1
|
Degasperi E, Scholtes C, Testoni B, Renteria SU, Anolli MP, Charre C, Facchetti F, Plissonnier ML, Sambarino D, Perbellini R, Monico S, Callegaro A, García-Pras E, Lens S, Cortese MF, Forns X, Pérez-Del-Pulgar S, Heil M, Levrero M, Zoulim F, Lampertico P. Differential HBV RNA and HBcrAg patterns in untreated patients with chronic hepatitis delta. J Hepatol 2025; 82:1004-1011. [PMID: 39662705 DOI: 10.1016/j.jhep.2024.11.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 10/02/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND & AIMS Serum HBV RNA and hepatitis B core-related antigen (HBcrAg) levels have been proposed as useful biomarkers in the management of patients with HBV; however, their role in chronic hepatitis delta (CHD) is currently unknown. METHODS Consecutive untreated patients with CHD were enrolled in a cross-sectional study in three EU centers. Clinical and virological characteristics were collected. Serum HBV RNA and HBcrAg levels were quantified by an automated real-time investigational assay (Cobas® 6800, Roche Diagnostics, Pleasanton, Ca, USA) and by LUMIPULSE® G HBcrAg assay (Fujirebio Europe), respectively. In 18 patients with available liver biopsies, intrahepatic analyses were performed. RESULTS Overall, 240 patients with HDV were enrolled: median age 46 years, 62% male, 53% with cirrhosis, 57% nucleos(t)ide analogue treated, median ALT 70 U/L, median HBsAg 3.8 log10 IU/ml, 88% HBeAg negative, and median HDV RNA 4.9 log10 IU/ml. HBV RNA was positive (>10 copies/ml) in only 8% of patients (median 40 [13-82,000] copies/ml), whereas HBcrAg was ≥3 log10 U/ml in 77% (median 4.2 [3.0-8.0] log10 U/ml). By combining these biomarkers, three categories were identified: 23% double negative (HBV RNA/HBcrAg), 9% double positive (HBV RNA/HBcrAg) and 68% HBV RNA negative/HBcrAg positive. HBV RNA levels positively correlated with male sex and detectable HBV DNA, while positive HBcrAg correlated with higher HBsAg levels. Double-positive patients were younger, non-European, with elevated ALT and HDV RNA levels and detectable HBV DNA. Intrahepatic HDV RNA and HBV RNA were positive in most samples, while intrahepatic levels of covalently closed circular DNA were low. CONCLUSIONS In untreated CHD, most patients had undetectable HBV RNA but quantifiable HBcrAg ("divergent pattern") in the absence of HBeAg. Additional studies aiming to unravel the molecular mechanisms underlying these findings are warranted. IMPACT AND IMPLICATIONS Serum HBV RNA and HBcrAg (hepatitis B core-related antigen) are promising biomarkers of the transcriptional activity of covalently closed circular DNA in chronic HBV infection; however, their role in patients with HBV-HDV coinfection is unknown. At variance with what is commonly observed in HBV-monoinfected patients, HBV RNA was undetectable and HBcrAg detectable in the serum of most patients with HDV ("divergent pattern"). The understanding of the viral interplay between HBV and HDV is crucial to dissect the pathogenic mechanisms associated with the distinct phenotypes of patients with HDV.
Collapse
Affiliation(s)
- Elisabetta Degasperi
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Caroline Scholtes
- Virology Department, Hospices Civils de Lyon (HCL) and Université Claude-Bernard Lyon 1 (UCBL1), Lyon, France; INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France; University of Lyon, Université Claude-Bernard (UCBL), Lyon, France; The Lyon Hepatology Institute (IHU EVEREST), Lyon, France
| | - Barbara Testoni
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France; University of Lyon, Université Claude-Bernard (UCBL), Lyon, France; The Lyon Hepatology Institute (IHU EVEREST), Lyon, France
| | - Sara Uceda Renteria
- Microbiology and Virology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria Paola Anolli
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Caroline Charre
- INSERM U1016, CNRS, UMR8104, Paris France; Virology Department, Hôpital Cochin, APHP, Paris France
| | - Floriana Facchetti
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marie-Laure Plissonnier
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France; University of Lyon, Université Claude-Bernard (UCBL), Lyon, France; The Lyon Hepatology Institute (IHU EVEREST), Lyon, France
| | - Dana Sambarino
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Riccardo Perbellini
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sara Monico
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Annapaola Callegaro
- Microbiology and Virology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ester García-Pras
- Liver Unit, Hospital Clínic, University of Barcelona, IDIBAPS, CIBEREHD, Barcelona, Spain
| | - Sabela Lens
- Liver Unit, Hospital Clínic, University of Barcelona, IDIBAPS, CIBEREHD, Barcelona, Spain
| | - Maria Francesca Cortese
- Liver unit, Group of Microbiology, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, CIBEREHD, Barcelona, Spain
| | - Xavier Forns
- Liver Unit, Hospital Clínic, University of Barcelona, IDIBAPS, CIBEREHD, Barcelona, Spain
| | - Sofía Pérez-Del-Pulgar
- Liver Unit, Hospital Clínic, University of Barcelona, IDIBAPS, CIBEREHD, Barcelona, Spain
| | - Marintha Heil
- Roche Molecular Diagnostics, Pleasanton, California, USA
| | - Massimo Levrero
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France; University of Lyon, Université Claude-Bernard (UCBL), Lyon, France; The Lyon Hepatology Institute (IHU EVEREST), Lyon, France; Department of Internal Medicine, SCIAC and the IIT Center for Life Nanoscience, Sapienza University, Rome, Italy; Hepatology Department, Hospices Civils de Lyon (HCL), France
| | - Fabien Zoulim
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France; University of Lyon, Université Claude-Bernard (UCBL), Lyon, France; The Lyon Hepatology Institute (IHU EVEREST), Lyon, France; Hepatology Department, Hospices Civils de Lyon (HCL), France
| | - Pietro Lampertico
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; CRC "A. M. and A. Migliavacca" Center for Liver Disease, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; D-SOLVE consortium, an EU Horizon Europe funded project (No 101057917), Italy.
| |
Collapse
|
2
|
Alfano V, Pascucci GR, Corleone G, Cocca M, De Nicola F, Floriot O, Paturel A, Di Tocco FC, de Fromentel CC, Merle P, Rivoire M, Levrero M, Guerrieri F. HBV-driven host chromatin accessibility changes affect liver metabolic pathways, iron homeostasis and promote a preneoplastic phenotype. J Exp Clin Cancer Res 2025; 44:146. [PMID: 40380227 DOI: 10.1186/s13046-025-03414-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 05/09/2025] [Indexed: 05/19/2025] Open
Abstract
BACKROUND AND AIMS Complex host-virus interactions account for adaptive and innate immunity dysfunctions and viral cccDNA mini-chromosome persistence, key features of HBV chronicity and challenges for HBV cure. The extent of HBV direct impact on liver transcriptome remains controversial. Transcriptional activation in eukaryotic cells is tightly linked with disruption of nucleosome organization at accessible genomic sites of remodeled chromatin. We sought to investigate the impact of HBV on chromatin accessibility and transcription. METHODS We used ATAC-seq (Assay for Transposase Accessible Chromatin followed by high throughput sequencing) to detect early changes in chromatin accessibility coupled with RNA-seq in HBV-infected Primary Human Hepatocytes (PHHs). RESULTS An increasing number of genomic sites change their nucleosome organization over time after HBV infection, with a prevalent, but not exclusive, reduction of chromatin accessibility at specific sites that is partially prevented by inhibiting HBV transcription and replication. ATAC-seq and RNA-seq integration showed that HBV infection impacts on liver fatty acids, bile acids, iron metabolism and liver cancer pathways. The upregulation of iron uptake genes leads to a significant increase of iron content in HBV-infected PHHs whereas iron chelation inhibits cccDNA transcription and viral replication. The chromatin accessibility and transcriptional changes imposed by HBV early after infection persist, as an epigenetic scar, in chronic HBV (CHB) patients and in HBV-related HCCs. These changes are to a large extent independent from viral replication levels and disease activity. CONCLUSIONS Altogether our results show that HBV infection impacts on host cell chromatin landscape and specific transcriptional programs including liver metabolism and liver cancer pathways. Re-wiring of iron metabolism boosts viral replication early after infection. The modulation of genes involved in cancer-related pathways may favor the development or the selection of a pro-neoplastic phenotype and persists in HBV-related HCCs.
Collapse
Affiliation(s)
- Vincenzo Alfano
- IHU EVEREST - Institut of Hepatology Lyon, UMR UCLB1 INSERM U1350 PaThLiv, 69004, Lyon, France
- INSERM U1052, Cancer Research Center of Lyon (CRCL), Lyon, France
| | - Giuseppe Rubens Pascucci
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, 00165, Rome, Italy
- Center for Life Nano Science (CNLS), Istituto Italiano Di Tecnologia (IIT), 00161, Rome, Italy
| | - Giacomo Corleone
- SAFU Laboratory, Department of Research, Advanced Diagnostics, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Massimiliano Cocca
- IHU EVEREST - Institut of Hepatology Lyon, UMR UCLB1 INSERM U1350 PaThLiv, 69004, Lyon, France
| | - Francesca De Nicola
- SAFU Laboratory, Department of Research, Advanced Diagnostics, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Océane Floriot
- INSERM U1052, Cancer Research Center of Lyon (CRCL), Lyon, France
| | - Alexia Paturel
- IHU EVEREST - Institut of Hepatology Lyon, UMR UCLB1 INSERM U1350 PaThLiv, 69004, Lyon, France
- Université Catholique de Lyon (UCLy), 69002, Lyon, France
| | | | | | - Philippe Merle
- IHU EVEREST - Institut of Hepatology Lyon, UMR UCLB1 INSERM U1350 PaThLiv, 69004, Lyon, France
- Department of Hepatology, Croix Rousse Hospital, Hospices Civils de Lyon, 69004, Lyon, France
| | - Michel Rivoire
- INSERM U1052, Centre de Lutte Contre Le Cancer Léon Bérard (CLB), 69003, Lyon, France
| | - Massimo Levrero
- IHU EVEREST - Institut of Hepatology Lyon, UMR UCLB1 INSERM U1350 PaThLiv, 69004, Lyon, France.
- Department of Hepatology, Croix Rousse Hospital, Hospices Civils de Lyon, 69004, Lyon, France.
| | - Francesca Guerrieri
- IHU EVEREST - Institut of Hepatology Lyon, UMR UCLB1 INSERM U1350 PaThLiv, 69004, Lyon, France.
| |
Collapse
|
3
|
Shechter O, Sausen DG, Dahari H, Vaillant A, Cotler SJ, Borenstein R. Functional Cure for Hepatitis B Virus: Challenges and Achievements. Int J Mol Sci 2025; 26:3633. [PMID: 40332208 PMCID: PMC12026623 DOI: 10.3390/ijms26083633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/31/2025] [Accepted: 04/04/2025] [Indexed: 05/08/2025] Open
Abstract
The Hepatitis B Virus (HBV) presents a formidable global health challenge, impacting hundreds of millions worldwide and imposing a considerable burden on healthcare systems. The elusive nature of the virus, with its ability to establish chronic infection and evade immune detection, and the absence of curative agents have prompted efforts to develop novel therapeutic approaches beyond current antiviral treatments. This review addresses the challenging concept of a functional cure for HBV, a state characterized by the suppression of HBV and HBsAg, mitigating disease progression and transmission without a complete cure. We provide an overview of HBV epidemiology and its clinical impact, followed by an exploration of the current treatment landscape and its limitations. The immunological basis of a functional cure is then discussed, exploring the intricate interplay between the virus and the host immune response. Emerging therapeutic approaches, such as RNA interference-based interventions, entry inhibitors, nucleic acid polymers, and therapeutic vaccines, are discussed with regard to their success in achieving a functional cure. Lastly, the review underscores the urgent need for innovative strategies to achieve a functional cure for HBV.
Collapse
Affiliation(s)
- Oren Shechter
- Eastern Virginia Medical School, Norfolk, VA 23501, USA;
| | | | - Harel Dahari
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (H.D.); (S.J.C.)
| | - Andrew Vaillant
- Replicor Inc., 6100 Royalmount Ave., Montreal, QC H4P 2R2, Canada;
| | - Scott J. Cotler
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (H.D.); (S.J.C.)
| | - Ronen Borenstein
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (H.D.); (S.J.C.)
| |
Collapse
|
4
|
Liu M, Li L, Cao L, Li W, Gu X, Yang M, Wu D, Li Y, Deng Y, Zhang J, Yang C, Liang Q, Liu H, Rong P, Ma X, Wang W. Targeted delivery of CCL3 reprograms macrophage antigen presentation and enhances the efficacy of immune checkpoint blockade therapy in hepatocellular carcinoma. J Immunother Cancer 2025; 13:e010947. [PMID: 39988347 PMCID: PMC11848677 DOI: 10.1136/jitc-2024-010947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 02/05/2025] [Indexed: 02/25/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) remains a leading cause of cancer-related deaths worldwide, especially in advanced stages where limited treatment options result in poor prognosis. The immunosuppressive tumor immune microenvironment (TIME), characterized by low immune cell infiltration and exhaustion, limits immunotherapy efficacy. To address this, our study investigates the role of C-C motif chemokine ligand 3 (CCL3) in modulating the HCC TIME. METHODS We analyzed CCL3 expression in human HCC samples from The Cancer Genome Atlas database, focusing on its correlation with inflammatory gene signatures and immune cell infiltration. High-dimensional single-cell RNA sequencing (scRNA-seq), flow cytometry, and multiplex immunofluorescence were used to investigate CCL3's effects on macrophage function and T cell activation. The biological impact of CCL3 on macrophages was assessed using co-culture systems, confocal imaging, metabolite detection, and inhibition assays. Preclinical HCC models and ex vivo tumor fragment assays further explored how CCL3 modulates immune responses and enhances immune checkpoint blockade efficacy. RESULTS Our study shows that CCL3 is suppressed in the tumor microenvironment and positively correlates with immune infiltration and inflammatory responses. Targeted liver delivery of rAAV-Ccl3 reprograms the immune microenvironment in HCC, promoting immune cell recruitment and tertiary lymphoid structure formation, thus suppressing tumor growth via immune engagement. Through scRNA-seq, flow cytometry, and multiplex immunofluorescence, we found that CCL3 enhances macrophage antigen uptake and activates cytotoxic T cells. In vivo and in vitro experiments confirmed that CCL3 facilitates T cell infiltration and upregulates MHC II expression on macrophages, enhancing antigen presentation. The CCL3-CCR5 pathway also boosts macrophage metabolism, increasing lysosomal activity and antigen uptake, thereby strengthening adaptive immune responses and increasing sensitivity to immune checkpoint blockade therapies in preclinical models. CONCLUSIONS This study highlights the pivotal role of CCL3 in reshaping the TIME and enhancing antitumor immunity in HCC. By promoting immune cell recruitment and enhancing antigen presentation, CCL3 demonstrates significant potential to improve the efficacy of immunotherapy, particularly in combination with immune checkpoint inhibitors. Targeting CCL3 may help to overcome the immunosuppressive TIME in HCC and improve patient outcomes.
