1
|
Zafer M, Tavaglione F, Romero-Gómez M, Loomba R. Review Article: GLP-1 Receptor Agonists and Glucagon/GIP/GLP-1 Receptor Dual or Triple Agonists-Mechanism of Action and Emerging Therapeutic Landscape in MASLD. Aliment Pharmacol Ther 2025; 61:1872-1888. [PMID: 40364529 DOI: 10.1111/apt.70196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/14/2025] [Accepted: 05/03/2025] [Indexed: 05/15/2025]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is primarily managed through diet and lifestyle modifications. However, these behavioural interventions alone may not achieve disease regression or remission, and maintaining long-term adherence is challenging. Incretin mimetics and other gastrointestinal hormones targeting the pleiotropic pathophysiological pathways underlying MASLD have now emerged as promising disease-modifying therapies. AIMS This is a comprehensive review summarising the role of glucagon-like peptide-1 (GLP-1) receptor agonists and glucagon/glucose-dependent insulinotropic polypeptide (GIP)/GLP-1 receptor dual or triple agonists in the treatment of metabolic dysfunction-associated steatohepatitis (MASH). METHODS Only clinical trials with endpoints assessed by liver histology were included for a robust evaluation of therapeutic efficacy. RESULTS Recent evidence from phase 2 clinical trials for MASH demonstrated that pharmacological agents based on GLP-1 receptor agonism are effective in improving disease activity. Additionally, tirzepatide and survodutide showed potential clinical benefits in reducing fibrosis. Other cardiometabolic benefits observed include weight loss and improvements in glycaemic control and lipid profile. Adherence to treatment may be limited by gastrointestinal side effects, though they were found to be generally mild to moderate in severity. An interim analysis of the semaglutide phase 3 trial confirmed its efficacy in improving steatohepatitis and demonstrated its potential to improve fibrosis. CONCLUSIONS GLP-1 receptor agonists, alone or in combination with GIP and/or glucagon receptor agonists, represent promising, effective pharmacotherapies for the treatment of MASLD/MASH. Larger and longer-duration clinical trials are needed to further evaluate the efficacy and safety of GIP receptor and glucagon receptor agonism.
Collapse
Affiliation(s)
- Maryam Zafer
- MASLD Research Center, Division of Gastroenterology and Hepatology, University of California at San Diego, La Jolla, California, USA
| | - Federica Tavaglione
- MASLD Research Center, Division of Gastroenterology and Hepatology, University of California at San Diego, La Jolla, California, USA
| | - Manuel Romero-Gómez
- UCM Digestive Diseases and Ciberehd, Virgen Del Rocío University Hospital, Institute of Biomedicine of Seville (CSIC/HUVR/US), University of Seville, Seville, Spain
| | - Rohit Loomba
- MASLD Research Center, Division of Gastroenterology and Hepatology, University of California at San Diego, La Jolla, California, USA
- School of Public Health, University of California at San Diego, La Jolla, California, USA
| |
Collapse
|
2
|
Marjot T, Armstrong MJ, Stine JG. Skeletal muscle and MASLD: Mechanistic and clinical insights. Hepatol Commun 2025; 9:e0711. [PMID: 40408301 DOI: 10.1097/hc9.0000000000000711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 05/25/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is intrinsically linked with widespread metabolic perturbations, including within skeletal muscle. Indeed, MASLD is associated with a range of skeletal muscle abnormalities, including insulin resistance, myosteatosis, and sarcopenia, which all converge on the liver to drive disease progression and adverse patient outcomes. This review explores the mechanistic links between skeletal muscle and MASLD, including the role of abnormal glycemic control, systemic inflammation, and disordered myokine signaling. In turn, we discuss how intrinsic liver pathology can feed back to further exacerbate poor skeletal muscle health. Given the central importance of skeletal muscle in MASLD pathogenesis, it offers clinicians an opportunity to intervene for therapeutic benefit. We, therefore, summarize the role of nutrition and physical activity on skeletal muscle mass, quality, and metabolic function and discuss the knock-on effect this has on the liver. An awareness of these treatment strategies is particularly important in the era of effective pharmacological and surgical weight loss interventions, which can be associated with the development of sarcopenia. Finally, we highlight a number of promising drug agents in the clinical trial pipeline that specifically target skeletal muscle in an attempt to improve metabolic and physical functioning.
Collapse
Affiliation(s)
- Thomas Marjot
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Radcliffe Department of Medicine, Churchill Hospital, University of Oxford, Oxford, UK
- Translational Gastroenterology and Liver Unit (TGLU), Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Matthew J Armstrong
- Liver Unit, Queen Elizabeth University Hospital Birmingham, Birmingham, UK
- Birmingham NIHR Biomedical Research Centre, University of Birmingham, Birmingham, UK
| | - Jonathan G Stine
- Department of Medicine, Division of Gastroenterology and Hepatology, Penn State Health-Milton S. Hershey Medical Centre, Hershey, Pennsylvania, USA
| |
Collapse
|
3
|
Li Z, Jin Y, Zhao H, Gu Y, Zhang Y, Cheng S, Zhang L, He P, Liu X, Jia Y. Aurantio-Obtusin Regulates Gut Microbiota and Serum Metabolism to Alleviate High-Fat Diet-Induced Obesity-Associated Non-Alcoholic Fatty Liver Disease in Mice. Phytother Res 2025; 39:1946-1965. [PMID: 39953693 DOI: 10.1002/ptr.8459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/26/2025] [Accepted: 01/31/2025] [Indexed: 02/17/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a progressive condition with limited effective treatments. This study investigated the therapeutic effects of Aurantio-obtusin (AO), a bioactive compound from Cassiae Semen, on obesity-associated NAFLD. An obesity-related NAFLD model was established in ApoE -/- mice fed a high-fat diet (HFD) for 24 weeks, with AO administered during the last 16 weeks. Mouse body weight, adipose tissue weights, liver weights, serum lipid levels, hepatic steatosis, inflammatory damage, and colonic tissue barrier integrity were evaluated. Gut microbial communities and serum metabolic profiles were analyzed using 16S rRNA sequencing and untargeted metabolomics. Hepatic lipid metabolism-related gene expression was assessed using molecular biology techniques. AO treatment significantly ameliorated HFD-induced adiposity, hyperlipidemia, and NAFLD symptoms. It preserved intestinal barrier integrity, modulated gut microbial composition by enriching beneficial taxa, and improved serum metabolic profiles. AO favorably adjusted hepatic lipid metabolism by upregulating PPARα and CPT1A while downregulating SREBP1, FASN, and SCD1. Correlation analysis revealed significant associations among gut microbial composition, serum metabolites, and disease indicators. AO's therapeutic benefits in NAFLD might be attributed to its ability to modulate gut microbial community composition and serum metabolic profile, enhance intestinal barrier function, and regulate hepatic lipid metabolism gene expression. AO presents a promising therapeutic agent for obesity-associated NAFLD, warranting further investigation into its potential clinical applications.
Collapse
Affiliation(s)
- Zhaoyong Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yao Jin
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Huashan Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuyan Gu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yaxin Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Saibo Cheng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Lifang Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Peikun He
- Department of Infectious Diseases, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Xiaoyu Liu
- Pingshan Hospital, Southern Medical University, Shenzhen, Guangdong, China
- Pingshan District Peoples' Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Yuhua Jia
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Chew V. Why weight loss is only half the battle: The epigenetic memory of adipose tissue. J Hepatol 2025; 82:938-939. [PMID: 39833020 DOI: 10.1016/j.jhep.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/22/2025]
Affiliation(s)
- Valerie Chew
- Translational Immunology Institute (TII), SingHealth-DukeNUS Academic Medical Centre, Singapore 169856, Singapore.
| |
Collapse
|
5
|
Byrne CD, Armandi A, Pellegrinelli V, Vidal-Puig A, Bugianesi E. Μetabolic dysfunction-associated steatotic liver disease: a condition of heterogeneous metabolic risk factors, mechanisms and comorbidities requiring holistic treatment. Nat Rev Gastroenterol Hepatol 2025; 22:314-328. [PMID: 39962331 DOI: 10.1038/s41575-025-01045-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/27/2025] [Indexed: 03/09/2025]
Abstract
Μetabolic dysfunction-associated steatotic liver disease (MASLD) comprises a heterogeneous condition in the presence of steatotic liver. There can be a hierarchy of metabolic risk factors contributing to the severity of metabolic dysfunction and, thereby, the associated risk of both liver and extrahepatic outcomes, but the precise ranking and combination of metabolic syndrome (MetS) traits that convey the highest risk of major adverse liver outcomes and extrahepatic disease complications remains uncertain. Insulin resistance, low-grade inflammation, atherogenic dyslipidaemia and hypertension are key to the mechanisms of liver and extrahepatic complications. The liver is pivotal in MetS progression as it regulates lipoprotein metabolism and secretes substances that affect insulin sensitivity and inflammation. MASLD affects the kidneys, heart and the vascular system, contributing to hypertension and oxidative stress. To address the global health burden of MASLD, intensified by obesity and type 2 diabetes mellitus epidemics, a holistic, multidisciplinary approach is essential. This approach should focus on both liver disease management and cardiometabolic risk factors. This Review examines the link between metabolic dysfunction and liver dysfunction and extrahepatic disease outcomes, the diverse mechanisms in MASLD due to metabolic dysfunction, and a comprehensive, personalized management model for patients with MASLD.
Collapse
Affiliation(s)
- Christopher D Byrne
- National Institute for Health and Care Research, Southampton Biomedical Research Centre, University Hospital Southampton and University of Southampton, Southampton, UK
| | - Angelo Armandi
- Division of Gastroenterology and Hepatology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Vanessa Pellegrinelli
- Institute of Metabolic Science, MRC MDU Unit, University of Cambridge, Cambridge, UK
- Centro de Investigacion Principe Felipe, Valencia, Spain
| | - Antonio Vidal-Puig
- Institute of Metabolic Science, MRC MDU Unit, University of Cambridge, Cambridge, UK
- Centro de Investigacion Principe Felipe, Valencia, Spain
| | - Elisabetta Bugianesi
- Division of Gastroenterology and Hepatology, Department of Medical Sciences, University of Turin, Turin, Italy.
| |
Collapse
|
6
|
Ayares G, Diaz LA, Idalsoaga F, Alkhouri N, Noureddin M, Bataller R, Loomba R, Arab JP, Arrese M. MetALD: New Perspectives on an Old Overlooked Disease. Liver Int 2025; 45:e70017. [PMID: 40179033 PMCID: PMC11967760 DOI: 10.1111/liv.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/02/2025] [Accepted: 01/24/2025] [Indexed: 04/05/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) and alcohol-associated liver disease (ALD) are the major contributors to the liver disease burden globally. The rise in these conditions is linked to obesity, type 2 diabetes, metabolic syndrome and increased alcohol consumption. MASLD and ALD share risk factors, pathophysiology and histological features but differ in their thresholds for alcohol use, and the ALD definition does not require the presence of metabolic dysfunction. A recent multi-society consensus overhauled the nomenclature of liver steatosis and introduced the term MetALD to describe patients with metabolic dysfunction who drink more than those with MASLD and less than those with ALD. This new terminology aims to enhance the understanding and management of liver disease but poses challenges, such as the need to accurately measure alcohol consumption in research and clinical practice settings. Recent studies show that MetALD has significant implications for patient management, as it is associated with increased mortality risks and more severe liver outcomes compared to MASLD alone. MetALD patients face increased risks of liver disease progression, cancer and cardiovascular disease. The diagnosis of MetALD involves the adequate quantification of alcohol use through standardised questionnaires and/or biomarkers as well as proper assessment of liver disease stage and progression risk using non-invasive tools including serologic markers, imaging, elastography techniques and genetic testing. Effective management requires addressing both metabolic and alcohol-related factors to improve outcomes. This review intends to provide a comprehensive overview of MetALD, covering pathogenesis, potential diagnostic approaches, management strategies and emerging therapies.
Collapse
Affiliation(s)
- Gustavo Ayares
- Departamento de GastroenterologíaEscuela de Medicina, Pontificia Universidad Católica de ChileSantiagoChile
- Escuela de Medicina, Universidad Finis TerraeSantiagoChile
| | - Luis Antonio Diaz
- Departamento de GastroenterologíaEscuela de Medicina, Pontificia Universidad Católica de ChileSantiagoChile
- MASLD Research Center, Division of Gastroenterology and HepatologyUniversity of California San DiegoCaliforniaUSA
| | - Francisco Idalsoaga
- Departamento de GastroenterologíaEscuela de Medicina, Pontificia Universidad Católica de ChileSantiagoChile
- Division of Gastroenterology Department of MedicineSchulich School of Medicine, Western University & London Health Sciences CentreLondonOntarioCanada
| | - Naim Alkhouri
- Department of HepatologyArizona Liver HealthChandlerArizonaUSA
| | | | - Ramon Bataller
- Liver UnitHospital Clinic and Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS)BarcelonaSpain
| | - Rohit Loomba
- MASLD Research Center, Division of Gastroenterology and HepatologyUniversity of California San DiegoCaliforniaUSA
| | - Juan Pablo Arab
- Departamento de GastroenterologíaEscuela de Medicina, Pontificia Universidad Católica de ChileSantiagoChile
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal MedicineVirginia Commonwealth University School of MedicineVirginiaUSA
| | - Marco Arrese
- Departamento de GastroenterologíaEscuela de Medicina, Pontificia Universidad Católica de ChileSantiagoChile
| |
Collapse
|
7
|
Zhang S, Yu J, Bai S, Li S, Qiu Q, Kong X, Xiang C, Liu Z, Yu P, Teng Y. Compound 3d Attenuates Metabolic Dysfunction-Associated Steatohepatitis via Peroxisome Proliferator-Activated Receptor Pathway Activation and Inhibition of Inflammatory and Apoptotic Signaling. Metabolites 2025; 15:296. [PMID: 40422873 DOI: 10.3390/metabo15050296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/17/2025] [Accepted: 04/22/2025] [Indexed: 05/28/2025] Open
Abstract
Objectives: Metabolic dysfunction-associated steatohepatitis (MASH) lacks effective therapies. This study aimed to evaluate the therapeutic potential of compound 3d, a novel elafibranor derivative, focusing on its dual mechanisms of PPAR pathway activation and p38 MAPK signaling inhibition. Methods: Integrated in vitro and in vivo approaches were employed. In vitro, free fatty acid (FFA)-induced lipid accumulation in L02 hepatocytes and lipopolysaccharides (LPSs)-stimulated inflammatory responses in RAW264.7 macrophages were used to evaluate lipid metabolism and anti-inflammatory effects. In vivo, a high-fat diet (HFD)-induced MASH model in C57BL/6 mice assessed serum biochemical parameters (triglycerides (TGs), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), alanine aminotransferase (ALT), aspartate transaminase (AST), tumor necrosis factor-α (TNF-α), nitric oxide (NO), and interleukin-6 (IL-6)), liver histopathology (H&E, Oil Red O, Masson staining), and proteomic profiling. Gut microbiota composition was analyzed via 16S rRNA sequencing. Western blotting quantified PPAR isoforms (γ/δ), downstream targets (Acox1, EHHADH, Acaa1), and p38 MAPK pathway proteins (p-p38, caspase-8, Bcl-2). Results: In vitro, 3d significantly reduced lipid accumulation (reduction in TG, p < 0.01) and inflammation (decrease in ALT activity, p < 0.05) in hepatocytes, while suppressing LPSs-induced TNF-α (63% reduction), NO (51% decrease), and IL-6 (48% reduction) in macrophages (p < 0.01). In vivo, 3d (30 mg/kg) lowered serum TG (39% decrease), TC (32% reduction), LDL-C (45% decline), and TNF-α (57% reduction) in HFD-fed mice (p < 0.05 vs. model), normalized AST/ALT levels, and ameliorated hepatic steatosis, ballooning, and fibrosis. Proteomics demonstrated PPARγ/δ activation (2.3-3.1-fold upregulation of Acox1, EHHADH, Acaa1; p < 0.001) and p38 MAPK pathway inhibition (54% reduction in p-p38, 61% decrease in caspase-8; 1.8-fold increase in Bcl-2; p < 0.01). Gut microbiota analysis revealed enrichment of beneficial taxa (Lactobacillus: 2.7-fold increase; Bifidobacterium: 1.9-fold rise) and reduced pathogenic Proteobacteria (68% decrease, p < 0.05). Conclusions: Compound 3d alleviates MASH via PPAR-mediated lipid metabolism enhancement and p38 MAPK-driven inflammation/apoptosis suppression, with additional gut microbiota modulation. These findings highlight 3d as a multi-target therapeutic candidate for MASH.
