSB into the cytoplasm, enhanced the protein synthesis of LAMB1 by activating its internal ribosome entry site, which in turn led to increased secretion of laminin-111. This effect was abrogated by the PDGFRα-specific inhibitor crenolanib. Importantly LAMB1 stimulated ITG-dependent focal adhesion kinase/Src proto-oncogene non-receptor tyrosine kinase signaling. It also promoted the ITG-specific downstream target Rho-associated coiled-coil containing protein kinase 2, induced K19 expression in an autocrine manner, invadopodia formation and cell invasion. Finally, we showed that the knockdown of LAMB1 or K19 in subcutaneous xenograft mouse models resulted in significant loss of cells invading the surrounding stromal tissue and reduced HepG2 colonization into lung and liver after tail vein injection. The PDGFRα-LAMB1 pathway supports tumor progression at the invasive front of human HCC through K19 expression.
Collapse
Affiliation(s)
- O Govaere
- Department of Imaging and Pathology, KU Leuven and University Hospitals Leuven, Leuven, Belgium
- Liver Research Group, Institute of Cellular Medicine, The Medical School, Newcastle University, Newcastle-upon-Tyne, UK
| | - M Petz
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - J Wouters
- Department of Imaging and Pathology, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Y-P Vandewynckel
- Department of Hepatology and Gastroenterology, Ghent University, Ghent, Belgium
| | - E J Scott
- Liver Research Group, Institute of Cellular Medicine, The Medical School, Newcastle University, Newcastle-upon-Tyne, UK
| | - B Topal
- Department of Abdominal Surgery, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - F Nevens
- Department of Hepatology, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - C Verslype
- Department of Hepatology, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Q M Anstee
- Liver Research Group, Institute of Cellular Medicine, The Medical School, Newcastle University, Newcastle-upon-Tyne, UK
| | - H Van Vlierberghe
- Department of Hepatology and Gastroenterology, Ghent University, Ghent, Belgium
| | - W Mikulits
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - T Roskams
- Department of Imaging and Pathology, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
31
|
Fabris L, Spirli C, Cadamuro M, Fiorotto R, Strazzabosco M. Emerging concepts in biliary repair and fibrosis. Am J Physiol Gastrointest Liver Physiol 2017; 313:G102-G116. [PMID: 28526690 PMCID: PMC5582882 DOI: 10.1152/ajpgi.00452.2016] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/20/2017] [Accepted: 05/11/2017] [Indexed: 01/31/2023]
Abstract
Chronic diseases of the biliary tree (cholangiopathies) represent one of the major unmet needs in clinical hepatology and a significant knowledge gap in liver pathophysiology. The common theme in cholangiopathies is that the target of the disease is the biliary tree. After damage to the biliary epithelium, inflammatory changes stimulate a reparative response with proliferation of cholangiocytes and restoration of the biliary architecture, owing to the reactivation of a variety of morphogenetic signals. Chronic damage and inflammation will ultimately result in pathological repair with generation of biliary fibrosis and clinical progression of the disease. The hallmark of pathological biliary repair is the appearance of reactive ductular cells, a population of cholangiocyte-like epithelial cells of unclear and likely mixed origin that are able to orchestrate a complex process that involves a number of different cell types, under joint control of inflammatory and morphogenetic signals. Several questions remain open concerning the histogenesis of reactive ductular cells, their role in liver repair, their mechanism of activation, and the signals exchanged with the other cellular elements cooperating in the reparative process. This review contributes to the current debate by highlighting a number of new concepts derived from the study of the pathophysiology of chronic cholangiopathies, such as congenital hepatic fibrosis, biliary atresia, and Alagille syndrome.
Collapse
Affiliation(s)
- Luca Fabris
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy; .,Liver Center, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut.,International Center for Digestive Health, University of Milan-Bicocca School of Medicine, Milan, Italy; and
| | - Carlo Spirli
- 2Liver Center, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut; ,3International Center for Digestive Health, University of Milan-Bicocca School of Medicine, Milan, Italy; and
| | - Massimiliano Cadamuro
- 3International Center for Digestive Health, University of Milan-Bicocca School of Medicine, Milan, Italy; and ,4Department of Medicine and Surgery, University of Milan-Bicocca School of Medicine, Milan, Italy
| | - Romina Fiorotto
- 2Liver Center, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut; ,3International Center for Digestive Health, University of Milan-Bicocca School of Medicine, Milan, Italy; and
| | - Mario Strazzabosco
- 2Liver Center, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut; ,3International Center for Digestive Health, University of Milan-Bicocca School of Medicine, Milan, Italy; and ,4Department of Medicine and Surgery, University of Milan-Bicocca School of Medicine, Milan, Italy
| |
Collapse
|
32
|
Omary MB. Intermediate filament proteins of digestive organs: physiology and pathophysiology. Am J Physiol Gastrointest Liver Physiol 2017; 312:G628-G634. [PMID: 28360031 PMCID: PMC5495917 DOI: 10.1152/ajpgi.00455.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 01/31/2023]
Abstract
Intermediate filament proteins (IFs), such as cytoplasmic keratins in epithelial cells and vimentin in mesenchymal cells and the nuclear lamins, make up one of the three major cytoskeletal protein families. Whether in digestive organs or other tissues, IFs share several unique features including stress-inducible overexpression, abundance, cell-selective and differentiation state expression, and association with >80 human diseases when mutated. Whereas most IF mutations cause disease, mutations in simple epithelial keratins 8, 18, or 19 or in lamin A/C predispose to liver disease with or without other tissue manifestations. Keratins serve major functions including protection from apoptosis, providing cellular and subcellular mechanical integrity, protein targeting to subcellular compartments, and scaffolding and regulation of cell-signaling processes. Keratins are essential for Mallory-Denk body aggregate formation that occurs in association with several liver diseases, whereas an alternate type of keratin and lamin aggregation occurs upon liver involvement in porphyria. IF-associated diseases have no known directed therapy, but high-throughput drug screening to identify potential therapies is an appealing ongoing approach. Despite the extensive current knowledge base, much remains to be discovered regarding IF physiology and pathophysiology in digestive and nondigestive organs.
