1
|
Crook ZR, Sevilla GP, Young P, Girard EJ, Phi TD, Howard ML, Price J, Olson JM, Nairn NW. CYpHER: catalytic extracellular targeted protein degradation with high potency and durable effect. Nat Commun 2024; 15:8731. [PMID: 39384759 PMCID: PMC11464628 DOI: 10.1038/s41467-024-52975-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024] Open
Abstract
Many disease-causing proteins have multiple pathogenic mechanisms, and conventional inhibitors struggle to reliably disrupt more than one. Targeted protein degradation (TPD) can eliminate the protein, and thus all its functions, by directing a cell's protein turnover machinery towards it. Two established strategies either engage catalytic E3 ligases or drive uptake towards the endolysosomal pathway. Here we describe CYpHER (CatalYtic pH-dependent Endolysosomal delivery with Recycling) technology with potency and durability from a catalytic mechanism that shares the specificity and straightforward modular design of endolysosomal uptake. By bestowing pH-dependent release on the target engager and using the rapid-cycling transferrin receptor as the uptake receptor, CYpHER induces endolysosomal delivery of surface and extracellular targets while re-using drug, potentially yielding increased potency and reduced off-target tissue exposure risks. The TfR-based approach allows targeting to tumors that overexpress this receptor and offers the potential for transport to the CNS. CYpHER function was demonstrated in vitro with EGFR and PD-L1, and in vivo with EGFR in a model of EGFR-driven non-small cell lung cancer.
Collapse
Affiliation(s)
- Zachary R Crook
- Cyclera Therapeutics Inc, Seattle, WA, 98115, USA
- Blaze Bioscience Inc, Seattle, WA, 98109, USA
- Clinical Research Division, Fred Hutchinson Research Center, Seattle, WA, 98109, USA
| | - Gregory P Sevilla
- Cyclera Therapeutics Inc, Seattle, WA, 98115, USA
- Blaze Bioscience Inc, Seattle, WA, 98109, USA
- Clinical Research Division, Fred Hutchinson Research Center, Seattle, WA, 98109, USA
| | | | - Emily J Girard
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, 98105, USA
| | | | | | - Jason Price
- Clinical Research Division, Fred Hutchinson Research Center, Seattle, WA, 98109, USA
| | - James M Olson
- Clinical Research Division, Fred Hutchinson Research Center, Seattle, WA, 98109, USA
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, 98105, USA
| | - Natalie W Nairn
- Cyclera Therapeutics Inc, Seattle, WA, 98115, USA.
- Blaze Bioscience Inc, Seattle, WA, 98109, USA.
| |
Collapse
|
2
|
Harwardt J, Geyer FK, Schoenfeld K, Baumstark D, Molkenthin V, Kolmar H. Balancing the Affinity and Tumor Cell Binding of a Two-in-One Antibody Simultaneously Targeting EGFR and PD-L1. Antibodies (Basel) 2024; 13:36. [PMID: 38804304 PMCID: PMC11130809 DOI: 10.3390/antib13020036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/27/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
The optimization of the affinity of monoclonal antibodies is crucial for the development of drug candidates, as it can impact the efficacy of the drug and, thus, the dose and dosing regimen, limit adverse effects, and reduce therapy costs. Here, we present the affinity maturation of an EGFR×PD-L1 Two-in-One antibody for EGFR binding utilizing site-directed mutagenesis and yeast surface display. The isolated antibody variants target EGFR with a 60-fold-improved affinity due to the replacement of a single amino acid in the CDR3 region of the light chain. The binding properties of the Two-in-One variants were confirmed using various methods, including BLI measurements, real-time antigen binding measurements on surfaces with a mixture of both recombinant proteins and cellular binding experiments using flow cytometry as well as real-time interaction cytometry. An AlphaFold-based model predicted that the amino acid exchange of tyrosine to glutamic acid enables the formation of a salt bridge to an arginine at EGFR position 165. This easily adaptable approach provides a strategy for the affinity maturation of bispecific antibodies with respect to the binding of one of the two antigens.
Collapse
Affiliation(s)
- Julia Harwardt
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, 64287 Darmstadt, Germany
| | - Felix Klaus Geyer
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, 64287 Darmstadt, Germany
| | - Katrin Schoenfeld
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, 64287 Darmstadt, Germany
| | | | | | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, 64287 Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
3
|
Poulton JS, Lamba S, Free M, Xi G, McInnis E, Williams G, Kudlacek ST, Thieker D, Kuhlman B, Falk R. High-resolution epitope mapping of commercial antibodies to ANCA antigens by yeast surface display. J Immunol Methods 2024; 528:113654. [PMID: 38432292 PMCID: PMC11023775 DOI: 10.1016/j.jim.2024.113654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Epitope mapping provides critical insight into antibody-antigen interactions. Epitope mapping of autoantibodies from patients with autoimmune diseases can help elucidate disease immunogenesis and guide the development of antigen-specific therapies. Similarly, epitope mapping of commercial antibodies targeting known autoantigens enables the use of those antibodies to test specific hypotheses. Anti-Neutrophil Cytoplasmic Autoantibody (ANCA) vasculitis results from the formation of autoantibodies to multiple autoantigens, including myeloperoxidase (MPO), proteinase-3 (PR3), plasminogen (PLG), and peroxidasin (PXDN). To perform high-resolution epitope mapping of commercial antibodies to these autoantigens, we developed a novel yeast surface display library based on a series of >5000 overlapping peptides derived from their protein sequences. Using both FACS and magnetic bead isolation of reactive yeast, we screened 19 commercially available antibodies to the ANCA autoantigens. This approach to epitope mapping resulted in highly specific, fine epitope mapping, down to single amino acid resolution in many cases. Our study also identified cross-reactivity between some commercial antibodies to MPO and PXDN, which suggests that patients with apparent autoantibodies to both proteins may be the result of cross-reactivity. Together, our data validate yeast surface display using maximally overlapping peptides as an excellent approach to linear epitope mapping.
Collapse
Affiliation(s)
- John S Poulton
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; UNC Kidney Center, Chapel Hill, North Carolina, USA.
| | - Sajan Lamba
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Meghan Free
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; UNC Kidney Center, Chapel Hill, North Carolina, USA
| | - Gang Xi
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; UNC Kidney Center, Chapel Hill, North Carolina, USA
| | - Elizabeth McInnis
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Gabrielle Williams
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stephan T Kudlacek
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Menten AI, San Francisco, California, USA
| | - David Thieker
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ronald Falk
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; UNC Kidney Center, Chapel Hill, North Carolina, USA
| |
Collapse
|
4
|
Crook ZR, Sevilla GP, Young P, Girard EJ, Phi TD, Howard M, Price J, Olson JM, Nairn NW. CYpHER: Catalytic extracellular targeted protein degradation with high potency and durable effect. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.21.581471. [PMID: 38712232 PMCID: PMC11071310 DOI: 10.1101/2024.02.21.581471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Many disease-causing proteins have multiple pathogenic mechanisms, and conventional inhibitors struggle to reliably disrupt more than one. Targeted protein degradation (TPD) can eliminate the protein, and thus all its functions, by directing a cell's protein turnover machinery towards it. Two established strategies either engage catalytic E3 ligases or drive uptake towards the endolysosomal pathway. Here we describe CYpHER (CatalYtic pH-dependent Endolysosomal delivery with Recycling) technology with potency and durability from a novel catalytic mechanism that shares the specificity and straightforward modular design of endolysosomal uptake. By bestowing pH-dependent release on the target engager and using the rapid-cycling transferrin receptor as the uptake receptor, CYpHER induces endolysosomal target delivery while re-using drug, potentially yielding increased potency and reduced off-target tissue exposure risks. The TfR-based approach allows targeting to tumors that overexpress this receptor and offers the potential for transport to the CNS. CYpHER function was demonstrated in vitro with EGFR and PD-L1, and in vivo with EGFR in a model of EGFR-driven non-small cell lung cancer.
Collapse
Affiliation(s)
- Zachary R. Crook
- Cyclera Therapeutics Inc, Seattle, WA 98115, USA. Present address of Z.R.C., G.P.S., and N.W.N
- Blaze Bioscience Inc., Seattle, WA 98109, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Gregory P. Sevilla
- Cyclera Therapeutics Inc, Seattle, WA 98115, USA. Present address of Z.R.C., G.P.S., and N.W.N
- Blaze Bioscience Inc., Seattle, WA 98109, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | | | - Emily J. Girard
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA 98105, USA. Present address of E.J.G. and J.M.O
| | | | | | - Jason Price
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA 98105, USA. Present address of E.J.G. and J.M.O
| | - James M. Olson
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA 98105, USA. Present address of E.J.G. and J.M.O
| | - Natalie W. Nairn
- Cyclera Therapeutics Inc, Seattle, WA 98115, USA. Present address of Z.R.C., G.P.S., and N.W.N
- Blaze Bioscience Inc., Seattle, WA 98109, USA
| |
Collapse
|
5
|
Rampuria P, Mosyak L, Root AR, Svenson K, Agostino MJ, LaVallie ER. Molecular insights into recognition of GUCY2C by T-cell engaging bispecific antibody anti-GUCY2CxCD3. Sci Rep 2023; 13:13408. [PMID: 37591971 PMCID: PMC10435522 DOI: 10.1038/s41598-023-40467-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023] Open
Abstract
The intestinal epithelial receptor Guanylyl Cyclase C (GUCY2C) is a tumor-associated cell surface antigen expressed across gastrointestinal malignancies that can serve as an efficacious target for colorectal cancer immunotherapy. Here, we describe a yeast surface-display approach combined with an orthogonal peptide-based mapping strategy to identify the GUCY2C binding epitope of a novel anti-GUCY2CxCD3 bispecific antibody (BsAb) that recently advanced into the clinic for the treatment of cancer. The target epitope was localized to the N-terminal helix H2 of human GUCY2C, which enabled the determination of the crystal structure of the minimal GUCY2C epitope in complex with the anti-GUCY2C antibody domain. To understand if this minimal epitope covers the entire antibody binding region and to investigate the impact of epitope position on the antibody's activity, we further determined the structure of this interaction in the context of the full-length extracellular domain (ECD) of GUCY2C. We found that this epitope is positioned on the protruding membrane-distal helical region of GUCY2C and that its specific location on the surface of GUCY2C dictates the close spatial proximity of the two antigen arms in a diabody arrangement essential to the tumor killing activity of GUCY2CxCD3 BsAb.
Collapse
Affiliation(s)
- Pragya Rampuria
- Biomedicine Design, Pfizer Inc., 610 Main St., Cambridge, MA, 02139, USA.
| | - Lidia Mosyak
- Biomedicine Design, Pfizer Inc., 610 Main St., Cambridge, MA, 02139, USA.
| | - Adam R Root
- Generate Biomedicines Inc, Cambridge, MA, USA
| | - Kristine Svenson
- Biomedicine Design, Pfizer Inc., 610 Main St., Cambridge, MA, 02139, USA
| | | | - Edward R LaVallie
- Biomedicine Design, Pfizer Inc., 610 Main St., Cambridge, MA, 02139, USA
| |
Collapse
|
6
|
Ni F, Wu C, Xu P, Wang P, Fortin Y, Arbour M, Masson L, L’Abbé D, Acel A, Gosselin M, Lenferink AE. Unique epitope-antibody interactions in the intrinsically disordered proteoglycan-like domain of human carbonic anhydrase IX defined by high-resolution NMR combined with yeast surface display. MAbs 2023; 15:2248672. [PMID: 37622732 PMCID: PMC10461516 DOI: 10.1080/19420862.2023.2248672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
Carbonic anhydrase (CA)-IX is an extracellular enzyme that is essential in the adaptation of tumor cells to their increasingly more hypoxic and acidic microenvironment. Within the family of carbonic anhydrases, CA-IX is unique in that it is the only CA with an N-terminal intrinsically disordered region (IDR) containing a proteoglycan (PG)-like domain. This PG-like IDR has been described to be instrumental in CA-IX's enzyme activity, as well as tumor cell motility and invasion. We have characterized the antibody-epitope interactions of two novel and unique antibodies (11H9 and 12H8) that are specific for the human CA-IX's IDR. Binding interactions of these antibodies to the intact IDR were studied by surface plasmon resonance and high-resolution nuclear magnetic resonance (NMR) spectroscopy, while the specific epitopes were determined by both NMR and yeast surface display (YSD). Our data show that 12H8 binds to the N-terminus of CA-IX, while 11H9 has a high affinity for an epitope located in the central region of the IDR containing three GEEDLP repeats in a manner that is different from the previously described M75 antibody. Titration NMR spectroscopy using CA-IX's entire IDR in addition identified a secondary epitope of 11H9 at the beginning of the PG-like domain that remains exposed and available for further binding events after the engagement at its primary epitope at the center of the PG-like domain. Transverse relaxation optimized NMR spectroscopy of 11H9-F(Ab) in complex with the CA-IX IDR outlines structural rigidification of a linear epitope, while the rest of the IDR remains largely unstructured upon complex formation. This study illustrates how high-resolution NMR and YSD are used as complementary tools for a comprehensive characterization of antibody-epitope interactions involving intrinsically unstructured antigen domains with highly repetitive sequences.
