1
|
Feng W, Liu H, Liang CL, Huang H, Chen Y, Dai Z. Immunoregulatory effects of traditional Chinese medicine and its ingredients on psoriasis. Int Immunopharmacol 2025; 159:114896. [PMID: 40409104 DOI: 10.1016/j.intimp.2025.114896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/24/2025] [Accepted: 05/14/2025] [Indexed: 05/25/2025]
Abstract
Psoriasis is an immune-mediated inflammatory skin disease involving the activation and regulation of various immune cells. A proportion of psoriasis patients remain unresponsive to conventional therapies or targeted drugs, highlighting the urgent need for novel therapeutic strategies. In addition, although many conventional immunosuppressants are effective in the treatment of psoriasis, they may cause various side effects. Traditional Chinese Medicine (TCM) represents a potential drug candidate, with a rich history of traditional use and a vast array of pharmacological options. In particular, TCM may serve as an alternative or complementary therapy of psoriasis with potentially less side effects. In this review, we focus on immune cells, including dendritic cells, neutrophils, macrophages, myeloid-derived suppressor cells, Th17, regulatory T (Treg) cells, and γδ T cells. We provide an overview of the roles for these immune cells in the pathogenesis of psoriasis and regulatory effects of TCM and its ingredients on them. Additionally, we briefly summarize the clinical research involving treatment of psoriasis with TCM and discuss the existing challenges and limitations in this field.
Collapse
Affiliation(s)
- Wei Feng
- Immunology Program, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Huazhen Liu
- Immunology Program, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chun-Ling Liang
- Immunology Program, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haiding Huang
- Immunology Program, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yuchao Chen
- Immunology Program, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Zhenhua Dai
- Immunology Program, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
2
|
Sun XF, Luo WC, Huang SQ, Zheng YJ, Xiao L, Zhang ZW, Liu RH, Zhong ZW, Song JQ, Nan K, Qiu ZX, Zhong J, Miao CH. Immune-cell signatures of persistent inflammation, immunosuppression, and catabolism syndrome after sepsis. MED 2025; 6:100569. [PMID: 39824181 DOI: 10.1016/j.medj.2024.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/13/2024] [Accepted: 12/12/2024] [Indexed: 01/20/2025]
Abstract
BACKGROUND Management of persistent inflammation, immunosuppression, and catabolism syndrome (PICS) after sepsis remains challenging for patients in the intensive care unit, experiencing poor quality of life and death. However, immune-cell signatures in patients with PICS after sepsis remain unclear. METHODS We determined immune-cell signatures of PICS after sepsis at single-cell resolution. Murine cecal ligation and puncture models of PICS were applied for validation. FINDINGS Immune functions of two enriched monocyte subpopulations, Mono1 and Mono4, were suppressed substantially in patients with sepsis and were partially restored in patients with PICS after sepsis and exhibited immunosuppressive and pro-apoptotic effects on B and CD8T cells. Patients with PICS and sepsis had reduced naive and memory B cells and proliferated plasma cells. Besides, naive and memory B cells in patients with PICS showed an active antigen processing and presentation gene signature compared to those with sepsis. PICS patients with better prognoses exhibited more active memory B cells and IGHA1-plasma cells. CD8TEMRA displayed signs of proliferation and immune dysfunction in the PICS-death group in contrast with the PICS-alive group. Megakaryocytes proliferation was more pronounced in patients with PICS and sepsis than in healthy controls, with notable changes in the anti-inflammatory and immunomodulatory effects observed in patients with PICS and verified in mice models. CONCLUSIONS Our study evaluated PICS after sepsis at the single-cell level, identifying the heterogeneity present within immune-cell subsets, facilitating the prediction of disease progression and the development of effective intervention. FUNDING This work was supported by the National Natural Science Foundation of China, Shanghai Municipal Health Commission "Yiyuan New Star" Youth Medical Talent Cultivating Program, and Shanghai Clinical Research Center for Anesthesiology.
Collapse
Affiliation(s)
- Xing-Feng Sun
- Department of Anesthesiology, Zhongshan Hospital Fudan University, Shanghai 200032, China; Department of Anesthesiology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200438, China
| | - Wen-Chen Luo
- Department of Anesthesiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Shao-Qiang Huang
- Department of Anesthesiology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200438, China
| | - Yi-Jun Zheng
- Department of Critical Care and Pain Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Lei Xiao
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zhong-Wei Zhang
- Department of Critical Care and Pain Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Rong-Hua Liu
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Zi-Wen Zhong
- Department of Anesthesiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Jie-Qiong Song
- Department of Critical Care Medicine, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Ke Nan
- Department of Anesthesiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Zhi-Xin Qiu
- Department of Anesthesiology, Zhongshan Hospital Fudan University, Shanghai 200032, China; Department of Anesthesiology, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 200032, China.
| | - Jing Zhong
- Department of Anesthesiology, Zhongshan Hospital Fudan University, Shanghai 200032, China.
| | - Chang-Hong Miao
- Department of Anesthesiology, Zhongshan Hospital Fudan University, Shanghai 200032, China; Laboratory of Perioperative Stress and Protection, Shanghai 200032, China.
| |
Collapse
|
3
|
Sarkar D, Pramanik A, Saha J, Das D, Mahanti K, Mahato M, Mondal P, Bhattacharyya S. Amelioration of imiquimod induced psoriasis through reduction in IL-17A and Th17 population by dihydromyricetin involves regulation of RORγt pathway. Int Immunopharmacol 2025; 153:114492. [PMID: 40112600 DOI: 10.1016/j.intimp.2025.114492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND AND PURPOSE Psoriasis is a chronic inflammatory skin disorder affecting approximately 125 million people. IL-17 A secreted from Th17 cells plays a major role in elucidating psoriasis. Dihydromyricetin (DHM) is plant derived flavonoid isolated from leaves and stems of Rattan tea (Ampelopsis grossedentata). Reports indicate anti-inflammatory property of DHM but no information is currently available on its mechanism of action or effect on IL17 producing Th17 cells and exact role in psoriasis. EXPERIMENTAL APPROACH DHM shows strong anti-inflammatory properties in vitro, DHM reduced LPS-induced ROS generation, and pro-inflammatory cytokines in macrophages. The efficacy of DHM against chronic inflammatory disorder in vivo was investigated in imiquimod-induced psoriasis established in male BALB/C mice as this model closely resembles human psoriasis. Immunophenotyping and cytokine production were observed by flow cytometry, the status of gene expression was determined by real-time PCR, and nuclear co-localization and immunofluorescence of skin tissue were studied using confocal microscopy. KEY RESULTS We observed increased inflammatory parameters in imiquimod treated diseased animals and the application of DHM topically and orally reduced the inflammatory parameters and improved indicators of cardiac damage prominent in psoriatic conditions. In our study, we found that the application of DHM dose-dependently reduced the percentage of IL-17 A-producing T cell population and reduced the nuclear co-translocation of RORγt in psoriatic T cells and possibly also influenced upstream IL-6 signaling. CONCLUSION AND IMPLICATIONS Our study suggests that DHM effectively alleviates psoriatic symptoms, and its mechanism of action involves the regulation of RORγt pathway in T cells.
Collapse
Affiliation(s)
- Debanjan Sarkar
- Immunobiology and Translational Medicine Laboratory, Department of Zoology, Sidho Kanho Birsha University, Purulia 723104, India
| | - Anik Pramanik
- Immunobiology and Translational Medicine Laboratory, Department of Zoology, Sidho Kanho Birsha University, Purulia 723104, India
| | - Jayasree Saha
- Immunobiology and Translational Medicine Laboratory, Department of Zoology, Sidho Kanho Birsha University, Purulia 723104, India; Currently, DST-SERB NPDF, School of Bioscience, IIT Kharagpur, Paschim Medinipur, West Bengal 721302, India
| | - Dona Das
- Immunobiology and Translational Medicine Laboratory, Department of Zoology, Sidho Kanho Birsha University, Purulia 723104, India
| | - Krishna Mahanti
- Immunobiology and Translational Medicine Laboratory, Department of Zoology, Sidho Kanho Birsha University, Purulia 723104, India
| | - Maniprabha Mahato
- Immunobiology and Translational Medicine Laboratory, Department of Zoology, Sidho Kanho Birsha University, Purulia 723104, India
| | - Pallabi Mondal
- Immunobiology and Translational Medicine Laboratory, Department of Zoology, Sidho Kanho Birsha University, Purulia 723104, India
| | - Sankar Bhattacharyya
- Immunobiology and Translational Medicine Laboratory, Department of Zoology, Sidho Kanho Birsha University, Purulia 723104, India.
| |
Collapse
|
4
|
Zhu Y, Cao S. Unraveling the Complexities of Myeloid-Derived Suppressor Cells in Inflammatory Bowel Disease. Int J Mol Sci 2025; 26:3291. [PMID: 40244120 PMCID: PMC11989781 DOI: 10.3390/ijms26073291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) regulate immune responses in many pathological conditions, one of which is inflammatory bowel disease (IBD), an incurable chronic disorder of the digestive tract and beyond. The pathophysiology of IBD remains unclear, likely involving aberrant innate and adaptive immunity. Studies have reported altered population of MDSCs in patients with IBD. However, their distribution varies among patients and different preclinical models of IBD. The expansion and activation of MDSCs are likely driven by various stimuli during intestinal inflammation, but the in-depth mechanisms remain poorly understood. The role of MDSCs in the pathogenesis of IBD appears to be paradoxical. In addition to intestinal inflammation, suppressive MDSCs may promote colitis-to-colon cancer transition. In this Review, we summarize recent progresses on the features, activation, and roles of MDSCs in the development of IBD and IBD-associated colon cancer.
Collapse
Affiliation(s)
| | - Siyan Cao
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
| |
Collapse
|
5
|
McDonald E, Kehoe E, Deines D, McCarthy M, Wright B, Huse S. High-parameter immunophenotyping reveals distinct immune cell profiles in pruritic dogs and cats. Front Vet Sci 2025; 11:1498964. [PMID: 39911485 PMCID: PMC11795398 DOI: 10.3389/fvets.2024.1498964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/10/2024] [Indexed: 02/07/2025] Open
Abstract
Introduction Immunophenotyping is a powerful tool for grading disease severity, aiding in diagnosis, predicting clinical response, and guiding the development of novel therapeutics. Methods This pilot study employs high parameter immunophenotyping panels (15 markers for dog, 12 for cat) and leverages unsupervised clustering to identify immune cell populations. Our analysis uses machine learning and statistical algorithms to perform unsupervised clustering, multiple visualizations, and statistical analysis of high parameter flow cytometry data. This method reduces user bias and precisely identifies cell populations, demonstrating its potential to detect variations and differentiate populations effectively. To enhance our understanding of cat and dog biology and test the unsupervised clustering approach on real-world samples, we performed in-depth profiling of immune cell populations in blood collected from client-owned and laboratory animals [dogs (n = 55) and cats (n = 68)]. These animals were categorized based on pruritic behavior or routine check-ups (non-pruritic controls). Results Unsupervised clustering revealed various immune cell populations, including T-cell subsets distinguished by CD62L expression and distinct monocyte subsets. Notably, there were significant differences in monocyte subsets between pruritic and non-pruritic animals. Pruritic dogs and cats showed significant shifts in CD62LHi T-cell subsets compared to non-pruritic controls, with opposite trends observed between pruritic cats and dogs. Discussion These findings underscore the importance of advancing veterinary immunophenotyping, expanding our knowledge about marker expression on circulating immune cells and driving progress in understanding veterinary-specific biology and uncovering new insights into various conditions and diseases.
