1
|
Zhang Y, Sun H, Huang F, Chen Y, Ding X, Zhou C, Wu Y, Zhang Q, Ma X, Wang J, Yue R, Shen L, Sun X, Ye Z. The chromatin remodeling factor Arid1a cooperates with Jun/Fos to promote osteoclastogenesis by epigenetically upregulating Siglec15 expression. J Bone Miner Res 2024; 39:775-790. [PMID: 38477755 DOI: 10.1093/jbmr/zjae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 02/09/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
Osteoporosis is characterized by an imbalance between osteoclast-mediated bone resorption and osteoblast-related bone formation, particularly increased osteoclastogenesis. However, the mechanisms by which epigenetic factors regulate osteoclast precursor differentiation during osteoclastogenesis remain poorly understood. Here, we show that the specific knockout of the chromatin remodeling factor Arid1a in bone marrow-derived macrophages (BMDMs) results in increased bone mass. The loss of Arid1a in BMDM inhibits cell-cell fusion and maturation of osteoclast precursors, thereby suppressing osteoclast differentiation. Mechanistically, Arid1a increases the chromatin access in the gene promoter region of sialic acid-binding Ig-like lectin 15 (Siglec15) by transcription factor Jun/Fos, which results in the upregulation of Siglec15 and promotion of osteoclast differentiation. However, the loss of Arid1a reprograms the chromatin structure to restrict Siglec15 expression in osteoclast precursors, thereby inhibiting BMDM differentiation into mature osteoclasts. Deleting Arid1a after ovariectomy (a model for postmenopausal bone loss) alleviated bone loss and maintained bone mass. In summary, epigenetic reprogramming mediated by Arid1a loss suppresses osteoclast differentiation and may serve as a promising therapeutic strategy for treating bone loss diseases.
Collapse
Affiliation(s)
- Yongxing Zhang
- Department of Orthopedics, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang 310009, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang 310009, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang 310009, PR China
| | - Hangxiang Sun
- Department of Orthopedics, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang 310009, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang 310009, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang 310009, PR China
| | - Fei Huang
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Yang Chen
- Department of Ultrasound, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, PR China
| | - Xiying Ding
- Department of Ultrasound, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, PR China
| | - Chenhe Zhou
- Department of Orthopedics, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang 310009, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang 310009, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang 310009, PR China
| | - Yan Wu
- Department of Orthopedics, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang 310009, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang 310009, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang 310009, PR China
| | - Qing Zhang
- Research Institute of Artificial Intelligence, Zhejiang Lab, Hangzhou, Zhejiang 311121, PR China
| | - Xiao Ma
- Research Institute of Artificial Intelligence, Zhejiang Lab, Hangzhou, Zhejiang 311121, PR China
| | - Jun Wang
- Research Institute of Artificial Intelligence, Zhejiang Lab, Hangzhou, Zhejiang 311121, PR China
| | - Rui Yue
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, PR China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, PR China
| | - Li Shen
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
- Hangzhou Innovation Center, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Xuxu Sun
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Zhaoming Ye
- Department of Orthopedics, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang 310009, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang 310009, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang 310009, PR China
| |
Collapse
|
2
|
Kretov DA, Folkes L, Mora-Martin A, Walawalkar IA, Imrat, Syedah N, Vanuytsel K, Moxon S, Murphy GJ, Cifuentes D. The miR-144/Hmgn2 regulatory axis orchestrates chromatin organization during erythropoiesis. Nat Commun 2024; 15:3821. [PMID: 38714702 PMCID: PMC11076586 DOI: 10.1038/s41467-024-47982-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 04/17/2024] [Indexed: 05/10/2024] Open
Abstract
Differentiation of stem and progenitor cells is a highly regulated process that involves the coordinated action of multiple layers of regulation. Here we show how the post-transcriptional regulatory layer instructs the level of chromatin regulation via miR-144 and its targets to orchestrate chromatin condensation during erythropoiesis. The loss of miR-144 leads to impaired chromatin condensation during erythrocyte maturation. Among the several targets of miR-144 that influence chromatin organization, the miR-144-dependent regulation of Hmgn2 is conserved from fish to humans. Our genetic probing of the miR-144/Hmgn2 regulatory axis establish that intact miR-144 target sites in the Hmgn2 3'UTR are necessary for the proper maturation of erythrocytes in both zebrafish and human iPSC-derived erythroid cells while loss of Hmgn2 rescues in part the miR-144 null phenotype. Altogether, our results uncover miR-144 and its target Hmgn2 as the backbone of the genetic regulatory circuit that controls the terminal differentiation of erythrocytes in vertebrates.
Collapse
Affiliation(s)
- Dmitry A Kretov
- Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Leighton Folkes
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Alexandra Mora-Martin
- Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Isha A Walawalkar
- Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Imrat
- Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Noreen Syedah
- Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Kim Vanuytsel
- Center for Regenerative Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Section of Hematology and Oncology, Department of Medicine, Boston Medical Center, Boston, MA, USA
- Amyloidosis Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Simon Moxon
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - George J Murphy
- Center for Regenerative Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Section of Hematology and Oncology, Department of Medicine, Boston Medical Center, Boston, MA, USA
| | - Daniel Cifuentes
- Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
3
|
Kretov DA, Folkes L, Mora-Martin A, Syedah N, Walawalkar IA, Vanyustel K, Moxon S, Murphy GJ, Cifuentes D. The miR-144/Hmgn2 regulatory axis orchestrates chromatin organization during erythropoiesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.18.549576. [PMID: 37503141 PMCID: PMC10370056 DOI: 10.1101/2023.07.18.549576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Differentiation of stem and progenitor cells is a highly regulated process that involves the coordinated action of multiple layers of regulation. Here we show how the post-transcriptional regulatory layer instructs the level of chromatin regulation via miR-144 and its targets to orchestrate chromatin condensation during erythropoiesis. The loss of miR-144 leads to impaired chromatin condensation during erythrocyte maturation. Among the several targets of miR-144 that influence chromatin organization, the miR-144-dependent regulation of Hmgn2 is conserved from fish to humans. Our genetic probing of the miR-144/Hmgn2 regulatory axis established that intact miR-144 target sites in the Hmgn2 3'UTR are necessary for the proper maturation of erythrocytes in both zebrafish and human iPSC-derived erythroid cells while loss of Hmgn2 rescues in part the miR-144 null phenotype. Altogether, our results uncover miR-144 and its target Hmgn2 as the backbone of the genetic regulatory circuit that controls the terminal differentiation of erythrocytes in vertebrates.