Collapse
Affiliation(s)
- Shouqing Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jiajia Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Sule Bai
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuhan Li
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Quanyuan Qiu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiangshun Kong
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Cen Xiang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhen Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuou Teng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
8
|
Banerjee M, Song J, Yan B, Wu H, Norouzi S, Sengoku T, Sharma S, Fan TWM, Lee E, He D, Wang C, Liu J, Schmitt TM, Gao T, Weiss HL, Li J, Evers BM. Neurotensin promotes hepatic steatosis by regulating lipid uptake and mitochondrial adaptation in hepatocytes. Cell Death Dis 2025; 16:347. [PMID: 40287434 PMCID: PMC12033321 DOI: 10.1038/s41419-025-07664-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 04/07/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a multifactorial disease characterized by hepatic steatosis. Mitochondrial dysfunction resulting in the incomplete digestion of surplus fat is one of the key factors that lead to hepatic steatosis but the reason for this remains unclear. We investigated the role of neurotensin (NTS), a gut hormone, in inducing maladaptive fat metabolism in steatotic liver. We identify CD36 and PGC1α, two critical drivers of MASLD, as direct NTS signaling targets in the liver. NTS upregulates CD36, a free fatty acid receptor, in hepatocytes and promotes long chain lipid uptake. Conversely, NTS inhibits PGC1α, which acts as a lipid sensor and translocates to the nucleus to activate lipid catabolism-related genes in an AMPK-dependent manner. Thus, a high fat diet decreases the fatty acid oxidation and oxidative phosphorylation capacity of the liver and hepatocytes from NTS or NTS receptor 1 (NTSR1) wild type mice; whereas NTS deficiency preserves the lipid metabolism capacity of the liver. NTS signaling is significantly upregulated in MASLD and in metabolic dysfunction-associated steatohepatitis (MASH) human liver samples when compared to normal livers, which correlates with the expression of CD36 and oxidative phosphorylation proteins. These findings provide critical mechanistic insights into the maladaptive fat metabolism noted with steatosis in mice and humans and suggest novel strategies for therapeutic intervention of MASLD, which affects nearly one-quarter of the global population.
Collapse
Affiliation(s)
- Moumita Banerjee
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Jun Song
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Department of Surgery, University of Kentucky, Lexington, KY, USA
| | - Baoxiang Yan
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Haoming Wu
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | | | - Tomoko Sengoku
- Redox Metabolism Shared Resource Facility, University of Kentucky, Lexington, KY, USA
| | - Savita Sharma
- Redox Metabolism Shared Resource Facility, University of Kentucky, Lexington, KY, USA
| | - Teresa W M Fan
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Eun Lee
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY, USA
| | - Daheng He
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Bioinformatics, Biostatistics and Bioinformatics Shared Resource Facility, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Division of Cancer Biostatistics, Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Bioinformatics, Biostatistics and Bioinformatics Shared Resource Facility, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Division of Cancer Biostatistics, Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
| | - Jinpeng Liu
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Bioinformatics, Biostatistics and Bioinformatics Shared Resource Facility, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Division of Cancer Biostatistics, Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
| | - Timothy M Schmitt
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS, USA
| | - Tianyan Gao
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Heidi L Weiss
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Division of Cancer Biostatistics, Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
| | - Jing Li
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Department of Surgery, University of Kentucky, Lexington, KY, USA
| | - B Mark Evers
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
- Department of Surgery, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
9
|
Wang JX, Liu XZ, Guo Z, Zhang HL, Qi L, Liu J, Liu P, Xie GX, Wang XN. Differences in Fatty Acid Metabolism between MCDD and HFD Induced Metabolic Dysfunction-associated Fatty Liver Disease Model Mice. Biol Proced Online 2025; 27:14. [PMID: 40229695 PMCID: PMC11998272 DOI: 10.1186/s12575-025-00276-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/28/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND The global incidence of metabolic dysfunction-associated fatty liver disease (MAFLD) is increasing annually, which has become a major public-health concern. MAFLD is typically associated with obesity, hyperlipemia, or metabolic syndrome. Dietary induction is one of the most common methods for preparing animal models of MAFLD. However, there are phenotypic differences between methionine-choline-deficient diet (MCDD) and high fat diet (HFD) models. METHODS To explore the differences in hepatic fatty acid metabolism between MCDD and HFD induced MAFLD, we analyzed serum and liver tissue from the two MAFLD models. RESULTS We found that liver fat accumulation and liver function damage were common pathological features in both MAFLD models. Furthermore, in the MCDD model, the expression of hepatic fatty acid transport proteins increased, while the expression of hepatic fatty acid efflux proteins and mRNA decreased, along with a decrease in blood lipid levels. In the HFD model, the expression of hepatic fatty acid uptake proteins, efflux proteins and efflux mRNA increased, along with an increase in blood lipid levels. CONCLUSION Impaired fatty acid oxidation and increased hepatic fatty acid uptake play key roles in the pathogenesis of the two MAFLD models. The inverse changes in de novo lipogenesis and fatty acid efflux may represent an important pathological mechanism that leads to the phenotypic differences between the MCDD and HFD models.
Collapse
Affiliation(s)
- Jia-Xuan Wang
- Institute of Interdisciplinary Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Hepatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xin-Zhu Liu
- Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Zhen Guo
- Institute of Interdisciplinary Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Sichuan, 646000, China
| | - Hui-Lin Zhang
- Institute of Interdisciplinary Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li Qi
- Institute of Interdisciplinary Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jia Liu
- Institute of Interdisciplinary Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ping Liu
- Institute of Interdisciplinary Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Guo-Xiang Xie
- Human Metabolomics Institute, Inc., Shenzhen, 518109, Guangdong, China.
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Xiao-Ning Wang
- Institute of Interdisciplinary Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
10
|
Sehgal R, Jähnert M, Lazaratos M, Speckmann T, Schumacher F, Kleuser B, Ouni M, Jonas W, Schürmann A. Altered liver lipidome markedly overlaps with human plasma lipids at diabetes risk and reveals adipose-liver interaction. J Lipid Res 2025; 66:100767. [PMID: 40044043 PMCID: PMC11997378 DOI: 10.1016/j.jlr.2025.100767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/20/2025] [Accepted: 02/28/2025] [Indexed: 04/03/2025] Open
Abstract
Present study explores the role of liver lipidome in driving T2D-associated metabolic changes. Elevated liver triacylglycerols, reduced PUFAs, and 86 differentially abundant lipid species were identified in diabetes-prone mice. Of these altered lipid species, 82 markedly overlap with human plasma lipids associated with T2D/CVD risk. Pathway enrichment highlighted sphingolipid metabolism, however, only five of all genes involved in the pathway were differentially expressed in the liver. Interestingly, overlap with adipose tissue transcriptome was much higher (57 genes), pointing toward an active adipose-liver interaction. Next, the integration of liver lipidome and transcriptome identified strongly correlated lipid-gene networks highlighting ceramide [Cer(22:0)], dihydroceramide(24:1), and triacylglycerol(58:6) playing a central role in transcriptional regulation. Putative molecular targets of Cer(22:0) were altered (Cyp3a44, Tgf-β1) in primary mouse hepatocytes treated with Cer(22:0). Early alteration of liver lipidome markedly depends on adipose tissue expression pattern and provides substantial evidence linking early liver lipidome alterations and risk of T2D.
Collapse
Affiliation(s)
- Ratika Sehgal
- Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Division of Endocrinology and Diabetology, Department of Internal Medicine 1, University Hospital Ulm, Ulm, Germany
| | - Markus Jähnert
- Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Michail Lazaratos
- Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Thilo Speckmann
- Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | | | - Burkhard Kleuser
- Freie Universität Berlin, Institute of Pharmacy, Berlin, Germany
| | - Meriem Ouni
- Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Wenke Jonas
- Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.
| |
Collapse
|
11
|
Zou ZY, Ma Y, Xie C, Fan JG. Diabetes-Driven Pathophysiological Remodeling of Mesenteric Adipose Tissue: Transcriptomic Insights into Macrophage Infiltration and Adipokine Dyshomeostasis. J Hepatol 2025:S0168-8278(25)00171-0. [PMID: 40147787 DOI: 10.1016/j.jhep.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/29/2025]
Affiliation(s)
- Zi-Yuan Zou
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yuandi Ma
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Jian-Gao Fan
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.
| |
Collapse
|
12
|
Jiang S, Zhang F, Yang H, Han X, Mao J, Zheng G, Fan Y. Estimated sdLDL-C as a biomarker of hepatic steatosis severity in MASLD: a retrospective study. BMC Gastroenterol 2025; 25:168. [PMID: 40082781 PMCID: PMC11907928 DOI: 10.1186/s12876-025-03759-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/04/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most prevalent chronic liver disease worldwide. However, there is a lack of cost-effective and accurate biomarkers to assess the degree of hepatic steatosis. Estimated small dense low-density lipoprotein cholesterol (EsdLDL-C), a calculated value derived from triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C) levels, has emerged as a potential indicator. This study aimed to explore the relationship between EsdLDL-C and the severity of hepatic steatosis. METHODS This single-center retrospective study estimated and directly measured small dense low-density lipoprotein cholesterol (sdLDL-C) in 1,969 patients who underwent serum lipid testing at Changzhou Third People's Hospital between January and July 2024. Among these, 461 patients diagnosed with MASLD were included in the study. These patients were further classified into mild (Mil) and moderate-to-severe (Mod-Sev) groups based on controlled attenuation parameter (CAP) values to explore the relationship between EsdLDL-C and the severity of hepatic steatosis. RESULTS The correlation coefficient (R) between EsdLDL-C and DsdLDL-C was 0.837, with a bias of 0.223. Both EsdLDL-C (OR 1.095, 95% CI 1.029-1.180) and visceral fat area (VFA) (OR 1.019, 95% CI 1.010-1.028) were identified as independent risk factors for Mod-Sev steatosis compared to the Mil group. After adjusting for all confounders, patients with MASLD had a 1.155-fold increased risk of developing Mod-Sev hepatic steatosis for each unit increase in EsdLDL-C. Furthermore, EsdLDL-C demonstrated good predictive value for Mod-Sev steatosis in MASLD patients, with an area under the curve (AUC) of 0.825 (95% CI 0.784-0.867). CONCLUSIONS EsdLDL-C may serve as a practical and cost-effective biomarker for identifying high-risk MASLD patients. TRIAL REGISTRATION The retrospective study was approved by the Ethics Committee of Changzhou Third People's Hospital (02 A-A20230015), and a waiver of informed consent was agreed to, as the data were obtained from medical records, and a waiver of informed consent would not have affected the participants.
Collapse
Affiliation(s)
- Shuo Jiang
- Center of Medical Laboratory, Changzhou Third People's Hospital, Changzhou, Jiangsu, China
| | - Fan Zhang
- Department of Endocrinology, Changzhou Third People's Hospital, Changzhou, Jiangsu, China
| | - Hui Yang
- Center of Medical Laboratory, Changzhou Third People's Hospital, Changzhou, Jiangsu, China
| | - Xue Han
- Center of Medical Laboratory, Changzhou Third People's Hospital, Changzhou, Jiangsu, China
| | - Jieru Mao
- Center of Medical Laboratory, Changzhou Third People's Hospital, Changzhou, Jiangsu, China
| | - Guojun Zheng
- Center of Medical Laboratory, Changzhou Third People's Hospital, Changzhou, Jiangsu, China.
| | - Yan Fan
- Center of Medical Laboratory, Changzhou Third People's Hospital, Changzhou, Jiangsu, China.
| |
Collapse
|
13
|
Nguyen MT, Lian A, Guilford FT, Venketaraman V. A Literature Review of Glutathione Therapy in Ameliorating Hepatic Dysfunction in Non-Alcoholic Fatty Liver Disease. Biomedicines 2025; 13:644. [PMID: 40149620 PMCID: PMC11940638 DOI: 10.3390/biomedicines13030644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a global cause of liver dysfunction. This spectrum of hepatic disorders can progress to severe conditions, such as non-alcoholic steatohepatitis (NASH) and cirrhosis, due to oxidative stress and sustained cellular injury. With limited pharmacological options, glutathione (GSH), a key antioxidant, has shown promising potential in reducing oxidative stress, maintaining redox balance, and improving liver function. This literature review examines studies from 2014-2024 exploring GSH therapy in NAFLD patients. Eligible studies assessed GSH as the primary intervention for NAFLD in human subjects, reporting outcomes such as liver function or oxidative stress markers. Randomized clinical trials (RCTs) were eligible, while combination therapy studies were included if GSH's effect could be isolated. Exclusions applied to non-NAFLD studies, animal/in vitro models, and non-GSH antioxidant interventions. Analysis of three studies (totaling 109 participants) demonstrated consistent improvements in alanine transaminase (ALT) levels and reductions in oxidative stress markers like 8-hydroxy-2-deoxyguanosine (8-OHdG). However, small sample sizes and inconsistent protocols limit generalizability. Further large-scale RCTs are required to confirm GSH's efficacy, determine optimal dosing, and assess long-term effects. This literature review highlights GSH's potential as a novel NAFLD therapeutic strategy while emphasizing the need for further studies to refine its clinical application.