Collapse
Affiliation(s)
- Erin McDonald
- Veterinary Medicine Research and Development (VMRD), Zoetis Inc, Fort Collins, CO, United States
| | - Eric Kehoe
- Veterinary Medicine Research and Development (VMRD), Zoetis Inc, Fort Collins, CO, United States
| | | | | | | | | |
Collapse
|
6
|
Sarkar D, Pramanik A, Das D, Bhattacharyya S. Shifting phenotype and differentiation of CD11b +Gr.1 + immature heterogeneous myeloid derived adjuster cells support inflammation and induce regulators of IL17A in imiquimod induced psoriasis. Inflamm Res 2024; 73:1581-1599. [PMID: 39052064 DOI: 10.1007/s00011-024-01918-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/19/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
OBJECTIVE AND DESIGN The exact immunological mechanism of widespread chronic inflammatory skin disorder psoriasis has not been fully established. CD11b+Gr.1+ myeloid-derived cells are immature heterogeneous cells with T-cell suppressive property in neoplasia; however, influence of these cells on adaptive immunity is highly contextual; therefore, we dubbed these cells as myeloid-derived adjuster cells (MDAC). We studied imiquimod induced psoriasis in mouse model and evaluated for the first time the RORγt-NFAT1 axis in MDACs and the function, differentiation and interaction of these cells with T cells. MATERIALS AND METHODS The status of T cells and MDACs; their functionality and differentiation properties, and the roles of RORγt and NFAT1 in MDACs were evaluated using flow cytometry, qRT-PCR and confocal imaging. RESULTS We found gradual increase in T cells and MDACs and an increase in the number of IL17 -secreting MDACs and T cells in the skin of psoriatic animals. We also noted that MDAC differentiation is biased toward M1 macrophages and DCs which perpetuate inflammation. We found that psoriatic MDACs were unable to suppress T-cell proliferation or activation but seemingly helped these T cells produce more IL17. Inhibition of the RORγt/NFAT1 axis in MDACs increased the suppressive nature of MDACs, allowing these cells to suppress the activity of psoriatic T-cells. CONCLUSION Our results indicate that altered MDAC properties in psoriatic condition sustains pathological inflammation and RORγt and NFAT1 as promising intervention target for psoriasis management.
Collapse
Affiliation(s)
- Debanjan Sarkar
- Immunobiology and Translational Medicine Laboratory, Department of Zoology, Sidho Kanho Birsha University, Purulia, 723104, India
| | - Anik Pramanik
- Immunobiology and Translational Medicine Laboratory, Department of Zoology, Sidho Kanho Birsha University, Purulia, 723104, India
| | - Dona Das
- Immunobiology and Translational Medicine Laboratory, Department of Zoology, Sidho Kanho Birsha University, Purulia, 723104, India
| | - Sankar Bhattacharyya
- Immunobiology and Translational Medicine Laboratory, Department of Zoology, Sidho Kanho Birsha University, Purulia, 723104, India.
| |
Collapse
|
7
|
Zhu Y, Chen X, Zou Y, Su L, Yan X, Zhu X, Hou Y, Liu M, Jiang W, Zou C, Chen X, Xu Z. Ze-Qi-Tang formula inhibits MDSCs glycolysis through the down-regulation of p21/Hif1α/Glut1 signal in psoriatic-like mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155544. [PMID: 38810554 DOI: 10.1016/j.phymed.2024.155544] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/07/2024] [Accepted: 03/17/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Psoriasis is a chronic immune-mediated inflammatory skin disease that affects the quality of life and mental health of approximately 150 million people worldwide. Ze-Qi-Tang (ZQT) is a classic compound used in China for lung disease; however, its mechanism of action in psoriasis remains unclear. This study aimed to investigate the therapeutic effect of the ZQT formula on psoriasis and explore the underlying molecular mechanisms. METHODS Peripheral blood samples were collected from patients with psoriasis and healthy individuals. Flow cytometry was used to detect changes in the proportions of myeloid-derived suppressor cells (MDSCs) and other immune cells. Psoriasis was induced in mice by the daily application of imiquimod. ZQT was administered separately or in combination with anti-Gr1 antibody to deplete MDSC. The glycolysis levels of the MDSCs were detected using a Seahorse analyzer. The p21/Hif1α/Glut1 pathway was identified and validated by mRNA sequence, RT-qPCR, WB, IF, and the application of p21 inhibitor UC2288. RESULTS The number of MDSCs was significantly increased in patients with psoriasis, with the increased expression of p21, Hif1α, and Glut1 in MDSCs. ZQT significantly alleviated psoriasis-like skin lesions in mice. ZQT formula significantly reduced the number of MDSCs in psoriatic-like mice and enhanced their suppressive capacity for T cells. The efficacy of ZQT in alleviating psoriatic dermatitis is compromised by MDSC depletion. ZQT decreased the expressions of p21, Hif1α, and Glut1-induced glycolysis in MDSCs, thereby inhibiting Th17 cell differentiation. CONCLUSION These suggest that ZQT alleviates IMQ-induced psoriatic dermatitis, by inhibiting p21/Hif1α/Glut1-induced glycolysis in MDSCs.
Collapse
Affiliation(s)
- Yangzhuangzhuang Zhu
- Shanghai Key Laboratory of Health Identification and Assessment, School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rd., Pudong District, Shanghai, 201203, China
| | - Xi Chen
- Department of Traditional Chinese Medicine Dermatology, Shanghai Skin Disease Hospital, 1278 Baode Rd., Jingan District, Shanghai, 200443, China
| | - Yimeng Zou
- Shanghai Key Laboratory of Health Identification and Assessment, School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rd., Pudong District, Shanghai, 201203, China
| | - Lin Su
- Shanghai Key Laboratory of Health Identification and Assessment, School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rd., Pudong District, Shanghai, 201203, China
| | - Xuewei Yan
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaowen Zhu
- Shanghai Key Laboratory of Health Identification and Assessment, School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rd., Pudong District, Shanghai, 201203, China
| | - Yifei Hou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Mingxi Liu
- Shanghai Key Laboratory of Health Identification and Assessment, School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rd., Pudong District, Shanghai, 201203, China
| | - Wencheng Jiang
- Department of Traditional Chinese Medicine Dermatology, Shanghai Skin Disease Hospital, 1278 Baode Rd., Jingan District, Shanghai, 200443, China.
| | - Chunpu Zou
- Shanghai Key Laboratory of Health Identification and Assessment, School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rd., Pudong District, Shanghai, 201203, China.
| | - Xiao Chen
- Shanghai Key Laboratory of Health Identification and Assessment, School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rd., Pudong District, Shanghai, 201203, China.
| | - Zihang Xu
- Shanghai Key Laboratory of Health Identification and Assessment, School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rd., Pudong District, Shanghai, 201203, China.
| |
Collapse
|
8
|
Hou Y, Zhang H, Zhu Y, He X, Li W, Su L, Liu M, Chen X, Shen F, Chen X, Jiang W, Zou C, Xu Z. Targeting upregulation of the immunosuppressive activity of MDSCs with indirubin as a novel strategy to alleviate psoriasis. Int Immunopharmacol 2023; 123:110710. [PMID: 37531829 DOI: 10.1016/j.intimp.2023.110710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Psoriasis is a chronic and incurable skin disorder that causes inflammation. There is an urgent clinical need for new treatments. We identified the natural compound indirubin as a potential potent agent for the treatment of psoriasis, but it's therapeutic effect and underlying mechanisms were not well understood. METHODS Peripheral blood and skin tissues from psoriasis patients and healthy individuals were collected. Bioinformatics analysis was performed to investigate LAT1 expression and associated signal pathways in psoriasis skin lesions. A mouse model of psoriasis was established. Indirubin was administered separately or in combination with MDSCs depletion or adoptively transferred MDSCs. JPH203, rapamycin, siRNA, and NV5138 were further used to investigate the potential mechanism by which indirubin regulates MDSCs. RESULTS Psoriasis patients had increased numbers of MDSCs in their blood and skin lesions, with high expression of Lat1. The upregulation of LAT1 expression and the arginine synthesis pathway was observed in psoriasis skin lesions. The number of MDSCs was increased, while their inhibitory effect on psoriatic T cells was decreased. Indirubin decreased Lat1 expression on the surface of MDSCs, inhibited mTOR pathway activation, upregulated Arg1 expression in MDSCs, and enhanced the immunosuppressive activity of MDSCs while inhibiting CD4+CCR6+ T cells. CONCLUSION This study demonstrates indirubin's pharmacological and therapeutic effects, providing a basis for future clinical application in treating psoriasis.
Collapse
Affiliation(s)
- Yifei Hou
- Shanghai Key Laboratory of Health Identification and Assessment, School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Huimin Zhang
- Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Yangzhuangzhuang Zhu
- Shanghai Key Laboratory of Health Identification and Assessment, School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xufeng He
- Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Wen Li
- Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Lin Su
- Shanghai Key Laboratory of Health Identification and Assessment, School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mingxi Liu
- Shanghai Key Laboratory of Health Identification and Assessment, School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xi Chen
- Department of Traditional Chinese Medicine Dermatology, Shanghai Skin Disease Hospital, Shanghai 200443, China
| | - Fang Shen
- Department of Traditional Chinese Medicine Dermatology, Shanghai Skin Disease Hospital, Shanghai 200443, China
| | - Xiao Chen
- Shanghai Key Laboratory of Health Identification and Assessment, School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wencheng Jiang
- Department of Traditional Chinese Medicine Dermatology, Shanghai Skin Disease Hospital, Shanghai 200443, China.
| | - Chunpu Zou
- Shanghai Key Laboratory of Health Identification and Assessment, School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Zihang Xu
- Shanghai Key Laboratory of Health Identification and Assessment, School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
9
|
Pierozan P, Källsten L, Theodoropoulou E, Almamoun R, Karlsson O. Persistent immunosuppressive effects of dibutyl phthalate exposure in adult male mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162741. [PMID: 36914131 DOI: 10.1016/j.scitotenv.2023.162741] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/28/2023] [Accepted: 03/05/2023] [Indexed: 05/13/2023]
Abstract
Increased exposure to manmade chemicals may be linked to an increase in immune-related diseases in humans and immune system dysfunction in wildlife. Phthalates are a group of endocrine-disrupting chemicals (EDCs) suspected to influence the immune system. The aim of this study was to characterize the persistent effects on leukocytes in the blood and spleen, as well as plasma cytokine and growth factor levels, one week after the end of five weeks of oral treatment with dibutyl phthalate (DBP; 10 or 100 mg/kg/d) in adult male mice. Flow cytometry analysis of the blood revealed that DBP exposure decreased the total leukocyte count, classical monocyte and T helper (Th) populations, whereas it increased the non-classical monocyte population compared to the vehicle control (corn oil). Immunofluorescence analysis of the spleen showed increased CD11b+Ly6G+ (marker of polymorphonuclear myeloid-derived suppressor cells; PMN-MDSCs), and CD43+staining (marker of non-classical monocytes), whereas CD3+ (marker of total T cells) and CD4+ (marker of Th cells) staining decreased. To investigate the mechanisms of action, levels of plasma cytokines and chemokines were measured using multiplexed immunoassays and other key factors were analyzed using western blotting. The observed increase in M-CSF levels and the activation of STAT3 may promote PMN-MDSC expansion and activity. Increased ARG1, NOX2 (gp91phox), and protein nitrotyrosine levels, as well as GCN2 and phosphor-eIRFα, suggest that oxidative stress and lymphocyte arrest drive the lymphocyte suppression caused by PMN-MDSCs. The plasma levels of IL-21 (promotes the differentiation of Th cells) and MCP-1 (regulates migration and infiltration of monocytes/macrophages) also decreased. These findings show that adult DBP exposure can cause persistent immunosuppressive effects, which may increase susceptibility to infections, cancers, and immune diseases, and decrease vaccine efficacy.