Collapse
Affiliation(s)
- Feng Ni
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Cunle Wu
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Ping Xu
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Ping Wang
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Yves Fortin
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Melanie Arbour
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Luke Masson
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Denis L’Abbé
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Andrea Acel
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Mylene Gosselin
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Anne E.G. Lenferink
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Domain-level epitope mapping of polyclonal antibodies against HER-1 and HER-2 receptors using phage display technology. Sci Rep 2022; 12:12268. [PMID: 35851313 PMCID: PMC9293994 DOI: 10.1038/s41598-022-16411-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/11/2022] [Indexed: 11/09/2022] Open
Abstract
HER-1 and HER-2 are tumor-associated antigens overexpressed in several epithelial tumors, and successfully targeted by therapeutic approaches against cancer. Vaccination with their recombinant extracellular domains has had encouraging results in the pre-clinical setting. As complex humoral responses targeting multiple epitopes within each antigen are the ultimate goal of such active immunotherapy strategies, molecular dissection of the mixture of antibody specificities is required. The current work exploits phage display of antigenic versions of HER-1 and HER-2 domains to accomplish domain-level epitope mapping. Recognition of domains I, III and IV of both antigens by antibodies of immunized mice was shown, indicating diverse responses covering a broad range of antigenic regions. The combination of phage display and site-directed mutagenesis allowed mutational screening of antigen surface, showing polyclonal antibodies' recognition of mutated receptor escape variants known to arise in patients under the selective pressure of the anti-HER-1 antibody cetuximab. Phage-displayed HER domains have thus the potential to contribute to fine specificity characterization of humoral responses during future development of anti-cancer vaccines.
Collapse
|
8
|
Harwardt J, Bogen JP, Carrara SC, Ulitzka M, Grzeschik J, Hock B, Kolmar H. A Generic Strategy to Generate Bifunctional Two-in-One Antibodies by Chicken Immunization. Front Immunol 2022; 13:888838. [PMID: 35479092 PMCID: PMC9036444 DOI: 10.3389/fimmu.2022.888838] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/18/2022] [Indexed: 12/21/2022] Open
Abstract
Various formats of bispecific antibodies exist, among them Two-in-One antibodies in which each Fab arm can bind to two different antigens. Their IgG-like architecture accounts for low immunogenicity and also circumvents laborious engineering and purification steps to facilitate correct chain pairing. Here we report for the first time the identification of a Two‐in‐One antibody by yeast surface display (YSD) screening of chicken-derived immune libraries. The resulting antibody simultaneously targets the epidermal growth factor receptor (EGFR) and programmed death‐ligand 1 (PD-L1) at the same Fv fragment with two non-overlapping paratopes. The dual action Fab is capable of inhibiting EGFR signaling by binding to dimerization domain II as well as blocking the PD-1/PD-L1 interaction. Furthermore, the Two-in-One antibody demonstrates specific cellular binding properties on EGFR/PD-L1 double positive tumor cells. The presented strategy relies solely on screening of combinational immune-libraries and obviates the need for any additional CDR engineering as described in previous reports. Therefore, this study paves the way for further development of therapeutic antibodies derived from avian immunization with novel and tailor-made binding properties.
Collapse
Affiliation(s)
- Julia Harwardt
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Jan P. Bogen
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
- Ferring Darmstadt Laboratory, Biologics Technology and Development, Darmstadt, Germany
| | - Stefania C. Carrara
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
- Ferring Darmstadt Laboratory, Biologics Technology and Development, Darmstadt, Germany
| | - Michael Ulitzka
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
- Ferring Darmstadt Laboratory, Biologics Technology and Development, Darmstadt, Germany
| | - Julius Grzeschik
- Ferring Biologics Innovation Centre, Biologics Technology and Development, Epalinges, Switzerland
| | - Björn Hock
- Ferring Biologics Innovation Centre, Biologics Technology and Development, Epalinges, Switzerland
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
- Centre for Synthtic Biology, Technical University of Darmstadt, Darmstadt, Germany
- *Correspondence: Harald Kolmar,
| |
Collapse
|
9
|
Advances in Mass Spectrometry-based Epitope Mapping of Protein Therapeutics. J Pharm Biomed Anal 2022; 215:114754. [DOI: 10.1016/j.jpba.2022.114754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/16/2022] [Accepted: 04/03/2022] [Indexed: 11/21/2022]
|
10
|
Herpers B, Eppink B, James MI, Cortina C, Cañellas-Socias A, Boj SF, Hernando-Momblona X, Glodzik D, Roovers RC, van de Wetering M, Bartelink-Clements C, Zondag-van der Zande V, Mateos JG, Yan K, Salinaro L, Basmeleh A, Fatrai S, Maussang D, Lammerts van Bueren JJ, Chicote I, Serna G, Cabellos L, Ramírez L, Nuciforo P, Salazar R, Santos C, Villanueva A, Stephan-Otto Attolini C, Sancho E, Palmer HG, Tabernero J, Stratton MR, de Kruif J, Logtenberg T, Clevers H, Price LS, Vries RGJ, Batlle E, Throsby M. Functional patient-derived organoid screenings identify MCLA-158 as a therapeutic EGFR × LGR5 bispecific antibody with efficacy in epithelial tumors. NATURE CANCER 2022; 3:418-436. [PMID: 35469014 DOI: 10.1038/s43018-022-00359-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 03/04/2022] [Indexed: 12/19/2022]
Abstract
Patient-derived organoids (PDOs) recapitulate tumor architecture, contain cancer stem cells and have predictive value supporting personalized medicine. Here we describe a large-scale functional screen of dual-targeting bispecific antibodies (bAbs) on a heterogeneous colorectal cancer PDO biobank and paired healthy colonic mucosa samples. More than 500 therapeutic bAbs generated against Wingless-related integration site (WNT) and receptor tyrosine kinase (RTK) targets were functionally evaluated by high-content imaging to capture the complexity of PDO responses. Our drug discovery strategy resulted in the generation of MCLA-158, a bAb that specifically triggers epidermal growth factor receptor degradation in leucine-rich repeat-containing G-protein-coupled receptor 5-positive (LGR5+) cancer stem cells but shows minimal toxicity toward healthy LGR5+ colon stem cells. MCLA-158 exhibits therapeutic properties such as growth inhibition of KRAS-mutant colorectal cancers, blockade of metastasis initiation and suppression of tumor outgrowth in preclinical models for several epithelial cancer types.
Collapse
Affiliation(s)
- Bram Herpers
- OcellO BV, Leiden, The Netherlands
- Crown Bioscience Netherlands BV, Leiden, The Netherlands
| | | | - Mark I James
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Carme Cortina
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
- CIBERONC, Madrid, Spain
| | - Adrià Cañellas-Socias
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
- CIBERONC, Madrid, Spain
| | - Sylvia F Boj
- Hubrecht Organoid Technology (HUB), Utrecht, the Netherlands
| | - Xavier Hernando-Momblona
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
- CIBERONC, Madrid, Spain
| | - Dominik Glodzik
- Wellcome Sanger Institute, Hinxton, UK
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | | | - Marc van de Wetering
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands
| | | | | | - Jara García Mateos
- OcellO BV, Leiden, The Netherlands
- Crown Bioscience Netherlands BV, Leiden, The Netherlands
| | - Kuan Yan
- OcellO BV, Leiden, The Netherlands
- Crown Bioscience Netherlands BV, Leiden, The Netherlands
| | | | | | | | | | | | - Irene Chicote
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Garazi Serna
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Laia Cabellos
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Medical Oncology Department, Vall d'Hebron University Hospital (HUVH), Barcelona, Spain
| | - Lorena Ramírez
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Medical Oncology Department, Vall d'Hebron University Hospital (HUVH), Barcelona, Spain
| | - Paolo Nuciforo
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Ramon Salazar
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)-CIBERONC, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Cristina Santos
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)-CIBERONC, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Alberto Villanueva
- Chemoresistance and Predictive Factors Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
- Xenopat SL, Parc Cientific de Barcelona (PCB), Barcelona, Spain
| | - Camille Stephan-Otto Attolini
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Elena Sancho
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
- CIBERONC, Madrid, Spain
| | - Hector G Palmer
- CIBERONC, Madrid, Spain
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Medical Oncology Department, Vall d'Hebron University Hospital (HUVH), Barcelona, Spain
| | - Josep Tabernero
- CIBERONC, Madrid, Spain
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Medical Oncology Department, Vall d'Hebron University Hospital (HUVH), Barcelona, Spain
| | | | | | | | - Hans Clevers
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands
| | - Leo S Price
- OcellO BV, Leiden, The Netherlands
- Crown Bioscience Netherlands BV, Leiden, The Netherlands
| | | | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain.
- CIBERONC, Madrid, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| | | |
Collapse
|
11
|
Kang BH, Lax BM, Wittrup KD. Yeast Surface Display for Protein Engineering: Library Generation, Screening, and Affinity Maturation. Methods Mol Biol 2022; 2491:29-62. [PMID: 35482183 DOI: 10.1007/978-1-0716-2285-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Yeast surface display is a powerful directed evolution method for developing and engineering protein molecules to attain desired properties. Here, updated protocols are presented for purposes of identification of lead binders and their affinity maturation. Large libraries are screened by magnetic bead selections followed by flow cytometric selections. Upon identification and characterization of single clones, their affinities are improved by an iterative process of mutagenesis and fluorescence-activated cell sorting.
Collapse
Affiliation(s)
- Byong H Kang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brianna M Lax
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - K Dane Wittrup
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
12
|
Bacon K, Menegatti S, Rao BM. Isolation of Single-Domain Antibodies to Transmembrane Proteins Using Magnetized Yeast Cell Targets. Methods Mol Biol 2022; 2446:95-119. [PMID: 35157270 DOI: 10.1007/978-1-0716-2075-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The isolation of binding ligands from yeast-displayed combinatorial libraries has typically relied on the use of a soluble, recombinantly expressed form of the target protein when performing magnetic selections or fluorescence-activated cell sorting. When identifying binding ligands, appropriate target protein expression and subsequent purification represents a significant bottleneck. As an alternative, we describe the use of target proteins expressed on the surface of magnetized yeast cells in the selection of yeast-displayed nanobody libraries. In this approach, yeast cells displaying the target protein also co-express an iron oxide-binding protein; incubation with iron oxide nanopowder results in magnetization of target-displaying cells. Alternatively, target-displaying cells are magnetized by nonspecific adsorption of iron oxide nanopowder. Subsequently, any library cells that interact with the magnetized target cells can be isolated using a magnet. Here, we detail protocols for the isolation of binders to membrane protein targets from a yeast display nanobody library using magnetized yeast cell targets. We provide guidance on how to generate magnetic yeast cell targets as well as library selection conditions to bias the isolation of high affinity binders. We also discuss how to assess the affinity and specificity of the isolated nanobodies using flow cytometry.