Collapse
Affiliation(s)
- M. Bishr Omary
- Department of Molecular and Integrative Physiology and Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
33
|
LPS-TLR4 Pathway Mediates Ductular Cell Expansion in Alcoholic Hepatitis. Sci Rep 2016; 6:35610. [PMID: 27752144 PMCID: PMC5067590 DOI: 10.1038/srep35610] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/29/2016] [Indexed: 02/06/2023] Open
Abstract
Alcoholic hepatitis (AH) is the most severe form of alcoholic liver disease for which there are no effective therapies. Patients with AH show impaired hepatocyte proliferation, expansion of inefficient ductular cells and high lipopolysaccharide (LPS) levels. It is unknown whether LPS mediates ductular cell expansion. We performed transcriptome studies and identified keratin 23 (KRT23) as a new ductular cell marker. KRT23 expression correlated with mortality and LPS serum levels. LPS-TLR4 pathway role in ductular cell expansion was assessed in human and mouse progenitor cells, liver slices and liver injured TLR4 KO mice. In AH patients, ductular cell expansion correlated with portal hypertension and collagen expression. Functional studies in ductular cells showed that KRT23 regulates collagen expression. These results support a role for LPS-TLR4 pathway in promoting ductular reaction in AH. Maneuvers aimed at decreasing LPS serum levels in AH patients could have beneficial effects by preventing ductular reaction development.
Collapse
|
34
|
Keratins Are Altered in Intestinal Disease-Related Stress Responses. Cells 2016; 5:cells5030035. [PMID: 27626448 PMCID: PMC5040977 DOI: 10.3390/cells5030035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/18/2016] [Accepted: 08/25/2016] [Indexed: 12/17/2022] Open
Abstract
Keratin (K) intermediate filaments can be divided into type I/type II proteins, which form obligate heteropolymers. Epithelial cells express type I-type II keratin pairs, and K7, K8 (type II) and K18, K19 and K20 (type I) are the primary keratins found in the single-layered intestinal epithelium. Keratins are upregulated during stress in liver, pancreas, lung, kidney and skin, however, little is known about their dynamics in the intestinal stress response. Here, keratin mRNA, protein and phosphorylation levels were studied in response to murine colonic stresses modeling human conditions, and in colorectal cancer HT29 cells. Dextran sulphate sodium (DSS)-colitis was used as a model for intestinal inflammatory stress, which elicited a strong upregulation and widened crypt distribution of K7 and K20. K8 levels were slightly downregulated in acute DSS, while stress-responsive K8 serine-74 phosphorylation (K8 pS74) was increased. By eliminating colonic microflora using antibiotics, K8 pS74 in proliferating cells was significantly increased, together with an upregulation of K8 and K19. In the aging mouse colon, most colonic keratins were upregulated. In vitro, K8, K19 and K8 pS74 levels were increased in response to lipopolysaccharide (LPS)-induced inflammation in HT29 cells. In conclusion, intestinal keratins are differentially and dynamically upregulated and post-translationally modified during stress and recovery.
Collapse
|
35
|
Geisler F, Leube RE. Epithelial Intermediate Filaments: Guardians against Microbial Infection? Cells 2016; 5:cells5030029. [PMID: 27355965 PMCID: PMC5040971 DOI: 10.3390/cells5030029] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/15/2016] [Accepted: 06/21/2016] [Indexed: 12/21/2022] Open
Abstract
Intermediate filaments are abundant cytoskeletal components of epithelial tissues. They have been implicated in overall stress protection. A hitherto poorly investigated area of research is the function of intermediate filaments as a barrier to microbial infection. This review summarizes the accumulating knowledge about this interaction. It first emphasizes the unique spatial organization of the keratin intermediate filament cytoskeleton in different epithelial tissues to protect the organism against microbial insults. We then present examples of direct interaction between viral, bacterial, and parasitic proteins and the intermediate filament system and describe how this affects the microbe-host interaction by modulating the epithelial cytoskeleton, the progression of infection, and host response. These observations not only provide novel insights into the dynamics and function of intermediate filaments but also indicate future avenues to combat microbial infection.
Collapse
Affiliation(s)
- Florian Geisler
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany.
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany.
| |
Collapse
|