Collapse
Affiliation(s)
- Paula Pierozan
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden
| | - Liselott Källsten
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden
| | - Eleftheria Theodoropoulou
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden
| | - Radwa Almamoun
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden
| | - Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden.
| |
Collapse
|
10
|
Liu L, Ju M, Hu Y, Luan C, Zhang J, Chen K. Genome-wide DNA methylation and transcription analysis in psoriatic epidermis. Epigenomics 2023; 15:209-226. [PMID: 37158398 DOI: 10.2217/epi-2022-0458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Aim: To identify DNA methylation and transcription biomarkers in the psoriatic epidermis. Materials & methods: Gene transcription and DNA methylation datasets of psoriatic epidermal tissue were obtained from the Gene Expression Omnibus. Machine learning algorithm analysis and weighted gene coexpression network analysis were carried out to screen hub genes. Results: Differentially methylated and expressed genes were identified in the psoriatic epidermis. Six hub genes were selected - GZMB, CRIP1, S100A12, ISG15, CRABP2 and VNN1 - whose transcript levels showed a significant correlation with Psoriasis Area and Severity Index scores and immune infiltration. Conclusion: Psoriatic epidermis is primarily in a hypermethylated status. Epidermis-specific hub differentially methylated and expressed genes are potential biomarkers to help judge the condition of psoriasis.
Collapse
Affiliation(s)
- Lingxi Liu
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, 210042, China
| | - Mei Ju
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, 210042, China
| | - Yu Hu
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, 210042, China
| | - Chao Luan
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, 210042, China
| | - Jiaan Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, 210042, China
| | - Kun Chen
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, 210042, China
| |
Collapse
|
11
|
Zhang J, Zhang Y, Yang Z, Cheng D, Zhang H, Wei L, Liu C, Yan F, Li C, Dong G, Wang C, Shi D, Xiong H. Inducible nitric oxide synthase-expressing myeloid-derived suppressor cells regulated by interleukin 35 contribute to the pathogenesis of psoriasis. Front Immunol 2023; 14:1091541. [PMID: 36969174 PMCID: PMC10034090 DOI: 10.3389/fimmu.2023.1091541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Although psoriasis is classified as a T cell-mediated inflammatory disease, the contribution of myeloid cells to the pathogenesis of psoriasis is not fully understood. In the present study, we demonstrated that the expression of the anti-inflammatory cytokine interleukin-35 (IL-35) was significantly increased in patients with psoriasis with a marked increase in the number of myeloid-derived suppressor cells (MDSCs). Similar results were obtained in an imiquimod-induced psoriasis mouse model. IL-35 reduced the total number of MDSCs and their subtypes in the spleens and psoriatic skin lesions, ameliorating psoriasis. IL-35 also reduced the expression of inducible nitric oxide synthase in MDSCs, although it had no significant effect on interleukin-10 expression. Adoptive transfer of MDSCs from imiquimod-challenged mice aggravated the disease and weakened the effect of IL-35 in the recipient mice. In addition, mice transferred with MDSCs isolated from inducible nitric oxide synthase knockout mice had milder disease than those with wild-type MDSCs. Furthermore, wild-type MDSCs reversed the effects of IL-35, while MDSCs isolated from inducible nitric oxide synthase knockout mice did not affect IL-35 treatment. In summary, IL-35 may play a critical role in the regulation of iNOS-expressing MDSCs in the pathogenesis of psoriasis, highlighting IL-35 as a novel therapeutic strategy for patients with chronic psoriasis or other cutaneous inflammatory diseases.
Collapse
Affiliation(s)
- Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Yunsheng Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Zhiya Yang
- Department of Dermatology & Laboratory of Medical Mycology, Jining No. 1 People’s Hospital, Jining, Shandong, China
| | - Dalei Cheng
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Li Wei
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Chen Liu
- Department of Dermatology & Laboratory of Medical Mycology, Jining No. 1 People’s Hospital, Jining, Shandong, China
| | - Fenglian Yan
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Chunxia Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Changying Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Dongmei Shi
- Department of Dermatology & Laboratory of Medical Mycology, Jining No. 1 People’s Hospital, Jining, Shandong, China
- *Correspondence: Huabao Xiong, ; Dongmei Shi,
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- *Correspondence: Huabao Xiong, ; Dongmei Shi,
| |
Collapse
|
12
|
Torres-Ruiz J, Absalón-Aguilar A, Reyes-Islas JA, Cassiano-Quezada F, Mejía-Domínguez NR, Pérez-Fragoso A, Maravillas-Montero JL, Núñez-Álvarez C, Juárez-Vega G, Culebro-Bermejo A, Gómez-Martín D. Peripheral expansion of myeloid-derived suppressor cells is related to disease activity and damage accrual in inflammatory myopathies. Rheumatology (Oxford) 2023; 62:775-784. [PMID: 35766810 DOI: 10.1093/rheumatology/keac374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/26/2022] [Accepted: 06/18/2022] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE To assess the proportion of myeloid-derived suppressor cells (MDSCs), their expression of arginase-1 and programmed cell death ligand 1 (PD-L1) and their relationship with the clinical phenotype of patients with idiopathic inflammatory myopathies (IIMs). METHODS We recruited 37 IIM adult patients and 10 healthy donors in Mexico City. We evaluated their clinical features, the proportion of MDSCs and their expression of PD-L1 and arginase-1 by flow cytometry. Polymorphonuclear (PMN)-MDSCs were defined as CD33dim, CD11b+ and CD66b+ while monocytic (M)-MDSCs were CD33+, CD11b+, HLA-DR- and CD14+. Serum cytokines were analysed with a multiplex assay. We compared the quantitative variables with the Kruskal-Wallis and Mann-Whitney U tests and assessed correlations with Spearman's ρ. RESULTS Most patients had dermatomyositis [n = 30 (81.0%)]. IIM patients had a peripheral expansion of PMN-MDSCs and M-MDSCs with an enhanced expression of arginase-1 and PD-L1. Patients with active disease had a decreased percentage {median 1.75% [interquartile range (IQR) 0.31-5.50 vs 10.71 [3.16-15.58], P = 0.011} of M-MDSCs and a higher absolute number of PD-L1+ M-MDSCs [median 23.21 cells/mm3 (IQR 11.16-148.9) vs 5.95 (4.66-102.7), P = 0.046] with increased expression of PD-L1 [median 3136 arbitrary units (IQR 2258-4992) vs 1961 (1885-2335), P = 0.038]. PD-L1 expression in PMN-MDSCs correlated with the visual analogue scale of pulmonary disease activity (r = 0.34, P = 0.040) and damage (r = 0.36, P = 0.031), serum IL-5 (r = 0.55, P = 0.003), IL-6 (r = 0.46, P = 0.003), IL-8 (r = 0.53, P = 0.018), IL-10 (r = 0.48, P = 0.005) and GM-CSF (r = 0.48, P = 0.012). M-MDSCs negatively correlated with the skeletal Myositis Intention to Treat Index (r = -0.34, P = 0.038) and positively with IL-6 (r = 0.40, P = 0.045). CONCLUSION MDSCs expressing arginase-1 and PD-L1 are expanded in IIM and correlate with disease activity, damage accrual and serum cytokines.
Collapse
Affiliation(s)
- Jiram Torres-Ruiz
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
| | - Abdiel Absalón-Aguilar
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
| | - Juan Alberto Reyes-Islas
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
| | - Fabiola Cassiano-Quezada
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
| | - Nancy R Mejía-Domínguez
- Red de Apoyo a la Investigación, Coordinacion de Investigación Científica, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alfredo Pérez-Fragoso
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
| | - José Luis Maravillas-Montero
- Red de Apoyo a la Investigación, Coordinacion de Investigación Científica, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Núñez-Álvarez
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
| | - Guillermo Juárez-Vega
- Red de Apoyo a la Investigación, Coordinacion de Investigación Científica, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alejandro Culebro-Bermejo
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
| | - Diana Gómez-Martín
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
| |
Collapse
|
13
|
Shi L, Liu C, Xiong H, Shi D. Elevation of IgE in patients with psoriasis: Is it a paradoxical phenomenon? Front Med (Lausanne) 2022; 9:1007892. [PMID: 36314037 PMCID: PMC9606585 DOI: 10.3389/fmed.2022.1007892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
Immunoglobulin E (IgE) elevation is a hallmark of allergic conditions such as atopic dermatitis (AD). The pathogenesis of AD is typically associated with high levels of IL-4 and IL-13 produced by activated T helper 2 (Th2) cells. Psoriasis, on the other hand, is an inflammatory skin disease mainly driven by Th17 cells and their related cytokines. Although the immunopathologic reactions and clinical manifestations are often easily distinguished in the two skin conditions, patients with psoriasis may sometimes exhibit AD-like manifestations, such as elevated IgE and persistent pruritic lesions. Given the fact that the effective T cells have great plasticity to re-differentiate in response to innate and environmental factors, this unusual skin condition could be a consequence of a cross-reaction between distinct arms of T-cell and humoral immunity. Here we review the literature concerning the roles of IgE in the development of AD and psoriasis, showing that elevated IgE seems to be an important indicator for this non-typical psoriasis.
Collapse
Affiliation(s)
- Leyao Shi
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China,The Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining, China
| | - Chen Liu
- The Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining, China
| | - Huabao Xiong
- Basic Medical School, Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China,Huabao Xiong
| | - Dongmei Shi
- The Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining, China,Department of Dermatology, Jining No.1 People's Hospital, Jining, China,*Correspondence: Dongmei Shi
| |
Collapse
|
14
|
Hu X, Qi C, Feng F, Wang Y, Di T, Meng Y, Wang Y, Zhao N, Zhang X, Li P, Zhao J. Combining network pharmacology, RNA-seq, and metabolomics strategies to reveal the mechanism of Cimicifugae Rhizoma - Smilax glabra Roxb herb pair for the treatment of psoriasis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154384. [PMID: 35963195 DOI: 10.1016/j.phymed.2022.154384] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/14/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Psoriasis is a prevalent chronic inflammatory skin condition marked by immune cell infiltration and keratinocyte abnormal proliferation. Cimicifugae Rhizoma - Smilax glabra Roxb (CS) herb pair, the main component of Shengma Detoxification Decoction, has been proven effective for the treatment of psoriasis. However, the mechanism is yet to be deciphered. PURPOSE To explore the mechanism of CS for the treatment of psoriasis. METHODS The imiquimod-induced psoriasis-like lesion mouse model was used to identify the targets and the molecular mechanisms of CS. Network pharmacology combined with RNA-seq strategy was employed to predict the targets and mechanisms of CS for psoriasis. Metabolomics approaches were used to demonstrate the complexity of CS for the treatment of psoriasis. Finally, a compound-response-enzyme-gene network was constructed based on the multi-omics results to elucidate potential connections. RESULTS The CS herb pair could significantly improve psoriatic lesions and reduce the inflammatory cell infiltration and proliferation of keratinocytes in skin lesions. Network pharmacology predicted that TNF, JNK, IL-6, and IL-1β could be potential targets. RNA-seq data revealed that CS could significantly regulate genes and signaling pathways associated with Th17 responses, such as IL-36, IL-1β, CCl2, CXCL16, keratin 14, keratin 5, and antimicrobial peptides S100A8 and S100A9 well as MAPK, mTOR, and other signaling pathways. Further experimental data validated that CS treatment remarkably reduced the expression of inflammatory cytokines and factors, such as CCL2, CCL7, IL1F6, IL-17, IL-23, IL-1β, TNF-α, and IL-6, and inhibited the phosphorylation of p38 and ERK1/2. This indicated that CS exerts its therapeutic effect by inhibiting the MAPK signaling pathways. In addition, metabolomic analyses demonstrated that CS treatment improved seven metabolic pathways, these included phenylalanine, tyrosine, pyruvate metabolism, carnitine metabolism, etc. Four key metabolites (L-Arginine, L-Phenylalanine, L-Carnitine, O-Acetylcarnitine) and nine differential genes (CMA1, PCBD2, TPSAB1, TPSB2, etc.) were identified that affected amino acid metabolism, carnitine metabolism, and other pathways contributing to the infiltration of Th17 cells in psoriatic lesions. CONCLUSION CS could alleviate IMQ-induced psoriasis-like dermatitis by reducing the expression of cytokines and chemokines mediated by the MAPK pathway, and improved amino acid and carnitine metabolism in vivo. Our study is the first to demonstrate the complex mechanism of CS for the treatment of psoriasis and provides a new paradigm to elucidate the pharmacological effects of Traditional Chinese Medicine (TCM) drugs for psoriasis from multiple perspectives.
