1
|
Zhang S, Zhang D, Xu K, Huang X, Chen Q, Chen M. The role of the farnesoid X receptor in diabetes and its complications. Mol Cell Biochem 2025; 480:2725-2736. [PMID: 39576464 DOI: 10.1007/s11010-024-05162-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/10/2024] [Indexed: 01/06/2025]
Abstract
Diabetes is a metabolic disease in which tissues and organs are exposed to a hyperglycemic environment for a prolonged period. Long-term hyperglycemia can cause dysfunction of multiple organs and tissues in the body, leading to diabetic complications such as diabetic cardiomyopathy and diabetic nephropathy. Diabetes and its complications have become one of the key issues that seriously threaten the health of people worldwide. Farnesoid X receptor (FXR), as a metabolic regulator, has multiple functions in regulating insulin synthesis and secretion, insulin resistance, lipid metabolism, oxidative stress, inflammatory response, and fibrosis. It plays a key role in alleviating diabetes and its complications. In this review, we discuss the latest findings of FXR related to diabetes and its complications, focusing on its role in diabetes, diabetic nephropathy, diabetic cardiomyopathy, and diabetic liver injury. The aim is to better understand the role of FXR in diabetes and its complications and to provide new perspectives on the treatment of diabetes and its complications.
Collapse
Affiliation(s)
- Shengnan Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, No. 88 Xianning Avenue, Xian'an District, Xianning, Hubei, People's Republic of China
- School of Resources and Environmental Science and Engineering, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Dandan Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, No. 88 Xianning Avenue, Xian'an District, Xianning, Hubei, People's Republic of China
| | - Kui Xu
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, No. 88 Xianning Avenue, Xian'an District, Xianning, Hubei, People's Republic of China
- School of Clinical Medicine, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Xingqiong Huang
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, No. 88 Xianning Avenue, Xian'an District, Xianning, Hubei, People's Republic of China
| | - Qingjie Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, No. 88 Xianning Avenue, Xian'an District, Xianning, Hubei, People's Republic of China
| | - Mi Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, No. 88 Xianning Avenue, Xian'an District, Xianning, Hubei, People's Republic of China.
| |
Collapse
|
2
|
Zhu Y, Dong Z, Yang L, Huang Q, Wang J. Mechanism of Bile-Processed Coptidis Rhizoma in the Treatment of Type 2 Diabetes Mellitus in Rats Based on Dissolution Kinetics and Untargeted Metabolomics. Biomed Chromatogr 2025; 39:e70040. [PMID: 40018812 DOI: 10.1002/bmc.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/16/2025] [Accepted: 02/12/2025] [Indexed: 03/01/2025]
Abstract
Bile-processed Coptidis Rhizoma (BPCR) exhibits stronger efficacy in treating T2DM than Coptidis Rhizoma(CR) alone. However, the synergistic mechanism of its processing remains unknown. This study utilized HPLC to determine the content and dissolution characteristics of alkaloid components in BPCR before and after processing. The results indicated that the diffusion of the alkaloids in BPCR is stronger than that of CR, and their dissolution conforms to the Weibull equation. Additionally, BPCR significantly reduced fasting blood glucose (FBG) and serum insulin (FINS) levels in T2DM rats induced by a high-fat diet (HFD) and streptozotocin (STZ), improved glucose and lipid metabolism, and mitigated liver damage. Serum metabolomics analysis based on UPLC-Q-TOF-MS revealed that BPCR significantly regulates 27 endogenous differential biomarkers. The underlying mechanism may be related to glycerophospholipid metabolism, linoleic acid metabolism, steroid biosynthesis, and arachidonic acid metabolism pathways.
Collapse
MESH Headings
- Animals
- Drugs, Chinese Herbal/chemistry
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/pharmacokinetics
- Rats
- Metabolomics/methods
- Male
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/drug therapy
- Rats, Sprague-Dawley
- Metabolome/drug effects
- Chromatography, High Pressure Liquid
- Bile/metabolism
- Bile/chemistry
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/drug therapy
- Blood Glucose/analysis
- Blood Glucose/metabolism
- Blood Glucose/drug effects
- Alkaloids/chemistry
- Alkaloids/analysis
- Hypoglycemic Agents/chemistry
- Hypoglycemic Agents/pharmacology
- Biomarkers/blood
- Diet, High-Fat
- Coptis chinensis
Collapse
Affiliation(s)
- Ying Zhu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhaowei Dong
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Yang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qinwan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin Wang
- College of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Hauser G, Benjak Horvat I, Rajilić-Stojanović M, Krznarić-Zrnić I, Kukla M, Aljinović-Vučić V, Mikolašević I. Intestinal Microbiota Modulation by Fecal Microbiota Transplantation in Nonalcoholic Fatty Liver Disease. Biomedicines 2025; 13:779. [PMID: 40299326 PMCID: PMC12024620 DOI: 10.3390/biomedicines13040779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 04/30/2025] Open
Abstract
Numerous factors are involved in the pathogenesis of nonalcoholic fatty liver disease (NAFLD), which are responsible for its development and progression as an independent entity, but also thanks to their simultaneous action. This is explained by the hypothesis of multiple parallel hits. These factors are insulin resistance, lipid metabolism alteration, oxidative stress, endoplasmic reticulum stress, inflammatory cytokine liberation, gut microbiota dysbiosis or gut-liver axis activation. This is a systematic review which has an aim to show the connection between intestinal microbiota and the role of its disbalance in the development of NAFLD. The gut microbiota is made from a wide spectrum of microorganisms that has a systemic impact on human health, with a well-documented role in digestion, energy metabolism, the stimulation of the immune system, synthesis of essential nutrients, etc. It has been shown that dysbiosis is associated with all three stages of chronic liver disease. Thus, the modulation of the gut microbiota has attracted research interest as a novel therapeutic approach for the management of NAFLD patients. The modification of microbiota can be achieved by substantial diet modification and the application of probiotics or prebiotics, while the most radical effects are observed by fecal microbiota transplantation (FMT). Given the results of FMT in the context of metabolic syndrome (MetS) and NAFLD in animal models and scarce pilot studies on humans, FMT seems to be a promising treatment option that could reverse intestinal dysbiosis and thereby influence the course of NAFLD.
Collapse
Affiliation(s)
- Goran Hauser
- Department of Gastroenterology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia; (G.H.); (I.K.-Z.); (I.M.)
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| | - Indira Benjak Horvat
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
- County Hospital Varaždin, 42000 Varaždin, Croatia
| | - Mirjana Rajilić-Stojanović
- Department of Biochemical Engineering & Biotechnology, Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia;
| | - Irena Krznarić-Zrnić
- Department of Gastroenterology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia; (G.H.); (I.K.-Z.); (I.M.)
| | - Michail Kukla
- Department of Internal Medicine and Geriatrics, Jagiellonian University Medical College, 31-121 Cracow, Poland;
- Department of Endoscopy, University Hospital in Cracow, 30-688 Cracow, Poland
- 1st Infectious Diseases Ward, Gromkowski Regional Specialist Hospital, Wroclaw, 5 Koszarowa St., 50-149 Wroclaw, Poland
| | - Vedrana Aljinović-Vučić
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
- Medical Affairs Department, Jadran Galenski Laboratorij d.d., 51000 Rijeka, Croatia
| | - Ivana Mikolašević
- Department of Gastroenterology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia; (G.H.); (I.K.-Z.); (I.M.)
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| |
Collapse
|
4
|
Chong S, Lin M, Chong D, Jensen S, Lau NS. A systematic review on gut microbiota in type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2025; 15:1486793. [PMID: 39897957 PMCID: PMC11782031 DOI: 10.3389/fendo.2024.1486793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/18/2024] [Indexed: 02/04/2025] Open
Abstract
Aims/hypothesis The gut microbiota play crucial roles in the digestion and degradation of nutrients, synthesis of biological agents, development of the immune system, and maintenance of gastrointestinal integrity. Gut dysbiosis is thought to be associated with type 2 diabetes mellitus (T2DM), one of the world's fastest growing diseases. The aim of this systematic review is to identify differences in the composition and diversity of the gut microbiota in individuals with T2DM. Methods A systematic search was conducted to identify studies reporting on the difference in gut microbiota composition between individuals with T2DM and healthy controls. Relevant studies were evaluated, and their characteristics and results were extracted using a standardized data extraction form. The studies were assessed for risk of bias and their findings were reported narratively. Results 58 observational studies published between 2010 and 2024 were included. Beta diversity was commonly reported to be different between individuals with T2DM and healthy individuals. Genera Lactobacillus, Escherichia-Shigella, Enterococcus, Subdoligranulum and Fusobacteria were found to be positively associated; while Akkermansia, Bifidobacterium, Bacteroides, Roseburia, Faecalibacteirum and Prevotella were found to be negatively associated with T2DM. Conclusions This systematic review demonstrates a strong association between T2DM and gut dysbiosis, as evidenced by differential microbial abundances and altered diversity indices. Among these taxa, Escherichia-Shigella is consistently associated with T2DM, whereas Faecalibacterium prausnitzii appears to offer a protective effect against T2DM. However, the heterogeneity and observational nature of these studies preclude the establishment of causative relationships. Future research should incorporate age, diet and medication-matched controls, and include functional analysis of these gut microbes. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42023459937.
Collapse
Affiliation(s)
- Serena Chong
- South West Sydney Limb Preservation and Wound Research, Ingham Institute for Applied Medical Research, Sydney, NSW, Australia
- South West Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Mike Lin
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- Garvan Institute of Research, Sydney, NSW, Australia
| | - Deborah Chong
- Animal Health Laboratory, Department of Natural Resources and Environment Tasmania, Tasmania, TAS, Australia
| | - Slade Jensen
- South West Sydney Limb Preservation and Wound Research, Ingham Institute for Applied Medical Research, Sydney, NSW, Australia
- Infectious Disease and Microbiology, Ingham Institute for Applied Medical Research, Sydney, NSW, Australia
- School of Medicine Antibiotic Resistance and Mobile Elements Groups, Ingham Institute for Applied Medical Research, Sydney, NSW, Australia
| | - Namson S. Lau
- South West Sydney Limb Preservation and Wound Research, Ingham Institute for Applied Medical Research, Sydney, NSW, Australia
- South West Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Liverpool Diabetes Collaboration, Ingham Institute of Applied Medical Research, Sydney, NSW, Australia
| |
Collapse
|
5
|
Wang J, Wang X, Zhuo E, Chen B, Chan S. Gut‑liver axis in liver disease: From basic science to clinical treatment (Review). Mol Med Rep 2025; 31:10. [PMID: 39450549 PMCID: PMC11541166 DOI: 10.3892/mmr.2024.13375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/14/2024] [Indexed: 10/26/2024] Open
Abstract
Incidence of a number of liver diseases has increased. Gut microbiota serves a role in the pathogenesis of hepatitis, cirrhosis and liver cancer. Gut microbiota is considered 'a new virtual metabolic organ'. The interaction between the gut microbiota and liver is termed the gut‑liver axis. The gut‑liver axis provides a novel research direction for mechanism of liver disease development. The present review discusses the role of the gut‑liver axis and how this can be targeted by novel treatments for common liver diseases.
Collapse
Affiliation(s)
- Jianpeng Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
- Department of Clinical Medicine, The First Clinical Medical College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xinyi Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Enba Zhuo
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Bangjie Chen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Shixin Chan
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
6
|
Wang R, Mijiti S, Xu Q, Liu Y, Deng C, Huang J, Yasheng A, Tian Y, Cao Y, Su Y. The Potential Mechanism of Remission in Type 2 Diabetes Mellitus After Vertical Sleeve Gastrectomy. Obes Surg 2024; 34:3071-3083. [PMID: 38951388 DOI: 10.1007/s11695-024-07378-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024]
Abstract
In recent years, there has been a gradual increase in the prevalence of obesity and type 2 diabetes mellitus (T2DM), with bariatric surgery remaining the most effective treatment strategy for these conditions. Vertical sleeve gastrectomy (VSG) has emerged as the most popular surgical procedure for bariatric/metabolic surgeries, effectively promoting weight loss and improving or curing T2DM. The alterations in the gastrointestinal tract following VSG may improve insulin secretion and resistance by increasing incretin secretion (especially GLP-1), modifying the gut microbiota composition, and through mechanisms dependent on weight loss. This review focuses on the potential mechanisms through which the enhanced action of incretin and metabolic changes in the digestive system after VSG may contribute to the remission of T2DM.