Collapse
|
4
|
Zhou J, Cattoglio C, Shao Y, Tirumala HP, Vetralla C, Bajikar SS, Li Y, Chen H, Wang Q, Wu Z, Tang B, Zahabiyon M, Bajic A, Meng X, Ferrie JJ, LaGrone A, Zhang P, Kim JJ, Tang J, Liu Z, Darzacq X, Heintz N, Tjian R, Zoghbi HY. A novel pathogenic mutation of MeCP2 impairs chromatin association independent of protein levels. Genes Dev 2023; 37:883-900. [PMID: 37890975 PMCID: PMC10691473 DOI: 10.1101/gad.350733.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023]
Abstract
Loss-of-function mutations in MECP2 cause Rett syndrome (RTT), a severe neurological disorder that mainly affects girls. Mutations in MECP2 do occur in males occasionally and typically cause severe encephalopathy and premature lethality. Recently, we identified a missense mutation (c.353G>A, p.Gly118Glu [G118E]), which has never been seen before in MECP2, in a young boy who suffered from progressive motor dysfunction and developmental delay. To determine whether this variant caused the clinical symptoms and study its functional consequences, we established two disease models, including human neurons from patient-derived iPSCs and a knock-in mouse line. G118E mutation partially reduces MeCP2 abundance and its DNA binding, and G118E mice manifest RTT-like symptoms seen in the patient, affirming the pathogenicity of this mutation. Using live-cell and single-molecule imaging, we found that G118E mutation alters MeCP2's chromatin interaction properties in live neurons independently of its effect on protein levels. Here we report the generation and characterization of RTT models of a male hypomorphic variant and reveal new insight into the mechanism by which this pathological mutation affects MeCP2's chromatin dynamics. Our ability to quantify protein dynamics in disease models lays the foundation for harnessing high-resolution single-molecule imaging as the next frontier for developing innovative therapies for RTT and other diseases.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030, USA
| | - Claudia Cattoglio
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, California Institute for Regenerative Medicine (CIRM) Center of Excellence, University of California, Berkeley, Berkeley, California 94720, USA
- Howard Hughes Medical Institute, Berkeley, California 94720, USA
| | - Yingyao Shao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Harini P Tirumala
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030, USA
| | - Carlo Vetralla
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, California Institute for Regenerative Medicine (CIRM) Center of Excellence, University of California, Berkeley, Berkeley, California 94720, USA
- Howard Hughes Medical Institute, Berkeley, California 94720, USA
- School of Medicine and Surgery, University of Milan-Bicocca, Milano 20126, Italy
| | - Sameer S Bajikar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030, USA
| | - Yan Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030, USA
| | - Hu Chen
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Qi Wang
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Zhenyu Wu
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Bing Tang
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Mahla Zahabiyon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030, USA
| | - Aleksandar Bajic
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030, USA
| | - Xiangling Meng
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jack J Ferrie
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, California Institute for Regenerative Medicine (CIRM) Center of Excellence, University of California, Berkeley, Berkeley, California 94720, USA
- Howard Hughes Medical Institute, Berkeley, California 94720, USA
| | - Anel LaGrone
- Advanced Technology Cores, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Ping Zhang
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jean J Kim
- Advanced Technology Cores, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Cellular Biology, Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jianrong Tang
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, California Institute for Regenerative Medicine (CIRM) Center of Excellence, University of California, Berkeley, Berkeley, California 94720, USA
| | - Nathaniel Heintz
- Laboratory of Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | - Robert Tjian
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, California Institute for Regenerative Medicine (CIRM) Center of Excellence, University of California, Berkeley, Berkeley, California 94720, USA
- Howard Hughes Medical Institute, Berkeley, California 94720, USA
| | - Huda Y Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA;
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
5
|
Bartolomeo CS, Lemes RMR, Morais RL, Pereria GC, Nunes TA, Costa AJ, de Barros Maciel RM, Braconi CT, Maricato JT, Janini LMR, Okuda LH, Lee KS, Prado CM, Ureshino RP, Stilhano RS. SARS-CoV-2 infection and replication kinetics in different human cell types: The role of autophagy, cellular metabolism and ACE2 expression. Life Sci 2022; 308:120930. [PMID: 36075471 PMCID: PMC9444585 DOI: 10.1016/j.lfs.2022.120930] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/19/2022]
Abstract
Aims This study evaluated SARS-CoV-2 replication in human cell lines derived from various tissues and investigated molecular mechanisms related to viral infection susceptibility and replication. Main methods SARS-CoV-2 replication in BEAS-2B and A549 (respiratory tract), HEK-293 T (kidney), HuH7 (liver), SH-SY5Y (brain), MCF7 (breast), Huvec (endothelial) and Caco-2 (intestine) was evaluated by RT-qPCR. Concomitantly, expression levels of ACE2 (Angiotensin Converting Enzyme) and TMPRSS2 were assessed through RT-qPCR and western blot. Proteins related to autophagy and mitochondrial metabolism were monitored in uninfected cells to characterize the cellular metabolism of each cell line. The effect of ACE2 overexpression on viral replication in pulmonary cells was also investigated. Key findings Our data show that HuH7, Caco-2 and MCF7 presented a higher viral load compared to the other cell lines. The increased susceptibility to SARS-CoV-2 infection seems to be associated not only with the differential levels of proteins intrinsically related to energetic metabolism, such as ATP synthase, citrate synthase, COX and NDUFS2 but also with the considerably higher TMPRSS2 mRNA expression. The two least susceptible cell types, BEAS-2B and A549, showed drastically increased SARS-CoV-2 replication capacity when ACE2 was overexpressed. These modified cell lines are relevant for studying SARS-CoV-2 replication in vitro. Significance Our data not only reinforce that TMPRSS2 expression and cellular energy metabolism are important molecular mechanisms for SARS-CoV-2 infection and replication, but also indicate that HuH7, MCF7 and Caco-2 are suitable models for mechanistic studies of COVID-19. Moreover, pulmonary cells overexpressing ACE2 can be used to understand mechanisms associated with SARS-CoV-2 replication.
Collapse
Affiliation(s)
- Cynthia Silva Bartolomeo
- Department of Physiological Sciences, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, SP, Brazil; Department of Biosciences, Universidade Federal de São Paulo, Santos, SP, Brazil
| | - Robertha Mariana Rodrigues Lemes
- Department of Biological Sciences, Universidade Federal de São Paulo, Diadema, SP, Brazil; Laboratory of Molecular and Translational Endocrinology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Rafael Leite Morais
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Gabriela Cruz Pereria
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Tamires Alves Nunes
- Department of Biosciences, Universidade Federal de São Paulo, Santos, SP, Brazil
| | - Angelica Jardim Costa
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Rui Monteiro de Barros Maciel
- Department of Biological Sciences, Universidade Federal de São Paulo, Diadema, SP, Brazil; Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Carla Torres Braconi
- Department of Microbiology Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Juliana Terzi Maricato
- Department of Microbiology Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Luiz Mario Ramos Janini
- Department of Microbiology Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Liria Hiromi Okuda
- Instituto Biológico, Secretaria de Agricultura e Abastecimento, São Paulo, SP, Brazil
| | - Kil Sun Lee
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Carla Máximo Prado
- Department of Biosciences, Universidade Federal de São Paulo, Santos, SP, Brazil
| | - Rodrigo Portes Ureshino
- Department of Biological Sciences, Universidade Federal de São Paulo, Diadema, SP, Brazil; Laboratory of Molecular and Translational Endocrinology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Roberta Sessa Stilhano
- Department of Physiological Sciences, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
6
|
Chatterjee S, Yabaji SM, Rukhlenko OS, Bhattacharya B, Waligurski E, Vallavoju N, Ray S, Kholodenko BN, Brown LE, Beeler AB, Ivanov AR, Kobzik L, Porco JA, Kramnik I. Channeling macrophage polarization by rocaglates increases macrophage resistance to Mycobacterium tuberculosis. iScience 2021; 24:102845. [PMID: 34381970 PMCID: PMC8333345 DOI: 10.1016/j.isci.2021.102845] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/22/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Macrophages contribute to host immunity and tissue homeostasis via alternative activation programs. M1-like macrophages control intracellular bacterial pathogens and tumor progression. In contrast, M2-like macrophages shape reparative microenvironments that can be conducive for pathogen survival or tumor growth. An imbalance of these macrophages phenotypes may perpetuate sites of chronic unresolved inflammation, such as infectious granulomas and solid tumors. We have found that plant-derived and synthetic rocaglates sensitize macrophages to low concentrations of the M1-inducing cytokine IFN-gamma and inhibit their responsiveness to IL-4, a prototypical activator of the M2-like phenotype. Treatment of primary macrophages with rocaglates enhanced phagosome-lysosome fusion and control of intracellular mycobacteria. Thus, rocaglates represent a novel class of immunomodulators that can direct macrophage polarization toward the M1-like phenotype in complex microenvironments associated with hypofunction of type 1 and/or hyperactivation of type 2 immunity, e.g., chronic bacterial infections, allergies, and, possibly, certain tumors.
Collapse
Affiliation(s)
- Sujoy Chatterjee
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA
| | - Shivraj M. Yabaji
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA
| | - Oleksii S. Rukhlenko
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Bidisha Bhattacharya
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA
| | - Emily Waligurski
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA
| | - Nandini Vallavoju
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA 02215, USA
| | - Somak Ray
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Boris N. Kholodenko
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Ireland
- Department of Pharmacology, Yale University School of Medicine, New Haven, USA
| | - Lauren E. Brown
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA 02215, USA
| | - Aaron B. Beeler
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA 02215, USA
| | - Alexander R. Ivanov
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Lester Kobzik
- Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA
| | - John A. Porco
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA 02215, USA
| | - Igor Kramnik
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA
| |
Collapse
|
7
|
Bhattacharya B, Xiao S, Chatterjee S, Urbanowski M, Ordonez A, Ihms EA, Agrahari G, Lun S, Berland R, Pichugin A, Gao Y, Connor J, Ivanov AR, Yan BS, Kobzik L, Koo BB, Jain S, Bishai W, Kramnik I. The integrated stress response mediates necrosis in murine Mycobacterium tuberculosis granulomas. J Clin Invest 2021; 131:130319. [PMID: 33301427 PMCID: PMC7843230 DOI: 10.1172/jci130319] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 12/04/2020] [Indexed: 12/27/2022] Open
Abstract
The mechanism by which only some individuals infected with Mycobacterium tuberculosis develop necrotic granulomas with progressive disease while others form controlled granulomas that contain the infection remains poorly defined. Mice carrying the sst1-suscepible (sst1S) genotype develop necrotic inflammatory lung lesions, similar to human tuberculosis (TB) granulomas, which are linked to macrophage dysfunction, while their congenic counterpart (B6) mice do not. In this study we report that (a) sst1S macrophages developed aberrant, biphasic responses to TNF characterized by superinduction of stress and type I interferon pathways after prolonged TNF stimulation; (b) the late-stage TNF response was driven via a JNK/IFN-β/protein kinase R (PKR) circuit; and (c) induced the integrated stress response (ISR) via PKR-mediated eIF2α phosphorylation and the subsequent hyperinduction of ATF3 and ISR-target genes Chac1, Trib3, and Ddit4. The administration of ISRIB, a small-molecule inhibitor of the ISR, blocked the development of necrosis in lung granulomas of M. tuberculosis-infected sst1S mice and concomitantly reduced the bacterial burden. Hence, induction of the ISR and the locked-in state of escalating stress driven by the type I IFN pathway in sst1S macrophages play a causal role in the development of necrosis in TB granulomas. Interruption of the aberrant stress response with inhibitors such as ISRIB may offer novel host-directed therapy strategies.