Collapse
Affiliation(s)
- XueQing Hu
- Beijing University of Chinese Medicine, Beijing 100105, China; Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China
| | - Cong Qi
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China
| | - Fang Feng
- Beijing University of Chinese Medicine, Beijing 100105, China; Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China
| | - Yan Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China
| | - TingTing Di
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China
| | - YuJiao Meng
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China
| | - Yazhuo Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China
| | - Ning Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China
| | - XiaWei Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China
| | - Ping Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China.
| | - Jingxia Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, No. 23rd Art Museum Back Street, Dongcheng District, Beijing 100010, China.
| |
Collapse
|
15
|
Lazaratos AM, Annis MG, Siegel PM. GPNMB: a potent inducer of immunosuppression in cancer. Oncogene 2022; 41:4573-4590. [PMID: 36050467 DOI: 10.1038/s41388-022-02443-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/09/2022]
Abstract
The immune system is comprised of both innate and adaptive immune cells, which, in the context of cancer, collectively function to eliminate tumor cells. However, tumors can actively sculpt the immune landscape to favor the establishment of an immunosuppressive microenvironment, which promotes tumor growth and progression to metastatic disease. Glycoprotein-NMB (GPNMB) is a transmembrane glycoprotein that is overexpressed in a variety of cancers. It can promote primary tumor growth and metastasis, and GPNMB expression correlates with poor prognosis and shorter recurrence-free survival in patients. There is growing evidence supporting an immunosuppressive role for GPNMB in the context of malignancy. This review provides a description of the emerging roles of GPNMB as an inducer of immunosuppression, with a particular focus on its role in mediating cancer progression by restraining pro-inflammatory innate and adaptive immune responses.
Collapse
Affiliation(s)
| | - Matthew G Annis
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada.,Department of Medicine, McGill University, Montréal, QC, Canada
| | - Peter M Siegel
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada. .,Department of Medicine, McGill University, Montréal, QC, Canada. .,Department of Biochemistry, McGill University, Montréal, QC, Canada. .,Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada. .,Department of Oncology, McGill University, Montréal, QC, Canada.
| |
Collapse
|
16
|
Ohashi A, Uemura Y, Yoshimori M, Wada N, Imadome KI, Yudo K, Koyama T, Shimizu N, Nishio M, Arai A. The Plasma Level of Interleukin-1β Can Be a Biomarker of Angiopathy in Systemic Chronic Active Epstein-Barr Virus Infection. Front Microbiol 2022; 13:874998. [PMID: 35464987 PMCID: PMC9019545 DOI: 10.3389/fmicb.2022.874998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/16/2022] [Indexed: 01/12/2023] Open
Abstract
Systemic chronic active Epstein-Barr virus infection (sCAEBV) is an EBV-positive T- or NK-cell neoplasm revealing persistent systemic inflammation. Twenty-five percent of sCAEBV patients accompany angiopathy. It is crucial to clarify the mechanisms of angiopathy development in sCAEBV because angiopathy is one of the main causes of death. Interleukin-1β (IL-1β) is reported to be involved in angiopathy onset. We investigated if IL-1β plays a role as the inducer of angiopathy of sCAEBV. We detected elevated IL-1β levels in four out of 17 sCAEBV patient's plasma. Interestingly, three out of the four had clinically associated angiopathy. None of the other patients with undetectable level of IL-1β had angiopathy. In all patients with high plasma levels of IL-1β and vascular lesions, EBV-infected cells were CD4-positive T cells. In one patient with high plasma IL-1β, the level of IL-1β mRNA of the monocytes was 17.2 times higher than the level of the same patient's EBV-infected cells in peripheral blood. In Ea.hy926 cells, which are the models of vascular endothelial cells, IL-1β inhibited the proliferation and induced the surface coagulation activity. IL-1β is a potent biomarker and a potent therapeutic target to treat sCAEBV accompanying angiopathy.
Collapse
Affiliation(s)
- Ayaka Ohashi
- Department of Frontier Medicine, Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa, Japan.,Department of Laboratory Molecular Genetics of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Division of Hematology and Oncology, Department of Internal Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Yu Uemura
- Division of Hematology and Oncology, Department of Internal Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Mayumi Yoshimori
- Department of Hematological Therapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Naomi Wada
- Department of Advanced Medicine for Viral Infections, National Center for Child Health and Development, Tokyo, Japan
| | - Ken-Ichi Imadome
- Department of Advanced Medicine for Viral Infections, National Center for Child Health and Development, Tokyo, Japan
| | - Kazuo Yudo
- Department of Frontier Medicine, Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Takatoshi Koyama
- Department of Laboratory Molecular Genetics of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Department of Hematology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Norio Shimizu
- Center of Stem Cell and Regenerative Medicine, Advanced Multidisciplinary Research Cluster, Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Miwako Nishio
- Department of Laboratory Molecular Genetics of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ayako Arai
- Division of Hematology and Oncology, Department of Internal Medicine, St. Marianna University School of Medicine, Kanagawa, Japan.,Department of Hematological Therapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
17
|
Soler DC, Kerstetter-Fogle A, Young AB, Rayman P, Finke JH, Debanne SM, Cooper KD, Barnholtz-Sloan J, Sloan AE, McCormick TS. Healthy myeloid-derived suppressor cells express the surface ectoenzyme Vanin-2 (VNN2). Mol Immunol 2022; 142:1-10. [PMID: 34953280 PMCID: PMC8800381 DOI: 10.1016/j.molimm.2021.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/18/2021] [Accepted: 12/09/2021] [Indexed: 02/03/2023]
Abstract
Study of human monocytic Myeloid-Derived Suppressor cells Mo-MDSC (CD14+ HLA-DRneg/low) has been hampered by the lack of positive cell-surface markers. In order to identify positive markers for Mo-MDSC, we performed microarray analysis comparing Mo-MDSC cells from healthy subjects versus CD14+ HLA-DRhigh monocytes. We have identified the surface ectoenzyme Vanin-2(VNN2) protein as a novel biomarker highly-enriched in healthy subjects Mo-MDSC. Indeed, healthy subjects Mo-MDSC cells expressed 68 % VNN2, whereas only 9% VNN2 expression was observed on CD14+ HLA-DRhigh cells (n = 4 p < 0.01). The top 10 percent positive VNN2 monocytes expressed CD33 and CD11b while being negative for HLA-DR, CD3, CD15, CD19 and CD56, consistent with a Mo-MDSC phenotype. CD14+VNN2high monocytes were able to inhibit CD8 T cell proliferation comparably to traditional Mo-MDSC at 51 % and 48 % respectively. However, VNN2 expression on CD14+ monocytes from glioma patients was inversely correlated to their grade. CD14+VNN2high monocytes thus appear to mark a monocytic population similar to Mo-MDSC only in healthy subjects, which may be useful for tumor diagnoses.
Collapse
Affiliation(s)
- David C. Soler
- The Department of Neurosurgery, Cleveland Clinic Foundation, Cleveland, OH 44195.,Brain Tumor and Neuro-Oncology Center, and the Center of Excellence for Translational Neuro-Oncology, Cleveland Clinic Foundation, Cleveland, OH 44195.,University Hospitals-Seidman Center and the Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Amber Kerstetter-Fogle
- The Department of Neurosurgery, Cleveland Clinic Foundation, Cleveland, OH 44195.,Brain Tumor and Neuro-Oncology Center, and the Center of Excellence for Translational Neuro-Oncology, Cleveland Clinic Foundation, Cleveland, OH 44195.,University Hospitals-Seidman Center and the Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Andrew B. Young
- Department of Dermatology, University Hospitals-Cleveland Medical Center and the Case Western University School of Medicine, 11100 Euclid Avenue, Cleveland, OH, 44106 USA.,The Murdough Family Center for Psoriasis, University Hospitals-Cleveland Medical Center and the Case Western University School of Medicine, 11100 Euclid Avenue, Cleveland, OH, 44106 USA
| | - Pat Rayman
- Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - James H. Finke
- Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Sarah M. Debanne
- Epidemiology and Biostatistics, University Hospitals-Cleveland Medical Center and the Case Western University School of Medicine, 11100 Euclid Avenue, Cleveland, OH, 44106 USA
| | - Kevin D. Cooper
- Department of Dermatology, University Hospitals-Cleveland Medical Center and the Case Western University School of Medicine, 11100 Euclid Avenue, Cleveland, OH, 44106 USA.,The Murdough Family Center for Psoriasis, University Hospitals-Cleveland Medical Center and the Case Western University School of Medicine, 11100 Euclid Avenue, Cleveland, OH, 44106 USA
| | - Jill Barnholtz-Sloan
- The Department of Neurosurgery, Cleveland Clinic Foundation, Cleveland, OH 44195.,Brain Tumor and Neuro-Oncology Center, and the Center of Excellence for Translational Neuro-Oncology, Cleveland Clinic Foundation, Cleveland, OH 44195.,University Hospitals-Seidman Center and the Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland Clinic Foundation, Cleveland, OH 44195.,Epidemiology and Biostatistics, University Hospitals-Cleveland Medical Center and the Case Western University School of Medicine, 11100 Euclid Avenue, Cleveland, OH, 44106 USA
| | - Andrew E. Sloan
- The Department of Neurosurgery, Cleveland Clinic Foundation, Cleveland, OH 44195.,Brain Tumor and Neuro-Oncology Center, and the Center of Excellence for Translational Neuro-Oncology, Cleveland Clinic Foundation, Cleveland, OH 44195.,University Hospitals-Seidman Center and the Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Thomas S. McCormick
- Department of Dermatology, University Hospitals-Cleveland Medical Center and the Case Western University School of Medicine, 11100 Euclid Avenue, Cleveland, OH, 44106 USA.,The Murdough Family Center for Psoriasis, University Hospitals-Cleveland Medical Center and the Case Western University School of Medicine, 11100 Euclid Avenue, Cleveland, OH, 44106 USA
| |
Collapse
|
18
|
Soluble DC-HIL/Gpnmb Modulates T-Lymphocyte Extravasation to Inflamed Skin. J Invest Dermatol 2021; 142:1372-1380.e5. [PMID: 34695414 DOI: 10.1016/j.jid.2021.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022]
Abstract
Previously, we discovered antigen-presenting cells to express DC-HIL receptor and to secrete its soluble form (soluble DC-HIL [sDC-HIL]), both of which bind to syndecan-4 on T cells and endothelial cells (ECs), with the former binding attenuating T-cell function and the latter binding promoting angiogenesis. In this study, we examined the effects of sDC-HIL binding to EC on T-cell extravasation using an allergic contact dermatitis model in mice. The hapten oxazolone applied to ear skin in sensitized mice upregulated cutaneous expression of sDC-HIL, which downregulated the allergic reaction by reducing transendothelial migration of T cells but not other immune cells (neutrophils and mast cells). Moreover, intravenously infused sDC-HIL bound to EC in blood vessels of oxazolone-challenged skin in a scattered and patchy pattern, and intravital microscopic analysis revealed that blood-circulating T cells firmly adhere to DC-HIL-treated endothelia. This regulatory property of sDC-HIL requires syndecan-4 expression by both EC and T cells. Our findings indicate that the DC-HIL/syndecan-4 pathway mediates a cross-talk between T cells and ECs, regulating the cutaneous immune response by preventing extravasation of activated T cells into inflamed skin.