Collapse
Affiliation(s)
- Rongfei Wang
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, No.57 Mei Hua East Road, Xiang Zhou District, Zhuhai, 519000, Guangdong, China
| | - Salamu Mijiti
- Department of General Surgery, The First People's Hospital of Kashi, Autonomous Region, Kashi, 844000, Xinjiang Uygur, China
| | - Qilin Xu
- Department of General Surgery, The First People's Hospital of Kashi, Autonomous Region, Kashi, 844000, Xinjiang Uygur, China
| | - Yile Liu
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, No.57 Mei Hua East Road, Xiang Zhou District, Zhuhai, 519000, Guangdong, China
| | - Chaolun Deng
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, No.57 Mei Hua East Road, Xiang Zhou District, Zhuhai, 519000, Guangdong, China
| | - Jiangtao Huang
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, No.57 Mei Hua East Road, Xiang Zhou District, Zhuhai, 519000, Guangdong, China
| | - Abudoukeyimu Yasheng
- Department of General Surgery, The First People's Hospital of Kashi, Autonomous Region, Kashi, 844000, Xinjiang Uygur, China
| | - Yunping Tian
- Department of General Surgery, The First People's Hospital of Kashi, Autonomous Region, Kashi, 844000, Xinjiang Uygur, China.
| | - Yanlong Cao
- Department of General Surgery, The First People's Hospital of Kashi, Autonomous Region, Kashi, 844000, Xinjiang Uygur, China.
| | - Yonghui Su
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, No.57 Mei Hua East Road, Xiang Zhou District, Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
7
|
Ding C, Wang Z, Dou X, Yang Q, Ning Y, Kao S, Sang X, Hao M, Wang K, Peng M, Zhang S, Han X, Cao G. Farnesoid X receptor: From Structure to Function and Its Pharmacology in Liver Fibrosis. Aging Dis 2024; 15:1508-1536. [PMID: 37815898 PMCID: PMC11272191 DOI: 10.14336/ad.2023.0830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/30/2023] [Indexed: 10/12/2023] Open
Abstract
The farnesoid X receptor (FXR), a ligand-activated transcription factor, plays a crucial role in regulating bile acid metabolism within the enterohepatic circulation. Beyond its involvement in metabolic disorders and immune imbalances affecting various tissues, FXR is implicated in microbiota modulation, gut-to-brain communication, and liver disease. The liver, as a pivotal metabolic and detoxification organ, is susceptible to damage from factors such as alcohol, viruses, drugs, and high-fat diets. Chronic or recurrent liver injury can culminate in liver fibrosis, which, if left untreated, may progress to cirrhosis and even liver cancer, posing significant health risks. However, therapeutic options for liver fibrosis remain limited in terms of FDA-approved drugs. Recent insights into the structure of FXR, coupled with animal and clinical investigations, have shed light on its potential pharmacological role in hepatic fibrosis. Progress has been achieved in both fundamental research and clinical applications. This review critically examines recent advancements in FXR research, highlighting challenges and potential mechanisms underlying its role in liver fibrosis treatment.
Collapse
Affiliation(s)
- Chuan Ding
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
- Jinhua Institute, Zhejiang Chinese Medical University, Jinhua, China.
| | - Zeping Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Xinyue Dou
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Yan Ning
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Shi Kao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Xianan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Min Hao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Kuilong Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Mengyun Peng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Shuosheng Zhang
- College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China.
| | - Xin Han
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
- Jinhua Institute, Zhejiang Chinese Medical University, Jinhua, China.
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
- Jinhua Institute, Zhejiang Chinese Medical University, Jinhua, China.
| |
Collapse
|
8
|
Yan D, Lv M, Kong X, Feng L, Ying Y, Liu W, Wang X, Ma X. FXR controls insulin content by regulating Foxa2-mediated insulin transcription. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119655. [PMID: 38135007 DOI: 10.1016/j.bbamcr.2023.119655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Farnesoid X receptor (FXR) is a nuclear ligand-activated receptor of bile acids that plays a role in the modulation of insulin content. However, the underlying molecular mechanisms remain unclear. Forkhead box a2 (Foxa2) is an important nuclear transcription factor in pancreatic β-cells and is involved in β-cell function. We aimed to explore the signaling mechanism downstream of FXR to regulate insulin content and underscore its association with Foxa2 and insulin gene (Ins) transcription. All experiments were conducted on FXR transgenic mice, INS-1 823/13 cells, and diabetic Goto-Kakizaki (GK) rats undergoing sham or Roux-en-Y gastric bypass (RYGB) surgery. Islets from FXR knockout mice and INS-1823/13 cells with FXR knockdown exhibited substantially lower insulin levels than that of controls. This was accompanied by decreased Foxa2 expression and Ins transcription. Conversely, FXR overexpression increased insulin content, concomitant with enhanced Foxa2 expression and Ins transcription in INS-1 823/13 cells. Moreover, FXR knockdown reduced FXR recruitment and H3K27 trimethylation in the Foxa2 promoter. Importantly, Foxa2 overexpression abrogated the adverse effects of FXR knockdown on Ins transcription and insulin content in INS-1 823/13 cells. Notably, RYGB surgery led to improved insulin content in diabetic GK rats, which was accompanied by upregulated FXR and Foxa2 expression and Ins transcription. Collectively, these data suggest that Foxa2 serves as the target gene of FXR in β-cells and mediates FXR-enhanced Ins transcription. Additionally, the upregulated FXR/Foxa2 signaling cascade could contribute to the enhanced insulin content in diabetic GK rats after RYGB.
Collapse
Affiliation(s)
- Dan Yan
- Shenzhen University Diabetes Institute, Medical School, Shenzhen University, Shenzhen 518060, PR China.
| | - Moyang Lv
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, PR China
| | - Xiangchen Kong
- Shenzhen University Diabetes Institute, Medical School, Shenzhen University, Shenzhen 518060, PR China
| | - Linxian Feng
- Shenzhen University Diabetes Institute, Medical School, Shenzhen University, Shenzhen 518060, PR China
| | - Ying Ying
- Shenzhen University Diabetes Institute, Medical School, Shenzhen University, Shenzhen 518060, PR China
| | - Wenjuan Liu
- Shenzhen University Diabetes Institute, Medical School, Shenzhen University, Shenzhen 518060, PR China
| | - Xin Wang
- Shenzhen University Diabetes Institute, Medical School, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaosong Ma
- Shenzhen University Diabetes Institute, Medical School, Shenzhen University, Shenzhen 518060, PR China
| |
Collapse
|
9
|
Hou Y, Zhai X, Wang X, Wu Y, Wang H, Qin Y, Han J, Meng Y. Research progress on the relationship between bile acid metabolism and type 2 diabetes mellitus. Diabetol Metab Syndr 2023; 15:235. [PMID: 37978556 PMCID: PMC10656899 DOI: 10.1186/s13098-023-01207-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
Bile acids, which are steroid molecules originating from cholesterol and synthesized in the liver, play a pivotal role in regulating glucose metabolism and maintaining energy balance. Upon release into the intestine alongside bile, they activate various nuclear and membrane receptors, influencing crucial processes. These bile acids have emerged as significant contributors to managing type 2 diabetes mellitus, a complex clinical syndrome primarily driven by insulin resistance. Bile acids substantially lower blood glucose levels through multiple pathways: BA-FXR-SHP, BA-FXR-FGFR15/19, BA-TGR5-GLP-1, and BA-TGR5-cAMP. They also impact blood glucose regulation by influencing intestinal flora, endoplasmic reticulum stress, and bitter taste receptors. Collectively, these regulatory mechanisms enhance insulin sensitivity, stimulate insulin secretion, and boost energy expenditure. This review aims to comprehensively explore the interplay between bile acid metabolism and T2DM, focusing on primary regulatory pathways. By examining the latest advancements in our understanding of these interactions, we aim to illuminate potential therapeutic strategies and identify areas for future research. Additionally, this review critically assesses current research limitations to contribute to the effective management of T2DM.
Collapse
Affiliation(s)
- Yisen Hou
- Department of Oncology Surgery, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, 710018, Shanxi, People's Republic of China
| | - Xinzhe Zhai
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, People's Republic of China
| | - Xiaotao Wang
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, People's Republic of China
| | - Yi Wu
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, People's Republic of China
| | - Heyue Wang
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, People's Republic of China
| | - Yaxin Qin
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, People's Republic of China
| | - Jianli Han
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, People's Republic of China.
| | - Yong Meng
- Department of Oncology Surgery, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, 710018, Shanxi, People's Republic of China.
| |
Collapse
|
10
|
Dubois‐Chevalier J, Gheeraert C, Berthier A, Boulet C, Dubois V, Guille L, Fourcot M, Marot G, Gauthier K, Dubuquoy L, Staels B, Lefebvre P, Eeckhoute J. An extended transcription factor regulatory network controls hepatocyte identity. EMBO Rep 2023; 24:e57020. [PMID: 37424431 PMCID: PMC10481658 DOI: 10.15252/embr.202357020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/11/2023] Open
Abstract
Cell identity is specified by a core transcriptional regulatory circuitry (CoRC), typically limited to a small set of interconnected cell-specific transcription factors (TFs). By mining global hepatic TF regulons, we reveal a more complex organization of the transcriptional regulatory network controlling hepatocyte identity. We show that tight functional interconnections controlling hepatocyte identity extend to non-cell-specific TFs beyond the CoRC, which we call hepatocyte identity (Hep-ID)CONNECT TFs. Besides controlling identity effector genes, Hep-IDCONNECT TFs also engage in reciprocal transcriptional regulation with TFs of the CoRC. In homeostatic basal conditions, this translates into Hep-IDCONNECT TFs being involved in fine tuning CoRC TF expression including their rhythmic expression patterns. Moreover, a role for Hep-IDCONNECT TFs in the control of hepatocyte identity is revealed in dedifferentiated hepatocytes where Hep-IDCONNECT TFs are able to reset CoRC TF expression. This is observed upon activation of NR1H3 or THRB in hepatocarcinoma or in hepatocytes subjected to inflammation-induced loss of identity. Our study establishes that hepatocyte identity is controlled by an extended array of TFs beyond the CoRC.
Collapse
Affiliation(s)
| | - Céline Gheeraert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
| | - Alexandre Berthier
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
| | - Clémence Boulet
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
| | - Vanessa Dubois
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
- Basic and Translational Endocrinology (BaTE), Department of Basic and Applied Medical SciencesGhent UniversityGhentBelgium
| | - Loïc Guille
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
| | - Marie Fourcot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 – UAR 2014 – PLBSLilleFrance
| | - Guillemette Marot
- Univ. Lille, Inria, CHU Lille, ULR 2694 – METRICS: Évaluation des technologies de santé et des pratiques médicalesLilleFrance
| | - Karine Gauthier
- Institut de Génomique Fonctionnelle de Lyon (IGFL), CNRS UMR 5242, INRAE USC 1370, École Normale Supérieure de LyonLyonFrance
| | - Laurent Dubuquoy
- Univ. Lille, Inserm, CHU Lille, U1286 – INFINITE – Institute for Translational Research in InflammationLilleFrance
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
| | - Philippe Lefebvre
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
| | - Jérôme Eeckhoute
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011‐EGIDLilleFrance
| |
Collapse
|
11
|
Henry Z, Meadows V, Guo GL. FXR and NASH: an avenue for tissue-specific regulation. Hepatol Commun 2023; 7:e0127. [PMID: 37058105 PMCID: PMC10109454 DOI: 10.1097/hc9.0000000000000127] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/23/2023] [Indexed: 04/15/2023] Open
Abstract
NASH is within the spectrum of NAFLD, a liver condition encompassing liver steatosis, inflammation, hepatocyte injury, and fibrosis. The prevalence of NASH-induced cirrhosis is rapidly rising and has become the leading indicator for liver transplantation in the US. There is no Food and Drug Administration (FDA)-approved pharmacological intervention for NASH. The farnesoid X receptor (FXR) is essential in regulating bile acid homeostasis, and dysregulation of bile acids has been implicated in the pathogenesis of NASH. As a result, modulators of FXR that show desirable effects in mitigating key characteristics of NASH have been developed as promising therapeutic approaches. However, global FXR activation causes adverse effects such as cholesterol homeostasis imbalance and pruritus. The development of targeted FXR modulation is necessary for ideal NASH therapeutics, but information regarding tissue-specific and cell-specific FXR functionality is limited. In this review, we highlight FXR activation in the regulation of bile acid homeostasis and NASH development, examine the current literature on tissue-specific regulation of nuclear receptors, and speculate on how FXR regulation will be beneficial in the treatment of NASH.