Collapse
Affiliation(s)
- Muqi Liu
- Institute for Cell Transplantation and Gene Therapy, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Research Center for Minimally Invasive Diagnosis and Therapy Under Image Navigation, Changsha, Hunan, China
| | - Linzhe Li
- Institute for Cell Transplantation and Gene Therapy, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lu Cao
- Institute for Cell Transplantation and Gene Therapy, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Research Center for Minimally Invasive Diagnosis and Therapy Under Image Navigation, Changsha, Hunan, China
| | - Wei Li
- Institute for Cell Transplantation and Gene Therapy, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Research Center for Minimally Invasive Diagnosis and Therapy Under Image Navigation, Changsha, Hunan, China
| | - Xingshi Gu
- Institute for Cell Transplantation and Gene Therapy, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Min Yang
- Institute for Cell Transplantation and Gene Therapy, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Research Center for Minimally Invasive Diagnosis and Therapy Under Image Navigation, Changsha, Hunan, China
| | - Di Wu
- Institute for Cell Transplantation and Gene Therapy, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Research Center for Minimally Invasive Diagnosis and Therapy Under Image Navigation, Changsha, Hunan, China
| | - Yanan Li
- Institute for Cell Transplantation and Gene Therapy, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Research Center for Minimally Invasive Diagnosis and Therapy Under Image Navigation, Changsha, Hunan, China
| | - Yao Deng
- Institute for Cell Transplantation and Gene Therapy, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Juan Zhang
- Institute for Cell Transplantation and Gene Therapy, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Research Center for Minimally Invasive Diagnosis and Therapy Under Image Navigation, Changsha, Hunan, China
| | - Cejun Yang
- Institute for Cell Transplantation and Gene Therapy, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Research Center for Minimally Invasive Diagnosis and Therapy Under Image Navigation, Changsha, Hunan, China
| | - Qi Liang
- Institute for Cell Transplantation and Gene Therapy, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Research Center for Minimally Invasive Diagnosis and Therapy Under Image Navigation, Changsha, Hunan, China
| | - Huaping Liu
- Institute for Cell Transplantation and Gene Therapy, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Research Center for Minimally Invasive Diagnosis and Therapy Under Image Navigation, Changsha, Hunan, China
| | - Pengfei Rong
- Institute for Cell Transplantation and Gene Therapy, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Research Center for Minimally Invasive Diagnosis and Therapy Under Image Navigation, Changsha, Hunan, China
| | - Xiaoqian Ma
- Institute for Cell Transplantation and Gene Therapy, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Research Center for Minimally Invasive Diagnosis and Therapy Under Image Navigation, Changsha, Hunan, China
| | - Wei Wang
- Institute for Cell Transplantation and Gene Therapy, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Research Center for Minimally Invasive Diagnosis and Therapy Under Image Navigation, Changsha, Hunan, China
| |
Collapse
|
5
|
Tong H, Zhang J, Jiang L, Qu R, Lu T, Hu J. Antiviral activity of HuaganJiedu decoction (HGJDD) against hepatitis B virus (HBV) through FOXO4/ERK/HNF4α signal pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119238. [PMID: 39701219 DOI: 10.1016/j.jep.2024.119238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chronic hepatitis B virus (HBV) infection is still a widespread global health issue. HuaganJiedu Decoction (HGJDD) is a common prescription for treating HBV in China, which has the effect of enhancing antiviral efficacy and improving clinical efficacy. However, its precise mechanism of action remains unclear, warranting further investigation to elucidate its therapeutic potential and integration into standard medical practices. AIM OF THE STUDY This study aims to explore the therapeutic mechanism of HuaganJiedu Decoction (HGJDD) in HBV. MATERIALS AND METHODS We investigated the therapeutic potential of HGJDD, and LC-MS analysis characterized the chemical profile of HGJDD. In vitro, we utilized HepG2.2.15 cell line to assess cytotoxicity and treatment efficacy of HGJDD compared to Entecavir controls. In vivo, assessments included monitoring HBV-related biomarkers and viral load. Network pharmacology and RNA-seq analyses identified molecular pathways and targets influenced by HGJDD treatment. Immunofluorescence and Western blotting provided further insights into the therapeutic mechanisms underlying HGJDD for HBV. RESULTS HGJDD showed no toxicity on HepG2.2.15 cells at 10%, 20%, 40%, and 80% serum concentrations. In vitro, HGJDD reduced HBsAg, HBeAg, and HBV DNA levels by dose-dependently and time-dependently. HGJDD can decrease the levels of HBsAg, HBeAg, and HBV DNA in serum and liver levels, meanwhile the therapeutic effect of high-dose HGJDD approach to EVT's in HBV Tg mice. According to intersection of network pharmacology and transcriptome, FOXO signal pathway was highlighted as potential targets and Immunofluorescence find that FOXO4D protein expression lever was increased in three HGJDD group, especially in high-dose HGJDD group. Western blotting confirmed increased level of FOXO4, ERK, and p-ERK and decreased levels of HNF4α, which reflected that the therapeutic effect was closely to FOXO4/ERK/HNF4α signal pathway. CONCLUSIONS Traditional Chinese medicine (TCM) offers diverse herbal treatments for HBV, with HGJDD showing efficacy in reducing HBsAg, HBeAg, and HBV DNA levels at cellular and animal levels. This study identified that FOXO4/ERK/HNF4α signal pathway played an important role in HGJDD's therapeutic effects. These findings support HGJDD's potential in HBV treatment, providing a scientific basis for clinical use.
Collapse
Affiliation(s)
- Hongxuan Tong
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jiale Zhang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lijie Jiang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Rendong Qu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 10029, China
| | - Tao Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 10029, China
| | - Jingqing Hu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
6
|
Kim KS, Iwamoto M, Kitagawa K, Park H, Hayashi S, Tsukuda S, Matsui T, Atsukawa M, Matsuura K, Chuaypen N, Tangkijvanich P, Allweiss L, Nishiyama T, Nakamura N, Fujita Y, Kawakami E, Nakaoka S, Muramatsu M, Aihara K, Wakita T, Perelson AS, Dandri M, Watashi K, Iwami S, Tanaka Y. Prediction of cccDNA dynamics in hepatitis B patients by a combination of serum surrogate markers. PLoS Comput Biol 2025; 21:e1012615. [PMID: 39787253 PMCID: PMC11753647 DOI: 10.1371/journal.pcbi.1012615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 01/22/2025] [Accepted: 11/04/2024] [Indexed: 01/12/2025] Open
Abstract
Quantification of intrahepatic covalently closed circular DNA (cccDNA) is a key for evaluating an elimination of hepatitis B virus (HBV) in infected patients. However, quantifying cccDNA requires invasive methods such as a liver biopsy, which makes it impractical to access the dynamics of cccDNA in patients. Although HBV RNA and HBV core-related antigens (HBcrAg) have been proposed as surrogate markers for evaluating cccDNA activity, they do not necessarily estimate the amount of cccDNA. Here, we employed a recently developed multiscale mathematical model describing intra- and intercellular viral propagation and applied it in HBV-infected patients under treatment. We developed a model that can predict intracellular HBV dynamics by use of extracellular viral markers, including HBsAg, HBV DNA, and HBcrAg in peripheral blood. Importantly, the model prediction of the amount of cccDNA in patients over time was confirmed to be well correlated with the data for quantified cccDNA by paired liver biopsy. Thus, our method combining classic and emerging surrogate markers enables us to predict the decay dynamics of cccDNA in patients undergoing treatment.
Collapse
Affiliation(s)
- Kwang Su Kim
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Department of Scientific Computing, Pukyong National University, Busan, South Korea
| | - Masashi Iwamoto
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kosaku Kitagawa
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Hyeongki Park
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Sanae Hayashi
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Senko Tsukuda
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Takeshi Matsui
- Center for Gastroenterology, Teine Keijinkai Hospital, Sapporo, Japan
| | - Masanori Atsukawa
- Department of Gastroenterology and Hepatology, Nippon Medical School, Tokyo, Japan
| | - Kentaro Matsuura
- Department of Gastroenterology and Metabolism, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| | - Natthaya Chuaypen
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pisit Tangkijvanich
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Lena Allweiss
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems partner sites, Germany
| | - Takara Nishiyama
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Naotoshi Nakamura
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yasuhisa Fujita
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Eiryo Kawakami
- Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Medical Sciences Innovation Hub Program; RIKEN, Yokohama, Kanagawa, Japan
| | - Shinji Nakaoka
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuyuki Aihara
- International Research Center for Neurointelligence, The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Alan S. Perelson
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Maura Dandri
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Applied Biological Sciences, Faculty of Science and Technology, Tokyo University of Sciences, Chiba, Japan
| | - Shingo Iwami
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- International Research Center for Neurointelligence, The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo, Japan
- Institute of Mathematics for Industry, Kyushu University,; Fukuoka, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- NEXT-Ganken Program, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
- Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS), RIKEN, Wako, Japan
- Science Groove Inc., Fukuoka, Japan
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
7
|
Zheng J, Wang Z, Huang L, Qiu Z, Xie Y, Jiang S, Feng B. Achieving chronic hepatitis B functional cure: Factors and potential mechanisms. Virus Res 2025; 351:199507. [PMID: 39662778 PMCID: PMC11699463 DOI: 10.1016/j.virusres.2024.199507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/20/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
Chronic hepatitis B (CHB) is a significant global health issue affecting approximately 254 million individuals worldwide. Achieving the loss of hepatitis B surface antigen (HBsAg), either with or without seroconversion to hepatitis B surface antibody (HBsAb), is regarded as a functional cure and the optimal goal for addressing CHB, and can be achieved through various approaches, including induction with nucleos(t)ide analogues (NAs), induction with pegylated interferon alpha (PegIFNα), and spontaneous clearance of HBsAg. Spontaneous clearance of HBsAg is rare, while NAs can directly inhibit HBV DNA, they are unable to act on covalently closed circular DNA (cccDNA), hence inhibiting HBsAg production or clearing HBsAg is extremely challenging. On the other hand, functional cure based on PegIFNα shows good long-term durability, but over 10 % of patients still experience relapse, mostly within 48 weeks after functional cure. Factors related to CHB functional cure with antiviral therapy are complex, including host factors, viral factors, environmental factors, etc. The integration of HBV DNA into liver cells, persistence of HBV cccDNA, insufficient B cell responses and compromised T cell function pose significant barriers to HBV clearance. Therefore, this study systematically reviewed the relevant factors and potential mechanisms influencing functional cure CHB, which can provide a basis for personalized treatment, help predict treatment outcomes and assess prognosis, and provide theoretical support for the advancement of novel treatment strategies and medications.
Collapse
Affiliation(s)
- Jiarui Zheng
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Peking University Hepatology Institute, Beijing, China
| | - Zilong Wang
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Peking University Hepatology Institute, Beijing, China
| | - Linxiang Huang
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Peking University Hepatology Institute, Beijing, China
| | - Zixuan Qiu
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Peking University Hepatology Institute, Beijing, China
| | - Yandi Xie
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Peking University Hepatology Institute, Beijing, China
| | - Suzhen Jiang
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Peking University Hepatology Institute, Beijing, China
| | - Bo Feng
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People's Hospital, Peking University Hepatology Institute, Beijing, China.
| |
Collapse
|
8
|
Ye YM, Lin Y, Sun F, Yang WY, Zhou L, Lin C, Pan C. A predictive model for functional cure in chronic HBV patients treated with pegylated interferon alpha: a comparative study of multiple algorithms based on clinical data. Virol J 2024; 21:333. [PMID: 39710712 PMCID: PMC11665216 DOI: 10.1186/s12985-024-02599-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/04/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND A multivariate predictive model was constructed using baseline and 12-week clinical data to evaluate the rate of clearance of hepatitis B surface antigen (HBsAg) at the 48-week mark in patients diagnosed with chronic hepatitis B who are receiving treatment with pegylated interferon α (PEG-INFα). METHODS The study cohort comprised CHB patients who received pegylated interferon treatment at Mengchao Hepatobiliary Hospital, Fujian Medical University, between January 2019 and April 2024. Predictor variables were identified (LASSO), followed by multivariate analysis and logistic regression analysis. Subsequently, predictive models were developed via logistic regression, random forest (RF), gradient boosting decision tree (GBDT), extreme gradient boosting (XGBoost), and support vector machine (SVM) algorithms. The efficacy of these models was assessed through various performance metrics, including the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and F1 score. RESULTS This study included a total of 224 individuals diagnosed with chronic hepatitis B. The variables baseline log2(HBsAg), gender, age, neutrophil count at week 12, HBsAg decline rate at week 12, and HBcAb at week 12 were closely associated with functional cure and were included in the predictive model. In the validation term, the logistic regression model had an AUC of 0.858, which was better than that of the other machine learning models (AUC = 0.858,F1 = 0.753). Consequently, this model was selected for the development of the predictive tool. CONCLUSIONS The combined use of the baseline log2(HBsAg) value, HBsAg decline rate at week 12, gender, neutrophil count at week 12, and age can serve as a foundational predicting model for anticipating the clearance of HBsAg in individuals with chronic hepatitis B who are receiving PEG-INFα therapy.
Collapse
Affiliation(s)
- Ya-Mei Ye
- Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350000, China
| | - Yong Lin
- Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350000, China
| | - Fang Sun
- Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350000, China
| | - Wen-Yan Yang
- Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350000, China
| | - Lina Zhou
- Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350000, China
| | - Chun Lin
- Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350000, China.
| | - Chen Pan
- Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350000, China.
| |
Collapse
|
9
|
Lei Z, Wang L, Gao H, Guo S, Kang X, Yuan J, Lv Z, Jiang Y, Yi J, Chen Z, Wang G. Mechanisms underlying the compromised clinical efficacy of interferon in clearing HBV. Virol J 2024; 21:314. [PMID: 39633459 PMCID: PMC11619119 DOI: 10.1186/s12985-024-02589-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
Hepatitis B virus (HBV) is a hepatotropic DNA virus that can cause acute or chronic hepatitis, representing a significant global health concern. By 2019, approximately 296 million individuals were chronically infected with HBV, with 1.5 million new cases annually and 820,000 deaths due to HBV-related cirrhosis and liver cancer. Current treatments for chronic hepatitis B include nucleotide analogs (NAs) and interferons (IFNs), particularly IFN-α. NAs, such as entecavir and tenofovir, inhibit viral reverse transcription, while IFN-α exerts antiviral effects by directly suppressing viral replication, modulating viral genome epigenetics, degrading cccDNA, and activating immune responses. Despite its potential, IFN-α shows limited clinical efficacy, partly due to HBV's interference with the IFN signaling pathway. HBV encodes proteins like HBc, Pol, HBsAg, and HBx that disrupt IFN-α function. For example, HBV Pol inhibits STAT1 phosphorylation, HBsAg suppresses STAT3 phosphorylation, and HBx interferes with IFN-α efficacy through multiple mechanisms. Additionally, HBV downregulates key genes in the IFN signaling pathway, further diminishing IFN-α's antiviral effects. Understanding these interactions is crucial for improving IFN-α-based therapies. Future research may focus on overcoming HBV resistance by targeting viral proteins or optimizing IFN-α delivery. In summary, HBV's ability to resist IFN-α limits its therapeutic effectiveness, highlighting the need for new strategies to enhance treatment outcomes.
Collapse
Affiliation(s)
- Zhuoyan Lei
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Luye Wang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Hanlin Gao
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Shubian Guo
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Xinjian Kang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Jiajun Yuan
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Ziying Lv
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Yuxin Jiang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Jinping Yi
- Department of Clinical Laboratory, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Gang Wang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China.
| |
Collapse
|
10
|
Li Z, Rahman N, Bi C, Mohallem R, Pattnaik A, Kazemian M, Huang F, Aryal UK, Andrisani O. RNA Helicase DDX5 in Association With IFI16 and the Polycomb Repressive Complex 2 Silences Transcription of the Hepatitis B Virus by Interferon. J Med Virol 2024; 96:e70118. [PMID: 39679735 DOI: 10.1002/jmv.70118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/29/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024]
Abstract
RNA helicase DDX5 is a host restriction factor for hepatitis B virus (HBV) biosynthesis. Mass spectrometry (LC-MS/MS) identified significant DDX5-interacting partners, including interferon-inducible protein 16 (IFI16) and RBBP4/7, an auxiliary subunit of polycomb repressive complex 2 (PRC2). DDX5 co-eluted with IFI16, RBBP4/7, and core PRC2 subunits in size exclusion chromatography fractions derived from native nuclear extracts. Native gel electrophoresis of DDX5 immunoprecipitants revealed a 750 kDa DDX5/IFI16/PRC2 complex, validated by nanoscale co-localization via super-resolution microscopy. Prior studies demonstrated that IFI16 suppresses HBV transcription by binding to the interferon-sensitive response element of covalently closed circular DNA (cccDNA), reducing H3 acetylation and increasing H3K27me3 levels by an unknown mechanism. Herein, we demonstrate that ectopic expression of IFI16 inhibited HBV transcription from recombinant rcccDNA, correlating with increased IFI16 binding to rcccDNA, reduced H3 acetylation, and elevated H3K27me3, determined by chromatin immunoprecipitation. Importantly, the inhibitory effect of ectopic IFI16 on HBV transcription was reversed by siRNA-mediated knockdown of DDX5 and EZH2, the methyltransferase subunit of PRC2. This reversal was associated with decreased IFI16 binding to rcccDNA, enhanced H3 acetylation, and reduced H3K27me3. Similarly, endogenous IFI16 induced by interferon-α inhibited HBV rcccDNA transcription in a DDX5- and PRC2-dependent manner. In HBV-infected HepG2-NTCP cells, the antiviral effect of interferon-α was abrogated upon knockdown of DDX5 and EZH2, underscoring the crucial role of the DDX5 complex in IFI16-mediated antiviral response. In conclusion, in response to interferon, DDX5 partners with IFI16 to bind cccDNA, directing PRC2 to epigenetically silence cccDNA chromatin, thereby regulating immune signaling and HBV transcription.