Collapse
|
19
|
Orsmond A, Bereza-Malcolm L, Lynch T, March L, Xue M. Skin Barrier Dysregulation in Psoriasis. Int J Mol Sci 2021; 22:10841. [PMID: 34639182 PMCID: PMC8509518 DOI: 10.3390/ijms221910841] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
The skin barrier is broadly composed of two elements-a physical barrier mostly localised in the epidermis, and an immune barrier localised in both the dermis and epidermis. These two systems interact cooperatively to maintain skin homeostasis and overall human health. However, if dysregulated, several skin diseases may arise. Psoriasis is one of the most prevalent skin diseases associated with disrupted barrier function. It is characterised by the formation of psoriatic lesions, the aberrant differentiation and proliferation of keratinocytes, and excessive inflammation. In this review, we summarize recent discoveries in disease pathogenesis, including the contribution of keratinocytes, immune cells, genetic and environmental factors, and how they advance current and future treatments.
Collapse
Affiliation(s)
- Andreas Orsmond
- Sutton Arthritis Research Laboratory, Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (A.O.); (L.B.-M.)
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| | - Lara Bereza-Malcolm
- Sutton Arthritis Research Laboratory, Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (A.O.); (L.B.-M.)
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| | - Tom Lynch
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| | - Lyn March
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| | - Meilang Xue
- Sutton Arthritis Research Laboratory, Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (A.O.); (L.B.-M.)
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| |
Collapse
|
20
|
Vanhaver C, van der Bruggen P, Bruger AM. MDSC in Mice and Men: Mechanisms of Immunosuppression in Cancer. J Clin Med 2021; 10:jcm10132872. [PMID: 34203451 PMCID: PMC8268873 DOI: 10.3390/jcm10132872] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) expand during pathological conditions in both humans and mice and their presence is linked to poor clinical outcomes for cancer patients. Studying MDSC immunosuppression is restricted by MDSCs’ rarity, short lifespan, heterogeneity, poor viability after freezing and the lack of MDSC-specific markers. In this review, we will compare identification and isolation strategies for human and murine MDSCs. We will also assess what direct and indirect immunosuppressive mechanisms have been attributed to MDSCs. While some immunosuppressive mechanisms are well-documented in mice, e.g., generation of ROS, direct evidence is still lacking in humans. In future, bulk or single-cell genomics could elucidate which phenotypic and functional phenotypes MDSCs adopt in particular microenvironments and help to identify potential targets for therapy.
Collapse
Affiliation(s)
- Christophe Vanhaver
- De Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 74, 1200 Brussels, Belgium;
- Correspondence: (C.V.); (A.M.B.)
| | - Pierre van der Bruggen
- De Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 74, 1200 Brussels, Belgium;
- WELBIO, Avenue Hippocrate 74, 1200 Brussels, Belgium
| | - Annika M. Bruger
- De Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 74, 1200 Brussels, Belgium;
- Correspondence: (C.V.); (A.M.B.)
| |
Collapse
|
21
|
Comments on the ambiguity of selected surface markers, signaling pathways and omics profiles hampering the identification of myeloid-derived suppressor cells. Cell Immunol 2021; 364:104347. [PMID: 33838447 DOI: 10.1016/j.cellimm.2021.104347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
Myeloid-derived suppressor cells (MDSC) are important immune-regulatory cells but their identification remains difficult. Here, we provide a critical view on selected surface markers, transcriptional and translational pathways commonly used to identify MDSC by specific, their developmental origin and new possibilities by transcriptional or proteomic profiling. Discrimination of MDSC from their non-suppressive counterparts is a prerequisite for the development of successful therapies. Understanding the switch mechanisms that direct granulocytic and monocytic development into a pro-inflammatory or anti-inflammatory direction will be crucial for therapeutic strategies. Manipulation of these myeloid checkpoints are exploited by tumors and pathogens, such as M. tuberculosis (Mtb), HIV or SARS-CoV-2, that induce MDSC for immune evasion. Thus, specific markers for MDSC identification may reveal also novel molecular candidates for therapeutic intervention at the level of MDSC.
Collapse
|
22
|
Liu P, Peng C, Chen X, Wu L, Yin M, Li J, Qin Q, Kuang Y, Zhu W. Acitretin Promotes the Differentiation of Myeloid-Derived Suppressor Cells in the Treatment of Psoriasis. Front Med (Lausanne) 2021; 8:625130. [PMID: 33834031 PMCID: PMC8021725 DOI: 10.3389/fmed.2021.625130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/01/2021] [Indexed: 11/30/2022] Open
Abstract
Increased numbers of myeloid-derived suppressor cells (MDSCs) are involved in the development of psoriasis. Acitretin is used to treat psoriasis by regulating the proliferation and differentiation of keratinocytes, but little is known about the effect of acitretin on immune cells. Here, we reported that psoriasis patients had an expansion of MDSCs and monocytic-MDSCs (M-MDSCs) in peripheral blood and skin lesions. The number of MDSCs and M-MDSCs in peripheral blood correlated positively with disease severity. Acitretin could reduce the number of MDSCs and M-MDSCs in the peripheral blood of psoriasis patients as well as the spleen and skin lesions of IMQ-induced psoriasis-like model mice. Moreover, acitretin promoted the differentiation of MDSCs into macrophages, especially CD206+ M2 macrophages, and CD11c+MHC-II+ dendritic cells. Mechanically, acitretin dramatically increased the glutathione synthase (GSS) expression and glutathione (GSH) accumulation in MDSCs. Interruption of GSH synthesis abrogated the acitretin effect on MDSCs differentiation. Acitretin regulated GSS expression via activation of extracellular signal-regulated kinase 1/2. Thus, our data demonstrated a novel mechanism underlying the effects of acitretin on psoriasis by promoting MDSCs differentiation.
Collapse
Affiliation(s)
- Panpan Liu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, China
| | - Cong Peng
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, China
| | - Xiang Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, China
- Gerontology Center of Xiangya Hospital, Central South University, Changsha, China
| | - Lisha Wu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, China
| | - Mingzhu Yin
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, China
| | - Jie Li
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, China
| | - Qunshi Qin
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, China
| | - Yehong Kuang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, China
| | - Wu Zhu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, China
- Gerontology Center of Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
23
|
Lu Y, Xiao Y, Yin MZ, Zhou XC, Wu LS, Chen WQ, Luo Y, Kuang YH, Zhu W. Polyethylene Glycol Ointment Alleviates Psoriasis-Like Inflammation Through Down-Regulating the Function of Th17 Cells and MDSCs. Front Med (Lausanne) 2021; 7:560579. [PMID: 33834028 PMCID: PMC8022287 DOI: 10.3389/fmed.2020.560579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022] Open
Abstract
Objective: To explore the possible mechanism of improving the imiquimod (IMQ)-induced psoriasis-like inflammation by using polyethylene glycol (PEG) ointment. Methods: We evaluated the appearance of psoriasis lesions by Psoriasis Area and Severity Index (PASI), observed the epidermal proliferation by histopathological staining and immunohistochemical staining, and explored the key molecules and signaling pathways of improving psoriasis-like inflammation treated with PEG ointment by RNA sequencing. Finally, we verified the expression of inflammatory cells and inflammatory factors by flow cytometry, immunohistochemical staining, and Q-PCR. Results: PEG ointment could improve the appearance of psoriasis lesions and the epidermis thickness of psoriasis mouse, inhibit the proliferation of keratinocytes, and down-regulate the relative mRNA levels of IL-23, IL-22, IL-6, IL-17C, IL-17F, S100A7, S100A8, S100A9, CXCL1, CXCL2, and IL-1β in the skin lesions of psoriasis mouse by down-regulating the numbers of myeloid-derived suppressor cells (MDSCs) and T helper 17 (Th17) cells. Conclusion: PEG ointment could improve the IMQ-induced psoriasis-like inflammation by down-regulating the functions of Th17 cells and MDSCs.
Collapse
Affiliation(s)
- Yan Lu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Xiao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Zhu Yin
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
| | - Xing-Chen Zhou
- Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Li-Sha Wu
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China.,Institute of Medical Science, Xiangya Hospital, Central South University, Changsha, China
| | - Wang-Qing Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Luo
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
| | - Ye-Hong Kuang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
| | - Wu Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
24
|
Deng J, Tan S, Liu R, Yu W, Chen H, Tang N, Han L, Lu C. Chinese Medicine Formula PSORI-CM02 Alleviates Psoriatic Dermatitis via M-MDSCs and Th17 Crosstalk. Front Pharmacol 2021; 11:563433. [PMID: 33536902 PMCID: PMC7847847 DOI: 10.3389/fphar.2020.563433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/24/2020] [Indexed: 12/05/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disease that is associated with multiple coexisting conditions. Extensive literature suggests that psoriasis is a T-cell-mediated condition, and its pathogenesis is related to dysfunction of the immune system. Myeloid-derived suppressor cells (MDSCs) are a group of heterogeneous myeloid cells that have suppressive effects on T cells. MDSCs are present at very low levels in healthy individuals but can substantially expand in tumours or inflammatory conditions. PSORI-CM02, a Chinese medical formula designed based on the Chinese medicine theory (Blood Stasis), has been prescribed extensively for psoriasis therapy and shows a stable clinical effect and safety. This study discusses the mechanisms of MDSCs involved in disease development and therapeutic progress. Our data provides evidence that monocytic myeloid-derived suppressor cells (M-MDSCs) play a role in IMQ-induced psoriatic dermatitis. Functional characterization and correlation analysis indicated that MDSCs are positively correlated with Th17 cells. PSORI-CM02 alleviated IMQ-induced psoriatic dermatitis and suppressed the proliferation of Th17 cells via M-MDSC-induced Arg1 upregulation, suggesting M-MDSCs could be a novel therapeutic target for psoriasis, and PSORI-CM02 exerted its effects via the perturbation of M-MDSCs and Th17 cell crosstalk.