Collapse
Affiliation(s)
- Michelle Thuy Nguyen
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (M.T.N.); (A.L.)
| | - Andrew Lian
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (M.T.N.); (A.L.)
| | | | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (M.T.N.); (A.L.)
| |
Collapse
|
14
|
Angelotti A, Dhesi M, Bansal SS, Bradley EA. Novel immunologic mechanisms for Fontan-associated liver disease. INTERNATIONAL JOURNAL OF CARDIOLOGY CONGENITAL HEART DISEASE 2025; 19:100554. [PMID: 39926126 PMCID: PMC11803123 DOI: 10.1016/j.ijcchd.2024.100554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 02/11/2025] Open
Abstract
Introduction Single ventricle congenital heart disease resulting in Fontan palliation has led to improved survival, however, Fontan-associated liver disease (FALD) is ubiquitous in this population by adulthood. While lymphopenia has been associated with the degree of FALD, potential immunologic mechanisms remain unstudied, and were the focus of this study. Methods Single-nuclei RNA-seq (snRNA-seq) data from liver samples of adolescent Fontan and control patients were analyzed with specific focus on lymphocytes and natural killer (NK) and T-cell fractions. Results Liver samples from Fontan patients demonstrated upregulation of endothelial cells (ECs: 4.2 ± 1.0 vs. 13.6 ± 3.4 %, p = 0.037) and total lymphocytes (0.7 ± 0.1 vs. 3.6 ± 0.7 %, p = 0.007), more specifically in NK and T-cells (NK: 0.29 ± 0.16 vs. 1.40 ± 0.64 %, p = 0.028 and T-cell: 0.28 ± 0.04 vs. 1.80 ± 1.01 %, p = 0.034). Enhanced genes important in T-cell activation and differentiation were demonstrated, as well as those involved in cell-to-cell adhesion and lymphocyte migration. Supporting lymphocyte trafficking, ECs demonstrated amplification of critical chemotactic and lymphocyte recruitment genes. Increased time from Fontan palliation was associated with more dramatic lymphocytic transcriptomic changes. Conclusions Hepatic changes in adolescent Fontan patients suggest that T-cells are contributing to the early development and possible progression of FALD.
Collapse
Affiliation(s)
- Austin Angelotti
- Pennsylvania State University Heart and Vascular Institute, Hershey S. Milton Medical Center, Hershey, PA, USA
| | - Maninder Dhesi
- Pennsylvania State University Department of Cellular and Molecular Physiology, Hershey, PA, USA
| | - Shyam S. Bansal
- Pennsylvania State University Heart and Vascular Institute, Hershey S. Milton Medical Center, Hershey, PA, USA
- Pennsylvania State University Department of Cellular and Molecular Physiology, Hershey, PA, USA
| | - Elisa A. Bradley
- Pennsylvania State University Heart and Vascular Institute, Hershey S. Milton Medical Center, Hershey, PA, USA
- Pennsylvania State University Department of Cellular and Molecular Physiology, Hershey, PA, USA
| |
Collapse
|
15
|
Gan C, Yuan Y, Shen H, Gao J, Kong X, Che Z, Guo Y, Wang H, Dong E, Xiao J. Liver diseases: epidemiology, causes, trends and predictions. Signal Transduct Target Ther 2025; 10:33. [PMID: 39904973 PMCID: PMC11794951 DOI: 10.1038/s41392-024-02072-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/06/2024] [Accepted: 11/12/2024] [Indexed: 02/06/2025] Open
Abstract
As a highly complex organ with digestive, endocrine, and immune-regulatory functions, the liver is pivotal in maintaining physiological homeostasis through its roles in metabolism, detoxification, and immune response. Various factors including viruses, alcohol, metabolites, toxins, and other pathogenic agents can compromise liver function, leading to acute or chronic injury that may progress to end-stage liver diseases. While sharing common features, liver diseases exhibit distinct pathophysiological, clinical, and therapeutic profiles. Currently, liver diseases contribute to approximately 2 million deaths globally each year, imposing significant economic and social burdens worldwide. However, there is no cure for many kinds of liver diseases, partly due to a lack of thorough understanding of the development of these liver diseases. Therefore, this review provides a comprehensive examination of the epidemiology and characteristics of liver diseases, covering a spectrum from acute and chronic conditions to end-stage manifestations. We also highlight the multifaceted mechanisms underlying the initiation and progression of liver diseases, spanning molecular and cellular levels to organ networks. Additionally, this review offers updates on innovative diagnostic techniques, current treatments, and potential therapeutic targets presently under clinical evaluation. Recent advances in understanding the pathogenesis of liver diseases hold critical implications and translational value for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Can Gan
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Yuan
- Aier Institute of Ophthalmology, Central South University, Changsha, China
| | - Haiyuan Shen
- Department of Oncology, the First Affiliated Hospital; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Jinhang Gao
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangxin Kong
- Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, China
| | - Zhaodi Che
- Clinical Medicine Research Institute and Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yangkun Guo
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China.
| | - Erdan Dong
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital, School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.
| | - Jia Xiao
- Clinical Medicine Research Institute and Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
- Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China.
| |
Collapse
|
16
|
Ribeiro MGC, Kravchychyn ACP, Bressan J, Hermsdorff HHM. Adiposity and inflammation markers explain mostly part of the plasma zonulin variation in Brazilian adults with overweight/obesity: A cross-sectional analysis from Brazilian nuts study. Clin Nutr 2025; 45:22-30. [PMID: 39731881 DOI: 10.1016/j.clnu.2024.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/26/2024] [Accepted: 12/16/2024] [Indexed: 12/30/2024]
Abstract
OBJECTIVE This study evaluated intestinal permeability according to plasma zonulin and its association with adiposity, inflammation, cardiometabolic risk, liver function, and intestinal health markers in adults with overweight/obesity. METHODOLOGY This study is a cross-sectional analysis using baseline data from the Brazilian Nut Study, which involved 123 participants (93 women, age 33.2 ± 8.58 years, BMI 33.9 ± 4.30kg/m2). Subjects were divided into quartiles according to plasma zonulin, assessed by Elisa. Cytokines were assessed by flow cytometry; anthropometric measurements were collected by standard procedure and body composition was assessed by DXA. SCFA analysis was performed by high-performance liquid chromatography, and fecal pH, by a pH meter. Linear regression models were performed (α<5 %). RESULTS Participants included in the last quartile of plasma zonulin had higher values of body fat (%), pro-inflammatory cytokines (CRP, IL-1). According to the multivariate regression model, each one-unit increased in body fat, CRP, IL-12p70, IL-6 and IL-8 resulted correspondingly in an increment of 0.42, 0.14, 0.192, 0.250 and 0.312 ng/ml in plasma zonulin, respectively. Conversely, a one-unit decreased in IL-10 led to an increase of 0.40 ng/ml in plasma zonulin. CONCLUSION Intestinal permeability assessed by plasma zonulin is associated with adiposity, subclinical inflammation and reduced serum HDL levels adults with overweight/obesity, while adiposity and inflammation markers are independent factors for plasma zonulin variation.
Collapse
Affiliation(s)
- Madalena Geralda Cupertino Ribeiro
- Laboratory of Clinical Analysis and Genomics, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG, Brazil; Laboratory of Energy Metabolism and Body Composition, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| | - Ana Claudia Pelissari Kravchychyn
- Laboratory of Clinical Analysis and Genomics, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG, Brazil; Laboratory of Energy Metabolism and Body Composition, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Josefina Bressan
- Laboratory of Clinical Analysis and Genomics, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG, Brazil; Laboratory of Energy Metabolism and Body Composition, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Helen Hermana Miranda Hermsdorff
- Laboratory of Clinical Analysis and Genomics, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG, Brazil; Laboratory of Energy Metabolism and Body Composition, Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| |
Collapse
|
17
|
Zhao K, Zhang H, Ding W, Yu X, Hou Y, Liu X, Li X, Wang X. Adipokines regulate the development and progression of MASLD through organellar oxidative stress. Hepatol Commun 2025; 9:e0639. [PMID: 39878681 PMCID: PMC11781772 DOI: 10.1097/hc9.0000000000000639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/13/2024] [Indexed: 01/31/2025] Open
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD), which is increasingly being recognized as a leading cause of chronic liver pathology globally, is increasing. The pathophysiological underpinnings of its progression, which is currently under active investigation, involve oxidative stress. Human adipose tissue, an integral endocrine organ, secretes an array of adipokines that are modulated by dietary patterns and lifestyle choices. These adipokines intricately orchestrate regulatory pathways that impact glucose and lipid metabolism, oxidative stress, and mitochondrial function, thereby influencing the evolution of hepatic steatosis and progression to metabolic dysfunction-associated steatohepatitis (MASH). This review examines recent data, underscoring the critical interplay of oxidative stress, reactive oxygen species, and redox signaling in adipokine-mediated mechanisms. The role of various adipokines in regulating the onset and progression of MASLD/MASH through mitochondrial dysfunction and endoplasmic reticulum stress and the underlying mechanisms are discussed. Due to the emerging correlation between adipokines and the development of MASLD positions, these adipokines are potential targets for the development of innovative therapeutic interventions for MASLD management. A comprehensive understanding of the pathogenesis of MASLD/MASH is instrumental for identifying therapies for MASH.
Collapse
Affiliation(s)
- Ke Zhao
- Central laboratory, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Jinan, Shandong, China
| | - Heng Zhang
- Central laboratory, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Jinan, Shandong, China
- Central laboratory, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wenyu Ding
- Central laboratory, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Jinan, Shandong, China
| | - Xiaoshuai Yu
- Central laboratory, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Jinan, Shandong, China
- Central laboratory, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yanli Hou
- Central laboratory, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Jinan, Shandong, China
| | - Xihong Liu
- Department of Pathology, The Fourth People’s Hospital of Jinan, Jinan, Shandong, China
| | - Xinhua Li
- Central laboratory, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Jinan, Shandong, China
| | - Xiaolei Wang
- Central laboratory, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Central laboratory, Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Jinan, Shandong, China
- First school of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
18
|
Lin SX, Li XY, Chen QC, Ni Q, Cai WF, Jiang CP, Yi YK, Liu L, Liu Q, Shen CY. Eriodictyol regulates white adipose tissue browning and hepatic lipid metabolism in high fat diet-induced obesity mice via activating AMPK/SIRT1 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118761. [PMID: 39216775 DOI: 10.1016/j.jep.2024.118761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/04/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Blossom of Citrus aurantium L. var. amara Engl. (CAVA) has been popularly consumed as folk medicine and dietary supplement owing to its various beneficial effects and especially anti-obesity potential. Our previous study predicted that eriodictyol was probably one of the key active compounds of the total flavonoids from blossom of CAVA. However, effects of eriodictyol in anti-obesity were still elusive. AIM OF THE STUDY This study was performed to explore the precise role of eriodictyol in white adipose tissue (WAT) browning and hepatic lipid metabolism, and simultaneously, to verify the impact of eriodictyol on the total flavonoids of CAVA in losing weight. MATERIALS AND METHODS The pancreas lipase assay was conducted and oleic acid-induced HepG2 cells were established to preliminarily detect the lipid-lowering potential of eriodictyol. Then, high fat diet-induced obesity (DIO) mouse model was established for in vivo studies. The biochemical indicators of mice were tested by commercial kits. The histopathological changes of WAT and liver in mice were tested by H&E staining, Oil Red O staining and Sirius Red staining. Immunohistochemical, Western blot assay, as well as RT-qPCR analysis were further performed. Additionally, molecular docking assay was used to simulate the binding of eriodictyol with potential target proteins. RESULTS In vitro studies showed that eriodictyol intervention potently inhibited pancreatic lipase activity and reversed hepatic steatosis in oleic acid-induced HepG2 cells. Consistently, long-term medication of eriodictyol also effectively prevented obesity and improved lipid and glucose metabolism in diet-induced obesity mice. Obesity-induced histopathological changes in iWAT, eWAT and BAT, and abnormal expression levels of IL-10, IL-6 and TNF-α in iWAT of DIO mice were also significantly reversed by eriodictyol treatment. Eriodictyol administration significantly and potently promoted browning of iWAT by increasing expression levels of thermogenic marker protein of UCP1, as well as brown adipocyte-specific genes of PGC-1α, SIRT1 and AMPKα1. Further assays revealed that eriodictyol enhanced mitochondrial function, as shown by an increase in compound IV activity and the expression of tricarboxylic acid cycle-related genes. Besides, eriodictyol addition markedly reversed hepatic damages and hepatic inflammation, and enhanced hepatic lipid metabolism in DIO mice, as evidenced by its regulation on p-ACC, CPT1-α, UCP1, PPARα, PGC-1α, SIRT1 and p-AMPKα expression. Molecular docking results further validated that AMPK/SIRT1 pathway was probably the underlying mechanisms by which eriodictyol acted. CONCLUSION Eriodictyol exhibited significant anti-obesity effect, which was comparable to that of the total flavonoids from blossom of CAVA. These findings furnished theoretical basis for the application of eriodictyol in weight loss.
Collapse
Affiliation(s)
- Song-Xia Lin
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, China
| | - Xiao-Yi Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, China
| | - Qi-Cong Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, China
| | - Qian Ni
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, China
| | - Wei-Feng Cai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, China
| | - Cui-Ping Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, China.
| | - Yan-Kui Yi
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, China.
| | - Li Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, China
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, China
| | - Chun-Yan Shen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, China.
| |
Collapse
|
19
|
Zhao JQ, Zhou QQ, Liu K, Li P, Jiang Y, Li HJ. Lipidomics reveals the lipid-lowering and hepatoprotective effects of Celosia Semen on high-fat diet-induced NAFLD mice. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118922. [PMID: 39389395 DOI: 10.1016/j.jep.2024.118922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/01/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Celosia Semen (CS) serves as a traditional Chinese medicine (TCM) for promoting liver health and enhancing vision, with extensive clinical applications. Triterpenoid saponins represent the primary active components of CS, with the highest concentration of Celosin I (CI) detected. The urgent need for effective NAFLD treatments motivated us assess the beneficial effects of total saponins from CS (TSCS) and CI. AIMS OF THE STUDY To investigate the therapeutic effects of TSCS and CI on NAFLD and its underlying molecular mechanisms. MATERIALS AND METHODS The impact of TSCS and CI on NAFLD was evaluated through in vitro and in vivo methodologies, utilizing high-fat diet (HFD) and palmitic acid/oleic acid modeling on C57BL/6J mice and AML12 cells, respectively. Biochemical analysis, H&E and Oil red O staining were used to characterize the lipid-lowering and hepatoprotective activities of TSCS and CI. Lipidomics discerned the impact of TSCS and CI interventions on liver lipid composition, distribution and alteration in NFALD mice. RT-qPCR and western blotting detected the influence of TSCS and CI on genes linked to de novo lipogenesis, fat calculation uptake, oxidation and esterification. The docking analysis anticipated the interaction of six major triterpenoid saponins within TSCS with SREBP1. RESULTS TSCS and CI markedly diminished lipid accumulation induced by high fat both in vivo and in vitro. TSCS and CI also mitigated hepatic steatosis and liver injury induced by HFD through the reduction of TC, TG, FAs, ALT, and AST, even at minimal dose of 25 mg/kg. Lipidomics indicated that TSCS and CI had the potential to modulate the lipid metabolism network, rectify lipid metabolic dysregulation induced by NAFLD, decrease the levels of harmful lipids, and elevate the levels of advantageous lipids. Furthermore, TSCS and CI exhibited a strong affinity to SREBP1, thereby might directly influence the expression of SREBP1 and a cascade of essential enzymes involved in de novo lipogenesis, and finally resulting in a diminished synthesis of novel lipids. CONCLUSION TSCS and CI were confirmed firstly as key active components of CS in amending hepatic steatosis and mitigate liver damage in NAFLD, outlining the preliminary mechanism. They warrant further exploration as drug candidates for NAFLD treatment, especially in light of the current shortage of medications and limited therapeutic options.
Collapse
Affiliation(s)
- Jin-Quan Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, China
| | - Qi-Qi Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, China
| | - Ke Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, China
| | - Yan Jiang
- Nanjing Forestry University, Nanjing, 210037, China.