Collapse
Affiliation(s)
- Zhili Li
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Naimur Rahman
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Cheng Bi
- Department of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Rodrigo Mohallem
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, USA
| | - Aryamav Pattnaik
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, Indiana, USA
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Majid Kazemian
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, Indiana, USA
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
- Department of Computer Science, Purdue University, West Lafayette, Indiana, USA
| | - Fang Huang
- Department of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Uma K Aryal
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, USA
| | - Ourania Andrisani
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
11
|
Zhang X, Yang X, Tan L, Tian Y, Zhao Z, Ru S. The efficacy and safety of addition of pegylated interferon to long-term nucleos(t)ide analogue therapy on functional cure of chronic hepatitis B patient: a systematic review and meta-analysis. Front Pharmacol 2024; 15:1474342. [PMID: 39545069 PMCID: PMC11560418 DOI: 10.3389/fphar.2024.1474342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/24/2024] [Indexed: 11/17/2024] Open
Abstract
Objective This meta-analysis aims to assess the efficacy and safety of adding pegylated interferon (Peg-IFN) to long-term nucleos(t)ide analogs (NAs) treatment for achieving functional cure in patients with chronic hepatitis B (CHB). Methods This meta-analysis was registered in PROSPERO (CRD42024519116). We searched PubMed, Embase, Cochrane Library and Web of Science for randomized controlled trials that compared adding Peg-IFN to long-term NAs with NAs alone for the treatment of CHB. Relative risks (RR) and 95% confidence interval (CI) were pooled using a random-effects model. Results Seven trials with 692 participants were included. Compared to NAs monotherapy, sequential combination therapy significantly increased the HBsAg seroclearance rate (RR 4.37, 95%CI: 1.92-9.55; I2 = 0%) and HBsAg seroconversion rate (RR 3.98, 95%CI: 1.50-10.54; I2 = 0%), and the results reached statistical significance. Compared to NAs monotherapy, sequential combination therapy showed a significant increase in HBeAg seroclearance rate (RR 2.04; 95%CI: 0.47-8.82; I2 = 73%) and HBeAg seroconversion rate (RR 2.10; 95%CI: 0.41-10.71; I2 = 67%), but did not reach statistical significance. Sequential combination therapy was more likely to experience adverse events. Although most reactions are mild and reversible, vigilant monitoring for treatment-related adverse events is essential, with prompt intervention when needed. Conclusion For CHB patients on long-term NAs treatment, sequential combination therapy boosts HBsAg seroclearance and HBsAg seroconversion rates compared to monotherapy. However, it may increase adverse events. Additional studies are needed to thoroughly evaluate its clinical effectiveness, given the current limited research available. Systematic Review Registration PROSPERO, identifier CRD42024519116.
Collapse
Affiliation(s)
- Xu Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xianzhao Yang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lingjie Tan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yujia Tian
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiren Zhao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Shuying Ru
- Tongzhou District of Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
12
|
Quan D, Wang P, Wu W, Li J. Investigating the role of GTPase in inhibiting HBV replication and enhancing interferon therapy efficacy in chronic hepatitis B patients. Microb Pathog 2024; 194:106821. [PMID: 39084309 DOI: 10.1016/j.micpath.2024.106821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Interferon-alpha (IFNα) is a common treatment for chronic hepatitis B virus (HBV) infection, but its efficacy varies widely among patients. GTPASE, an interferon-stimulated gene (ISG), has recently been identified as a factor in antiviral immunity, though its role in HBV infection is not fully understood. OBJECTIVE This study investigates the role of GTPASE in enhancing the antiviral effects of IFNα against HBV and elucidates its mechanism of action. METHODS We analyzed the impact of GTPASE overexpression and silencing on HBV replication and clearance in HBV-infected cells. Molecular docking studies assessed the interaction between GTPASE and HBV surface antigens (HBs). Clinical samples from HBV patients undergoing Peg-IFNα treatment were also evaluated for GTPASE expression and its correlation with treatment efficacy. RESULTS Overexpression of GTPASE led to significant inhibition of HBV replication, increased HBeAg seroconversion, and enhanced HBsAg clearance. GTPASE directly bound to HBs proteins, reducing their levels and affecting viral particle formation. Silencing GTPASE reduced these effects, while combined treatment with Peg-IFNα and GTPASE overexpression further improved antiviral outcomes. Mutational analysis revealed that specific sites in GTPASE are crucial for its antiviral activity. CONCLUSIONS GTPASE acts as a positive regulator in IFNα-induced antiviral immunity against HBV. It enhances the therapeutic efficacy of IFNα by targeting HBs and modulating viral replication. GTPASE levels may serve as a predictive biomarker for response to Peg-IFNα therapy, highlighting its potential for improving individualized treatment strategies for chronic HBV infection.
Collapse
Affiliation(s)
- Dongmei Quan
- Hepatobiliary Surgery, The Sixth People's Hospital of Shenyang, Shenyang, China
| | - Pengfei Wang
- The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine/Medical Management Office, China
| | - Wei Wu
- Hepatobiliary Surgery, The Sixth People's Hospital of Shenyang, Shenyang, China
| | - Jing Li
- Teaching and Research Section of the Internal Medicine of Traditional Chinese Medicine, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, China.
| |
Collapse
|
13
|
Wang J, Li Q, Qiu Y, Kitanovski S, Wang C, Zhang C, Li F, Li X, Zhang Z, Huang L, Zhang J, Hoffmann D, Lu M, Lu H. Cell-type-specific expression analysis of liver transcriptomics with clinical parameters to decipher the cause of intrahepatic inflammation in chronic hepatitis B. IMETA 2024; 3:e221. [PMID: 39135698 PMCID: PMC11316924 DOI: 10.1002/imt2.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 08/15/2024]
Abstract
Functional cure for chronic hepatitis B (CHB) remains challenging due to the lack of direct intervention methods for hepatic inflammation. Multi-omics research offers a promising approach to understand hepatic inflammation mechanisms in CHB. A Bayesian linear model linked gene expression with clinical parameters, and population-specific expression analysis (PSEA) refined bulk gene expression into specific cell types across different clinical phases. These models were integrated into our analysis of key factors like inflammatory cells, immune activation, T cell exhaustion, chemokines, receptors, and interferon-stimulated genes (ISGs). Validation through multi-immune staining in liver specimens from CHB patients bolstered our findings. In CHB patients, increased gene expression related to immune cell activation and migration was noted. Marker genes of macrophages, T cells, immune-negative regulators, chemokines, and ISGs showed a positive correlation with serum alanine aminotransferase (ALT) levels but not hepatitis B virus DNA levels. The PSEA model confirmed T cells as the source of exhausted regulators, while macrophages primarily contributed to chemokine expression. Upregulated ISGs (ISG20, IFI16, TAP2, GBP1, PSMB9) in the hepatitis phase were associated with T cell and macrophage infiltration and positively correlated with ALT levels. Conversely, another set of ISGs (IFI44, ISG15, IFI44L, IFI6, MX1) mainly expressed by hepatocytes and B cells showed no correlation with ALT levels. Our study presents a multi-omics analysis integrating bulk transcriptomic, single-cell sequencing data, and clinical data from CHB patients to decipher the cause of intrahepatic inflammation in CHB. The findings confirm that macrophages secrete chemokines like CCL20, recruiting exhausted T cells into liver tissue; concurrently, hepatocyte innate immunity is suppressed, hindering the antiviral effects of ISGs.
Collapse
Affiliation(s)
- Jun Wang
- National Clinical Research Center for Infectious DiseasesThe Third People's Hospital of Shenzhen and The Second Affiliated Hospital of Southern University of Science and TechnologyShenzhenChina
- Institute of Virology, University Hospital of EssenUniversity of Duisburg‐EssenEssenGermany
- Clinical Medical Research Center, The Fifth People's Hospital of WuxiJiangnan UniversityWuxiChina
- Bioinformatics and Computational Biophysics, Faculty of Biology and Center for Medical Biotechnology (ZMB)University of Duisburg‐EssenEssenGermany
| | - Qian Li
- National Clinical Research Center for Infectious DiseasesThe Third People's Hospital of Shenzhen and The Second Affiliated Hospital of Southern University of Science and TechnologyShenzhenChina
- Institute of Virology, University Hospital of EssenUniversity of Duisburg‐EssenEssenGermany
| | - Yuanwang Qiu
- Clinical Medical Research Center, The Fifth People's Hospital of WuxiJiangnan UniversityWuxiChina
| | - Simo Kitanovski
- Bioinformatics and Computational Biophysics, Faculty of Biology and Center for Medical Biotechnology (ZMB)University of Duisburg‐EssenEssenGermany
| | - Chen Wang
- National Clinical Research Center for Infectious DiseasesThe Third People's Hospital of Shenzhen and The Second Affiliated Hospital of Southern University of Science and TechnologyShenzhenChina
| | - Chenxia Zhang
- Clinical Medical Research Center, The Fifth People's Hospital of WuxiJiangnan UniversityWuxiChina
| | - Fahong Li
- Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Department of Infectious DiseasesNational Medical Center for Infectious Diseases, Shanghai Institute of Infectious Diseases and Biosecurity, Huashan HospitalFudan UniversityShanghaiChina
| | - Xiaoguang Li
- Clinical Medical Research Center, The Fifth People's Hospital of WuxiJiangnan UniversityWuxiChina
| | - Zhenfeng Zhang
- School of Public Health and Emergency ManagementSouthern University of Science and TechnologyShenzhenChina
| | - Lihua Huang
- Clinical Medical Research Center, The Fifth People's Hospital of WuxiJiangnan UniversityWuxiChina
| | - Jiming Zhang
- Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Department of Infectious DiseasesNational Medical Center for Infectious Diseases, Shanghai Institute of Infectious Diseases and Biosecurity, Huashan HospitalFudan UniversityShanghaiChina
| | - Daniel Hoffmann
- Bioinformatics and Computational Biophysics, Faculty of Biology and Center for Medical Biotechnology (ZMB)University of Duisburg‐EssenEssenGermany
| | - Mengji Lu
- National Clinical Research Center for Infectious DiseasesThe Third People's Hospital of Shenzhen and The Second Affiliated Hospital of Southern University of Science and TechnologyShenzhenChina
- Institute of Virology, University Hospital of EssenUniversity of Duisburg‐EssenEssenGermany
- Clinical Medical Research Center, The Fifth People's Hospital of WuxiJiangnan UniversityWuxiChina
| | - Hongzhou Lu
- National Clinical Research Center for Infectious DiseasesThe Third People's Hospital of Shenzhen and The Second Affiliated Hospital of Southern University of Science and TechnologyShenzhenChina
| |
Collapse
|
14
|
Sinha P, Bhardwaj V, Muniyasamy A, Mohan KV, Jain K, Chaudhary K, Upadhyay P. Monocyte Transcriptome in Different Phases of Chronic Hepatitis B Virus Infection Uncovers Potential Functional Roles. Viral Immunol 2024; 37:287-297. [PMID: 39049796 DOI: 10.1089/vim.2024.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
The hepatitis B virus (HBV) chronic infection goes through different phases, i.e., immune tolerant (IT), immune clearance (IC), and inactive carrier (IN) resulting from the interplay of viral replication and immune response. Although the adaptive immune response is central to viral control, roles of the innate immune cells are less prominent. We explored monocyte transcriptome in these different phases of HBV infection to understand the nature of its involvement and identify unique differentially expressed genes (DEGs) in each phase. CD14+ peripheral blood monocytes were isolated from patients in the IT, IC, and IN phases and from healthy subjects and their RNA was sequenced. The significant DEGs were studied through gene annotation databases to understand differentially modulated pathways. The DEGs were further validated by qRT-PCR to identify genes that were uniquely expressed in each phase. It was found that TNFRSF12A was upregulated in all the HBV samples. The IN phase had six uniquely upregulated genes, i.e., PI3, EMP1, STX1A, RRAD, SPINK1, and SNORD3B-2. E2F7 was most consistently downregulated in the IT phase, and in the IC phase, IL23A and PI3 were specifically downregulated. Cut-off values were generated by ROC curve analysis to differentiate between the groups based on their expression levels. The monocyte functions are majorly suppressed in the IT and IC phases and are, however, somewhat metabolically active in the IN phase.
Collapse
Affiliation(s)
| | - Vaishali Bhardwaj
- Department of Gastroenterology, Dr. Ram Mahohar Lohia Hospital, New Delhi, India
| | | | | | - Kshama Jain
- National Institute of Immunology, New Delhi, India
| | - Kiran Chaudhary
- Department of Transfusion Medicine, Dr. Ram Mahohar Lohia Hospital, New Delhi, India
| | | |
Collapse
|
15
|
Li Y, Luo H, Hu X, Gong J, Tan G, Luo H, Wang R, Pang H, Yu R, Qin B. Guanylate-Binding Protein 1 (GBP1) Enhances IFN-α Mediated Antiviral Activity against Hepatitis B Virus Infection. Pol J Microbiol 2024; 73:217-235. [PMID: 38905278 PMCID: PMC11192456 DOI: 10.33073/pjm-2024-021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/08/2024] [Indexed: 06/23/2024] Open
Abstract
Interferon-alpha (IFN-α) is a first-line drug for treating chronic hepatitis B (CHB). Guanylate-binding protein 1 (GBP1) is one of the interferon-stimulating factors, which participates in the innate immunity of the host and plays an antiviral and antibacterial role. In this study, we explored how GBP1 is involved in IFN-α antiviral activity against HBV. Before being gathered, HepG2-NTCP and HepG2 2.15 cells were transfected with the wild-type hGBP1 plasmid or si-GBP1, respectively, and followed by stimulation with Peg-IFNα-2b. We systematically explored the role of GBP1 in regulating HBV infection in cell models. Additionally, we also examined GBP1 levels in CHB patients. GBP1 activity increased, and its half-life was prolonged after HBV infection. Overexpression of GBP1 inhibited the production of HBsAg and HBeAg, as well as HBs protein and HBV total RNA levels, whereas silencing of GBP1 inhibited its ability to block viral infections. Interestingly, overexpressing GBP1 co-treatment with Peg-IFNα-2b further increased the antiviral effect of IFN-α, while GBP1 silencing co-treatment with Peg-IFNα-2b partly restored its inhibitory effect on HBV. Mechanistically, GBP1 mediates the anti-HBV response of Peg-IFNα-2b by targeting HBs. Analysis of clinical samples revealed that GBP1 was elevated in CHB patients and increased with Peg-IFNα-2b treatment, while GBP1 showed good stability in the interferon response group. Our study demonstrates that GBP1 inhibits HBV replication and promotes HBsAg clearance. It is possible to achieve antiviral effects through the regulation of IFN-α induced immune responses in response to HBV.
Collapse
Affiliation(s)
- Yadi Li
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haiying Luo
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoxia Hu
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiaojiao Gong
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Central Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guili Tan
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Central Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huating Luo
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Wang
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Pang
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Central Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Renjie Yu
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Qin
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
16
|
Smekalova EM, Martinez MG, Combe E, Kumar A, Dejene S, Leboeuf D, Chen CY, Dorkin JR, Shuang LS, Kieft S, Young L, Barrera LA, Packer MS, Ciaramella G, Testoni B, Gregoire F, Zoulim F. Cytosine base editing inhibits hepatitis B virus replication and reduces HBsAg expression in vitro and in vivo. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102112. [PMID: 38292874 PMCID: PMC10825689 DOI: 10.1016/j.omtn.2023.102112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/21/2023] [Indexed: 02/01/2024]
Abstract
Chronic hepatitis B virus (HBV) infection remains a global health problem due to the lack of treatments that prevent viral rebound from HBV covalently closed circular (ccc)DNA. In addition, HBV DNA integrates in the human genome, serving as a source of hepatitis B surface antigen (HBsAg) expression, which impairs anti-HBV immune responses. Cytosine base editors (CBEs) enable precise conversion of a cytosine into a thymine within DNA. In this study, CBEs were used to introduce stop codons in HBV genes, HBs and Precore. Transfection with mRNA encoding a CBE and a combination of two guide RNAs led to robust cccDNA editing and sustained reduction of the viral markers in HBV-infected HepG2-NTCP cells and primary human hepatocytes. Furthermore, base editing efficiently reduced HBsAg expression from HBV sequences integrated within the genome of the PLC/PRF/5 and HepG2.2.15 cell lines. Finally, in the HBV minicircle mouse model, using lipid nanoparticulate delivery, we demonstrated antiviral efficacy of the base editing approach with a >3log10 reduction in serum HBV DNA and >2log10 reduction in HBsAg, and 4/5 mice showing HBsAg loss. Combined, these data indicate that base editing can introduce mutations in both cccDNA and integrated HBV DNA, abrogating HBV replication and silencing viral protein expression.