Collapse
Affiliation(s)
- Bidisha Bhattacharya
- The National Emerging Infectious Diseases Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Shiqi Xiao
- Center for TB Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sujoy Chatterjee
- The National Emerging Infectious Diseases Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Michael Urbanowski
- Center for TB Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alvaro Ordonez
- Center for TB Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Elizabeth A. Ihms
- Center for TB Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Garima Agrahari
- The National Emerging Infectious Diseases Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Shichun Lun
- Center for TB Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert Berland
- The National Emerging Infectious Diseases Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Alexander Pichugin
- Department of Cellular Immunology, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Yuanwei Gao
- Department of Pharmacokinetics, Pharmacodynamics & Drug Metabolism (PPDM), Merck, West Point, Pennsylvania, USA
| | - John Connor
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Alexander R. Ivanov
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts, USA
| | - Bo-Shiun Yan
- Institute of Biochemistry and Molecular Biology, National Taiwan University Medical College, Zhongzheng District, Taipei City, Taiwan
| | - Lester Kobzik
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Bang-Bon Koo
- The National Emerging Infectious Diseases Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Sanjay Jain
- Center for TB Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - William Bishai
- Center for TB Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Igor Kramnik
- The National Emerging Infectious Diseases Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Medicine, Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Eldesouki RE, Wu C, Saleh FM, Mohammed EAM, Younes S, Hassan NE, Brown TC, Alt EU, Robinson JE, Badr FM, Braun SE. Identification and Targeting of Thomsen-Friedenreich and IL1RAP Antigens on Chronic Myeloid Leukemia Stem Cells Using Bi-Specific Antibodies. Onco Targets Ther 2021; 14:609-621. [PMID: 33519209 PMCID: PMC7837560 DOI: 10.2147/ott.s255299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction Quiescent leukemia stem cells (LSCs) play a major role in therapeutic resistance and disease progression of chronic myeloid leukemia (CML). LSCs belong to the primitive population; CD34+CD38-Lin-, which does not distinguish normal hematopoietic stem cells (HSC) from CML LSCs. Because Thomsen–Friedenreich/CD176 antigen is expressed on CD34+ HSC and IL1RAP is tightly correlated to BCR-ABL expression, we sought to increase the specificity towards LSC by using additional biomarkers. Methods We evaluated the co-expression of both antigens on CD34+ peripheral blood mononuclear cells (PBMCs) from both healthy volunteers and CML patients, using flow cytometry. Then, we used site-directed mutagenesis to induce knob-in-hole mutations in the human IgG heavy chain and the human lambda light chain to generate the bi-specific antibody (Bis-Ab) TF/RAP that binds both antigens simultaneously. We measured complement-directed cytotoxicity (CDC) in CML samples with the Bis-Ab by flow cytometry. Results In contrast to healthy volunteers, CML samples displayed a highly significant co-expression of CD176 and IL1RAP. When either a double-positive cell line or CML samples were treated with increasing doses of Bis-Ab, increased binding and CDC was observed indicating co-operative binding of the Bis-Ab as compared to monoclonal antibodies. Discussion These results show that the bi-specific antibody is capable of targeting IL1RAP+ and CD176+ cell population among CML PBMCs, but not corresponding normal cells in CDC assay. We hereby offer a novel strategy for the depletion of CML stem cells from the bulk population in clinical hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Raghda E Eldesouki
- Genetics Unit, Department of Histology and Cell Biology, School of Medicine, Suez Canal University, Ismailia, Egypt.,Division of Immunology, Tulane National Primate Research Center, Covington, LA, USA
| | - Chengxiang Wu
- Division of Immunology, Tulane National Primate Research Center, Covington, LA, USA
| | - Fayez M Saleh
- Division of Immunology, Tulane National Primate Research Center, Covington, LA, USA.,Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Eman Abdel-Moemen Mohammed
- Genetics Unit, Department of Histology and Cell Biology, School of Medicine, Suez Canal University, Ismailia, Egypt
| | - Soha Younes
- Department of Clinical pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | | | - Theresa C Brown
- Hayward Genetics Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Eckhard U Alt
- Applied Stem Cell Laboratory, Departments of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - James E Robinson
- Sections of Infectious Disease, Departments of Pediatrics and Internal Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Fouad Mohamed Badr
- Genetics Unit, Department of Histology and Cell Biology, School of Medicine, Suez Canal University, Ismailia, Egypt
| | - Stephen E Braun
- Division of Immunology, Tulane National Primate Research Center, Covington, LA, USA.,Departments of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
9
|
Davidsson M, Díaz-Fernández P, Torroba M, Schwich OD, Aldrin-Kirk P, Quintino L, Heuer A, Wang G, Lundberg C, Björklund T. Molecular barcoding of viral vectors enables mapping and optimization of mRNA trans-splicing. RNA (NEW YORK, N.Y.) 2018; 24:673-687. [PMID: 29386333 PMCID: PMC5900565 DOI: 10.1261/rna.063925.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/25/2018] [Indexed: 05/04/2023]
Abstract
Genome editing has proven to be highly potent in the generation of functional gene knockouts in dividing cells. In the CNS however, efficient technologies to repair sequences are yet to materialize. Reprogramming on the mRNA level is an attractive alternative as it provides means to perform in situ editing of coding sequences without nuclease dependency. Furthermore, de novo sequences can be inserted without the requirement of homologous recombination. Such reprogramming would enable efficient editing in quiescent cells (e.g., neurons) with an attractive safety profile for translational therapies. In this study, we applied a novel molecular-barcoded screening assay to investigate RNA trans-splicing in mammalian neurons. Through three alternative screening systems in cell culture and in vivo, we demonstrate that factors determining trans-splicing are reproducible regardless of the screening system. With this screening, we have located the most permissive trans-splicing sequences targeting an intron in the Synapsin I gene. Using viral vectors, we were able to splice full-length fluorophores into the mRNA while retaining very low off-target expression. Furthermore, this approach also showed evidence of functionality in the mouse striatum. However, in its current form, the trans-splicing events are stochastic and the overall activity lower than would be required for therapies targeting loss-of-function mutations. Nevertheless, the herein described barcode-based screening assay provides a unique possibility to screen and map large libraries in single animals or cell assays with very high precision.
Collapse
Affiliation(s)
- Marcus Davidsson
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Paula Díaz-Fernández
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Marcos Torroba
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Oliver D Schwich
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Patrick Aldrin-Kirk
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Luis Quintino
- CNS Gene Therapy, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Andreas Heuer
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Gang Wang
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Cecilia Lundberg
- CNS Gene Therapy, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Tomas Björklund
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| |
Collapse
|
10
|
McCubbrey AL, Janssen WJ. Modulation of Myeloid Cell Function Using Conditional and Inducible Transgenic Approaches. Methods Mol Biol 2018; 1809:145-168. [PMID: 29987790 DOI: 10.1007/978-1-4939-8570-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Transgenic mice have emerged as a central tool in the study of lung myeloid cells during homeostasis and disease. The use of Cre/Lox site-specific recombination allows for conditional deletion of a gene of interest in a spatially controlled manner. The basic Cre/Lox system can be further refined to include an inducible trigger, enabling conditional deletion of a gene of interest in a spatially and temporally controlled manner. Here we provide an overview of commercially available conditional and inducible conditional mouse strains that target lung myeloid cells and describe the appropriate breeding schemes and controls for transgenic animal systems that can be used to modulate myeloid cell function.
Collapse
Affiliation(s)
- Alexandra L McCubbrey
- Department of Medicine, National Jewish Health, Denver, CO, USA.