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, China.
| |
Collapse
|
20
|
Hu Y, Zhang Z, Adiham A, Li H, Gu J, Gong P. In Vivo and In Vitro Models of Hepatic Fibrosis for Pharmacodynamic Evaluation and Pathology Exploration. Int J Mol Sci 2025; 26:696. [PMID: 39859410 PMCID: PMC11766297 DOI: 10.3390/ijms26020696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Hepatic fibrosis (HF) is an important pathological state in the progression of chronic liver disease to end-stage liver disease and is usually triggered by alcohol, nonalcoholic fatty liver, chronic hepatitis viruses, autoimmune hepatitis (AIH), or cholestatic liver disease. Research on novel therapies has become a hot topic due to the reversibility of HF. Research into the molecular mechanisms of the pathology of HF and potential drug screening relies on reliable and rational biological models, mainly including animals and cells. Hence, a number of modeling approaches have been attempted based on human dietary, pathological, and physiological factors in the development of HF. In this review, classical and novel methods of modeling HF in the last 10 years were collected from electronic databases, including Web of Science, PubMed, ScienceDirect, ResearchGate, Baidu Scholar, and CNKI. Animal models of HF are usually induced by chemical toxicants, special diets, pathogenic microorganisms, surgical operations, and gene editing. The advantages and limitations of hepatic stellate cells (HSCs), organoids, and 3D coculture-based HF modeling methods established in vitro were also proposed and summarized. This information provides a scientific basis for the discovery of the pathological mechanism and treatment of HF.
Collapse
Affiliation(s)
| | | | | | | | - Jian Gu
- College of Pharmacy and Food, Southwest Minzu University, Chengdu 610093, China; (Y.H.); (Z.Z.); (A.A.); (H.L.)
| | - Puyang Gong
- College of Pharmacy and Food, Southwest Minzu University, Chengdu 610093, China; (Y.H.); (Z.Z.); (A.A.); (H.L.)
| |
Collapse
|
21
|
Zhong L, Yang Q, Shao Y, Hu S, Guo L. Helicobacter pylori promotes intestinal flora imbalance and hepatic metabolic disorders under arsenic stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117512. [PMID: 39671763 DOI: 10.1016/j.ecoenv.2024.117512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/21/2024] [Accepted: 12/08/2024] [Indexed: 12/15/2024]
Abstract
Environmental arsenic contamination is a serious issue that cannot be ignored, since arsenic levels in drinking water frequently exceed safety standards, and there is an increased prevalence of Helicobacter pylori (H. pylori) infection. This results in an increasing population at risk of simultaneous exposure to both harmful agents, yet whether a synergistic interaction exists between them remains unclear. Therefore, this study aims to investigate the combined effects and underlying pathogenic mechanisms of concurrent exposure to these two hazardous factors by establishing a mouse model that is infected with H. pylori and exposed to inorganic arsenic through drinking water. Analysis of intestinal flora revealed significant alterations in the composition, relative abundance (Akkermansia, Faecalibaculum, Ilieibacterium, etc.), and metabolic potential of the intestinal microflora (amino acid metabolism and energy metabolism) in the combinatory exposure group. Non-targeted metabolomics analysis identified that the combinatory exposure group exhibited greater fluctuations in metabolite content, particularly in triacylglycerol, fatty-acid, peptide and amino acid. Moreover, H. pylori infection and arsenic exposure had increased levels of metabolites associated with the intestinal microbiota in their livers (4-Ethylphenyl sulfate and Phenylacetylglycine). Further analysis revealed significant correlations between changes in the intestinal flora and alterations in liver metabolic profiles. Herein, we hypothesize that H. pylori infection may exacerbate the intestinal flora imbalance and hepatic metabolic disturbances caused by arsenic exposure, which may disrupt enterohepatic homeostasis and potentially increase biological susceptibility to heavy metal toxicity.
Collapse
Affiliation(s)
- Linmin Zhong
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Qiling Yang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yiming Shao
- Dongguan Key Laboratory of Sepsis Translational Medicine, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Shanwen Hu
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Lianxian Guo
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
22
|
Li C, Wang F, Mao Y, Ma Y, Guo Y. Multi-omics reveals the mechanism of Trimethylamine N-oxide derived from gut microbiota inducing liver fatty of dairy cows. BMC Genomics 2025; 26:10. [PMID: 39762777 PMCID: PMC11702196 DOI: 10.1186/s12864-024-11067-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Trimethylamine N-oxide (TMAO) is a metabolite produced by gut microbiota, and its potential impact on lipid metabolism in mammals has garnered widespread attention in the scientific community. Bovine fatty liver disease, a metabolic disorder that severely affects the health and productivity of dairy cows, poses a significant economic burden on the global dairy industry. However, the specific role and pathogenesis of TMAO in bovine fatty liver disease remain unclear, limiting our understanding and treatment of the condition. This study aims to construct a bovine fatty liver cell model using an integrated approach that combines transcriptomic, proteomic, and metabolomic data. The objective is to investigate the impact of TMAO on lipid metabolism at the molecular level and explore its potential regulatory mechanisms. RESULTS We established an in vitro bovine fatty liver cell model and conducted a comprehensive analysis of cells treated with TMAO using high-throughput omics sequencing technologies. Bioinformatics methods were employed to delve into the regulatory effects on lipid metabolism, and several key genes were validated through RT-qPCR. Treatment with TMAO significantly affected 4790 genes, 397 proteins, and 137 metabolites. KEGG enrichment analysis revealed that the significantly altered molecules were primarily involved in pathways related to the pathology of fatty liver disease, such as metabolic pathways, insulin resistance, hepatitis B, and the AMPK signaling pathway. Moreover, through joint analysis, we further uncovered that the interaction between TMAO-mediated AMPK signaling and oxidative phosphorylation pathways might be a key mechanism promoting lipid accumulation in the liver. CONCLUSIONS Our study provides new insights into the role of TMAO in the pathogenesis of bovine fatty liver disease and offers a scientific basis for developing more effective treatment strategies.
Collapse
Affiliation(s)
- Chenlei Li
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Feifei Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Yongxia Mao
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Yanfen Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Yansheng Guo
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China.
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China.
| |
Collapse
|
23
|
Iturbe-Rey S, Maccali C, Arrese M, Aspichueta P, Oliveira CP, Castro RE, Lapitz A, Izquierdo-Sanchez L, Bujanda L, Perugorria MJ, Banales JM, Rodrigues PM. Lipotoxicity-driven metabolic dysfunction-associated steatotic liver disease (MASLD). Atherosclerosis 2025; 400:119053. [PMID: 39581063 DOI: 10.1016/j.atherosclerosis.2024.119053] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/19/2024] [Accepted: 11/08/2024] [Indexed: 11/26/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses a spectrum of liver lesions, ranging from simple steatosis to metabolic dysfunction-associated steatohepatitis (MASH), that may further progress to cirrhosis. MASLD is estimated to affect more than one third of the general population and it represents a risk factor for end-stage liver failure and liver cancer, substantially contributing to liver-related morbidity and mortality. Although the pathogenesis of MASLD is incompletely understood, it is known to consist of a multifactorial process influenced by extrinsic and intrinsic factors such as metabolic, environmental and demographic features, gut microbiota and genetics. Dysregulation of both extracellular and intracellular lipid composition is known to promote the generation of toxic lipid species, thereby triggering lipotoxicity and cellular stress. These events ultimately lead to the activation of distinct cell death pathways, resulting in inflammation, fibrogenesis and, eventually, carcinogenesis. In this manuscript, we provide a comprehensive review of the role of lipotoxicity during MASLD pathogenesis, discussing the most relevant lipid species and related molecular mechanisms, summarizing the cell type-specific effects and highlighting the most promising putative therapeutic strategies for modulating lipotoxicity and lipid metabolism in MASLD.
Collapse
Affiliation(s)
- Santiago Iturbe-Rey
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
| | - Claudia Maccali
- Clinical and Experimental Gastroenterology Laboratory LIM-07, Department of Gastroenterology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Marco Arrese
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile Santiago, 8330077, Chile
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain; Biobizkaia Health Research Institute, Cruces University Hospital, 48903, Barakaldo, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain
| | - Claudia P Oliveira
- Clinical and Experimental Gastroenterology Laboratory LIM-07, Department of Gastroenterology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Division of Clinical Gastroenterology and Hepatology, Hospital das Clínicas de São Paulo, HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Rui E Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ainhoa Lapitz
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain
| | - Laura Izquierdo-Sanchez
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain
| | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain; Department of Medicine, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain.
| | - Pedro M Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
24
|
Castañé H, Jiménez-Franco A, Hernández-Aguilera A, Martínez-Navidad C, Cambra-Cortés V, Onoiu AI, Jiménez-Aguilar JM, París M, Hernández M, Parada D, Guilarte C, Zorzano A, Hernández-Alvarez MI, Camps J, Joven J. Multi-omics profiling reveals altered mitochondrial metabolism in adipose tissue from patients with metabolic dysfunction-associated steatohepatitis. EBioMedicine 2025; 111:105532. [PMID: 39731853 PMCID: PMC11743550 DOI: 10.1016/j.ebiom.2024.105532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) and its more severe form steatohepatitis (MASH) contribute to rising morbidity and mortality rates. The storage of fat in humans is closely associated with these diseases' progression. Thus, adipose tissue metabolic homeostasis could be key in both the onset and progression of MASH. METHODS We conducted a case-control observational research using a systems biology-based approach to analyse liver, abdominal subcutaneous adipose tissue (SAT), omental visceral adipose tissue (VAT), and blood of n = 100 patients undergoing bariatric surgery (NCT05554224). MASH was diagnosed through histologic assessment. Whole-slide image analysis, lipidomics, proteomics, and transcriptomics were performed on tissue samples. Lipidomics and proteomics profiles were determined on plasma samples. FINDINGS Liver transcriptomics, proteomics, and lipidomics revealed interconnected pathways associated with inflammation, mitochondrial dysfunction, and lipotoxicity in MASH. Paired adipose tissue biopsies had larger adipocyte areas in both fat depots in MASH. Enrichment analyses of proteomics and lipidomics data confirmed the association of liver lesions with mitochondrial dysfunction in VAT. Plasma lipidomics identified candidates with high diagnostic accuracy (AUC = 0.919, 95% CI 0.840-0.979) for screening MASH. INTERPRETATION Mitochondrial dysfunction is also present in VAT in patients with obesity-associated MASH. This may cause a disruption in the metabolic equilibrium of lipid processing and storage, which impacts the liver and accelerates detrimental adaptative responses. FUNDING The project leading to these results has received funding from 'la Caixa' Foundation (HR21-00430), and from the Instituto de Salud Carlos III (ISCIII) (PI21/00510) and co-funded by the European Union.
Collapse
Affiliation(s)
- Helena Castañé
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain; Department of Medicine and Surgery, Faculty of Medicine, Universitat Rovira i Virgili, Reus, Spain.
| | - Andrea Jiménez-Franco
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain; Department of Medicine and Surgery, Faculty of Medicine, Universitat Rovira i Virgili, Reus, Spain
| | | | - Cristian Martínez-Navidad
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain
| | - Vicente Cambra-Cortés
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain
| | - Alina-Iuliana Onoiu
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain
| | - Juan Manuel Jiménez-Aguilar
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain
| | - Marta París
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain; Department of Surgery, Hospital Universitari de Sant Joan, Reus, Spain
| | - Mercè Hernández
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain; Department of Surgery, Hospital Universitari de Sant Joan, Reus, Spain
| | - David Parada
- Department of Pathology, Hospital Universitari de Sant Joan, Reus, Spain
| | - Carmen Guilarte
- Department of Pathology, Hospital Universitari de Sant Joan, Reus, Spain
| | - Antonio Zorzano
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - María Isabel Hernández-Alvarez
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Institut de Biomedicina de la Universitat de Barcelona IBUB, Barcelona, Spain
| | - Jordi Camps
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain; Department of Medicine and Surgery, Faculty of Medicine, Universitat Rovira i Virgili, Reus, Spain.
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Universitat Rovira i Virgili, Institut d'Investigació Sanitària Pere Virgili, Reus, Spain; Department of Medicine and Surgery, Faculty of Medicine, Universitat Rovira i Virgili, Reus, Spain; The Campus of International Excellence Southern Catalonia, Tarragona, Spain.
| |
Collapse
|
25
|
Zeng Q, Luo X, Chen X, Luo W, Li R, Yang S, Yang J, Shu X, Li Q, Hu J, Ma L, Mantzoros CS. Renin-independent aldosteronism and metabolic dysfunction-associated steatotic liver disease and cirrhosis: A genetic association study. Clin Nutr 2025; 44:193-200. [PMID: 39708461 DOI: 10.1016/j.clnu.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND & AIMS Renin-independent aldosteronism (RIA) refers to a spectrum of autonomous aldosterone hypersecretion. We aimed to explore the genetical relationship between RIA and metabolic dysfunction-associated steatotic liver disease (MASLD) and cirrhosis. METHODS We included 125357 participants from the cohort of United Kingdom Biobank. We calculated a polygenic risk score (PRS) for RIA on the basis of reported data from genome-wide association studies, and performed an analysis of Phenome Wide Association Studies (PheWAS) on diverse outcomes. We explored the genetical relationship between RIA and MASLD or cirrhosis by using Mendelian randomization analysis. RESULTS An increased RIA PRS was associated with higher risks of MASLD and MASLD related cirrhosis, and the well-defined RIA related target organ damages such as hypertension or kidney diseases was also significant in the PheWAS analysis. When compared to individuals with low RIA PRS (tertile 1, 0.41-9.89), those with high RIA PRS (tertile 3, 13.58-23.16) showed significantly higher odds ratio (OR) of MASLD (OR 1.28, 95 % confidence interval [CI] 1.09-1.49) and cirrhosis (OR 1.49, 95%CI 1.03-2.16). In analyses of two-sample Mendelian randomization, genetically predicted RIA significantly correlated with elevated risks of MASLD and cirrhosis (inverse variance weighted odds ratio [95 % CI]: 1.05 [1.01-1.09]) for MASLD, 1.08 [1.02-1.13] for cirrhosis), meanwhile we observed no significant directional pleiotropy or heterogeneity. CONCLUSION Renin-independent aldosteronism is genetically associated with higher risks of MASLD and cirrhosis. Targeted treatment of autonomous aldosterone secretion may alleviate MASLD progression.