Collapse
Affiliation(s)
| | - Maria G. Martinez
- INSERM U1052, Cancer Research Center of Lyon, CNRS UMR 5286, 69008 Lyon, France
- University of Lyon, UMR_S1052, UCBL, 69008 Lyon, France
- Hepatology Institute of Lyon, 69008 Lyon, France
| | - Emmanuel Combe
- INSERM U1052, Cancer Research Center of Lyon, CNRS UMR 5286, 69008 Lyon, France
- University of Lyon, UMR_S1052, UCBL, 69008 Lyon, France
- Hepatology Institute of Lyon, 69008 Lyon, France
| | - Anuj Kumar
- INSERM U1052, Cancer Research Center of Lyon, CNRS UMR 5286, 69008 Lyon, France
- University of Lyon, UMR_S1052, UCBL, 69008 Lyon, France
- Hepatology Institute of Lyon, 69008 Lyon, France
| | | | | | | | | | | | | | | | | | | | | | - Barbara Testoni
- INSERM U1052, Cancer Research Center of Lyon, CNRS UMR 5286, 69008 Lyon, France
- University of Lyon, UMR_S1052, UCBL, 69008 Lyon, France
- Hepatology Institute of Lyon, 69008 Lyon, France
| | | | - Fabien Zoulim
- INSERM U1052, Cancer Research Center of Lyon, CNRS UMR 5286, 69008 Lyon, France
- University of Lyon, UMR_S1052, UCBL, 69008 Lyon, France
- Hepatology Institute of Lyon, 69008 Lyon, France
- Hepatology Department, Hospices Civils de Lyon (HCL), 69004 Lyon, France
| |
Collapse
|
17
|
Zhang Y, Wu D, Tian X, Chen B. From hepatitis B virus infection to acute-on-chronic liver failure: The dynamic role of hepatic macrophages. Scand J Immunol 2024; 99:e13349. [PMID: 38441398 DOI: 10.1111/sji.13349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/15/2023] [Accepted: 12/11/2023] [Indexed: 03/07/2024]
Abstract
Acute-on-chronic liver failure (ACLF) is a progressive disease that is associated with rapid worsening of clinical symptoms and high mortality. A multicentre prospective study from China demonstrated that patients with hepatitis B virus-related ACLF (HBV-ACLF) exhibited worse clinical characteristics and higher mortality rates compared to non-HBV-ACLF patients. Immune dysregulation is closely linked to the potential mechanisms of initiation and progression of ACLF. Innate immune response, which is represented by monocytes/macrophages, is up-regulated across ACLF development. This suggests that monocytes/macrophages play an essential role in maintaining the immune homeostasis of ACLF. Information that has been published in recent years shows that the immune status and function of monocytes/macrophages vary in ACLF precipitated by different chronic liver diseases. Monocytes/macrophages have an immune activation effect in hepatitis B-precipitated-ACLF, but they exhibit an immune suppression in cirrhosis-precipitated-ACLF. Therefore, this review aims to explain whether this difference affects the clinical outcome in HBV-ACLF patients as well as the mechanisms involved. We summarize the novel findings that highlight the dynamic polarization phenotype and functional status of hepatic macrophages from the stage of HBV infection to ACLF development. Moreover, we discuss how different HBV-related liver disease tissue microenvironments affect the phenotype and function of hepatic macrophages. In summary, increasing developments in understanding the differences in immune phenotype and functional status of hepatic macrophages in ACLF patients will provide new perspectives towards the effective restoration of ACLF immune homeostasis.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Hepatology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Dongsheng Wu
- Department of Anorectal Surgical, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Xiaoling Tian
- Department of Hepatology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Bin Chen
- Department of Hepatology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| |
Collapse
|
18
|
Harris JM, Magri A, Faria AR, Tsukuda S, Balfe P, Wing PAC, McKeating JA. Oxygen-dependent histone lysine demethylase 4 restricts hepatitis B virus replication. J Biol Chem 2024; 300:105724. [PMID: 38325742 PMCID: PMC10914488 DOI: 10.1016/j.jbc.2024.105724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024] Open
Abstract
Mammalian cells have evolved strategies to regulate gene expression when oxygen is limited. Hypoxia-inducible factors (HIF) are the major transcriptional regulators of host gene expression. We previously reported that HIFs bind and activate hepatitis B virus (HBV) DNA transcription under low oxygen conditions; however, the global cellular response to low oxygen is mediated by a family of oxygenases that work in concert with HIFs. Recent studies have identified a role for chromatin modifiers in sensing cellular oxygen and orchestrating transcriptional responses, but their role in the HBV life cycle is as yet undefined. We demonstrated that histone lysine demethylase 4 (KDM4) can restrict HBV, and pharmacological or oxygen-mediated inhibition of the demethylase increases viral RNAs derived from both episomal and integrated copies of the viral genome. Sequencing studies demonstrated that KDM4 is a major regulator of the hepatic transcriptome, which defines hepatocellular permissivity to HBV infection. We propose a model where HBV exploits cellular oxygen sensors to replicate and persist in the liver. Understanding oxygen-dependent pathways that regulate HBV infection will facilitate the development of physiologically relevant cell-based models that support efficient HBV replication.
Collapse
Affiliation(s)
- James M Harris
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Andrea Magri
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ana Rita Faria
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Senko Tsukuda
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Peter Balfe
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Peter A C Wing
- Nuffield Department of Medicine, University of Oxford, Oxford, UK; Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK.
| | - Jane A McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford, UK; Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK.
| |
Collapse
|
19
|
Guan G, Zhang T, Ning J, Tao C, Gao N, Zeng Z, Guo H, Chen CC, Yang J, Zhang J, Gu W, Yang E, Liu R, Guo X, Ren S, Wang L, Wei G, Zheng S, Gao Z, Chen X, Lu F, Chen X. Higher TP53BP2 expression is associated with HBsAg loss in peginterferon-α-treated patients with chronic hepatitis B. J Hepatol 2024; 80:41-52. [PMID: 37858684 DOI: 10.1016/j.jhep.2023.09.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 08/15/2023] [Accepted: 09/26/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND & AIMS HBsAg loss is only observed in a small proportion of patients with chronic hepatitis B (CHB) who undergo interferon treatment. Investigating the host factors crucial for functional cure of CHB can aid in identifying individuals who would benefit from peginterferon-α (Peg-IFNα) therapy. METHODS We conducted a genome-wide association study (GWAS) by enrolling 48 patients with CHB who achieved HBsAg loss after Peg-IFNα treatment and 47 patients who didn't. In the validation stage, we included 224 patients, of whom 90 had achieved HBsAg loss, to validate the identified significant single nucleotide polymorphisms. To verify the functional involvement of the candidate genes identified, we performed a series of in vitro and in vivo experiments. RESULTS GWAS results indicated a significant association between the rs7519753 C allele and serum HBsAg loss in patients with CHB after Peg-IFNα treatment (p = 4.85 × 10-8, odds ratio = 14.47). This association was also observed in two independent validation cohorts. Expression quantitative trait locus analysis revealed higher hepatic TP53BP2 expression in individuals carrying the rs7519753 C allele (p = 2.90 × 10-6). RNA-sequencing of liver biopsies from patients with CHB after Peg-IFNα treatment revealed that hepatic TP53BP2 levels were significantly higher in the HBsAg loss group compared to the HBsAg persistence group (p = 0.035). In vitro and in vivo experiments demonstrated that loss of TP53BP2 decreased interferon-stimulated gene levels and the anti-HBV effect of IFN-α. Mechanistically, TP53BP2 was found to downregulate SOCS2, thereby facilitating JAK/STAT signaling. CONCLUSION The rs7519753 C allele is associated with elevated hepatic TP53BP2 expression and an increased probability of serum HBsAg loss post-Peg-IFNα treatment in patients with CHB. TP53BP2 enhances the response of the hepatocyte to IFN-α by suppressing SOCS2 expression. IMPACT AND IMPLICATIONS Chronic hepatitis B (CHB) remains a global public health issue. Although current antiviral therapies are more effective in halting disease progression, only a few patients achieve functional cure for hepatitis B with HBsAg loss, highlighting the urgent need for a cure for CHB. This study revealed that the rs7519753 C allele, which is associated with high expression of hepatic TP53BP2, significantly increases the likelihood of serum HBsAg loss in patients with CHB undergoing Peg-IFNα treatment. This finding not only provides a promising predictor for HBsAg loss but identifies a potential therapeutic target for Peg-IFNα treatment. We believe our results are of great interest to a wide range of stakeholders based on their potential clinical implications.
Collapse
Affiliation(s)
- Guiwen Guan
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Ting Zhang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Jing Ning
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Changyu Tao
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Na Gao
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Zhenzhen Zeng
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Huili Guo
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Chia-Chen Chen
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing 100191, China; National Heart and Lung Institute Faculty of Medicine (NHLI), Imperial College London, Hammersmith campus, W12 0NN, London, UK
| | - Jing Yang
- School of Medicine, Shihezi University, Shihezi 832002, Xinjiang, China
| | - Jing Zhang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Weilin Gu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Ence Yang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Ren Liu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xiaosen Guo
- Forensics Genomics International (FGI), BGI-Shenzhen, Shenzhen 518083, China
| | - Shan Ren
- First Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Lin Wang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Guochao Wei
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Sujun Zheng
- First Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Zhiliang Gao
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong 510080, China.
| | - Xinyue Chen
- First Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, China.
| | - Fengmin Lu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University Hepatology Institute, Peking University People's Hospital, Beijing 100044, China.
| | - Xiangmei Chen
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
20
|
Abdelwahed AH, Heineman BD, Wu GY. Novel Approaches to Inhibition of HBsAg Expression from cccDNA and Chromosomal Integrants: A Review. J Clin Transl Hepatol 2023; 11:1485-1497. [PMID: 38161502 PMCID: PMC10752814 DOI: 10.14218/jcth.2023.00067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/19/2023] [Accepted: 08/16/2023] [Indexed: 01/03/2024] Open
Abstract
Hepatitis B virus (HBV) is a widely prevalent liver infection that can cause acute or chronic hepatitis. Although current treatment modalities are highly effective in the suppression of viral levels, they cannot eliminate the virus or achieve definitive cure. This is a consequence of the complex nature of HBV-host interactions. Major challenges to achieving sustained viral suppression include the presence of a high viral burden from the HBV DNA and hepatitis B surface antigen (HBsAg), the presence of reservoirs for HBV replication and antigen production, and the HBV-impaired innate and adaptive immune response of the host. Those therapeutic methods include cell entry inhibitors, HBsAg inhibitors, gene editing approaches, immune-targeting therapies and direct inhibitors of covalently closed circular DNA (cccDNA). Novel approaches that target these key mechanisms are now being studied in preclinical and clinical phases. In this review article, we provide a comprehensive review on mechanisms by which HBV escapes elimination from current treatments, and highlight new agents to achieve a definitive HBV cure.
Collapse
Affiliation(s)
- Ahmed H. Abdelwahed
- Department of Medicine, Division of Gastroenterology-Hepatology, University of Connecticut Health Center, Farmington, CT, USA
| | - Brent D. Heineman
- Department of Medicine, Division of Gastroenterology-Hepatology, University of Connecticut Health Center, Farmington, CT, USA
| | - George Y. Wu
- Department of Medicine, Division of Gastroenterology-Hepatology, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
21
|
Fischer J, Koukoulioti E, Müller T, Heyne R, Eslam M, George J, Finkelmeier F, Waidmann O, Berg T, van Bömmel F. Sex-differences in the association of interleukin-10 and interleukin-12 variants with the progression of hepatitis B virus infection in Caucasians. Hepatol Res 2023; 53:1156-1168. [PMID: 37565510 DOI: 10.1111/hepr.13952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
AIM Interleukin (IL)-10 and IL-12 contribute to immune responses against hepatitis B virus (HBV) infection. Polymorphisms in the IL-10 and IL-12A genes might affect the clinical outcome of HBV infection. We evaluated the association of IL-10 rs1800896 and rs3024490, and IL-12A rs568408 and rs2243115 with the progression of HBV infection and development of severe liver disease stages in a white European population. METHOD A total of 636 white European patients with chronic HBV infection, 239 individuals with spontaneous HBV surface antigen seroclearance, and 254 healthy controls were enrolled. The chronic HBV infection group included patients with hepatitis B envelope antigen (HBeAg) negative chronic hepatitis B (n = 255), with HBeAg positive chronic hepatitis B (n = 99) and with HBeAg negative HBV infection (n = 228). A total of 104 chronically infected patients were diagnosed with liver cirrhosis. Serum levels of cytokines were measured in patients with HBV infection (n = 195) and in healthy controls (n = 160). RESULTS In adjusted multivariate analysis, the IL-10 rs1800896 AG/GG genotypes were significantly associated with an increased probability of HBV surface antigen seroclearance (OR = 1.75, 95% CI 1.04-2.94, p = 0.034), with an increased likelihood of HBeAg negative chronic infection (OR = 1.93, 95% CI 1.05-3.54, p = 0.034) and with increased serum cytokines levels in female patients. In contrast, the IL-12A rs568408 AG/AA genotypes were independently associated with an increased risk to develop liver cirrhosis, with an OR of 1.90 (95% CI 1.07-3.39, p = 0.029) in male patients. CONCLUSION The current study shows a sex-related association of the IL-10 single-nucleotide polymorphism rs1800896 and IL-12A single-nucleotide polymorphism rs568408 with different stages of HBV infection and with HBV-related liver cirrhosis in white European patients.
Collapse
Affiliation(s)
- Janett Fischer
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Laboratory for Clinical and Experimental Hepatology, Leipzig, Germany
| | - Eleni Koukoulioti
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Laboratory for Clinical and Experimental Hepatology, Leipzig, Germany
- Hepatogastroenterology Unit, Second Department of Internal Medicine - Propaedeutic, Research Institute and Diabetes Center, Medical School, National and Kapodistrian University of Athens, "Attikon" University General Hospital, Athens, Greece
| | - Tobias Müller
- Department of Hepatology and Gastroenterology, University Hospital Charité, Berlin, Germany
| | - Renate Heyne
- Liver and Study Center Checkpoint, Berlin, Germany
| | - Mohammed Eslam
- Storr Liver Center, Westmead Hospital and Westmead Millennium Institute for Medical Research, University Sydney, Sydney, New South Wales, Australia
| | - Jacob George
- Storr Liver Center, Westmead Hospital and Westmead Millennium Institute for Medical Research, University Sydney, Sydney, New South Wales, Australia
| | - Fabian Finkelmeier
- Department of Gastroenterology, Hepatology and Endocrinology, University Hospital Frankfurt, Frankfurt, Germany
| | - Oliver Waidmann
- Centrum for Hematology and Oncology Bethanien, Frankfurt, Germany
| | - Thomas Berg
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Laboratory for Clinical and Experimental Hepatology, Leipzig, Germany
| | - Florian van Bömmel
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Laboratory for Clinical and Experimental Hepatology, Leipzig, Germany
| |
Collapse
|
22
|
Ye Y, Fu Y, Lin C, Shen Y, Yu Q, Yao X, Huang Q, Liu C, Zeng Y, Chen T, Wu S, Xun Z, Ou Q. Oncostatin M Induces IFITM1 Expression to Inhibit Hepatitis B Virus Replication Via JAK-STAT Signaling. Cell Mol Gastroenterol Hepatol 2023; 17:219-235. [PMID: 37879404 PMCID: PMC10760422 DOI: 10.1016/j.jcmgh.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND & AIMS Functional cure is achieved by a limited number of patients with chronic hepatitis B (CHB) after nucleotide analogue(s) and interferon treatment. It is urgent to develop therapies that can help a larger proportion of patients achieve functional cure. The present study was designed to explore the anti-hepatitis B virus (HBV) potency of interleukin-6 family cytokines and to characterize the underlying mechanisms of the cytokine displaying the highest anti-HBV potency. METHODS HBV-infected cells were used to screened the anti-HBV potency of interleukin-6 family cytokines. The concentration of oncostatin M (OSM) in patients with chronic HBV infection was examined by enzyme-linked immunosorbent assay. The underlying mechanism of OSM anti-HBV was explored through RNA-seq. C57BL/6 mice injected with rAAV8-1.3HBV were used to explore the suppression effect of OSM on HBV in vivo. RESULTS OSM is the most effective of the interleukin-6 family cytokines for suppression of HBV replication (percentage of average inhibition: hepatitis B surface antigen, 34.44%; hepatitis B e antigen, 32.52%; HBV DNA, 61.57%). Hepatitis B e antigen-positive CHB patients with high OSM levels had lower hepatitis B surface antigen and hepatitis B e antigen than those with low levels. OSM activated JAK-STAT signaling pathway promoting the formation of STAT1-IRF9 transcription factor complex. Following this, OSM increased the expression of various genes with known functions in innate and adaptive immunity, which was higher expression in patients with CHB in immune clearance phase than in immune tolerance phase (data from GEO: GSE65359). Interferon-induced transmembrane protein 1, one of the most differentially expressed genes, was identified as an HBV restriction factor involved in OSM-mediated anti-HBV effect. In vivo, we also found OSM significantly inhibited HBV replication and induced expression of antiviral effector interferon-induced transmembrane protein 1. CONCLUSIONS Our study shows that OSM remodels the immune response against HBV and exerts potent anti-HBV activity, supporting its further development as a potential therapy for treating CHB.
Collapse
Affiliation(s)
- Yuchen Ye
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, China
| | - Ya Fu
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Caorui Lin
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ye Shen
- Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, China
| | - Qingqing Yu
- Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, China
| | - Xiaobao Yao
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, China
| | - Qunfang Huang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, China
| | - Can Liu
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yongbin Zeng
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Tianbin Chen
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, China
| | - Songhang Wu
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zhen Xun
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| | - Qishui Ou
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
23
|
Ning Y, Fang S, Fang J, Lin K, Nie H, Xiong P, Qiu P, Zhao Q, Wang H, Wang F. Guanylate-binding proteins signature predicts favorable prognosis, immune-hot microenvironment, and immunotherapy response in hepatocellular carcinoma. Cancer Med 2023; 12:17504-17521. [PMID: 37551111 PMCID: PMC10501289 DOI: 10.1002/cam4.6347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND The role of guanylate-binding proteins (GBPs) in various cancers has been elucidated recently. However, our knowledge of the clinical relevance and biological characteristics of GBPs in hepatocellular carcinoma (HCC) remains limited. METHODS A total of 955 HCC patients were enrolled from five independent public HCC cohorts. The role of GBP molecules in HCC was preliminarily investigated, and a GBP family signature, termed GBPs-score, was constructed by principal component analysis to combine the GBP molecule values. We revealed the effects of GBP genes and GBPs-score in HCC via well-established bioinformatics methods and validated GBP1-5 experimentally in a tissue microarray (TMA) cohort. RESULTS GBPs molecules were closely associated with the prognosis of patients with HCC, and a high GBPs-score highly inferred a favorable survival outcome. We also revealed high GBPs-score was related to anti-tumor immunity, the immune-hot tumor microenvironment (TME), and immunotherapy response. Among the GBPs members, GBP1-5 rather than GBP6/7 may be dominant in these fields. The TMA analysis based on immunohistochemistry showed positive correlations between GBP1-5 and the immune-hot TME with abundant infiltration of CD8+ T cells in HCC. CONCLUSIONS Our integrative study revealed the genetic and immunologic characterizations of GBPs in HCC and highlighted their potential values as promising biomarkers for prognosis and immunotherapy.