Collapse
Affiliation(s)
- Kaitlyn Bacon
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC, USA
| | - Balaji M Rao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA.
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
13
|
Sheff JG, Kelly JF, Robotham A, Sulea T, Malenfant F, L'Abbé D, Duchesne M, Pelletier A, Lefebvre J, Acel A, Parat M, Gosselin M, Wu C, Fortin Y, Baardsnes J, Van Faassen H, Awrey S, Chafe SC, McDonald PC, Dedhar S, Lenferink AEG. Hydrogen-deuterium exchange mass spectrometry reveals three unique binding responses of mAbs directed to the catalytic domain of hCAIX. MAbs 2021; 13:1997072. [PMID: 34812124 PMCID: PMC8632303 DOI: 10.1080/19420862.2021.1997072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human carbonic anhydrase (hCAIX), an extracellular enzyme that catalyzes the reversible hydration of CO2, is often overexpressed in solid tumors. This enzyme is instrumental in maintaining the survival of cancer cells in a hypoxic and acidic tumor microenvironment. Absent in most normal tissues, hCAIX is a promising therapeutic target for detection and treatment of solid tumors. Screening of a library of anti-hCAIX monoclonal antibodies (mAbs) previously identified three therapeutic candidates (mAb c2C7, m4A2 and m9B6) with distinct biophysical and functional characteristics. Selective binding to the catalytic domain was confirmed by yeast surface display and isothermal calorimetry, and deeper insight into the dynamic binding profiles of these mAbs upon binding were highlighted by bottom-up hydrogen-deuterium exchange mass spectrometry (HDX-MS). Here, a conformational and allosterically silent epitope was identified for the antibody-drug conjugate candidate c2C7. Unique binding profiles are described for both inhibitory antibodies, m4A2 and m9B6. M4A2 reduces the ability of the enzyme to hydrate CO2 by steric gating at the entrance of the catalytic cavity. Conversely, m9B6 disrupts the secondary structure that is necessary for substrate binding and hydration. The synergy of these two inhibitory mechanisms is demonstrated in in vitro activity assays and HDX-MS. Finally, the ability of m4A2 to modulate extracellular pH and intracellular metabolism is reported. By highlighting three unique modes by which hCAIX can be targeted, this study demonstrates both the utility of HDX-MS as an important tool in the characterization of anti-cancer biotherapeutics, and the underlying value of CAIX as a therapeutic target.
Collapse
Affiliation(s)
- Joey G Sheff
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - John F Kelly
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Anna Robotham
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Traian Sulea
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Félix Malenfant
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Denis L'Abbé
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Mélanie Duchesne
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Alex Pelletier
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Jean Lefebvre
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Andrea Acel
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Marie Parat
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Mylene Gosselin
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Cunle Wu
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Yves Fortin
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Jason Baardsnes
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Henk Van Faassen
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Shannon Awrey
- Department of Integrative Oncology, Bc Cancer Research Institute, Vancouver, BC, Canada
| | - Shawn C Chafe
- Department of Integrative Oncology, Bc Cancer Research Institute, Vancouver, BC, Canada
| | - Paul C McDonald
- Department of Integrative Oncology, Bc Cancer Research Institute, Vancouver, BC, Canada
| | - Shoukat Dedhar
- Department of Integrative Oncology, Bc Cancer Research Institute, Vancouver, BC, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Anne E G Lenferink
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| |
Collapse
|
14
|
Pekar L, Klewinghaus D, Arras P, Carrara SC, Harwardt J, Krah S, Yanakieva D, Toleikis L, Smider VV, Kolmar H, Zielonka S. Milking the Cow: Cattle-Derived Chimeric Ultralong CDR-H3 Antibodies and Their Engineered CDR-H3-Only Knobbody Counterparts Targeting Epidermal Growth Factor Receptor Elicit Potent NK Cell-Mediated Cytotoxicity. Front Immunol 2021; 12:742418. [PMID: 34759924 PMCID: PMC8573386 DOI: 10.3389/fimmu.2021.742418] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/04/2021] [Indexed: 01/11/2023] Open
Abstract
In this work, we have generated epidermal growth factor receptor (EGFR)-specific cattle-derived ultralong CDR-H3 antibodies by combining cattle immunization with yeast surface display. After immunization, ultralong CDR-H3 regions were specifically amplified and grafted onto an IGHV1-7 scaffold by homologous recombination to facilitate Fab display. Antigen-specific clones were readily obtained by fluorescence-activated cell sorting (FACS) and reformatted as chimeric antibodies. Binning experiments revealed epitope targeting of domains I, II, and IV of EGFR with none of the generated binders competing with Cetuximab, Matuzumab, or EGF for binding to EGFR. Cattle-derived chimeric antibodies were potent in inducing antibody-dependent cell-mediated cytotoxicity (ADCC) against EGFR-overexpressing tumor cells with potencies (EC50 killing) in the picomolar range. Moreover, most of the antibodies were able to significantly inhibit EGFR-mediated downstream signaling. Furthermore, we demonstrate that a minor fraction of CDR-H3 knobs derived from generated antibodies was capable of independently functioning as a paratope facilitating EGFR binding when grafted onto the Fc part of human IgG1. Besides slightly to moderately diminished capacities, these engineered Knobbodies largely retained main properties of their parental antibodies such as cellular binding and triggering of ADCC. Hence, Knobbodies might emerge as promising tools for biotechnological applications upon further optimization.
Collapse
Affiliation(s)
- Lukas Pekar
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Daniel Klewinghaus
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Paul Arras
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Stefania C. Carrara
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Julia Harwardt
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Simon Krah
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Desislava Yanakieva
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Lars Toleikis
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Vaughn V. Smider
- The Applied Biomedical Science Institute, San Diego, CA, United States
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| |
Collapse
|
15
|
Jaroszewicz W, Morcinek-Orłowska J, Pierzynowska K, Gaffke L, Węgrzyn G. Phage display and other peptide display technologies. FEMS Microbiol Rev 2021; 46:6407522. [PMID: 34673942 DOI: 10.1093/femsre/fuab052] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
Phage display technology, which is based on the presentation of peptide sequences on the surface of bacteriophage virions, was developed over 30 years ago. Improvements in phage display systems have allowed us to employ this method in numerous fields of biotechnology, as diverse as immunological and biomedical applications, the formation of novel materials and many others. The importance of phage display platforms was recognized by awarding the Nobel Prize in 2018 "for the phage display of peptides and antibodies". In contrast to many review articles concerning specific applications of phage display systems published in recent years, we present an overview of this technology, including a comparison of various display systems, their advantages and disadvantages, and examples of applications in various fields of science, medicine, and the broad sense of biotechnology. Other peptide display technologies, which employ bacterial, yeast and mammalian cells, as well as eukaryotic viruses and cell-free systems, are also discussed. These powerful methods are still being developed and improved; thus, novel sophisticated tools based on phage display and other peptide display systems are constantly emerging, and new opportunities to solve various scientific, medical and technological problems can be expected to become available in the near future.
Collapse
Affiliation(s)
- Weronika Jaroszewicz
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | | | - Karolina Pierzynowska
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
16
|
Kopylov AM, Fab LV, Antipova O, Savchenko EA, Revishchin AV, Parshina VV, Pavlova SV, Kireev II, Golovin AV, Usachev DY, Pavlova GV. RNA Aptamers for Theranostics of Glioblastoma of Human Brain. BIOCHEMISTRY (MOSCOW) 2021; 86:1012-1024. [PMID: 34488577 DOI: 10.1134/s0006297921080113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Conventional approaches for studying and molecular typing of tumors include PCR, blotting, omics, immunocytochemistry, and immunohistochemistry. The last two methods are the most used, as they enable detecting both tumor protein markers and their localizations within the cells. In this study, we have investigated a possibility of using RNA aptamers, in particular, 2'-F-pyrimidyl-RNA aptamer ME07 (48 nucleotides long), specific to the receptor of epidermal growth factor (EGFR, ErbB1, Her1), as an alternative to monoclonal antibodies for aptacytochemistry and aptahistochemistry for human glioblastoma multiforme (GBM). A specificity of binding of FAM-ME07 to the receptor on the tumor cells has been demonstrated by flow cytometry; an apparent dissociation constant for the complex of aptamer - EGFR on the cell has been determined; a number of EGFR molecules has been semi-quantitatively estimated for the tumor cell lines having different amount of EGFR: A431 (106 copies per cell), U87 (104 copies per cell), MCF7 (103 copies per cell), and ROZH, primary GBM cell culture derived from patient (104 copies per cell). According to fluorescence microscopy, FAM-ME07 interacts directly with the receptors on A431 cells, followed by its internalization into the cytoplasm and translocation to the nucleolus; this finding opens a possibility of ME07 application as an escort aptamer for a delivery of therapeutic agents into tumor cells. FAM-ME07 efficiently stains sections of GBM clinical specimens, which enables an identification of EGFR-positive clones within a heterogeneous tumor; and providing a potential for further studying animal models of GBM.
Collapse
Affiliation(s)
- Alexey M Kopylov
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Lika V Fab
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Olga Antipova
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Ekaterina A Savchenko
- Burdenko National Medical Research Center of Neurosurgery, Ministry of Health of the Russian Federation, Moscow, 125047, Russia
| | - Alexander V Revishchin
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Viktoriya V Parshina
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Svetlana V Pavlova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Igor I Kireev
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Andrey V Golovin
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia.,Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Dmitry Y Usachev
- Burdenko National Medical Research Center of Neurosurgery, Ministry of Health of the Russian Federation, Moscow, 125047, Russia
| | - Galina V Pavlova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia.,Burdenko National Medical Research Center of Neurosurgery, Ministry of Health of the Russian Federation, Moscow, 125047, Russia.,Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| |
Collapse
|
17
|
Neijssen J, Cardoso RMF, Chevalier KM, Wiegman L, Valerius T, Anderson GM, Moores SL, Schuurman J, Parren PWHI, Strohl WR, Chiu ML. Discovery of amivantamab (JNJ-61186372), a bispecific antibody targeting EGFR and MET. J Biol Chem 2021; 296:100641. [PMID: 33839159 PMCID: PMC8113745 DOI: 10.1016/j.jbc.2021.100641] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/04/2021] [Accepted: 04/05/2021] [Indexed: 12/25/2022] Open
Abstract
A bispecific antibody (BsAb) targeting the epidermal growth factor receptor (EGFR) and mesenchymal-epithelial transition factor (MET) pathways represents a novel approach to overcome resistance to targeted therapies in patients with non-small cell lung cancer. In this study, we sequentially screened a panel of BsAbs in a combinatorial approach to select the optimal bispecific molecule. The BsAbs were derived from different EGFR and MET parental monoclonal antibodies. Initially, molecules were screened for EGFR and MET binding on tumor cell lines and lack of agonistic activity toward MET. Hits were identified and further screened based on their potential to induce untoward cell proliferation and cross-phosphorylation of EGFR by MET via receptor colocalization in the absence of ligand. After the final step, we selected the EGFR and MET arms for the lead BsAb and added low fucose Fc engineering to generate amivantamab (JNJ-61186372). The crystal structure of the anti-MET Fab of amivantamab bound to MET was solved, and the interaction between the two molecules in atomic details was elucidated. Amivantamab antagonized the hepatocyte growth factor (HGF)-induced signaling by binding to MET Sema domain and thereby blocking HGF β-chain-Sema engagement. The amivantamab EGFR epitope was mapped to EGFR domain III and residues K443, K465, I467, and S468. Furthermore, amivantamab showed superior antitumor activity over small molecule EGFR and MET inhibitors in the HCC827-HGF in vivo model. Based on its unique mode of action, amivantamab may provide benefit to patients with malignancies associated with aberrant EGFR and MET signaling.
