1
|
Kuang Y, Shen P, Ye J, Raj R, Ge H, Yu B, Zhang J. Probing the interactions of genistein with HMGB1 through multi-spectroscopic and in-silico approaches. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125385. [PMID: 39522225 DOI: 10.1016/j.saa.2024.125385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 10/07/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Functional regulation of proteins by ligand-protein interactions plays a crucial role in understanding biological processes and identifying potential drugs. High mobility group box 1 (HMGB1) plays a pivotal role in sterile inflammation as a key immunomodulatory protein. Genistein, a well-known isoflavone compound, has been shown to have neuroprotective effects. In this study, we investigated the genistein-HMGB1 interactions using experimental and computational approaches. Our results revealed that genistein binds to HMGB1 with a KD value of 6.06 × 10-5 M. The addition of genistein significantly quenched the fluorescence of HMGB1. Thermodynamic analyses demonstrated that hydrogen bonds and hydrophobic forces are the primary forces during the binding process. Furthermore, the interaction between genistein and HMGB1 led to changes in the microenvironment of protein chromogenic amino acids and subtle alterations in the protein secondary structure. Molecular modeling results indicate that Pro95, Pro98, and Lys154 are the major amino acid residues for genistein binding to HMGB1. Meanwhile, at the cellular level, an inhibitory effect of genistein on HMGB1-induced NO release from microglia was observed, demonstrating an inhibition rate of 42.1 %. Our studies demonstrated that genistein could be applied in treating neurological diseases through its interaction with HMGB1.
Collapse
Affiliation(s)
- Yi Kuang
- Department of Traditional Chinese Medicine Resources, Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Pingping Shen
- Department of Traditional Chinese Medicine Resources, Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Junyi Ye
- Department of Traditional Chinese Medicine Resources, Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Richa Raj
- Department of Traditional Chinese Medicine Resources, Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Haixia Ge
- School of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Boyang Yu
- Department of Traditional Chinese Medicine Resources, Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Jian Zhang
- Department of Traditional Chinese Medicine Resources, Jiangsu Provincial Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
2
|
Li H, Sun W, Huang Y, Li Q, Tian H, Hao Z, Huo Y. Selection and Characterization of a DNA Aptamer Recognizing High Mobility Group Box 1 Protein (HMGB1) and Enhancing Its Pro-inflammatory Activity. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2024; 23:e147246. [PMID: 39830661 PMCID: PMC11742385 DOI: 10.5812/ijpr-147246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/09/2024] [Accepted: 06/22/2024] [Indexed: 01/22/2025]
Abstract
Background High mobility group box 1 (HMGB1) plays an essential role in various pathological conditions, including inflammation, fibrosis, autoimmune diseases, and carcinogenesis. The quantification of HMGB1 in body fluids holds promise for clinical applications. Objectives This study aimed to isolate high-affinity single-stranded DNA (ssDNA) aptamers that target HMGB1. Methods In this study, ssDNA aptamers were selected using Systematic Evolution of Ligands by Exponential Enrichment (SELEX). The affinity and specificity of the aptamers were evaluated through South-Western blot analysis, enzyme-linked aptamer sorbent assay (ELASA), and aptamer-based histochemistry staining. The impact of the aptamers on the biological activity of HMGB1 was tested in the human acute monocytic leukemia cell line, THP-1. Results An aptamer (H-ap25, dissociation constant = 8.20 ± 0.53 nmol/L) with high affinity for the HMGB1 B box was generated. Further experiments verified that H-ap25 can be used to detect HMGB1 in South-Western blot analysis, ELASA, and aptamer-based histochemistry staining. Moreover, H-ap25 significantly augmented HMGB1-induced expression of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, Toll-like receptor 9 (TLR9), and activation of NF-κB in THP-1 cells. Conclusions Our results demonstrated that H-ap25 can be used both as an enhancer of HMGB1 and as a probe in research.
Collapse
Affiliation(s)
- Hanchao Li
- Department of Rheumatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, The People’s Republic of China
| | - Wengang Sun
- Department of Rheumatology, Weihai Central Hospital, Weihai, Shandong Province, The People’s Republic of China
| | - Yanhua Huang
- Department of Gastroenterology, Affiliated Haimen Hospital of Xinglin College, Nantong University, Nantong, Jiangsu Province, The People’s Republic of China
| | - Qian Li
- Department of Rheumatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, The People’s Republic of China
| | - Hong Tian
- Department of Anatomy, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi Province, The People’s Republic of China
| | - Zhiming Hao
- Department of Rheumatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, The People’s Republic of China
| | - Yongwei Huo
- Department of Anatomy, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi Province, The People’s Republic of China
| |
Collapse
|
3
|
Oxidative Stress and High-Mobility Group Box 1 Assay in Dogs with Gastrointestinal Parasites. Antioxidants (Basel) 2022; 11:antiox11091679. [PMID: 36139753 PMCID: PMC9495929 DOI: 10.3390/antiox11091679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
This study aimed to evaluate the concentration of reactive oxidative metabolites, the antioxidant barrier, thiol groups of plasma compounds, and high-mobility group box 1 in shelter dogs naturally infected with helminths. In addition, the correlation between clinical signs and oxidative stress was investigated. Sixty-six (41 male and 25 female) adult mixed-breed dogs housed in a shelter with the diagnosis of gastrointestinal nematodes (i.e., Ancylostoma spp., Uncinaria stenocephala, Toxocara canis, Toxascaris leonina, or Trichuris vulpis) were enrolled in Group 1 (G1) and twenty healthy adult dogs were included in Group 2 (G2), which served as the control. A clinical assessment was performed using a physician-based scoring system. Oxidative stress variables and high-mobility group box 1 were assessed and compared by the means of unpaired t-tests (p < 0.05). Spearman’s rank correlation was performed to calculate the correlation between oxidative stress variables, high-mobility group box 1, hematological parameters, and clinical signs. The results showed statistically significant values for reactive oxidative metabolites, thiol groups of plasma compounds, and high-mobility group box 1 in G1. Negative correlations between thiol groups and the number of red cells and hemoglobin were recorded. These preliminary results support the potential role of oxidative stress and HGMB-1 in the pathogenesis of gastrointestinal helminthiasis in dogs.
Collapse
|
4
|
Borde C, Dillard C, L’Honoré A, Quignon F, Hamon M, Marchand CH, Faccion RS, Costa MGS, Pramil E, Larsen AK, Sabbah M, Lemaire SD, Maréchal V, Escargueil AE. The C-Terminal Acidic Tail Modulates the Anticancer Properties of HMGB1. Int J Mol Sci 2022; 23:ijms23147865. [PMID: 35887213 PMCID: PMC9319070 DOI: 10.3390/ijms23147865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023] Open
Abstract
Energy metabolism reprogramming was recently listed as a hallmark of cancer. In this process, the switch from pyruvate kinase isoenzyme type M1 to pyruvate kinase isoenzyme type M2 (PKM2) is believed to play a crucial role. Interestingly, the activity of the active form of PKM2 can efficiently be inhibited by the high-mobility group box 1 (HMGB1) protein, leading to a rapid blockage of glucose-dependent aerobic respiration and cancer cell death. HMGB1 is a member of the HMG protein family. It contains two DNA-binding HMG-box domains and an acidic C-terminal tail capable of positively or negatively modulating its biological properties. In this work, we report that the deletion of the C-terminal tail of HMGB1 increases its activity towards a large panel of cancer cells without affecting the viability of normal immortalized fibroblasts. Moreover, in silico analysis suggests that the truncated form of HMGB1 retains the capacity of the full-length protein to interact with PKM2. However, based on the capacity of the cells to circumvent oxidative phosphorylation inhibition, we were able to identify either a cytotoxic or cytostatic effect of the proteins. Together, our study provides new insights in the characterization of the anticancer activity of HMGB1.
Collapse
Affiliation(s)
- Chloé Borde
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM) U938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; (C.B.); (C.D.); (R.S.F.); (E.P.); (A.K.L.); (M.S.)
| | - Clémentine Dillard
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM) U938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; (C.B.); (C.D.); (R.S.F.); (E.P.); (A.K.L.); (M.S.)
| | - Aurore L’Honoré
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), INSERM, Institut de Biologie Paris-Seine, Biological Adaptation and Aging, B2A-IBPS, F-75005 Paris, France;
| | - Frédérique Quignon
- Sorbonne Université, CNRS UMR 144, Institut Curie Centre de Recherche, F-75248 Paris, France;
| | - Marion Hamon
- Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Physico-Chimique, Plateforme de Protéomique, FR550, F-75005 Paris, France; (M.H.); (C.H.M.)
| | - Christophe H. Marchand
- Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Physico-Chimique, Plateforme de Protéomique, FR550, F-75005 Paris, France; (M.H.); (C.H.M.)
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Paris-Seine, UMR7238, Laboratory of Computational and Quantitative Biology, F-75005 Paris, France;
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Physico-Chimique, UMR8226, F-75005 Paris, France
| | - Roberta Soares Faccion
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM) U938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; (C.B.); (C.D.); (R.S.F.); (E.P.); (A.K.L.); (M.S.)
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Hospital do Câncer I, Centro de Pesquisas do Instituto Nacional de Câncer José Alencar Gomes da Silva (INCA), Praça da Cruz Vermelha 23/6° andar, Rio de Janeiro 20230-130, Brazil
| | - Maurício G. S. Costa
- Fundação Oswaldo Cruz, Programa de Computação Científica, Vice-Presidência de Educação, Informação e Comunicação, Av. Brasil 4365, Manguinhos, Rio de Janeiro 21040-900, Brazil;
| | - Elodie Pramil
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM) U938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; (C.B.); (C.D.); (R.S.F.); (E.P.); (A.K.L.); (M.S.)
- Alliance for Research in Cancerology-APREC, Tenon Hospital, F-75020 Paris, France
| | - Annette K. Larsen
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM) U938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; (C.B.); (C.D.); (R.S.F.); (E.P.); (A.K.L.); (M.S.)
| | - Michèle Sabbah
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM) U938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; (C.B.); (C.D.); (R.S.F.); (E.P.); (A.K.L.); (M.S.)
| | - Stéphane D. Lemaire
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Paris-Seine, UMR7238, Laboratory of Computational and Quantitative Biology, F-75005 Paris, France;
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Physico-Chimique, UMR8226, F-75005 Paris, France
| | - Vincent Maréchal
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM) U938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; (C.B.); (C.D.); (R.S.F.); (E.P.); (A.K.L.); (M.S.)
- Correspondence: (V.M.); (A.E.E.); Tel.: +33-(0)-1-44-27-31-53 (V.M.); +33-(0)-1-49-28-46-44 (A.E.E.)
| | - Alexandre E. Escargueil
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM) U938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; (C.B.); (C.D.); (R.S.F.); (E.P.); (A.K.L.); (M.S.)
- Correspondence: (V.M.); (A.E.E.); Tel.: +33-(0)-1-44-27-31-53 (V.M.); +33-(0)-1-49-28-46-44 (A.E.E.)
| |
Collapse
|
5
|
CgHMGB1 functions as a broad-spectrum recognition molecule to induce the expressions of CgIL17-5 and Cgdefh2 via MAPK or NF-κB signaling pathway in Crassostrea gigas. Int J Biol Macromol 2022; 211:289-300. [PMID: 35525493 DOI: 10.1016/j.ijbiomac.2022.04.166] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 01/03/2023]
Abstract
High-mobility group box 1 (HMGB1), a highly conserved nucleoprotein, functions in immune recognition, inflammation and antibacterial immunization in vertebrates. In the present study, the mediation mechanism of CgHMGB1 in activating MAPK and NF-κB/Rel signaling pathways to induce the expressions of immune effectors was investigated. CgHMGB1 mRNA was detected in all tested developmental stages from fertilized egg to D-larvae, with the higher expressions in 4-cell and 8-cell stages. CgHMGB1 proteins were mainly distributed in haemocyte granulocytes. The expressions of CgHMGB1 mRNA in haemocytes increased significantly after Vibrio splendidus stimulation, and CgHMGB1 protein translocated into the haemocyte cytoplasm and release into cell-free haemolymph. The phosphorylation of CgERK and CgP38 were induced, the nuclear translocation of CgRel were promoted, and the mRNA expressions of CgIL17-5 and Cgdefh2 increased significantly after rCgHMGB1 treatment. Obvious branchial swelling and cilium shedding were observed after rCgHMGB1 treatment. rCgHMGB1 exhibited binding activity to different polysaccharides, bacteria, and fungi. rCgHMGB1 also displayed obvious antibacterial activity to V. splendidus and E. coli. These results indicated that CgHMGB1 functioned as an immune recognition molecule to recognize various PAMPs and bacteria to induce the mRNA expressions of CgIL17-5 and Cgdefh2 via the activation of MAPK and NF-κB signaling pathways in oysters.
Collapse
|
6
|
Abdelmageed ME, Nader MA, Zaghloul MS. Targeting HMGB1/TLR4/NF-κB signaling pathway by protocatechuic acid protects against l-arginine induced acute pancreatitis and multiple organs injury in rats. Eur J Pharmacol 2021; 906:174279. [PMID: 34197778 DOI: 10.1016/j.ejphar.2021.174279] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/16/2022]
Abstract
Acute pancreatitis (AP) is a common pancreatic inflammation associated with substantial morbidity and mortality. AP may be mild or severe which can spread systemically causing multiple organs failure (MOF) and even death. In the current study, protocatechuic acid (PCA), a natural phenolic acid, was investigated for its possible protective potential against L-arginine induced AP and multiple organs injury (MOI) in rats. AP was induced by L-arginine (500 mg/100 g, ip). Two dose levels of PCA were tested (50 and 100 mg/kg, oral, 10 days before L-arginine injection). PCA successfully protected against L-arginine induced AP and MOI that was manifested by normalizing pancreatic, hepatic, pulmonary, and renal tissue architecture and restoring the normal values of pancreatic enzymes (amylase and lipase), serum total protein, liver enzymes (alanine transaminase (ALT) and aspartate transaminase (AST)) and kidney function biomarkers (blood urea nitrogen (BUN) and serum creatinine (Cr)) that were significantly elevated upon L-arginine administration. Additionally, PCA restored balanced oxidant/antioxidants status that was disrupted by L-arginine and normalized pancreatic levels of inducible nitric oxide synthase (iNOS) and nitric oxide (NO) content. Moreover, PCA significantly decreased L-arginine induced elevation in pancreatic high motility group box protein 1 (HMGB1), toll like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), nuclear factor kappa B (NF-κB), tumor necrosis factor- α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) expression. PCA significantly ameliorated L-arginine-induced AP and MOI through its anti-inflammatory and antioxidant effects. HMGB1/TLR4/NF-κB was the major pathway involved in the observed protective potential.