Collapse
Affiliation(s)
- Jingwen Deng
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Siyi Tan
- Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Ruonan Liu
- Department of Physiology, Medical College, Jinan University, Guangzhou, China
| | - Wanlin Yu
- Central Laboratory, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Haiming Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Nan Tang
- Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Ling Han
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Chuanjian Lu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
25
|
Grohová A, Dáňová K, Adkins I, Šumník Z, Petruželková L, Obermannová B, Koloušková S, Špíšek R, Palová-Jelínková L. Myeloid - derived suppressor cells in Type 1 diabetes are an expanded population exhibiting diverse T-cell suppressor mechanisms. PLoS One 2020; 15:e0242092. [PMID: 33206686 PMCID: PMC7673497 DOI: 10.1371/journal.pone.0242092] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSC) represent a heterogeneous group of immature myeloid cells with immunoregulatory function in cancer and autoimmune diseases. In humans, two subsets of MDSC were determined based on the characteristic surface markers, monocytic MDSC (M-MDSC) and granulocytic MDSC (G-MDSC). Expansion of MDSC has been reported in some murine models and patients with autoimmune diseases and their immune-suppressive properties were characterized. However, the exact role of MDSC in the pathogenesis of autoimmune diseases is more complex and/or controversial. In type 1 diabetes mellitus (T1D), the increased frequency of MDSC was found in the blood of T1D patients but their suppressor capacity was diminished. In our study, we assessed the role of M-MDSC in the pathogenesis of T1D and showed for the first time the increased frequency of M-MDSC not only in the blood of T1D patients but also in their at-risk relatives compared to healthy donors. T1D patients with inadequate long term metabolic control showed an elevation of M-MDSC compared to patients with better disease control. Furthermore, we described the positive correlation between the percentage of M-MDSC and Th17 cells and IFN-γ producing T cells in T1D patients and their at-risk relatives. Finally, we found that the ability of M-MDSC to suppress autologous T cells is efficient only at the high MDSC: T cells ratio and dependent on cell-cell-contact and TGF-β production. Our data show that the engagement of MDSC in the pathogenesis of T1D is evident, yet not entirely explored and more experiments are required to clarify whether MDSC are beneficial or harmful in T1D.
Collapse
Affiliation(s)
- Anna Grohová
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Klára Dáňová
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic.,SOTIO a.s., Prague, Czech Republic
| | - Irena Adkins
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic.,SOTIO a.s., Prague, Czech Republic
| | - Zdeněk Šumník
- Department of Pediatrics, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Lenka Petruželková
- Department of Pediatrics, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Barbora Obermannová
- Department of Pediatrics, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Stanislava Koloušková
- Department of Pediatrics, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Radek Špíšek
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic.,SOTIO a.s., Prague, Czech Republic
| | - Lenka Palová-Jelínková
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic.,SOTIO a.s., Prague, Czech Republic
| |
Collapse
|
26
|
Targeting Myeloid-Derived Suppressor Cells Is a Novel Strategy for Anti-Psoriasis Therapy. Mediators Inflamm 2020; 2020:8567320. [PMID: 32684837 PMCID: PMC7338977 DOI: 10.1155/2020/8567320] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/24/2020] [Accepted: 05/15/2020] [Indexed: 12/17/2022] Open
Abstract
Psoriasis is a common immune-mediated, chronic inflammatory genetic-related disease that affects patients' quality of life. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of progenitor and immature myeloid cells which are expanded in psoriatic skin lesions and peripheral blood. However, the role of MDSCs in the pathogenesis of psoriasis remains unclear. Here, we confirmed that the accumulation of human MDSCs is remarkably increased in skin lesions of psoriasis patients by flow cytometry. Depleting MDSCs by Gemcitabine significantly suppresses IMQ-induced psoriatic inflammation and epidermal thickening as well as Th17 and Treg cell accumulation. Moreover, through the RNA-Seq technique, we validated some differentially expressed genes on CD4+ T-cells of IMQ-induced-MDSC-depleted mice such as IL-21 and Timd2, which are involved in Th17-cell differentiation or T-cell activation. Interestingly, neutralizing IL-21R by antibody reduces IMQ-induced epidermal thickening through downregulating the infiltration of MDSCs and Th17 cells. Our data suggest that targeting myeloid-derived suppressor cells is a novel strategy for antipsoriasis therapy. IL-21 may be a potential therapeutic target in psoriasis.
Collapse
|
27
|
Circulating CD14 +HLA-DR -/low Myeloid-Derived Suppressor Cells as Potential Biomarkers for the Identification of Psoriasis TCM Blood-Heat Syndrome and Blood-Stasis Syndrome. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4582459. [PMID: 32382290 PMCID: PMC7180989 DOI: 10.1155/2020/4582459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/21/2020] [Indexed: 12/25/2022]
Abstract
Psoriasis is a chronic autoimmune disease. Identification of the biomarkers responsible for Traditional Chinese Medicine (TCM) syndromes of psoriasis can help researchers recognize the different aspects of psoriasis and find novel therapeutic targets for the treatment of psoriasis. The current study investigated the levels of circulating Mo-MDSCs and Mo-MDSC-associated immune factors in the peripheral blood of psoriasis patients with different TCM syndromes. We found that the frequency of Mo-MDSCs (CD14+HLA-DR−/low cells) among CD14+ cells from plaque psoriasis patients with blood-stasis (BS) syndrome was significantly increased when compared with healthy controls (p < 0.001) and blood-heat (BH) syndrome group (p < 0.001), respectively. However, serum IL-2, IL-4, IL-6, IL-10, IL-17A, TNF-α, IFN-γ, iNOS, Arg-1, and NO concentration showed no statistically significant difference between healthy controls and psoriasis patients as well as no significant difference between the BH and BS syndrome groups. Compared with healthy controls, the mRNA expression of Arg-1, TNF-α, ROR-γ, and PD-L1 was increased, while the mRNA expression of PD-1 and IL-10 was decreased in PBMCs from psoriasis patients. Moreover, the mRNA expression of TNF-α and FOXP3 in PBMCs showed a pronounced statistical difference between the psoriatic BH syndrome group and the BS syndrome group. Therefore, we provide evidence that the percentage of CD14+HLA-DR−/low MDSC/ CD14+ cells and TNF-α and Foxp3 mRNA expression levels in PBMCs are potential biomarkers for distinguishing TCM BH syndrome and BS syndrome.
Collapse
|
28
|
Salminen A, Kaarniranta K, Kauppinen A. ER stress activates immunosuppressive network: implications for aging and Alzheimer's disease. J Mol Med (Berl) 2020; 98:633-650. [PMID: 32279085 PMCID: PMC7220864 DOI: 10.1007/s00109-020-01904-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022]
Abstract
The endoplasmic reticulum (ER) contains stress sensors which recognize the accumulation of unfolded proteins within the lumen of ER, and subsequently these transducers stimulate the unfolded protein response (UPR). The ER sensors include the IRE1, PERK, and ATF6 transducers which activate the UPR in an attempt to restore the quality of protein folding and thus maintain cellular homeostasis. If there is excessive stress, UPR signaling generates alarmins, e.g., chemokines and cytokines, which activate not only tissue-resident immune cells but also recruit myeloid and lymphoid cells into the affected tissues. ER stress is a crucial inducer of inflammation in many pathological conditions. A chronic low-grade inflammation and cellular senescence have been associated with the aging process and many age-related diseases, such as Alzheimer’s disease. Currently, it is known that immune cells can exhibit great plasticity, i.e., they are able to display both pro-inflammatory and anti-inflammatory phenotypes in a context-dependent manner. The microenvironment encountered in chronic inflammatory conditions triggers a compensatory immunosuppression which defends tissues from excessive inflammation. Recent studies have revealed that chronic ER stress augments the suppressive phenotypes of immune cells, e.g., in tumors and other inflammatory disorders. The activation of immunosuppressive network, including myeloid-derived suppressor cells (MDSC) and regulatory T cells (Treg), has been involved in the aging process and Alzheimer’s disease. We will examine in detail whether the ER stress-related changes found in aging tissues and Alzheimer’s disease are associated with the activation of immunosuppressive network, as has been observed in tumors and many chronic inflammatory diseases.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.,Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029, Kuopio, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
29
|
Salminen A. Activation of immunosuppressive network in the aging process. Ageing Res Rev 2020; 57:100998. [PMID: 31838128 DOI: 10.1016/j.arr.2019.100998] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/29/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022]
Abstract
Chronic low-grade inflammation has a key role in the aging process, a state called inflammaging. It is known that the chronic inflammatory condition generates counteracting immunosuppressive state in many diseases. Inflammaging is also associated with an immune deficiency; generally termed as immunosenescence, although it is not known whether it represents the senescence of immune cells or the active remodeling of immune system. Evidence has accumulated since the 1970's indicating that immunosenescence might be caused by an increased activity of immunosuppressive cells rather than cellular senescence. Immune cells display remarkable plasticity; many of these cells can express both proinflammatory and immunosuppressive phenotypes in a context-dependent manner. The immunosuppressive network involves the regulatory subtypes of T (Treg) and B (Breg) cells as well as regulatory phenotypes of macrophages (Mreg), dendritic (DCreg), natural killer (NKreg), and type II natural killer T (NKT) cells. The immunosuppressive network also includes monocytic (M-MDSC) and polymorphonuclear (PMN-MDSC) myeloid-derived suppressor cells which are immature myeloid cells induced by inflammatory mediators. This co-operative network is stimulated in chronic inflammatory conditions preventing excessive inflammatory responses but at the same time they exert harmful effects on the immune system and tissue homeostasis. Recent studies have revealed that the aging process is associated with the activation of immunosuppressive network, especially the functions of MDSCs, Tregs, and Mregs are increased. I will briefly review the properties of the regulatory phenotypes of immune cells and examine in detail the evidences for an activation of immunosuppressive network with aging.
Collapse
|
30
|
Moz S, Lorenzin M, Ramonda R, Aneloni V, La Raja M, Plebani M, Basso D. Emerging role of monocytes and their intracellular calcium pattern in spondyloarthritis. Clin Chim Acta 2019; 500:180-188. [PMID: 31672632 DOI: 10.1016/j.cca.2019.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022]
Abstract
Spondyloarthritis (SpA) comprises multifactorial diseases characterized by a complex interplay between an inherited background and environmental factors that lead to immune response dysregulation and inflammation. Unlike for other rheumatic diseases, no specific biomarkers are available in clinical practice for diagnosing SpA. The aim of the present study was to search new potential biomarkers for SpA diagnosis by focusing on the innate immune response. An evaluation was made of the mRNA expression levels of inflammatory cytokines (TNF-α, IL-1β, TGF-β1, S100A8, S100A9) and matrix metalloproteinases (MMP3, MMP8, MMP9) in blood mononuclear cells of SpA patients (n = 64) with respect to controls (n = 100). In parallel, the pattern of intracellular calcium flows of blood monocytes was verified in order to ascertain whether any specific fingerprint characterizes innate immune cells in SpA patients. Inflammatory cytokines and MMPs expression levels were not correlated with SpA, while in this disease a reduced expression of the S100A8 and a decreased frequency of monocytes showing intracellular calcium flows were observed. In conclusion, no specific signs of systemic inflammation are detectable in SpA, but the disease affects the "on-off" mechanisms that regulate the concentration of intracellular calcium and calcium-related proteins. This potentially pave the way for the discovery of new biomarkers.