Collapse
Affiliation(s)
| | | | | | | | - Thomas Valerius
- Section for Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian Albrechts University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - G Mark Anderson
- Janssen Research & Development, Spring House, Pennsylvania, USA
| | - Sheri L Moores
- Janssen Research & Development, Spring House, Pennsylvania, USA
| | | | | | | | - Mark L Chiu
- Janssen Research & Development, Spring House, Pennsylvania, USA.
| |
Collapse
|
18
|
Kim JE, Lee DH, Jung K, Kim EJ, Choi Y, Park HS, Kim YS. Engineering of Humanized Antibodies Against Human Interleukin 5 Receptor Alpha Subunit That Cause Potent Antibody-Dependent Cell-Mediated Cytotoxicity. Front Immunol 2021; 11:593748. [PMID: 33488590 PMCID: PMC7820887 DOI: 10.3389/fimmu.2020.593748] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
Patients with severe eosinophilic asthma (SEA; characterized by persistent eosinophilia in blood and airway tissues) experience frequent asthma exacerbations with poor clinical outcomes. Interleukin 5 (IL-5) and IL-5 receptor alpha subunit (IL-5α) play key roles in eosinophilia maintenance, and relevant therapeutic strategies include the development of antibodies (Abs) against IL-5 or IL-5α to control eosinophilia. Benralizumab, an anti–IL-5α Ab that depletes eosinophils mainly via Ab-dependent cell-mediated cytotoxicity and through blockage of IL-5 function on eosinophils, has been clinically approved for patients with SEA. Here, we report engineering of a new humanized anti–IL-5Rα Ab with potent biological activity. We first raised murine Abs against human IL-5Rα, humanized a leading murine Ab, and then further engineered the humanized Abs to enhance their affinity for IL-5Rα using the yeast surface display technology. The finally engineered version of the Ab, 5R65.7, with affinity (KD ≈ 4.64 nM) stronger than that of a clinically relevant benralizumab analogue (KD ≈ 26.8 nM) showed improved neutralizing activity toward IL-5–dependent cell proliferation in a reporter cell system. Domain level Ab epitope mapping revealed that 5R65.7 recognizes membrane-proximal domain 3 of IL-5Rα, distinct from domain I epitope of the benralizumab analogue. In ex vivo assays with peripheral eosinophils from patients with SEA and healthy donors, 5R65.7 manifested more potent biological activities than the benralizumab analogue did, including inhibition of IL-5–dependent proliferation of eosinophils and induction of eosinophil apoptosis through autologous natural-killer-cell–mediated Ab-dependent cell-mediated cytotoxicity. Our study provides a potent anti–IL-5Rα Ab, 5R65.7, which is worthy of further testing in preclinical and clinical trials against SEA as a potential alternative to the current therapeutic arsenal.
Collapse
Affiliation(s)
- Jung-Eun Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Dong-Hyun Lee
- Department of Allergy and Clinical Immunology, Ajou University Medical School, Suwon, South Korea
| | - Keunok Jung
- Department of Allergy and Clinical Immunology, Ajou University Medical School, Suwon, South Korea
| | - Eun-Ji Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Youngwoo Choi
- Department of Allergy and Clinical Immunology, Ajou University Medical School, Suwon, South Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University Medical School, Suwon, South Korea
| | - Yong-Sung Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea.,Department of Allergy and Clinical Immunology, Ajou University Medical School, Suwon, South Korea
| |
Collapse
|
19
|
Bogen JP, Carrara SC, Fiebig D, Grzeschik J, Hock B, Kolmar H. Expeditious Generation of Biparatopic Common Light Chain Antibodies via Chicken Immunization and Yeast Display Screening. Front Immunol 2020; 11:606878. [PMID: 33424853 PMCID: PMC7786285 DOI: 10.3389/fimmu.2020.606878] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Bispecific (BsAb) and biparatopic (BpAb) antibodies emerged as promising formats for therapeutic biologics exhibiting tailor-made functional properties. Over recent years, chicken-derived antibodies have gained traction for diagnostic and therapeutic applications due to their broad epitope coverage and convenience of library generation. Here we report the first generation of a biparatopic common light chain (cLC) chicken-derived antibody by an epitope binning-based screening approach using yeast surface display. The resulting monospecific antibodies target conformational epitopes on domain II or III of the epidermal growth factor receptor (EGFR) with lower double- or single-digit nanomolar affinities, respectively. Furthermore, the domain III targeting variant was shown to interfere with epidermal growth factor (EGF) binding. Utilizing the Knob-into-Hole technology (KiH), a biparatopic antibody with subnanomolar affinity was generated that facilitates clustering of soluble and cell-bound EGFR and displayed enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) compared to the parental antibodies. This strategy for generating cLC-based biparatopic antibodies from immunized chickens may pave the way for their further development in therapeutic settings.
Collapse
Affiliation(s)
- Jan P Bogen
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany.,Ferring Darmstadt Laboratory, Biologics Technology and Development, Darmstadt, Germany
| | - Stefania C Carrara
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany.,Ferring Darmstadt Laboratory, Biologics Technology and Development, Darmstadt, Germany
| | - David Fiebig
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany.,Ferring Darmstadt Laboratory, Biologics Technology and Development, Darmstadt, Germany
| | - Julius Grzeschik
- Ferring Darmstadt Laboratory, Biologics Technology and Development, Darmstadt, Germany
| | - Björn Hock
- Ferring International Center S.A., Saint-Prex, Switzerland
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
20
|
Xi X, Sun W, Su H, Zhang X, Sun F. Identification of a novel anti-EGFR nanobody by phage display and its distinct paratope and epitope via homology modeling and molecular docking. Mol Immunol 2020; 128:165-174. [PMID: 33130376 DOI: 10.1016/j.molimm.2020.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/06/2020] [Accepted: 10/18/2020] [Indexed: 02/07/2023]
Abstract
Since EGFR is an important and effective target for tumor therapy in the clinic. Several monoclonal antibodies and nanobodies were proved to target domain III of EGFR. Regarding the increased attention on nanobodies, the present study aimed to generate nanobodies specifically against domain III. After camel immunization, a gene repertoire of sdAb fragments with a diversity of 3×109 clones was produced. Following the construction of two sdAb phage display libraries, the successful epitope binning was carried out to identify the nanobody with the designated epitope. Modelling of the identified nanobody and molecular docking studies illustrated the paratope and epitope. Docking analysis revealed that the paratope focused on CDR2 loop of the identified nanobody. The identified nanobody potently cover part of the epitope of Matuzumab and Nb 9G8, which indicated that it blocked EGFR by preventing dimerization of the receptors.
Collapse
Affiliation(s)
- Xi Xi
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, Jilin, China
| | - Weihan Sun
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, Jilin, China
| | - Hang Su
- Practice Innovations Center, Changchun University of Chinese Medicine, Changchun, China
| | - Xitian Zhang
- Changchun Intellicrown Pharmaceutical Co., Ltd, No. 1688 Jichang Road, Changchun, 130507, Jilin, China
| | - Fei Sun
- Institute of Frontier Medical Science, Jilin University, No. 1163 Xinmin Street, Changchun, 130021, Jilin, China.
| |
Collapse
|
21
|
Sjöström DJ, Lundgren A, Garforth SJ, Bjelic S. Tuning the binding interface between Machupo virus glycoprotein and human transferrin receptor. Proteins 2020; 89:311-321. [PMID: 33068039 PMCID: PMC7894301 DOI: 10.1002/prot.26016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/15/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022]
Abstract
Machupo virus, known to cause hemorrhagic fevers, enters human cells via binding with its envelope glycoprotein to transferrin receptor 1 (TfR). Similarly, the receptor interactions have been explored in biotechnological applications as a molecular system to ferry therapeutics across the cellular membranes and through the impenetrable blood-brain barrier that effectively blocks any such delivery into the brain. Study of the experimental structure of Machupo virus glycoprotein 1 (MGP1) in complex with TfR and glycoprotein sequence homology has identified some residues at the interface that influence binding. There are, however, no studies that have attempted to optimize the binding potential between MGP1 and TfR. In pursuits for finding therapeutic solutions for the New World arenaviruses, and to gain a greater understanding of MGP1 interactions with TfR, it is crucial to understand the structure-sequence relationship driving the interface formation. By displaying MGP1 on yeast surface we have examined the contributions of individual residues to the binding of solubilized ectodomain of TfR. We identified MGP1 binding hot spot residues, assessed the importance of posttranslational N-glycan modifications, and used a selection with random mutagenesis for affinity maturation. We show that the optimized MGP1 variants can bind more strongly to TfR than the native MGP1, and there is an MGP1 sequence that retains binding in the absence of glycosylation, but with the addition of further amino acid substitutions. The engineered variants can be used to probe cellular internalization or the blood-brain barrier crossing to achieve greater understanding of TfR mediated internalization.
Collapse
Affiliation(s)
- Dick J Sjöström
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Anneli Lundgren
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Scott J Garforth
- Department of Biochemistry, Albert Einstein College of Medicine, New York, New York, USA
| | - Sinisa Bjelic
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
22
|
Cizkova K, Malohlava J, Tauber Z. Cell Membrane Nanostructure is Altered by Heat-Induced Antigen Retrieval: A Possible Consequence for Immunocytochemical Detection of Membranous Antigens. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2020; 26:139-147. [PMID: 31722776 DOI: 10.1017/s1431927619015113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Heat-induced antigen retrieval (HIAR) treatment improves the antigen immunodetection in formalin-fixed, paraffin-embedded tissue samples and it can also improve the detection of intracellular antigens in alcohol-fixed cytological samples, although it could deleteriously impact immunodetection, particularly that of membranous antigens. We examined the differences in cell surface topography on MCF7 cells fixed in methanol/acetone (M/A) or 4% paraformaldehyde (4% PFA), as well as the changes caused by HIAR treatment at three different temperatures (60, 90, and 120°C), using atomic force microscopy. Furthermore, the consequences for immunostaining of five membranous antigens [epidermal growth factor receptor (EGFR), E-cadherin, CD9, CD24, and CD44] were examined. Our results illustrate that while there was no one single optimal immunostaining condition for the tested antibodies, the surface topography could be an important factor in successful staining. Generally, the best conditions for successful immunostaining were M/A fixation with no HIAR treatment, whereas in 4% PFA-fixed cells, HIAR treatment at 120°C was optimal. These conditions showed similarity in cell surface skewness. A correlation factor between successful immunocytochemical staining and the skewness parameter was 0.8000. Our results indicate that the presence of valleys, depressions, scratches, and pits on the cell surface is unfavorable for the successful immunodetection of cell surface antigens.
Collapse
Affiliation(s)
- Katerina Cizkova
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, 779 00Olomouc, Czech Republic
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00Olomouc, Czech Republic
| | - Jakub Malohlava
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00Olomouc, Czech Republic
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University, 779 00Olomouc, Czech Republic
| | - Zdenek Tauber
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, 779 00Olomouc, Czech Republic
| |
Collapse
|
23
|
Bacon K, Burroughs M, Blain A, Menegatti S, Rao BM. Screening Yeast Display Libraries against Magnetized Yeast Cell Targets Enables Efficient Isolation of Membrane Protein Binders. ACS COMBINATORIAL SCIENCE 2019; 21:817-832. [PMID: 31693340 DOI: 10.1021/acscombsci.9b00147] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
When isolating binders from yeast displayed combinatorial libraries, a soluble, recombinantly expressed form of the target protein is typically utilized. As an alternative, we describe the use of target proteins displayed as surface fusions on magnetized yeast cells. In our strategy, the target protein is coexpressed on the yeast surface with an iron oxide binding protein; incubation of these yeast cells with iron oxide nanoparticles results in their magnetization. Subsequently, binder cells that interact with the magnetized target cells can be isolated using a magnet. Using a known binder-target pair with modest binding affinity (KD ≈ 400 nM), we showed that a binder present at low frequency (1 in 105) could be enriched more than 100-fold, in a single round of screening, suggesting feasibility of screening combinatorial libraries. Subsequently, we screened yeast display libraries of Sso7d and nanobody variants against yeast displayed targets to isolate binders specific to the cytosolic domain of the mitochondrial membrane protein TOM22 (KD ≈ 272-1934 nM) and the extracellular domain of the c-Kit receptor (KD ≈ 93 to KD > 2000 nM). Additional studies showed that the TOM22 binders identified using this approach could be used for the enrichment of mitochondria from cell lysates, thereby confirming binding to the native mitochondrial protein. The ease of expressing a membrane protein or a domain thereof as a yeast cell surface fusion-in contrast to recombinant soluble expression-makes the use of yeast-displayed targets particularly attractive. Therefore, we expect the use of magnetized yeast cell targets will enable efficient isolation of binders to membrane proteins.