Collapse
Affiliation(s)
- Marwa E Abdelmageed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Manar A Nader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Marwa S Zaghloul
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
7
|
Yang H, Lundbäck P, Ottosson L, Erlandsson-Harris H, Venereau E, Bianchi ME, Al-Abed Y, Andersson U, Tracey KJ. Redox modifications of cysteine residues regulate the cytokine activity of HMGB1. Mol Med 2021; 27:58. [PMID: 34098868 PMCID: PMC8185929 DOI: 10.1186/s10020-021-00307-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/28/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND High mobility group box 1 (HMGB1) is a nuclear protein with extracellular inflammatory cytokine activity. It is passively released during cell death and secreted by activated cells of many lineages. HMGB1 contains three conserved redox-sensitive cysteine residues: cysteines in position 23 and 45 (C23 and C45) can form an intramolecular disulfide bond, whereas C106 is unpaired and is essential for the interaction with Toll-Like Receptor (TLR) 4. However, a comprehensive characterization of the dynamic redox states of each cysteine residue and of their impacts on innate immune responses is lacking. METHODS Primary human macrophages or murine macrophage-like RAW 264.7 cells were activated in cell cultures by redox-modified or point-mutated (C45A) recombinant HMGB1 preparations or by lipopolysaccharide (E. coli.0111: B4). Cellular phosphorylated NF-κB p65 subunit and subsequent TNF-α release were quantified by commercial enzyme-linked immunosorbent assays. RESULTS Cell cultures with primary human macrophages and RAW 264.7 cells demonstrated that fully reduced HMGB1 with all three cysteines expressing thiol side chains failed to generate phosphorylated NF-КB p65 subunit or TNF-α. Mild oxidation forming a C23-C45 disulfide bond, while leaving C106 with a thiol group, was required for HMGB1 to induce phosphorylated NF-КB p65 subunit and TNF-α production. The importance of a C23-C45 disulfide bond was confirmed by mutation of C45 to C45A HMGB1, which abolished the ability for cytokine induction. Further oxidation of the disulfide isoform also inactivated HMGB1. CONCLUSIONS These results reveal critical post-translational redox mechanisms that control the proinflammatory activity of HMGB1 and its inactivation during inflammation.
Collapse
Affiliation(s)
- Huan Yang
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY, USA.
| | - Peter Lundbäck
- Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Ottosson
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Helena Erlandsson-Harris
- Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | - Marco E Bianchi
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Genetics and Cell Biology, Chromatin Dynamics Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Yousef Al-Abed
- Center for Molecular Innovation, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Ulf Andersson
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.
| | - Kevin J Tracey
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| |
Collapse
|
8
|
Emergence of antibodies endowed with proteolytic activity against High-mobility group box 1 protein (HMGB1) in patients surviving septic shock. Cell Immunol 2019; 347:104020. [PMID: 31767118 DOI: 10.1016/j.cellimm.2019.104020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/29/2019] [Accepted: 11/14/2019] [Indexed: 12/24/2022]
Abstract
High-mobility group box 1 (HMGB1) concentration in serum or plasma has been proposed as an important biological marker in various inflammation-related pathologies. We previously showed that low titer autoantibodies against HMGB1 could emerge during the course of sepsis. Importantly their presence was positively related with patients' survival. In this study, we focused on plasma samples from 2 patients who survived sepsis and exhibited high titer antibodies to HMGB1. These antibodies were proved to be specific for HMGB1 since they did not bind to HMGB2 or to human serum albumin. Following IgG purification, it has shown that both patients secreted HMGB1-hydrolyzing autoantibodies in vitro. These findings suggested that proteolytic antibodies directed against HMGB1 can be produced in patients surviving septic shock.
Collapse
|
9
|
Paudel YN, Angelopoulou E, Piperi C, Balasubramaniam VR, Othman I, Shaikh MF. Enlightening the role of high mobility group box 1 (HMGB1) in inflammation: Updates on receptor signalling. Eur J Pharmacol 2019; 858:172487. [DOI: 10.1016/j.ejphar.2019.172487] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 12/17/2022]
|
10
|
Zhao J, Sun T, Wu S, Liu Y. High Mobility Group Box 1: An Immune-regulatory Protein. Curr Gene Ther 2019; 19:100-109. [PMID: 31223085 DOI: 10.2174/1566523219666190621111604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/28/2019] [Accepted: 06/03/2019] [Indexed: 12/26/2022]
Abstract
High mobility group box 1 (HMGB1) presents in almost all somatic cells as a component of the cell nucleus. It is necessary for transcription regulation during cell development. Recent studies indicate that extracellular HMGB1, coming from necrotic cells or activated immune cells, triggers inflammatory response whereas intracellular HMGB1 controls the balance between autophagy and apoptosis. In addition, reduced HMGB1 can effectively mediate tissue regeneration. HMGB1, therefore, is regarded as a therapeutic target for inflammatory diseases. In this review, we summarized and discussed the immunomodulatory effect of HMGB1.
Collapse
Affiliation(s)
- Jingjing Zhao
- Department of Intensive Care Medicine, Hefei No. 2 People Hospital, Hefei 230000, China
| | - Tianle Sun
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215000, China
| | - Shengdi Wu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yufeng Liu
- Department of Nursing, General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
11
|
High Mobility Group Box 1 Mediates TMAO-Induced Endothelial Dysfunction. Int J Mol Sci 2019; 20:ijms20143570. [PMID: 31336567 PMCID: PMC6678463 DOI: 10.3390/ijms20143570] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/22/2022] Open
Abstract
The intestinal microbe-derived metabolite trimethylamine N-oxide (TMAO) is implicated in the pathogenesis of cardiovascular diseases (CVDs). The molecular mechanisms of how TMAO induces atherosclerosis and CVDs’ progression are still unclear. In this regard, high-mobility group box protein 1 (HMGB1), an inflammatory mediator, has been reported to disrupt cell–cell junctions, resulting in vascular endothelial hyper permeability leading to endothelial dysfunction. The present study tested whether TMAO associated endothelial dysfunction results via HMGB1 activation. Biochemical and RT-PCR analysis showed that TMAO increased the HMGB1 expression in a dose-dependent manner in endothelial cells. However, prior treatment with glycyrrhizin, an HMGB1 binder, abolished the TMAO-induced HMGB1 production in endothelial cells. Furthermore, Western blot and immunofluorescent analysis showed significant decrease in the expression of cell–cell junction proteins ZO-2, Occludin, and VE-cadherin in TMAO treated endothelial cells compared with control cells. However, prior treatment with glycyrrhizin attenuated the TMAO-induced cell–cell junction proteins’ disruption. TMAO increased toll-like receptor 4 (TLR4) expression in endothelial cells. Inhibition of TLR4 expression by TLR4 siRNA protected the endothelial cells from TMAO associated tight junction protein disruption via HMGB1. In conclusion, our results demonstrate that HMGB1 is one of the important mediators of TMAO-induced endothelial dysfunction.
Collapse
|
12
|
Yang H, Liu H, Zeng Q, Imperato GH, Addorisio ME, Li J, He M, Cheng KF, Al-Abed Y, Harris HE, Chavan SS, Andersson U, Tracey KJ. Inhibition of HMGB1/RAGE-mediated endocytosis by HMGB1 antagonist box A, anti-HMGB1 antibodies, and cholinergic agonists suppresses inflammation. Mol Med 2019; 25:13. [PMID: 30975096 PMCID: PMC6460792 DOI: 10.1186/s10020-019-0081-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/21/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Extracellular high mobility group box 1 protein (HMGB1) serves a central role in inflammation as a transporter protein, which binds other immune-activating molecules that are endocytosed via the receptor for advanced glycation end-products (RAGE). These pro-inflammatory complexes are targeted to the endolysosomal compartment, where HMGB1 permeabilizes the lysosomes. This enables HMGB1-partner molecules to avoid degradation, to leak into the cytosol, and to reach cognate immune-activating sensors. Lipopolysaccharide (LPS) requires this pathway to generate pyroptosis by accessing its key cytosolic receptors, murine caspase 11, or the human caspases 4 and 5. This lytic, pro-inflammatory cell death plays a fundamental pathogenic role in gram-negative sepsis. The aim of the study was to identify molecules inhibiting HMGB1 or HMGB1/LPS cellular internalization. METHODS Endocytosis was studied in cultured macrophages using Alexa Fluor-labeled HMGB1 or complexes of HMGB1 and Alexa Fluor-labeled LPS in the presence of an anti-HMGB1 monoclonal antibody (mAb), recombinant HMGB1 box A protein, acetylcholine, the nicotinic acetylcholine receptor subtype alpha 7 (α7 nAChR) agonist GTS-21, or a dynamin-specific inhibitor of endocytosis. Images were obtained by fluorescence microscopy and quantified by the ImageJ processing program (NIH). Data were analyzed using student's t test or one-way ANOVA followed by the least significant difference or Tukey's tests. RESULTS Anti-HMGB1 mAb, recombinant HMGB1 antagonist box A protein, acetylcholine, GTS-21, and the dynamin-specific inhibitor of endocytosis inhibited internalization of HMGB1 or HMGB1-LPS complexes in cultured macrophages. These agents prevented macrophage activation in response to HMGB1 and/or HMGB1-LPS complexes. CONCLUSION These results demonstrate that therapies based on HMGB1 antagonists and the cholinergic anti-inflammatory pathway share a previously unrecognized molecular mechanism of substantial clinical relevance.
Collapse
Affiliation(s)
- Huan Yang
- Center for Biomedical Science The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030 USA
| | - Hui Liu
- Center for Biomedical Science The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030 USA
| | - Qiong Zeng
- Center for Biomedical Science The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030 USA
| | - Gavin H. Imperato
- Center for Biomedical Science The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030 USA
| | - Meghan E. Addorisio
- Center for Biomedical Science The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030 USA
| | - Jianhua Li
- Center for Biomedical Science The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030 USA
| | - Mingzhu He
- Center for Molecular Innovation, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030 USA
| | - Kai Fan Cheng
- Center for Molecular Innovation, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030 USA
| | - Yousef Al-Abed
- Center for Bioelectronic Medicine, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030 USA
- Elmezzi Graduate School of Molecular Medicine, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
- Center for Molecular Innovation, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030 USA
| | - Helena E. Harris
- Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institute, 17176 Stockholm, Sweden
| | - Sangeeta S. Chavan
- Center for Biomedical Science The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030 USA
- Center for Bioelectronic Medicine, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030 USA
- Elmezzi Graduate School of Molecular Medicine, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Ulf Andersson
- Department of Women’s and Children’s Health, Karolinska Institute, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Kevin J. Tracey
- Center for Biomedical Science The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030 USA
- Center for Bioelectronic Medicine, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030 USA
- Elmezzi Graduate School of Molecular Medicine, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| |
Collapse
|
13
|
Sun S, He M, VanPatten S, Al-Abed Y. Mechanistic insights into high mobility group box-1 (HMGb1)-induced Toll-like receptor 4 (TLR4) dimer formation. J Biomol Struct Dyn 2018; 37:3721-3730. [PMID: 30238832 DOI: 10.1080/07391102.2018.1526712] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Supplemental data for this article can be accessed here.High mobility group box-1 (HMGb1), an endogenous danger-associated molecular pattern protein (DAMP) whose extracellular release has been associated with sterile injury and various inflammatory diseases and conditions, has been shown to be a valuable clinical drug target. Elucidation of the specific interactions with the HMGb1 receptor, Toll-like receptor 4 (TLR4) and adaptor protein myeloid differentiation factor-2 (MD-2), will lead to more precisely targeted therapeutics. We sought to examine detailed interactions and dynamics of the HMGb1 A-box and B-box fragments, as well as the intact protein using in silico protein-protein docking (ZDOCK, ZRANK) and molecular dynamics (Schrödinger Desmond, New York, NY). Mutagenesis and SPR-binding studies allowed us to draw further conclusions regarding the details of the HMGb1-TLR4-MD2 interaction and shed light on the reasons for the opposing biological activities of HMGb1 A-box and B-box fragments. From our findings, we hypothesize that disulfide A-box fragment binds as an anchor toward the TLR4-MD-2 but does not facilitate the TLR4 dimer formation, thereby competing with the HMGb1-binding site and preventing HMGb1-induced signaling and downstream inflammation, whereas the pro-inflammatory B-box fragment retains the MD-2 active conformation and binds to both TLR4 proteins in the complex to aid TLR4 dimer formation, which activates the intracellular signaling for downstream inflammatory pathways and cytokine release. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shan Sun
- a Center for Molecular Innovation , The Feinstein Institute for Medical Research , Manhasset , NY 11030 , USA
| | - Mingzhu He
- a Center for Molecular Innovation , The Feinstein Institute for Medical Research , Manhasset , NY 11030 , USA
| | - Sonya VanPatten
- a Center for Molecular Innovation , The Feinstein Institute for Medical Research , Manhasset , NY 11030 , USA
| | - Yousef Al-Abed
- a Center for Molecular Innovation , The Feinstein Institute for Medical Research , Manhasset , NY 11030 , USA
| |
Collapse
|
14
|
Rayavara K, Kurosky A, Stafford SJ, Garg NJ, Brasier AR, Garofalo RP, Hosakote YM. Proinflammatory Effects of Respiratory Syncytial Virus-Induced Epithelial HMGB1 on Human Innate Immune Cell Activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:2753-2766. [PMID: 30275049 PMCID: PMC6200588 DOI: 10.4049/jimmunol.1800558] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/29/2018] [Indexed: 01/21/2023]
Abstract
High mobility group box 1 (HMGB1) is a multifunctional nuclear protein that translocates to the cytoplasm and is subsequently released to the extracellular space during infection and injury. Once released, it acts as a damage-associated molecular pattern and regulates immune and inflammatory responses. Respiratory syncytial virus (RSV) is a major cause of acute lower respiratory tract infections in infants and elderly, for which no effective treatment or vaccine is currently available. This study investigated the effects of HMGB1 on cytokine secretion, as well as the involvement of NF-κB and TLR4 pathways in RSV-induced HMGB1 release in human airway epithelial cells (AECs) and its proinflammatory effects on several human primary immune cells. Purified HMGB1 was incubated with AECs (A549 and small alveolar epithelial cells) and various immune cells and measured the release of proinflammatory mediators and the activation of NF-κB and P38 MAPK. HMGB1 treatment significantly increased the phosphorylation of NF-κB and P38 MAPK but did not induce the release of cytokines/chemokines from AECs. However, addition of HMGB1 to immune cells did significantly induce the release of cytokines/chemokines and activated the NF-κB and P38 MAPK pathways. We found that activation of NF-κB accounted for RSV-induced HMGB1 secretion in AECs in a TLR4-dependent manner. These results indicated that HMGB1 secreted from AECs can facilitate the secretion of proinflammatory mediators from immune cells in a paracrine mechanism, thus promoting the inflammatory response that contributes to RSV pathogenesis. Therefore, blocking the proinflammatory function of HMGB1 may be an effective approach for developing novel therapeutics.
Collapse
Affiliation(s)
- Kempaiah Rayavara
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555
| | - Alexander Kurosky
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555
| | - Susan J Stafford
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555
| | - Nisha J Garg
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555
| | - Allan R Brasier
- Division of Endocrinology, Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 77555
- Institute for Translational Sciences, The University of Texas Medical Branch, Galveston, TX 77555
| | - Roberto P Garofalo
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77555; and
- Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, TX 77555
| | - Yashoda M Hosakote
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555;
- Institute for Translational Sciences, The University of Texas Medical Branch, Galveston, TX 77555
| |
Collapse
|
15
|
Vicentino ARR, Carneiro VC, Allonso D, Guilherme RDF, Benjamim CF, Dos Santos HAM, Xavier F, Pyrrho ADS, Gomes JDAS, Fonseca MDC, de Oliveira RC, Pereira TA, Ladislau L, Lambertucci JR, Fantappié MR. Emerging Role of HMGB1 in the Pathogenesis of Schistosomiasis Liver Fibrosis. Front Immunol 2018; 9:1979. [PMID: 30258438 PMCID: PMC6143665 DOI: 10.3389/fimmu.2018.01979] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/13/2018] [Indexed: 12/11/2022] Open
Abstract
In chronic schistosomiasis, liver fibrosis is linked to portal hypertension, which is a condition associated with high mortality and morbidity. High mobility group box 1 (HMGB1) was originally described as a nuclear protein that functions as a structural co-factor in transcriptional regulation. However, HMGB1 can also be secreted into the extracellular milieu under appropriate signal stimulation. Extracellular HMGB1 acts as a multifunctional cytokine that contributes to infection, injury, inflammation, and immune responses by binding to specific cell-surface receptors. HMGB1 is involved in fibrotic diseases. From a clinical perspective, HMGB1 inhibition may represent a promising therapeutic approach for treating tissue fibrosis. In this study, we demonstrate elevated levels of HMGB1 in the sera in experimental mice or in patients with schistosomiasis. Using immunohistochemistry, we demonstrated that HMGB1 trafficking in the hepatocytes of mice suffering from acute schistosomiasis was inhibited by Glycyrrhizin, a well-known HMGB1 direct inhibitor, as well as by DIC, a novel and potential anti-HMGB1 compound. HMGB1 inhibition led to significant downregulation of IL-6, IL4, IL-5, IL-13, IL-17A, which are involved in the exacerbation of the immune response and liver fibrogenesis. Importantly, infected mice that were treated with DIC or GZR to inhibit HMGB1 pro-inflammatory activity showed a significant increase in survival and a reduction of over 50% in the area of liver fibrosis. Taken together, our findings indicate that HMGB1 is a key mediator of schistosomotic granuloma formation and liver fibrosis and may represent an outstanding target for the treatment of schistosomiasis.