Collapse
Affiliation(s)
- Yumei Ning
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal DiseasesWuhanChina
| | - Shilin Fang
- Department of Infectious DiseaseZhongnan Hospital of Wuhan University, Hubei AIDS Clinical Training CenterWuhanChina
| | - Jun Fang
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Renmin Hospital of Huangmei CountyHuanggangChina
| | - Kun Lin
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal DiseasesWuhanChina
| | - Haihang Nie
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal DiseasesWuhanChina
| | - Peiling Xiong
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal DiseasesWuhanChina
| | - Peishan Qiu
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal DiseasesWuhanChina
| | - Qiu Zhao
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal DiseasesWuhanChina
| | - Haizhou Wang
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal DiseasesWuhanChina
| | - Fan Wang
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal DiseasesWuhanChina
| |
Collapse
|
24
|
Hershkovich L, Shekhtman L, Bazinet M, Pântea V, Placinta G, Cotler SJ, Vaillant A, Dahari H. Rapid monophasic HBsAg decline during nucleic-acid polymer-based therapy predicts functional cure. Hepatol Commun 2023; 7:e0205. [PMID: 37458583 PMCID: PMC10351942 DOI: 10.1097/hc9.0000000000000205] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/13/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND AND AIMS Analyzing the interplay among serum HBV DNA, HBsAg, anti-HBs, and alanine aminotransferase (ALT) during nucleic-acid polymer (NAP)-based therapy for chronic hepatitis B provides a unique opportunity to identify kinetic patterns associated with functional cure. METHODS All participants with HBeAg-negative chronic HBV infection in the REP 401 study (NCT02565719) first received 24 weeks of tenofovir-disoproxil-fumarate (TDF) monotherapy. The early triple therapy group (n = 20) next received 48 weeks of TDF+pegylated interferon-α2a (pegIFN)+NAPs. In contrast, the delayed triple therapy group (n = 20) next received 24 weeks of TDF+pegIFN before 48 weeks of triple therapy. Three participants discontinued treatment and were excluded. Functional cure (HBsAg and HBV DNA not detectable with normal ALT) was assessed at 48 weeks post-treatment. Different kinetic phases were defined by at least a 2-fold change in slope. A single-phase decline was categorized as monophasic, and 2-phase declines were categorized as biphasic. RESULTS Fourteen (35%) participants achieved a functional cure. HBV DNA remained below or near undetectable for all participants by the end of TDF monotherapy and during subsequent combination therapies. Three HBsAg kinetic patterns were found in both the early and delayed groups, nonresponders (n = 4 and n = 4), monophasic (n = 11 and n = 11), and biphasic (n = 4 and n = 3), respectively. All participants who achieved a functional cure had a monophasic HBsAg kinetic pattern during triple therapy. Among participants with a monophasic HBsAg decline, those who had a functional cure had a shorter median time to HBsAg loss of 21 (interquartile range=11) weeks compared with those who did not achieve functional cure [median: 27 (7) weeks] (p = 0.012). CONCLUSIONS Functional cure was associated with a rapid monophasic HBsAg decline during NAP-based therapy. A nonmonophasic HBsAg kinetic pattern had a 100% negative predictive value (NPV) for a functional cure.
Collapse
Affiliation(s)
- Leeor Hershkovich
- Program for Experimental & Theoretical Modeling, Department of Medicine, Division of Hepatology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Louis Shekhtman
- Program for Experimental & Theoretical Modeling, Department of Medicine, Division of Hepatology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
- Network Science Institute, Northeastern University, Boston, Massachusetts, USA
| | | | - Victor Pântea
- Department of Infectious Diseases, Nicolae Testemiţanu, State University of Medicine and Pharmacy, Chişinău, Republic of Moldova
| | - Gheorge Placinta
- Department of Infectious Diseases, Nicolae Testemiţanu, State University of Medicine and Pharmacy, Chişinău, Republic of Moldova
| | - Scott J. Cotler
- Program for Experimental & Theoretical Modeling, Department of Medicine, Division of Hepatology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | | | - Harel Dahari
- Program for Experimental & Theoretical Modeling, Department of Medicine, Division of Hepatology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
25
|
Wang X, Hu B, Hu H, Zhou S, Yin M, Cheng X, Zhang Z, Liu H. Tannic Acid Suppresses HBV Replication via the Regulation of NF-κB, MAPKs, and Autophagy in HepG2.2.15 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37450882 DOI: 10.1021/acs.jafc.3c00863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Hepatitis B virus (HBV) infection is a serious global health problem that threatens the health of human. Tannic acid (TA), a natural polyphenol in foods, fruits, and plants, exhibits a variety of bioactive functions. In our research, we decide to explore the pharmacological mechanism of TA against HBV replication. Our results showed that TA effectively reduced the content of HBV DNA and viral antigens (HBsAg and HBeAg) in HepG2.2.15 cells. Meanwhile, TA significantly decreased the mRNA expression of HBV RNA, which include total HBV RNA, HBV pregenomic RNA, and HBV precore mRNA. Besides, TA evidently downregulated the activity of HBV promoters in HepG2.2.15 cells. Furthermore, we found that TA upregulated the expression of IL-8, TNF-α, IFN-α, and IFN-α-mediated antiviral effectors in HepG2.2.15 cells. On the contrary, TA downregulated the expression of IL-10 and hepatic nuclear factor 4 (HNF4α). In addition, TA activated the NF-κB and MAPK pathways that contributed to the inhibition of HBV replication. Finally, TA treatment led to the occurrence of autophagy, which accelerated the elimination of HBV components in HepG2.2.15 cells. Taken together, our results elucidated the suppressive effect of TA on HBV replication and provided inspiration for its clinical application in HBV treatment.
Collapse
Affiliation(s)
- Xuefeng Wang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Baifei Hu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Haiming Hu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Shuhan Zhou
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Mingzhu Yin
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Xue Cheng
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Zhigang Zhang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Hongtao Liu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| |
Collapse
|
26
|
Broquetas T, Carrión JA. Past, present, and future of long-term treatment for hepatitis B virus. World J Gastroenterol 2023; 29:3964-3983. [PMID: 37476586 PMCID: PMC10354584 DOI: 10.3748/wjg.v29.i25.3964] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/22/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
The estimated world prevalence of hepatitis B virus (HBV) infection is 316 million. HBV infection was identified in 1963 and nowadays is a major cause of cirrhosis and hepatocellular carcinoma (HCC) despite universal vaccination programs, and effective antiviral therapy. Long-term administration of nucleos(t)ide analogues (NA) has been the treatment of choice for chronic hepatitis B during the last decades. The NA has shown a good safety profile and high efficacy in controlling viral replication, improving histology, and decreasing the HCC incidence, decompensation, and mortality. However, the low probability of HBV surface antigen seroclearance made necessary an indefinite treatment. The knowledge, in recent years, about the different phases of the viral cycle, and the new insights into the role of the immune system have yielded an increase in new therapeutic approaches. Consequently, several clinical trials evaluating combinations of new drugs with different mechanisms of action are ongoing with promising results. This integrative literature review aims to assess the knowledge and major advances from the past of hepatitis B, the present of NA treatment and withdrawal, and the future perspectives with combined molecules to achieve a functional cure.
Collapse
Affiliation(s)
- Teresa Broquetas
- Liver Section, Gastroenterology Department, Hospital del Mar, Barcelona 08003, Spain
- Institut Hospital del Mar D’Investigacions Mèdiques, PSMAR, Barcelona 08003, Spain
| | - José A Carrión
- Liver Section, Gastroenterology Department, Hospital del Mar, Barcelona 08003, Spain
- Institut Hospital del Mar D’Investigacions Mèdiques, PSMAR, Barcelona 08003, Spain
- Universitat Pompeu Fabra, Facultat de Ciències de la Salut i de la Vida, Barcelona 08003, Spain
| |
Collapse
|
27
|
Laupèze B, Vassilev V, Badur S. A role for immune modulation in achieving functional cure for chronic hepatitis B among current changes in the landscape of new treatments. Expert Rev Gastroenterol Hepatol 2023; 17:1135-1147. [PMID: 37847193 DOI: 10.1080/17474124.2023.2268503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/05/2023] [Indexed: 10/18/2023]
Abstract
INTRODUCTION Chronic hepatitis B (CHB) is rarely cured using available treatments. Barriers to cure are: 1) persistence of reservoirs of hepatitis B virus (HBV) replication and antigen production (HBV DNA); 2) high burden of viral antigens that promote T cell exhaustion with T cell dysfunction; 3) CHB-induced impairment of immune responses. AREAS COVERED We discuss options for new therapies that could address one or more of the barriers to functional cure, with particular emphasis on the potential role of immunotherapy. EXPERT OPINION/COMMENTARY Ideally, a sterilizing cure for CHB would translate into finite therapies that result in loss of HBV surface antigen and eradication of HBV DNA. Restoration of a functional adaptive immune response, a key facet of successful CHB treatment, remains elusive. Numerous strategies targeting the high viral DNA and antigen burden and aiming to restore the host immune responses will enter clinical development in coming years. Most patients are likely to require combinations of several drugs, personalized according to virologic and disease characteristics, patient preference, accessibility, and affordability. The management of CHB is a global health priority. Expedited drug development requires collaborations between regulatory agencies, scientists, clinicians, and within the industry to facilitate testing of the best drug combinations.
Collapse
|
28
|
Villeret F, Lebossé F, Radenne S, Samuel D, Roche B, Mabrut JY, Leroy V, Pageaux GP, Anty R, Thevenon S, Ahmed SS, Hamilton A, Heil M, Scholtès C, Levrero M, Testoni B, Zoulim F, The ECOGREFFE Study Group BerbyFrançoiseBordesIsabelleCherquiDanielDebsTarekDucerfChristianDuclos-ValleJean-CharlesHilleretMarie-NoëlleIannelliAntonioMohkamKayvanNavarroFrancis. Early intrahepatic recurrence of HBV infection in liver transplant recipients despite antiviral prophylaxis. JHEP Rep 2023; 5:100728. [PMID: 37122357 PMCID: PMC10131114 DOI: 10.1016/j.jhepr.2023.100728] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 02/01/2023] [Accepted: 02/20/2023] [Indexed: 05/02/2023] Open
Abstract
Background & Aims Prophylaxis with nucleos(t)ide analogues (NUCs) and hepatitis B immunoglobulin (HBIG) has decreased the rate of HBV recurrence after orthotopic liver transplantation (OLT), but the duration of this prophylaxis remains debated. Our aim was to investigate the recurrence of both intrahepatic and serum HBV markers after OLT in patients receiving long-term NUC and HBIG prophylaxis. Methods A total of 31 HBV-positive patients benefiting from OLT were prospectively enrolled in five French centres between 2012 and 2015. Tissue samples from the native liver, liver reperfusion biopsy, and 12-month post-OLT (M12) biopsy were collected. Intrahepatic HBV markers were quantified using Droplet Digital PCR. Serum hepatitis B core-related antigen (HBcrAg) and HBsAg were quantified using the Lumipulse platform. Results Among the 31 patients, 26 were HBeAg negative and 28 had undetectable serum HBV DNA at OLT. All patients received HBIG and NUC after OLT, and serum HBV DNA was undetectable at M12. Of the 27 available native livers, 26 had detectable total HBV DNA (median, 0.045 copies/cell), 21 were positive for cccDNA (0.001 copies/cell), and 19 were positive for 3.5-kb HBV RNA (0.0004 copies/cell). Among the 14 sequential reperfusion and M12 biopsies, seven were positive for HBV markers on the reperfusion sampling, and six of them were also positive at M12. Of the 27 patients with available serum samples at M12, eight were positive for HBcrAg and five were positive for HBsAg by ultrasensitive quantification, although they were negative by conventional techniques. Overall, among the 17 patients having a matched biopsy and serum sample at M12, only one had undetectable HBV markers in both the liver and serum. Conclusions Our results demonstrate a very early detection of viral genome in the graft and intrahepatic viral recurrence despite NUC and HBIG prophylaxis. Clinical Trials Registration This study is registered at ClinicalTrials.gov (NCT02602847). Impact and Implications In this work, we show that, despite the recommended prophylaxis based on NUC and HBIG, HBV can infect the new liver very rapidly after transplantation. Twelve months after transplantation, the majority of patients had at least one HBV marker detected in either serum or the liver. Therefore, our results demonstrate early intrahepatic viral recurrence despite NUC and HBIG therapy and underline the importance of an optimal patient compliance to the antiviral prophylaxis to prevent viral rebound.
Collapse
Affiliation(s)
- François Villeret
- Service d’Hépatologie, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052, CNRS UMR 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Fanny Lebossé
- Service d’Hépatologie, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052, CNRS UMR 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Sylvie Radenne
- Service d’Hépatologie, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France
| | - Didier Samuel
- Centre Hépato-Biliaire, Université Paris-Saclay, Unité Inserm 1193, Hôpital Paul-Brousse, Assistance Publique-Hôpitaux de Paris (AP-HP), Villejuif, France
| | - Bruno Roche
- Centre Hépato-Biliaire, Université Paris-Saclay, Unité Inserm 1193, Hôpital Paul-Brousse, Assistance Publique-Hôpitaux de Paris (AP-HP), Villejuif, France
| | - Jean-Yves Mabrut
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052, CNRS UMR 5286, Université Claude Bernard Lyon 1, Lyon, France
- Service de Chirurgie Générale et Transplantation Hépatique, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France
| | - Vincent Leroy
- Service d’Hépato-gastro-entérologie, Hôpital Grenoble-Alpes, Grenoble, France
| | | | - Rodolphe Anty
- Université Côte d’Azur, pôle digestif CHU de Nice, INSERM, U1065, C3M, Nice, France
| | - Sylvie Thevenon
- Centre de Recherche Clinique, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France
| | - Sinafa Si Ahmed
- Service d’Hépatologie, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France
| | | | | | - Caroline Scholtès
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052, CNRS UMR 5286, Université Claude Bernard Lyon 1, Lyon, France
- Service de Virologie, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France
| | - Massimo Levrero
- Service d’Hépatologie, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052, CNRS UMR 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Barbara Testoni
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052, CNRS UMR 5286, Université Claude Bernard Lyon 1, Lyon, France
- Corresponding authors. Address: INSERM U1052, 151, Cours Albert Thomas, 69008 Lyon, France. Tel.: +33-4-72-68-19-70; Fax: +33-4-72-68-19-71.
| | - Fabien Zoulim
- Service d’Hépatologie, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052, CNRS UMR 5286, Université Claude Bernard Lyon 1, Lyon, France
- Corresponding authors. Address: INSERM U1052, 151, Cours Albert Thomas, 69008 Lyon, France. Tel.: +33-4-72-68-19-70; Fax: +33-4-72-68-19-71.
| | | |
Collapse
|
29
|
Schefczyk S, Luo X, Liang Y, Trippler M, Lu M, Wedemeyer H, Schmidt HH, Broering R. Poly(I:C) Induces Distinct Liver Cell Type-Specific Responses in Hepatitis B Virus-Transgenic Mice In Vitro, but Fails to Induce These Signals In Vivo. Viruses 2023; 15:v15051203. [PMID: 37243287 DOI: 10.3390/v15051203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Immunopathology in hepatitis B virus (HBV) infection is driven by innate and adaptive immunity. Whether the hepatitis B surface antigen (HBsAg) affects hepatic antiviral signalling was investigated in HBV-transgenic mouse models that either accumulate (Alb/HBs, Tg[Alb1HBV]Bri44), lack (Tg1.4HBV-s-mut3) or secrete (Tg1.4HBV-s-rec (F1, Tg1.4HBV-s-mut × Alb/HBs) the HBsAg. Herein, the responsiveness of TLR3 and RIG-I in primary parenchymal and non-parenchymal liver cells was determined in vitro and in vivo. Cell type-specific and mouse strain-dependent interferon, cytokine and chemokine expression were observed by LEGENDplex™ and validated by quantitative PCR. In vitro, the hepatocytes, liver sinusoidal endothelial cells and Kupffer cells of Tg1.4HBV-s-rec mice showed poly(I:C) susceptibilities similar to the wild-type controls, while in the remaining leucocyte fraction the interferon, cytokine and chemokine induction was reduced. On the contrary, poly(I:C)-injected 1.4TgHBV-s-rec mice showed suppressed interferon, cytokine and chemokine levels in hepatocytes but increased levels in the leucocyte fraction. Thus, we concluded that liver cells of Tg1.4HBV-s-rec mice, which produce HBV particles and release the HBsAg, responded to exogenous TLR3/RIG-I stimuli in vitro but exhibited a tolerogenic environment in vivo.