Collapse
|
24
|
Ho ECH, Antignani A, Sarnovsky R, FitzGerald D. 'Characterization of monoclonal antibodies generated to the 287-302 amino acid loop of the human epidermal growth factor receptor'. Antib Ther 2019; 2:88-98. [PMID: 31934685 PMCID: PMC6947844 DOI: 10.1093/abt/tbz011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The dysregulation of epidermal growth factor receptor (EGFR) has been implicated in the oncogenesis of various malignancies including glioblastoma and some epithelial cancers. Oncogenesis occurs from the overexpression of EGFR, often linked to gene amplification or receptor mutagenesis. The 287-302 loop in the extracellular domain is exposed completely on EGFR variant III (EGFRvIII), partially exposed on some cancers but cryptic on normal cells. We report on the generation of antibodies to this loop. METHODS The 286-303 peptide was coupled chemically to keyhole limpet hemocyanin. After immunizations, sera were assayed for reactivity to the peptide. Mice with high titers were used for hybridoma production. Purified antibodies were isolated from hybridoma supernatants, while V regions were cloned and sequenced. Receptor binding was characterized using enzyme-linked immunosorbent assay and flow cytometry. A recombinant immunotoxin was generated from the 40H3 antibody and its cytotoxic activity characterized on relevant cancer cell lines. RESULTS Seven monoclonal antibodies were generated to the 287-302 loop and characterized further. Each one reacted with EGFRvIII but not wild-type EGFR. Based on reactivity with the immunizing peptide, antibodies were mapped to one of three subgroups. One antibody, 40H3, also exhibited binding to MDA-MB-468 and A431 cells but not to non-cancerous WI-38 cells. Because of its unusual binding characteristics, a recombinant immunotoxin was generated from 40H3, which proved to be cytotoxic to MDA-MB-468, A431 and F98npEGFRvIII expressing cells. CONCLUSIONS Immunization with a peptide corresponding to a cryptic epitope from EGFR can produce tumor cell-binding antibodies. The 40H3 antibody was engineered as a cytotoxic recombinant immunotoxin and could be further developed as a therapeutic agent.
Collapse
Affiliation(s)
| | | | - Robert Sarnovsky
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - David FitzGerald
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
25
|
Yang X, Tang H, Song M, Shen Y, Hou J, Bao X. Development of novel surface display platforms for anchoring heterologous proteins in Saccharomyces cerevisiae. Microb Cell Fact 2019; 18:85. [PMID: 31103030 PMCID: PMC6525377 DOI: 10.1186/s12934-019-1133-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/07/2019] [Indexed: 01/29/2023] Open
Abstract
Background Cell surface display of recombinant proteins has become a powerful tool for biotechnology and biomedical applications. As a model eukaryotic microorganism, Saccharomyces cerevisiae is an ideal candidate for surface display of heterologous proteins. However, the frequently used commercial yeast surface display system, the a-agglutinin anchor system, often results in low display efficiency. Results We initially reconstructed the a-agglutinin system by replacing two anchor proteins with one anchor protein. By directly fusing the target protein to the N-terminus of Aga1p and inserting a flexible linker, the display efficiency almost doubled, and the activity of reporter protein α-galactosidase increased by 39%. We also developed new surface display systems. Six glycosylphosphatidylinositol (GPI) anchored cell wall proteins were selected to construct the display systems. Among them, Dan4p and Sed1p showed higher display efficiency than the a-agglutinin anchor system. Linkers were also inserted to eliminate the effects of GPI fusion on the activity of the target protein. We further used the newly developed Aga1p, Dan4p systems and Sed1p system to display exoglucanase and a relatively large protein β-glucosidase, and found that Aga1p and Dan4p were more suitable for immobilizing large proteins. Conclusion Our study developed novel efficient yeast surface display systems, that will be attractive tools for biotechnological and biomedical applications Electronic supplementary material The online version of this article (10.1186/s12934-019-1133-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoyu Yang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Hongting Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.,Center for Synthetic Biochemistry, Chinese Academy of Sciences, Shenzhen Institutes for Advanced Technologies, Shenzhen, 518055, People's Republic of China
| | - Meihui Song
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Yu Shen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.
| | - Xiaoming Bao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China. .,Shandong Provincial Key Laboratory of Microbial Engineering, Qi Lu University of Technology, Jinan, 250353, People's Republic of China.
| |
Collapse
|
26
|
Bakhman A, Rabinovich E, Shlamkovich T, Papo N, Kosloff M. Residue-level determinants of angiopoietin-2 interactions with its receptor Tie2. Proteins 2018; 87:185-197. [PMID: 30520519 DOI: 10.1002/prot.25638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/04/2018] [Accepted: 11/29/2018] [Indexed: 11/11/2022]
Abstract
We combined computational and experimental methods to interrogate the binding determinants of angiopoietin-2 (Ang2) to its receptor tyrosine kinase (RTK) Tie2-a central signaling system in angiogenesis, inflammation, and tumorigenesis. We used physics-based electrostatic and surface-area calculations to identify the subset of interfacial Ang2 and Tie2 residues that can affect binding directly. Using random and site-directed mutagenesis and yeast surface display (YSD), we validated these predictions and identified additional Ang2 positions that affected receptor binding. We then used burial-based calculations to classify the larger set of Ang2 residues that are buried in the Ang2 core, whose mutations can perturb the Ang2 structure and thereby affect interactions with Tie2 indirectly. Our analysis showed that the Ang2-Tie2 interface is dominated by nonpolar contributions, with only three Ang2 and two Tie2 residues that contribute electrostatically to intermolecular interactions. Individual interfacial residues contributed only moderately to binding, suggesting that engineering of this interface will require multiple mutations to reach major effects. Conversely, substitutions in substantially buried Ang2 residues were more prevalent in our experimental screen, reduced binding substantially, and are therefore more likely to have a deleterious effect that might contribute to oncogenesis. Computational analysis of additional RTK-ligand complexes, c-Kit-SCF and M-CSF-c-FMS, and comparison to previous YSD results, further show the utility of our combined methodology.
Collapse
Affiliation(s)
- Anna Bakhman
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Eitan Rabinovich
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tomer Shlamkovich
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Niv Papo
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Mickey Kosloff
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
27
|
Raeeszadeh-Sarmazdeh M, Patel N, Cruise S, Owen L, O'Neill H, Boder ET. Identifying Stable Fragments of Arabidopsis thaliana Cellulose Synthase Subunit 3 by Yeast Display. Biotechnol J 2018; 14:e1800353. [PMID: 30171735 DOI: 10.1002/biot.201800353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/08/2018] [Indexed: 12/22/2022]
Abstract
Determining structures of large, complex proteins remains challenging, especially for transmembrane proteins, as the protein size increases. Arabidopsis thaliana cellulose synthesis complex is a large, multimeric complex located in the plant cell membrane that synthesizes cellulose microfibrils in the plant cell wall. Despite the biological and economic importance of cellulose and therefore cellulose synthesis, many aspects of the cellulase synthase complex (CSC) structure and function are still unknown. Here, yeast surface display (YSD) is used to determine the full-length expression of A. thaliana cellulose synthase 3 (AtCesA3) fragments. The level of stably-folded AtCesA3 fragments displayed on the yeast surface are determined using flow cytometric analysis of differential surface expression of epitopes flanking the AtCesA3 fragment. This technique provides a fast and simple method for examining folding and expression of protein domains and fragments of complex proteins.
Collapse
Affiliation(s)
- Maryam Raeeszadeh-Sarmazdeh
- Department of Chemical and Biomolecular Engineering, University of Tennessee at Knoxville, Knoxville, TN 37996
| | - Nikhil Patel
- Department of Chemical and Biomolecular Engineering, University of Tennessee at Knoxville, Knoxville, TN 37996
| | - Sarah Cruise
- Department of Chemical and Biomolecular Engineering, University of Tennessee at Knoxville, Knoxville, TN 37996
| | - Leila Owen
- Department of Chemical and Biomolecular Engineering, University of Tennessee at Knoxville, Knoxville, TN 37996
| | - Hugh O'Neill
- Center for Structural Molecular Biology and Neutron Scsattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
| | - Eric T Boder
- Department of Chemical and Biomolecular Engineering, University of Tennessee at Knoxville, Knoxville, TN 37996
| |
Collapse
|
28
|
Zhou Y, Zou H, Yau C, Zhao L, Hall SC, Drummond DC, Farr-Jones S, Park JW, Benz CC, Marks JD. Discovery of internalizing antibodies to basal breast cancer cells. Protein Eng Des Sel 2018; 31:17-28. [PMID: 29301020 PMCID: PMC6283401 DOI: 10.1093/protein/gzx063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 12/01/2017] [Indexed: 11/14/2022] Open
Abstract
We present a strategy to discover recombinant monoclonal antibodies (mAbs) to specific cancers and demonstrate this approach using basal subtype breast cancers. A phage antibody library was depleted of antibodies to common cell surface molecules by incubation with luminal breast cancer cell lines, and then selected on a single basal-like breast cancer cell line (MDA-MB-231) for binding associated receptor-mediated endocytosis. Additional profiling against two luminal and four basal-like cell lines revealed 61 unique basal-specific mAbs from a pool of 1440 phage antibodies. The unique mAbs were further screened on nine basal and seven luminal cell lines to identify those with the greatest affinity, specificity, and internalizing capability for basal-like breast cancer cells. Among the internalizing basal-specific mAbs were those recognizing four transmembrane receptors (EphA2, CD44, CD73 and EGFR), identified by immunoprecipitation-mass spectrometry and yeast-displayed antigen screening. Basal-like breast cancer expression of these four receptors was confirmed using a bioinformatic approach, and expression microarray data on 683 intrinsically subtyped primary breast tumors. This overall approach, which sequentially employs phage display antibody library selection, antigen identification and bioinformatic confirmation of antigen expression by cancer subtypes, offers efficient production of high-affinity mAbs with diagnostic and therapeutic utility against specific cancer subtypes.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Anesthesia and Perioperative Care, University of California, San Francisco Rm 3C-38, Zuckerberg San Francisco General Hospital and Trauma Center, 1001 Potrero Ave, San Francisco, CA 94110, USA
| | - Hao Zou
- Department of Anesthesia and Perioperative Care, University of California, San Francisco Rm 3C-38, Zuckerberg San Francisco General Hospital and Trauma Center, 1001 Potrero Ave, San Francisco, CA 94110, USA
| | - Christina Yau
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA
| | - Lequn Zhao
- Department of Anesthesia and Perioperative Care, University of California, San Francisco Rm 3C-38, Zuckerberg San Francisco General Hospital and Trauma Center, 1001 Potrero Ave, San Francisco, CA 94110, USA
| | - Steven C Hall
- Department of Obstetrics, Gynecology & Reproductive Sciences, Sandler-Moore Mass Spectrometry Core Facility, 521 Parnassus Avenue, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Daryl C Drummond
- Merrimack Pharmaceuticals Inc., One Kendall Square, Suite B7201, Cambridge, MA 02139, USA
| | - Shauna Farr-Jones
- Department of Anesthesia and Perioperative Care, University of California, San Francisco Rm 3C-38, Zuckerberg San Francisco General Hospital and Trauma Center, 1001 Potrero Ave, San Francisco, CA 94110, USA
| | - John W Park
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, Box 1710, San Francisco, CA 94143, USA
| | - Christopher C Benz
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA 94945, USA
| | - James D Marks
- Department of Anesthesia and Perioperative Care, University of California, San Francisco Rm 3C-38, Zuckerberg San Francisco General Hospital and Trauma Center, 1001 Potrero Ave, San Francisco, CA 94110, USA
| |
Collapse
|
29
|
Ellwanger K, Reusch U, Fucek I, Knackmuss S, Weichel M, Gantke T, Molkenthin V, Zhukovsky EA, Tesar M, Treder M. Highly Specific and Effective Targeting of EGFRvIII-Positive Tumors with TandAb Antibodies. Front Oncol 2017; 7:100. [PMID: 28596941 PMCID: PMC5442391 DOI: 10.3389/fonc.2017.00100] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/01/2017] [Indexed: 12/31/2022] Open
Abstract
To harness the cytotoxic capacity of immune cells for the treatment of solid tumors, we developed tetravalent, bispecific tandem diabody (TandAb) antibodies that recognize EGFRvIII, the deletion variant III of the epidermal growth factor receptor (EGFR), and CD3 on T-cells, thereby directing immune cells to eliminate EGFRvIII-positive tumor cells. Using phage display, we identified scFv antibodies selectively binding to EGFRvIII. These highly EGFRvIII-specific, fully human scFv were substantially improved by affinity maturation, achieving KDs in the picomolar range, and were used to construct a set of bispecific EGFRvIII-targeting TandAbs with a broad range of binding and cytotoxic properties. These antibodies exhibited an exquisite specificity for a distinguished epitope in the N-terminal portion of EGFRvIII, as shown on recombinant antigen in Western Blot, SPR, and ELISA, as well as on antigen-expressing cells in FACS assays, and did not bind to the wild-type EGFR. High-affinity EGFRvIII/CD3 TandAbs were most potent in killing assays, displaying cytotoxicity toward EGFRvIII-expressing CHO, F98 glioma, or human DK-MG cells with EC50 values in the range of 1-10 pM in vitro. They also demonstrated dose-dependent growth control in vivo in an EGFRvIII-positive subcutaneous xenograft tumor model. Together with the tumor-exclusive expression of EGFRvIII, the EGFRvIII/CD3 TandAbs' high specificity and strictly target-dependent activation with no off-target activity provide an opportunity to target tumor cells and spare normal tissues, thereby reducing the side effects associated with other anti-EGFR therapies. In summary, EGFRvIII/CD3 TandAbs are highly attractive therapeutic antibody candidates for selective immunotherapy of EGFRvIII-positive tumors.