Collapse
Affiliation(s)
- Qinglian Zeng
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaolin Luo
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Nephrology and Endocrinology, The People's Hospital of Tongliang District, Chongqing, China
| | - Xiangjun Chen
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenjin Luo
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ruolin Li
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shumin Yang
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Yang
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Medicine, Monash University, Clayton, Victoria, Australia
| | - Xiaoyu Shu
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University
| | - Qifu Li
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Jinbo Hu
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Linqiang Ma
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States of America; Department of Medicine, Boston VA Healthcare System, Boston, MA 02130, United States of America
| |
Collapse
|
26
|
Zhang Y, Wei Q, Geng X, Fang G. Long-Term Aerobic Exercise Enhances Hepatoprotection in MAFLD by Modulating Exosomal miR-324 via ROCK1. Metabolites 2024; 14:692. [PMID: 39728473 DOI: 10.3390/metabo14120692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Insulin resistance (IR) is central to the progression of non-alcoholic fatty liver disease (MAFLD). While aerobic exercise reduces hepatic fat and enhances insulin sensitivity, the specific mechanisms-particularly those involving exosomal pathways-are not fully elucidated. METHOD Exosomes were isolated from 15 MAFLD patients' plasma following the final session of a 12-week aerobic exercise intervention. Liver fat content was measured using MRI-PDFF, and metabolic parameters were assessed via OGTT, HOMA-IR, QUICKI, and VO2 max. Co-culture experiments evaluated the effects of exercise-derived exosomes on IR signaling pathways. miRNA microarray analysis identified miR-324, which was quantified in high-fat diet (HFD) mice with and without exercise and compared between athletes and sedentary controls. Functional assays assessed miR-324's role in glucose and lipid metabolism, while luciferase reporter and Western blot assays confirmed ROCK1 as its direct target. RESULT Aerobic exercise significantly reduced liver fat and improved insulin sensitivity in both MAFLD patients and HFD mice. Notably, exosomal miR-324 levels were lower in athletes than sedentary controls, indicating an inverse association with insulin sensitivity. Post-exercise, precursor and mature miR-324 increased in adipose tissue and decreased in muscle, suggesting its adipose origin and inverse regulation. Functional assays demonstrated that miR-324 modulates insulin resistance by targeting ROCK1. CONCLUSION Exercise-induced exosomal miR-324 from adipose tissue targets ROCK1, revealing a novel mechanism by which aerobic exercise confers hepatoprotection against insulin resistance in MAFLD. These findings enhance our understanding of how exercise influences metabolic health and may inform future therapeutic strategies for managing MAFLD and related conditions.
Collapse
Affiliation(s)
- Yang Zhang
- Exercise Biological Research Center, China Institute of Sport Science, Beijing 100061, China
| | - Qiangman Wei
- Exercise Biological Research Center, China Institute of Sport Science, Beijing 100061, China
| | - Xue Geng
- Exercise Biological Research Center, China Institute of Sport Science, Beijing 100061, China
| | - Guoliang Fang
- Exercise Biological Research Center, China Institute of Sport Science, Beijing 100061, China
| |
Collapse
|
27
|
Basil B, Myke-Mbata BK, Eze OE, Akubue AU. From adiposity to steatosis: metabolic dysfunction-associated steatotic liver disease, a hepatic expression of metabolic syndrome - current insights and future directions. Clin Diabetes Endocrinol 2024; 10:39. [PMID: 39617908 PMCID: PMC11610122 DOI: 10.1186/s40842-024-00187-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 05/20/2024] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing health concern and the risk of its development is connected with the increasing prevalence of metabolic syndrome (MetS) which occurs as a result of some complex obesity-induced metabolic changes. It is a common chronic liver disease characterized by excessive fat accumulation in the liver, the tendency to progress to more severe forms, and a corresponding increase in morbidity and mortality. Thus, effectively addressing the rising burden of the disease requires a thorough understanding of its complex interrelationship with obesity and MetS. MAIN BODY MASLD results from complex interactions involving obesity, insulin resistance, and dyslipidaemia, leading to hepatic lipid accumulation, and is influenced by several genetic and environmental factors such as diet and gut microbiota dysbiosis. It has extensive metabolic and non-metabolic implications, including links to MetS components like hyperglycaemia, hypertension, and dyslipidaemia, and progresses to significant liver damage and other extra-hepatic risks like cardiovascular disease and certain cancers. Diagnosis often relies on imaging and histology, with non-invasive methods preferred over liver biopsies. Emerging biomarkers and OMIC technologies offer improved diagnostic capabilities but face practical challenges. Advancements in artificial intelligence (AI), lifestyle interventions, and pharmacological treatments show promise, with future efforts focusing on precision medicine and novel diagnostic tools to improve patient outcome. CONCLUSION Understanding the pathogenic mechanisms underlying the development of MASLD within the context of metabolic syndrome (MetS) is essential for identifying potential therapeutic targets. Advancements in non-invasive diagnostic tools and novel pharmacological treatments, hold promise for improving the management of MASLD. Future research should focus on precision medicine and innovative therapies to effectively address the disease and its consequences.
Collapse
Affiliation(s)
- Bruno Basil
- Department of Chemical Pathology, Benue State University, Makurdi, Nigeria.
- Department of Nursing, Central Washington College, Enugu, Nigeria.
| | - Blessing K Myke-Mbata
- Department of Chemical Pathology, Benue State University, Makurdi, Nigeria
- Department of Chemical Pathology, Bingham University, Jos, Nigeria
| | - Onyinye E Eze
- Department of Nursing, Central Washington College, Enugu, Nigeria
- Department of Haematology and Blood Transfusion, Enugu State University of Science and Technology, Enugu, Nigeria
| | | |
Collapse
|
28
|
Marek GW, Malhi H. MetALD: Does it require a different therapeutic option? Hepatology 2024; 80:1424-1440. [PMID: 38820071 DOI: 10.1097/hep.0000000000000935] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/03/2024] [Indexed: 06/02/2024]
Abstract
New guidelines for the definitions of steatotic liver disease have named the entity of metabolic dysfunction and alcohol-associated liver disease (MetALD) as an overlap condition of metabolic dysfunction-associated steatotic liver disease (MASLD) and alcohol-associated liver disease. There is a broad range of therapeutics in all stages of development for MASLD, but these therapeutics, in general, have not been studied in patients with significant ongoing alcohol use. In this review, we discuss the current understanding of the endogenous and exogenous risks for MASLD and MetALD. Rational strategies for therapeutic intervention in MetALD include biopsychosocial interventions, alcohol use cessation strategies, including the use of medications for alcohol use disorder, and judicious use of therapeutics for steatotic liver disease. Therapeutics with promise for MetALD include incretin-based therapies, FGF21 agonists, thyroid hormone receptor beta agonists, sodium-glucose co-transporter 2 inhibitors, and agents to modify de novo lipogenesis. Currently, glucagon-like peptide 1 receptor agonists and peroxisome proliferator-activated receptor γ agonists have the largest body of literature supporting their use in MASLD, and there is a paucity of agents in trials for alcohol-associated liver disease. From existing studies, it is not clear if unique therapeutics or a combinatorial approach are needed for MetALD. Further elucidation of the safety and benefits of MASLD-related therapies is of paramount importance for advancing therapeutics for MetALD in carefully designed inclusive clinical trials.
Collapse
Affiliation(s)
- George W Marek
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
29
|
Pan L, Wang L, Ma H, Ding F. Relevance of combined influence of nutritional and inflammatory status on non-alcoholic fatty liver disease and advanced fibrosis: A mediation analysis of lipid biomarkers. J Gastroenterol Hepatol 2024; 39:2853-2862. [PMID: 39392197 DOI: 10.1111/jgh.16760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/27/2024] [Accepted: 09/22/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND AND AIM This study aimed to investigate the relationship between advanced lung cancer inflammation index (ALI) and non-alcoholic fatty liver disease (NAFLD) and advanced liver fibrosis (AF). METHODS A total of 5642 individuals from the National Health and Nutrition Examination Survey (NHANES) between 2017 and 2020 were examined. Limited cubic spline regression model, and weighted logistic regression were employed to determine if ALI levels were related to the prevalence of NAFLD and AF. Additionally, a mediating analysis was conducted to investigate the role of lipid biomarkers, such as total cholesterol (TC) and high-density lipoprotein cholesterol (HDL-C), in the effects of ALI on the prevalence of NAFLD and AF. RESULTS After adjusting for potential confounders, a significant positive association was found between ALI with NAFLD and AF prevalence. Compared with those in ALI Tertile 1, participants in Tertile 3 had higher odds of NAFLD prevalence (odds ratio [OR]: 3.16; 95% confidence interval [CI]: 2.52-3.97) and AF (OR: 3.17; 95% CI: 2.30-4.36). Participants in both Tertile 2 and Tertile 3 had lower odds of developing AF (P for trend = 0.005). Moreover, we discovered a nonlinear association between ALI and NAFLD. An inflection point of 74.25 for NAFLD was identified through a two-segment linear regression model. Moreover, TC and HDL-C levels mediated the association between ALI and NAFLD by 10.2% and 4.2%, respectively (both P < 0.001). CONCLUSION Our findings suggest that higher ALI levels are positively associated with an increased prevalence of NAFLD and AF, partly mediated by lipid biomarkers.
Collapse
Affiliation(s)
- Lei Pan
- Department of Histology and embryology, Hebei Medical University, Shijiazhuang, China
| | - Lixuan Wang
- Department of Histology and embryology, Hebei Medical University, Shijiazhuang, China
| | - Huijuan Ma
- Department of physiology, Hebei Medical University, Shijiazhuang, China
| | - Fan Ding
- Hubei Jingmen Maternal and Child Health Hospital, Jingmen, China
| |
Collapse
|
30
|
Huang L, Rao Q, Wang C, Mou Y, Zheng X, Hu E, Zheng J, Li Y, Liu L. Multi-omics joint analysis reveals that the Miao medicine Yindanxinnaotong formula attenuates non-alcoholic fatty liver disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156026. [PMID: 39388921 DOI: 10.1016/j.phymed.2024.156026] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/04/2024] [Accepted: 09/02/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUD Non-alcoholic fatty liver disease (NAFLD) is a growing chronic liver disease worldwide, and no effective agent is approved yet for this condition. Traditional Chinese Medicine (TCM), which has been practiced for thousands of years in China and other Asian countries, is considered an important source for identifying novel medicines for various diseases. Miao medicine Yindanxinnaotong formula (YDX) is a classical TCM for the treatment of hyperlipidemia disease by reducing blood lipid content, while the role of YDX have not been clarified in NAFLD. PURPOSE To investigate the protective effect of YDX on NAFLD in mice induced by high fat diet (HFD) and clarify the potential mechanism. METHODS NAFLD mice model was constructed by receiving HFD for 10-week period with or without YDX administration. Lipid profiles, biochemical indicators, and histopathological staining were performed to evaluate the extent of hepatic lipid accumulation and hepatic steatosis. 16S rRNA sequencing was used to determine the gut microbial composition. Serum metabolomics was further used to investigate the changes in plasma biomarkers for NAFLD-associated by UPLC-Q-TOF/MS analysis. Subsequently, liver transcriptomics was employed to identify differentially expressed genes and explore regulatory pathways. Then, lipid metabolism-related proteins and inflammation factors were examined by Western blot and ELISA. RESULTS YDX reduced body weight gain, liver index and inflammatory cytokines levels, along with improved hepatic steatosis, serum lipid profile, sensitivity to insulin and also tolerance to glucose, and enhanced oxidative defense system in HFD-induced mice. Also, YDX remarkedly affected gut microbiota diversity and community richness and decreased the ratio of Firmicutes/Bacteroidetes. Meanwhile, YDX also reduced the production of harmful lipid metabolites in the sera of NAFLD mice, such as LPC(18:0), LPC(18:1) and carnitine. Notably, consistent with liver transcriptomics results, YDX downregulated the expression of proteins implicated in de novo lipid synthesis (Srebp-1c, Acaca, Fasn, Scd-1, and Cd36) and pro-inflammatory cytokines (IL-6 and TNF-α), and increased the expression of proteins-related fatty acid β-oxidation (Ampkα, Ppar-α, and Cpt-1) in the liver by activating Ampk pathway. CONCLUSION YDX is promisingly an effective therapy for preventing NAFLD by modulating the Ampk pathway, inhibiting gut microbiota disorder, and reducing the production of harmful lipid metabolites.
Collapse
Affiliation(s)
- Lei Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Qing Rao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Chaoyan Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Yu Mou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Xiuyan Zheng
- Guizhou Institute of Integrated Agriculture Development, Guiyang 550006, China
| | - Enming Hu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China
| | - Jiang Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China.
| | - Yanmei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, China.
| | - Lin Liu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
31
|
Kathuria I, Prasad A, Sharma BK, Aithabathula RV, Ofosu-Boateng M, Gyamfi MA, Jiang J, Park F, Singh UP, Singla B. Nidogen 2 Overexpression Promotes Hepatosteatosis and Atherosclerosis. Int J Mol Sci 2024; 25:12782. [PMID: 39684493 DOI: 10.3390/ijms252312782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Clinical and genetic studies strongly support a significant connection between nonalcoholic fatty liver disease (NAFLD) and atherosclerotic cardiovascular disease (ASCVD) and identify ASCVD as the primary cause of death in NAFLD patients. Understanding the molecular factors and mechanisms regulating these diseases is critical for developing novel therapies that target them simultaneously. Our preliminary immunoblotting experiments demonstrated elevated expression of nidogen 2 (NID2), a basement membrane glycoprotein, in human atherosclerotic vascular tissues and murine steatotic livers. Therefore, we investigated the role of NID2 in regulating hepatosteatosis and atherosclerosis utilizing Western diet-fed Apoe-/- mice with/without NID2 overexpression. Quantitative real-time PCR confirmed increased NID2 mRNA expression in multiple organs (liver, heart, kidney, and adipose) of NID2-overexpressing mice. Male mice with NID2 overexpression exhibited higher liver and epididymal white adipose tissue mass, increased hepatic lipid accumulation, and fibrosis. Additionally, these mice developed larger atherosclerotic lesions in the whole aortas and aortic roots, with increased necrotic core formation. Mechanistic studies showed reduced AMPK activation in the livers of NID2-overexpressing mice compared with controls, without any effects on hepatic inflammation. In conclusion, these findings suggest that NID2 plays a deleterious role in both hepatosteatosis and atherosclerosis, making it a potential therapeutic target for these conditions.
Collapse
Affiliation(s)
- Ishita Kathuria
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Aditi Prasad
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Bal Krishan Sharma
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ravi Varma Aithabathula
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Malvin Ofosu-Boateng
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Maxwell A Gyamfi
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Frank Park
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Udai P Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Bhupesh Singla
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38103, USA
| |
Collapse
|
32
|
Jensen EL, Israelsen M, Krag A. Transforming steatotic liver disease management: The emerging role of GLP-1 receptor agonists. Hepatol Commun 2024; 8:e0561. [PMID: 39392766 PMCID: PMC11469819 DOI: 10.1097/hc9.0000000000000561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/10/2024] [Indexed: 10/13/2024] Open
Abstract
Chronic liver disease is a major cause of mortality, with approximately 2 million deaths worldwide each year, and it poses a significant economic burden. The most common cause of chronic liver disease in the United States and Europe is steatotic liver disease (SLD), which includes metabolic dysfunction-associated SLD, metabolic dysfunction and alcohol-associated SLD, and alcohol-associated liver disease (ALD). Effective treatment of these conditions is essential to reduce the liver disease burden, with promising approaches including treating cardiometabolic risk factors and excessive alcohol intake. Glucagon-like peptide 1 receptor agonists, both as monotherapy and in combination with other drugs, are gaining attention for their beneficial impact on cardiometabolic risk factors and excessive alcohol intake. In this review, we examine the molecular and clinical effects of glucagon-like peptide 1 receptor agonists, focusing on their direct hepatic steatohepatitis and liver fibrosis but also the indirect influence on cardiometabolic risk factors and excessive alcohol intake as key features of SLD. We also explore the future implications of glucagon-like peptide 1 receptor agonists for treating metabolic dysfunction-associated SLD, metabolic dysfunction and alcohol-associated SLD, alcohol-associated liver disease, and the potential challenges.