Collapse
Affiliation(s)
- Zakiyah Henry
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Vik Meadows
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Grace L. Guo
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey, USA
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, New Jersey, USA
- Department of Veterans Affairs New Jersey Health Care System, East Orange, New Jersey, USA
| |
Collapse
|
12
|
Tang D, Tang Q, Huang W, Zhang Y, Tian Y, Fu X. Fasting: From Physiology to Pathology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204487. [PMID: 36737846 PMCID: PMC10037992 DOI: 10.1002/advs.202204487] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Overnutrition is a risk factor for various human diseases, including neurodegenerative diseases, metabolic disorders, and cancers. Therefore, targeting overnutrition represents a simple but attractive strategy for the treatment of these increasing public health threats. Fasting as a dietary intervention for combating overnutrition has been extensively studied. Fasting has been practiced for millennia, but only recently have its roles in the molecular clock, gut microbiome, and tissue homeostasis and function emerged. Fasting can slow aging in most species and protect against various human diseases, including neurodegenerative diseases, metabolic disorders, and cancers. These centuried and unfading adventures and explorations suggest that fasting has the potential to delay aging and help prevent and treat diseases while minimizing side effects caused by chronic dietary interventions. In this review, recent animal and human studies concerning the role and underlying mechanism of fasting in physiology and pathology are summarized, the therapeutic potential of fasting is highlighted, and the combination of pharmacological intervention and fasting is discussed as a new treatment regimen for human diseases.
Collapse
Affiliation(s)
- Dongmei Tang
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041China
| | - Qiuyan Tang
- Neurology Department of Integrated Traditional Chinese and Western Medicine, School of Clinical MedicineChengdu University of Traditional Chinese MedicineChengduSichuan610075China
| | - Wei Huang
- West China Centre of Excellence for PancreatitisInstitute of Integrated Traditional Chinese and Western MedicineWest China‐Liverpool Biomedical Research CentreWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Yuwei Zhang
- Division of Endocrinology and MetabolismWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Yan Tian
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041China
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuan610041China
| |
Collapse
|
13
|
Zhang H, Xue Y, Xie W, Wang Y, Ma N, Chang G, Shen X. Subacute ruminal acidosis downregulates FOXA2, changes oxidative status, and induces autophagy in the livers of dairy cows fed a high-concentrate diet. J Dairy Sci 2023; 106:2007-2018. [PMID: 36631320 DOI: 10.3168/jds.2022-22222] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 10/02/2022] [Indexed: 01/11/2023]
Abstract
The purpose of this experiment was to investigate high-concentrate feeding-induced changed status of oxidative and autophagy in the livers of dairy cows. Hepatocyte nuclear factor 3β (FOXA2) was reported in cases of liver fibrosis, glucolipid metabolism, and hepatocyte differentiation, but not in cases liver damage in cows fed a high-concentrate diet. Therefore, we also aimed to explore the potential role of FOXA2 in SARA-induced liver damage. We divided 12 mid-lactating Holstein cows into 2 groups and fed them a high-concentrate (HC group, forage:concentrate = 4:6) and a low-concentrate (forage:concentrate = 6:4) diet. After a 2-wk adaptation period and a 3-wk experimental period, peripheral blood was collected for determination of antioxidant enzyme activity, and liver tissue was collected to examine genes and proteins. On d 20 and 21 of the experiment, rumen fluid was collected, and the pH was measured. A significant difference in rumen fluid pH was found between the 2 groups (low-concentrate: 6.10 ± 0.07 vs. HC: 5.59 ± 0.09). The rumen fluid pH in the HC group was less than 5.6 at 2 time points, indicating that SARA was successfully induced. Lipopolysaccharide (0.24 ± 0.10 vs. 0.42 ± 0.12) and malondialdehyde (1.46 ± 0.25 vs. 2.94 ± 0.65) increased, whereas superoxide dismutase (14.06 ± 0.63 vs. 11.71 ± 0.64), reduced glutathione (14.48 ± 2.25 vs. 6.82 ± 0.67), and the total antioxidant capacity (0.43 ± 0.03 vs. 0.30 ± 0.03) decreased in the peripheral blood of the HC group. Moreover, in liver tissue from the HC group, catalase (0.71 ± 0.03 vs. 0.49 ± 0.03) and superoxide dismutase (27.46 ± 1.90 vs. 20.32 ± 1.54) were decreased, whereas malondialdehyde (0.21 ± 0.03 vs. 0.28 ± 0.03) was elevated. Meanwhile, we observed lower gene expression of CAT (1.00 ± 0.15 vs. 0.64 ± 0.17), NAD(P)H quinone dehydrogenase 1 (NQO1; 1.00 ± 0.09 vs. 0.47 ± 0.14), glutathione peroxidase 1 (GPX1; 1.03 ± 0.27 vs. 0.55 ± 0.09), SOD1 (1.01 ± 0.17 vs. 0.76 ± 0.17), and SOD3 (1.02 ± 0.21 vs. 0.55 ± 0.16) in the liver tissue of the HC group. Furthermore, western blot analysis showed that high-concentrate feeding led to decreased sirtuin-1 (SIRT1) (1.00 ± 0.10 vs. 0.62 ± 0.15) and FOXA2 (1.02 ± 0.19 vs. 0.68 ± 0.18), elevated autophagy-related protein microtubule associated protein 1 light chain 3 II (MAP1LC3-II; 1.00 ± 0.32 vs. 1.98 ± 0.83) and autophagy related 5 (ATG5; 1.00 ± 0.30 vs. 1.80 ± 0.27), and suppressed antioxidant signaling pathway-related protein nuclear factor erythroid 2-like 2 (NFE2L2; 1.00 ± 0.18 vs. 0.61 ± 0.30) and heme oxygenase 1 (HMOX1; 1.00 ± 0.48 vs. 0.38 ± 0.25) in liver tissue. Overall, these data indicated that SARA elevated systematic oxidative status and enhanced autophagy in the liver, and suppressed SIRT1 and FOXA2 may mediate enhanced oxidative damage and autophagy in the livers of dairy cows fed a high-concentrate diet.
Collapse
Affiliation(s)
- Hongzhu Zhang
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Yang Xue
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Wan Xie
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Yan Wang
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Nana Ma
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Guangjun Chang
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Xiangzhen Shen
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China.
| |
Collapse
|
14
|
Qi L, Chen Y. Circulating Bile Acids as Biomarkers for Disease Diagnosis and Prevention. J Clin Endocrinol Metab 2023; 108:251-270. [PMID: 36374935 DOI: 10.1210/clinem/dgac659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/11/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022]
Abstract
CONTEXT Bile acids (BAs) are pivotal signaling molecules that regulate energy metabolism and inflammation. Recent epidemiological studies have reported specific alterations in circulating BA profiles in certain disease states, including obesity, type 2 diabetes mellitus (T2DM), nonalcoholic fatty liver disease (NAFLD), and Alzheimer disease (AD). In the past decade, breakthroughs have been made regarding the translation of BA profiling into clinical use for disease prediction. In this review, we summarize and synthesize recent data on variation in circulating BA profiles in patients with various diseases to evaluate the value of these biomarkers in human plasma for early diagnosis. EVIDENCE ACQUISITION This review is based on a collection of primary and review literature gathered from a PubMed search for BAs, obesity, T2DM, insulin resistance (IR), NAFLD, hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), colon cancer, and AD, among other keywords. EVIDENCE SYNTHESIS Individuals with obesity, T2DM, HCC, CCA, or AD showed specific alterations in circulating BA profiles. These alterations may have existed long before the initial diagnosis of these diseases. The intricate relationship between obesity, IR, and NAFLD complicates the establishment of clear and independent associations between BA profiles and nonalcoholic steatohepatitis. Alterations in the levels of total BAs and several BA species were seen across the entire spectrum of NAFLD, demonstrating significant increases with the worsening of histological features. CONCLUSIONS Aberrant circulating BA profiles are an early event in the onset and progression of obesity, T2DM, HCC, and AD. The pleiotropic effects of BAs explain these broad connections. Circulating BA profiles could provide a basis for the development of biomarkers for the diagnosis and prevention of a wide range of diseases.
Collapse
Affiliation(s)
- Li Qi
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang 110022, Liaoning Province, China
| | - Yongsheng Chen
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| |
Collapse
|
15
|
Yu C, Li X, Zhao Y, Hu Y. The role of FOXA family transcription factors in glucolipid metabolism and NAFLD. Front Endocrinol (Lausanne) 2023; 14:1081500. [PMID: 36798663 PMCID: PMC9927216 DOI: 10.3389/fendo.2023.1081500] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Abnormal glucose metabolism and lipid metabolism are common pathological processes in many metabolic diseases, such as nonalcoholic fatty liver disease (NAFLD). Many studies have shown that the forkhead box (FOX) protein subfamily FOXA has a role in regulating glucolipid metabolism and is closely related to hepatic steatosis and NAFLD. FOXA exhibits a wide range of functions ranging from the initiation steps of metabolism such as the development of the corresponding metabolic organs and the differentiation of cells, to multiple pathways of glucolipid metabolism, to end-of-life problems of metabolism such as age-related obesity. The purpose of this article is to review and discuss the currently known targets and signal transduction pathways of FOXA in glucolipid metabolism. To provide more experimental evidence and basis for further research and clinical application of FOXA in the regulation of glucolipid metabolism and the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Chuchu Yu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affifiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaojing Li
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affifiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Zhao
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affifiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Yu Zhao, ; Yiyang Hu,
| | - Yiyang Hu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Institute of Liver Diseases, Shuguang Hospital Affifiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Clinical Pharmacology, Shuguang Hospital Affifiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Yu Zhao, ; Yiyang Hu,
| |
Collapse
|
16
|
Gu X, Liu H, Luo W, Wang X, Wang H, Li L. Di-2-ethylhexyl phthalate-induced miR-155–5p promoted lipid metabolism via inhibiting cAMP/PKA signaling pathway in human trophoblastic HTR-8/Svneo cells. Reprod Toxicol 2022; 114:22-31. [DOI: 10.1016/j.reprotox.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/18/2022]
|
17
|
Functional genomics uncovers the transcription factor BNC2 as required for myofibroblastic activation in fibrosis. Nat Commun 2022; 13:5324. [PMID: 36088459 PMCID: PMC9464213 DOI: 10.1038/s41467-022-33063-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 08/31/2022] [Indexed: 11/21/2022] Open
Abstract
Tissue injury triggers activation of mesenchymal lineage cells into wound-repairing myofibroblasts, whose unrestrained activity leads to fibrosis. Although this process is largely controlled at the transcriptional level, whether the main transcription factors involved have all been identified has remained elusive. Here, we report multi-omics analyses unraveling Basonuclin 2 (BNC2) as a myofibroblast identity transcription factor. Using liver fibrosis as a model for in-depth investigations, we first show that BNC2 expression is induced in both mouse and human fibrotic livers from different etiologies and decreases upon human liver fibrosis regression. Importantly, we found that BNC2 transcriptional induction is a specific feature of myofibroblastic activation in fibrotic tissues. Mechanistically, BNC2 expression and activities allow to integrate pro-fibrotic stimuli, including TGFβ and Hippo/YAP1 signaling, towards induction of matrisome genes such as those encoding type I collagen. As a consequence, Bnc2 deficiency blunts collagen deposition in livers of mice fed a fibrogenic diet. Additionally, our work establishes BNC2 as potentially druggable since we identified the thalidomide derivative CC-885 as a BNC2 inhibitor. Altogether, we propose that BNC2 is a transcription factor involved in canonical pathways driving myofibroblastic activation in fibrosis. Myofibroblasts contribute to the development of liver fibrosis. Here, the authors report that the transcription factor Basonuclin 2 (BNC2) integrates fibrogenic signals and drives myofibroblastic transcriptional activation in liver fibrosis.