Collapse
|
30
|
Traxlmayr MW, Shusta EV. Directed Evolution of Protein Thermal Stability Using Yeast Surface Display. Methods Mol Biol 2017; 1575:45-65. [PMID: 28255874 DOI: 10.1007/978-1-4939-6857-2_4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Yeast surface display is a powerful protein engineering technology that has been used for many applications including engineering protein stability. Direct screening for improved thermal stability can be accomplished by heat shock of yeast displayed protein libraries. Thermally stable protein variants retain binding to conformationally specific ligands, and this binding event can be detected by flow cytometry, facilitating recovery of yeast clones displaying stabilized protein variants. In early efforts, the major limitation of this approach was the viability threshold of the yeast cells, precluding the application of significantly elevated heat shock temperatures (>50 °C) and therefore limited to the engineering of intrinsically unstable proteins. More recently, however, techniques for stability mutant gene recovery between sorting rounds have obviated the need for yeast growth amplification of improved mutant pools. The resultant methods allow significantly higher denaturation temperatures (up to 85 °C), thereby enabling the engineering of a broader range of protein substrates. In this chapter, a detailed protocol for this stability engineering approach is presented.
Collapse
Affiliation(s)
- Michael W Traxlmayr
- Department of Chemistry, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria.
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
31
|
Press O, Zvagelsky T, Vyazmensky M, Kleinau G, Engel S. Construction of Structural Mimetics of the Thyrotropin Receptor Intracellular Domain. Biophys J 2016; 111:2620-2628. [PMID: 28002738 PMCID: PMC5192603 DOI: 10.1016/j.bpj.2016.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/26/2016] [Accepted: 11/02/2016] [Indexed: 10/20/2022] Open
Abstract
The signaling of a G protein-coupled receptor (GPCR) is dictated by the complementary responsiveness of interacting intracellular effectors such as G proteins. Many GPCRs are known to couple to more than one G protein subtype and induce a multitude of signaling pathways, although the in vivo relevance of particular pathways is mostly unrecognized. Dissecting GPCR signaling in terms of the pathways that are activated will boost our understanding of the molecular fundamentals of hormone action. The structural determinants governing the selectivity of GPCR/G protein coupling, however, remain obscure. Here, we describe the design of soluble GPCR mimetics to study the details of the interplay between G-proteins and activators. We constructed functional mimetics of the intracellular domain of a model GPCR, the thyrotropin receptor. We based the construction on a unique scaffold, 6-Helix, an artificial protein that was derived from the elements of the trimer-of-hairpins structure of HIV gp41 and represents a bundle of six α-helices. The 6-Helix scaffold, which endowed the substituted thyrotropin receptor intracellular domain elements with spatial constraints analogous to those found in native receptors, enabled the reconstitution of a microdomain that consists of intracellular loops 2 and 3, and is capable of binding and activating Gα-(s). The 6-Helix-based mimetics could be used as a platform to study the molecular basis of GPCR/G protein recognition. Such knowledge could help investigators develop novel therapeutic strategies for GPCR-related disorders by targeting the GPCR/G protein interfaces and counteracting cellular dysfunctions via focused tuning of GPCR signaling.
Collapse
Affiliation(s)
- Olga Press
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tatiana Zvagelsky
- Department of Chemistry, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Maria Vyazmensky
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Gunnar Kleinau
- Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin, Berlin, Germany
| | - Stanislav Engel
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
32
|
Rabinovich E, Heyne M, Bakhman A, Kosloff M, Shifman JM, Papo N. Identifying Residues that Determine SCF Molecular-Level Interactions through a Combination of Experimental and In silico Analyses. J Mol Biol 2016; 429:97-114. [PMID: 27890784 DOI: 10.1016/j.jmb.2016.11.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/15/2016] [Accepted: 11/22/2016] [Indexed: 11/28/2022]
Abstract
The stem cell factor (SCF)/c-Kit receptor tyrosine kinase complex-with its significant roles in hematopoiesis and angiogenesis-is an attractive target for rational drug design. There is thus a need to map, in detail, the SCF/c-Kit interaction sites and the mechanisms that modulate this interaction. While most residues in the direct SCF/c-Kit binding interface can be identified from the existing crystal structure of the complex, other residues that affect binding through protein unfolding, intermolecular interactions, allosteric or long-distance electrostatic effects cannot be directly inferred. Here, we describe an efficient method for protein-wide epitope mapping using yeast surface display. A library of single SCF mutants that span the SCF sequence was screened for decreased affinity to soluble c-Kit. Sequencing of selected clones allowed the identification of mutations that reduce SCF binding affinity to c-Kit. Moreover, the screening of these SCF clones for binding to a structural antibody helped identify mutations that result in small or large conformational changes in SCF. Computational modeling of the experimentally identified mutations showed that these mutations reduced the binding affinity through one of the three scenarios: through SCF destabilization, through elimination of favorable SCF/c-Kit intermolecular interactions, or through allosteric changes. Eight SCF variants were expressed and purified. Experimentally measured in vitro binding affinities of these mutants to c-Kit confirmed both the yeast surface display selection results and the computational predictions. This study has thus identified the residues crucial for c-Kit/SCF binding and has demonstrated the advantages of using a combination of computational and combinatorial methods for epitope mapping.
Collapse
Affiliation(s)
- Eitan Rabinovich
- Department of Biotechnology Engineering, and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Michael Heyne
- Department of Biotechnology Engineering, and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Anna Bakhman
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Mickey Kosloff
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Julia M Shifman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Niv Papo
- Department of Biotechnology Engineering, and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
33
|
Gaiotto T, Hufton SE. Cross-Neutralising Nanobodies Bind to a Conserved Pocket in the Hemagglutinin Stem Region Identified Using Yeast Display and Deep Mutational Scanning. PLoS One 2016; 11:e0164296. [PMID: 27741319 PMCID: PMC5065140 DOI: 10.1371/journal.pone.0164296] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/22/2016] [Indexed: 12/20/2022] Open
Abstract
Cross-neutralising monoclonal antibodies against influenza hemagglutinin (HA) are of considerable interest as both therapeutics and diagnostic tools. We have recently described five different single domain antibodies (nanobodies) which share this cross-neutralising activity and suggest their small size, high stability, and cleft binding properties may present distinct advantages over equivalent conventional antibodies. We have used yeast display in combination with deep mutational scanning to give residue level resolution of positions in the antibody-HA interface which are crucial for binding. In addition, we have mapped positions within HA predicted to have minimal effect on antibody binding when mutated. Our cross-neutralising nanobodies were shown to bind to a highly conserved pocket in the HA2 domain of A(H1N1)pdm09 influenza virus overlapping with the fusion peptide suggesting their mechanism of action is through the inhibition of viral membrane fusion. We also note that the epitope overlaps with that of CR6261 and F10 which are human monoclonal antibodies in clinical development as immunotherapeutics. Although all five nanobodies mapped to the same highly conserved binding pocket we observed differences in the size of the epitope footprint which has implications in comparing the relative genetic barrier each nanobody presents to a rapidly evolving influenza virus. To further refine our epitope map, we have re-created naturally occurring mutations within this HA stem epitope and tested their effect on binding using yeast display. We have shown that a D46N mutation in the HA2 stem domain uniquely interferes with binding of R2b-E8. Further testing of this substitution in the context of full length purified HA from 1918 H1N1 pandemic (Spanish flu), 2009 H1N1 pandemic (swine flu) and highly pathogenic avian influenza H5N1 demonstrated binding which correlated with D46 whereas binding to seasonal H1N1 strains carrying N46 was absent. In addition, our deep sequence analysis predicted that binding to the emerging H1N1 strain (A/Christchurch/16/2010) carrying the HA2-E47K mutation would not affect binding was confirmed experimentally. This demonstrates yeast display, in combination with deep sequencing, may be able to predict antibody reactivity to emerging influenza strains so assisting in the preparation for future influenza pandemics.
Collapse
Affiliation(s)
- Tiziano Gaiotto
- Biotherapeutics Group, National Institute for Biological Standards and Control, a centre of the Medicines and Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Herts, EN6 3QG, United Kingdom
| | - Simon E. Hufton
- Biotherapeutics Group, National Institute for Biological Standards and Control, a centre of the Medicines and Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Herts, EN6 3QG, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
Rosenfeld L, Shirian J, Zur Y, Levaot N, Shifman JM, Papo N. Combinatorial and Computational Approaches to Identify Interactions of Macrophage Colony-stimulating Factor (M-CSF) and Its Receptor c-FMS. J Biol Chem 2015; 290:26180-93. [PMID: 26359491 PMCID: PMC4646268 DOI: 10.1074/jbc.m115.671271] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/06/2015] [Indexed: 01/06/2023] Open
Abstract
The molecular interactions between macrophage colony-stimulating factor (M-CSF) and the tyrosine kinase receptor c-FMS play a key role in the immune response, bone metabolism, and the development of some cancers. Because no x-ray structure is available for the human M-CSF · c-FMS complex, the binding epitope for this complex is largely unknown. Our goal was to identify the residues that are essential for binding of the human M-CSF to c-FMS. For this purpose, we used a yeast surface display (YSD) approach. We expressed a combinatorial library of monomeric M-CSF (M-CSFM) single mutants and screened this library to isolate variants with reduced affinity for c-FMS using FACS. Sequencing yielded a number of single M-CSFM variants with mutations both in the direct binding interface and distant from the binding site. In addition, we used computational modeling to map the identified mutations onto the M-CSFM structure and to classify the mutations into three groups as follows: those that significantly decrease protein stability; those that destroy favorable intermolecular interactions; and those that decrease affinity through allosteric effects. To validate the YSD and computational data, M-CSFM and three variants were produced as soluble proteins; their affinity and structure were analyzed; and very good correlations with both YSD data and computational predictions were obtained. By identifying the M-CSFM residues critical for M-CSF · c-FMS interactions, we have laid down the basis for a deeper understanding of the M-CSF · c-FMS signaling mechanism and for the development of target-specific therapeutic agents with the ability to sterically occlude the M-CSF·c-FMS binding interface.