Collapse
Affiliation(s)
- Stefan Schefczyk
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany
| | - Xufeng Luo
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany
| | - Yaojie Liang
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany
| | - Martin Trippler
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany
| | - Mengji Lu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
| | - Hartmut H Schmidt
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany
| | - Ruth Broering
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
30
|
Khan N, Almajed MR, Fitzmaurice MG, Jafri SM. Developments in pharmacotherapeutic agents for hepatitis B - how close are we to a functional cure? Expert Opin Pharmacother 2023; 24:1001-1011. [PMID: 37163255 DOI: 10.1080/14656566.2023.2211259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
INTRODUCTION Hepatitis B virus (HBV) remains a public health concern given its global prevalence and potential complications including hepatocellular carcinoma (HCC). Current therapies, including nucleos(t)ide analogs (NA) and interferons (IFN), are effective in chronic treatment of HBV but rarely provide a functional cure due to inadequate host response and the presence of viral DNA. Therefore, novel therapies that enhance the innate immune response while suppressing DNA transcription may provide definitive treatment of HBV. AREAS COVERED In this review, the authors provide a brief overview of commonly used agents and their efficacy in treatment of HBV. Newer therapies with direct antiviral agents such as bepirovirsen (antisense oligonucleotide (ASO)) and entry inhibitors such as bulevirtide have shown efficacy in reducing viral load but demonstrate further reductions in conjunction with immune modulators such as therapeutic vaccines. EXPERT OPINION Combination therapy is far superior to monotherapy alone, necessitating the need for both immunomodulators and direct antiviral agents in chronic treatment of HBV. Therapies that target covalently closed circular (cccDNA) with immunomodulators like therapeutic vaccines have shown promising results and may ultimately achieve functional cure. However, therapies need to be evaluated in the context of the patient, considering both financial and socioeconomic factors.
Collapse
Affiliation(s)
- Naoshin Khan
- Department of Internal Medicine, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, MI 48202, USA
| | - Mohamed Ramzi Almajed
- Department of Internal Medicine, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, MI 48202, USA
| | - Mary Grace Fitzmaurice
- Pharmacy Department and Transplant Institute, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, MI 48202, USA
| | - Syed-Mohammed Jafri
- Division of Gastroenterology and Hepatology, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, MI 48202, USA
| |
Collapse
|
31
|
Jeng WJ, Lok AS. What will it take to cure hepatitis B? Hepatol Commun 2023; 7:e0084. [PMID: 36972391 PMCID: PMC10043561 DOI: 10.1097/hc9.0000000000000084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/02/2022] [Indexed: 03/29/2023] Open
Abstract
The current treatment of chronic HBV infection, pegylated interferon-α (pegIFNα) and nucleos(t)ide analog (NA), can suppress HBV replication, reverse liver inflammation and fibrosis and reduce the risks of cirrhosis, HCC, and HBV-related deaths, but relapse is common when the treatment is stopped before HBsAg loss. There have been major efforts to develop a cure for HBV, defined as sustained HBsAg loss after a finite course of therapy. This requires the suppression of HBV replication and viral protein production and the restoration of immune response to HBV. Direct-acting antivirals targeting virus entry, capsid assembly, viral protein production and secretion are in clinical trials. Immune modulatory therapies to stimulate adaptive or innate immunity and/or to remove immune blockade are being tested. NAs are included in most and pegIFNα in some regimens. Despite the combination of 2 or more therapies, HBsAg loss remains rare in part because HbsAg can be derived not only from the covalently closed circular DNA but also from the integrated HBV DNA. Achievement of a functional HBV cure will require therapies to eliminate or silence covalently closed circular DNA and integrated HBV DNA. In addition, assays to differentiate the source of circulating HBsAg and to determine HBV immune recovery, as well as standardization and improvement of assays for HBV RNA and hepatitis B core-related antigen, surrogate markers for covalently closed circular DNA transcription, are needed to accurately assess response and to target treatments according to patient/disease characteristics. Platform trials will allow the comparison of multiple combinations and channel patients with different characteristics to the treatment that is most likely to succeed. Safety is paramount, given the excellent safety profile of NA therapy.
Collapse
Affiliation(s)
- Wen-Juei Jeng
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Anna S.F. Lok
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
32
|
Pimkova Polidarova M, Vanekova L, Brehova P, Dejmek M, Vavrina Z, Birkus G, Brazdova A. Synthetic Stimulator of Interferon Genes (STING) Agonists Induce a Cytokine-Mediated Anti-Hepatitis B Virus Response in Nonparenchymal Liver Cells. ACS Infect Dis 2023; 9:23-32. [PMID: 36472628 DOI: 10.1021/acsinfecdis.2c00424] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic hepatitis B (CHB) remains a major public health problem worldwide, with limited treatment options, but inducing an antiviral response by innate immunity activation may provide a therapeutic alternative. We assessed the cytokine-mediated anti-hepatitis B virus (HBV) potential for stimulating the cyclic GMP-AMP synthase-stimulator of interferon genes (STING) pathway using STING agonists in primary human hepatocytes (PHH) and nonparenchymal liver cells (NPCs). The natural STING agonist, 2',3'-cyclic GMP-AMP, the synthetic analogue 3',3'-c-di(2'F,2'dAMP), and its bis(pivaloyloxymethyl) prodrug had strong indirect cytokine-mediated anti-HBV effects in PHH regardless of HBV genotype. Furthermore, STING agonists induced anti-HBV cytokine secretion in vitro, in both human and mouse NPCs, and triggered hepatic T cell activation. Cytokine secretion and lymphocyte activation were equally stimulated in NPCs isolated from control and HBV-persistent mice. Therefore, STING agonists modulate immune activation regardless of HBV persistence, paving the way toward a CHB therapy.
Collapse
Affiliation(s)
- Marketa Pimkova Polidarova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, Prague 16000, Czech Republic
| | - Lenka Vanekova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, Prague 16000, Czech Republic.,Faculty of Science, Charles University, Albertov 6, Prague 12800, Czech Republic
| | - Petra Brehova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, Prague 16000, Czech Republic
| | - Milan Dejmek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, Prague 16000, Czech Republic
| | - Zdenek Vavrina
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, Prague 16000, Czech Republic.,Faculty of Science, Charles University, Albertov 6, Prague 12800, Czech Republic
| | - Gabriel Birkus
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, Prague 16000, Czech Republic
| | - Andrea Brazdova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, Prague 16000, Czech Republic
| |
Collapse
|
33
|
Xu C, Fan J, Liu D, Tuerdi A, Chen J, Wei Y, Pan Y, Dang H, Wei X, Yousif AS, Yogaratnam J, Zhou Q, Lichenstein H, Xu T. Alpha-kinase 1 (ALPK1) agonist DF-006 demonstrates potent efficacy in mouse and primary human hepatocyte (PHH) models of hepatitis B. Hepatology 2023; 77:275-289. [PMID: 35699669 DOI: 10.1002/hep.32614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 05/30/2022] [Accepted: 06/04/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND AIMS In the treatment of chronic hepatitis B (CHB) infection, stimulation of innate immunity may lead to hepatitis B virus (HBV) cure. Alpha-kinase 1 (ALPK1) is a pattern recognition receptor (PRR) that activates the NF-κB pathway and stimulates innate immunity. Here we characterized the preclinical anti-HBV efficacy of DF-006, an orally active agonist of ALPK1 currently in clinical development for CHB. APPROACH AND RESULTS In adeno-associated virus (AAV)-HBV mouse models and primary human hepatocytes (PHHs) infected with HBV, we evaluated the antiviral efficacy of DF-006. In the mouse models, DF-006 rapidly reduced serum HBV DNA, hepatitis B surface antigen, and hepatitis B e antigen levels using doses as low as 0.08 μg/kg, 1 μg/kg, and 5 μg/kg, respectively. DF-006 in combination with the HBV nucleoside reverse transcriptase inhibitor, entecavir, further reduced HBV DNA. Antiviral efficacy in mice was associated with an increase in immune cell infiltration and decrease of hepatitis B core antigen, encapsidated pregenomic RNA, and covalently closed circular DNA in liver. At subnanomolar concentrations, DF-006 also showed anti-HBV efficacy in PHH with significant reductions of HBV DNA. Following dosing with DF-006, there was upregulation of NF-κB-targeted genes that are involved in innate immunity. CONCLUSION DF-006 was efficacious in mouse and PHH models of HBV without any indications of overt toxicity. In mice, DF-006 localized primarily to the liver where it potently activated innate immunity. The transcriptional response in mouse liver provides insights into mechanisms that mediate anti-HBV efficacy by DF-006.
Collapse
Affiliation(s)
- Cong Xu
- Shanghai Yao Yuan Biotechnology Ltd (Drug Farm) , Shanghai , China
- Zhejiang Yao Yuan Biotechnology Ltd , Jiashan , Zhejiang , China
| | - Jieqing Fan
- Shanghai Yao Yuan Biotechnology Ltd (Drug Farm) , Shanghai , China
- Zhejiang Yao Yuan Biotechnology Ltd , Jiashan , Zhejiang , China
| | - Danyang Liu
- Shanghai Yao Yuan Biotechnology Ltd (Drug Farm) , Shanghai , China
- Zhejiang Yao Yuan Biotechnology Ltd , Jiashan , Zhejiang , China
| | - Aimaier Tuerdi
- Shanghai Yao Yuan Biotechnology Ltd (Drug Farm) , Shanghai , China
| | - Juanjuan Chen
- Shanghai Yao Yuan Biotechnology Ltd (Drug Farm) , Shanghai , China
| | - Yuning Wei
- Shanghai Yao Yuan Biotechnology Ltd (Drug Farm) , Shanghai , China
| | - Yanfang Pan
- Shanghai Yao Yuan Biotechnology Ltd (Drug Farm) , Shanghai , China
| | - Huaixin Dang
- Zhejiang Yao Yuan Biotechnology Ltd , Jiashan , Zhejiang , China
| | - Xiong Wei
- Shanghai Yao Yuan Biotechnology Ltd (Drug Farm) , Shanghai , China
| | | | | | - Qiong Zhou
- Biology Department , Wuxi Apptec (Shanghai) Co. Ltd , Shanghai , China
| | | | - Tian Xu
- Shanghai Yao Yuan Biotechnology Ltd (Drug Farm) , Shanghai , China
| |
Collapse
|
34
|
Li F, Deng Y, Zhang S, Zhu B, Wang J, Wang J, Wang X, Zhao Z, Deng W, Mao R, Shen Z, Chen J, Broering R, Lin Y, Lu M, Zhang J. Human hepatocyte-enriched miRNA-192-3p promotes HBV replication through inhibiting Akt/mTOR signalling by targeting ZNF143 in hepatic cell lines. Emerg Microbes Infect 2022; 11:616-628. [PMID: 35109781 PMCID: PMC8865105 DOI: 10.1080/22221751.2022.2037393] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 01/05/2023]
Abstract
Previous studies have revealed multiple tissue- or cell-specific or enriched miRNA profiles. However, miRNA profiles enriched in hepatic cell types and their effect on HBV replication have not been well elucidated. In this study, primary human hepatocytes (PHHs), Kupffer cells (KCs), liver sinusoidal endothelial cells (LSECs), and hepatic stellate cells (HSCs) were prepared from liver specimens of non-HBV-infected patients. Four hepatic cell type-enriched miRNA profiles were identified from purified liver cells miRNA microarray assay. The results revealed that 12 miRNAs, including miR-122-5p and miR-192-3p were PHH-enriched; 9 miRNAs, including miR-142-5p and miR-155-5p were KC-enriched; 6 miRNAs, including miR-126-3p and miR-222-3p were LSEC-enriched; and 14 miRNAs, including miR-214-3p and miR-199a-3p were HSC-enriched. By testing the effect of 11 PHH-enriched miRNAs on HBV production, we observed that miR-192-3p had the greatest pro-virus effect in hepatic cell lines. Moreover, we further found that miR-192-3p promoted HBV replication and gene expression through inhibiting Akt/mTOR signalling by direct targeting of ZNF143 in HepG2.2.15 cells. Additionally, the serum and hepatic miR-192-3p expression levels were significantly higher in chronic hepatitis B patients than in healthy controls and serum miR-192-3p positively correlated with the serum levels of HBV DNA and HBsAg. Collectively, we identified miRNA profiles enriched in four hepatic cell types and revealed that PHH-enriched miR-192-3p promoted HBV replication through inhibiting Akt/mTOR signalling by direct targeting of ZNF143 in hepatic cell lines. Our study provides a specific perspective for the role of hepatic cell type-enriched miRNA in interaction with viral replication and various liver pathogenesis.
Collapse
Affiliation(s)
- Fahong Li
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Yingying Deng
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, People’s Republic of China
| | - Shenyan Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Beidi Zhu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Jun Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Jinyu Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Xueyu Wang
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Zhenyu Zhao
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, People’s Republic of China
| | - Wanyu Deng
- Department of Biliary Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Richeng Mao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Zhongliang Shen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Jieliang Chen
- Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Ruth Broering
- Department of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Yong Lin
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Chongqing Medical University, Chongqing, People’s Republic of China
| | - Mengji Lu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jiming Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
- Department of Infectious Diseases, Jing’An Branch of Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
35
|
Zheng JR, Wang ZL, Feng B. Hepatitis B functional cure and immune response. Front Immunol 2022; 13:1075916. [PMID: 36466821 PMCID: PMC9714500 DOI: 10.3389/fimmu.2022.1075916] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/02/2022] [Indexed: 07/30/2023] Open
Abstract
Hepatitis B virus (HBV) is a hepatotropic virus, which damage to hepatocytes is not direct, but through the immune system. HBV specific CD4+ T cells can induce HBV specific B cells and CD8+ T cells. HBV specific B cells produce antibodies to control HBV infection, while HBV specific CD8+ T cells destroy infected hepatocytes. One of the reasons for the chronicity of HBV infection is that it cannot effectively activate adoptive immunity and the function of virus specific immune cells is exhausted. Among them, virus antigens (including HBV surface antigen, e antigen, core antigen, etc.) can inhibit the function of immune cells and induce immune tolerance. Long term nucleos(t)ide analogues (NAs) treatment and inactive HBsAg carriers with low HBsAg level may "wake up" immune cells with abnormal function due to the decrease of viral antigen level in blood and liver, and the specific immune function of HBV will recover to a certain extent, thus becoming the "dominant population" for functional cure. In turn, the functional cure will further promote the recovery of HBV specific immune function, which is also the theoretical basis for complete cure of hepatitis B. In the future, the complete cure of chronic HBV infection must be the combination of three drugs: inhibiting virus replication, reducing surface antigen levels and specific immune regulation, among which specific immunotherapy is indispensable. Here we review the relationship, mechanism and clinical significance between the cure of hepatitis B and immune system.
Collapse
Affiliation(s)
| | | | - Bo Feng
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People’s Hospital, Peking University Hepatology Institute, Beijing, China
| |
Collapse
|
36
|
Chang KC, Chua HH, Chen YH, Tsuei DJ, Lee MH, Chiang CL, Jeng YM, Wu JF, Chen HL, Hsu HY, Ni YH, Chang MH. Hepatitis B virus X gene impacts on the innate immunity and immune-tolerant phase in chronic hepatitis B virus infection. Liver Int 2022; 42:2154-2166. [PMID: 35762289 DOI: 10.1111/liv.15348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/09/2022] [Accepted: 06/24/2022] [Indexed: 02/13/2023]
Abstract
BACKGROUND AND AIMS The immunologic features involved in the immune-tolerant phase of chronic hepatitis B (CHB) virus (HBV) infection are unclear. The hepatitis B virus X (HBx) protein disrupts IFN-β induction by downregulating MAVS and may destroy subsequent HBV-specific adaptive immunity. We aimed to analyse the impacts of genetic variability of HBx in CHB patients on the immune-tolerant phase during long-term follow-up. METHODS Children with CHB in the immune-tolerant phase were recruited and followed longitudinally. HBx gene sequencing of infecting HBV strains was performed, and the effects of HBx mutations on the immune-tolerant phase were assessed. Restoration of the host immune response to end the immune-tolerant phase was investigated by immunoblotting, immunostaining, ELISA and reporter assays of MAVS/IFN-β signalling in liver cell lines, patient liver tissues and the HBV plasmid replication system. RESULTS A total of 173 children (median age, 6.92 years) were recruited. Patients carrying HBx R87G, I127V and R87G + I127V double mutations exhibited higher cumulative incidences of immune-tolerant phase breakthrough (p = .011, p = .006 and p = .017 respectively). Cells transfected with HBx R87G and I127V mutants and pHBV1.3-B6.3 replicons containing the HBx R87G and I127V mutations exhibited statistically increased levels of IFN-β, especially under poly(I:C) stimulation or Flag-MAVS cotransfection. HA-HBx wild-type interacted with Flag-MAVS and enhanced its ubiquitination, but this ability was diminished in the R87G and I127V mutants. CONCLUSIONS HBx suppresses IFN-β induction. R87G and I127V mutation restored IFN-β production by preventing MAVS degradation, contributing to curtailing the HBV immune-tolerant phase in CHB patients.