Collapse
|
18
|
Lv XC, Wu Q, Yuan YJ, Li L, Guo WL, Lin XB, Huang ZR, Rao PF, Ai LZ, Ni L. Organic chromium derived from the chelation of Ganoderma lucidum polysaccharide and chromium (III) alleviates metabolic syndromes and intestinal microbiota dysbiosis induced by high-fat and high-fructose diet. Int J Biol Macromol 2022; 219:964-979. [DOI: 10.1016/j.ijbiomac.2022.07.211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/10/2022] [Accepted: 07/26/2022] [Indexed: 11/05/2022]
|
19
|
Gillard J, Picalausa C, Ullmer C, Adorini L, Staels B, Tailleux A, Leclercq IA. Enterohepatic Takeda G-Protein Coupled Receptor 5 Agonism in Metabolic Dysfunction-Associated Fatty Liver Disease and Related Glucose Dysmetabolism. Nutrients 2022; 14:nu14132707. [PMID: 35807885 PMCID: PMC9268629 DOI: 10.3390/nu14132707] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 12/11/2022] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a major health concern with no approved pharmacological therapies. Molecules developed to activate the bile acid-receptor TGR5 regulate pathways involved in MALFD pathogenesis, but the therapeutic value of TGR5 activation on the active form of MAFLD, non-alcoholic steatohepatitis (NASH), still needs to be evaluated. As TGR5 agonism is low in MAFLD, we used strategies to promote the production of endogenous TGR5 ligands or administered pharmacological TGR5 agonists, INT-777 and RO5527239, to study the effect of TGR5 activation on liver and metabolic diseases in high-fat diet-fed foz/foz mice. Although described in the literature, treatment with fexaramine, an intestine-restricted FXR agonist, did not raise the concentrations of TGR5 ligands nor modulate TGR5 signaling and, accordingly, did not improve dysmetabolic status. INT-777 and RO5527239 directly activated TGR5. INT-777 only increased the TGR5 activation capacity of the portal blood; RO5527239 also amplified the TGR5 activation capacity of systemic blood. Both molecules improved glucose tolerance. In spite of the TGR5 activation capacity, INT-777, but not RO5527239, reduced liver disease severity. In conclusion, TGR5 activation in enterohepatic, rather than in peripheral, tissues has beneficial effects on glucose tolerance and MAFLD.
Collapse
Affiliation(s)
- Justine Gillard
- Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium; (J.G.); (C.P.)
| | - Corinne Picalausa
- Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium; (J.G.); (C.P.)
| | - Christoph Ullmer
- Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland;
| | | | - Bart Staels
- Inserm, CHU Lille, Institut Pasteur de Lille, University Lille, U1011-EGID, F-59000 Lille, France; (B.S.); (A.T.)
| | - Anne Tailleux
- Inserm, CHU Lille, Institut Pasteur de Lille, University Lille, U1011-EGID, F-59000 Lille, France; (B.S.); (A.T.)
| | - Isabelle A. Leclercq
- Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium; (J.G.); (C.P.)
- Correspondence: ; Tel.: +32-2-764-5273
| |
Collapse
|
20
|
Park S, Zhang T, Yue Y, Wu X. Effects of Bile Acid Modulation by Dietary Fat, Cholecystectomy, and Bile Acid Sequestrant on Energy, Glucose, and Lipid Metabolism and Gut Microbiota in Mice. Int J Mol Sci 2022; 23:ijms23115935. [PMID: 35682613 PMCID: PMC9180239 DOI: 10.3390/ijms23115935] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 02/07/2023] Open
Abstract
Bile acid metabolism, involved with the digestion and absorption of nutrients in the gut, is linked to the gut microbiota community, greatly impacting the host’s metabolism. We examined the hypothesis that the modulation of bile acid metabolism by dietary fat contents, gallbladder removal (GBX; cholecystectomy), and bile acid sequestrant (BAS; cholestyramine) treatment could alter energy, glucose, and lipid metabolism through the changes in the gut microbiota. Mice were randomly assigned to the following six groups: (1) Sham GBX surgery (Sham) + low fat/high carbohydrate diet (LFD), (2) Sham + high fat diet (HFD), (3) Sham + HFD + BAS, (4) GBX + LFD, (5) GBX + HFD, and (6) GBX + HFD + BAS. BAS groups received 2% cholestyramine. After an 8-week intervention, energy, glucose, and lipid metabolism, and the gut microbiota community were measured. HFD groups exhibited higher body weight gain than LFD, and GBX increased the weight gain comped to Sham groups regardless of BAS in HFD (p < 0.05). Homeostatic model assessment for insulin resistance (HOMA-IR) was higher in HFD than LFD, and GBX increased it regardless of BAS. Serum lipid profiles were worsened in GBX + HFD compared to Sham + LFD, whereas BAS alleviated them, except for serum HDL cholesterol. Hepatic tumor-necrosis-factor-α (TNF-α) mRNA expression and lipid peroxide contents increased with GBX and BAS treatment compared to Sham and no BAS treatment (p < 0.05). Hepatic mRNA expression of sterol regulatory element-binding transcription factor 1c (SREBP1c) and peroxisome proliferator-activated receptor gamma (PPAR-γ) exhibited the same trend as that of tumor necrosis factor-α (TNF-α). The α-diversity of gut bacteria decreased in GBX + HFD and increased in GBX + HFD + BAS. Akkermentia, Dehalobacterium, SMB53, and Megamonas were high in the Sham + LFD, and Veillonella and Streptococcus were rich in the Sham + HFD, while Oscillospira and Olsenella were high in Sham + HFD + BAS (p < 0.05). GBX + LFD increased Lactobacillus and Sutterella while GBX + HFD + BAS elevated Clostridium, Alistipes, Blautia, Eubacterium, and Coprobacillus (p < 0.05). In conclusion, the modulation of bile acid metabolism influences energy, glucose, and lipid metabolisms, and it might be linked to changes in the gut microbiota by bile acid metabolism modulation.
Collapse
Affiliation(s)
- Sunmin Park
- Department of Bio-Convergence System, Hoseo University, Asan 31499, Korea; (T.Z.); (X.W.)
- Obesity/Diabetes Research Center, Department of Food and Nutrition, Hoseo University, Asan 31499, Korea;
- Correspondence: ; Tel.: +82-41-540-5345; Fax: +82-41-548-0670
| | - Ting Zhang
- Department of Bio-Convergence System, Hoseo University, Asan 31499, Korea; (T.Z.); (X.W.)
| | - Yu Yue
- Obesity/Diabetes Research Center, Department of Food and Nutrition, Hoseo University, Asan 31499, Korea;
| | - Xuangao Wu
- Department of Bio-Convergence System, Hoseo University, Asan 31499, Korea; (T.Z.); (X.W.)
| |
Collapse
|
21
|
Zhang MY, Luo M, Wang JP. FXR expression in rats of hilar cholangiocarcinoma. Sci Rep 2022; 12:8741. [PMID: 35610302 PMCID: PMC9130506 DOI: 10.1038/s41598-022-12850-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/09/2022] [Indexed: 12/04/2022] Open
Abstract
The study objective was to detect the expression of farnesoid X receptor (FXR) in a rat model of hilar cholangiocarcinoma to provide a new therapeutic target for gene therapy in hilar cholangiocarcinoma. Sixty male Wistar rats (weighing 190 ± 8 g) were randomly divided into three groups (experimental group, control group and sham operation group, 20 rats in each group). The three groups were fed a standard diet. The QBC939 cell suspension of cholangiocarcinoma was injected into the hilar bile duct in the experimental group with a microsyringe. The control group was injected with normal saline, and the sham operation group was not injected with any drugs. A modified tail suspension test (TST) was used to evaluate the mental state and physical activity of rats every day. At 5 weeks, one rat in the experimental group was euthanized, and the changes in the hilar bile duct were recorded. The procedure was repeated at one and half months. After one and half months, hilar cholangiocarcinoma only occurred in the experimental group. Pathological examination confirmed the formation of tumours, and hilar bile duct tissues were taken from the three groups. FXR expression in the hilar bile duct was detected by real-time polymerase chain reaction (RT-PCR) and immunohistochemistry. After two weeks, the rats in the experimental group ate less, and their weight was significantly reduced. One and half months later, hilar cholangiocarcinoma was detected in 16 rats in the experimental group. The levels of alanine aminotransferase and aspartate transaminase in the experimental group were higher than those in the other two groups. The ratio of FXR/GAPDH mRNA was significantly different among the hilar cholangiocarcinoma, control and sham operation groups. Under the light microscope, FXR protein reacted with anti-FXR antibody and showed granular expression. Every pathological section included 4800 cells. A total of 1856 positive cells were in the experimental group, 3279 positive cells were in the control group, and 3371 positive cells were in the sham operation group. FXR expression in the hilar cholangiocarcinoma of rats was significantly lower than that in normal hilar bile duct tissues, suggesting that drugs targeting FXR may be a new strategy for the treatment of hilar cholangiocarcinoma.
Collapse
Affiliation(s)
- Meng-Yu Zhang
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Ming Luo
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jie-Ping Wang
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China.
| |
Collapse
|
22
|
Guan B, Tong J, Hao H, Yang Z, Chen K, Xu H, Wang A. Bile acid coordinates microbiota homeostasis and systemic immunometabolism in cardiometabolic diseases. Acta Pharm Sin B 2022; 12:2129-2149. [PMID: 35646540 PMCID: PMC9136572 DOI: 10.1016/j.apsb.2021.12.011] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 02/08/2023] Open
Abstract
Cardiometabolic disease (CMD), characterized with metabolic disorder triggered cardiovascular events, is a leading cause of death and disability. Metabolic disorders trigger chronic low-grade inflammation, and actually, a new concept of metaflammation has been proposed to define the state of metabolism connected with immunological adaptations. Amongst the continuously increased list of systemic metabolites in regulation of immune system, bile acids (BAs) represent a distinct class of metabolites implicated in the whole process of CMD development because of its multifaceted roles in shaping systemic immunometabolism. BAs can directly modulate the immune system by either boosting or inhibiting inflammatory responses via diverse mechanisms. Moreover, BAs are key determinants in maintaining the dynamic communication between the host and microbiota. Importantly, BAs via targeting Farnesoid X receptor (FXR) and diverse other nuclear receptors play key roles in regulating metabolic homeostasis of lipids, glucose, and amino acids. Moreover, BAs axis per se is susceptible to inflammatory and metabolic intervention, and thereby BAs axis may constitute a reciprocal regulatory loop in metaflammation. We thus propose that BAs axis represents a core coordinator in integrating systemic immunometabolism implicated in the process of CMD. We provide an updated summary and an intensive discussion about how BAs shape both the innate and adaptive immune system, and how BAs axis function as a core coordinator in integrating metabolic disorder to chronic inflammation in conditions of CMD.