Collapse
Affiliation(s)
- Amanda R R Vicentino
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vitor C Carneiro
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diego Allonso
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael de Freitas Guilherme
- Departamento de Farmacologia Básica e Clínica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia F Benjamim
- Departamento de Farmacologia Básica e Clínica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hílton A M Dos Santos
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabíola Xavier
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Dos Santos Pyrrho
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana de Assis Silva Gomes
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Thiago A Pereira
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Leandro Ladislau
- Departamento de Farmacologia Básica e Clínica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - José R Lambertucci
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcelo R Fantappié
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Zhang G, Zhang X, Huang H, Ji Y, Li D, Jiang W. Saquinavir plus methylprednisolone ameliorates experimental acute lung injury. ACTA ACUST UNITED AC 2018; 51:e7579. [PMID: 30088541 PMCID: PMC6086550 DOI: 10.1590/1414-431x20187579] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/04/2018] [Indexed: 01/01/2023]
Abstract
Glucocorticoid insensitivity is an important barrier to the treatment of several inflammatory diseases, including acute lung injury (ALI). Saquinavir (SQV) is an inhibitor of the human immunodeficiency virus protease, and the therapeutic effects of SQV in ALI accompanied with glucocorticoid insensitivity have not been previously investigated. In this study, the effects of SQV on lipopolysaccharide (LPS)-mediated injury in human pulmonary microvascular endothelial cells (HPMECs), human type I alveolar epithelial cells (AT I), and alveolar macrophages were determined. In addition, the effects of SQV on an LPS-induced ALI model with or without methylprednisolone (MPS) were studied. In LPS-stimulated HPMECs, SQV treatment resulted in a decrease of high mobility group box 1 (HMGB1), phospho-NF-κB (p-NF-κB), and toll-like receptor 4 (TLR4), and an increase of VE-cadherin. Compared to MPS alone, MPS plus SQV attenuated the decrease of glucocorticoid receptor alpha (GRα) and IκBα in LPS-stimulated HPMECs. HMGB1, TLR4, and p-NF-κB expression were also lessened in LPS-stimulated alveolar macrophages with SQV treatment. In addition, SQV reduced the injury in human AT I with a decrease of HMGB1 and p-NF-κB, and with an increase of aquaporin 5 (AQP 5). SQV ameliorated the lung injury caused by LPS in rats with reductions in vascular permeability, myeloperoxidase activity (MPO) and histopathological scores, and with lowered HMGB1, TLR4, and p-NF-κB expression, but with enhanced VE-cadherin expression. By comparison, SQV plus MPS increased GRα and IκBα in lung tissues of rats with ALI. This study demonstrated that SQV prevented experimental ALI and improved glucocorticoid insensitivity by modulating the HMGB1/TLR4 pathway.
Collapse
Affiliation(s)
- Guanghua Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Xue Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Haidi Huang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yunxia Ji
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Defang Li
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Wanglin Jiang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| |
Collapse
|
17
|
He M, Bianchi ME, Coleman TR, Tracey KJ, Al-Abed Y. Exploring the biological functional mechanism of the HMGB1/TLR4/MD-2 complex by surface plasmon resonance. Mol Med 2018; 24:21. [PMID: 30134799 PMCID: PMC6085627 DOI: 10.1186/s10020-018-0023-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/01/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High Mobility Group Box 1 (HMGB1) was first identified as a nonhistone chromatin-binding protein that functions as a pro-inflammatory cytokine and a Damage-Associated Molecular Pattern molecule when released from necrotic cells or activated leukocytes. HMGB1 consists of two structurally similar HMG boxes that comprise the pro-inflammatory (B-box) and the anti-inflammatory (A-box) domains. Paradoxically, the A-box also contains the epitope for the well-characterized anti-HMGB1 monoclonal antibody "2G7", which also potently inhibits HMGB1-mediated inflammation in a wide variety of in vivo models. The molecular mechanisms through which the A-box domain inhibits the inflammatory activity of HMGB1 and 2G7 exerts anti-inflammatory activity after binding the A-box domain have been a mystery. Recently, we demonstrated that: 1) the TLR4/MD-2 receptor is required for HMGB1-mediated cytokine production and 2) the HMGB1-TLR4/MD-2 interaction is controlled by the redox state of HMGB1 isoforms. METHODS We investigated the interactions of HMGB1 isoforms (redox state) or HMGB1 fragments (A- and B-box) with TLR4/MD-2 complex using Surface Plasmon Resonance (SPR) studies. RESULTS Our results demonstrate that: 1) intact HMGB1 binds to TLR4 via the A-box domain with high affinity but an appreciable dissociation rate; 2) intact HMGB1 binds to MD-2 via the B-box domain with low affinity but a very slow dissociation rate; and 3) HMGB1 A-box domain alone binds to TLR4 more stably than the intact protein and thereby antagonizes HMGB1 by blocking HMGB1 from interacting with the TLR4/MD-2 complex. CONCLUSIONS These findings not only suggest a model whereby HMGB1 interacts with TLR4/MD-2 in a two-stage process but also explain how the A-box domain and 2G7 inhibit HMGB1.
Collapse
Affiliation(s)
- Mingzhu He
- Center for Molecular Innovation, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, New York, 11030, USA.
| | - Marco E Bianchi
- Chromatin Dynamics Unit, Division of Genetics and Cell Biology, San Raffaele University and San Raffaele Scientific Institute IRCCS, Via Olgettina 58, 20132, Milan, Italy
| | - Tom R Coleman
- Center for Molecular Innovation, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, New York, 11030, USA
| | - Kevin J Tracey
- Center for Biomedical Science, and Center for Bioelectronic Medicine, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, New York, 11030, USA
| | - Yousef Al-Abed
- Center for Molecular Innovation, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, New York, 11030, USA.
| |
Collapse
|
18
|
Aucott H, Sowinska A, Harris HE, Lundback P. Ligation of free HMGB1 to TLR2 in the absence of ligand is negatively regulated by the C-terminal tail domain. Mol Med 2018; 24:19. [PMID: 30134807 PMCID: PMC6016865 DOI: 10.1186/s10020-018-0021-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/24/2018] [Indexed: 01/03/2023] Open
Abstract
Background High mobility group box 1 (HMGB1) protein is a central endogenous inflammatory mediator contributing to the pathogenesis of several inflammatory disorders. HMGB1 interacts with toll-like receptors (TLRs) but contradictory evidence regarding its identity as a TLR2 ligand persists. The aim of this study was to investigate if highly purified HMGB1 interacts with TLR2 and if so, to determine the functional outcome. Methods Full length or C-terminal truncated (Δ30) HMGB1 was purified from E.coli. Binding to TLR2-Fc was investigated by direct-ELISA. For the functional studies, proteins alone or in complex with peptidoglycan (PGN) were added to human embryonic kidney (HEK) cells transfected with functional TLR2, TLR 1/2 or TLR 2/6 dimers, macrophages, whole blood or peripheral blood mononuclear cells (PBMCs). Cytokine levels were determined by ELISA. Results In vitro binding experiments revealed that Δ30 HMGB1, lacking the acidic tail domain, but not full length HMGB1 binds dose dependently to TLR2. Control experiments confirmed that the interaction was specific to TLR2 and could be inhibited by enzymatic digestion. Δ30 HMGB1 alone was unable to induce cytokine production via TLR2. However, full length HMGB1 and Δ30 HMGB1 formed complexes with PGN, a known TLR2 ligand, and synergistically potentiated the inflammatory response in PBMCs. Conclusions We have demonstrated that TLR2 is a receptor for HMGB1 and this binding is negatively regulated by the C-terminal tail. HMGB1 did not induce functional activation of TLR2 while both full length HMGB1 and Δ30 HMGB1 potentiated the inflammatory activities of the TLR2 ligand PGN. We hypothesize that Δ30 HMGB1 generated in vivo by enzymatic cleavage could act as an enhancer of TLR2-mediated inflammatory activities. Electronic supplementary material The online version of this article (10.1186/s10020-018-0021-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hannah Aucott
- Department of Medicine, Rheumatology Unit, Karolinska Institutet, Stockholm, Sweden. .,Department of Medicine, Rheumatology Unit, Centre for Molecular Medicine (CMM) L8:04, Karolinska Hospital, 17176, Solna, Sweden.
| | - Agnieszka Sowinska
- Department of Medicine, Rheumatology Unit, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
19
|
Zhou H, Li Y, Gui H, Zhao H, Wu M, Li G, Li Y, Bai Z, Yin Z, Redmond HP, Wang J, Wang JH, Zhao Z. Antagonism of Integrin CD11b Affords Protection against Endotoxin Shock and Polymicrobial Sepsis via Attenuation of HMGB1 Nucleocytoplasmic Translocation and Extracellular Release. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:1771-1780. [PMID: 29343555 DOI: 10.4049/jimmunol.1701285] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/15/2017] [Indexed: 09/13/2023]
Abstract
High mobility group box 1 (HMGB1), a chromatin-binding nuclear protein, plays a critical role in sepsis by acting as a key "late-phase" inflammatory mediator. Integrin CD11b is essential for inflammatory cell activation and migration, thus mediating inflammatory responses. However, it is unclear whether CD11b participates in the development of sepsis. In this study, we report that CD11b contributes to LPS-induced endotoxin shock and microbial sepsis, as antagonism of CD11b with the CD11b blocking Ab or CD11b inhibitor Gu-4 protects mice against LPS- and microbial sepsis-related lethality, which is associated with significantly diminished serum HMGB1 levels. Consistent with this, CD11b-deficient mice were more resistant to microbial sepsis with a much lower serum HMGB1 level compared with wild-type mice. Pharmacological blockage and genetic knockdown/knockout of CD11b in murine macrophages hampered LPS-stimulated HMGB1 nucleocytoplasmic translocation and extracellular release. Furthermore, silencing CD11b interrupted the interaction of HMGB1 with either a nuclear export factor chromosome region maintenance 1 or classical protein kinase C and inhibited classical protein kinase C-induced HMGB1 phosphorylation, the potential underlying mechanism(s) responsible for CD11b blockage-induced suppression of HMGB1 nucleocytoplasmic translocation and subsequent extracellular release. Thus, our results highlight that CD11b contributes to the development of sepsis, predominantly by facilitating nucleocytoplasmic translocation and active release of HMGB1.
Collapse
Affiliation(s)
- Huiting Zhou
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025, China
- Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210023, China; and
| | - Yanhong Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025, China
| | - Huan Gui
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025, China
| | - He Zhao
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025, China
| | - Ming Wu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025, China
| | - Gang Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025, China
| | - Yiping Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025, China
| | - Zhenjiang Bai
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025, China
| | - Zhimin Yin
- Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210023, China; and
| | - H Paul Redmond
- Department of Academic Surgery, University College Cork, Cork University Hospital, Cork T12YN60, Ireland
| | - Jian Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou 215025, China;
| | - Jiang Huai Wang
- Department of Academic Surgery, University College Cork, Cork University Hospital, Cork T12YN60, Ireland
| | - Zhihui Zhao
- Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210023, China; and
| |
Collapse
|
20
|
Zhou Y, Cao X, Yang Y, Wang J, Yang W, Ben P, Shen L, Cao P, Luo L, Yin Z. Glutathione S-Transferase Pi Prevents Sepsis-Related High Mobility Group Box-1 Protein Translocation and Release. Front Immunol 2018. [PMID: 29520271 PMCID: PMC5827551 DOI: 10.3389/fimmu.2018.00268] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glutathione S-transferase Pi (GSTP) was originally identified as one of cytosolic phase II detoxification enzymes and also was considered to function via its non-catalytic, ligand-binding activity. We have reported that GSTP played an anti-inflammatory role in macrophages, suggesting that GSTP may have a protective role in inflammation. In this study, we deleted the murine Gstp gene cluster and found that GSTP significantly decreased the mortality of experimental sepsis and reduced related serum level of high mobility group box-1 protein (HMGB1). As HMGB1 is the key cytokine involved in septic death, we further studied the effect of GSTP on HMGB1 release. The results demonstrated that a classic protein kinase C (cPKC) dependent phosphorylation of cytoplasmic GSTP at Ser184 occurred in macrophages in response to lipopolysaccharide (LPS) stimulation. Phosphorylated GSTP was then translocated to the nucleus. In the nucleus, GSTP bound to HMGB1 and suppressed LPS-triggered and cPKC-mediated HMGB1 phosphorylation. Consequently, GSTP prevented the translocation of HMGB1 to cytoplasm and release. Our findings provide the new evidence that GSTP inhibited HMGB1 release via binding to HMGB1 in the nucleus independent of its transferase activity. cPKC-mediated GSTP phosphorylation was essential for GSTP to translocate from cytoplasm to nucleus. To our knowledge, we are the first to report that nuclear GSTP functions as a negative regulator to control HMGB1 release from macrophages and decreases the mortality of sepsis.
Collapse
Affiliation(s)
- Yi Zhou
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Xiang Cao
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Yang Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.,Laboratory of Cellular and Molecular Biology, Jiangsu Province Institute of Traditional Chinese Medicine, Nanjing, China
| | - Jing Wang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Weidong Yang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Peiling Ben
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Lei Shen
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Peng Cao
- Laboratory of Cellular and Molecular Biology, Jiangsu Province Institute of Traditional Chinese Medicine, Nanjing, China
| | - Lan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Zhimin Yin
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| |
Collapse
|
21
|
Pan LF, Yu L, Wang LM, He JT, Sun JL, Wang XB, Wang H, Bai ZH, Feng H, Pei HH. Augmenter of liver regeneration (ALR) regulates acute pancreatitis via inhibiting HMGB1/TLR4/NF-κB signaling pathway. Am J Transl Res 2018; 10:402-410. [PMID: 29511434 PMCID: PMC5835805 DOI: pmid/29511434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/17/2018] [Indexed: 02/08/2023]
Abstract
This research aimed to explore the effect of augmenter of liver regeneration (ALR) in acute pancreatitis (AP) of mice and the underlying mechanism. Caerulein were given to mice to get AP models. AP mice were given saline, ALR plasmids or negative control plasmids. Then, pancreas tissues were fixed and stained for histological examination. The levels of serum amylase, serum lipase, MPO, HMGB1, TNF-α, IL-1β as well as MCP-1 were detected by ELISA assay. The mRNA levels of TLR4, p65, IκBα, iNOS, COX-2 and GAPDH were examined by RT-qPCR. The protein levels of HMGB1, TLR4, MD2, MyD88, IκBα and GAPDH were detected by western blotting. ALR decreased serum amylase as well as lipase levels and alleviated the histopathological alterations of the pancreas in AP mice. ALR decreased the MPO activity of pancreas in AP Mice. ALR decreased the HMGB1/TLR4 signaling pathway in AP Mice. ALR decreased pancreas IL-1β and MCP-1 in AP mice, and also decreased plasma TNF-α and IL-1β in AP mice. ALR attenuated the cerulein-caused increase in p65 mRNA and protein levels, but had no effects on mRNA and protein levels of IκBα. The AP mice significantly promoted the mRNA levels of iNOS and COX-2 that was inhibited by ALR. HNE formation was also increased in AP mice, but it was decreased by ALR. ALR alleviates acute pancreatitis by inhibiting HMGB1/TLR4/NF-κB signaling pathway. It is promising to alleviate the syndromes of patients with acute via targeting ALR.