- Division of Critical Care Medicine and Pulmonary Sciences, Department of Medicine, University of Colorado, Denver, CO, USA.
| | - William J Janssen
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
11
|
Passaro D, Di Tullio A, Abarrategi A, Rouault-Pierre K, Foster K, Ariza-McNaughton L, Montaner B, Chakravarty P, Bhaw L, Diana G, Lassailly F, Gribben J, Bonnet D. Increased Vascular Permeability in the Bone Marrow Microenvironment Contributes to Disease Progression and Drug Response in Acute Myeloid Leukemia. Cancer Cell 2017; 32:324-341.e6. [PMID: 28870739 PMCID: PMC5598545 DOI: 10.1016/j.ccell.2017.08.001] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 04/25/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022]
Abstract
The biological and clinical behaviors of hematological malignancies can be influenced by the active crosstalk with an altered bone marrow (BM) microenvironment. In the present study, we provide a detailed picture of the BM vasculature in acute myeloid leukemia using intravital two-photon microscopy. We found several abnormalities in the vascular architecture and function in patient-derived xenografts (PDX), such as vascular leakiness and increased hypoxia. Transcriptomic analysis in endothelial cells identified nitric oxide (NO) as major mediator of this phenotype in PDX and in patient-derived biopsies. Moreover, induction chemotherapy failing to restore normal vasculature was associated with a poor prognosis. Inhibition of NO production reduced vascular permeability, preserved normal hematopoietic stem cell function, and improved treatment response in PDX.
Collapse
Affiliation(s)
- Diana Passaro
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Alessandro Di Tullio
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ander Abarrategi
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Kevin Rouault-Pierre
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Katie Foster
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Linda Ariza-McNaughton
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Beatriz Montaner
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Probir Chakravarty
- Bioinformatic Core Unit, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Leena Bhaw
- Advanced Sequencing Unit, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Giovanni Diana
- MRC Centre for Developmental Neurobiology, King's College London, London, UK
| | - François Lassailly
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - John Gribben
- Department of Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
12
|
Wu Y, Guo Z, Liu F, Yao K, Gao M, Luo Y, Zhang Y. Sp110 enhances macrophage resistance to Mycobacterium tuberculosis via inducing endoplasmic reticulum stress and inhibiting anti-apoptotic factors. Oncotarget 2017; 8:64050-64065. [PMID: 28969051 PMCID: PMC5609983 DOI: 10.18632/oncotarget.19300] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 06/10/2017] [Indexed: 02/04/2023] Open
Abstract
Tuberculosis remains a leading health problem worldwide and still accounts for about 1.3 million deaths annually. Expression of the mouse Sp110 nuclear body protein (Sp110) upregulates the apoptotic pathway, which plays an essential role in enhancing host immunity to Mycobacterium tuberculosis (Mtb). However, the mechanism of this upregulation is unclear. Here, we have identified 253 proteins in mouse macrophages that interact with Sp110, of which 251 proteins were previously uncharacterized. The results showed that Sp110 interacts with heat shock protein 5 (Hspa5) to activate endoplasmic reticulum (ER) stress-induced apoptosis, and that this is essential for Sp110 enhanced macrophage resistance to Mtb. Inhibition of the ER stress pathway abolishing the Sp110-enhanced macrophage apoptosis and resulted in increased intracellular survival of Mtb in macrophages overexpressing Sp110 Further studies revealed that Sp110 also interacts with the RNA binding protein, Ncl to promote its degradation. Consequently, the expression of Bcl2, usually stabilized by Ncl, was downregulated in Sp110 overexpressing macrophages. Moreover, overexpression of Sp110 promotes degradation of ribosomal protein Rps3a, resulting in upregulation of the activity of the pro-apoptotic poly (ADP-ribose) polymerase (PARP). In addition, macrophages from transgenic cattle with increased Sp110 expression confirmed that activation of the ER stress response is the main pathway through which Sp110-enhanced macrophages impart resistance to Mtb. This work has revealed the mechanism of Sp110 enhanced macrophage apoptosis in response to Mtb infection, and provides new insights into the study of host-pathogen interactions.
Collapse
Affiliation(s)
- Yongyan Wu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Department of Otolaryngology, Head & Neck Surgery, The First Hospital, Shanxi Medical University, Taiyuan 030001, Shanxi, China.,College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zekun Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fayang Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kezhen Yao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mingqing Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yan Luo
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
13
|
Characterization of promoter of the tuberculosis-resistant gene intracellular pathogen resistance 1. Immunol Res 2016; 64:143-54. [PMID: 26590945 DOI: 10.1007/s12026-015-8732-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis, which most commonly affects the lungs and causes over 1.3 million people die annually. Variation in host genes is known to influence susceptibility to tuberculosis. Expression of the intracellular pathogen resistance 1 (Ipr1) gene could enhance the host resistance to mycobacterium. Here, we analyzed the coding region sequence and promoter of Ipr1 gene of mouse strains C57BL/6 and BALB/c. We found that the coding sequences of Ipr1 gene both in C57BL/6 and in BALB/c mice encode the same protein, while the Ipr1 promoter of BALB/c exists a short deletion and showed a slight of decreased transcriptional activity when compared with C57BL/6. Moreover, the optimal and minimal Ipr1 promoter was identified by luciferase assays using truncated reporter constructs, and the region from -293 to +95 bp showed the highest transcriptional activity and responsible for IFN-γ stimulation. Furthermore, the results showed that IFN-γ activates JAK/STAT and NF-κB signaling pathways to induce Ipr1 expression, and the signal transducer and activator of transcription 1 (Stat1) are critical for IFN-γ-induced Ipr1 expression, because overexpression of Stat1 promotes Ipr1 transcription, but knockdown of Stat1 reduced Ipr1 expression. Collectively, for the first time, our study characterizes Ipr1 promoter and investigates the positive and negative regulation of Ipr1 expression, providing basic data for application of Ipr1 in animal breeding.
Collapse
|
14
|
Smith RP, Riordan JD, Feddersen CR, Dupuy AJ. A Hybrid Adenoviral Vector System Achieves Efficient Long-Term Gene Expression in the Liver via piggyBac Transposition. Hum Gene Ther 2016; 26:377-85. [PMID: 25808258 DOI: 10.1089/hum.2014.123] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Much research has gone into the development of hybrid gene delivery systems that combine the broad tropism and efficient transduction of adenoviral vectors with the ability to achieve stable expression of cargo genes. In addition to gene therapy applications, such a system has considerable advantages for studies of gene function in vivo, permitting fine-tuned genetic manipulation with higher throughput than can be achieved using standard transgenic and DNA targeting techniques. Existing strategies are limited, however, by low integration efficiencies, small cargo capacity, and/or a dependence on target cell division. The utility of this approach could be enhanced by a system that provides all of the following: (1) efficient delivery, (2) stable expression in a high percentage of target cells (whether mitotic or not), (3) large cargo capacity, (4) flexibility to use with a wide range of additional experimental conditions, and (5) simple experimental technique. Here we report the initial characterization of a hybrid system that meets these criteria by utilizing piggyBac (PB) transposition to achieve genomic integration from adenoviral vectors. We demonstrate stable expression of an adenovirus (Ad)-PB-delivered reporter gene in ∼20-40% of hepatocytes following standard tail vein injection. Its high efficiency and flexibility relative to existing hybrid adenoviral gene delivery approaches indicate a considerable potential utility of the Ad-PB system for therapeutic gene delivery and in vivo studies of gene function.
Collapse
Affiliation(s)
- Ryan P Smith
- Department of Anatomy and Cell Biology, Roy J. & Lucille A. Carver College of Medicine, University of Iowa , Iowa City, IA 52242
| | - Jesse D Riordan
- Department of Anatomy and Cell Biology, Roy J. & Lucille A. Carver College of Medicine, University of Iowa , Iowa City, IA 52242
| | - Charlotte R Feddersen
- Department of Anatomy and Cell Biology, Roy J. & Lucille A. Carver College of Medicine, University of Iowa , Iowa City, IA 52242
| | - Adam J Dupuy
- Department of Anatomy and Cell Biology, Roy J. & Lucille A. Carver College of Medicine, University of Iowa , Iowa City, IA 52242
| |
Collapse
|
15
|
Bhattacharya B, Chatterjee S, Devine WG, Kobzik L, Beeler AB, Porco JA, Kramnik I. Fine-tuning of macrophage activation using synthetic rocaglate derivatives. Sci Rep 2016; 6:24409. [PMID: 27086720 PMCID: PMC4834551 DOI: 10.1038/srep24409] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 03/29/2016] [Indexed: 12/25/2022] Open
Abstract
Drug-resistant bacteria represent a significant global threat. Given the dearth of new antibiotics, host-directed therapies (HDTs) are especially desirable. As IFN-gamma (IFNγ) plays a central role in host resistance to intracellular bacteria, including Mycobacterium tuberculosis, we searched for small molecules to augment the IFNγ response in macrophages. Using an interferon-inducible nuclear protein Ipr1 as a biomarker of macrophage activation, we performed a high-throughput screen and identified molecules that synergized with low concentration of IFNγ. Several active compounds belonged to the flavagline (rocaglate) family. In primary macrophages a subset of rocaglates 1) synergized with low concentrations of IFNγ in stimulating expression of a subset of IFN-inducible genes, including a key regulator of the IFNγ network, Irf1; 2) suppressed the expression of inducible nitric oxide synthase and type I IFN and 3) induced autophagy. These compounds may represent a basis for macrophage-directed therapies that fine-tune macrophage effector functions to combat intracellular pathogens and reduce inflammatory tissue damage. These therapies would be especially relevant to fighting drug-resistant pathogens, where improving host immunity may prove to be the ultimate resource.