Collapse
Affiliation(s)
- Lior Rosenfeld
- From the Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, and
| | - Jason Shirian
- the Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Yuval Zur
- From the Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, and the Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer-Sheva 8410501 and
| | - Noam Levaot
- the Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer-Sheva 8410501 and
| | - Julia M Shifman
- the Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Niv Papo
- From the Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, and
| |
Collapse
|
35
|
Kim DH, Zhou K, Kim DK, Park S, Noh J, Kwon Y, Kim D, Song NW, Lee JB, Suh PG, Lee NK, Ryu SH. Analysis of Interactions between the Epidermal Growth Factor Receptor and Soluble Ligands on the Basis of Single-Molecule Diffusivity in the Membrane of Living Cells. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201500871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
36
|
Kim DH, Zhou K, Kim DK, Park S, Noh J, Kwon Y, Kim D, Song NW, Lee JB, Suh PG, Lee NK, Ryu SH. Analysis of Interactions between the Epidermal Growth Factor Receptor and Soluble Ligands on the Basis of Single-Molecule Diffusivity in the Membrane of Living Cells. Angew Chem Int Ed Engl 2015; 54:7028-32. [DOI: 10.1002/anie.201500871] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/01/2015] [Indexed: 11/06/2022]
|
37
|
Nevoltris D, Lombard B, Dupuis E, Mathis G, Chames P, Baty D. Conformational nanobodies reveal tethered epidermal growth factor receptor involved in EGFR/ErbB2 predimers. ACS NANO 2015; 9:1388-1399. [PMID: 25603171 DOI: 10.1021/nn505752u] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The epidermal growth factor receptor (EGFR) is a cell-surface receptor with a single transmembrane domain and tyrosine kinase activity carried by the intracellular domain. This receptor is one of the four members of the ErbB family including ErbB2, ErbB3, and ErbB4. Ligand binding, like EGF binding, induces a conformational rearrangement of the receptor and induces a homo/hetero dimerization essentially with ErbB family receptors that leads to the phosphorylation of the kinase domain, triggering a signaling cascade. EGFR can also form inactive dimers in a ligand-independent way through interactions between cytoplasmic domains. To date, the conformation of EGFR extracellular domain engaged in these inactive dimers remains unclear. In this study, we describe the successful selection and characterization of llama anti-EGFR nanobodies and their use as innovative conformational sensors. We isolated three different specific anti-EGFR clones binding to three distinct epitopes. Interestingly, the binding of all three nanobodies was found highly sensitive to ligand stimulation. Two nanobodies, D10 and E10, can only bind the ligand-free EGFR conformation characterized by an intramolecular tether between domains II and IV, whereas nanobody G10 binds both ligand-free and ligand activated EGFR, with an 8-fold higher affinity for the extended conformation in the presence of ligand. Here we took advantage of these conformational probes to reveal the existence of tethered EGFR in EGFR/ErbB2 predimers. These biosensors represent important tools allowing the determination of EGFR conformations and should help the design of relevant inhibitors.
Collapse
Affiliation(s)
- Damien Nevoltris
- Institut National de la Santé et de la Recherche Médicale , U1068, Centre de Recherche en Cancérologie de Marseille, Marseille F-13009, France
| | | | | | | | | | | |
Collapse
|
38
|
Bidlingmaier S, Liu B. Identification of Novel Protein-Ligand Interactions by Exon Microarray Analysis of Yeast Surface Displayed cDNA Library Selection Outputs. Methods Mol Biol 2015; 1319:179-192. [PMID: 26060075 PMCID: PMC4842228 DOI: 10.1007/978-1-4939-2748-7_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Yeast surface display is widely utilized to screen large libraries for proteins or protein fragments with specific binding properties. We have previously constructed and utilized yeast surface displayed human cDNA libraries to identify protein fragments that bind to various target ligands. Conventional approaches employ monoclonal screening and sequencing of polyclonal outputs that have been enriched for binding to a target molecule by several rounds of affinity-based selection. Frequently, a small number of clones will dominate the selection output, making it difficult to comprehensively identify potentially important interactions due to low representation in the selection output. We have developed a novel method to address this problem. By analyzing selection outputs using high-density human exon microarrays, the full potential of selection output diversity can be revealed in one experiment. FACS-based selection using yeast surface displayed human cDNA libraries combined with exon microarray analysis of the selection outputs is a powerful way of rapidly identifying protein fragments with affinity for any soluble ligand that can be fluorescently detected, including small biological molecules and drugs. In this report we present protocols for exon microarray-based analysis of yeast surface display human cDNA library selection outputs.
Collapse
Affiliation(s)
- Scott Bidlingmaier
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, 1001 Potrero Avenue, 1305, San Francisco, CA, 94110, USA
| | | |
Collapse
|
39
|
Abstract
Yeast surface display is commonly used to engineer affinity and design novel molecular interaction. By alternating positive and negative selections, yeast display can be used to engineer binders that specifically interact with the target protein at a defined site. Epitope-specific binders can be useful as inhibitors if they bind the target molecule at functionally important sites. Therefore, an efficient method of engineering epitope specificity should help with the engineering of inhibitors. We describe the use of yeast surface display to design single domain monobodies that bind and inhibit the activity of the kinase Erk-2 by targeting a conserved surface patch involved in protein-protein interaction. The designed binders can be used to disrupt signaling in the cell and investigate Erk-2 function in vivo. The described protocol is general and can be used to design epitope-specific binders of an arbitrary protein.
Collapse
Affiliation(s)
- Jasdeep K Mann
- Department of Chemical and Biological Engineering, University at Buffalo, 905 Furnas Hall, Buffalo, NY, 14260, USA
| | | |
Collapse
|
40
|
Abstract
The method of displaying recombinant proteins on the surface of Saccharomyces cerevisiae via genetic fusion to an abundant cell wall protein, a technology known as yeast surface display, or simply, yeast display, has become a valuable protein engineering tool for a broad spectrum of biotechnology and biomedical applications. This review focuses on the use of yeast display for engineering protein affinity, stability, and enzymatic activity. Strategies and examples for each protein engineering goal are discussed. Additional applications of yeast display are also briefly presented, including protein epitope mapping, identification of protein-protein interactions, and uses of displayed proteins in industry and medicine.
Collapse
|
41
|
Doolan KM, Colby DW. Conformation-dependent epitopes recognized by prion protein antibodies probed using mutational scanning and deep sequencing. J Mol Biol 2014; 427:328-40. [PMID: 25451031 DOI: 10.1016/j.jmb.2014.10.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 10/23/2014] [Accepted: 10/24/2014] [Indexed: 11/24/2022]
Abstract
Prion diseases are caused by a structural rearrangement of the cellular prion protein, PrP(C), into a disease-associated conformation, PrP(Sc), which may be distinguished from one another using conformation-specific antibodies. We used mutational scanning by cell-surface display to screen 1341 PrP single point mutants for attenuated interaction with four anti-PrP antibodies, including several with conformational specificity. Single-molecule real-time gene sequencing was used to quantify enrichment of mutants, returning 26,000 high-quality full-length reads for each screened population on average. Relative enrichment of mutants correlated to the magnitude of the change in binding affinity. Mutations that diminished binding of the antibody ICSM18 represented the core of contact residues in the published crystal structure of its complex. A similarly located binding site was identified for D18, comprising discontinuous residues in helix 1 of PrP, brought into close proximity to one another only when the alpha helix is intact. The specificity of these antibodies for the normal form of PrP likely arises from loss of this conformational feature after conversion to the disease-associated form. Intriguingly, 6H4 binding was found to depend on interaction with the same residues, among others, suggesting that its ability to recognize both forms of PrP depends on a structural rearrangement of the antigen. The application of mutational scanning and deep sequencing provides residue-level resolution of positions in the protein-protein interaction interface that are critical for binding, as well as a quantitative measure of the impact of mutations on binding affinity.
Collapse
Affiliation(s)
- Kyle M Doolan
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - David W Colby
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
42
|
Zhao L, Qu L, Zhou J, Sun Z, Zou H, Chen YY, Marks JD, Zhou Y. High throughput identification of monoclonal antibodies to membrane bound and secreted proteins using yeast and phage display. PLoS One 2014; 9:e111339. [PMID: 25353955 PMCID: PMC4213037 DOI: 10.1371/journal.pone.0111339] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/23/2014] [Indexed: 12/29/2022] Open
Abstract
Antibodies are ubiquitous and essential reagents for biomedical research. Uses of antibodies include quantifying proteins, identifying the temporal and spatial pattern of expression in cells and tissue, and determining how proteins function under normal or pathological conditions. Specific antibodies are only available for a small portion of the proteome, limiting study of those proteins for which antibodies do not exist. The technologies to generate target-specific antibodies need to be improved to obtain high quality antibodies to the proteome at reasonable cost. Here we show that renewable, validated, and standardized monoclonal antibodies can be generated at high throughput, without the need for antigen production or animal immunizations. In this study, 60 protein domains from 24 selected secreted proteins were expressed on the surface of yeast and used for selection of phage antibodies, over 400 monoclonal antibodies were identified within 3 weeks. A subset of these antibodies was validated for binding to cancer cells that overexpress the target protein by flow cytometry or immunohistochemistry. This approach will be applicable to many of the membrane-bound and the secreted proteins, 20–40% of the proteome, accelerating the timeline for Ab generation while reducing the cost.
Collapse
Affiliation(s)
- Lequn Zhao
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco General Hospital, San Francisco, California, United States of America
| | - Liang Qu
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco General Hospital, San Francisco, California, United States of America
| | - Jing Zhou
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco General Hospital, San Francisco, California, United States of America
| | - Zhengda Sun
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco General Hospital, San Francisco, California, United States of America
| | - Hao Zou
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco General Hospital, San Francisco, California, United States of America
| | - Yunn-Yi Chen
- Departments of Pathology & Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - James D. Marks
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco General Hospital, San Francisco, California, United States of America
- * E-mail: (YZ); (JDM)
| | - Yu Zhou
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco General Hospital, San Francisco, California, United States of America
- * E-mail: (YZ); (JDM)
| |
Collapse
|
43
|
Tundidor Y, García-Hernández CP, Pupo A, Cabrera Infante Y, Rojas G. Delineating the functional map of the interaction between nimotuzumab and the epidermal growth factor receptor. MAbs 2014; 6:1013-25. [PMID: 24759767 DOI: 10.4161/mabs.28915] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Molecular details of epidermal growth factor receptor (EGFR) targeting by nimotuzumab, a therapeutic anti-cancer antibody, have been largely unknown. The current study delineated a functional map of their interface, based on phage display and extensive mutagenesis of both the target antigen and the Fv antibody fragment. Five residues in EGFR domain III (R353, S356, F357, T358, and H359T) and the third hypervariable region of nimotuzumab heavy chain were shown to be major functional contributors to the interaction. Fine specificity differences between nimotuzumab and other anti-EGFR antibodies were revealed. Mapping information guided the generation of a plausible in silico binding model. Knowledge about the epitope/paratope interface opens new avenues for the study of tumor sensitivity/resistance to nimotuzumab and for further engineering of its binding site. The developed mapping platform, also validated with the well-known cetuximab epitope, allows a comprehensive exploration of antigenic regions and could be expanded to map other anti-EGFR antibodies.