Collapse
Affiliation(s)
- Long-Fei Pan
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
| | - Lei Yu
- Xi’an Medical CollegeXi’an 710021, Shaanxi, China
| | - Li-Ming Wang
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
| | - Jun-Tao He
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
| | - Jiang-Li Sun
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
| | - Xiao-Bo Wang
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
| | - Hai Wang
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
| | - Zheng-Hai Bai
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
| | - Hui Feng
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
| | - Hong-Hong Pei
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
| |
Collapse
|
22
|
Sun S, He M, Wang Y, Yang H, Al-Abed Y. Folic acid derived-P5779 mimetics regulate DAMP-mediated inflammation through disruption of HMGB1:TLR4:MD-2 axes. PLoS One 2018; 13:e0193028. [PMID: 29447234 PMCID: PMC5814057 DOI: 10.1371/journal.pone.0193028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 02/02/2018] [Indexed: 01/22/2023] Open
Abstract
High mobility group box 1 (HMGB1) is a damage-associated molecular pattern (DAMP) protein that mediates inflammatory responses after infection or injury. Previously, we reported a peptide inhibitor of HMGB1 (P5779) that acts by directly interrupting HMGB1/MD-2 binding. Here, fingerprint similarity search and docking studies suggest folic acid derived-drugs function as P5779 mimetopes. Molecular dynamic (MD) simulation studies demonstrate that folic acid mimics the binding of P5779 at the TLR4 and MD-2 intersection. In surface plasmon resonance (SPR) studies, these drugs showed direct binding to TLR4/MD-2 but not HMGB1. Furthermore, these P5779 mimetopes inhibit HMGB1 and MD-2 binding and suppress HMGB1-induced TNF release in human macrophages in the nanomolar range. We assert from our findings that their demonstrated anti-inflammatory effects may be working through TLR4-dependent signaling.
Collapse
Affiliation(s)
- Shan Sun
- Center for Molecular Innovation, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
- * E-mail: (SS); (YAA)
| | - Mingzhu He
- Center for Molecular Innovation, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Yongjun Wang
- Department of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Huan Yang
- Department of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Yousef Al-Abed
- Center for Molecular Innovation, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
- * E-mail: (SS); (YAA)
| |
Collapse
|
23
|
Das N, Dewan V, Grace PM, Gunn RJ, Tamura R, Tzarum N, Watkins LR, Wilson IA, Yin H. HMGB1 Activates Proinflammatory Signaling via TLR5 Leading to Allodynia. Cell Rep 2017; 17:1128-1140. [PMID: 27760316 DOI: 10.1016/j.celrep.2016.09.076] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 08/19/2016] [Accepted: 09/22/2016] [Indexed: 12/11/2022] Open
Abstract
Infectious and sterile inflammatory diseases are correlated with increased levels of high mobility group box 1 (HMGB1) in tissues and serum. Extracellular HMGB1 is known to activate Toll-like receptors (TLRs) 2 and 4 and RAGE (receptor for advanced glycation endproducts) in inflammatory conditions. Here, we find that TLR5 is also an HMGB1 receptor that was previously overlooked due to lack of functional expression in the cell lines usually used for studying TLR signaling. HMGB1 binding to TLR5 initiates the activation of NF-κB signaling pathway in a MyD88-dependent manner, resulting in proinflammatory cytokine production and pain enhancement in vivo. Biophysical and in vitro results highlight an essential role for the C-terminal tail region of HMGB1 in facilitating interactions with TLR5. These results suggest that HMGB1-modulated TLR5 signaling is responsible for pain hypersensitivity.
Collapse
Affiliation(s)
- Nabanita Das
- Department of Chemistry and Biochemistry and the BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - Varun Dewan
- Department of Chemistry and Biochemistry and the BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - Peter M Grace
- Department of Psychology and Neuroscience and the Center for Neuroscience, University of Colorado, Boulder, CO 80309, USA
| | - Robin J Gunn
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ryo Tamura
- Department of Chemistry and Biochemistry and the BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - Netanel Tzarum
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Linda R Watkins
- Department of Psychology and Neuroscience and the Center for Neuroscience, University of Colorado, Boulder, CO 80309, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hang Yin
- Department of Chemistry and Biochemistry and the BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
24
|
Qiang X, Liotta AS, Shiloach J, Gutierrez JC, Wang H, Ochani M, Ochani K, Yang H, Rabin A, LeRoith D, Lesniak MA, Böhm M, Maaser C, Kannengiesser K, Donowitz M, Rabizadeh S, Czura CJ, Tracey KJ, Westlake M, Zarfeshani A, Mehdi SF, Danoff A, Ge X, Sanyal S, Schwartz GJ, Roth J. New melanocortin-like peptide of E. coli can suppress inflammation via the mammalian melanocortin-1 receptor (MC1R): possible endocrine-like function for microbes of the gut. NPJ Biofilms Microbiomes 2017; 3:31. [PMID: 29152323 PMCID: PMC5684143 DOI: 10.1038/s41522-017-0039-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 08/24/2017] [Accepted: 10/10/2017] [Indexed: 12/11/2022] Open
Abstract
E. coli releases a 33 amino acid peptide melanocortin-like peptide of E. coli (MECO-1) that is identical to the C-terminus of the E. coli elongation factor-G (EF-G) and has interesting similarities to two prominent mammalian melanocortin hormones, alpha-melanocyte-stimulating hormone (alpha-MSH) and adrenocorticotropin (ACTH). Note that MECO-1 lacks HFRW, the common pharmacophore of the known mammalian melanocortin peptides. MECO-1 and the two hormones were equally effective in severely blunting release of cytokines (HMGB1 and TNF) from macrophage-like cells in response to (i) endotoxin (lipopolysaccharide) or (ii) pro-inflammatory cytokine HMGB-1. The in vitro anti-inflammatoty effects of MECO-1 and of alpha-MSH were abrogated by (i) antibody against melanocortin-1 receptor (MC1R) and by (ii) agouti, an endogenous inverse agonist of MC1R. In vivo MECO-1 was even more potent than alpha-MSH in rescuing mice from death due to (i) lethal doses of LPS endotoxin or (ii) cecal ligation and puncture, models of sterile and infectious sepsis, respectively.
Collapse
Affiliation(s)
- Xiaoling Qiang
- Laboratory of Diabetes and Diabetes Related Research, US, USA
- Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY USA
- Hofstra Northwell School of Medicine, Hempstead, NY USA
| | | | | | | | - Haichao Wang
- Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY USA
- Department of Emergency Medicine, Manhasset, NY USA
| | - Mahendar Ochani
- Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY USA
| | - Kanta Ochani
- Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY USA
| | - Huan Yang
- Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY USA
| | - Aviva Rabin
- Laboratory of Diabetes and Diabetes Related Research, US, USA
- Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY USA
| | - Derek LeRoith
- Icahn School of Medicine at Mount Sinai, New York, NY USA
| | | | | | | | | | - Mark Donowitz
- Johns Hopkins University School of Medicine, Baltimore, MD USA
| | | | - Christopher J. Czura
- Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY USA
- Hofstra Northwell School of Medicine, Hempstead, NY USA
| | - Kevin J. Tracey
- Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY USA
- Hofstra Northwell School of Medicine, Hempstead, NY USA
| | - Mark Westlake
- Laboratory of Diabetes and Diabetes Related Research, US, USA
- Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY USA
| | - Aida Zarfeshani
- Laboratory of Diabetes and Diabetes Related Research, US, USA
- Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY USA
| | - Syed F. Mehdi
- Laboratory of Diabetes and Diabetes Related Research, US, USA
- Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY USA
| | - Ann Danoff
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Xueliang Ge
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Suparna Sanyal
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | | | - Jesse Roth
- Laboratory of Diabetes and Diabetes Related Research, US, USA
- Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY USA
- Hofstra Northwell School of Medicine, Hempstead, NY USA
- Albert Einstein College of Medicine, Bronx, NY USA
| |
Collapse
|
25
|
Yang H, Wang H, Wang Y, Addorisio M, Li J, Postiglione MJ, Chavan SS, Al-Abed Y, Antoine DJ, Andersson U, Tracey KJ. The haptoglobin beta subunit sequesters HMGB1 toxicity in sterile and infectious inflammation. J Intern Med 2017; 282:76-93. [PMID: 28464519 PMCID: PMC5477782 DOI: 10.1111/joim.12619] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Extra-corpuscular haemoglobin is an endogenous factor enhancing inflammatory tissue damage, a process counteracted by the haemoglobin-binding plasma protein haptoglobin composed of alpha and beta subunits connected by disulfide bridges. Recent studies established that haptoglobin also binds and sequesters another pro-inflammatory mediator, HMGB1, via triggering CD163 receptor-mediated anti-inflammatory responses involving heme oxygenase-1 expression and IL-10 release. The molecular mechanism underlying haptoglobin-HMGB1 interaction remains poorly elucidated. METHODS Haptoglobin β subunits were tested for HMGB1-binding properties, as well as efficacy in animal models of sterile liver injury (induced by intraperitoneal acetaminophen administration) or infectious peritonitis (induced by cecal ligation and puncture, CLP, surgery) using wild-type (C57BL/6) or haptoglobin gene-deficient mice. RESULTS Structural-functional analysis demonstrated that the haptoglobin β subunit recapitulates the HMGB1-binding properties of full-length haptoglobin. Similar to HMGB1-haptoglobin complexes, the HMGB1-haptoglobin β complexes also elicited anti-inflammatory effects via CD163-mediated IL-10 release and heme oxygenase-1 expression. Treatment with haptoglobin β protein conferred significant protection in mouse models of polymicrobial sepsis as well as acetaminophen-induced liver injury, two HMGB1-dependent inflammatory conditions. CONCLUSIONS Haptoglobin β protein offers a novel therapeutic approach to fight against various inflammatory diseases caused by excessive HMGB1 release.
Collapse
Affiliation(s)
- H Yang
- Laboratories of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - H Wang
- Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Y Wang
- Laboratories of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - M Addorisio
- Laboratories of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - J Li
- Laboratories of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - M J Postiglione
- Laboratories of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - S S Chavan
- Laboratories of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Y Al-Abed
- Medicinal Chemistry, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - D J Antoine
- MRC Center for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - U Andersson
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - K J Tracey
- Laboratories of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| |
Collapse
|
26
|
A novel synthetic derivative of squamosamide FLZ inhibits the high mobility group box 1 protein-mediated neuroinflammatory responses in murine BV2 microglial cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2017; 390:643-650. [PMID: 28280849 DOI: 10.1007/s00210-017-1363-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 02/20/2017] [Indexed: 10/20/2022]
Abstract
High mobility group box 1 (HMGB1) is a critical pro-inflammatory cytokine that contributes to the pathogenesis of various human diseases. FLZ, a squamosamide derivative, has been demonstrated to have neuroprotective effects in Parkinson's disease models and shows strong anti-inflammatory activity, while the precise mechanism remains unclear. Here, we investigated the anti-inflammatory mechanism of FLZ on HMGB1-mediated inflammatory responses. The effects of FLZ on HMGB1 release from microglial cells induced by lipopolysaccharide were first explored by Western blot assay and ELISA. Then, co-immunoprecipition was used to study FLZ's effect on the interaction between HMGB1 and its receptor TLR4. Finally, we employed HMGB1 to simulate pro-inflammatory responses and then studied the inhibitory effects of FLZ on its bioactivity. FLZ has a significant inhibitory effect on HMGB1 release while it exerts no inhibitory effect on the binding between HMGB1 and TLR4. After the recognition of HMGB1 by TLR4, NF-κB signaling pathway is activated. FLZ could efficaciously alleviate HMGB1-induced inflammatory responses via the suppression of TLR4/MyD88/NF-κB signaling pathway. FLZ could inhibit HMGB1 release as well as HMGB1-induced inflammatory responses, HMGB1 might be one of the FLZ anti-inflammatory targets, and interfering at this inflammatory mediator may have benefit effects on neurodegenerative disorders, such as Parkinson's disease.
Collapse
|
27
|
Friedenberg SG, Strange HR, Guillaumin J, VanGundy ZC, Crouser ED, Papenfuss TL. Effect of disrupted mitochondria as a source of damage-associated molecular patterns on the production of tumor necrosis factor α by splenocytes from dogs. Am J Vet Res 2017; 77:604-12. [PMID: 27227498 DOI: 10.2460/ajvr.77.6.604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate the effects of damage-associated molecular patterns (DAMPs) derived from disrupted mitochondria on canine splenocytes and other immune cells. SAMPLES Liver, spleen, and bone marrow samples obtained from 8 cadavers of healthy research Beagles that had been euthanized for other purposes. PROCEDURES Mitochondria were obtained from canine hepatocytes, and mitochondrial DAMPs (containing approx 75% mitochondrial proteins) were prepared. Mitochondrial DAMPs and the nuclear cytokine high-mobility group box protein 1 were applied to splenocytes, bone marrow-differentiated dendritic cells, and a canine myelomonocytic cell (DH82) line for 6 or 24 hours. Cell culture supernatants from splenocytes, dendritic cells, and DH82 cells were assayed for tumor necrosis factor α with an ELISA. Expression of tumor necrosis factor α mRNA in splenocytes was evaluated with a quantitative real-time PCR assay. RESULTS In all cell populations evaluated, production of tumor necrosis factor α was consistently increased by mitochondrial DAMPs at 6 hours (as measured by an ELISA). In contrast, high-mobility group box protein 1 did not have any independent proinflammatory effects in this experimental system. CONCLUSIONS AND CLINICAL RELEVANCE The study revealed an in vitro inflammatory effect of mitochondrial DAMPs (containing approx 75% mitochondrial proteins) in canine cells and validated the use of an in vitro splenocyte model to assess DAMP-induced inflammation in dogs. This experimental system may aid in understanding the contribution of DAMPs to sepsis and the systemic inflammatory response syndrome in humans. Further studies in dogs are needed to validate the biological importance of these findings and to evaluate the in vivo role of mitochondrial DAMPs in triggering and perpetuating systemic inflammatory states.