Collapse
Affiliation(s)
- Bidisha Bhattacharya
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, 02118, USA
| | - Sujoy Chatterjee
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, 02118, USA
| | - William G Devine
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, 02215, USA
| | - Lester Kobzik
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, 02115, USA
| | - Aaron B Beeler
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, 02215, USA
| | - John A Porco
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, 02215, USA
| | - Igor Kramnik
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, 02118, USA
| |
Collapse
|
16
|
Rossi M, Massai L, Diamanti D, Fiengo P, De Rosa A, Magrini R, Magnoni L, Chellini S, Coniglio S, Diodato E, Pilli E, Caradonna NP, Sardone G, Monti M, Roggeri R, Lionetti V, Recchia F, Tunici P, Valensin S, Scali C, Pollio G, Porcari V. Multimodal molecular imaging system for pathway-specific reporter gene expression. Eur J Pharm Sci 2016; 86:136-42. [PMID: 26987608 DOI: 10.1016/j.ejps.2016.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/07/2016] [Indexed: 02/06/2023]
Abstract
Preclinical imaging modalities represent an essential tool to develop a modern and translational biomedical research. To date, Optical Imaging (OI) and Magnetic Resonance Imaging (MRI) are used principally in separate studies for molecular imaging studies. We decided to combine OI and MRI together through the development of a lentiviral vector to monitor the Wnt pathway response to Lithium Chloride (LiCl) treatment. The construct was stably infected in glioblastoma cells and, after intracranial transplantation in mice, serial MRI and OI imaging sessions were performed to detect human ferritin heavy chain protein (hFTH) and firefly luciferase enzyme (FLuc) respectively. The system allowed also ex vivo analysis using a constitutive fluorescence protein expression. In mice, LiCl administration has shown significantly increment of luminescence signal and a lower signal of T2 values (P<0.05), recorded noninvasively with OI and a 7 Tesla MRI scanner. This study indicates that OI and MRI can be performed in a single in vivo experiment, providing an in vivo proof-of-concept for drug discovery projects in preclinical phase.
Collapse
Affiliation(s)
- Marco Rossi
- Siena Biotech Medicine Research Centre, Siena, Italy.
| | - Luisa Massai
- Siena Biotech Medicine Research Centre, Siena, Italy
| | | | | | | | | | | | - Sara Chellini
- Siena Biotech Medicine Research Centre, Siena, Italy
| | | | | | - Elena Pilli
- Siena Biotech Medicine Research Centre, Siena, Italy
| | | | | | | | | | - Vincenzo Lionetti
- Laboratory of Medical Science, Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Fabio Recchia
- Laboratory of Medical Science, Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | | | - Carla Scali
- Siena Biotech Medicine Research Centre, Siena, Italy
| | | | | |
Collapse
|
17
|
Kohda M, Tokuzawa Y, Kishita Y, Nyuzuki H, Moriyama Y, Mizuno Y, Hirata T, Yatsuka Y, Yamashita-Sugahara Y, Nakachi Y, Kato H, Okuda A, Tamaru S, Borna NN, Banshoya K, Aigaki T, Sato-Miyata Y, Ohnuma K, Suzuki T, Nagao A, Maehata H, Matsuda F, Higasa K, Nagasaki M, Yasuda J, Yamamoto M, Fushimi T, Shimura M, Kaiho-Ichimoto K, Harashima H, Yamazaki T, Mori M, Murayama K, Ohtake A, Okazaki Y. A Comprehensive Genomic Analysis Reveals the Genetic Landscape of Mitochondrial Respiratory Chain Complex Deficiencies. PLoS Genet 2016; 12:e1005679. [PMID: 26741492 PMCID: PMC4704781 DOI: 10.1371/journal.pgen.1005679] [Citation(s) in RCA: 234] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/27/2015] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial disorders have the highest incidence among congenital metabolic disorders characterized by biochemical respiratory chain complex deficiencies. It occurs at a rate of 1 in 5,000 births, and has phenotypic and genetic heterogeneity. Mutations in about 1,500 nuclear encoded mitochondrial proteins may cause mitochondrial dysfunction of energy production and mitochondrial disorders. More than 250 genes that cause mitochondrial disorders have been reported to date. However exact genetic diagnosis for patients still remained largely unknown. To reveal this heterogeneity, we performed comprehensive genomic analyses for 142 patients with childhood-onset mitochondrial respiratory chain complex deficiencies. The approach includes whole mtDNA and exome analyses using high-throughput sequencing, and chromosomal aberration analyses using high-density oligonucleotide arrays. We identified 37 novel mutations in known mitochondrial disease genes and 3 mitochondria-related genes (MRPS23, QRSL1, and PNPLA4) as novel causative genes. We also identified 2 genes known to cause monogenic diseases (MECP2 and TNNI3) and 3 chromosomal aberrations (6q24.3-q25.1, 17p12, and 22q11.21) as causes in this cohort. Our approaches enhance the ability to identify pathogenic gene mutations in patients with biochemically defined mitochondrial respiratory chain complex deficiencies in clinical settings. They also underscore clinical and genetic heterogeneity and will improve patient care of this complex disorder. Mitochondria play a crucial role in ATP biosynthesis and comprise proteins encoded in both the nuclear and mitochondrial genomes. Although more than 250 mitochondrial disease-causing genes have been reported, the exact genetic causes in patients remain largely unknown. Here, we aimed to provide further insights into the pathogenic mechanisms of mitochondrial disorders. We investigated the genes encoded in the nuclear and mitochondrial genomes using comprehensive genomic analysis in 142 patients with mitochondrial respiratory chain complex deficiencies. We identified 3 novel disease-causing mitochondria-related genes (MRPS23, QRSL1, and PNPLA4) as well as other disease-causing genes and novel pathogenic mutations in known mitochondrial disease-causing genes. All pathogenic mutations in this study are validated by genetic and/or functional evidence. Our findings, including the achievement of firm genetic diagnoses for 49 of 142 patients (34.5%), were higher than the general diagnosis rate of approximately 25% and demonstrated the value of comprehensive genomic analysis. Accordingly, we have shed light on the genetic heterogeneity underlying mitochondrial disorders.
Collapse
Affiliation(s)
- Masakazu Kohda
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | - Yoshimi Tokuzawa
- Division of Functional Genomics & Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | - Yoshihito Kishita
- Division of Functional Genomics & Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | - Hiromi Nyuzuki
- Division of Functional Genomics & Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | - Yohsuke Moriyama
- Division of Functional Genomics & Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
- Division of Developmental Biology, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | - Yosuke Mizuno
- Division of Functional Genomics & Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | - Tomoko Hirata
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | - Yukiko Yatsuka
- Division of Functional Genomics & Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | - Yzumi Yamashita-Sugahara
- Division of Functional Genomics & Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | - Yutaka Nakachi
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | - Hidemasa Kato
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
- Division of Developmental Biology, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | - Akihiko Okuda
- Division of Developmental Biology, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | - Shunsuke Tamaru
- Division of Functional Genomics & Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | - Nurun Nahar Borna
- Division of Functional Genomics & Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | - Kengo Banshoya
- Division of Functional Genomics & Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
- Chemicals Assessment and Research Center, Chemicals Evaluation and Research Institute, Japan (CERI), Sugito-machi, Kitakatsushika-gun, Saitama, Japan
| | - Toshiro Aigaki
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Yukiko Sato-Miyata
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Kohei Ohnuma
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Asuteka Nagao
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hazuki Maehata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Koichiro Higasa
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Masao Nagasaki
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
- Graduate School of Medicine, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
- Graduate School of Information Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Jun Yasuda
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
- Graduate School of Medicine, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - Masayuki Yamamoto
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
- Graduate School of Medicine, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - Takuya Fushimi
- Department of Metabolism, Chiba Children's Hospital, Midori, Chiba, Japan
| | - Masaru Shimura
- Department of Metabolism, Chiba Children's Hospital, Midori, Chiba, Japan
| | | | - Hiroko Harashima
- Department of Pediatrics, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama, Japan
| | - Taro Yamazaki
- Department of Pediatrics, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama, Japan
| | - Masato Mori
- Department of Pediatrics, Matsudo City Hospital, Matsudo-shi, Chiba, Japan
| | - Kei Murayama
- Department of Metabolism, Chiba Children's Hospital, Midori, Chiba, Japan
| | - Akira Ohtake
- Department of Pediatrics, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama, Japan
- * E-mail: (AOh); (YO)
| | - Yasushi Okazaki
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
- Division of Functional Genomics & Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
- * E-mail: (AOh); (YO)
| |
Collapse
|
18
|
Miller MR, Blystone SD. Reliable and inexpensive expression of large, tagged, exogenous proteins in murine bone marrow-derived macrophages using a second generation lentiviral system. J Biol Methods 2015; 2:e23. [PMID: 26457319 DOI: 10.14440/jbm.2015.66] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Over the past two decades, researchers have struggled to efficiently express foreign DNA in primary macrophages, impeding research progress. The applications of lipofection, electroporation, microinjection, and viral-mediated transfer typically result in disruptions in macrophage differentiation and function, low expression levels of exogenous proteins, limited efficiency and high cell mortality. In this report, after extensive optimization, we present a method of expressing large tagged proteins at high efficiency, consistency, and low cost using lentiviral infection. This method utilizes laboratory-propagated second generation plasmids to produce efficient virus that can be stored for later use. The expression of proteins up to 150 kDa in size is achieved in 30-70% of cells while maintaining normal macrophage differentiation and morphology as determined by fluorescence microscopy and Western blot analysis. This manuscript delineates the reagents and methods used to produce lentivirus to express exogenous DNA in murine bone marrow-derived macrophages sufficient for single cell microscopy as well as functional assays requiring large numbers of murine bone marrow-derived macrophages.