Collapse
Key Words
- AS, atherosclerosis
- ASBT, apical sodium-dependent bile salt transporter
- BAs, bile acids
- BSEP, bile salt export pump
- BSH, bile salt hydrolases
- Bile acid
- CA, cholic acid
- CAR, constitutive androstane receptor
- CCs, cholesterol crystals
- CDCA, chenodeoxycholic acid
- CMD, cardiometabolic disease
- CVDs, cardiovascular diseases
- CYP7A1, cholesterol 7 alpha-hydroxylase
- CYP8B1, sterol 12α-hydroxylase
- Cardiometabolic diseases
- DAMPs, danger-associated molecular patterns
- DCA, deoxycholic acid
- DCs, dendritic cells
- ERK, extracellular signal-regulated kinase
- FA, fatty acids
- FFAs, free fatty acids
- FGF, fibroblast growth factor
- FMO3, flavin-containing monooxygenase 3
- FXR, farnesoid X receptor
- GLP-1, glucagon-like peptide 1
- HCA, hyocholic acid
- HDL, high-density lipoprotein
- HFD, high fat diet
- HNF, hepatocyte nuclear receptor
- IL, interleukin
- IR, insulin resistance
- JNK, c-Jun N-terminal protein kinase
- LCA, lithocholic acid
- LDL, low-density lipoprotein
- LDLR, low-density lipoprotein receptor
- LPS, lipopolysaccharide
- NAFLD, non-alcoholic fatty liver disease
- NASH, nonalcoholic steatohepatitis
- NF-κB, nuclear factor-κB
- NLRP3, NLR family pyrin domain containing 3
- Nuclear receptors
- OCA, obeticholic acid
- PKA, protein kinase A
- PPARα, peroxisome proliferator-activated receptor alpha
- PXR, pregnane X receptor
- RCT, reverses cholesterol transportation
- ROR, retinoid-related orphan receptor
- S1PR2, sphingosine-1-phosphate receptor 2
- SCFAs, short-chain fatty acids
- SHP, small heterodimer partner
- Systemic immunometabolism
- TG, triglyceride
- TGR5, takeda G-protein receptor 5
- TLR, toll-like receptor
- TMAO, trimethylamine N-oxide
- Therapeutic opportunities
- UDCA, ursodeoxycholic acid
- VDR, vitamin D receptor
- cAMP, cyclic adenosine monophosphate
- mTOR, mammalian target of rapamycin
- ox-LDL, oxidated low-density lipoprotein
Collapse
Affiliation(s)
- Baoyi Guan
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing 100091, China
| | - Jinlin Tong
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhixu Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Keji Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing 100091, China
| | - Hao Xu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing 100091, China
| | - Anlu Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing 100091, China
| |
Collapse
|
23
|
Jiao TY, Ma YD, Guo XZ, Ye YF, Xie C. Bile acid and receptors: biology and drug discovery for nonalcoholic fatty liver disease. Acta Pharmacol Sin 2022; 43:1103-1119. [PMID: 35217817 PMCID: PMC9061718 DOI: 10.1038/s41401-022-00880-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/25/2022] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), a series of liver metabolic disorders manifested by lipid accumulation within hepatocytes, has become the primary cause of chronic liver diseases worldwide. About 20%-30% of NAFLD patients advance to nonalcoholic steatohepatitis (NASH), along with cell death, inflammation response and fibrogenesis. The pathogenesis of NASH is complex and its development is strongly related to multiple metabolic disorders (e.g. obesity, type 2 diabetes and cardiovascular diseases). The clinical outcomes include liver failure and hepatocellular cancer. There is no FDA-approved NASH drug so far, and thus effective therapeutics are urgently needed. Bile acids are synthesized in hepatocytes, transported into the intestine, metabolized by gut bacteria and recirculated back to the liver by the enterohepatic system. They exert pleiotropic roles in the absorption of fats and regulation of metabolism. Studies on the relevance of bile acid disturbance with NASH render it as an etiological factor in NASH pathogenesis. Recent findings on the functional identification of bile acid receptors have led to a further understanding of the pathophysiology of NASH such as metabolic dysregulation and inflammation, and bile acid receptors are recognized as attractive targets for NASH treatment. In this review, we summarize the current knowledge on the role of bile acids and the receptors in the development of NAFLD and NASH, especially the functions of farnesoid X receptor (FXR) in different tissues including liver and intestine. The progress in the development of bile acid and its receptors-based drugs for the treatment of NASH including bile acid analogs and non-bile acid modulators on bile acid metabolism is also discussed.
Collapse
Affiliation(s)
- Ting-Ying Jiao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yuan-di Ma
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Zhen Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yun-Fei Ye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
24
|
Xiang J, Wang K, Tang N. PCK1 dysregulation in cancer: Metabolic reprogramming, oncogenic activation, and therapeutic opportunities. Genes Dis 2022; 10:101-112. [PMID: 37013052 PMCID: PMC10066343 DOI: 10.1016/j.gendis.2022.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023] Open
Abstract
The last few decades have witnessed an advancement in our understanding of multiple cancer cell pathways related to metabolic reprogramming. One of the most important cancer hallmarks, including aerobic glycolysis (the Warburg effect), the central carbon pathway, and multiple-branch metabolic pathway remodeling, enables tumor growth, progression, and metastasis. Phosphoenolpyruvate carboxykinase 1 (PCK1), a key rate-limiting enzyme in gluconeogenesis, catalyzes the conversion of oxaloacetate to phosphoenolpyruvate. PCK1 expression in gluconeogenic tissues is tightly regulated during fasting. In tumor cells, PCK1 is regulated in a cell-autonomous manner rather than by hormones or nutrients in the extracellular environment. Interestingly, PCK1 has an anti-oncogenic role in gluconeogenic organs (the liver and kidneys), but a tumor-promoting role in cancers arising from non-gluconeogenic organs. Recent studies have revealed that PCK1 has metabolic and non-metabolic roles in multiple signaling networks linking metabolic and oncogenic pathways. Aberrant PCK1 expression results in the activation of oncogenic pathways, accompanied by metabolic reprogramming, to maintain tumorigenesis. In this review, we summarize the mechanisms underlying PCK1 expression and regulation, and clarify the crosstalk between aberrant PCK1 expression, metabolic rewiring, and signaling pathway activation. In addition, we highlight the clinical relevance of PCK1 and its value as a putative cancer therapeutic target.
Collapse
|
25
|
London E, Stratakis CA. The regulation of PKA signaling in obesity and in the maintenance of metabolic health. Pharmacol Ther 2022; 237:108113. [PMID: 35051439 DOI: 10.1016/j.pharmthera.2022.108113] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/03/2022] [Accepted: 01/11/2022] [Indexed: 12/13/2022]
Abstract
The cAMP-dependent protein kinase (PKA) system represents a primary cell-signaling pathway throughout systems and across species. PKA facilitates the actions of hormones, neurotransmitters and other signaling molecules that bind G-protein coupled receptors (GPCR) to modulate cAMP levels. Through its control of synaptic events, exocytosis, transcriptional regulation, and more, PKA signaling regulates cellular metabolism and emotional and stress responses making it integral in the maintenance and dysregulation of energy homeostasis. Neural PKA signaling is regulated by afferent and peripheral efferent signals that link specific neural cell populations to the regulation of metabolic processes in adipose tissue, liver, pancreas, adrenal, skeletal muscle, and gut. Mouse models have provided invaluable information on the roles for PKA subunits in brain and key metabolic organs. While limited, human studies infer differential regulation of the PKA system in obese compared to lean individuals. Variants identified in PKA subunit genes cause Cushing syndrome that is characterized by metabolic dysregulation associated with endogenous glucocorticoid excess. Under healthy physiologic conditions, the PKA system is exquisitely regulated by stimuli that activate GPCRs to alter intracellular cAMP concentrations, and by PKA cellular localization and holoenzyme stability. Adenylate cyclase activity generates cAMP while phosphodiesterase-mediated cAMP degradation to AMP decreases cAMP levels downstream of GPCRs. Chronic perturbations in PKA signaling appear to be capable of resetting PKA regulation at several levels; in addition, sex differences in PKA signaling regulation, while not well understood, impact the physiologic consequences of metabolic dysregulation and obesity. This review explores the roles for PKA signaling in the pathogenesis of metabolic diseases including obesity, type 2 diabetes mellitus and associated co-morbidities through neural-peripheral crosstalk and cAMP/PKA signaling pathway targets that hold therapeutic potential.
Collapse
Affiliation(s)
- Edra London
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, USA.
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, USA; Human Genetics & Precision Medicine, IMBB, Foundation for Research & Technology Hellas, Greece; Research Institute, ELPEN, SA, Athens, Greece
| |
Collapse
|
26
|
Kodama S, Yoshii N, Ota A, Takeshita JI, Yoshinari K, Ono A. Association between in vitro nuclear receptor-activating profiles of chemical compounds and their in vivo hepatotoxicity in rats. J Toxicol Sci 2021; 46:569-587. [PMID: 34853243 DOI: 10.2131/jts.46.569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The liver plays critical roles to maintain homeostasis of living organisms and is also a major target organ of chemical toxicity. Meanwhile, nuclear receptors (NRs) are known to regulate major liver functions and also as a critical target for hepatotoxic compounds. In this study, we established mammalian one-hybrid assay systems for five rat-derived NRs, namely PXR, PPARα, LXRα, FXR and RXRα, and evaluated a total of 326 compounds for their NR-activating profiles. Then, we assessed the association between their NR-activating profile and hepatotoxic endpoints in repeated-dose toxicity data of male rats from Hazard Evaluation Support System. In the in vitro cell-based assays, 68, 38, 20, 17 and 17 compounds were identified as positives for PXR, PPARα, LXRα, FXR and RXRα, respectively. The association analyses demonstrated that the PXR-positive compounds showed high frequency of endpoints related to liver hypertrophy, such as centrilobular hepatocellular hypertrophy, suggesting that PXR activation is involved in chemical-induced liver hypertrophy in rats. It is intriguing to note that the PXR-positive compounds also showed statistically significant associations with both prolonged activated partial thromboplastin time and prolonged prothrombin time, suggesting a possible involvement of PXR in the regulation of blood clotting factors. Collectively, our approach may be useful for discovering new functions of NRs as well as understanding the complex mechanism for hepatotoxicity caused by chemical compounds.
Collapse
Affiliation(s)
- Susumu Kodama
- Laboratory of Toxicology, Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Nao Yoshii
- Laboratory of Toxicology, Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Akihiro Ota
- Laboratory of Toxicology, Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Jun-Ichi Takeshita
- Reserach Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Kouichi Yoshinari
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Atsushi Ono
- Laboratory of Toxicology, Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| |
Collapse
|
27
|
Gillard J, Clerbaux LA, Nachit M, Sempoux C, Staels B, Bindels LB, Tailleux A, Leclercq IA. Bile acids contribute to the development of non-alcoholic steatohepatitis in mice. JHEP REPORTS : INNOVATION IN HEPATOLOGY 2021; 4:100387. [PMID: 34825156 PMCID: PMC8604813 DOI: 10.1016/j.jhepr.2021.100387] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/20/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023]
Abstract
Background & Aims Through FXR and TGR5 signaling, bile acids (BAs) modulate lipid and glucose metabolism, inflammation and fibrosis. Hence, BAs returning to the liver after enteric secretion, modification and reabsorption may contribute to the pathogenesis of non-alcoholic steatohepatitis (NASH). Herein, we characterized the enterohepatic profile and signaling of BAs in preclinical models of NASH, and explored the consequences of experimental manipulation of BA composition. Methods We used high-fat diet (HFD)-fed foz/foz and high-fructose western diet-fed C57BL/6J mice, and compared them to their respective controls. Mice received a diet supplemented with deoxycholic acid (DCA) to modulate BA composition. Results Compared to controls, mice with NASH had lower concentrations of BAs in their portal blood and bile, while systemic BA concentrations were not significantly altered. Notably, the concentrations of secondary BAs, and especially of DCA, and the ratio of secondary to primary BAs were strikingly lower in bile and portal blood of mice with NASH. Hence, portal blood was poor in FXR and TGR5 ligands, and conferred poor anti-inflammatory protection in mice with NASH. Enhanced primary BAs synthesis and conversion of secondary to primary BAs in NASH livers contributed to the depletion in secondary BAs. Dietary DCA supplementation in HFD-fed foz/foz mice restored the BA concentrations in portal blood, increased TGR5 and FXR signaling, improved the dysmetabolic status, protected from steatosis and hepatocellular ballooning, and reduced macrophage infiltration. Conclusions BA composition in the enterohepatic cycle, but not in systemic circulation, is profoundly altered in preclinical models of NASH, with specific depletion in secondary BAs. Dietary correction of the BA profile protected from NASH, supporting a role for enterohepatic BAs in the pathogenesis of NASH. Lay summary This study clearly demonstrates that the alterations of enterohepatic bile acids significantly contribute to the development of non-alcoholic steatohepatitis in relevant preclinical models. Indeed, experimental modulation of bile acid composition restored perturbed FXR and TGR5 signaling and prevented non-alcoholic steatohepatitis and associated metabolic disorders.