Collapse
Affiliation(s)
- Kai-Chi Chang
- Department of Pediatrics, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Huey-Huey Chua
- Department of Pediatrics, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Ya-Hui Chen
- Department of Pediatrics, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Daw-Jen Tsuei
- Department of Pediatrics, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Mei-Hui Lee
- Department of Pediatrics, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Cheng-Lun Chiang
- Department of Pediatrics, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Yung-Ming Jeng
- Department of Pathology, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Jia-Feng Wu
- Department of Pediatrics, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Huey-Ling Chen
- Department of Pediatrics, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan.,Hepatitis Research Center, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan.,Medical Education and Bioethics, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Hong-Yuan Hsu
- Department of Pediatrics, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan.,Medical Education and Bioethics, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Yen-Hsuan Ni
- Department of Pediatrics, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan.,Hepatitis Research Center, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan.,Medical Microbiota Center, College of Medicine, National Taiwan University, Taipei, Taiwan.,Center of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Mei-Hwei Chang
- Department of Pediatrics, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan.,Hepatitis Research Center, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| |
Collapse
|
37
|
Gao Z, Shen Z, Wu J, Song Y, Liu N, Deng Q, Xie Y, Liu J. Interleukin-33 mediates both immune-related and non-immune-related inhibitory effects against hepatitis B virus. Antiviral Res 2022; 206:105404. [DOI: 10.1016/j.antiviral.2022.105404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/30/2022] [Accepted: 08/25/2022] [Indexed: 12/16/2022]
|
38
|
Montanari NR, Ramírez R, Aggarwal A, van Buuren N, Doukas M, Moon C, Turner S, Diehl L, Li L, Debes JD, Feierbach B, Boonstra A. Multi-parametric analysis of human livers reveals variation in intrahepatic inflammation across phases of chronic hepatitis B infection. J Hepatol 2022; 77:332-343. [PMID: 35218813 DOI: 10.1016/j.jhep.2022.02.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/31/2022] [Accepted: 02/13/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Chronic HBV is clinically categorized into 4 phases by a combination of serum HBV DNA levels, HBeAg status and alanine aminotransferase (ALT): immunotolerant (IT), immune-active (IA), inactive carrier (IC) and HBeAg-negative hepatitis (ENEG). Immune and virological measurements in the blood have proven useful but are insufficient to explain the interrelation between the immune system and the virus since immune dynamics differ in the blood and liver. Furthermore, the inflammatory response in the liver and parenchymal cells cannot be fully captured in blood. METHODS Immunological composition and transcriptional profiles of core needle liver-biopsies in chronic HBV phases were compared to those of healthy controls by multiplex immunofluorescence and RNA-sequencing (n = 37 and 78, respectively) analyses. RESULTS Irrespective of the phase-specific serological profiles, increased immune-gene expression and frequency was observed in chronic HBV compared to healthy livers. Greater transcriptomic deregulation was seen in IA and ENEG (172 vs. 243 DEGs) than in IT and IC (13 vs. 35 DEGs) livers. Interferon-stimulated genes, immune-activation and exhaustion genes (ICOS, CTLA4, PDCD1) together with chemokine genes (CXCL10, CXCL9) were significantly induced in IA and ENEG livers. Moreover, distinct immune profiles associated with ALT elevation and a more accentuated immune-exhaustion profile (CTLA4, TOX, SLAMF6, FOXP3) were observed in ENEG, which set it apart from the IA phase (LGALS9, PDCD1). Interestingly, all HBV phases showed downregulation of metabolic pathways vs. healthy livers (fatty and bile acid metabolism). Finally, increased leukocyte infiltrate correlated with serum ALT, but not with HBV DNA or viral proteins. CONCLUSION Our comprehensive multi-parametric analysis of human livers revealed distinct inflammatory profiles and pronounced differences in intrahepatic gene profiles across all chronic HBV phases in comparison to healthy liver. LAY SUMMARY Immunological studies on chronic HBV remain largely restricted to assessment of peripheral responses due to the limited access to the site of infection, the liver. In this study, we comprehensively analyzed livers from a well-defined cohort of patients with chronic HBV and uninfected controls with state-of-the-art techniques, and evaluated the differences in gene expression profiles and inflammation characteristics across distinct disease phases in patients with chronic HBV.
Collapse
Affiliation(s)
- Noe Rico Montanari
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | | | - Michael Doukas
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | | | - Li Li
- Gilead Sciences, Foster City, CA, USA
| | - Jose D Debes
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Medicine, Division of Gastroenterology & Division of Infectious Diseases, University of Minnesota, Minneapolis, MN, USA
| | | | - Andre Boonstra
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
39
|
Wildum S, Korolowicz KE, Suresh M, Steiner G, Dai L, Li B, Yon C, De Vera Mudry MC, Regenass-Lechner F, Huang X, Hong X, Murreddu MG, Kallakury BV, Young JAT, Menne S. Toll-Like Receptor 7 Agonist RG7854 Mediates Therapeutic Efficacy and Seroconversion in Woodchucks With Chronic Hepatitis B. Front Immunol 2022; 13:884113. [PMID: 35677037 PMCID: PMC9169629 DOI: 10.3389/fimmu.2022.884113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/22/2022] [Indexed: 01/04/2023] Open
Abstract
Conventional treatment of chronic hepatitis B (CHB) is rarely curative due to the immunotolerant status of patients. RG7854 is an oral double prodrug of a toll-like receptor 7 (TLR7) agonist that is developed for the treatment of CHB. The therapeutic efficacy, host immune response, and safety of RG7854 were evaluated in the woodchuck model of CHB. Monotreatment with the two highest RG7854 doses and combination treatment with the highest RG7854 dose and entecavir (ETV) suppressed viral replication, led to loss of viral antigens, and induced seroconversion in responder woodchucks. Since viral suppression and high-titer antibodies persisted after treatment ended, this suggested that a sustained antiviral response (SVR) was induced by RG7854 in a subset of animals. The SVR rate, however, was comparable between both treatment regimens, suggesting that the addition of ETV did not enhance the therapeutic efficacy of RG7854 although it augmented the proliferation of blood cells in response to viral antigens and magnitude of antibody titers. The induction of interferon-stimulated genes in blood by RG7854/ETV combination treatment demonstrated on-target activation of TLR7. Together with the virus-specific blood cell proliferation and the transient elevations in liver enzymes and inflammation, this suggested that cytokine-mediated non-cytolytic and T-cell mediated cytolytic mechanisms contributed to the SVR, in addition to the virus-neutralizing effects by antibody-producing plasma cells. Both RG7854 regimens were not associated with treatment-limiting adverse effects but accompanied by dose-dependent, transient neutropenia and thrombocytopenia. The study concluded that finite, oral RG7854 treatment can induce a SVR in woodchucks that is based on the retrieval of antiviral innate and adaptive immune responses. This supports future investigation of the TLR7 agonist as an immunotherapeutic approach for achieving functional cure in patients with CHB.
Collapse
Affiliation(s)
- Steffen Wildum
- Roche Pharma, Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Kyle E Korolowicz
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Manasa Suresh
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Guido Steiner
- Roche Pharma, Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Lue Dai
- Roche Pharma, Research and Early Development, Roche Innovation Center Shanghai, Shanghai, China
| | - Bin Li
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Changsuek Yon
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, United States
| | | | | | - Xu Huang
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Xupeng Hong
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Marta G Murreddu
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Bhaskar V Kallakury
- Department of Pathology, Georgetown University Medical Center, Washington, DC, United States
| | - John A T Young
- Roche Pharma, Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Stephan Menne
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
40
|
Wong GLH, Gane E, Lok ASF. How to achieve functional cure of HBV: Stopping NUCs, adding interferon or new drug development? J Hepatol 2022; 76:1249-1262. [PMID: 35589248 DOI: 10.1016/j.jhep.2021.11.024] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022]
Abstract
Functional cure of hepatitis B is defined as sustained undetectable circulating HBsAg and HBV DNA after a finite course of treatment. Barriers to HBV cure include the reservoirs for HBV replication and antigen production (covalently closed circular DNA [cccDNA] and integrated HBV DNA), the high viral burden (HBV DNA and HBsAg) and the impaired host innate and adaptive immune responses against HBV. Current HBV therapeutics, 1 year of pegylated-interferon-α (PEG-IFNα) and long-term nucleos(t)ide analogues (NUCs), rarely achieve HBV cure. Stopping NUC therapy may lead to functional cure in some Caucasian patients but rarely in Asian patients. Switching from a NUC to IFN after HBV DNA suppression increases the chance of HBsAg clearance mainly in those with low HBsAg levels. Novel antiviral strategies that inhibit viral entry, translation and secretion of HBsAg, modulate capsid assembly, or target cccDNA transcription/degradation have shown promise in clinical trials. Novel immunomodulatory approaches including checkpoint inhibitors, metabolic modulation of T cells, therapeutic vaccines, adoptive transfer of genetically engineered T cells, and stimulation of innate and B-cell immune responses are being explored. These novel approaches may be further combined with NUCs or PEG-IFNα in personalised strategies, according to virologic and disease characteristics, to maximise the chance of HBV cure. The development of curative HBV therapies should be coupled with the development of standardised and validated virologic and immunologic assays to confirm target engagement and to assess response. In addition to efficacy, curative therapies must be safe and affordable to meet the goal of global elimination of hepatitis B.
Collapse
Affiliation(s)
- Grace L H Wong
- Medical Data Analytics Centre, Department of Medicine and Therapeutics, and Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong
| | - Ed Gane
- New Zealand Liver Transplant Unit, Auckland City Hospital, University of Auckland, New Zealand
| | - Anna S F Lok
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
41
|
Genetic variants of NTCP gene and hepatitis B vaccine failure in Taiwanese children of hepatitis B e antigen positive mothers. Hepatol Int 2022; 16:789-798. [PMID: 35635688 DOI: 10.1007/s12072-022-10350-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/25/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND AND AIMS Hepatitis B virus (HBV) vaccine failure remains a hurdle to the global elimination of HBV infections in the vaccination era. We aimed to elucidate the relationships between HBV entry receptor sodium taurocholate co-transporting polypeptide (NTCP) and vaccine failure in children born to highly infectious mothers. METHODS The genetic variants rs7154439, rs4646285, rs4646287, and rs2296651 were genotyped in 170 children with chronic HBV infections and 138 control children of mothers positive for hepatitis B e antigen (HBeAg). All children received hepatitis B immunoglobulin and complete HBV vaccination. Total RNAs from 82 adult non-tumor liver tissues were quantified for NTCP, type I interferons and interferon-induced transmembrane protein 3 (IFITM3) levels. RESULTS A higher rate of the GA/AA genotype (28.3% vs. 15.3%, p = 0.006) of the genetic variant rs4646287 in intron 1 of the NTCP gene was detected in control children compared to the carrier children. The rs4646287 G > A genotype was associated with younger ages at which spontaneous HBeAg seroconversion occurred (10.8 ± 8.4 vs. 14.6 ± 8.7 years, p = 0.003) in chronic HBV-infected children. Unique correlation patterns of NTCP and innate immunity-related genes (type I interferons and IFITM3) were found in HBV-infected liver tissues with the rs4646287 G > A genotype. CONCLUSION The rs4646287 G > A genotype of the NTCP gene may be associated with lower risk for HBV vaccine failure in children born to highly infectious mothers. The protective effect of rs4646287 G > A was also present in carrier children, evidenced by earlier spontaneous HBeAg seroconversion.
Collapse
|
42
|
Sun J, Wu G, Pastor F, Rahman N, Wang WH, Zhang Z, Merle P, Hui L, Salvetti A, Durantel D, Yang D, Andrisani O. RNA helicase DDX5 enables STAT1 mRNA translation and interferon signalling in hepatitis B virus replicating hepatocytes. Gut 2022; 71:991-1005. [PMID: 34021034 PMCID: PMC8606016 DOI: 10.1136/gutjnl-2020-323126] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 05/09/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVE RNA helicase DDX5 is downregulated during HBV replication and poor prognosis HBV-related hepatocellular carcinoma (HCC). The objective of this study is to investigate the role of DDX5 in interferon (IFN) signalling. We provide evidence of a novel mechanism involving DDX5 that enables translation of transcription factor STAT1 mediating the IFN response. DESIGN AND RESULTS Molecular, pharmacological and biophysical assays were used together with cellular models of HBV replication, HCC cell lines and liver tumours. We demonstrate that DDX5 regulates STAT1 mRNA translation by resolving a G-quadruplex (rG4) RNA structure, proximal to the 5' end of STAT1 5'UTR. We employed luciferase reporter assays comparing wild type (WT) versus mutant rG4 sequence, rG4-stabilising compounds, CRISPR/Cas9 editing of the STAT1-rG4 sequence and circular dichroism determination of the rG4 structure. STAT1-rG4 edited cell lines were resistant to the effect of rG4-stabilising compounds in response to IFN-α, while HCC cell lines expressing low DDX5 exhibited reduced IFN response. Ribonucleoprotein and electrophoretic mobility assays demonstrated direct and selective binding of RNA helicase-active DDX5 to the WT STAT1-rG4 sequence. Immunohistochemistry of normal liver and liver tumours demonstrated that absence of DDX5 corresponded to absence of STAT1. Significantly, knockdown of DDX5 in HBV infected HepaRG cells reduced the anti-viral effect of IFN-α. CONCLUSION RNA helicase DDX5 resolves a G-quadruplex structure in 5'UTR of STAT1 mRNA, enabling STAT1 translation. We propose that DDX5 is a key regulator of the dynamic range of IFN response during innate immunity and adjuvant IFN-α therapy.
Collapse
Affiliation(s)
- Jiazeng Sun
- Basic Medical Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Guanhui Wu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - Florentin Pastor
- International Center for Infectiology Research (CIRI), INSERM U1111-CNRS UMR5308, Lyon, France
| | - Naimur Rahman
- Basic Medical Sciences, Purdue University System, West Lafayette, Indiana, USA
| | - Wen-Hung Wang
- Gene Editing Core, Bindley Biosciences Center, Purdue University, West Lafayette, Indiana, USA
| | - Zhengtao Zhang
- Department of Biochemistry and Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai, China
| | - Philippe Merle
- Service d'Hépatologie, Hôpital de La Croix-Rousse Centre Livet, Lyon, Rhône-Alpes, France
| | - Lijian Hui
- Department of Biochemistry and Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai, China
| | - Anna Salvetti
- International Center for Infectiology Research (CIRI), INSERM U1111-CNRS UMR5308, Lyon, France
| | - David Durantel
- INSERM U1111-CNRS UMR5308 International Center for Infectiology Research (CIRI), Lyon, France
| | - Danzhou Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - Ourania Andrisani
- Basic Medical Sciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
43
|
Martinez MG, Combe E, Inchauspe A, Mangeot PE, Delberghe E, Chapus F, Neveu G, Alam A, Carter K, Testoni B, Zoulim F. CRISPR-Cas9 Targeting of Hepatitis B Virus Covalently Closed Circular DNA Generates Transcriptionally Active Episomal Variants. mBio 2022; 13:e0288821. [PMID: 35389262 PMCID: PMC9040760 DOI: 10.1128/mbio.02888-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/25/2022] [Indexed: 12/18/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection persists due to the lack of therapies that effectively target the HBV covalently closed circular DNA (cccDNA). We used HBV-specific guide RNAs (gRNAs) and CRISPR-Cas9 and determined the fate of cccDNA after gene editing. We set up a ribonucleoprotein (RNP) delivery system in HBV-infected HepG2-NTCP cells. HBV parameters after Cas9 editing were analyzed. Southern blot (SB) analysis and DNA/RNA sequencing (DNA/RNA-seq) were performed to determine the consequences of cccDNA editing and transcriptional activity of mutated cccDNA. Treatment of infected cells with HBV-specific gRNAs showed that CRISPR-Cas9 can efficiently affect HBV replication. The appearance of episomal HBV DNA variants after dual gRNA treatment was observed by PCR, SB analysis, and DNA/RNA-seq. These transcriptionally active variants are the products of simultaneous Cas9-induced double-strand breaks in two target sites, followed by repair and religation of both short and long fragments. Following suppression of HBV DNA replicative intermediates by nucleoside analogs, mutations and formation of smaller transcriptionally active HBV variants were still observed, suggesting that established cccDNA is accessible to CRISPR-Cas9 editing. Targeting HBV DNA with CRISPR-Cas9 leads to cleavage followed by appearance of episomal HBV DNA variants. Effects induced by Cas9 were sustainable after RNP degradation/loss of detection, suggesting permanent changes in the HBV genome instead of transient effects due to transcriptional interference. IMPORTANCE Hepatitis B virus infection can develop into chronic infection, cirrhosis, and hepatocellular carcinoma. Treatment of chronic hepatitis B requires novel approaches to directly target the viral minichromosome, which is responsible for the persistence of the disease. Designer nuclease approaches represent a promising strategy to treat chronic infectious diseases; however, comprehensive knowledge about the fate of the HBV minichromosome is needed before this potent tool can be used as a potential therapeutic approach. This study provides an in-depth analysis of CRISPR-Cas9 targeting of HBV minichromosome.