Collapse
Affiliation(s)
- Matthew R Miller
- Department of Cell & Developmental Biology, SUNY Upstate Medical University, 750 East Adams St. Syracuse, NY 13210, USA
| | - Scott D Blystone
- Department of Cell & Developmental Biology, SUNY Upstate Medical University, 750 East Adams St. Syracuse, NY 13210, USA
| |
Collapse
|
19
|
Liu C, Zhao X, Xu L, Yi J, Shaheen S, Han W, Wang F, Zheng W, Xu C, Liu W. A negative-feedback function of PKC β in the formation and accumulation of signaling-active B cell receptor microclusters within B cell immunological synapse. J Leukoc Biol 2015; 97:887-900. [PMID: 25740961 DOI: 10.1189/jlb.2a0714-320r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 12/08/2014] [Accepted: 12/30/2014] [Indexed: 11/24/2022] Open
Abstract
Advanced live cell imaging studies suggested that B cell activation is initiated by the formation of BCR microclusters and subsequent B cell IS upon BCR and antigen recognition. PKC family member PKCβ is highly expressed in B cells and plays an important role in the initiation of B cell activation. Here, we reported an inhibitory function of PKCβ through a negative-feedback manner in B cell activation. Compared with WT (PKCβ-WT) or the constitutively active (PKCβ-ΔNPS) form of PKCβ, DN PKCβ (PKCβ-DN) unexpectedly enhanced the accumulation of BCR microclusters into the B cell IS, leading to the recruitment of an excessive amount of pSyk, pPLC-γ2, and pBLNK signaling molecules into the membrane-proximal BCR signalosome. Enhanced calcium mobilization responses in the decay phase were also observed in B cells expressing PKCβ-DN. Mechanistic studies showed that this negative-feedback function of PKCβ works through the induction of an inhibitory form of pBtk at S180 (pBtk-S180). Indeed, the capability of inducing the formation of an inhibitory pBtk-S180 is in the order of PKCβ-ΔNPS > PKCβ-WT > PKCβ-DN. Thus, these results improve our comprehensive understanding on the positive and negative function of PKCβ in the fine tune of B cell activation.
Collapse
Affiliation(s)
- Ce Liu
- *MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China; Collaborative Innovation Center for Infectious Diseases, Hangzhou, China; Department of Immunology, Bio-therapeutic Department, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China; Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China; and **State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - XingWang Zhao
- *MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China; Collaborative Innovation Center for Infectious Diseases, Hangzhou, China; Department of Immunology, Bio-therapeutic Department, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China; Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China; and **State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - LiLing Xu
- *MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China; Collaborative Innovation Center for Infectious Diseases, Hangzhou, China; Department of Immunology, Bio-therapeutic Department, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China; Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China; and **State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - JunYang Yi
- *MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China; Collaborative Innovation Center for Infectious Diseases, Hangzhou, China; Department of Immunology, Bio-therapeutic Department, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China; Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China; and **State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Samina Shaheen
- *MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China; Collaborative Innovation Center for Infectious Diseases, Hangzhou, China; Department of Immunology, Bio-therapeutic Department, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China; Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China; and **State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Weidong Han
- *MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China; Collaborative Innovation Center for Infectious Diseases, Hangzhou, China; Department of Immunology, Bio-therapeutic Department, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China; Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China; and **State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fei Wang
- *MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China; Collaborative Innovation Center for Infectious Diseases, Hangzhou, China; Department of Immunology, Bio-therapeutic Department, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China; Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China; and **State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wenjie Zheng
- *MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China; Collaborative Innovation Center for Infectious Diseases, Hangzhou, China; Department of Immunology, Bio-therapeutic Department, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China; Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China; and **State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chenqi Xu
- *MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China; Collaborative Innovation Center for Infectious Diseases, Hangzhou, China; Department of Immunology, Bio-therapeutic Department, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China; Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China; and **State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wanli Liu
- *MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China; Collaborative Innovation Center for Infectious Diseases, Hangzhou, China; Department of Immunology, Bio-therapeutic Department, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China; Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China; and **State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
20
|
Ames RS, Lu Q. Viral-mediated gene delivery for cell-based assays in drug discovery. Expert Opin Drug Discov 2013; 4:243-56. [PMID: 23489124 DOI: 10.1517/17460440902751599] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Adenovirus, retrovirus and lentivirus-based vectors, originally engineered and optimized for in vivo and ex vivo gene therapy, have become increasingly useful for viral-mediated gene delivery to support in vitro cell-based assays. Viral vectors underpin functional genomics screening of cDNA, shRNA and aptamer libraries, are used for a variety of target validation studies and importantly, for high-throughput cell-based drug discovery and compound profiling assays. The baculovirus/insect cell expression system had gained prevalence as a tool for recombinant protein production when it was observed that recombinant baculovirus vectors too could serve as efficient gene delivery vehicles for a wide range of mammalian cells. Although the use of baculovirus vectors in vivo has lagged behind retroviral, adenoviral and lentiviral vectors, they have gained prominence for development of in vitro cell-based assays due to the ease of generation, broad host range and excellent biosafety profile. There is an increasing emphasis on cell-based assays in high-throughput automated drug discovery laboratories and a variety of commercially available viral-vectors can be used for supporting these assays. OBJECTIVE We compare and contrast the current viral-mediated gene delivery vector systems and highlight their suitability for cell-based drug discovery assays. CONCLUSION Viral-mediated gene delivery is increasingly being used in support of genome scale target validation studies and cell-based assay development for specific drug target genes such as ion channels, G protein-coupled receptors and intracellular enzymes. The choice of a delivery system over another for a particular application is largely dictated by the cell types and cell lines in use, virus cellular tropism, assay throughput, safety requirements and ease/cost of reagent generation.
Collapse
Affiliation(s)
- Robert S Ames
- Molecular Discovery Research, GlaxoSmithKline R&D, UE0433, 709 Swedeland Road, King of Prussia, PA 19406, USA +1 610 270 7602 ; +1 610 270 7359 ;
| | | |
Collapse
|
21
|
Plank M, Hu G, Silva AS, Wood SH, Hesketh EE, Janssens G, Macedo A, de Magalhães JP, Church GM. An analysis and validation pipeline for large-scale RNAi-based screens. Sci Rep 2013; 3:1076. [PMID: 23326633 PMCID: PMC3546318 DOI: 10.1038/srep01076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 11/22/2012] [Indexed: 12/16/2022] Open
Abstract
Large-scale RNAi-based screens are a major technology, but require adequate prioritization and validation of candidate genes from the primary screen. In this work, we performed a large-scale pooled shRNA screen in mouse embryonic stem cells (ESCs) to discover genes associated with oxidative stress resistance and found several candidates. We then developed a bioinformatics pipeline to prioritize these candidates incorporating effect sizes, functional enrichment analysis, interaction networks and gene expression information. To validate candidates, we mixed normal cells with cells expressing the shRNA coupled to a fluorescent protein, which allows control cells to be used as an internal standard, and thus we could detect shRNAs with subtle effects. Although we did not identify genes associated with oxidative stress resistance, as a proof-of-concept of our pipeline we demonstrate a detrimental role of Edd1 silencing in ESC growth. Our methods may be useful for candidate gene prioritization of large-scale RNAi-based screens.