Collapse
Key Words
- ASBT, apical sodium-dependent BA transporter
- BA, bile acid
- CA, cholic acid
- CDCA, chenodeoxycholic acid
- CYP27A1, sterol 27-hydroxylase
- CYP2A12, bile acid 7α-hydroxylase
- CYP7A1, cholesterol 7α-hydroxylase
- CYP7B1, oxysterol 7α-hydroxylase
- CYP8B1, sterol 12α-hydroxylase
- DCA, deoxycholic acid
- FABP6, fatty acid binding protein 6
- FGF15, fibroblast growth factor 15
- FGFR4, fibroblast growth factor receptor 4
- FXR
- FXR, Farnesoid X receptor
- GLP-1, glucagon-like peptide-1
- HFD, high-fat diet
- LCA, lithocholic acid
- LPS, lipopolysaccharide
- NAFLD
- NAFLD, non-alcoholic fatty liver disease
- NAS, NAFLD activity score
- NASH
- NASH, non-alcoholic steatohepatitis
- ND, normal diet
- OGTT, oral glucose tolerance test
- OST, organic solute transporter
- SHP, small heterodimer protein
- TGR5
- TGR5, Takeda G-protein coupled receptor 5
- TLCA, tauro-lithocholic acid
- TNFα, tumor necrosis factor α
- WDF, western and high-fructose diet
- WT, wild-type
- metabolic syndrome
- αMCA, α-muricholic acid
- βMCA, β-muricholic acid
- ωMCA, ω-muricholic acid
Collapse
Affiliation(s)
- Justine Gillard
- Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium.,Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Laure-Alix Clerbaux
- Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Maxime Nachit
- Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Christine Sempoux
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Anne Tailleux
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Isabelle A Leclercq
- Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
28
|
The Role and Mechanism of Oxidative Stress and Nuclear Receptors in the Development of NAFLD. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6889533. [PMID: 34745420 PMCID: PMC8566046 DOI: 10.1155/2021/6889533] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022]
Abstract
The overproduction of reactive oxygen species (ROS) and consequent oxidative stress contribute to the pathogenesis of acute and chronic liver diseases. It is now acknowledged that nonalcoholic fatty liver disease (NAFLD) is characterized as a redox-centered disease due to the role of ROS in hepatic metabolism. However, the underlying mechanisms accounting for these alternations are not completely understood. Several nuclear receptors (NRs) are dysregulated in NAFLD, and have a direct influence on the expression of a set of genes relating to the progress of hepatic lipid homeostasis and ROS generation. Meanwhile, the NRs act as redox sensors in response to metabolic stress. Therefore, targeting NRs may represent a promising strategy for improving oxidation damage and treating NAFLD. This review summarizes the link between impaired lipid metabolism and oxidative stress and highlights some NRs involved in regulating oxidant/antioxidant turnover in the context of NAFLD, shedding light on potential therapies based on NR-mediated modulation of ROS generation and lipid accumulation.
Collapse
|
29
|
Qi L, Tian Y, Chen Y. Circulating Bile Acid Profiles: A Need for Further Examination. J Clin Endocrinol Metab 2021; 106:3093-3112. [PMID: 34279029 DOI: 10.1210/clinem/dgab531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Indexed: 12/15/2022]
Abstract
CONTEXT Bile acids (BAs) are increasingly recognized as metabolic and chronobiologic integrators that synchronize the systemic metabolic response to nutrient availability. Alterations in the concentration and/or composition of circulating BAs are associated with a number of metabolic disorders, such as obesity, type 2 diabetes mellitus (T2DM), insulin resistance (IR), and metabolic associated fatty liver disease (MAFLD). This review summarizes recent evidence that links abnormal circulating BA profiles to multiple metabolic disorders, and discusses the possible mechanisms underlying the connections to determine the role of BA profiling as a novel biomarker for these abnormalities. EVIDENCE ACQUISITION The review is based on a collection of primary and review literature gathered from a PubMed search of BAs, T2DM, IR, and MAFLD, among other keywords. EVIDENCE SYNTHESIS Obese and IR subjects appear to have elevated fasting circulating BAs but lower postprandial increase when compared with controls. The possible underlying mechanisms are disruption in the synchronization between the feeding/fasting cycle and the properties of BA-regulated metabolic pathways. Whether BA alterations are associated per se with MAFLD remains inconclusive. However, increased fasting circulating BAs level was associated with higher risk of advanced fibrosis stage. Thus, for patients with MAFLD, dynamically monitoring the circulating BA profiles may be a promising tool for the stratification of MAFLD. CONCLUSIONS Alterations in the concentration, composition, and rhythm of circulating BAs are associated with adverse events in systemic metabolism. Subsequent investigations regarding these aspects of circulating BA kinetics may help predict future metabolic disorders and guide therapeutic interventions.
Collapse
Affiliation(s)
- Li Qi
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, 110022, Liaoning Province, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Yongsheng Chen
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| |
Collapse
|
30
|
Wu T, Yang M, Xu H, Wang L, Wei H, Ji G. Serum Bile Acid Profiles Improve Clinical Prediction of Nonalcoholic Fatty Liver in T2DM patients. J Proteome Res 2021; 20:3814-3825. [PMID: 34043368 DOI: 10.1021/acs.jproteome.1c00104] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: The present study aimed to assess the ability of serum bile acid profiles to predict the development of nonalcoholic fatty liver (NAFL) in type 2 diabetes mellitus (T2DM) patients. Methods: Using targeted ultraperformance liquid chromatography (UPLC) coupled with triple quadrupole mass spectrometry (TQ/MS), we compared serum bile acid levels in T2DM patients with NAFL (n = 30) and age- and sex-matched T2DM patients without NAFL (n = 36) at the first time. Second, an independent cohort study of T2DM patients with NAFL (n = 17) and age- and sex-matched T2DM patients without NAFL (n = 20) was used to validate the results. The incremental benefits of serum biomarkers, clinical variables alone, or with biomarkers were then evaluated using receiver operating characteristic (ROC) curves and decision curve analysis. The area under the curve (AUC), integrated discrimination improvement (IDI), and net reclassification improvement (NRI) were used to evaluate the biomarker predictive abilities. Results: The serum bile acid profiles in T2DM patients with NAFL were significantly different from T2DM patients without NAFL, as characterized by the significant elevation of LCA, TLCA, TUDCA, CDCA-24G, and TCDCA, which may be potential biomarkers for the identification of NAFL in T2DM patients. Based on the improvement in AUC, IDI, and NRI, the addition of 5 bile acids to a model with clinical variables statistically improved its predictive value. Similar results were found in the validation cohort. Conclusions: These results highlight that the detected biomarkers may contribute to the progression of NAFL in T2DM patients, and these biomarkers particularly in combination may help in the diagnosis of NAFL and allow earlier intervention in T2DM patients.
Collapse
Affiliation(s)
- Tao Wu
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Road 725, Shanghai 200032, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Cailun Road 1200, Shanghai 201203, China
| | - Ming Yang
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Road 725, Shanghai 200032, China
| | - Hanchen Xu
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Road 725, Shanghai 200032, China
| | - Lei Wang
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Road 725, Shanghai 200032, China
| | - Huafeng Wei
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Road 725, Shanghai 200032, China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Road 725, Shanghai 200032, China
| |
Collapse
|
31
|
Rendell MS. Current and emerging gluconeogenesis inhibitors for the treatment of Type 2 diabetes. Expert Opin Pharmacother 2021; 22:2167-2179. [PMID: 34348528 DOI: 10.1080/14656566.2021.1958779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION In the last several decades, fueled by gene knockout and knockdown techniques, there has been substantial progress in detailing the pathways of gluconeogenesis. A host of molecules have been identified as potential targets for therapeutic intervention. A number of hormones, enzymes and transcription factors participate in gluconeogenesis. Many new agents have come into use to treat diabetes and several of these are in development to suppress gluconeogenesis. AREAS COVERED Herein, the author reviews agents that have been discovered and/or are in development, which control excess gluconeogenesis. The author has used multiple sources including PubMed, the preprint servers MedRxIv, BioRxIv, Research Gate, as well as Google Search and the database of the U.S. Patent and Trademarks Office to find appropriate literature. EXPERT OPINION It is now clear that lipid metabolism and hepatic lipogenesis play a major role in gluconeogenesis and resistance to insulin. Future efforts will focus on the duality of gluconeogenesis and adipose tissue metabolism. The exploration of therapeutic RNA agents will accelerate. The balance of clinical benefit and adverse effects will determine the future of new gluconeogenesis inhibitors.
Collapse
Affiliation(s)
- Marc S Rendell
- The Association of Diabetes Investigators, Newport Coast, California, United States.,The Rose Salter Medical Research Foundation, Newport Coast, California, United States
| |
Collapse
|
32
|
The pathophysiological function of non-gastrointestinal farnesoid X receptor. Pharmacol Ther 2021; 226:107867. [PMID: 33895191 DOI: 10.1016/j.pharmthera.2021.107867] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Farnesoid X receptor (FXR) influences bile acid homeostasis and the progression of various diseases. While the roles of hepatic and intestinal FXR in enterohepatic transport of bile acids and metabolic diseases were reviewed previously, the pathophysiological functions of FXR in non-gastrointestinal cells and tissues have received little attention. Thus, the roles of FXR in the liver, immune system, nervous system, cardiovascular system, kidney, and pancreas beyond the gastrointestinal system are reviewed herein. Gain of FXR function studies in non-gastrointestinal tissues reveal that FXR signaling improves various experimentally-induced metabolic and immune diseases, including non-alcoholic fatty liver disease, type 2 diabetes, primary biliary cholangitis, sepsis, autoimmune diseases, multiple sclerosis, and diabetic nephropathy, while loss of FXR promotes regulatory T cells production, protects the brain against ischemic injury, atherosclerosis, and inhibits pancreatic tumor progression. The downstream pathways regulated by FXR are diverse and tissue/cell-specific, and FXR has both ligand-dependent and ligand-independent activities, all of which may explain why activation and inhibition of FXR signaling could produce paradoxical or even opposite effects in some experimental disease models. FXR signaling is frequently compromised by diseases, especially during the progressive stage, and rescuing FXR expression may provide a promising strategy for boosting the therapeutic effect of FXR agonists. Tissue/cell-specific modulation of non-gastrointestinal FXR could influence the treatment of various diseases. This review provides a guide for drug discovery and clinical use of FXR modulators.
Collapse
|
33
|
Abstract
Mammals undergo regular cycles of fasting and feeding that engage dynamic transcriptional responses in metabolic tissues. Here we review advances in our understanding of the gene regulatory networks that contribute to hepatic responses to fasting and feeding. The advent of sequencing and -omics techniques have begun to facilitate a holistic understanding of the transcriptional landscape and its plasticity. We highlight transcription factors, their cofactors, and the pathways that they impact. We also discuss physiological factors that impinge on these responses, including circadian rhythms and sex differences. Finally, we review how dietary modifications modulate hepatic gene expression programs.
Collapse
Affiliation(s)
- Lara Bideyan
- Department of Pathology and Laboratory Medicine, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA.,Department of Biological Chemistry, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Rohith Nagari
- Department of Pathology and Laboratory Medicine, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA.,Department of Biological Chemistry, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA.,Department of Biological Chemistry, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
34
|
Chen M, Lu C, Lu H, Zhang J, Qin D, Liu S, Li X, Zhang L. Farnesoid X receptor via Notch1 directs asymmetric cell division of Sox9 + cells to prevent the development of liver cancer in a mouse model. Stem Cell Res Ther 2021; 12:232. [PMID: 33845903 PMCID: PMC8042944 DOI: 10.1186/s13287-021-02298-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/18/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Asymmetrical cell division (ACD) maintains the proper number of stem cells to ensure self-renewal. The rate of symmetric division increases as more cancer stem cells (CSCs) become malignant; however, the signaling pathway network involved in CSC division remains elusive. FXR (Farnesoid X receptor), a ligand-activated transcription factor, has several anti-tumor effects and has been shown to target CSCs. Here, we aimed at evaluating the role of FXR in the regulation of the cell division of CSCs. METHODS The FXR target gene and downstream molecular mechanisms were confirmed by qRT-PCR, Western blot, luciferase reporter assay, EMAS, Chip, and IF analyses. Pulse-chase BrdU labeling and paired-cell experiments were used to detect the cell division of liver CSCs. Gain- and loss-of-function experiments in Huh7 cells and mouse models were performed to support findings and elucidate the function and underlying mechanisms of FXR-Notch1 in liver CSC division. RESULTS We demonstrated that activation of Notch1 was significantly elevated in the livers of hepatocellular carcinoma (HCC) in Farnesoid X receptor-knockout (FXR-KO) mice and that FXR expression negatively correlated with Notch1 level during chronic liver injury. Activation of FXR induced the asymmetric divisions of Sox9+ liver CSCs and ameliorated liver injury. Mechanistically, FXR directs Sox9+ liver CSCs from symmetry to asymmetry via inhibition of Notch1 expression and activity. Deletion of FXR signaling or over-expression of Notch1 greatly increased Notch1 expression and activity along with ACD reduction. FXR inhibited Notch1 expression by directly binding to its promoter FXRE. FXR also positively regulated Numb expression, contributing to a feedback circuit, which decreased Notch1 activity and directed ACD. CONCLUSION Our findings suggest that FXR represses Notch1 expression and directs ACD of Sox9+ cells to prevent the development of liver cancer.