Collapse
|
28
|
Sun Q, Loughran P, Shapiro R, Shrivastava IH, Antoine DJ, Li T, Yan Z, Fan J, Billiar TR, Scott MJ. Redox-dependent regulation of hepatocyte absent in melanoma 2 inflammasome activation in sterile liver injury in mice. Hepatology 2017; 65:253-268. [PMID: 27774630 PMCID: PMC5191963 DOI: 10.1002/hep.28893] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 09/17/2016] [Accepted: 09/21/2016] [Indexed: 12/17/2022]
Abstract
UNLABELLED Sterile liver inflammation, such as liver ischemia-reperfusion, hemorrhagic shock after trauma, and drug-induced liver injury, is initiated and regulated by endogenous mediators including DNA and reactive oxygen species. Here, we identify a mechanism for redox-mediated regulation of absent in melanoma 2 (AIM2) inflammasome activation in hepatocytes after redox stress in mice, which occurs through interaction with cytosolic high mobility group box 1 (HMGB1). We show that in liver during hemorrhagic shock in mice and in hepatocytes after hypoxia with reoxygenation, cytosolic HMGB1 associates with AIM2 and is required for activation of caspase-1 in response to cytosolic DNA. Activation of caspase-1 through AIM2 leads to subsequent hepatoprotective responses such as autophagy. HMGB1 binds to AIM2 at a non-DNA-binding site on the hematopoietic interferon-inducible nuclear antigen domain of AIM2 to facilitate inflammasome and caspase-1 activation in hepatocytes. Furthermore, binding of HMGB1 to AIM2 is stronger with fully reduced all-thiol HMGB1 than with partially oxidized disulfide-HMGB1, and binding strength corresponds to caspase-1 activation. These data suggest that HMGB1 redox status regulates AIM2 inflammasome activation. CONCLUSION These findings suggest a novel and important mechanism for regulation of AIM2 inflammasome activation in hepatocytes during redox stress and may suggest broader implications for how this and other inflammasomes are activated and how their activation is regulated during cell stress, as well as the mechanisms of inflammasome regulation in nonimmune cell types. (Hepatology 2017;65:253-268).
Collapse
Affiliation(s)
- Qian Sun
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA
| | - Patricia Loughran
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA.,Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA
| | - Richard Shapiro
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA
| | | | - Daniel J Antoine
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - Tunliang Li
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA.,Department of Anesthesiology, Third Xiangya Hospital of Central South University, Hunan, China
| | - Zhengzheng Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA
| | - Jie Fan
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA.,Surgical Research, Veterans Affairs Pittsburgh Healthcare Systems, Pittsburgh, PA
| | | | - Melanie J Scott
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
29
|
Gunasekaran MK, Virama-Latchoumy AL, Girard AC, Planesse C, Guérin-Dubourg A, Ottosson L, Andersson U, Césari M, Roche R, Hoareau L. TLR4-dependant pro-inflammatory effects of HMGB1 on human adipocyte. Adipocyte 2016; 5:384-388. [PMID: 27994953 PMCID: PMC5160392 DOI: 10.1080/21623945.2016.1245818] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/03/2016] [Accepted: 10/03/2016] [Indexed: 10/20/2022] Open
Abstract
Chronic low grade inflammation is one of the major metabolic disorders in case of obesity and associated pathologies. By its important secretion function, the role of adipose tissue in this metabolic low grade inflammation is well known. Recently, it was demonstrated that the alarmin high mobility group box protein 1 (HMGB1) is involved in obesity-related pathologies by its increased serum levels in obese compared to normal weight individuals, and by its pro-inflammatory effects. However, the role of HMGB1 on adipocytes inflammation is poorly documented and we propose to investigate this point. Primary culture of human subcutaneous adipocytes were performed from human adipose tissue samples. Cells were treated with recombinant HMGB1 with/without anti-TLR4 antibody and inhibitors of NF-κB and P38 MAPK. Supernatants were collected for IL-6 and MCP-1 ELISA. HMGB1 initiates Toll-like receptor 4 (TLR4)-dependent activation of inflammation through the downstream NF-κB and P38 MAPK signaling pathway to upregulate the secretion of the pro-inflammatory cytokine IL-6. HMGB1 has pro-inflammatory effects on adipocytes. This reinforces the role of TLR4 in adipose tissue inflammation and antagonizing the HMGB1 inflammatory pathway could bring on new therapeutic targets to counteract obesity-associated pathologies.
Collapse
Affiliation(s)
- Manoj Kumar Gunasekaran
- Inserm, UMR 1188, Diabéte athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde, France
- Université de La Réunion, UMR 1188, Sainte-Clotilde, France
| | - Anne-Laurence Virama-Latchoumy
- Inserm, UMR 1188, Diabéte athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde, France
- Université de La Réunion, UMR 1188, Sainte-Clotilde, France
| | - Anne-Claire Girard
- Inserm, UMR 1188, Diabéte athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde, France
- Université de La Réunion, UMR 1188, Sainte-Clotilde, France
- Centre Hospitalier Universitaire (CHU) de La Réunion
| | - Cynthia Planesse
- Inserm, UMR 1188, Diabéte athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde, France
- Université de La Réunion, UMR 1188, Sainte-Clotilde, France
- Stemcis, plateforme CYROI, Sainte-Clotilde, France
| | | | - Lars Ottosson
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stokholm, Sweden
| | - Ulf Andersson
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stokholm, Sweden
| | - Maya Césari
- Inserm, UMR 1188, Diabéte athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde, France
- Université de La Réunion, UMR 1188, Sainte-Clotilde, France
| | - Régis Roche
- Stemcis, plateforme CYROI, Sainte-Clotilde, France
| | - Laurence Hoareau
- Inserm, UMR 1188, Diabéte athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde, France
- Université de La Réunion, UMR 1188, Sainte-Clotilde, France
- Stemcis, plateforme CYROI, Sainte-Clotilde, France
| |
Collapse
|
30
|
Yang H, Wang H, Levine YA, Gunasekaran MK, Wang Y, Addorisio M, Zhu S, Li W, Li J, de Kleijn DP, Olofsson PS, Warren HS, He M, Al-Abed Y, Roth J, Antoine DJ, Chavan SS, Andersson U, Tracey KJ. Identification of CD163 as an antiinflammatory receptor for HMGB1-haptoglobin complexes. JCI Insight 2016; 1:85375. [PMID: 27294203 DOI: 10.1172/jci.insight.85375] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Secreted by activated cells or passively released by damaged cells, extracellular HMGB1 is a prototypical damage-associated molecular pattern (DAMP) inflammatory mediator. During the course of developing extracorporeal approaches to treating injury and infection, we inadvertently discovered that haptoglobin, the acute phase protein that binds extracellular hemoglobin and targets cellular uptake through CD163, also binds HMGB1. Haptoglobin-HMGB1 complexes elicit the production of antiinflammatory enzymes (heme oxygenase-1) and cytokines (e.g., IL-10) in WT but not in CD163-deficient macrophages. Genetic disruption of haptoglobin or CD163 expression significantly enhances mortality rates in standardized models of intra-abdominal sepsis in mice. Administration of haptoglobin to WT and to haptoglobin gene-deficient animals confers significant protection. These findings reveal a mechanism for haptoglobin modulation of the inflammatory action of HMGB1, with significant implications for developing experimental strategies targeting HMGB1-dependent inflammatory diseases.
Collapse
Affiliation(s)
- Huan Yang
- Laboratories of Biomedical Science and
| | - Haichao Wang
- Emergency Medicine, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, USA
| | | | | | | | | | - Shu Zhu
- Emergency Medicine, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Wei Li
- Emergency Medicine, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, USA
| | | | - Dominique Pv de Kleijn
- Laboratory of Cardiovascular Immunology, University Medical Center, Utrecht, Netherlands
| | | | - H Shaw Warren
- Infectious Disease Unit, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | | | | | - Jesse Roth
- Diabetes and Diabetes-related Disorders, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Daniel J Antoine
- MRC Center for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | | | - Ulf Andersson
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | |
Collapse
|
31
|
Sharma AK, Salmon MD, Lu G, Su G, Pope NH, Smith JR, Weiss ML, Upchurch GR. Mesenchymal Stem Cells Attenuate NADPH Oxidase-Dependent High Mobility Group Box 1 Production and Inhibit Abdominal Aortic Aneurysms. Arterioscler Thromb Vasc Biol 2016; 36:908-18. [PMID: 26988591 DOI: 10.1161/atvbaha.116.307373] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 02/23/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Abdominal aortic aneurysm (AAA) formation is characterized by inflammation, smooth muscle activation, and matrix degradation. This study tests the hypothesis that macrophage-produced high mobility group box 1 (HMGB1) production is dependent on nicotinamide adenine dinucleotide phosphate oxidase (Nox2), which leads to increase in interleukin (IL)-17 production resulting in AAA formation and that treatment with human mesenchymal stem cells (MSCs) can attenuate this process thereby inhibiting AAA formation. APPROACH AND RESULTS Human aortic tissue demonstrated a significant increase in HMGB1 expression in AAA patients when compared with controls. An elastase-perfusion model of AAA demonstrated a significant increase in HMGB1 production in C57BL/6 (wild-type [WT]) mice, which was attenuated by MSC treatment. Furthermore, anti-HMGB1 antibody treatment of WT mice attenuated AAA formation, IL-17 production, and immune cell infiltration when compared with elastase-perfused WT mice on day 14. Elastase-perfused Nox2(-/y) mice demonstrated a significant attenuation of HMGB1 and IL-17 production, cellular infiltration, matrix metalloproteinase activity, and AAA formation when compared with WT mice on day 14. In vitro studies showed that elastase-treated macrophages from WT mice, but not from Nox2(-/y) mice, produced HMGB1, which was attenuated by MSC treatment. The production of macrophage-dependent HMGB1 involved Nox2 activation and superoxide anion production, which was mitigated by MSC treatment. CONCLUSIONS These results demonstrate that macrophage-produced HMGB1 leads to aortic inflammation and acts as a trigger for CD4(+) T-cell-produced IL-17 during AAA formation. HMGB1 release is dependent on Nox2 activation, which can be inhibited by MSCs leading to attenuation of proinflammatory cytokines, especially IL-17, and protection against AAA formation.
Collapse
Affiliation(s)
- Ashish K Sharma
- From the Department of Surgery, University of Virginia, Charlottesville (A.K.S., M.D.S., G.L., G.S., N.H.P., G.R.U.); and Department of Anatomy and Physiology, Kansas State University, Manhattan (J.R.S., M.L.W.)
| | - Morgan D Salmon
- From the Department of Surgery, University of Virginia, Charlottesville (A.K.S., M.D.S., G.L., G.S., N.H.P., G.R.U.); and Department of Anatomy and Physiology, Kansas State University, Manhattan (J.R.S., M.L.W.)
| | - Guanyi Lu
- From the Department of Surgery, University of Virginia, Charlottesville (A.K.S., M.D.S., G.L., G.S., N.H.P., G.R.U.); and Department of Anatomy and Physiology, Kansas State University, Manhattan (J.R.S., M.L.W.)
| | - Gang Su
- From the Department of Surgery, University of Virginia, Charlottesville (A.K.S., M.D.S., G.L., G.S., N.H.P., G.R.U.); and Department of Anatomy and Physiology, Kansas State University, Manhattan (J.R.S., M.L.W.)
| | - Nicolas H Pope
- From the Department of Surgery, University of Virginia, Charlottesville (A.K.S., M.D.S., G.L., G.S., N.H.P., G.R.U.); and Department of Anatomy and Physiology, Kansas State University, Manhattan (J.R.S., M.L.W.)
| | - Joseph R Smith
- From the Department of Surgery, University of Virginia, Charlottesville (A.K.S., M.D.S., G.L., G.S., N.H.P., G.R.U.); and Department of Anatomy and Physiology, Kansas State University, Manhattan (J.R.S., M.L.W.)
| | - Mark L Weiss
- From the Department of Surgery, University of Virginia, Charlottesville (A.K.S., M.D.S., G.L., G.S., N.H.P., G.R.U.); and Department of Anatomy and Physiology, Kansas State University, Manhattan (J.R.S., M.L.W.)
| | - Gilbert R Upchurch
- From the Department of Surgery, University of Virginia, Charlottesville (A.K.S., M.D.S., G.L., G.S., N.H.P., G.R.U.); and Department of Anatomy and Physiology, Kansas State University, Manhattan (J.R.S., M.L.W.).
| |
Collapse
|
32
|
Kim YH, Kwak MS, Park JB, Lee SA, Choi JE, Cho HS, Shin JS. N-linked glycosylation plays a crucial role in the secretion of HMGB1. J Cell Sci 2016; 129:29-38. [PMID: 26567221 DOI: 10.1242/jcs.176412] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/09/2015] [Indexed: 12/15/2022] Open
Abstract
HMGB1 protein is a delayed mediator of sepsis that is secreted to the extracellular milieu in response to various stimulants, inducing a pro-inflammatory response. HMGB1 is devoid of an endoplasmic reticulum (ER)-targeting signal peptide; hence, the mechanism of extracellular secretion is not completely understood, although HMGB1 is secreted after being subjected to post-translational modifications. Here, we identified the role of N-glycosylation of HMGB1 in extracellular secretion. We found two consensus (N37 and N134) and one non-consensus (N135) residues that were N-glycosylated in HMGB1 by performing liquid chromatography tandem mass spectrometry (LC-MS/MS) and analyzing for N-glycan composition and structure. Inhibition of N-glycosylation with tunicamycin resulted in a molecular shift of HMGB1 as assessed by gel electrophoresis. Non-glycosylated double mutant (N→Q) HMGB1 proteins (HMGB1(N37Q/N134Q) and HMGB1(N37Q/N135Q)) showed localization to the nuclei, strong binding to DNA, weak binding to the nuclear export protein CRM1 and rapid degradation by ubiquitylation. These mutant proteins had reduced secretion even after acetylation, phosphorylation, oxidation and exposure to pro-inflammatory stimuli. Taken together, we propose that HMGB1 is N-glycosylated, and that this is important for its DNA interaction and is a prerequisite for its nucleocytoplasmic transport and extracellular secretion.
Collapse
Affiliation(s)
- Young Hun Kim
- Department of Microbiology, Yonsei University College of Medicine, Seoul 120-752, Korea Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Man Sup Kwak
- Department of Microbiology, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Jun Bae Park
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Korea
| | - Shin-Ae Lee
- Department of Microbiology, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Ji Eun Choi
- Department of Pediatrics, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul 156-707, Korea
| | - Hyun-Soo Cho
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Korea
| | - Jeon-Soo Shin
- Department of Microbiology, Yonsei University College of Medicine, Seoul 120-752, Korea Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea Severance Biomedical Science Institute and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 120-752, Korea
| |
Collapse
|
33
|
Valdés-Ferrer SI, Papoin J, Dancho ME, Olofsson PS, Li J, Lipton JM, Avancena P, Yang H, Zou YR, Chavan SS, Volpe BT, Gardenghi S, Rivella S, Diamond B, Andersson U, Steinberg BM, Blanc L, Tracey KJ. HMGB1 Mediates Anemia of Inflammation in Murine Sepsis Survivors. Mol Med 2015; 21:951-958. [PMID: 26736178 DOI: 10.2119/molmed.2015.00243] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 12/29/2015] [Indexed: 12/21/2022] Open
Abstract
Patients surviving sepsis develop anemia, but the molecular mechanism is unknown. Here we observed that mice surviving polymicrobial gram-negative sepsis develop hypochromic, microcytic anemia with reticulocytosis. The bone marrow of sepsis survivors accumulates polychromatophilic and orthochromatic erythroblasts. Compensatory extramedullary erythropoiesis in the spleen is defective during terminal differentiation. Circulating tumor necrosis factor (TNF) and interleukin (IL)-6 are elevated for 5 d after the onset of sepsis, and serum high-mobility group box 1 (HMGB1) levels are increased from d 7 until at least d 28. Administration of recombinant HMGB1 to healthy mice mediates anemia with extramedullary erythropoiesis and significantly elevated reticulocyte counts. Moreover, administration of anti-HMGB1 monoclonal antibodies after sepsis significantly ameliorates the development of anemia (hematocrit 48.5 ± 9.0% versus 37.4 ± 6.1%, p < 0.01; hemoglobin 14.0 ± 1.7 versus 11.7 ± 1.2 g/dL, p < 0.01). Together, these results indicate that HMGB1 mediates anemia by interfering with erythropoiesis, suggesting a potential therapeutic strategy for anemia in sepsis.