Collapse
Affiliation(s)
| | - Emmanuel Combe
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon, Lyon, France
| | - Aurore Inchauspe
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon, Lyon, France
- Evotec, Lyon, France
| | - Philippe Emmanuel Mangeot
- Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR-5308, INSERM and Ecole Normale Superieure de Lyon, Lyon, France
| | - Elodie Delberghe
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon, Lyon, France
| | - Fleur Chapus
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon, Lyon, France
| | | | | | | | - Barbara Testoni
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon, Lyon, France
| | - Fabien Zoulim
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon, Lyon, France
- University of Lyon, Université Claude-Bernard, Lyon, France
- Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
44
|
Tandoh KZ, Quaye O. Genetic associations in chronic hepatitis B infection: toward developing polygenic risk scores. Future Microbiol 2022; 17:541-549. [PMID: 35332782 DOI: 10.2217/fmb-2021-0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Chronic hepatitis B (CHB) infection results in multiple clinical phenotypes of varying severity. One of the critical gaps in CHB management is the lack of a genetic-based tool to aid existing hepatocellular carcinoma and cirrhosis risk stratification models for patients with active CHB. Such individual predictive models for CHB are plagued by an inherent limitation of discriminatory power that clearly indicates the need for their improvement. In this article, we highlight genetic association studies in CHB that identified HLA and cytokine genetic susceptibility loci to CHB. We advance the position that translating CHB genetic susceptibility loci into polygenic risk scores will be a welcome addendum to the current arsenal of CHB outcome predictive models. We conclude with comments on hurdles that future research efforts should address within the research enclave of CHB and advocate for increased genetic data representation from sub-Saharan Africa.
Collapse
Affiliation(s)
- Kwesi Z Tandoh
- Department of Biochemistry, West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Cell & Molecular Biology, College of Basic & Applied Sciences, University of Ghana, Accra, Ghana
| | - Osbourne Quaye
- Department of Biochemistry, West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Cell & Molecular Biology, College of Basic & Applied Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
45
|
Zaki MYW, Fathi AM, Samir S, Eldafashi N, William KY, Nazmy MH, Fathy M, Gill US, Shetty S. Innate and Adaptive Immunopathogeneses in Viral Hepatitis; Crucial Determinants of Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:1255. [PMID: 35267563 PMCID: PMC8909759 DOI: 10.3390/cancers14051255] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 02/08/2023] Open
Abstract
Viral hepatitis B (HBV) and hepatitis C (HCV) infections remain the most common risk factors for the development of hepatocellular carcinoma (HCC), and their heterogeneous distribution influences the global prevalence of this common type of liver cancer. Typical hepatitis infection elicits various immune responses within the liver microenvironment, and viral persistence induces chronic liver inflammation and carcinogenesis. HBV is directly mutagenic but can also cause low-grade liver inflammation characterized by episodes of intermittent high-grade liver inflammation, liver fibrosis, and cirrhosis, which can progress to decompensated liver disease and HCC. Equally, the absence of key innate and adaptive immune responses in chronic HCV infection dampens viral eradication and induces an exhausted and immunosuppressive liver niche that favors HCC development and progression. The objectives of this review are to (i) discuss the epidemiological pattern of HBV and HCV infections, (ii) understand the host immune response to acute and chronic viral hepatitis, and (iii) explore the link between this diseased immune environment and the development and progression of HCC in preclinical models and HCC patients.
Collapse
Affiliation(s)
- Marco Y. W. Zaki
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61732, Egypt; (A.M.F.); (N.E.); (M.H.N.); (M.F.)
- National Institute for Health Research Birmingham Liver Biomedical Research Unit and Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Ahmed M. Fathi
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61732, Egypt; (A.M.F.); (N.E.); (M.H.N.); (M.F.)
| | - Samara Samir
- Department of Biochemistry, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt;
| | - Nardeen Eldafashi
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61732, Egypt; (A.M.F.); (N.E.); (M.H.N.); (M.F.)
| | - Kerolis Y. William
- Department of Internal Medicine, Faculty of Medicine, Cairo University, Cairo 12613, Egypt;
| | - Maiiada Hassan Nazmy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61732, Egypt; (A.M.F.); (N.E.); (M.H.N.); (M.F.)
| | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61732, Egypt; (A.M.F.); (N.E.); (M.H.N.); (M.F.)
| | - Upkar S. Gill
- Barts Liver Centre, Centre for Immunobiology, Barts & The London School of Medicine & Dentistry, QMUL, London E1 2AT, UK;
| | - Shishir Shetty
- National Institute for Health Research Birmingham Liver Biomedical Research Unit and Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
46
|
Fukutomi K, Hikita H, Murai K, Nakabori T, Shimoda A, Fukuoka M, Yamai T, Higuchi Y, Miyakawa K, Suemizu H, Ryo A, Yamada R, Kodama T, Sakamori R, Tatsumi T, Takehara T. Capsid Allosteric Modulators Enhance the Innate Immune Response in Hepatitis B Virus-Infected Hepatocytes During Interferon Administration. Hepatol Commun 2022; 6:281-296. [PMID: 34558845 PMCID: PMC8793994 DOI: 10.1002/hep4.1804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 07/12/2021] [Accepted: 07/17/2021] [Indexed: 12/18/2022] Open
Abstract
Capsid allosteric modulators (CAMs) inhibit the encapsidation of hepatitis B virus (HBV) pregenomic RNA (pgRNA), which contains a pathogen-associated molecular pattern motif. However, the effect of CAMs on the innate immune response of HBV-infected hepatocytes remains unclear, and we examined this effect in this study. Administration of a CAM compound, BAY41-4109 (BAY41), to HBV-infected primary human hepatocytes (PHHs) did not change the total cytoplasmic pgRNA levels but significantly reduced intracapsid pgRNA levels, suggesting that BAY41 increased extracapsid pgRNA levels in the cytoplasm. BAY41 alone did not change the intracellular interferon (IFN)-stimulated gene (ISG) expression levels. However, BAY41 enhanced antiviral ISG induction by IFN-α in HBV-infected PHHs but did not change ISG induction by IFN-α in uninfected PHHs. Compared with BAY41 or IFN-α alone, coadministration of BAY41 and IFN-α significantly suppressed extracellular HBV-DNA levels. HBV-infected human liver-chimeric mice were treated with vehicle, BAY41, pegylated IFN-α (pegIFN-α), or BAY41 and pegIFN-α together. Compared with the vehicle control, pegIFN-α highly up-regulated intrahepatic ISG expression levels, but BAY41 alone did not change these levels. The combination of BAY41 and pegIFN-α further enhanced intrahepatic antiviral ISG expression, which was up-regulated by pegIFNα. The serum HBV-DNA levels in mice treated with the combination of BAY41 and pegIFN-α were the lowest observed in all the groups. Conclusion: CAMs enhance the host IFN response when combined with exogenous IFN-α, likely due to increased cytoplasmic extracapsid pgRNA.
Collapse
Affiliation(s)
- Keisuke Fukutomi
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineOsakaJapan
| | - Hayato Hikita
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineOsakaJapan
| | - Kazuhiro Murai
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineOsakaJapan
| | - Tasuku Nakabori
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineOsakaJapan
| | - Akiyoshi Shimoda
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineOsakaJapan
| | - Makoto Fukuoka
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineOsakaJapan
| | - Takuo Yamai
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineOsakaJapan
| | - Yuichiro Higuchi
- Laboratory Animal Research DepartmentCentral Institute for Experimental AnimalsKawasakiJapan
| | - Kei Miyakawa
- Department of MicrobiologyYokohama City University School of MedicineYokohamaJapan
| | - Hiroshi Suemizu
- Laboratory Animal Research DepartmentCentral Institute for Experimental AnimalsKawasakiJapan
| | - Akihide Ryo
- Department of MicrobiologyYokohama City University School of MedicineYokohamaJapan
| | - Ryoko Yamada
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineOsakaJapan
| | - Takahiro Kodama
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineOsakaJapan
| | - Ryotaro Sakamori
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineOsakaJapan
| | - Tomohide Tatsumi
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineOsakaJapan
| | - Tetsuo Takehara
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineOsakaJapan
| |
Collapse
|
47
|
Zhao C, Wu X, Chen J, Qian G. The therapeutic effect of IL-21 combined with IFN-γ inducing CD4 +CXCR5 +CD57 +T cells differentiation on hepatocellular carcinoma. J Adv Res 2022; 36:89-99. [PMID: 35127167 PMCID: PMC8799868 DOI: 10.1016/j.jare.2021.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 03/30/2021] [Accepted: 05/30/2021] [Indexed: 12/24/2022] Open
Abstract
Introduction Liver cancer is a malignant tumor with high incidence and short survival time. In order to increase the cure rate and disease-free survival rate of liver cancer, it is necessary to seek effective treatment methods. Objectives The objective of this study is to evaluate the therapeutic effects of IL-21 and IFN-γ inducing the formation of CD4+CXCR5+CD57+T cells on liver cancer. Methods The methods of analyze the relationship between CD4+CXCR5+CD57+T cells and the survival time of hepatocellular carcinoma (HCC), and study the effect of IL-21 combined with IFN-γ in inducing stem cells to differentiate into CD4+CXCR5+CD57+T cells. The effects of IL-21 combined with IFN-γ induced CD4+CXCR5+CD57+T cells on liver cancer were studied through animal experiments, and the regulatory mechanism, and the effect of hepatitis B virus (HBV) on it. Results The study found that the number of CD4+CXCR5+CD57+T cells in serum of liver cancer patients with prolonged survival time increased significantly, the expression of CD4, CD57, and CXCR5 in the tumor microenvironment increased, and the serum IL-21 and IFN-γ concentrations increased. IL-21 and IFN-γ induce stem cells to differentiate into CD4+CXCR5+CD57+T cells and induce HepG2 cells apoptosis. HBV leads to a decrease in the number of CD4+CXCR5+CD57+T cells and a chronic inflammatory response. Treg cells can regulate CD4+CXCR5+CD57+T cells. IL-21 combined with IFN-γ induced an increase in the number of CD4+CXCR5+CD57+T cells in hepatocarcinoma-bearing mice, which has an inhibitory effect on H22 liver cancer. Conclusion The conclusion of the study is that IL-21 combined with IFN-γ induces stem cells to differentiate into CD4+CXCR5+CD57+T cells, Treg can control the increase in their number, and HBV can cause their number to decrease, which can control the growth of liver cancer.
Collapse
Affiliation(s)
- Changlin Zhao
- School of Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Xianlin Wu
- The First Affiliated Hospital, Jinan University, Guangzhou 510632,China
| | - Jia Chen
- School of Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Guoqiang Qian
- School of Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| |
Collapse
|
48
|
Nosaka T, Naito T, Murata Y, Matsuda H, Ohtani M, Hiramatsu K, Nishizawa T, Okamoto H, Nakamoto Y. Regulatory function of interferon-inducible 44-like for hepatitis B virus covalently closed circular DNA in primary human hepatocytes. Hepatol Res 2022; 52:141-152. [PMID: 34697871 DOI: 10.1111/hepr.13722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 12/12/2022]
Abstract
AIM Curing hepatitis B virus (HBV) infection requires elimination of covalently closed circular DNA (cccDNA). Interferon (IFN)-γ has noncytolytic antiviral potential; however, elimination of cccDNA could not be achieved. To enhance the regulatory effect, we comprehensively analyzed the host factors associated with cccDNA amplification and IFN-γ and IFN-α effects using an in vitro HBV infection system showing various transcription levels. METHODS Primary human hepatocytes were infected with HBV using genomic plasmids carrying the basic core promoter mutation A1762T/G1764A and/or the precore mutation G1896A and treated with IFN-γ and IFN-α. Comprehensive and functional studies involving microarray and small interfering RNA analysis revealed the host factors related to cccDNA regulation. RESULTS The HBV infection system reproduced the HBV life cycle and showed various propagation levels. Microarray analysis revealed 53 genes correlated with the cccDNA levels. Of the 53 genes, expression of IFN-induced protein 44-like (IFI44L) was significantly upregulated by IFN-γ and IFN-α. The anti-HBV effect of IFI44L is exerted regardless of IFN-γ or IFN-α by inhibiting the activation of nuclear factor-κB and signal transducer and activator of transcription 1 pathways. CONCLUSIONS Using the in vitro HBV infection system, an IFN-inducible molecule, IFI44L, associated with cccDNA amplification, was identified. These results suggest an innovative molecular strategy for the regulation of HBV cccDNA by controlling a novel host factor, IFI44L.
Collapse
Affiliation(s)
- Takuto Nosaka
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Tatsushi Naito
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Yosuke Murata
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Hidetaka Matsuda
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Masahiro Ohtani
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Katsushi Hiramatsu
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Tsutomu Nishizawa
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Yasunari Nakamoto
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
49
|
Xu C, Chen J, Chen X. Host Innate Immunity Against Hepatitis Viruses and Viral Immune Evasion. Front Microbiol 2021; 12:740464. [PMID: 34803956 PMCID: PMC8598044 DOI: 10.3389/fmicb.2021.740464] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/29/2021] [Indexed: 11/13/2022] Open
Abstract
Hepatitis viruses are primary causative agents of hepatitis and represent a major source of public health problems in the world. The host innate immune system forms the first line of defense against hepatitis viruses. Hepatitis viruses are sensed by specific pathogen recognition receptors (PRRs) that subsequently trigger the innate immune response and interferon (IFN) production. However, hepatitis viruses evade host immune surveillance via multiple strategies, which help compromise the innate immune response and create a favorable environment for viral replication. Therefore, this article reviews published findings regarding host innate immune sensing and response against hepatitis viruses. Furthermore, we also focus on how hepatitis viruses abrogate the antiviral effects of the host innate immune system.
Collapse
Affiliation(s)
- Chonghui Xu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jizheng Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xinwen Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
50
|
Gane E, Yuen M, Kim DJ, Chan HL, Surujbally B, Pavlovic V, Das S, Triyatni M, Kazma R, Grippo JF, Buatois S, Lemenuel‐Diot A, Krippendorff B, Mueller H, Zhang Y, Kim HJ, Leerapun A, Lim TH, Lim Y, Tanwandee T, Kim W, Cheng W, Hu T, Wat C. Clinical Study of Single-Stranded Oligonucleotide RO7062931 in Healthy Volunteers and Patients With Chronic Hepatitis B. Hepatology 2021; 74:1795-1808. [PMID: 34037271 PMCID: PMC9291828 DOI: 10.1002/hep.31920] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/15/2021] [Accepted: 05/17/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS RO7062931 is an N-acetylgalactosamine (GalNAc)-conjugated single-stranded locked nucleic acid oligonucleotide complementary to HBV RNA. GalNAc conjugation targets the liver through the asialoglycoprotein receptor (ASGPR). This two-part phase 1 study evaluated the safety, pharmacokinetics, and pharmacodynamics of RO7062931 in healthy volunteers and patients with chronic hepatitis B (CHB) who were virologically suppressed. APPROACH AND RESULTS Part 1 was a single ascending dose study in healthy volunteers randomized to receive a single RO7062931 dose (0.1-4.0 mg/kg), or placebo. Part 2 was a multiple ascending dose study in patients with CHB randomized to receive RO7062931 at 0.5, 1.5, or 3.0 mg/kg or placebo every month for a total of 2 doses (Part 2a) or RO7062931 at 3.0 mg/kg every 2 weeks, 3.0 mg/kg every week (QW), or 4.0 mg/kg QW or placebo for a total of 3-5 doses (Part 2b). Sixty healthy volunteers and 59 patients received RO7062931 or placebo. The majority of adverse events (AEs) reported were mild in intensity. Common AEs included self-limiting injection site reactions and influenza-like illness. Supradose-proportional increases in RO7062931 plasma exposure and urinary excretion occurred at doses ≥3.0 mg/kg. In patients with CHB, RO7062931 resulted in dose-dependent and time-dependent reduction in HBsAg versus placebo. The greatest HBsAg declines from baseline were achieved with the 3.0 mg/kg QW dose regimen (mean nadir ~0.5 log10 IU/mL) independent of HBeAg status. CONCLUSIONS RO7062931 is safe and well tolerated at doses up to 4.0 mg/kg QW. Supradose-proportional exposure at doses of 3.0-4.0 mg/kg was indicative of partial saturation of the ASGPR-mediated liver uptake system. Dose-dependent declines in HBsAg demonstrated target engagement with RO7062931.
Collapse
Affiliation(s)
- Edward Gane
- Auckland Clinical StudiesAucklandNew Zealand
| | - Man‐Fung Yuen
- Queen Mary HospitalThe University of Hong KongHong Kong
| | - Dong Joon Kim
- Hallym University College of MedicineChuncheonSouth Korea
| | | | | | | | - Sudip Das
- Roche Innovation CentreWelwyn Garden CityUnited Kingdom
| | | | | | | | | | | | | | | | | | - Hyung Joon Kim
- Department of Internal Medicine, The Institute of Evidence‐based Clinical Medicine, College of MedicineChung‐Ang UniversitySeoulSouth Korea
| | - Apinya Leerapun
- Division of GastroenterologyDepartment of Internal MedicineFaculty of MedicineChiang Mai UniversityChiang MaiThailand
| | | | - Young‐Suk Lim
- Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Tawesak Tanwandee
- Department of MedicineFaculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Won Kim
- Seoul National University College of MedicineSeoul Metropolitan Government Seoul National University Boramae Medical CenterSeoulSouth Korea
| | | | | | - Cynthia Wat
- Roche Innovation CentreWelwyn Garden CityUnited Kingdom
| |
Collapse
|