Collapse
Affiliation(s)
- Mi Chen
- College of Veterinary Medicine/College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chenxia Lu
- The Clinical Medical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Hanwen Lu
- College of Veterinary Medicine/College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junyi Zhang
- College of Veterinary Medicine/College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dan Qin
- College of Veterinary Medicine/College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shenghui Liu
- College of Veterinary Medicine/College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaodong Li
- Hubei Provincial Hospital of TCM, Hubei Provincial Academy of TCM, Wuhan, 430061, China
| | - Lisheng Zhang
- College of Veterinary Medicine/College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
35
|
Zheng X, Chen T, Jiang R, Zhao A, Wu Q, Kuang J, Sun D, Ren Z, Li M, Zhao M, Wang S, Bao Y, Li H, Hu C, Dong B, Li D, Wu J, Xia J, Wang X, Lan K, Rajani C, Xie G, Lu A, Jia W, Jiang C, Jia W. Hyocholic acid species improve glucose homeostasis through a distinct TGR5 and FXR signaling mechanism. Cell Metab 2021; 33:791-803.e7. [PMID: 33338411 DOI: 10.1016/j.cmet.2020.11.017] [Citation(s) in RCA: 241] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 07/31/2020] [Accepted: 11/20/2020] [Indexed: 02/08/2023]
Abstract
Hyocholic acid (HCA) and its derivatives are found in trace amounts in human blood but constitute approximately 76% of the bile acid (BA) pool in pigs, a species known for its exceptional resistance to type 2 diabetes. Here, we show that BA depletion in pigs suppressed secretion of glucagon-like peptide-1 (GLP-1) and increased blood glucose levels. HCA administration in diabetic mouse models improved serum fasting GLP-1 secretion and glucose homeostasis to a greater extent than tauroursodeoxycholic acid. HCA upregulated GLP-1 production and secretion in enteroendocrine cells via simultaneously activating G-protein-coupled BA receptor, TGR5, and inhibiting farnesoid X receptor (FXR), a unique mechanism that is not found in other BA species. We verified the findings in TGR5 knockout, intestinal FXR activation, and GLP-1 receptor inhibition mouse models. Finally, we confirmed in a clinical cohort, that lower serum concentrations of HCA species were associated with diabetes and closely related to glycemic markers.
Collapse
MESH Headings
- Animals
- Blood Glucose/analysis
- Cell Line
- Cholic Acids/blood
- Cholic Acids/chemistry
- Cholic Acids/pharmacology
- Cholic Acids/therapeutic use
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Glucagon-Like Peptide 1/metabolism
- Glucagon-Like Peptide-1 Receptor/antagonists & inhibitors
- Glucagon-Like Peptide-1 Receptor/metabolism
- Glucose/metabolism
- Humans
- Isoxazoles/pharmacology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, G-Protein-Coupled/deficiency
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction/drug effects
- Swine
Collapse
Affiliation(s)
- Xiaojiao Zheng
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Tianlu Chen
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Runqiu Jiang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210093, China
| | - Aihua Zhao
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Qing Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Junliang Kuang
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Dongnan Sun
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Zhenxing Ren
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Mengci Li
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Mingliang Zhao
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Shouli Wang
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yuqian Bao
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai 200233, China
| | - Huating Li
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai 200233, China
| | - Cheng Hu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai 200233, China
| | - Bing Dong
- National Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Defa Li
- National Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Jiayu Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Jialin Xia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Xuemei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Ke Lan
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Cynthia Rajani
- University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Guoxiang Xie
- University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Weiping Jia
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai 200233, China.
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China.
| | - Wei Jia
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; University of Hawaii Cancer Center, Honolulu, HI 96813, USA; School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
36
|
FXR in liver physiology: Multiple faces to regulate liver metabolism. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166133. [PMID: 33771667 DOI: 10.1016/j.bbadis.2021.166133] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 12/15/2022]
Abstract
The liver is the central metabolic hub which coordinates nutritional inputs and metabolic outputs. Food intake releases bile acids which can be sensed by the bile acid receptor FXR in the liver and the intestine. Hepatic and intestinal FXR coordinately regulate postprandial nutrient disposal in a network of interacting metabolic nuclear receptors. In this review we summarize and update the "classical roles" of FXR as a central integrator of the feeding state response, which orchestrates the metabolic processing of carbohydrates, lipids, proteins and bile acids. We also discuss more recent and less well studied FXR effects on amino acid, protein metabolism, autophagic turnover and inflammation. In addition, we summarize the recent understanding of how FXR signaling is affected by posttranslational modifications and by different FXR isoforms. These modifications and variations in FXR signaling might be considered when FXR is targeted pharmaceutically in clinical applications.
Collapse
|
37
|
Niss K, Jakobsson ME, Westergaard D, Belling KG, Olsen JV, Brunak S. Effects of active farnesoid X receptor on GLUTag enteroendocrine L cells. Mol Cell Endocrinol 2020; 517:110923. [PMID: 32702472 DOI: 10.1016/j.mce.2020.110923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/27/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022]
Abstract
Activated transcription factor (TF) farnesoid X receptor (FXR) represses glucagon-like peptide-1 (GLP-1) secretion in enteroendocrine L cells. This, in turn, reduces insulin secretion, which is triggered when β cells bind GLP-1. Preventing FXR activation could boost GLP-1 production and insulin secretion. Yet, FXR's broader role in L cell biology still lacks understanding. Here, we show that FXR is a multifaceted TF in L cells using proteomics and gene expression data generated on GLUTag L cells. Most striking, 252 proteins regulated upon glucose stimulation have their abundances neutralized upon FXR activation. Mitochondrial repression or glucose import block are likely mechanisms of this. Further, FXR physically targets bile acid metabolism proteins, growth factors and other TFs, regulates ChREBP, while extensive text-mining found 30 FXR-regulated proteins to be well-known in L cell biology. Taken together, this outlines FXR as a powerful TF, where GLP-1 secretion block is just one of many downstream effects.
Collapse
Affiliation(s)
- Kristoffer Niss
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Magnus E Jakobsson
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark; Department of Immunotechnology, Lund University, Medicon Village, 22100, Lund, Sweden
| | - David Westergaard
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark; Dept. of Health Technology, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Kirstine G Belling
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark; Dept. of Health Technology, Technical University of Denmark, DK-2800, Lyngby, Denmark.
| |
Collapse
|
38
|
Kim YS, Kim SG. Endoplasmic reticulum stress and autophagy dysregulation in alcoholic and non-alcoholic liver diseases. Clin Mol Hepatol 2020; 26:715-727. [PMID: 32951410 PMCID: PMC7641579 DOI: 10.3350/cmh.2020.0173] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022] Open
Abstract
Alcoholic and non-alcoholic liver diseases begin from an imbalance in lipid metabolism in hepatocytes as the earliest response. Both liver diseases share common disease features and stages (i.e., steatosis, hepatitis, cirrhosis, and hepatocellular carcinoma). However, the two diseases have differential pathogenesis and clinical symptoms. Studies have elucidated the molecular basis underlying similarities and differences in the pathogenesis of the diseases; the factors contributing to the progression of liver diseases include depletion of sulfhydryl pools, enhanced levels of reactive oxygen and nitrogen intermediates, increased sensitivity of hepatocytes to toxic cytokines, mitochondrial dysfunction, and insulin resistance. Endoplasmic reticulum (ER) stress, which is caused by the accumulation of misfolded proteins and calcium depletion, contributes to the pathogenesis, often causing catastrophic cell death. Several studies have demonstrated a mechanism by which ER stress triggers liver disease progression. Autophagy is an evolutionarily conserved process that regulates organelle turnover and cellular energy balance through decomposing damaged organelles including mitochondria, misfolded proteins, and lipid droplets. Autophagy dysregulation also exacerbates liver diseases. Thus, autophagy-related molecules can be potential therapeutic targets for liver diseases. Since ER stress and autophagy are closely linked to each other, an understanding of the molecules, gene clusters, and networks engaged in these processes would be of help to find new remedies for alcoholic and non-alcoholic liver diseases. In this review, we summarize the recent findings and perspectives in the context of the molecular pathogenesis of the liver diseases.
Collapse
Affiliation(s)
- Yun Seok Kim
- College of Pharmacy, Seoul National University, Seoul, Korea
| | - Sang Geon Kim
- College of Pharmacy, Seoul National University, Seoul, Korea.,College of Pharmacy, Dongguk University, Goyang, Korea
| |
Collapse
|
39
|
London E, Bloyd M, Stratakis CA. PKA functions in metabolism and resistance to obesity: lessons from mouse and human studies. J Endocrinol 2020; 246:R51-R64. [PMID: 32485681 PMCID: PMC7385994 DOI: 10.1530/joe-20-0035] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022]
Abstract
Both direct and indirect evidence demonstrate a central role for the cAMP-dependent protein kinase (PKA) signaling pathway in the regulation of energy balance and metabolism across multiple systems. However, the ubiquitous pattern of PKA expression across cell types poses a challenge in pinpointing its tissue-specific regulatory functions and further characterizing its many downstream effects in certain organs or cells. Mouse models of PKA deficiency and over-expression and studies in living cells have helped clarify PKA function in adipose tissue (AT), liver, adrenal, pancreas, and specific brain nuclei, as they pertain to energy balance and metabolic dysregulation. Limited studies in humans suggest differential regulation of PKA in AT of obese compared to lean individuals and an overall dysregulation of PKA signaling in obesity. Despite its complexity, under normal physiologic conditions, the PKA system is tightly regulated by changes in cAMP concentrations upstream via adenylate cyclase and downstream by phosphodiesterase-mediated cAMP degradation to AMP and by changes in PKA holoenzyme stability. Adjustments in the PKA system appear to be important to the development and maintenance of the obese state and its associated metabolic perturbations. In this review we discuss the important role of PKA in obesity and its involvement in resistance to obesity, through studies in humans and in mouse models, with a focus on the regulation of PKA in energy expenditure, intake behavior, and lipid and glucose metabolism.
Collapse
Affiliation(s)
- Edra London
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
| | - Michelle Bloyd
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
| | - Constantine A. Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
| |
Collapse
|
40
|
Dubois V, Gheeraert C, Vankrunkelsven W, Dubois‐Chevalier J, Dehondt H, Bobowski‐Gerard M, Vinod M, Zummo FP, Güiza F, Ploton M, Dorchies E, Pineau L, Boulinguiez A, Vallez E, Woitrain E, Baugé E, Lalloyer F, Duhem C, Rabhi N, van Kesteren RE, Chiang C, Lancel S, Duez H, Annicotte J, Paumelle R, Vanhorebeek I, Van den Berghe G, Staels B, Lefebvre P, Eeckhoute J. Endoplasmic reticulum stress actively suppresses hepatic molecular identity in damaged liver. Mol Syst Biol 2020; 16:e9156. [PMID: 32407006 PMCID: PMC7224309 DOI: 10.15252/msb.20199156] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023] Open
Abstract
Liver injury triggers adaptive remodeling of the hepatic transcriptome for repair/regeneration. We demonstrate that this involves particularly profound transcriptomic alterations where acute induction of genes involved in handling of endoplasmic reticulum stress (ERS) is accompanied by partial hepatic dedifferentiation. Importantly, widespread hepatic gene downregulation could not simply be ascribed to cofactor squelching secondary to ERS gene induction, but rather involves a combination of active repressive mechanisms. ERS acts through inhibition of the liver-identity (LIVER-ID) transcription factor (TF) network, initiated by rapid LIVER-ID TF protein loss. In addition, induction of the transcriptional repressor NFIL3 further contributes to LIVER-ID gene repression. Alteration to the liver TF repertoire translates into compromised activity of regulatory regions characterized by the densest co-recruitment of LIVER-ID TFs and decommissioning of BRD4 super-enhancers driving hepatic identity. While transient repression of the hepatic molecular identity is an intrinsic part of liver repair, sustained disequilibrium between the ERS and LIVER-ID transcriptional programs is linked to liver dysfunction as shown using mouse models of acute liver injury and livers from deceased human septic patients.