Collapse
Affiliation(s)
- Sergio I Valdés-Ferrer
- Elmezzi Graduate School of Molecular Medicine, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America.,Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Julien Papoin
- Laboratory of Developmental Erythropoiesis, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Meghan E Dancho
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Peder S Olofsson
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Jianhua Li
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Jeffrey M Lipton
- Laboratory of Developmental Erythropoiesis, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Patricia Avancena
- Laboratory of Hematopoiesis, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Huan Yang
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Yong-Rui Zou
- Laboratory of Hematopoiesis, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Sangeeta S Chavan
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Bruce T Volpe
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Sara Gardenghi
- Children's Hospital of Philadelphia, Department of Pediatrics, Division of Hematology, Philadelphia, Pennsylvania, United States of America
| | - Stefano Rivella
- Children's Hospital of Philadelphia, Department of Pediatrics, Division of Hematology, Philadelphia, Pennsylvania, United States of America
| | - Betty Diamond
- Center for Autoimmune and Musculoskeletal Disease, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Ulf Andersson
- Departments of Women's and Children's Health, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Bettie M Steinberg
- Elmezzi Graduate School of Molecular Medicine, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America.,Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Lionel Blanc
- Laboratory of Developmental Erythropoiesis, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Kevin J Tracey
- Elmezzi Graduate School of Molecular Medicine, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America.,Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| |
Collapse
|
34
|
Li G, Wu X, Yang L, He Y, Liu Y, Jin X, Yuan H. TLR4-mediated NF-κB signaling pathway mediates HMGB1-induced pancreatic injury in mice with severe acute pancreatitis. Int J Mol Med 2015; 37:99-107. [PMID: 26719855 PMCID: PMC4687439 DOI: 10.3892/ijmm.2015.2410] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 11/11/2015] [Indexed: 12/21/2022] Open
Abstract
Severe acute pancreatitis (SAP) is an extremely dangerous acute abdominal disorder which causes multiple complications and has a high mortality rate. Previous research has suggested that high-mobility group box 1 (HMGB1) plays an important role in the pathogenesis of SAP; however, the mechanisms underlying this strong correlation remain unclear. In this study, to further investigate whether HMGB1 acts as a stimulating factor, and whether Toll-like receptor 4 (TLR4) acts as its major mediator in the development of pancreatic injury during SAP, recombinant human HMGB1 (rhHMGB1) and TLR4-deficient mice were used. We found that HMGB1 and TLR4 were highly expressed, and nuclear factor-κB (NF-κB) was activated in our mouse model of SAP. We noted that the rhHMGB1 pancreas-targeted injection activated the TLR4-mediated NF-κB signaling pathway and induced pancreatic injury in wild-type mice. In TLR4-deficient mice, the rhHMGB1-induced activation of NF-κB and pathological changes in the pancreas were less evident than in wild-type mice. Therefore, this study provides evidence that HMGB1 promotes the pathogenesis of pancreatitis, and its downstream TLR4-mediated NF-κB signaling pathway is a potential important mediator in the development of this form of pancreatic injury.
Collapse
Affiliation(s)
- Gang Li
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xuejun Wu
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Le Yang
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yuxiang He
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yang Liu
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xing Jin
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Hai Yuan
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
35
|
Li G, Wu X, Yang L, He Y, Liu Y, Jin X, Yuan H. TLR4-mediated NF-κB signaling pathway mediates HMGB1-induced pancreatic injury in mice with severe acute pancreatitis. Int J Mol Med 2015; 38:1313. [PMID: 27573568 PMCID: PMC5029970 DOI: 10.3892/ijmm.2016.2707] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 11/11/2015] [Indexed: 12/17/2022] Open
Affiliation(s)
- Gang Li
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xuejun Wu
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Le Yang
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yuxiang He
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yang Liu
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xing Jin
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Hai Yuan
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
36
|
Mcdonald KA, Huang H, Tohme S, Loughran P, Ferrero K, Billiar T, Tsung A. Toll-like receptor 4 (TLR4) antagonist eritoran tetrasodium attenuates liver ischemia and reperfusion injury through inhibition of high-mobility group box protein B1 (HMGB1) signaling. Mol Med 2015; 20:639-48. [PMID: 25375408 DOI: 10.2119/molmed.2014.00076] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 10/20/2014] [Indexed: 01/10/2023] Open
Abstract
Toll-like receptor 4 (TLR4) is ubiquitously expressed on parenchymal and immune cells of the liver and is the most studied TLR responsible for the activation of proinflammatory signaling cascades in liver ischemia and reperfusion (I/R). Since pharmacological inhibition of TLR4 during the sterile inflammatory response of I/R has not been studied, we sought to determine whether eritoran, a TLR4 antagonist trialed in sepsis, could block hepatic TLR4-mediated inflammation and end organ damage. When C57BL/6 mice were pretreated with eritoran and subjected to warm liver I/R, there was significantly less hepatocellular injury compared to control counterparts. Additionally, we found that eritoran is protective in liver I/R through inhibition of high-mobility group box protein B1 (HMGB1)-mediated inflammatory signaling. When eritoran was administered in conjunction with recombinant HMGB1 during liver I/R, there was significantly less injury, suggesting that eritoran blocks the HMGB1-TLR4 interaction. Not only does eritoran attenuate TLR4-dependent HMGB1 release in vivo, but this TLR4 antagonist also dampened HMGB1's release from hypoxic hepatocytes in vitro and thereby weakened HMGB1's activation of innate immune cells. HMGB1 signaling through TLR4 makes an important contribution to the inflammatory response seen after liver I/R. This study demonstrates that novel blockade of HMGB1 by the TLR4 antagonist eritoran leads to the amelioration of liver injury.
Collapse
Affiliation(s)
- Kerry-Ann Mcdonald
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Hai Huang
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Samer Tohme
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Patricia Loughran
- Center for Biologic Imaging, Department of Cell Biology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Kimberly Ferrero
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Timothy Billiar
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
37
|
Abe A, Kuwata T, Yamauchi C, Higuchi Y, Ochiai A. High Mobility Group Box1 (HMGB1) released from cancer cells induces the expression of pro-inflammatory cytokines in peritoneal fibroblasts. Pathol Int 2015; 64:267-75. [PMID: 24965109 DOI: 10.1111/pin.12167] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 04/13/2014] [Indexed: 11/28/2022]
Abstract
High Mobility Group Box1 protein (HMGB1), one of the mediators of inflammation, is associated with tumorigenesis. The HMGB1-Receptor for advanced glycation end-products (RAGE) in gastric adenocarcinoma tissues promoted gastric cancer growth, however, there are no reports concerning the relationship between the expression of HMGB1 in gastric cancer and cancer-related inflammation. Fibroblasts exist most abundantly on cancer tissue where inflammation occurs. So, we studied the effects of HMGB1 released from cancer cells on the fibroblasts. The expression of HMGB1 in cancer cells and nuclear factor-kappa B (NF-kB) in fibroblasts were evaluated immunohistochemically in human gastric cancer specimens. Cytoplasmic HMGB1 expression in the cancer cells and nuclear translocation of NF-kB in fibroblasts were detected at deeper invasion. To determine whether HMGB1 released from cancer cells induces the expression of pro-inflammatory cytokines in fibroblasts, we analyzed the activation of Toll-like receptor (TLR) signaling. Fibroblasts stimulated by recombinant HMGB1 and the HSC44PE-conditioned medium showed the phosphorylation of Interleukin-1 receptor associated-kinase 4 (IRAK4), nuclear translocation of NF-kB, and enhanced pro-inflammatory cytokine expression. Treatment with HSC44PE-conditioned-medium transfected with siRNA-HMGB1 reduced the expressions of pro-inflammatory cytokines in the fibroblasts. We propose that HMGB1 released from cancer cells induces the expression of pro-inflammatory cytokines in peritoneal fibroblasts through the HMGB1-TLR2/4 pathway.
Collapse
Affiliation(s)
- Anna Abe
- Laboratory of Cancer Biology, Department of Integrated Bioscience, Graduate School of Frontier Science, The University of Tokyo; Pathology Division, Research Center for Innovative Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | | | | | | | | |
Collapse
|
38
|
Qing DY, Conegliano D, Shashaty MGS, Seo J, Reilly JP, Worthen GS, Huh D, Meyer NJ, Mangalmurti NS. Red blood cells induce necroptosis of lung endothelial cells and increase susceptibility to lung inflammation. Am J Respir Crit Care Med 2015; 190:1243-54. [PMID: 25329368 DOI: 10.1164/rccm.201406-1095oc] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
RATIONALE Red blood cell (RBC) transfusions are associated with increased risk of acute respiratory distress syndrome (ARDS) in the critically ill, yet the mechanisms for enhanced susceptibility to ARDS conferred by RBC transfusions remain unknown. OBJECTIVES To determine the mechanisms of lung endothelial cell (EC) High Mobility Group Box 1 (HMGB1) release following exposure to RBCs and to determine whether RBC transfusion increases susceptibility to lung inflammation in vivo through release of the danger signal HMGB1. METHODS In vitro studies examining human lung EC viability and HMGB1 release following exposure to allogenic RBCs were conducted under static conditions and using a microengineered model of RBC perfusion. The plasma from transfused and nontransfused patients with severe sepsis was examined for markers of cellular injury. A murine model of RBC transfusion followed by LPS administration was used to determine the effects of RBC transfusion and HMGB1 release on LPS-induced lung inflammation. MEASUREMENTS AND MAIN RESULTS After incubation with RBCs, lung ECs underwent regulated necrotic cell death (necroptosis) and released the essential mediator of necroptosis, receptor-interacting serine/threonine-protein kinase 3 (RIP3), and HMGB1. RIP3 was detectable in the plasma of patients with severe sepsis, and was increased with blood transfusion and among nonsurvivors of sepsis. RBC transfusion sensitized mice to LPS-induced lung inflammation through release of the danger signal HMGB1. CONCLUSIONS RBC transfusion enhances susceptibility to lung inflammation through release of HMGB1 and induces necroptosis of lung EC. Necroptosis and subsequent danger signal release is a novel mechanism of injury following transfusion that may account for the increased risk of ARDS in critically ill transfused patients.
Collapse
Affiliation(s)
- Danielle Y Qing
- 1 Pulmonary, Allergy and Critical Care Division, Perelman School of Medicine, and
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Yang H, Wang H, Ju Z, Ragab AA, Lundbäck P, Long W, Valdes-Ferrer SI, He M, Pribis JP, Li J, Lu B, Gero D, Szabo C, Antoine DJ, Harris HE, Golenbock DT, Meng J, Roth J, Chavan SS, Andersson U, Billiar TR, Tracey KJ, Al-Abed Y. MD-2 is required for disulfide HMGB1-dependent TLR4 signaling. ACTA ACUST UNITED AC 2015; 212:5-14. [PMID: 25559892 PMCID: PMC4291531 DOI: 10.1084/jem.20141318] [Citation(s) in RCA: 292] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Yang et al. show that a disulfide isoform of HMGB1, with a role in TLR4 signaling, physically interacts with and binds MD-2. MD-2 deficiency in macrophage cell lines or in primary mouse macrophages stimulated with HMGB1 implicates MD-2 in TLR4 signaling. They also identify an HGMB1 peptide inhibitor, P5779, which when administered in vivo can protect mice from acetaminophen-induced hepatoxicity, ischemia/reperfusion injury, and sepsis. Innate immune receptors for pathogen- and damage-associated molecular patterns (PAMPs and DAMPs) orchestrate inflammatory responses to infection and injury. Secreted by activated immune cells or passively released by damaged cells, HMGB1 is subjected to redox modification that distinctly influences its extracellular functions. Previously, it was unknown how the TLR4 signalosome distinguished between HMGB1 isoforms. Here we demonstrate that the extracellular TLR4 adaptor, myeloid differentiation factor 2 (MD-2), binds specifically to the cytokine-inducing disulfide isoform of HMGB1, to the exclusion of other isoforms. Using MD-2–deficient mice, as well as MD-2 silencing in macrophages, we show a requirement for HMGB1-dependent TLR4 signaling. By screening HMGB1 peptide libraries, we identified a tetramer (FSSE, designated P5779) as a specific MD-2 antagonist preventing MD-2–HMGB1 interaction and TLR4 signaling. P5779 does not interfere with lipopolysaccharide-induced cytokine/chemokine production, thus preserving PAMP-mediated TLR4–MD-2 responses. Furthermore, P5779 can protect mice against hepatic ischemia/reperfusion injury, chemical toxicity, and sepsis. These findings reveal a novel mechanism by which innate systems selectively recognize specific HMGB1 isoforms. The results may direct toward strategies aimed at attenuating DAMP-mediated inflammation while preserving antimicrobial immune responsiveness.
Collapse
Affiliation(s)
- Huan Yang
- Department of Biomedical Science and Department of Medicinal Chemistry, The Feinstein Institute for Medical Research, Manhasset, NY 11030
| | - Haichao Wang
- Department of Emergency Medicine, North Shore University Hospital, Manhasset, NY 11030
| | - Zhongliang Ju
- Department of Biomedical Science and Department of Medicinal Chemistry, The Feinstein Institute for Medical Research, Manhasset, NY 11030
| | - Ahmed A Ragab
- Department of Biomedical Science and Department of Medicinal Chemistry, The Feinstein Institute for Medical Research, Manhasset, NY 11030
| | - Peter Lundbäck
- Department of Medicine and Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, SE-171 77 Stockholm, Sweden Department of Medicine and Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, SE-171 77 Stockholm, Sweden
| | - Wei Long
- Department of Emergency Medicine, North Shore University Hospital, Manhasset, NY 11030
| | - Sergio I Valdes-Ferrer
- Department of Biomedical Science and Department of Medicinal Chemistry, The Feinstein Institute for Medical Research, Manhasset, NY 11030
| | - Mingzhu He
- Department of Biomedical Science and Department of Medicinal Chemistry, The Feinstein Institute for Medical Research, Manhasset, NY 11030
| | - John P Pribis
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Jianhua Li
- Department of Biomedical Science and Department of Medicinal Chemistry, The Feinstein Institute for Medical Research, Manhasset, NY 11030
| | - Ben Lu
- Department of Biomedical Science and Department of Medicinal Chemistry, The Feinstein Institute for Medical Research, Manhasset, NY 11030
| | - Domokos Gero
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX 77555
| | - Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX 77555
| | - Daniel J Antoine
- Medical Research Council Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool L69 3BX, England, UK
| | - Helena E Harris
- Department of Medicine and Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, SE-171 77 Stockholm, Sweden Department of Medicine and Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, SE-171 77 Stockholm, Sweden
| | - Doug T Golenbock
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Jianmin Meng
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Jesse Roth
- Department of Biomedical Science and Department of Medicinal Chemistry, The Feinstein Institute for Medical Research, Manhasset, NY 11030
| | - Sangeeta S Chavan
- Department of Biomedical Science and Department of Medicinal Chemistry, The Feinstein Institute for Medical Research, Manhasset, NY 11030
| | - Ulf Andersson
- Department of Medicine and Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, SE-171 77 Stockholm, Sweden Department of Medicine and Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, SE-171 77 Stockholm, Sweden
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Kevin J Tracey
- Department of Biomedical Science and Department of Medicinal Chemistry, The Feinstein Institute for Medical Research, Manhasset, NY 11030
| | - Yousef Al-Abed
- Department of Biomedical Science and Department of Medicinal Chemistry, The Feinstein Institute for Medical Research, Manhasset, NY 11030
| |
Collapse
|
40
|
HMGB1 promotes a p38MAPK associated non-infectious inflammatory response pathway in human fetal membranes. PLoS One 2014; 9:e113799. [PMID: 25469638 PMCID: PMC4254744 DOI: 10.1371/journal.pone.0113799] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 10/30/2014] [Indexed: 11/24/2022] Open
Abstract
Objective Spontaneous preterm birth (PTB) and preterm prelabor rupture of membranes (pPROM) are major pregnancy complications often associated with a fetal inflammatory response. Biomolecular markers of this fetal inflammatory response to both infectious and non-infectious risk factors and their contribution to PTB and pPROM mechanism are still unclear. This study examined fetal membrane production, activation and mechanistic properties of high mobility group box 1 (HMGB1) as a contributor of the non-infectious fetal inflammatory response. Materials and Methods HMGB1 transcripts and active HMGB1 were profiled in fetal membranes and amniotic fluids collected from PTB and normal term birth. In vitro, normal term not in labor fetal membranes were exposed to lipopolysaccharide (LPS) and water soluble cigarette smoke extract (CSE). HMGB1-transcripts and its protein concentrations were documented by RT-PCR and ELISA. Recombinant HMGB1 treated membranes and media were subjected to RT-PCR for HMGB1 receptors, mitogen activated protein kinase pathway analysis, cytokine levels, and Western blot for p38MAPK. Results HMGB1 expression and its active forms were higher in PTB and pPROM than normal term membranes and amniotic fluid samples. Both LPS and CSE enhanced HMGB1 expression and release in vitro. Fetal membrane exposure to HMGB1 resulted in increased expression of TLR2 and 4 and dose-dependent activation of p38MAPK-mediated inflammation. Conclusions HMGB1 increase by fetal membrane cells in response to either oxidative stress or infection can provide a positive feedback loop generating non-infectious inflammatory activation. Activation of p38MAPK by HMGB1 promotes development of the senescence phenotype and senescence associated sterile inflammation. HMGB1 activity is an important regulator of the fetal inflammatory response regardless of infection.