Collapse
Affiliation(s)
- Stefania Moz
- Laboratory Medicine, Department of Medicine-DIMED, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Mariagrazia Lorenzin
- Rheumatology Unit, Department of Medicine-DIMED, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Roberta Ramonda
- Rheumatology Unit, Department of Medicine-DIMED, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | | | - Massimo La Raja
- UOC Immunotrasfusionale, University-Hospital of Padova, Italy
| | - Mario Plebani
- Laboratory Medicine, Department of Medicine-DIMED, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Daniela Basso
- Laboratory Medicine, Department of Medicine-DIMED, University of Padova, Via Giustiniani 2, 35128 Padova, Italy.
| |
Collapse
|
31
|
von Meyenn L, Bertschi NL, Schlapbach C. Targeting T Cell Metabolism in Inflammatory Skin Disease. Front Immunol 2019; 10:2285. [PMID: 31608068 PMCID: PMC6769046 DOI: 10.3389/fimmu.2019.02285] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/10/2019] [Indexed: 12/31/2022] Open
Abstract
A properly functioning T cell compartment is crucial to protect the host from infections, tumors, and environmental substances. In recent years, it has become increasingly clear that the processes underlying proper T cell activation, proliferation, and differentiation require well-tuned and dynamic changes in T cell metabolism. Thus, proper metabolic reprogramming in T cells is crucial to ensure proper immunity in the context of infection and anti-tumor immunity. Conversely, aberrant regulation of T cell metabolism can impair T cell function and thereby contribute to T cell-mediated disease. In this review, the relevance of recent insights into T cell metabolism for prototypical T cell-mediated skin diseases will be discussed and their therapeutic potential will be outlined. First, the major modules of T cell metabolism are summarized. Then, the importance of T cell metabolism for T cell-mediated skin diseases such as psoriasis and allergic contact dermatitis is discussed, based on the current state of our understanding thereof. Finally, novel therapeutic opportunities for inflammatory skin disease that might emerge from investigations in T cell metabolism are outlined.
Collapse
Affiliation(s)
| | | | - Christoph Schlapbach
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
32
|
Rahman S, Sagar D, Hanna RN, Lightfoot YL, Mistry P, Smith CK, Manna Z, Hasni S, Siegel RM, Sanjuan MA, Kolbeck R, Kaplan MJ, Casey KA. Low-density granulocytes activate T cells and demonstrate a non-suppressive role in systemic lupus erythematosus. Ann Rheum Dis 2019; 78:957-966. [PMID: 31040119 PMCID: PMC6585283 DOI: 10.1136/annrheumdis-2018-214620] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVES The presence of proinflammatory low-density granulocytes (LDG) has been demonstrated in autoimmune and infectious diseases. Recently, regulatory neutrophilic polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) were identified in systemic lupus erythematosus (SLE). Because LDG and PMN-MDSC share a similar phenotype with contrasting functional effects, we explored these cells in a cohort of patients with SLE. METHODS LDG and normal-density granulocytes (NDG) were isolated from fresh blood of healthy donors (HD) and patients with SLE. Associations between LDG and clinical manifestations were analysed. Multicolor flow cytometry and confocal imaging were performed to immunophenotype the cells. The ability of LDG and NDG to suppress T cell function and induce cytokine production was quantified. RESULTS LDG prevalence was elevated in SLE versus HD, associated with the interferon (IFN) 21-gene signature and disease activity. Also, the LDG-to-lymphocyte ratio associated better with SLE disease activity index than neutrophil-to-lymphocyte ratio. SLE LDG exhibited significantly heightened surface expression of various activation markers and also of lectin-like oxidised low-density lipoprotein receptor-1, previously described to be associated with PMN-MDSC. Supernatants from SLE LDG did not restrict HD CD4+ T cell proliferation in an arginase-dependent manner, suggesting LDG are not immunosuppressive. SLE LDG supernatants induced proinflammatory cytokine production (IFN gamma, tumour necrosis factor alpha and lymphotoxin alpha) from CD4+ T cells. CONCLUSIONS Based on our results, SLE LDG display an activated phenotype, exert proinflammatory effects on T cells and do not exhibit MDSC function. These results support the concept that LDG represent a distinct proinflammatory subset in SLE with pathogenic potential, at least in part, through their ability to activate type 1 helper responses.
Collapse
Affiliation(s)
- Saifur Rahman
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Divya Sagar
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Richard N Hanna
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Yaima L Lightfoot
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Pragnesh Mistry
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Carolyne K Smith
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Zerai Manna
- Lupus Clinical Research Program, Office of the Clinical Director, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sarfaraz Hasni
- Lupus Clinical Research Program, Office of the Clinical Director, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Richard M Siegel
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Miguel A Sanjuan
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Roland Kolbeck
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kerry A Casey
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, USA
| |
Collapse
|
33
|
Consonni FM, Porta C, Marino A, Pandolfo C, Mola S, Bleve A, Sica A. Myeloid-Derived Suppressor Cells: Ductile Targets in Disease. Front Immunol 2019; 10:949. [PMID: 31130949 PMCID: PMC6509569 DOI: 10.3389/fimmu.2019.00949] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/12/2019] [Indexed: 12/15/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous population of immature myeloid cells with major regulatory functions and rise during pathological conditions, including cancer, infections and autoimmune conditions. MDSC expansion is generally linked to inflammatory processes that emerge in response to stable immunological stress, which alter both magnitude and quality of the myelopoietic output. Inability to reinstate physiological myelopoiesis would fall in an “emergency state” that perpetually reprograms myeloid cells toward suppressive functions. While differentiation and reprogramming of myeloid cells toward an immunosuppressive phenotype can be considered the result of a multistep process that originates in the bone marrow and culminates in the tumor microenvironment, the identification of its driving events may offer potential therapeutic approaches in different pathologies. Indeed, whereas expansion of MDSCs, in both murine and human tumor bearers, results in reduced immune surveillance and antitumor cytotoxicity, placing an obstacle to the effectiveness of anticancer therapies, adoptive transfer of MDSCs has shown therapeutic benefits in autoimmune disorders. Here, we describe relevant mechanisms of myeloid cell reprogramming leading to generation of suppressive MDSCs and discuss their therapeutic ductility in disease.
Collapse
Affiliation(s)
| | - Chiara Porta
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy.,Center for Translational Research on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale, Novara, Italy
| | - Arianna Marino
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Chiara Pandolfo
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Silvia Mola
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy.,Center for Translational Research on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale, Novara, Italy
| | - Augusto Bleve
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Antonio Sica
- Humanitas Clinical and Research Center, Rozzano, Italy.,Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| |
Collapse
|
34
|
Salminen A, Kaarniranta K, Kauppinen A. Immunosenescence: the potential role of myeloid-derived suppressor cells (MDSC) in age-related immune deficiency. Cell Mol Life Sci 2019; 76:1901-1918. [PMID: 30788516 PMCID: PMC6478639 DOI: 10.1007/s00018-019-03048-x] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/25/2019] [Accepted: 02/14/2019] [Indexed: 12/17/2022]
Abstract
The aging process is associated with chronic low-grade inflammation in both humans and rodents, commonly called inflammaging. At the same time, there is a gradual decline in the functional capacity of adaptive and innate immune systems, i.e., immunosenescence, a process not only linked to the aging process, but also encountered in several pathological conditions involving chronic inflammation. The hallmarks of immunosenescence include a decline in the numbers of naïve CD4+ and CD8+ T cells, an imbalance in the T cell subsets, and a decrease in T cell receptor (TCR) repertoire and signaling. Correspondingly, there is a decline in B cell lymphopoiesis and a reduction in antibody production. The age-related changes are not as profound in innate immunity as they are in adaptive immunity. However, there are distinct functional deficiencies in dendritic cells, natural killer cells, and monocytes/macrophages with aging. Interestingly, the immunosuppression induced by myeloid-derived suppressor cells (MDSC) in diverse inflammatory conditions also targets mainly the T and B cell compartments, i.e., inducing very similar alterations to those present in immunosenescence. Here, we will compare the immune profiles induced by immunosenescence and the MDSC-driven immunosuppression. Given that the appearance of MDSCs significantly increases with aging and MDSCs are the enhancers of other immunosuppressive cells, e.g., regulatory T cells (Tregs) and B cells (Bregs), it seems likely that MDSCs might remodel the immune system, thus preventing excessive inflammation with aging. We propose that MDSCs are potent inducers of immunosenescence.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, KYS, P.O. Box 100, 70029, Kuopio, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| |
Collapse
|
35
|
Bruger AM, Dorhoi A, Esendagli G, Barczyk-Kahlert K, van der Bruggen P, Lipoldova M, Perecko T, Santibanez J, Saraiva M, Van Ginderachter JA, Brandau S. How to measure the immunosuppressive activity of MDSC: assays, problems and potential solutions. Cancer Immunol Immunother 2019; 68:631-644. [PMID: 29785656 PMCID: PMC11028070 DOI: 10.1007/s00262-018-2170-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/02/2018] [Indexed: 10/16/2022]
Abstract
Myeloid-derived suppressor cells (MDSC) are a heterogeneous group of mononuclear and polymorphonuclear myeloid cells, which are present at very low numbers in healthy subjects, but can expand substantially under disease conditions. Depending on disease type and stage, MDSC comprise varying amounts of immature and mature differentiation stages of myeloid cells. Validated unique phenotypic markers for MDSC are still lacking. Therefore, the functional analysis of these cells is of central importance for their identification and characterization. Various disease-promoting and immunosuppressive functions of MDSC are reported in the literature. Among those, the capacity to modulate the activity of T cells is by far the most often used and best-established read-out system. In this review, we critically evaluate the assays available for the functional analysis of human and murine MDSC under in vitro and in vivo conditions. We also discuss critical issues and controls associated with those assays. We aim at providing suggestions and recommendations useful for the contemporary biological characterization of MDSC.
Collapse
Affiliation(s)
- Annika M Bruger
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 74, 1200, Brussels, Belgium
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany and Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany
| | - Gunes Esendagli
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | | | - Pierre van der Bruggen
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 74, 1200, Brussels, Belgium
| | - Marie Lipoldova
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics AS CR, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Tomas Perecko
- Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dubravska cesta 9, 841 04, Bratislava, Slovak Republic
| | - Juan Santibanez
- Molecular Oncology group, Institute for Medical Research, University of Belgrade, Belgrade, Republic of Serbia
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - Margarida Saraiva
- Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Jo A Van Ginderachter
- Cellular and Molecular Immunology Lab, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Sven Brandau
- Research Division, Department of Otorhinolaryngology, West German Cancer Center, University Hospital Essen, Hufelandstrasse 55, 45122, Essen, Germany.
| |
Collapse
|
36
|
Uttarkar S, Brembilla NC, Boehncke WH. Regulatory cells in the skin: Pathophysiologic role and potential targets for anti-inflammatory therapies. J Allergy Clin Immunol 2019; 143:1302-1310. [PMID: 30664891 DOI: 10.1016/j.jaci.2018.12.1011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/26/2018] [Accepted: 12/26/2018] [Indexed: 02/07/2023]
Abstract
Inflammation is a fundamental defense mechanism to protect the body from danger, which becomes potentially harmful if it turns chronic. Therapeutic strategies aimed at specifically blocking proinflammatory signals, particularly cytokines, such as IL-4, IL-6, IL-13, IL-17A, or TNF-α, have substantially improved our ability to effectively and safely treat chronic inflammatory diseases. Much less effort has been made to better understand the role of potential anti-inflammatory mechanisms. Here we summarize the current understanding of regulatory cell populations in the context of chronic inflammation, namely macrophages, Langerhans cells, myeloid-derived suppressor cells, and regulatory T and B lymphocytes. Emphasis is given to the skin because many different immune-related diseases occur in the skin. Development, phenotype, function, and evidence for their role in animal models of inflammation, as well as in the corresponding human diseases, are described. Finally, the feasibility of using regulatory cells as targets for potentially disease-modifying therapeutic strategies is discussed.