Collapse
Affiliation(s)
- Michael Plank
- Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Inhibitory effect of HIV-specific neutralizing IgA on mucosal transmission of HIV in humanized mice. Blood 2012; 120:4571-82. [PMID: 23065154 DOI: 10.1182/blood-2012-04-422303] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
HIV-1 infections are generally initiated at mucosal sites. Thus, IgA antibody, which plays pivotal roles in mucosal immunity, might efficiently prevent HIV infection. However, mounting a highly effective HIV-specific mucosal IgA response by conventional immunization has been challenging and the potency of HIV-specific IgA against infection needs to be addressed in vivo. Here we show that the polymeric IgA form of anti-HIV antibody inhibits HIV mucosal transmission more effectively than the monomeric IgA or IgG1 form in a comparable range of concentrations in humanized mice. To deliver anti-HIV IgA in a continual manner, we devised a hematopoietic stem/progenitor cell (HSPC)-based genetic approach using an IgA gene. We transplanted human HSPCs transduced with a lentiviral construct encoding a class-switched anti-HIV IgA (b12-IgA) into the humanized bone marrow-liver-thymus (BLT) mice. The transgene was expressed specifically in B cells and plasma cells in lymphoid organs and mucosal sites. After vaginal HIV-1 challenge, mucosal CD4(+) T cells in the b12-IgA-producing mice were protected from virus-mediated depletion. Similar results were also obtained in a second humanized model, "human immune system mice." Our study demonstrates the potential of anti-HIV IgA in immunoprophylaxis in vivo, emphasizing the importance of the mucosal IgA response in defense against HIV/AIDS.
Collapse
|
23
|
Yang CS, Lee JS, Rodgers M, Min CK, Lee JY, Kim HJ, Lee KH, Kim CJ, Oh B, Zandi E, Yue Z, Kramnik I, Liang C, Jung JU. Autophagy protein Rubicon mediates phagocytic NADPH oxidase activation in response to microbial infection or TLR stimulation. Cell Host Microbe 2012; 11:264-76. [PMID: 22423966 DOI: 10.1016/j.chom.2012.01.018] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 10/26/2011] [Accepted: 01/30/2012] [Indexed: 10/28/2022]
Abstract
Phagocytosis and autophagy are two important and related arms of the host's first-line defense against microbial invasion. Rubicon is a RUN domain containing cysteine-rich protein that functions as part of a Beclin-1-Vps34-containing autophagy complex. We report that Rubicon is also an essential, positive regulator of the NADPH oxidase complex. Upon microbial infection or Toll-like-receptor 2 (TLR2) activation, Rubicon interacts with the p22phox subunit of the NADPH oxidase complex, facilitating its phagosomal trafficking to induce a burst of reactive oxygen species (ROS) and inflammatory cytokines. Consequently, ectopic expression or depletion of Rubicon profoundly affected ROS, inflammatory cytokine production, and subsequent antimicrobial activity. Rubicon's actions in autophagy and in the NADPH oxidase complex are functionally and genetically separable, indicating that Rubicon functions in two ancient innate immune machineries, autophagy and phagocytosis, depending on the environmental stimulus. Rubicon may thus be pivotal to generating an optimal intracellular immune response against microbial infection.
Collapse
Affiliation(s)
- Chul-Su Yang
- Department of Molecular Microbiology and Immunology, University of Southern California, Keck School of Medicine, Harlyne J. Norris Cancer Research Tower, Los Angeles, California 90033, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Gregory DJ, Mikhaylova L, Fedulov AV. Selective DNA demethylation by fusion of TDG with a sequence-specific DNA-binding domain. Epigenetics 2012; 7:344-9. [PMID: 22419066 DOI: 10.4161/epi.19509] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Our ability to selectively manipulate gene expression by epigenetic means is limited, as there is no approach for targeted reactivation of epigenetically silenced genes, in contrast to what is available for selective gene silencing. We aimed to develop a tool for selective transcriptional activation by DNA demethylation. Here we present evidence that direct targeting of thymine-DNA-glycosylase (TDG) to specific sequences in the DNA can result in local DNA demethylation at potential regulatory sequences and lead to enhanced gene induction. When TDG was fused to a well-characterized DNA-binding domain [the Rel-homology domain (RHD) of NFκB], we observed decreased DNA methylation and increased transcriptional response to unrelated stimulus of inducible nitric oxide synthase (NOS2). The effect was not seen for control genes lacking either RHD-binding sites or high levels of methylation, nor in control mock-transduced cells. Specific reactivation of epigenetically silenced genes may thus be achievable by this approach, which provides a broadly useful strategy to further our exploration of biological mechanisms and to improve control over the epigenome.
Collapse
Affiliation(s)
- David J Gregory
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| | | | | |
Collapse
|
25
|
He XN, Su F, Lou ZZ, Jia WZ, Song YL, Chang HY, Wu YH, Lan J, He XY, Zhang Y. Ipr1 gene mediates RAW 264.7 macrophage cell line resistance to Mycobacterium bovis. Scand J Immunol 2011; 74:438-44. [PMID: 21790702 DOI: 10.1111/j.1365-3083.2011.02596.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Tuberculosis caused by Mycobacterium bovis (M. bovis) seriously affects efficiency of animal production with impacts on public health as well. Effective programmes of prevention and eradication of M. bovis infection therefore are urgently needed. Intracellular pathogen resistance gene 1 (Ipr1) is well known to mediate innate immunity to Mycobacterium tuberculosis (MTB), but there are no reports as to whether Ipr1 can enhance the phagocytic ability of macrophage against M. bovis. In this investigation, RAW 264.7 macrophage was transduced with lentiviral vector carrying Ipr1 (named Lenti-Ipr1); transgenic cells were identified by RT-PCR and western blotting. Transgenic positive cells (R-Ipr1) were then infected with an M. bovis virulent strain, with non-transduced cells used as control. When cell proliferation, viability and apoptosis of the two groups were investigated, it was found that infected RAW 264.7 died by necrosis whereas R-Ipr1 underwent apoptosis. Furthermore, the numbers of intracellular bacteria in R-Ipr1 were lower than those in control cells (P < 0.05). To identify the role of Ipr1, we measured the genes of Casp3, Mcl-1 and NOS2A which associated with macrophage activation and apoptosis by real-time quantitative PCR. The results demonstrated that Ipr1 gene expression can enhance anti-M. bovis infection of macrophage. This establishes a basis for the future production of Ipr1-transgenic cattle to strengthen the tuberculosis resistance.
Collapse
Affiliation(s)
- X N He
- Key Laboratory of Animal Reproductive Physiology & Embryo Technology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A & F University, Yangling, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Scavenger receptors (ScRs) are a structurally unrelated family of receptors with the ability to bind modified low density lipoprotein (LDL) as well as a broad range of polyanionic ligands. CD68, whose expression is restricted to mononuclear phagocytes, is a unique ScR family member, owing to its lysosome associated membrane protein (LAMP)-like domain and predominant endosomal distribution. Knockout (ko) mice were generated to directly evaluate the role murine CD68 may play in oxidized LDL (Ox-LDL) uptake. However, CD68⁻/⁻ macrophages took up Ox-LDL robustly. Likewise, no defects were observed in the ability of CD68⁻/⁻ mononuclear phagocytes to take up or mount an effective innate response against a number of microbes. Curiously, CD68⁻/⁻ mononuclear phagocytes exhibited a trend toward enhanced antigen presentation to CD4⁺ T-cells, raising the possibility that CD68 may function either to negatively regulate antigen uptake, loading, or major histocompatibility complex class II (MHC-II) trafficking.
Collapse
Affiliation(s)
- Li Song
- Department of Microbiology, Columbia University, New York, NY, USA
| | | | | |
Collapse
|
27
|
Overexpression of TRIB2 in human lung cancers contributes to tumorigenesis through downregulation of C/EBPα. Oncogene 2011; 30:3328-35. [PMID: 21399661 DOI: 10.1038/onc.2011.57] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lung cancer is the most common cause of cancer-related mortality worldwide. Here, we report elevated expression of tribbles homolog 2 (TRIB2) in primary human lung tumors and in non-small cell lung cancer cells that express low levels of differentiation-inducing transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα). In approximately 10-20% of cases, elevated TRIB2 expression resulted from gene amplification. TRIB2 knockdown was found to inhibit cell proliferation and in vivo tumor growth. In addition, TRIB2 knockdown led to morphological changes similar to C/EBPα overexpression and correlated with increased expression and activity of C/EBPα. TRIB2-mediated regulation of C/EBPα was found to occur through the association of TRIB2 with the E3 ligase TRIM21. Together, these data identify TRIB2 as a potential driver of lung tumorigenesis through a mechanism that involves downregulation of C/EBPα.