Collapse
|
41
|
Ju Z, Chavan SS, Antoine DJ, Dancho M, Tsaava T, Li J, Lu B, Levine YA, Stiegler A, Tamari Y, Al-Abed Y, Roth J, Tracey KJ, Yang H. Sequestering HMGB1 via DNA-conjugated beads ameliorates murine colitis. PLoS One 2014; 9:e103992. [PMID: 25127031 PMCID: PMC4134190 DOI: 10.1371/journal.pone.0103992] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 07/09/2014] [Indexed: 01/03/2023] Open
Abstract
Inflammatory bowel disease (IBD) is chronic inflammation of the gastrointestinal tract that affects millions of people worldwide. Although the etiology of IBD is not clear, it is known that products from stressed cells and enteric microbes promote intestinal inflammation. High mobility group box 1 (HMGB1), originally identified as a nuclear DNA binding protein, is a cytokine-like protein mediator implicated in infection, sterile injury, autoimmune disease, and IBD. Elevated levels of HMGB1 have been detected in inflamed human intestinal tissues and in feces of IBD patients and mouse models of colitis. Neutralizing HMGB1 activity by administration of anti-HMGB1 antibodies or HMGB1-specific antagonist improves clinical outcomes in animal models of colitis. Since HMGB1 binds to DNA with high affinity, here we developed a novel strategy to sequester HMGB1 using DNA immobilized on sepharose beads. Screening of DNA-bead constructs revealed that B2 beads, one linear form of DNA conjugated beads, bind HMGB1 with high affinity, capture HMGB1 ex vivo from endotoxin-stimulated RAW 264.7 cell supernatant and from feces of mice with colitis. Oral administration of B2 DNA beads significantly improved body weight, reduced colon injury, and suppressed colonic and circulating cytokine levels in mice with spontaneous colitis (IL-10 knockout) and with dextran sulfate sodium-induced colitis. Thus, DNA beads reduce inflammation by sequestering HMGB1 and may have therapeutic potential for the treatment of IBD.
Collapse
Affiliation(s)
- Zhongliang Ju
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Sangeeta S. Chavan
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Daniel J. Antoine
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Meghan Dancho
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Teá Tsaava
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Jianhua Li
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Ben Lu
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Yaakov A. Levine
- SetPoint Medical Corporation, Valencia, California, United States of America
| | - Andrew Stiegler
- Circulatory Technology Inc., Oyster Bay, New York, United States of America
| | - Yehuda Tamari
- Circulatory Technology Inc., Oyster Bay, New York, United States of America
| | - Yousef Al-Abed
- Medicinal Chemistry, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Jesse Roth
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Kevin J. Tracey
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Huan Yang
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
- * E-mail:
| |
Collapse
|
42
|
Spinal HMGB1 induces TLR4-mediated long-lasting hypersensitivity and glial activation and regulates pain-like behavior in experimental arthritis. Pain 2014; 155:1802-1813. [PMID: 24954167 DOI: 10.1016/j.pain.2014.06.007] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 06/11/2014] [Accepted: 06/13/2014] [Indexed: 12/16/2022]
Abstract
Extracellular high mobility group box-1 protein (HMGB1) plays important roles in the pathogenesis of nerve injury- and cancer-induced pain. However, the involvement of spinal HMGB1 in arthritis-induced pain has not been examined previously and is the focus of this study. Immunohistochemistry showed that HMGB1 is expressed in neurons and glial cells in the spinal cord. Subsequent to induction of collagen antibody-induced arthritis (CAIA), Hmgb1 mRNA and extranuclear protein levels were significantly increased in the lumbar spinal cord. Intrathecal (i.t.) injection of a neutralizing anti-HMGB1 monoclonal antibody or recombinant HMGB1 box A peptide (Abox), which each prevent extracellular HMGB1 activities, reversed CAIA-induced mechanical hypersensitivity. This occurred during ongoing joint inflammation as well as during the postinflammatory phase, indicating that spinal HMGB1 has an important function in nociception persisting beyond episodes of joint inflammation. Importantly, only HMGB1 in its partially oxidized isoform (disulfide HMGB1), which activates toll-like receptor 4 (TLR4), but not in its fully reduced or fully oxidized isoforms, evoked mechanical hypersensitivity upon i.t. injection. Interestingly, although both male and female mice developed mechanical hypersensitivity in response to i.t. HMGB1, female mice recovered faster. Furthermore, the pro-nociceptive effect of i.t. injection of HMGB1 persisted in Tlr2- and Rage-, but was absent in Tlr4-deficient mice. The same pattern was observed for HMGB1-induced spinal microglia and astrocyte activation and cytokine induction. These results demonstrate that spinal HMGB1 contributes to nociceptive signal transmission via activation of TLR4 and point to disulfide HMGB1 inhibition as a potential therapeutic strategy in treatment of chronic inflammatory pain.
Collapse
|
43
|
Amin AR, Islam ABMMK. Genomic analysis and differential expression of HMG and S100A family in human arthritis: upregulated expression of chemokines, IL-8 and nitric oxide by HMGB1. DNA Cell Biol 2014; 33:550-65. [PMID: 24905701 DOI: 10.1089/dna.2013.2198] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We applied global gene expression arrays, quantitative real-time PCR, immunostaining, and functional assays to untangle the role of High Mobility Groups proteins (HMGs) in human osteoarthritis (OA)-affected cartilage. Bioinformatics analysis showed increased mRNA expression of Damage-Associated Molecular Patterns (DAMPs): HMGA, HMGB, HMGN, SRY, LEF1, HMGB1, MMPs, and HMG/RAGE-interacting molecules (spondins and S100A4, S100A10, and S100A11) in human OA-affected cartilage as compared with normal cartilage. HMGB2 was down-regulated in human OA-affected cartilage. Immunohistological staining identified HMGB1 in chondrocytes in the superficial cartilage. Cells of the deep cartilage and subchondral bone showed increased expression of HMGB1 in OA-affected cartilage. HMGB1 was expressed in the nucleus, cytosol, and extracellular milieu of chondrocytes in cartilage. Furthermore, HMGB1 was spontaneously released from human OA-affected cartilage in ex vivo conditions. The effects of recombinant HMGB1 was tested on human cartilage and chondrocytes in vitro. HMGB1 stimulated mRNA of 2 NFκB gene enhancers (NFκB1 and NFκB2), 16 CC and CXC chemokines (IL-8, CCL2, CCL20, CCL3, CCL3L1, CCL3L3, CCL4, CCL4L1, CCL4L2, CCL5, CCL8, CXCL1, CXCL10, CXCL2, CXCL3, and CXCL6) by ≥10-fold. Furthermore, HMGB1 and IL-1β and/or tumor necrosis factor α (but not HMGI/Y) also significantly induced inducible nitric oxide synthase, NO, and interleukin (IL)-8 production in human cartilage and chondrocytes. The recombinant HMGB1 utilized in this study shows properties that are similar to disulfide-HMGB1. The differential, stage and/or tissue-specific expression of HMGB1, HMGB2, and S100A in cartilage was associated with regions of pathology and/or cartilage homeostasis in human OA-affected cartilage. Noteworthy similarities in the expression of mouse and human HMGB1 and HMGB2 were conserved in normal and arthritis-affected cartilage. The multifunctional forms of HMGB1 and S100A could perpetuate damage-induced cartilage inflammation in late-stage OA-affected joints similar to sterile inflammation. The paracrine effects of HMGB1 can induce chemokines and NO that are perceived to change cartilage homeostasis in human OA-affected cartilage.
Collapse
Affiliation(s)
- Ashok R Amin
- 1 Department of Bio-Medical Engineering, Virginia Tech and Virginia College of Osteopathic Medicine , RheuMatrix, Inc., Blacksburg, Virginia
| | | |
Collapse
|
44
|
Kang R, Zhang Q, Hou W, Yan Z, Chen R, Bonaroti J, Bansal P, Billiar TR, Tsung A, Wang Q, Bartlett DL, Whitcomb DC, Chang EB, Zhu X, Wang H, Lu B, Tracey KJ, Cao L, Fan XG, Lotze MT, Zeh HJ, Tang D. Intracellular Hmgb1 inhibits inflammatory nucleosome release and limits acute pancreatitis in mice. Gastroenterology 2014; 146:1097-107. [PMID: 24361123 PMCID: PMC3965592 DOI: 10.1053/j.gastro.2013.12.015] [Citation(s) in RCA: 255] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 12/08/2013] [Accepted: 12/09/2013] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS High mobility group box 1 (HMGB1) is an abundant protein that regulates chromosome architecture and also functions as a damage-associated molecular pattern molecule. Little is known about its intracellular roles in response to tissue injury or during subsequent local and systemic inflammatory responses. We investigated the function of Hmgb1 in mice after induction of acute pancreatitis. METHODS We utilized a Cre/LoxP system to create mice with pancreas-specific disruption in Hmbg1 (Pdx1-Cre; HMGB1(flox/flox) mice). Acute pancreatitis was induced in these mice (HMGB1(flox/flox) mice served as controls) after injection of l-arginine or cerulein. Pancreatic tissues and acinar cells were collected and analyzed by histologic, immunoblot, and immunohistochemical analyses. RESULTS After injection of l-arginine or cerulein, Pdx1-Cre; HMGB1(flox/flox) mice developed acute pancreatitis more rapidly than controls, with increased mortality. Pancreatic tissues of these mice also had higher levels of serum amylase, acinar cell death, leukocyte infiltration, and interstitial edema than controls. Pancreatic tissues and acinar cells collected from the Pdx1-Cre; HMGB1(flox/flox) mice after l-arginine or cerulein injection demonstrated nuclear catastrophe with greater nucleosome release when compared with controls, along with increased phosphorylation/activation of RELA nuclear factor κB, degradation of inhibitor of κB, and phosphorylation of mitogen-activated protein kinase. Inhibitors of reactive oxygen species (N-acetyl-l-cysteine) blocked l-arginine-induced DNA damage, necrosis, apoptosis, release of nucleosomes, and activation of nuclear factor κB in pancreatic tissues and acinar cells from Pdx1-Cre; HMGB1(flox/flox) and control mice. Exogenous genomic DNA and recombinant histone H3 proteins significantly induced release of HMGB1 from mouse macrophages; administration of antibodies against H3 to mice reduced serum levels of HMGB1 and increased survival after l-arginine injection. CONCLUSIONS In 2 mouse models of acute pancreatitis, intracellular HMGB1 appeared to prevent nuclear catastrophe and release of inflammatory nucleosomes to block inflammation. These findings indicate a role for the innate immune response in tissue damage.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Qiuhong Zhang
- Department of Surgery University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Wen Hou
- Department of Surgery University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Zhenwen Yan
- Department of Surgery University of Pittsburgh, Pittsburgh, PA 15219, USA, Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Ruochan Chen
- Department of Surgery University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Jillian Bonaroti
- Department of Surgery University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Preeti Bansal
- Department of Surgery University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Timothy R. Billiar
- Department of Surgery University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Allan Tsung
- Department of Surgery University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Qingde Wang
- Department of Surgery University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - David L. Bartlett
- Department of Surgery University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - David C Whitcomb
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Eugene B. Chang
- Department of Medicine, University of Chicago; Chicago, IL 60637, USA
| | - Xiaorong Zhu
- Department of Medicine, University of Chicago; Chicago, IL 60637, USA
| | - Haichao Wang
- Department of Emergency Medicine, North Shore University Hospital, Manhasset, New York 11030, USA
| | - Ben Lu
- Laboratory of Biomedical Science, Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Kevin J. Tracey
- Laboratory of Biomedical Science, Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Lizhi Cao
- Department of Pediatrics Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases and State Key Lab of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Michael T. Lotze
- Department of Surgery University of Pittsburgh, Pittsburgh, PA 15219, USA,Correspondence should be directed to Dr. Daolin Tang (), Dr. Rui Kang (), Dr. Michael T. Lotze (), or Dr. Herbert J. Zeh ()
| | - Herbert J. Zeh
- Department of Surgery University of Pittsburgh, Pittsburgh, PA 15219, USA,Correspondence should be directed to Dr. Daolin Tang (), Dr. Rui Kang (), Dr. Michael T. Lotze (), or Dr. Herbert J. Zeh ()
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
45
|
Baicalin Inhibits High-Mobility Group Box 1 Release and Improves Survival in Experimental Sepsis. Shock 2014; 41:324-30. [DOI: 10.1097/shk.0000000000000122] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
46
|
Shin HJ, Kim H, Heo RW, Kim HJ, Choi WS, Kwon HM, Roh GS. Tonicity-responsive enhancer binding protein haplodeficiency attenuates seizure severity and NF-κB-mediated neuroinflammation in kainic acid-induced seizures. Cell Death Differ 2014; 21:1095-106. [PMID: 24608792 DOI: 10.1038/cdd.2014.29] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/26/2014] [Accepted: 01/30/2014] [Indexed: 12/21/2022] Open
Abstract
Kainic acid (KA)-induced seizures followed by neuronal death are associated with neuroinflammation and blood-brain barrier (BBB) leakage. Tonicity-responsive enhancer binding protein (TonEBP) is known as a transcriptional factor activating osmoprotective genes, and in brain, it is expressed in neuronal nuclei. Thus dysregulation of TonEBP may be involved in the pathology of KA-induced seizures. Here we used TonEBP heterozygote (+/-) mice to study the roles of TonEBP. Electroencephalographic study showed that TonEBP (+/-) mice reduced seizure frequency and severity compared with wild type during KA-induced status epilepticus. Immunohistochemistry and western blotting analysis showed that KA-induced neuroinflammation and BBB leakage were dramatically reduced in TonEBP (+/-) mice. Similarly, TonEBP-specific siRNA reduced glutamate-induced death in HT22 hippocampal neuronal cells. TonEBP haplodeficiency prevented KA-induced nuclear translocation of NF-κB p65 and attenuated inflammation. Our findings identify TonEBP as a critical regulator of neuroinflammation and BBB leakage in KA-induced seizures, which suggests TonEBP as a good therapeutic target.