Collapse
Affiliation(s)
- Vanessa Dubois
- Inserm, CHU LilleInstitut Pasteur de LilleU1011‐EGIDUniversity of LilleLilleFrance
- Present address:
Clinical and Experimental EndocrinologyDepartment of Chronic Diseases, Metabolism and Ageing (CHROMETA)KU LeuvenLeuvenBelgium
| | - Céline Gheeraert
- Inserm, CHU LilleInstitut Pasteur de LilleU1011‐EGIDUniversity of LilleLilleFrance
| | - Wouter Vankrunkelsven
- Clinical Division and Laboratory of Intensive Care MedicineDepartment of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
| | | | - Hélène Dehondt
- Inserm, CHU LilleInstitut Pasteur de LilleU1011‐EGIDUniversity of LilleLilleFrance
| | | | - Manjula Vinod
- Inserm, CHU LilleInstitut Pasteur de LilleU1011‐EGIDUniversity of LilleLilleFrance
| | | | - Fabian Güiza
- Clinical Division and Laboratory of Intensive Care MedicineDepartment of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
| | - Maheul Ploton
- Inserm, CHU LilleInstitut Pasteur de LilleU1011‐EGIDUniversity of LilleLilleFrance
| | - Emilie Dorchies
- Inserm, CHU LilleInstitut Pasteur de LilleU1011‐EGIDUniversity of LilleLilleFrance
| | - Laurent Pineau
- Inserm, CHU LilleInstitut Pasteur de LilleU1011‐EGIDUniversity of LilleLilleFrance
| | - Alexis Boulinguiez
- Inserm, CHU LilleInstitut Pasteur de LilleU1011‐EGIDUniversity of LilleLilleFrance
| | - Emmanuelle Vallez
- Inserm, CHU LilleInstitut Pasteur de LilleU1011‐EGIDUniversity of LilleLilleFrance
| | - Eloise Woitrain
- Inserm, CHU LilleInstitut Pasteur de LilleU1011‐EGIDUniversity of LilleLilleFrance
| | - Eric Baugé
- Inserm, CHU LilleInstitut Pasteur de LilleU1011‐EGIDUniversity of LilleLilleFrance
| | - Fanny Lalloyer
- Inserm, CHU LilleInstitut Pasteur de LilleU1011‐EGIDUniversity of LilleLilleFrance
| | - Christian Duhem
- Inserm, CHU LilleInstitut Pasteur de LilleU1011‐EGIDUniversity of LilleLilleFrance
| | - Nabil Rabhi
- UMR 8199 ‐ EGIDCNRSInstitut Pasteur de LilleUniversity of LilleLilleFrance
| | - Ronald E van Kesteren
- Center for Neurogenomics and Cognitive ResearchNeuroscience Campus AmsterdamVU UniversityAmsterdamThe Netherlands
| | - Cheng‐Ming Chiang
- Simmons Comprehensive Cancer CenterDepartments of Biochemistry and PharmacologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Steve Lancel
- Inserm, CHU LilleInstitut Pasteur de LilleU1011‐EGIDUniversity of LilleLilleFrance
| | - Hélène Duez
- Inserm, CHU LilleInstitut Pasteur de LilleU1011‐EGIDUniversity of LilleLilleFrance
| | | | - Réjane Paumelle
- Inserm, CHU LilleInstitut Pasteur de LilleU1011‐EGIDUniversity of LilleLilleFrance
| | - Ilse Vanhorebeek
- Clinical Division and Laboratory of Intensive Care MedicineDepartment of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
| | - Greet Van den Berghe
- Clinical Division and Laboratory of Intensive Care MedicineDepartment of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
| | - Bart Staels
- Inserm, CHU LilleInstitut Pasteur de LilleU1011‐EGIDUniversity of LilleLilleFrance
| | - Philippe Lefebvre
- Inserm, CHU LilleInstitut Pasteur de LilleU1011‐EGIDUniversity of LilleLilleFrance
| | - Jérôme Eeckhoute
- Inserm, CHU LilleInstitut Pasteur de LilleU1011‐EGIDUniversity of LilleLilleFrance
| |
Collapse
|
41
|
van Nierop FS, Meessen ECE, Nelissen KGM, Achterbergh R, Lammers LA, Vaz FM, Mathôt RAA, Klümpen HJ, Olde Damink SW, Schaap FG, Romijn JA, Kemper EM, Soeters MR. Differential effects of a 40-hour fast and bile acid supplementation on human GLP-1 and FGF19 responses. Am J Physiol Endocrinol Metab 2019; 317:E494-E502. [PMID: 31237451 DOI: 10.1152/ajpendo.00534.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bile acids, glucagon-like peptide-1 (GLP-1), and fibroblast growth factor 19 (FGF19) play an important role in postprandial metabolism. In this study, we investigated the postprandial bile acid response in plasma and its relation to insulin, GLP-1, and FGF19. First, we investigated the postprandial response to 40-h fast. Then we administered glycine-conjugated deoxycholic acid (gDCA) with the meal. We performed two separate observational randomized crossover studies on healthy, lean men. In experiment 1: we tested 4-h mixed meal after an overnight fast and a 40-h fast. In experiment 2, we tested a 4-h mixed meal test with and without gDCA supplementation. Both studies measured postprandial glucose, insulin, bile acids, GLP-1, and FGF19. In experiment 1, 40 h of fasting induced insulin resistance and increased postprandial GLP-1 and FGF19 concentrations. After an overnight fast, we observed strong correlations between postprandial insulin and gDCA levels at specific time points. In experiment 2, administration of gDCA increased GLP-1 levels and lowered late postprandial glucose without effect on FGF19. Energy expenditure was not affected by gDCA administration. Unexpectedly, 40 h of fasting increased both GLP-1 and FGF19, where the former appeared bile acid independent and the latter bile acid dependent. Second, a single dose of gDCA increased postprandial GLP-1. Therefore, our data add complexity to the physiological regulation of the enterokines GLP-1 and FGF19 by bile acids.
Collapse
Affiliation(s)
- F Samuel van Nierop
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, The Netherlands
| | - Emma C E Meessen
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, The Netherlands
| | - Kyra G M Nelissen
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, The Netherlands
| | - Roos Achterbergh
- Department of Internal Medicine, Amsterdam University Medical Centers, The Netherlands
| | - Laureen A Lammers
- Department of Hospital Pharmacy, Amsterdam University Medical Centers, The Netherlands
| | - Frédéric M Vaz
- Department of Clinical Chemistry, Amsterdam University Medical Centers, The Netherlands
| | - Ron A A Mathôt
- Department of Hospital Pharmacy, Amsterdam University Medical Centers, The Netherlands
| | - Heinz-Josef Klümpen
- Department of Medical Oncology, Amsterdam University Medical Centers, The Netherlands
| | - Steven W Olde Damink
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - Frank G Schaap
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, Aachen, Germany
| | - Johannes A Romijn
- Department of Internal Medicine, Amsterdam University Medical Centers, The Netherlands
| | - E Marleen Kemper
- Department of Hospital Pharmacy, Amsterdam University Medical Centers, The Netherlands
| | - Maarten R Soeters
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, The Netherlands
| |
Collapse
|
42
|
Flynn CR, Albaugh VL, Abumrad NN. Metabolic Effects of Bile Acids: Potential Role in Bariatric Surgery. Cell Mol Gastroenterol Hepatol 2019; 8:235-246. [PMID: 31075353 PMCID: PMC6664228 DOI: 10.1016/j.jcmgh.2019.04.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 02/08/2023]
Abstract
Bariatric surgery is the most effective and durable treatment for morbid obesity, with an unexplained yet beneficial side effect of restoring insulin sensitivity and improving glycemia, often before weight loss is observed. Among the many contributing mechanisms often cited, the altered handling of intestinal bile acids is of considerable therapeutic interest. Here, we review a growing body of literature examining the metabolic effects of bile acids ranging from their physical roles in dietary fat handling within the intestine to their functions as endocrine and paracrine hormones in potentiating responses to bariatric surgery. The roles of 2 important bile acid receptors, Takeda G-protein coupled receptor (also known as G-protein coupled bile acid receptor) and farnesoid X receptor, are highlighted as is downstream signaling through glucagon-like polypeptide 1 and its cognate receptor. Additional improvements in other phenotypes and potential contributions of commensal gut bacteria, such as Akkermansia muciniphila, which are manifest after Roux-en-Y gastric bypass and other emulations, such as gallbladder bile diversion to the ileum, are also discussed.
Collapse
Affiliation(s)
- Charles R. Flynn
- Correspondence Address correspondence to: Charles R. Flynn, PhD, 1161 21st Avenue S, CCC-2308 MCN, Nashville, Tennessee 37232-2730. fax: (615) 343-6456.
| | | | | |
Collapse
|
43
|
Carstensen-Kirberg M, Röhrig K, Niersmann C, Ouwens DM, Belgardt BF, Roden M, Herder C. Sfrp5 increases glucose-stimulated insulin secretion in the rat pancreatic beta cell line INS-1E. PLoS One 2019; 14:e0213650. [PMID: 30921355 PMCID: PMC6438539 DOI: 10.1371/journal.pone.0213650] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 02/26/2019] [Indexed: 11/29/2022] Open
Abstract
Previous studies reported that secreted frizzled-related protein-5 (Sfrp5) decreases beta cell proliferation and increases fasting insulin levels, but studies on direct effects of Sfrp5 on insulin secretion and its underlying mechanisms are missing. This study examined effects of Sfrp5 on (i) beta cell viability and proliferation, (ii) basal and glucose-stimulated insulin secretion and (iii) canonical and non-canonical Wnt signalling pathways. We incubated rat INS-1E cells with 0.1, 1 or 5 μg/ml recombinant Sfrp5 for 24h. We measured basal and glucose-stimulated insulin secretion at glucose concentrations of 2.5 and 20 mmol/l. Phosphorylated and total protein content as well as mRNA levels of markers of cell proliferation, canonical and non-canonical Wnt signalling pathways were examined using Western blotting and real-time PCR. Differences between treatments were analysed by repeated measurement one-way ANOVA or Friedman’s test followed by correction for multiple testing using the Benjamini-Hochberg procedure. At 5 μg/ml, Sfrp5 reduced mRNA levels of cyclin-B1 by 25% (p<0.05). At 1 and 5 μg/ml, Sfrp5 increased glucose-stimulated insulin secretion by 24% and by 34% (both p<0.05), respectively, but had no impact on basal insulin secretion. Sfrp5 reduced the phosphorylation of the splicing forms p46 and p54 of JNK by 39% (p<0.01) and 49% (p<0.05), respectively. In conclusion, Sfrp5 reduced markers of cell proliferation, but increased in parallel dose-dependently glucose-stimulated insulin secretion in INS-1E cells. This effect is likely mediated by reduced JNK activity, an important component of the non-canonical Wnt signalling pathway.
Collapse
Affiliation(s)
- Maren Carstensen-Kirberg
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- * E-mail:
| | - Karin Röhrig
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - Corinna Niersmann
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
| | - D. Margriet Ouwens
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Bengt F. Belgardt
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Institute for Beta Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Düsseldorf, Germany
- Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
44
|
Hou Y, Fan W, Yang W, Samdani AQ, Jackson AO, Qu S. Farnesoid X receptor: An important factor in blood glucose regulation. Clin Chim Acta 2019; 495:29-34. [PMID: 30910597 DOI: 10.1016/j.cca.2019.03.1626] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 03/13/2019] [Accepted: 03/21/2019] [Indexed: 12/12/2022]
Abstract
Farnesoid X receptor (FXR) is a transcription factor that can be activated by bile acid as well as influenced bile acid metabolism. β-cell bile acid metabolism is mediated by FXR and closely related to the regulation of blood glucose (BG). FXR can regulate BG through multiple pathways. This review summarises recent studies on FXR regulation of BG balance via bile acid regulation, lowering glucagon-like peptide-1 (GLP-1), inhibiting gluconeogenesis, increasing insulin secretion and enhancing insulin sensitivity. In addition, the current review provides additional insight into the relationship between FXR and BG which may provide a new theoretical basis for further study on the role of FXR.
Collapse
Affiliation(s)
- Yangfeng Hou
- Clinic Medicine Department, Hengyang Medical School, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Wenjing Fan
- Pathophysiology Department, University of South China, Hengyang City, Hunan Province 421001, PR China; Emergency Department, The Second Affiliated Hospital, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Wenling Yang
- Clinic Medicine Department, Hengyang Medical School, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Abdul Qadir Samdani
- Spinal Surgery Department, The First Affiliated Hospital, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Ampadu Okyere Jackson
- International College, Hengyang Medical School, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Shunlin Qu
- Pathophysiology Department, University of South China, Hengyang City, Hunan Province 421001, PR China.
| |
Collapse
|