Collapse
Affiliation(s)
- Sagar Uttarkar
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Wolf-Henning Boehncke
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Division of Dermatology and Venereology, Geneva University Hospitals and School of Medicine, Geneva, Switzerland.
| |
Collapse
|
37
|
Kobayashi M, Chung JS, Beg M, Arriaga Y, Verma U, Courtney K, Mansour J, Haley B, Khan S, Horiuchi Y, Ramani V, Harker D, Gopal P, Araghizadeh F, Cruz PD, Ariizumi K. Blocking Monocytic Myeloid-Derived Suppressor Cell Function via Anti-DC-HIL/GPNMB Antibody Restores the In Vitro Integrity of T Cells from Cancer Patients. Clin Cancer Res 2019; 25:828-838. [PMID: 30049749 PMCID: PMC7315386 DOI: 10.1158/1078-0432.ccr-18-0330] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/15/2018] [Accepted: 07/12/2018] [Indexed: 12/21/2022]
Abstract
PURPOSE Blocking the function of myeloid-derived suppressor cells (MDSC) is an attractive approach for cancer immunotherapy. Having shown DC-HIL/GPNMB to be the T-cell-inhibitory receptor mediating the suppressor function of MDSCs, we evaluated the potential of anti-DC-HIL mAb as an MDSC-targeting cancer treatment. EXPERIMENTAL DESIGN Patients with metastatic cancer (n = 198) were analyzed by flow cytometry for DC-HIL or PDL1 expression on blood CD14+HLA-DRno/lo MDSCs. Their suppressor function was assessed by in vitro coculture with autologous T cells, and the ability of anti-DC-HIL or anti-PDL1 mAb to reverse such function was determined. Tumor expression of these receptors was examined histologically, and the antitumor activity of the mAb was evaluated by attenuated growth of colon cancers in mice. RESULTS Patients with metastatic cancer had high blood levels of DC-HIL+ MDSCs compared with healthy controls. Anti-DC-HIL mAb reversed the in vitro function in ∼80% of cancer patients tested, particularly for colon cancer. Despite very low expression on blood MDSCs, anti-PDL1 mAb was as effective as anti-DC-HIL mAb in reversing MDSC function, a paradoxical phenomenon we found to be due to upregulated expression of PDL1 by T-cell-derived IFNγ in cocultures. DC-HIL is not expressed by colorectal cancer cells but by CD14+ cells infiltrating the tumor. Finally, anti-DC-HIL mAb attenuated growth of preestablished colon tumors by reducing MDSCs and increasing IFNγ-secreting T cells in the tumor microenvironment, with similar outcomes to anti-PDL1 mAb. CONCLUSIONS Blocking DC-HIL function is a potentially useful treatment for at least colorectal cancer with high blood levels of DC-HIL+ MDSCs.See related commentary by Colombo, p. 453.
Collapse
Affiliation(s)
- Masato Kobayashi
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jin-Sung Chung
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Muhammad Beg
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yull Arriaga
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Udit Verma
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kevin Courtney
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - John Mansour
- Department of Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Barbara Haley
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Saad Khan
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yutaka Horiuchi
- Department of Microbiology, Faculty of Medicine, Saitama Medical University, Iruma District, Saitama Prefecture, Japan
| | - Vijay Ramani
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - David Harker
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Purva Gopal
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Farshid Araghizadeh
- Department of Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ponciano D Cruz
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kiyoshi Ariizumi
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
38
|
Expansion of Myeloid-Derived Suppressor Cells in the Peripheral Blood and Lesional Skin of Cutaneous Lupus Patients. J Invest Dermatol 2018; 139:478-481. [PMID: 30300609 DOI: 10.1016/j.jid.2018.08.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/07/2018] [Accepted: 08/31/2018] [Indexed: 12/16/2022]
|
39
|
Salminen A, Kaarniranta K, Kauppinen A. Phytochemicals inhibit the immunosuppressive functions of myeloid-derived suppressor cells (MDSC): Impact on cancer and age-related chronic inflammatory disorders. Int Immunopharmacol 2018; 61:231-240. [DOI: 10.1016/j.intimp.2018.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 02/07/2023]
|
40
|
Iacobaeus E, Douagi I, Jitschin R, Marcusson-Ståhl M, Andrén AT, Gavin C, Lefsihane K, Davies LC, Mougiakakos D, Kadri N, Le Blanc K. Phenotypic and functional alterations of myeloid-derived suppressor cells during the disease course of multiple sclerosis. Immunol Cell Biol 2018; 96:820-830. [PMID: 29569304 DOI: 10.1111/imcb.12042] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 12/20/2022]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system involving dysregulated encephalitogenic T cells. Myeloid-derived suppressor cells (MDSCs) have been recognized for their important function in regulating T-cell responses. Recent studies have indicated a role for MDSCs in autoimmune diseases, but their significance in MS is not clear. Here, we assessed the frequencies of CD14+ HLA-DRlow monocytic MDSCs (Mo-MDSCs) and CD33+ CD15+ CD11b+ HLA-DRlow granulocytic MDSCs (Gr-MDSCs) and investigated phenotypic and functional differences of Mo-MDSCs at different clinical stages of MS and in healthy subjects (HC). Increased frequencies of Mo-MDSCs (P < 0.05) and Gr-MDSCs (P < 0.05) were observed in relapsing-remitting MS patients during relapse (RRMS-relapse) compared to stable RRMS (RRMS-rem). Secondary progressive MS (SPMS) patients displayed a decreased frequency of Mo-MDSCs and Gr-MDSCs compared to HC (P < 0.05). Mo-MDSCs within RRMS patients expressed significantly higher cell surface protein levels of CD86 and CD163 compared to SPMS patients. Mo-MDSCs within SPMS exhibited decreased mRNA expression of interleukin-10 and heme oxygenase 1 compared to RRMS and HC. Analysis of T-cell regulatory function of Mo-MDSCs demonstrated T-cell suppressive capacity in RRMS and HCs, while Mo-MDSCs of SPMS promoted autologous T-cell proliferation, which aligned with a differential cytokine profile compared to RRMS and HCs. This study is the first to show phenotypic and functional shifts of MDSCs between clinical stages of MS, suggesting a role for MDSCs as a therapeutic target to prevent MS disease progression.
Collapse
Affiliation(s)
- Ellen Iacobaeus
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.,Division of Neurology, Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Iyadh Douagi
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
| | - Regina Jitschin
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Maritha Marcusson-Ståhl
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Anton Törnqvist Andrén
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Caroline Gavin
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Katia Lefsihane
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Lindsay C Davies
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Dimitrios Mougiakakos
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Nadir Kadri
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Katarina Le Blanc
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
41
|
Shen M, Wang J, Yu W, Zhang C, Liu M, Wang K, Yang L, Wei F, Wang SE, Sun Q, Ren X. A novel MDSC-induced PD-1 -PD-L1 + B-cell subset in breast tumor microenvironment possesses immuno-suppressive properties. Oncoimmunology 2018; 7:e1413520. [PMID: 29632731 DOI: 10.1080/2162402x.2017.1413520] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 10/18/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of myeloid cells that suppress T-cell activity in a tumor microenvironment. However, the suppressive function of MDSCs on B cells and its underlying mechanism remain unclear. Here, we show that in 4T1 breast cancer mice, a significantly increased number of MDSCs, in parallel with splenic B cells, are accumulated when compared to normal mice. In the presence of MDSCs, the surface molecules of B cells are remolded, with checkpoint-related molecules such as PD-1 and PD-L1 changing prominently. MDSCs also emerge as vital regulators in B-cell immune functions such as proliferation, apoptosis and the abilities to secrete antibodies and cytokines. Our study further identifies that MDSCs can transform normal B cells to a subtype of immuno- regulatory B cells (Bregs) which inhibit T-cell response. Furthermore, we identified a novel kind of Bregs with a specific phenotype PD-1-PD-L1+CD19+, which exert the greatest suppressive effects on T cells in comparison with the previously reported Bregs characterized as CD1d+CD5+CD19+, CD5+CD19+ and Interleukin (IL)-10-secreting B cells. Our results highlight that MDSCs regulate B-cell response and may serve as a therapeutic approach in anti-tumor treatment. Investigation of this new Breg subtype extends our understanding of regulation of T-cell response and sheds new light on anti-tumor immunity and immune therapy.
Collapse
Affiliation(s)
- Meng Shen
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Jian Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Wenwen Yu
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Chen Zhang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Min Liu
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Kaiyuan Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Lili Yang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Feng Wei
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Shizhen Emily Wang
- Department of Pathology, University of California, San Diego, California, USA
| | - Qian Sun
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| |
Collapse
|
42
|
Oka T, Sugaya M, Takahashi N, Takahashi T, Shibata S, Miyagaki T, Asano Y, Sato S. CXCL17 Attenuates Imiquimod-Induced Psoriasis-like Skin Inflammation by Recruiting Myeloid-Derived Suppressor Cells and Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2017; 198:3897-3908. [DOI: 10.4049/jimmunol.1601607] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 03/12/2017] [Indexed: 12/18/2022]
|
43
|
Soler DC, McCormick TS. Expanding the List of Dysregulated Immunosuppressive Cells in Psoriasis. J Invest Dermatol 2016; 136:1749-1751. [PMID: 27542294 DOI: 10.1016/j.jid.2016.04.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 04/25/2016] [Indexed: 01/29/2023]
Abstract
Traditionally, myeloid-derived suppressor cells (MDSC) have been studied in regard to their increased numbers of circulating cells in cancer patients. Recent research efforts have also increased awareness of MDSC in non-malignant inflammatory diseases, including asthma, inflammatory bowel disease, and arthritis. Psoriasis can now be added to the growing list of inflammatory disorders with an MDSC component. Cao et al. report increased numbers of monocytic myeloid-derived suppressor cells (Mo-MDSC) in psoriasis patients and examine the implication of dysregulated Mo-MDSC function. Cao et al. describe psoriatic Mo-MDSC that produce increased IL-23, IL-1b, and CCL4 cytokines compared to Mo-MDSC from healthy controls. These results complement previous research demonstrating psoriatic Mo-MDSC are unable to suppress autologous and heterologous CD8 T-cell proliferations, display decreased expression levels of PD-1 as well as PD-L1, and fail to produce effective immuno-competent regulatory T cells (Tregs). Cao et al. also identify the unique expression of the surface protein DC-HIL on psoriatic Mo-MDSC. The expanded population of DC-HIL(+) Mo-MDSC in psoriasis patients, however, display inferior suppressive capabilities compared to DC-HIL(+) Mo-MDSC found in melanoma patients, suggesting contextual signaling as a potential contributing factor to Mo-MDSC function.
Collapse
Affiliation(s)
- David C Soler
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio, USA; The Murdough Family Center for Psoriasis, University Hospitals Case Medical Center, Cleveland, Ohio, USA
| | - Thomas S McCormick
- Department of Dermatology, Case Western Reserve University, Cleveland, Ohio, USA; The Murdough Family Center for Psoriasis, University Hospitals Case Medical Center, Cleveland, Ohio, USA.
| |
Collapse
|