Collapse
Affiliation(s)
- Ellen L. Jensen
- Department of Gastroenterology and Hepatology, Odense C, Denmark
- Institute of Clinical Research, Faculty of Health Sciences, Odense University Hospital, University of Southern Denmark, Winsløvsparken, Odense C, Denmark
| | - Mads Israelsen
- Department of Gastroenterology and Hepatology, Odense C, Denmark
- Institute of Clinical Research, Faculty of Health Sciences, Odense University Hospital, University of Southern Denmark, Winsløvsparken, Odense C, Denmark
| | - Aleksander Krag
- Department of Gastroenterology and Hepatology, Odense C, Denmark
- Institute of Clinical Research, Faculty of Health Sciences, Odense University Hospital, University of Southern Denmark, Winsløvsparken, Odense C, Denmark
| |
Collapse
|
33
|
Cardamone A, Coppoletta AR, Macrì R, Nucera S, Ruga S, Scarano F, Mollace R, Mollace A, Maurotti S, Micotti E, Carresi C, Musolino V, Gliozzi M, Mollace V. Targeting leptin/CCL3-CCL4 axes in NAFLD/MAFLD: A novel role for BPF in counteracting thalamic inflammation and white matter degeneration. Pharmacol Res 2024; 209:107417. [PMID: 39276957 DOI: 10.1016/j.phrs.2024.107417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD), redefined as Metabolic Associated Fatty Liver Disease (MAFLD), is characterized by an extensive multi-organ involvement. MAFLD-induced systemic inflammatory status and peripheral metabolic alteration lead to an impairment of cerebral function. Herein, we investigated a panel of leptin-related inflammatory mediators as predictive biomarkers of neuroinflammation and evaluated the possible role of Bergamot Polyphenolic Fraction (BPF) in counteracting this MAFLD-induced inflammatory cascade. Male DIAMOND mice were randomly assigned to fed chow diet and tap water or high fat diet with sugar water. Starting from week 16, mice were further divided and treated with vehicle or BPF (50 mg/kg/day), via gavage, until week 30. Magnetic resonance imaging was performed at the baseline and at week 30. Correlation and regression analyses were performed to discriminate the altered lipid metabolism in the onset of cerebral alterations. Steatohepatitis led to an increase in leptin levels, resulting in a higher expression of proinflammatory mediators. The inflammatory biomarkers involved in leptin/CCL3-CCL4 axes were correlated with the altered thalamus energetic metabolism and the white matter degeneration. BPF administration restored leptin level, improved glucose and lipid metabolism, and reduced chronic low-grade inflammatory mediators, resulting in a prevention of white matter degeneration, alterations of thalamus metabolism and brain atrophy. The highlighted positive effect of BPF, mediated by the downregulation of the inflammatory biomarkers involved in leptin/CCL3-CCL4 axes, affording novel elements to candidate BPF for the development of a therapeutic strategy aimed at counteracting MAFLD-related brain inflammation.
Collapse
Affiliation(s)
- Antonio Cardamone
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Anna Rita Coppoletta
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Roberta Macrì
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Saverio Nucera
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Stefano Ruga
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Federica Scarano
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Rocco Mollace
- Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Annachiara Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Samantha Maurotti
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Edoardo Micotti
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Cristina Carresi
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| | - Vincenzo Musolino
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University "Magna Græcia" of Catanzaro, Catanzaro, 88100, Italy.
| | - Micaela Gliozzi
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy.
| | - Vincenzo Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, Catanzaro 88100, Italy
| |
Collapse
|
34
|
Zhang J, Hu J, Li Y, Zhou X, Ke Y, Chen Y. Serum Autotaxin Level Positively Associates with Metabolic-Associated Fatty Liver Disease and Hyperuricemia in Postmenopausal Women. Dig Dis 2024; 43:54-62. [PMID: 39442506 DOI: 10.1159/000542061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION Autotaxin (ATX) is an adipokine known to affect energy metabolism and lipid homeostasis. We aimed to evaluate serum ATX levels in metabolic-associated fatty liver disease (MAFLD) and other metabolic disorders in postmenopausal women. METHODS Postmenopausal women who received an annual health examination were included. The metabolic and demographic characteristics of the subjects were collected, including age, gender, weight, height, blood pressure, and biochemical parameters. Serum ATX level was determined by ELISA. RESULTS This cross-sectional includes 20 postmenopausal women and 20 age-paired healthy controls. MAFLD patients showed significant metabolic disturbance presented with increased body mass index (BMI), blood pressure (p < 0.001) and decreased high-density lipoprotein cholesterol (p < 0.05), as well as liver injury companied by elevated ALT (p < 0.05). Serum ATX levels were statistically higher in MAFLD (253.1 ± 52.1 vs. 202.2 ± 53.2 ng/mL; p < 0.01) and positively correlated with ALT (p < 0.001), γ-glutamyltransferase and BMI (p < 0.01), SBP and TG (p < 0.05). Higher ATX group demonstrated worsen metabolic states with greater proportion of MAFLD, higher BMI (p < 0.01), and ALT (p < 0.05). Logistic regression analysis revealed that serum ATX levels would positively independently predicted MAFLD (OR 1.049, 95% CI: 1.001-1.098, p < 0.05) with AUC of 0.763. Serum level of ATX is significantly elevated in hyperuricemia group (257.3 ± 60.9 vs. 214.5 ± 49.4 ng/mL; p < 0.05) and positively correlated with uric acid level (p < 0.01). Serum ATX would also act as diagnosing parameter of hyperuricemia with AUC of 0.706. CONCLUSIONS Among postmenopausal women, serum ATX level is significantly elevated in MAFLD and related to multiple metabolic characteristics, especially hyperuricemia, which would thus serve as a potential noninvasive biomarker as well as a therapeutic target.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiahui Hu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yu Li
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xuefeng Zhou
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yini Ke
- Department of Rheumatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Chen
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
35
|
Huang X, Li J, Zhang L, Zhang C, Li C. The association between the non-high-density lipoprotein cholesterol to high-density lipoprotein cholesterol ratio and non-alcoholic fatty liver disease in US adults: a cross-sectional study. Sci Rep 2024; 14:24847. [PMID: 39438585 PMCID: PMC11496614 DOI: 10.1038/s41598-024-76002-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
The ratio of non-high-density lipoprotein cholesterol (non-HDL-C) to HDL-C (NHHR) is a novel lipid parameter used to assess the risk of cardiovascular disease. Previous studies have demonstrated an association between the NHHR and risk of non-alcoholic fatty liver disease (NAFLD). Owing to the lack of research exploring this relationship in specific populations, this study aimed to determine the potential link between the NHHR and risk of NAFLD among American adults in the United States. Data were retrieved from the National Health and Nutrition Examination Survey (NHANES) spanning 2017-2020. After excluding individuals with other liver diseases, alcohol abuse, and missing lipid data, a total of 6809 eligible adults were included for analysis. The NHHR was calculated as the ratio of (non-HDL-C) to HDL-C, while NAFLD was identified by liver steatosis detected by transient elastography. Multivariable weighted logistic regression models and restricted cubic spline (RCS) models were employed to investigate the relationship between the NHHR and risk of NAFLD. Subgroup and sensitivity analyses were also conducted to test the robustness of the results. As the NHHR increased, the prevalence of NAFLD rose progressively (5.88% vs. 8.75% vs. 12.24% vs. 15.77%, p < 0.001). In the overall population, after adjusting for confounding factors, each unit increase in the NHHR was associated with a 25% increase in NAFLD risk (OR = 1.25, 95% CI: 1.03-1.53, p = 0.0372). When the NHHR was analyzed as a categorical variable (quartiles), participants in the highest quartile had a significantly higher risk of NAFLD than those in the lowest quartile (OR = 2.6, 95% CI: 1.75-3.85, p = 0.009). RCS analysis further indicated a nonlinear dose-response relationship between the NHHR and risk of NAFLD (p non-linearity < 0.0001). This association remained significant in both subgroup and sensitivity analyses. This study confirmed that the NHHR, particularly at higher levels, was an independent risk factor for NAFLD. As a comprehensive lipid indicator, the NHHR had the potential to predict NAFLD risk. These findings provided new insights for the prevention and clinical management of NAFLD.
Collapse
Affiliation(s)
- XuDong Huang
- Department of Science and Education, Shenyang Maternity and Child Health Hospital, Shenyang, 110014, China
| | - Jing Li
- Department of Science and Education, Shenyang Maternity and Child Health Hospital, Shenyang, 110014, China
| | - LiFeng Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, Shenyang, 110034, China
| | - ChenYang Zhang
- Department of Science and Education, Shenyang Maternity and Child Health Hospital, Shenyang, 110014, China
| | - ChenYang Li
- Department of Science and Education, Shenyang Maternity and Child Health Hospital, Shenyang, 110014, China.
| |
Collapse
|
36
|
Fehsel K. Metabolic Side Effects from Antipsychotic Treatment with Clozapine Linked to Aryl Hydrocarbon Receptor (AhR) Activation. Biomedicines 2024; 12:2294. [PMID: 39457607 PMCID: PMC11505606 DOI: 10.3390/biomedicines12102294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Metabolic syndrome (MetS) is the most common adverse drug reaction from psychiatric pharmacotherapy. Neuroreceptor blockade by the antipsychotic drug clozapine induces MetS in about 30% of patients. Similar to insulin resistance, clozapine impedes Akt kinase activation, leading to intracellular glucose and glutathione depletion. Additional cystine shortage triggers tryptophan degradation to kynurenine, which is a well-known AhR ligand. Ligand-bound AhR downregulates the intracellular iron pool, thereby increasing the risk of mitochondrial dysfunction. Scavenging iron stabilizes the transcription factor HIF-1, which shifts the metabolism toward transient glycolysis. Furthermore, the AhR inhibits AMPK activation, leading to obesity and liver steatosis. Increasing glucose uptake by AMPK activation prevents dyslipidemia and liver damage and, therefore, reduces the risk of MetS. In line with the in vitro results, feeding experiments with rats revealed a disturbed glucose-/lipid-/iron-metabolism from clozapine treatment with hyperglycemia and hepatic iron deposits in female rats and steatosis and anemia in male animals. Decreased energy expenditure from clozapine treatment seems to be the cause of the fast weight gain in the first weeks of treatment. In patients, this weight gain due to neuroleptic treatment correlates with an improvement in psychotic syndromes and can even be used to anticipate the therapeutic effect of the treatment.
Collapse
Affiliation(s)
- Karin Fehsel
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Bergische Landstrasse 2, 40629 Duesseldorf, Germany
| |
Collapse
|
37
|
Li C, Wang F, Ma Y, Wang W, Guo Y. Investigation of the regulatory mechanisms of Guiqi Yimu Powder on dairy cow fatty liver cells using a multi-omics approach. Front Vet Sci 2024; 11:1475564. [PMID: 39444735 PMCID: PMC11497463 DOI: 10.3389/fvets.2024.1475564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Fatty liver disease in dairy cows is a metabolic disorder that significantly affects their health and productivity, imposing a notable economic burden on the global dairy industry. Traditional Chinese medicine (TCM), characterized by its multi-component and multi-target features, has shown unique advantages in the prevention and treatment of various diseases. Guiqi Yimu Powder, a traditional TCM formula, enhances growth, boosts production efficiency, and strengthens immune function in livestock by regulating antioxidant along with anti-inflammatory pathways. However, its specific regulatory mechanisms on fatty liver in dairy cows remain unclear. This study aims to investigate the molecular-level effects and potential regulatory mechanisms of Guiqi Yimu Powder in a Trimethylamine N-oxide (TMAO) induced fatty liver cell model of dairy cows. Methods We employed a comprehensive analysis integrating transcriptomics, proteomics, metabolomics, and network pharmacology. An in vitro dairy cow fatty liver cell model was established using TMAO to induce lipid accumulation. Cells were treated with the optimal TMAO concentration identified through preliminary experiments, and further divided into a lipid accumulation group and Guiqi Yimu Powder treatment groups. The treatment groups received varying concentrations of Guiqi Yimu Powder (10, 20, 30, 40, or 50 g/L). High-throughput omics sequencing technologies were utilized to perform a comprehensive analysis of the treated cells. Bioinformatics methods were applied to explore the regulatory effects, aiming to elucidate the specific impacts of Guiqi Yimu Powder on lipid metabolism, liver function, and related signaling pathways, thereby providing scientific evidence for its potential application in the prevention and treatment of fatty liver in dairy cows. Results Guiqi Yimu Powder treatment significantly affected 1,536 genes, 152 proteins, and 259 metabolites. KEGG enrichment analysis revealed that the significantly altered molecules are involved in multiple pathways related to the pathology of fatty liver, including metabolic pathways, glutathione metabolism, hepatitis B, and AMPK signaling pathway (p < 0.05). Notably, joint analysis highlighted the regulatory mechanisms of Guiqi Yimu Powder on glutathione cycling, with L-5-Oxoproline identified as an important metabolic compound. These findings indicate its impact on oxidative stress, energy metabolism, and liver function, suggesting potential therapeutic applications for fatty liver in dairy cows. Discussion This study elucidated the regulatory mechanisms of Guiqi Yimu Powder on fatty liver cells in dairy cows, providing new scientific evidence for its potential application in the prevention and treatment of fatty liver disease.
Collapse
Affiliation(s)
- Chenlei Li
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Feifei Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Yanfen Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Wenjia Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Yansheng Guo
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| |
Collapse
|
38
|
Zhu Y, Liu X, Shi Y, Liu X, Li H, Ru S, Tian H. Prenatal exposure to bisphenol AF causes toxicities in liver, spleen, and kidney tissues of SD rats. Food Chem Toxicol 2024; 192:114939. [PMID: 39151878 DOI: 10.1016/j.fct.2024.114939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/04/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
As a replacement for bisphenol A (BPA), bisphenol AF (BPAF) showed stronger maternal transfer and higher fetal accumulation than BPA. Therefore, concerns should be raised about the health risks of maternal exposure to BPAF during gestation on the offspring. In this study, SD rats were exposed to BPAF (0, 50, and 100 mg/kg/day) during gestation to investigate the bioaccumulation and adverse effects in liver, spleen, and kidney tissues of the offspring at weaning period. Bioaccumulation of BPAF in these tissues with concentrations ranging from 1.56 ng/mg (in spleen of males) to 55.44 ng/mg (in liver of females) led to adverse effects at different biological levels, including increased relative weights of spleen and kidneys, histopathological damage in liver, spleen, and kidney, organ functional damage in liver, spleen, and kidney, upregulated expression of genes related to lipid metabolism (in liver), oxidative stress response (in kidney), immunity and inflammatory (in spleen). Furthermore, dysregulated metabolomics was identified in spleen, with 217 differential metabolites screened and 9 KEGG pathways significantly enriched. This study provides a comprehensive insight into the systemic toxicities of prenatal exposure to BPAF in SD rats. Given the broad applications and widespread occurrence of BPAF, its safety should be re-considered.