Collapse
Affiliation(s)
- Yaima Tundidor
- Systems Biology Department; Center of Molecular Immunology; Habana, Cuba
| | | | - Amaury Pupo
- Systems Biology Department; Center of Molecular Immunology; Habana, Cuba
| | | | - Gertrudis Rojas
- Systems Biology Department; Center of Molecular Immunology; Habana, Cuba
| |
Collapse
|
44
|
Forsström B, Axnäs BB, Stengele KP, Bühler J, Albert TJ, Richmond TA, Hu FJ, Nilsson P, Hudson EP, Rockberg J, Uhlen M. Proteome-wide epitope mapping of antibodies using ultra-dense peptide arrays. Mol Cell Proteomics 2014; 13:1585-97. [PMID: 24705123 DOI: 10.1074/mcp.m113.033308] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Antibodies are of importance for the field of proteomics, both as reagents for imaging cells, tissues, and organs and as capturing agents for affinity enrichment in mass-spectrometry-based techniques. It is important to gain basic insights regarding the binding sites (epitopes) of antibodies and potential cross-reactivity to nontarget proteins. Knowledge about an antibody's linear epitopes is also useful in, for instance, developing assays involving the capture of peptides obtained from trypsin cleavage of samples prior to mass spectrometry analysis. Here, we describe, for the first time, the design and use of peptide arrays covering all human proteins for the analysis of antibody specificity, based on parallel in situ photolithic synthesis of a total of 2.1 million overlapping peptides. This has allowed analysis of on- and off-target binding of both monoclonal and polyclonal antibodies, complemented with precise mapping of epitopes based on full amino acid substitution scans. The analysis suggests that linear epitopes are relatively short, confined to five to seven residues, resulting in apparent off-target binding to peptides corresponding to a large number of unrelated human proteins. However, subsequent analysis using recombinant proteins suggests that these linear epitopes have a strict conformational component, thus giving us new insights regarding how antibodies bind to their antigens.
Collapse
Affiliation(s)
- Björn Forsström
- From the ‡Science for Life Laboratory, KTH - Royal Institute of Technology, SE-171 21 Stockholm, Sweden
| | | | | | - Jochen Bühler
- ¶NimbleGen Systems GmbH, Roche, Beuthenerstr. 2, D-84478 Waldkraiburg, Germany
| | - Thomas J Albert
- ‖Nimblegen, Roche Applied Science, 500 S. Rosa Rd., Madison, Wisconsin 53719
| | - Todd A Richmond
- ‖Nimblegen, Roche Applied Science, 500 S. Rosa Rd., Madison, Wisconsin 53719
| | - Francis Jingxin Hu
- §Department of Proteomics, KTH - Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Peter Nilsson
- From the ‡Science for Life Laboratory, KTH - Royal Institute of Technology, SE-171 21 Stockholm, Sweden
| | - Elton P Hudson
- §Department of Proteomics, KTH - Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Johan Rockberg
- §Department of Proteomics, KTH - Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Mathias Uhlen
- From the ‡Science for Life Laboratory, KTH - Royal Institute of Technology, SE-171 21 Stockholm, Sweden; §Department of Proteomics, KTH - Royal Institute of Technology, SE-106 91 Stockholm, Sweden;
| |
Collapse
|
45
|
Abstract
The genotype-phenotype linkage provided by display technologies enables efficient synthesis, analysis, and selection of combinatorial protein libraries. This approach tremendously expands the protein sequence space that can be efficiently evaluated for a selectable function. It thereby provides a key element in identification and directed evolution of novel or improved protein function. Here, yeast surface display is described in the context of selection for binding function. Yeast culture and multiple approaches to magnetic- and fluorescence-based protein selection are presented in detail.
Collapse
Affiliation(s)
- Benjamin J Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities, 356 Amundson Hall, 421 Washington Avenue SE, Minneapolis, MN, 55455, USA,
| |
Collapse
|
46
|
Shembekar N, Mallajosyula VVA, Mishra A, Yeolekar L, Dhere R, Kapre S, Varadarajan R, Gupta SK. Isolation of a high affinity neutralizing monoclonal antibody against 2009 pandemic H1N1 virus that binds at the 'Sa' antigenic site. PLoS One 2013; 8:e55516. [PMID: 23383214 PMCID: PMC3561186 DOI: 10.1371/journal.pone.0055516] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 12/23/2012] [Indexed: 01/02/2023] Open
Abstract
Influenza virus evades host immunity through antigenic drift and shift, and continues to circulate in the human population causing periodic outbreaks including the recent 2009 pandemic. A large segment of the population was potentially susceptible to this novel strain of virus. Historically, monoclonal antibodies (MAbs) have been fundamental tools for diagnosis and epitope mapping of influenza viruses and their importance as an alternate treatment option is also being realized. The current study describes isolation of a high affinity (KD = 2.1±0.4 pM) murine MAb, MA2077 that binds specifically to the hemagglutinin (HA) surface glycoprotein of the pandemic virus. The antibody neutralized the 2009 pandemic H1N1 virus in an in vitro microneutralization assay (IC50 = 0.08 µg/ml). MA2077 also showed hemagglutination inhibition activity (HI titre of 0.50 µg/ml) against the pandemic virus. In a competition ELISA, MA2077 competed with the binding site of the human MAb, 2D1 (isolated from a survivor of the 1918 Spanish flu pandemic) on pandemic H1N1 HA. Epitope mapping studies using yeast cell-surface display of a stable HA1 fragment, wherein ‘Sa’ and ‘Sb’ sites were independently mutated, localized the binding site of MA2077 within the ‘Sa’ antigenic site. These studies will facilitate our understanding of antigen antibody interaction in the context of neutralization of the pandemic influenza virus.
Collapse
Affiliation(s)
- Nachiket Shembekar
- Reproductive Cell Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | | | - Arpita Mishra
- Reproductive Cell Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | | | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
- * E-mail: (RV); (SKG)
| | - Satish Kumar Gupta
- Reproductive Cell Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
- * E-mail: (RV); (SKG)
| |
Collapse
|
47
|
Chang KH, Kim MS, Hong GW, Seo MS, Shin YN, Kim SH. Affinity Maturation of an Epidermal Growth Factor Receptor Targeting Human Monoclonal Antibody ER414 by CDR Mutation. Immune Netw 2012; 12:155-64. [PMID: 23091439 PMCID: PMC3467414 DOI: 10.4110/in.2012.12.4.155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 08/09/2012] [Accepted: 08/14/2012] [Indexed: 01/09/2023] Open
Abstract
It is well established that blocking the interaction of EGFR with growth factors leads to the arrest of tumor growth, resulting in tumor cell death. ER414 is a human monoclonal antibody (mAb) derived by guided selection of the mouse mAb A13. The ER414 exhibited a ~17-fold lower affinity and, as a result, lower efficacy of inhibition of the EGF-mediated tyrosine phosphorylation of EGFR when compared with mAb A13 and cetuximab. We performed a stepwise in vitro affinity maturation to improve the affinity of ER414. We obtained a 3D model of ER414 to identify the amino acids in the CDRs that needed to be mutated. Clones were selected from the phage library with randomized amino acids in the CDRs and substitution of amino acids in the HCDR3 and LCDR1 of ER414 led to improved affinity. A clone, H3-14, with a ~20-fold increased affinity, was selected from the HCDR3 randomized library. Then three clones, ER2, ER78 and ER79, were selected from the LCDR1 randomized library based on the H3-14 but did not show further increased affinities compared to that of H3-14. Of the three, ER2 was chosen for further characterization due to its better expression than others. We successfully performed affinity maturation of ER414 and obtained antibodies with a similar affinity as cetuximab. And antibody from an affinity maturation inhibits the EGF-mediated tyrosine phosphorylation of EGFR in a manner similar to cetuximab.
Collapse
Affiliation(s)
- Ki-Hwan Chang
- Antibody Engineering Lab., Green Cross Research Center, Green Cross Corp., Yongin 446-770, Korea
| | | | | | | | | | | |
Collapse
|
48
|
Gera N, Hussain M, Rao BM. Protein selection using yeast surface display. Methods 2012; 60:15-26. [PMID: 22465794 DOI: 10.1016/j.ymeth.2012.03.014] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 03/09/2012] [Indexed: 12/16/2022] Open
Abstract
Binding proteins are typically isolated from combinatorial libraries of scaffold proteins using one of the many library screening tools available, such as phage display, yeast surface display or mRNA display. A key principle underlying these screening technologies is the establishment of a link between each unique mutant protein and its corresponding genetic code. The mutant proteins binding a desired target species are separated and subsequently identified using the genetic code. In this review, we largely focus on the use of yeast surface display for the isolation of binding proteins from combinatorial libraries. In yeast surface display, the yeast cell links the mutant protein to its coding DNA. Each yeast cell expresses the mutant proteins as fusions to a yeast cell wall protein; the yeast cell also carries plasmid DNA that codes for the mutant protein. Over the years, the yeast surface display platform has emerged as a powerful tool for protein engineering, and has been used in a variety of applications including affinity maturation, epitope mapping and biophysical characterization of proteins. Here we present a broad overview of the yeast surface display system and its applications, and compare it with other contemporary screening platforms. Further, we present detailed protocols for the use of yeast surface display to isolate de novo binding proteins from combinatorial libraries, and subsequent biophysical characterization of binders. These protocols can also be easily modified for affinity maturation of the isolated de novo binders.
Collapse
Affiliation(s)
- Nimish Gera
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | | | | |
Collapse
|
49
|
Zhou Y, Marks JD. Discovery of internalizing antibodies to tumor antigens from phage libraries. Methods Enzymol 2012; 502:43-66. [PMID: 22208981 DOI: 10.1016/b978-0-12-416039-2.00003-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Phage antibody technology can be used to generate human antibodies to essentially any antigen. Many therapeutic target antigens are cell surface receptors, which can be challenging targets for antibody generation. In addition, for many therapeutic applications, one needs antibodies that not only bind the cell surface receptor but also are internalized into the cell upon binding. This allows use of the antibody to deliver a range of payloads into the cell to achieve a therapeutic effect. In this chapter, we describe how human phage antibody libraries can be selected directly on tumor cell lines to generate antibodies that bind cell surface receptors and which upon binding are rapidly internalized into the cell. Specific protocols show how to (1) directly select cell binding and internalizing antibodies from human phage antibody libraries, (2) screen the phage antibodies in a high-throughput flow cytometry assay for binding to the tumor cell line used for selection, (3) identify the antigen bound by the phage antibody using immunoprecipitation and mass spectrometry, and (4) direct cell binding and internalizing selections to a specific tumor antigen by sequential selection on a tumor cell line followed by selection on yeast displaying the target tumor antigen on the yeast surface.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, California, USA
| | | |
Collapse
|
50
|
Hackel BJ, Neil JR, White FM, Wittrup KD. Epidermal growth factor receptor downregulation by small heterodimeric binding proteins. Protein Eng Des Sel 2011; 25:47-57. [PMID: 22160867 DOI: 10.1093/protein/gzr056] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
No single engineered protein has been shown previously to robustly downregulate epidermal growth factor receptor (EGFR), a validated cancer target. A panel of fibronectin-based domains was engineered to bind with picomolar to nanomolar affinity to multiple epitopes of EGFR. Monovalent and homo- and hetero-bivalent dimers of these domains were tested for EGFR downregulation. Selected orientations of non-competitive heterodimers decrease EGFR levels by up to 80% in multiple cell types, without activating receptor signaling. These heterodimers inhibit autophosphorylation, proliferation and migration, and are synergistic with the monoclonal antibody cetuximab in these activities. These small (25 kDa) heterodimers represent a novel modality for modulating surface receptor levels.
Collapse
Affiliation(s)
- Benjamin J Hackel
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|