Collapse
Affiliation(s)
- H J Shin
- Department of Anatomy and Neurobiology, Institute of Health Sciences, Medical Research Center for Neural Dysfunction, Gyeongsang National University School of Medicine, Gyeongnam, Republic of Korea
| | - H Kim
- Department of Anatomy and Neurobiology, Institute of Health Sciences, Medical Research Center for Neural Dysfunction, Gyeongsang National University School of Medicine, Gyeongnam, Republic of Korea
| | - R W Heo
- Department of Anatomy and Neurobiology, Institute of Health Sciences, Medical Research Center for Neural Dysfunction, Gyeongsang National University School of Medicine, Gyeongnam, Republic of Korea
| | - H J Kim
- Department of Anatomy and Neurobiology, Institute of Health Sciences, Medical Research Center for Neural Dysfunction, Gyeongsang National University School of Medicine, Gyeongnam, Republic of Korea
| | - W S Choi
- Department of Anatomy and Neurobiology, Institute of Health Sciences, Medical Research Center for Neural Dysfunction, Gyeongsang National University School of Medicine, Gyeongnam, Republic of Korea
| | - H M Kwon
- School of Nano-Biotechnology and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - G S Roh
- Department of Anatomy and Neurobiology, Institute of Health Sciences, Medical Research Center for Neural Dysfunction, Gyeongsang National University School of Medicine, Gyeongnam, Republic of Korea
| |
Collapse
|
47
|
Zhou H, Ji X, Wu Y, Xuan J, Qi Z, Shen L, Lan L, Li Q, Yin Z, Li Z, Zhao Z. A dual-role of Gu-4 in suppressing HMGB1 secretion and blocking HMGB1 pro-inflammatory activity during inflammation. PLoS One 2014; 9:e89634. [PMID: 24603876 PMCID: PMC3945943 DOI: 10.1371/journal.pone.0089634] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/21/2014] [Indexed: 12/04/2022] Open
Abstract
Background High mobility group box 1(HMGB1) was first recognized as a nuclear protein that increased the chromatin remodeling and regulates transcription of many genes. In recent years, HMGB1 has been identified as a critical “late” pro-inflammatory mediator due to its unique secretion pattern and lethal effects in sepsis. Therefore, preventing the active release and inhibiting the pro-inflammatory activity of HMGB1 become promising strategies for the treatment of sepsis. Here, we reported the therapeutic effects of Gu-4, a lactosyl derivative, on sepsis and the underlying molecular mechanisms. Methodology/Principal Findings In an experimental rat model of sepsis caused by cecal ligation and puncture (CLP), Gu-4 administration prominently attenuated lung injury and improved the survival of the septic animals, which was positively correlated with the decrease of the serum HMGB1 level. Using RAW264.7 macrophage cell line, we further showed that Gu-4 significantly suppressed the lipopolysaccharide (LPS)-induced release and cytoplasmic translocation of HMGB1. Moreover, Gu-4 not only dose-dependently attenuated recombinant human (rhHMGB1)-induced production of TNF-α, IL-6, and IL-1β in THP-1 cells, but also greatly inhibited the adhesion of rhHMGB1-challenged THP-1 cells to HUVECs. Analyses of flow cytometry demonstrated that Gu-4 could effectively reduce the activation of CD11b elicited by rhHMGB1. Western blot analyses revealed that Gu-4 treatment could partially block the rhHMGB1-induced activation of ERK and NF-κB signalings. Meanwhile, CD11b knockdown also obviously attenuated the rhHMGB1-induced phosphorylations of ERK and IKKα/β. Conclusions/Significance Taken together, our results suggest that Gu-4 possesses a therapeutic potential in the treatment of sepsis probably via inhibiting the LPS-induced release of HMGB1 from macrophages and via suppressing the pro-inflammatory activity of HMGB1.
Collapse
Affiliation(s)
- HuiTing Zhou
- Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, PR China
| | - XueMei Ji
- Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, PR China
| | - Yun Wu
- Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, PR China
| | - Ju Xuan
- Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, PR China
| | - ZhiLin Qi
- Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, PR China
| | - Lei Shen
- Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, PR China
| | - Lei Lan
- Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, PR China
- Collaborative Innovation Center of Biomedicine for Public Hygiene Emergency and Critical Care, Jiangsu Life Sciences & Technology Innovation Park, Nanjing, Jiangsu, PR China
| | - Qing Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, PR China
| | - ZhiMin Yin
- Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, PR China
- Collaborative Innovation Center of Biomedicine for Public Hygiene Emergency and Critical Care, Jiangsu Life Sciences & Technology Innovation Park, Nanjing, Jiangsu, PR China
| | - ZhongJun Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, PR China
| | - ZhiHui Zhao
- Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, PR China
- Collaborative Innovation Center of Biomedicine for Public Hygiene Emergency and Critical Care, Jiangsu Life Sciences & Technology Innovation Park, Nanjing, Jiangsu, PR China
- * E-mail:
| |
Collapse
|
48
|
Wang M, Wang L, Guo Y, Zhou Z, Yi Q, Zhang D, Zhang H, Liu R, Song L. A high mobility group box 1 (HMGB1) gene from Chlamys farreri and the DNA-binding ability and pro-inflammatory activity of its recombinant protein. FISH & SHELLFISH IMMUNOLOGY 2014; 36:393-400. [PMID: 24378681 DOI: 10.1016/j.fsi.2013.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 11/26/2013] [Accepted: 12/18/2013] [Indexed: 06/03/2023]
Abstract
High-mobility group box 1 (HMGB1) protein, a highly conserved DNA binding protein, plays an important role in maintaining nucleosome structures, transcription, and inflammation. In the present research, a cDNA of 1268 bp for the Zhikong scallop Chlamys farreri HMGB1 (designed as CfHMGB1) was cloned via rapid amplification of cDNA ends (RACE) technique and expression sequence tag (EST) analysis. The complete cDNA sequence of CfHMGB1 contained an open reading frame (ORF) of 648 bp, which encoded a protein of 215 amino acids. The amino acid sequence of CfHMGB1 shared 53-57% similarity with other identified HMGB1s. There were two HMG domains, two low complexity regions and a conserved acidic tail in the amino acid sequence of CfHMGB1. The mRNA transcripts of CfHMGB1 were constitutively expressed in all the tested tissues, including haemocytes, muscle, mantle, gill, hepatopancreas, kidney and gonad, with the highest expression level in hepatopancreas. The mRNA expression profiles of CfHMGB1 in haemocytes after the stimulation with different pathogen-associated molecular patterns (PAMPs), including lipopolysaccharide (LPS), peptidoglycan (PGN) and glucan (Glu), were similar with an up-regulation in the early stage and then recovered to the original level. The recombinant CfHMGB1 protein could bind double-stranded DNA and induce the release of TNF-α activity in mixed primary culture of scallop haemocytes. These results collectively indicated that CfHMGB1, with DNA-binding ability and pro-inflammatory activity, could play an important role in the immune response of scallops.
Collapse
Affiliation(s)
- Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China
| | - Ying Guo
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Zhou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China
| | - Qilin Yi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daoxiang Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China
| | - Rui Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China
| | - Linsheng Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China.
| |
Collapse
|
49
|
Valdés-Ferrer SI, Rosas-Ballina M, Olofsson PS, Lu B, Dancho ME, Ochani M, Li JH, Scheinerman JA, Katz DA, Levine YA, Hudson LK, Yang H, Pavlov VA, Roth J, Blanc L, Antoine DJ, Chavan SS, Andersson U, Diamond B, Tracey KJ. HMGB1 mediates splenomegaly and expansion of splenic CD11b+ Ly-6C(high) inflammatory monocytes in murine sepsis survivors. J Intern Med 2013; 274:381-90. [PMID: 23808943 PMCID: PMC4223507 DOI: 10.1111/joim.12104] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/28/2013] [Indexed: 01/26/2023]
Abstract
BACKGROUND More than 500,000 hospitalized patients survive severe sepsis annually in the USA. Recent epidemiological evidence, however, demonstrated that these survivors have significant morbidity and mortality, with 3-year fatality rates higher than 70%. To investigate the mechanisms underlying persistent functional impairment in sepsis survivors, here we developed a model to study severe sepsis survivors following cecal ligation and puncture (CLP). METHODS Sepsis was induced in mice by CLP and survivors were followed for twelve weeks. Spleen and blood were collected and analyzed at different time points post-sepsis. RESULTS We observed that sepsis survivors developed significant splenomegaly. Analysis of the splenic cellular compartments revealed a major expansion of the inflammatory CD11b+ Ly-6CHigh pool. Serum high-mobility group box 1 (HMGB1) levels in the sepsis surviving mice were significantly elevated for 4-6 weeks after post-sepsis, and administration of an anti-HMGB1 monoclonal antibody significantly attenuated splenomegaly as well as splenocyte priming. Administration of recombinant HMGB1 to naive mice induced similar splenomegaly, leukocytosis and splenocyte priming as observed in sepsis survivors. Interestingly analysis of circulating HMGB1 from sepsis survivors by mass spectroscopy demonstrated a stepwise increase of reduced form of HMGB1 (with known chemo-attractant properties) during the first 3 weeks, followed by disulphide form (with known inflammatory properties) 4-8 weeks after CLP. DISCUSSION Our results indicate that prolonged elevation of HMGB1 is a necessary and sufficient mediator of splenomegaly and splenocyte expansion, as well as splenocyte inflammatory priming in murine severe sepsis survivors.
Collapse
Affiliation(s)
- S I Valdés-Ferrer
- The Laboratory of Biomedical Sciences, The Feinstein Institute for Medical ResearchManhasset, NY, USA
- The Elmezzi Graduate School of Molecular MedicineManhasset, NY, USA
| | - M Rosas-Ballina
- Focal Area Infection Biology, Biozentrum, University of BaselBasel, Switzerland
| | - P S Olofsson
- The Laboratory of Biomedical Sciences, The Feinstein Institute for Medical ResearchManhasset, NY, USA
| | - B Lu
- The Laboratory of Biomedical Sciences, The Feinstein Institute for Medical ResearchManhasset, NY, USA
- The Elmezzi Graduate School of Molecular MedicineManhasset, NY, USA
| | - M E Dancho
- The Laboratory of Biomedical Sciences, The Feinstein Institute for Medical ResearchManhasset, NY, USA
| | - M Ochani
- The Laboratory of Biomedical Sciences, The Feinstein Institute for Medical ResearchManhasset, NY, USA
| | - J H Li
- The Laboratory of Biomedical Sciences, The Feinstein Institute for Medical ResearchManhasset, NY, USA
| | - J A Scheinerman
- The Laboratory of Biomedical Sciences, The Feinstein Institute for Medical ResearchManhasset, NY, USA
| | - D A Katz
- The Laboratory of Biomedical Sciences, The Feinstein Institute for Medical ResearchManhasset, NY, USA
| | - Y A Levine
- SetPoint Medical, Valen Inc.Valencia, CA, USA
| | - L K Hudson
- The Laboratory of Biomedical Sciences, The Feinstein Institute for Medical ResearchManhasset, NY, USA
| | - H Yang
- The Laboratory of Biomedical Sciences, The Feinstein Institute for Medical ResearchManhasset, NY, USA
| | - V A Pavlov
- The Laboratory of Biomedical Sciences, The Feinstein Institute for Medical ResearchManhasset, NY, USA
| | - J Roth
- The Laboratory of Biomedical Sciences, The Feinstein Institute for Medical ResearchManhasset, NY, USA
| | - L Blanc
- The Laboratory of Biomedical Sciences, The Feinstein Institute for Medical ResearchManhasset, NY, USA
| | - D J Antoine
- MRC Centre for Drug Safety Science, Molecular and Clinical Pharmacology, University of LiverpoolLiverpool, UK
| | - S S Chavan
- The Laboratory of Biomedical Sciences, The Feinstein Institute for Medical ResearchManhasset, NY, USA
| | - U Andersson
- Department of Women’s and Children’s Health, Karolinska Institute and Karolinska University HospitalStockholm, Sweden
| | - B Diamond
- The Laboratory of Biomedical Sciences, The Feinstein Institute for Medical ResearchManhasset, NY, USA
| | - K J Tracey
- The Laboratory of Biomedical Sciences, The Feinstein Institute for Medical ResearchManhasset, NY, USA
| |
Collapse
|
50
|
Nativel B, Marimoutou M, Thon-Hon VG, Gunasekaran MK, Andries J, Stanislas G, Planesse C, Da Silva CR, Césari M, Iwema T, Gasque P, Viranaicken W. Soluble HMGB1 is a novel adipokine stimulating IL-6 secretion through RAGE receptor in SW872 preadipocyte cell line: contribution to chronic inflammation in fat tissue. PLoS One 2013; 8:e76039. [PMID: 24073286 PMCID: PMC3779194 DOI: 10.1371/journal.pone.0076039] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 08/23/2013] [Indexed: 11/18/2022] Open
Abstract
Low-grade inflammation (LGI) is a central phenomenon in the genesis of obesity and insulin-resistance characterized by IL-6 in human serum. Whereas this LGI was initially thought to be mainly attributed to macrophage activation, it is now known that pre-adipocytes and adipocytes secrete several adipokines including IL-6 and participate to LGI and associated pathologies. In macrophages, HMGB1 is a nuclear yet secreted protein and acts as a cytokine to drive the production of inflammatory molecules through RAGE and TLR2/4. In this paper we tested the secretion of HMGB1 and the auto- and paracrine contribution to fat inflammation using the human preadipocyte cell line SW872 as a model. We showed that 1) human SW872 secreted actively HMGB1, 2) IL-6 production was positively linked to high levels of secreted HMGB1, 3) recombinant HMGB1 boosted IL-6 expression and this effect was mediated by the receptor RAGE and did not involve TLR2 or TLR4. These results suggest that HMGB1 is a major adipokine contributing to LGI implementation and maintenance, and can be considered as a target to develop news therapeutics in LGI associated pathologies such as obesity and type II diabetes.
Collapse
Affiliation(s)
- Brice Nativel
- Groupe de Recherche Immunopathologie et maladies Infectieuses, Université de La Réunion, Réunion, France
| | - Mery Marimoutou
- Groupe d’Etude sur l’Inflammation Chronique et l’Obésité, Université de La Réunion, Réunion, France
| | - Vincent G. Thon-Hon
- Groupe de Recherche Immunopathologie et maladies Infectieuses, Université de La Réunion, Réunion, France
| | - Manoj Kumar Gunasekaran
- Groupe d’Etude sur l’Inflammation Chronique et l’Obésité, Université de La Réunion, Réunion, France
| | - Jessica Andries
- Groupe de Recherche Immunopathologie et maladies Infectieuses, Université de La Réunion, Réunion, France
| | - Giovédie Stanislas
- Groupe de Recherche Immunopathologie et maladies Infectieuses, Université de La Réunion, Réunion, France
| | - Cynthia Planesse
- Groupe d’Etude sur l’Inflammation Chronique et l’Obésité, Université de La Réunion, Réunion, France
| | | | - Maya Césari
- Groupe d’Etude sur l’Inflammation Chronique et l’Obésité, Université de La Réunion, Réunion, France
| | - Thomas Iwema
- Groupe de Recherche Immunopathologie et maladies Infectieuses, Université de La Réunion, Réunion, France
| | - Philippe Gasque
- Groupe de Recherche Immunopathologie et maladies Infectieuses, Université de La Réunion, Réunion, France
| | - Wildriss Viranaicken
- Groupe de Recherche Immunopathologie et maladies Infectieuses, Université de La Réunion, Réunion, France
- * E-mail:
| |
Collapse
|