Collapse
Affiliation(s)
- Yaxuan Zhu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xiuxiang Liu
- Qingdao Women and Children's Hospital, Qingdao, 266034, China
| | - Yijiao Shi
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xiuying Liu
- Wudi County Hospital of Traditional Chinese Medicine, Binzhou, 251900, China
| | - Huaxin Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Hua Tian
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
39
|
Quehenberger O, Armando AM, Cedeno TH, Loomba R, Sanyal AJ, Dennis EA. Novel eicosanoid signature in plasma provides diagnostic for metabolic dysfunction-associated steatotic liver disease. J Lipid Res 2024; 65:100647. [PMID: 39303979 PMCID: PMC11526069 DOI: 10.1016/j.jlr.2024.100647] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024] Open
Abstract
There is a clinical need for a simple test implementable at the primary point of care to identify individuals with metabolic dysfunction-associated steatotic liver disease (MASLD) in the population. Blood plasma samples from adult patients with varying phenotypes of MASLD were used to identify a minimal set of lipid analytes reflective of underlying histologically confirmed MASLD. Samples were obtained from the NIDDK Nonalcoholic Steatohepatitis Clinical Research Network (NASH CRN) NAFLD Database prospective cohort study (MASLD group; N = 301). Samples of control subjects were obtained from cohort studies at the University of California San Diego (control group; N = 48). Plasma samples were utilized for targeted quantitation of circulating eicosanoids, related bioactive metabolites, and polyunsaturated fatty acids by ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS) lipidomics analysis. Bioinformatic approaches were used to discover a panel of bioactive lipids that can be used as a diagnostic tool to identify MASLD. The final panel of fifteen lipid metabolites consists of 12 eicosanoid metabolites and 3 free fatty acids that were identified to be predictive for MASLD by multivariate area under the receiver operating characteristics curve (AUROC) analysis. The panel was highly predictive for MASLD with an AUROC of 0.999 (95% CI = 0.986-1.0) with only one control misclassified. A validation study confirmed the resulting MASLD LIPIDOMICS SCORE, which may require a larger-scale prospective study to optimize. This predictive model should guide the development of a non-invasive "point-of-care" test to identify MASLD patients requiring further evaluation for the presence of metabolic dysfunction-associated steatohepatitis.
Collapse
Affiliation(s)
- Oswald Quehenberger
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
| | - Aaron M Armando
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Tiffany H Cedeno
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Rohit Loomba
- MASLD Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Arun J Sanyal
- Division of Gastroenterology, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Edward A Dennis
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA; Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
40
|
Tattoli I, Mathew AR, Verrienti A, Pallotta L, Severi C, Andreola F, Cavallucci V, Giorgi M, Massimi M, Bencini L, Fidaleo M. The Interplay between Liver and Adipose Tissue in the Onset of Liver Diseases: Exploring the Role of Vitamin Deficiency. Cells 2024; 13:1631. [PMID: 39404394 PMCID: PMC11475612 DOI: 10.3390/cells13191631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
The deficiency of vitamins, a condition known as "hidden hunger", causes comprehensive pathological states. Research over the years has identified a relationship between liver diseases and hypovitaminosis or defects in vitamin metabolism. The exact mechanisms remain elusive; however, the crucial involvement of specific vitamins in metabolic functions, alongside the reclassification of liver disease as metabolic dysfunction-associated steatotic liver disease (MASLD), has prompted researchers to investigate the potential cause-effect dynamics between vitamin deficiency and liver disease. Moreover, scientists are increasingly investigating how the deficiency of vitamins might disrupt specific organ crosstalk, potentially contributing to liver disease. Although the concept of a dysmetabolic circuit linking adipose tissue and the liver, leading to liver disease, has been discussed, the possible involvement of vitamin deficiency in this axis is a relatively recent area of study, with numerous critical aspects yet to be fully understood. In this review, we examine research from 2019 to July 2024 focusing on the possible link between liver-adipose tissue crosstalk and vitamin deficiency involved in the onset and progression of non-alcoholic fatty liver disease (NAFLD). Studies report that vitamin deficiency can affect the liver-adipose tissue axis, mainly affecting the regulation of systemic energy balance and inflammation.
Collapse
Affiliation(s)
- Ivan Tattoli
- Oncology General Surgery, Azienda Ospedaliero Universitaria Careggi, 50139 Florence, Italy; (I.T.); (L.B.)
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.R.M.); (M.G.)
| | - Aimee Rachel Mathew
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.R.M.); (M.G.)
| | - Antonella Verrienti
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00161 Rome, Italy; (A.V.); (L.P.); (C.S.)
| | - Lucia Pallotta
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00161 Rome, Italy; (A.V.); (L.P.); (C.S.)
| | - Carola Severi
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00161 Rome, Italy; (A.V.); (L.P.); (C.S.)
| | - Fausto Andreola
- Liver Failure Group, Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK;
| | - Virve Cavallucci
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy;
| | - Mauro Giorgi
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.R.M.); (M.G.)
| | - Mara Massimi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Lapo Bencini
- Oncology General Surgery, Azienda Ospedaliero Universitaria Careggi, 50139 Florence, Italy; (I.T.); (L.B.)
| | - Marco Fidaleo
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.R.M.); (M.G.)
- Research Center for Nanotechnology for Engineering of Sapienza (CNIS), Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
41
|
Wu W, Jian Y, Yuan S, Li X, Tang Y, Zeng F, Liu W, Zhao Z, Wang Y, Wang Y, Liu W. Exercise-promoted adiponectin secretion activates autolysosomes to protect the liver of ApoE -/- mice from a high-fat diet. Food Funct 2024; 15:9796-9812. [PMID: 39229645 DOI: 10.1039/d4fo02984d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Fat is a "double-edged sword": while it is a necessary substance for the body, the long-term intake of excessive fat will cause obesity, with the liver subjected to lipotoxicity as it accumulates. It will then continue to deteriorate, eventually leading to liver failure, which is a negative impact of high-fat food intake. Research has shown that exercise can reverse the side effects of a chronic high-fat diet and help the body to mitigate the harmful effects of lipotoxicity. In our study, it was found that moderate-intensity cardio-training (MICT) and high-intensity interval exercise (HIIT) effectively protected the livers of high-fat diet (HFD) ApoE-/- mice against lipotoxicity. Previous results demonstrated that 12 weeks of HFD resulted in a significant elevation of CD36 in the livers of C57BL/6J mice, while knockdown of CD36 did not reduce the accumulation of fat in the liver. Therefore, we used ApoE-/- mice as experimental subjects. Although HFD caused the development of hyperlipidemia and atherosclerosis, it is interesting to note that, due to the knockdown of ApoE, the livers of ApoE-/- mice in the non-exercise group did not show significant lipid deposition; however, after 12 weeks of MICT and HIIT, the livers of ApoE-/- mice showed significant lipid deposition. After we analyzed the lipid metabolism in their livers, we found that this was caused by the promotion of transport of peripheral fat into the liver due to exercise. Moreover, 12 weeks of exercise effectively reduced atherosclerosis, and the livers of ApoE-/- mice in the exercise group were not damaged by lipotoxicity. The results showed that a 12-week exercise treatment activated AMPK in the livers of HFD ApoE-/- mice through the APN-AdipoR1 signaling pathway, improved hepatic lipid metabolism disorders, and promoted the nuclear translocation of TFEB to enhance autophagic-lysosomal lipid scavenging. After the peripheral lipid is input into the liver due to exercise, the energy generated through gluconeogenesis can be used to replenish the energy consumed by exercise and maintain the normal operation of various functions in the liver, based on which the high autophagic flux in the liver can be maintained and the lipid clearance rate can be enhanced to protect the liver from lipotoxicity.
Collapse
Affiliation(s)
- Weijia Wu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Ye Jian
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Shunling Yuan
- Yangtze University, College of Arts and Sciences, Jingzhou 434020, China
| | - Xuan Li
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Yingzhe Tang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Fanqi Zeng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Wenjing Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Zhe Zhao
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Yirong Wang
- Hunan Sports Vocational College, Changsha 410019, China
| | - Yiyang Wang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Wenfeng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| |
Collapse
|
42
|
La X, Zhang Z, Dong C, Li H, He X, Kang Y, Wu C, Li Z. Isorhamnetin in Quinoa Whole-Grain Flavonoids Intervenes in Non-Alcoholic Fatty Liver Disease by Modulating Bile Acid Metabolism through Regulation of FXR Expression. Foods 2024; 13:3076. [PMID: 39410111 PMCID: PMC11475887 DOI: 10.3390/foods13193076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a severe hepatic health threat with no effective treatment. Based on the results that Chenopodium quinoa Willd. flavonoids eluted with 30% ethanol (CQWF30) can effectively alleviate NAFLD, this study employed ultrahigh-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS) to analyze the components of CQWF30., and screened for flavonoids with potential NAFLD-mitigating effects through network pharmacology. In vitro models using HepG2 and BEL-7402 cell lines induced with free fatty acid (FFA) showed that isorhamnetin administration reduced intracellular lipid deposition and reversed elevated triglyceride (TG) and total cholesterol (T-CHO) levels. In vivo experiments in high-fat diet (HFD) mice demonstrated that isorhamnetin significantly lowered serum and liver fat content, mitigated liver damage, and modulated bile acid metabolism by upregulating FXR and BSEP and downregulating SLCO1B3. Consequently, isorhamnetin shows promise as a treatment for NAFLD due to its lipid-lowering and hepatoprotective activities.
Collapse
Affiliation(s)
- Xiaoqin La
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; (Z.Z.); (C.W.)
| | - Zhaoyan Zhang
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; (Z.Z.); (C.W.)
| | - Cunli Dong
- School of Life Science, Shanxi University, Taiyuan 030006, China; (C.D.); (H.L.); (X.H.); (Y.K.)
| | - Hanqing Li
- School of Life Science, Shanxi University, Taiyuan 030006, China; (C.D.); (H.L.); (X.H.); (Y.K.)
| | - Xiaoting He
- School of Life Science, Shanxi University, Taiyuan 030006, China; (C.D.); (H.L.); (X.H.); (Y.K.)
| | - Yurui Kang
- School of Life Science, Shanxi University, Taiyuan 030006, China; (C.D.); (H.L.); (X.H.); (Y.K.)
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; (Z.Z.); (C.W.)
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan 030006, China
| | - Zhuoyu Li
- Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
43
|
Rivera-Esteban J, Muñoz-Martínez S, Higuera M, Sena E, Bermúdez-Ramos M, Bañares J, Martínez-Gomez M, Cusidó MS, Jiménez-Masip A, Francque SM, Tacke F, Minguez B, Pericàs JM. Phenotypes of Metabolic Dysfunction-Associated Steatotic Liver Disease-Associated Hepatocellular Carcinoma. Clin Gastroenterol Hepatol 2024; 22:1774-1789.e8. [PMID: 38604295 DOI: 10.1016/j.cgh.2024.03.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 04/13/2024]
Abstract
Hepatocellular carcinoma (HCC) typically develops as a consequence of liver cirrhosis, but HCC epidemiology has evolved drastically in recent years. Metabolic dysfunction-associated steatotic liver disease (MASLD), including metabolic dysfunction-associated steatohepatitis, has emerged as the most common chronic liver disease worldwide and a leading cause of HCC. A substantial proportion of MASLD-associated HCC (MASLD-HCC) also can develop in patients without cirrhosis. The specific pathways that trigger carcinogenesis in this context are not elucidated completely, and recommendations for HCC surveillance in MASLD patients are challenging. In the era of precision medicine, it is critical to understand the processes that define the profiles of patients at increased risk of HCC in the MASLD setting, including cardiometabolic risk factors and the molecular targets that could be tackled effectively. Ideally, defining categories that encompass key pathophysiological features, associated with tailored diagnostic and treatment strategies, should facilitate the identification of specific MASLD-HCC phenotypes. In this review, we discuss MASLD-HCC, including its epidemiology and health care burden, the mechanistic data promoting MASLD, metabolic dysfunction-associated steatohepatitis, and MASLD-HCC. Its natural history, prognosis, and treatment are addressed specifically, as the role of metabolic phenotypes of MASLD-HCC as a potential strategy for risk stratification. The challenges in identifying high-risk patients and screening strategies also are discussed, as well as the potential approaches for MASLD-HCC prevention and treatment.
Collapse
Affiliation(s)
- Jesús Rivera-Esteban
- Liver Unit, Department of Internal Medicine, Vall d'Hebron University Hospital, Barcelona, Spain; Vall d'Hebron Institut de Recerca, Vall d'Hebron Barcelona Campus Hospitalari, Barcelona, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sergio Muñoz-Martínez
- Vall d'Hebron Institut de Recerca, Vall d'Hebron Barcelona Campus Hospitalari, Barcelona, Spain; Universitat de Barcelona, Barcelona, Spain
| | - Mónica Higuera
- Vall d'Hebron Institut de Recerca, Vall d'Hebron Barcelona Campus Hospitalari, Barcelona, Spain
| | - Elena Sena
- Vall d'Hebron Institut de Recerca, Vall d'Hebron Barcelona Campus Hospitalari, Barcelona, Spain
| | - María Bermúdez-Ramos
- Liver Unit, Department of Internal Medicine, Vall d'Hebron University Hospital, Barcelona, Spain; Vall d'Hebron Institut de Recerca, Vall d'Hebron Barcelona Campus Hospitalari, Barcelona, Spain; Liver Unit, Department of Digestive Diseases, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Juan Bañares
- Liver Unit, Department of Internal Medicine, Vall d'Hebron University Hospital, Barcelona, Spain; Vall d'Hebron Institut de Recerca, Vall d'Hebron Barcelona Campus Hospitalari, Barcelona, Spain
| | - María Martínez-Gomez
- Vall d'Hebron Institut de Recerca, Vall d'Hebron Barcelona Campus Hospitalari, Barcelona, Spain
| | - M Serra Cusidó
- Vall d'Hebron Institut de Recerca, Vall d'Hebron Barcelona Campus Hospitalari, Barcelona, Spain
| | - Alba Jiménez-Masip
- Liver Unit, Department of Internal Medicine, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Sven M Francque
- Department of Gastroenterology Hepatology, Antwerp University Hospital, Edegem, Belgium; InflaMed Centre of Excellence, Laboratory for Experimental Medicine and Paediatrics, Translational Sciences in Inflammation and Immunology, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Beatriz Minguez
- Liver Unit, Department of Internal Medicine, Vall d'Hebron University Hospital, Barcelona, Spain; Vall d'Hebron Institut de Recerca, Vall d'Hebron Barcelona Campus Hospitalari, Barcelona, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; Centros de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas, Madrid, Spain.
| | - Juan M Pericàs
- Liver Unit, Department of Internal Medicine, Vall d'Hebron University Hospital, Barcelona, Spain; Vall d'Hebron Institut de Recerca, Vall d'Hebron Barcelona Campus Hospitalari, Barcelona, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; Centros de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas, Madrid, Spain.
| |
Collapse
|
44
|
Wang B, Zhu X, Yu S, Xue H, Deng L, Zhang Y, Zhang Y, Liu Y. Roflumilast ameliorates GAN diet-induced non-alcoholic fatty liver disease by reducing hepatic steatosis and fibrosis in ob/ob mice. Biochem Biophys Res Commun 2024; 722:150170. [PMID: 38797152 DOI: 10.1016/j.bbrc.2024.150170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent progressive liver disease. Currently, there is only one drug for NAFLD treatment, and the options are limited. Phosphodiesterase-4 (PDE-4) inhibitors have potential in treating NAFLD. Therefore, this study aims to investigate the effect of roflumilast on NAFLD. Here, we fed ob/ob mice to induce the NAFLD model by GAN diet. Roflumilast (1 mg/kg) was administered orally once daily. Semaglutide (20 nmol/kg), used as a positive control, was injected subcutaneously once daily. Our findings showed that roflumilast has beneficial effects on NAFLD. Roflumilast prevented body weight gain and improved lipid metabolism in ob/ob-GAN NAFLD mice. In addition, roflumilast decreased hepatic steatosis by down-regulating the expression of hepatic fatty acid synthesis genes (SREBP1c, FASN, and CD36) and improving oxidative stress. Roflumilast not only reduced liver injury by decreasing serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, but also ameliorated hepatic inflammation by reducing the gene expression of proinflammatory cytokines (TNF-α, IL-1β, and IL-6). Roflumilast lessened liver fibrosis by inhibiting the expression of fibrosis mRNA (TGFβ1, α-SMA, COL1a1, and TIMP-1). Collectively, roflumilast could ameliorate NAFLD, especially in reducing hepatic steatosis and fibrosis. Our findings suggested a PDE-4 inhibitor roflumilast could be a potential drug for NAFLD.
Collapse
Affiliation(s)
- Bin Wang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Shanxi Medical University, 030001, Taiyuan, Shanxi, China; Department of Pharmacology, Shanxi Medical University, 030001, Taiyuan, Shanxi, China
| | - Xiaochan Zhu
- Department of Pharmacology, Shanxi Medical University, 030001, Taiyuan, Shanxi, China
| | - Siting Yu
- Department of Pharmacology, Shanxi Medical University, 030001, Taiyuan, Shanxi, China
| | - Huan Xue
- Department of Pharmacology, Shanxi Medical University, 030001, Taiyuan, Shanxi, China
| | - Lijiao Deng
- Department of Pharmacology, Shanxi Medical University, 030001, Taiyuan, Shanxi, China
| | - Yushan Zhang
- Department of Pharmacology, Shanxi Medical University, 030001, Taiyuan, Shanxi, China
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, 030001, Taiyuan, Shanxi, China; Department of Pharmacy, Shanxi Medical University, 030001, Taiyuan, Shanxi, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, 030001, Taiyuan, Shanxi, China.
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Shanxi Medical University, 030001, Taiyuan, Shanxi, China.
| |
Collapse
|
45
|
Chen H, Li YY, Nio K, Tang H. Unveiling the Impact of BMP9 in Liver Diseases: Insights into Pathogenesis and Therapeutic Potential. Biomolecules 2024; 14:1013. [PMID: 39199400 PMCID: PMC11353080 DOI: 10.3390/biom14081013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Bone morphogenetic proteins (BMPs) are a group of growth factors belonging to the transforming growth factor β(TGF-β) family. While initially recognized for their role in bone formation, BMPs have emerged as significant players in liver diseases. Among BMPs with various physiological activities, this comprehensive review aims to delve into the involvement of BMP9 specifically in liver diseases and provide insights into the complex BMP signaling pathway. Through an enhanced understanding of BMP9, we anticipate the discovery of new therapeutic options and potential strategies for managing liver diseases.
Collapse
Affiliation(s)
- Han Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China;
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ying-Yi Li
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa 9208641, Japan;
| | - Kouki Nio
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa 9208641, Japan;
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China;
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
46
|
Yang M, Yan R, Sha R, Wang X, Zhou S, Li B, Zheng Q, Cao Y. Epigallocatechin gallate alleviates non-alcoholic fatty liver disease through the inhibition of the expression and activity of Dipeptide kinase 4. Clin Nutr 2024; 43:1769-1780. [PMID: 38936303 DOI: 10.1016/j.clnu.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) has emerged as the most prevalent glocal cause of chronic hepatic disease, with incidence rates that continue to rise steadily. Treatment options for affected patients are currently limited to dietary changes and exercise interventions, with no drugs having been licensed for the treatment of this disease. There is thus a pressing need for the development of novel therapeutic strategies. Work from our group suggests that the primary bioactive ingredient in green tea, epigallocatechin gallate (EGCG), may help reduce liver fat content and protect against hepatic injury through the inhibition of dipeptidyl peptidase 4 (DPP4) expression and activity. The study investigated the potential pathways by which EGCG may improve NAFLD, identified the sites of interaction between EGCG and DPP4, and proposed novel clinical treatment strategies. METHODS A clinical randomized controlled trial was conducted to investigate the potential efficacy of EGCG in NAFLD patients. The study compared relevant indices before and after EGCG administration. Animal models of NAFLD were constructed using male C57BL/6J mice fed a high-fat diet to observe the ameliorative effects of EGCG on the livers of the model mice and to investigate the potential pathways by which EGCG alleviates NAFLD. The interaction mechanism between EGCG and DPP4 was investigated using oleic acid and palmitic acid-treated HepG2 cell lines. Plasmids in which different sites had been disrupted were used to identify the effective interaction sites. RESULTS ECGC was found to suppress the accumulation of lipids, inhibit inflammation, remediate dysregulated lipid metabolism, and improve the pathogenesis of NAFLD via the inhibition of the expression and activity of DPP4. CONCLUSIONS The study results indicate that EGCG has a positive impact on improving NAFLD. These results highlight promising new opportunities to safely and effectively treat NAFLD in the clinic. STUDY ID NUMBER ChiCTR2300076741; https://www.chictr.org.cn/.
Collapse
Affiliation(s)
- Mingfeng Yang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Ruike Yan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Ruohe Sha
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Xinxin Wang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Shiting Zhou
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Baifeng Li
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China.
| | - Qianqian Zheng
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University 110122, Shenyang, Liaoning Province, PR China.
| | - Yanli Cao
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, PR China.
| |
Collapse
|
47
|
Duan Y, Yang Y, Zhao S, Bai Y, Yao W, Gao X, Yin J. Crosstalk in extrahepatic and hepatic system in NAFLD/NASH. Liver Int 2024; 44:1856-1871. [PMID: 38717072 DOI: 10.1111/liv.15967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/28/2024] [Accepted: 04/26/2024] [Indexed: 07/17/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as the most prevalent chronic liver disease globally. Non-alcoholic steatohepatitis (NASH) represents an extremely progressive form of NAFLD, which, without timely intervention, may progress to cirrhosis or hepatocellular carcinoma. Presently, a definitive comprehension of the pathogenesis of NAFLD/NASH eludes us, and pharmacological interventions targeting NASH specifically remain constrained. The aetiology of NAFLD encompasses a myriad of external factors including environmental influences, dietary habits and gender disparities. More significantly, inter-organ and cellular interactions within the human body play a role in the development or regression of the disease. In this review, we categorize the influences affecting NAFLD both intra- and extrahepatically, elaborating meticulously on the mechanisms governing the onset and progression of NAFLD/NASH. This exploration delves into progress in aetiology and promising therapeutic targets. As a metabolic disorder, the development of NAFLD involves complexities related to nutrient metabolism, liver-gut axis interactions and insulin resistance, among other regulatory functions of extraneous organs. It further encompasses intra-hepatic interactions among hepatic cells, Kupffer cells (KCs) and hepatic stellate cells (HSCs). A comprehensive understanding of the pathogenesis of NAFLD/NASH from a macroscopic standpoint is instrumental in the formulation of future therapies for NASH.
Collapse
Affiliation(s)
- Yiliang Duan
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yan Yang
- The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Shuqiang Zhao
- Jiangsu Institute for Food and Drug Control, NMPA Key Laboratory for Impurity Profile of Chemical Drugs, Nanjing, Jiangsu, China
| | - Yuesong Bai
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Wenbing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
48
|
Liu H, Yin G, Kohlhepp MS, Schumacher F, Hundertmark J, Hassan MIA, Heymann F, Puengel T, Kleuser B, Mosig AS, Tacke F, Guillot A. Dissecting Acute Drug-Induced Hepatotoxicity and Therapeutic Responses of Steatotic Liver Disease Using Primary Mouse Liver and Blood Cells in a Liver-On-A-Chip Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403516. [PMID: 38868948 PMCID: PMC11321671 DOI: 10.1002/advs.202403516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/19/2024] [Indexed: 06/14/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is hallmarked by hepatic steatosis, cell injury, inflammation, and fibrosis. This study elaborates on a multicellular biochip-based liver sinusoid model to mimic MASLD pathomechanisms and investigate the therapeutic effects of drug candidates lanifibranor and resmetirom. Mouse liver primary hepatocytes, hepatic stellate cells, Kupffer cells, and endothelial cells are seeded in a dual-chamber biocompatible liver-on-a-chip (LoC). The LoC is then perfused with circulating immune cells (CICs). Acetaminophen (APAP) and free fatty acids (FFAs) treatment recapitulate acute drug-induced liver injury and MASLD, respectively. As a benchmark for the LoC, multiplex immunofluorescence on livers from APAP-injected and dietary MASLD-induced mice reveals characteristic changes on parenchymal and immune cell populations. APAP exposure induces cell death in the LoC, and increased inflammatory cytokine levels in the circulating perfusate. Under FFA stimulation, lipid accumulation, cellular damage, inflammatory secretome, and fibrogenesis are increased in the LoC, reflecting MASLD. Both injury conditions potentiate CIC migration from the perfusate to the LoC cellular layers. Lanifibranor prevents the onset of inflammation, while resmetirom decreases lipid accumulation in hepatocytes and increases the generation of FFA metabolites in the LoC. This study demonstrates the LoC potential for functional and molecular evaluation of liver disease drug candidates.
Collapse
Affiliation(s)
- Hanyang Liu
- Department of Hepatology & GastroenterologyCampus Virchow‐Klinikum and Campus Charité MitteCharité – Universitätsmedizin Berlin13353BerlinGermany
| | - Guo Yin
- Department of Hepatology & GastroenterologyCampus Virchow‐Klinikum and Campus Charité MitteCharité – Universitätsmedizin Berlin13353BerlinGermany
| | - Marlene Sophia Kohlhepp
- Department of Hepatology & GastroenterologyCampus Virchow‐Klinikum and Campus Charité MitteCharité – Universitätsmedizin Berlin13353BerlinGermany
| | - Fabian Schumacher
- Institute of PharmacyFreie Universität BerlinKönigin‐Luise‐Str. 2+414195BerlinGermany
| | - Jana Hundertmark
- Department of Hepatology & GastroenterologyCampus Virchow‐Klinikum and Campus Charité MitteCharité – Universitätsmedizin Berlin13353BerlinGermany
| | | | - Felix Heymann
- Department of Hepatology & GastroenterologyCampus Virchow‐Klinikum and Campus Charité MitteCharité – Universitätsmedizin Berlin13353BerlinGermany
| | - Tobias Puengel
- Department of Hepatology & GastroenterologyCampus Virchow‐Klinikum and Campus Charité MitteCharité – Universitätsmedizin Berlin13353BerlinGermany
| | - Burkhard Kleuser
- Institute of PharmacyFreie Universität BerlinKönigin‐Luise‐Str. 2+414195BerlinGermany
| | - Alexander Sandy Mosig
- Institute of Biochemistry IICenter for Sepsis Control and CareJena University Hospital07747JenaGermany
| | - Frank Tacke
- Department of Hepatology & GastroenterologyCampus Virchow‐Klinikum and Campus Charité MitteCharité – Universitätsmedizin Berlin13353BerlinGermany
| | - Adrien Guillot
- Department of Hepatology & GastroenterologyCampus Virchow‐Klinikum and Campus Charité MitteCharité – Universitätsmedizin Berlin13353BerlinGermany
| |
Collapse
|
49
|
Eberhard D, Balkenhol S, Köster A, Follert P, Upschulte E, Ostermann P, Kirschner P, Uhlemeyer C, Charnay I, Preuss C, Trenkamp S, Belgardt BF, Dickscheid T, Esposito I, Roden M, Lammert E. Semaphorin-3A regulates liver sinusoidal endothelial cell porosity and promotes hepatic steatosis. NATURE CARDIOVASCULAR RESEARCH 2024; 3:734-753. [PMID: 39196233 PMCID: PMC11358038 DOI: 10.1038/s44161-024-00487-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/07/2024] [Indexed: 08/29/2024]
Abstract
Prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease, increases worldwide and associates with type 2 diabetes and other cardiometabolic diseases. Here we demonstrate that Sema3a is elevated in liver sinusoidal endothelial cells of animal models for obesity, type 2 diabetes and MASLD. In primary human liver sinusoidal endothelial cells, saturated fatty acids induce expression of SEMA3A, and loss of a single allele is sufficient to reduce hepatic fat content in diet-induced obese mice. We show that semaphorin-3A regulates the number of fenestrae through a signaling cascade that involves neuropilin-1 and phosphorylation of cofilin-1 by LIM domain kinase 1. Finally, inducible vascular deletion of Sema3a in adult diet-induced obese mice reduces hepatic fat content and elevates very low-density lipoprotein secretion. Thus, we identified a molecular pathway linking hyperlipidemia to microvascular defenestration and early development of MASLD.
Collapse
Affiliation(s)
- Daniel Eberhard
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Metabolic Physiology, Düsseldorf, Germany
| | - Sydney Balkenhol
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Metabolic Physiology, Düsseldorf, Germany
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Andrea Köster
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Metabolic Physiology, Düsseldorf, Germany
| | - Paula Follert
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Metabolic Physiology, Düsseldorf, Germany
| | - Eric Upschulte
- Cécile & Oskar Vogt Institute of Brain Research, Medical Faculty and University Hospital Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
- Helmholtz AI, Research Center Jülich, Jülich, Germany
| | - Philipp Ostermann
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Metabolic Physiology, Düsseldorf, Germany
| | - Philip Kirschner
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Metabolic Physiology, Düsseldorf, Germany
| | - Celina Uhlemeyer
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Iannis Charnay
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Metabolic Physiology, Düsseldorf, Germany
| | - Christina Preuss
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Sandra Trenkamp
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Bengt-Frederik Belgardt
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Timo Dickscheid
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
- Helmholtz AI, Research Center Jülich, Jülich, Germany
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Computer Science, Düsseldorf, Germany
| | - Irene Esposito
- Institute of Pathology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Eckhard Lammert
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Metabolic Physiology, Düsseldorf, Germany.
- Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
50
|
Wang H, Chen L, Zhang R, Zhang G, Liu J, Guo F. Curcuma wenyujin rhizomes extract ameliorates lipid accumulation. Fitoterapia 2024; 175:105957. [PMID: 38604260 DOI: 10.1016/j.fitote.2024.105957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
Curcuma wenyujin (C. wenyujin) is a medicinal plant that is traditionally used to treat blood stagnation, liver fibrosis, pain, and jaundice. In this study, we examined the effect of C. wenyujin rhizome extract on hepatic lipid accumulation both in vivo and in vitro. We found that the petroleum ether fraction of C. wenyujin rhizome extract (CWP) considerably reduced the accumulation of lipids in HepG2 cells treated with oleic and palmitic acid. Ultra-high-performance liquid chromatography coupled with LTQ-Orbitrap mass spectrometry was used to analyze the main chemical constituents of CWP, and 21 sesquiterpenes were identified. In vivo experiments revealed that the administration of CWP significantly reduced the body weight and serum total cholesterol (TC) level of low-density-lipoprotein receptor knockout mice treated with a high-fat diet without affecting their food intake. CWP also significantly reduced the levels of liver TC, liver triglycerides, aspartate transaminase, and alanine transaminase. Histological examination revealed that CWP dose-dependently reduced steatosis in liver tissue, significantly downregulated the expression of lipogenesis genes, and increased the β-oxidation of fatty acids. CWP also significantly increased autophagy-related proteins. In conclusion, CWP rich in sesquiterpenes reduces the accumulation of lipids in vivo and in vitro by improving lipid metabolism and activating autophagy.
Collapse
Affiliation(s)
- Hong Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Lijia Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Ruiyu Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Guanying Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Jingwen Liu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| | - Fujiang Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| |
Collapse
|