Collapse
|
28
|
Cai L, Pan H, Trzciński K, Thompson CM, Wu Q, Kramnik I. MYBBP1A: a new Ipr1's binding protein in mice. Mol Biol Rep 2010; 37:3863-8. [PMID: 20221700 PMCID: PMC3084015 DOI: 10.1007/s11033-010-0042-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 02/24/2010] [Indexed: 12/16/2022]
Abstract
Infection with mycobacterium tuberculosis (MTB) can cause different outcomes in hosts with variant genetic backgrounds. Previously, we identified an intracellular pathogen resistance 1 (Ipr1) gene with the role of resistance of MTB infection in mice model. However, until now, its binding proteins have been little known even for its human homology, SP110. In this study, the homology for mouse Ipr1 in canines was found to have an extra domain structure, h.1.5.1. And 30 potential candidate proteins were predicted to bind canine Ipr1, which were characterized of the interacting structure with the h.1.5.1. Among them, MYBBP1A was verified to bind with both Ipr1 and eGFP-Ipr1 in mouse macrophage J774A.1 clone 21 cells using co-immunoprecipitation method. And with the constructed high-confidence Ipr1-involved network, we suggested that Ipr1 might be involved in apoptosis pathway via MYBBP1A.
Collapse
Affiliation(s)
- Lei Cai
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 667 Huntington Avenue, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Seo JH, Jeon YH, Lee YJ, Yoon GS, Won DI, Ha JH, Jeong SY, Lee SW, Ahn BC, Lee J. Trafficking macrophage migration using reporter gene imaging with human sodium iodide symporter in animal models of inflammation. J Nucl Med 2010; 51:1637-43. [PMID: 20847173 DOI: 10.2967/jnumed.110.077891] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
UNLABELLED The aim of this study was to investigate the feasibility of nuclear molecular imaging using the human sodium iodide symporter (hNIS) as a reporter gene to monitor macrophage migration toward the inflammatory foci. METHODS A stable macrophage cell line coexpressing hNIS and green fluorescent protein (GFP) genes (RAW264.7/hNIS-GFP and R(NIS) cell) was established from an immortalized macrophage cell line (RAW264.7 cells). (125)I uptake was determined (for hNIS protein functional activity), and flow cytometry analysis (to examine GFP gene expression), a cell proliferation assay, a cytokine assay, and a phagocytic activity assay were performed. (99m)Tc-pertechnetate images were acquired at 1 d after subcutaneous inoculation of R(NIS) cells in nude mice. Chemical inflammation was induced for in vivo imaging in the thigh of nude mice by turpentine oil injection. Small-animal PET with (18)F-FDG and (124)I was performed with an intravenous administration of RAW264.7 or R(NIS) cells in inflammation-induced animals. RESULTS The expression of hNIS and GFP genes was confirmed in R(NIS) cells by flow cytometry and immunofluorescent staining. (125)I uptake was about 67 times higher in R(NIS) cells than in RAW264.7 cells. No significant difference was observed in cell proliferation, cytokine production, and phagocytic activity between RAW264.7 and R(NIS) cells. (99m)Tc-pertechnetate imaging revealed increased tracer uptake at the inoculation site. PET with (124)I demonstrated a donut-shaped uptake, correlating with uptake shown by the (18)F-FDG PET images, at the inflammation site of mice administered R(NIS) cells. (124)I uptake (percentage injected dose per gram) was about 2.12 times higher at the inflammation site in the R(NIS) mice than in RAW264.7 mice. By immunohistochemistry, the migration of macrophages was further confirmed by positive staining for GFP and hNIS at the inflammation site of R(NIS) mice. CONCLUSION These data support the feasibility of hNIS reporter gene imaging to monitor the macrophage migration toward an inflammatory lesion. Macrophages expressing hNIS may provide a new strategy to investigate the cellular behavior seen with inflammatory response in a preclinical model.
Collapse
Affiliation(s)
- Ji Hyoung Seo
- Department of Nuclear Medicine, Kyungpook National University, Daegu, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kim HS, Cho HR, Choi SH, Woo JS, Moon WK. In vivo imaging of tumor transduced with bimodal lentiviral vector encoding human ferritin and green fluorescent protein on a 1.5T clinical magnetic resonance scanner. Cancer Res 2010; 70:7315-24. [PMID: 20823165 DOI: 10.1158/0008-5472.can-10-0241] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A combination of reporter genes for magnetic resonance imaging (MRI) and optical imaging can provide an additional level of noninvasive and quantitative information about biological processes occurring in deep tissues. We developed a bimodal lentiviral vector to monitor deep tissue events using MRI to detect myc-tagged human ferritin heavy chain (myc-hFTH) expression and fluorescence imaging to detect green fluorescent protein (GFP) expression. The transgene construct was stably transfected into MCF-7 and F-98 cells. After transplantation of the cells expressing myc-hFTH and GFP into mice or rats, serial MRI and fluorescence imaging were performed with a human wrist coil on a 1.5T MR scanner and optical imaging analyzer for 4 weeks. No cellular toxicity due to overexpression of myc-hFTH and GFP was observed in MTT and trypan blue exclusion assays. Iron accumulation was observed in myc-hFTH cells and tumors by Prussian blue staining and iron binding assays. The myc-hFTH cells and tumors had significantly lower signal intensities in T(2)-weighted MRI than mock-transfected controls (P ≤ 0.05). This is direct evidence that myc-hFTH expression can be visualized noninvasively with a 1.5T clinical MR scanner. This study shows that MRI and fluorescence imaging of transplanted cells at molecular and cellular levels can be performed simultaneously using our bimodal lentiviral vector system. Our techniques can be used to monitor tumor growth, metastasis, and regression during cell and gene-based therapy in deep tissues.
Collapse
Affiliation(s)
- Hoe Suk Kim
- Department of Radiology, Seoul National University Hospital and Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, South Korea
| | | | | | | | | |
Collapse
|
31
|
Wilson AA, Murphy GJ, Hamakawa H, Kwok LW, Srinivasan S, Hovav AH, Mulligan RC, Amar S, Suki B, Kotton DN. Amelioration of emphysema in mice through lentiviral transduction of long-lived pulmonary alveolar macrophages. J Clin Invest 2009; 120:379-89. [PMID: 20038801 DOI: 10.1172/jci36666] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 10/28/2009] [Indexed: 11/17/2022] Open
Abstract
Directed gene transfer into specific cell lineages in vivo is an attractive approach for both modulating gene expression and correcting inherited mutations such as emphysema caused by human alpha1 antitrypsin (hAAT) deficiency. However, somatic tissues are mainly comprised of heterogeneous, differentiated cell lineages that can be short lived and difficult to specifically transfect. Here, we describe an intratracheally instilled lentiviral system able to deliver genes selectively to as many as 70% of alveolar macrophages (AMs) in the mouse lung. Following a single in vivo lentiviral transduction, genetically tagged AMs persisted in lung alveoli and expressed transferred genes for the lifetime of the adult mouse. A prolonged macrophage lifespan, rather than precursor cell proliferation, accounted for the surprisingly sustained presence of transduced AMs. We utilized this long-lived population to achieve localized secretion of therapeutic levels of hAAT protein in lung epithelial lining fluid. In an established mouse model of emphysema, lentivirally delivered hAAT ameliorated the progression of emphysema, as evidenced by attenuation of increased lung compliance and alveolar size. After 24 weeks of sustained gene expression, no humoral or cellular immune responses to hAAT protein were detected. Our results challenge the dogma that AMs are short lived and suggest that these differentiated cells may be a possible target cell population for in vivo gene therapy applications, including the sustained correction of hAAT deficiency.
Collapse
Affiliation(s)
- Andrew A Wilson
- Pulmonary Center and Department of Medicine, Boston University School of Medicine, 715 Albany Street, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Inducible transgenes under the control of the hCD68 promoter identifies mouse macrophages with a distribution that differs from the F4/80 - and CSF-1R-expressing populations. Exp Hematol 2009; 37:1387-92. [PMID: 19772887 DOI: 10.1016/j.exphem.2009.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 08/26/2009] [Accepted: 09/16/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Macrophages are critical components of diverse microenvironments (ME) in adulthood, as well as during embryogenesis. Their role in development precludes the use of gene-targeting and knockout approaches for studying their function. Hence, we proposed to create a macrophage-specific inducible transgenic mouse where genes can be turned on or off at will. MATERIALS AND METHODS A transgenic mouse in which the reverse tetracycline activator (rtTA-M2) is expressed under the hCD68 promoter for macrophage-specific gene induction was developed and crossed with a second transgenic reporter mouse strain in which the gene for green fluorescent protein (GFP) is under the control of tetracycline responsive element promoter. After doxycycline induction of the double transgenic animals (designated CD68-rtTA-tet-GFP), inducible expression of GFP was characterized by multicolor flow cytometric analysis of blood, marrow, and spleen cells and by demonstration of GFP expression in fresh-frozen sections in diverse tissues. RESULTS In bone marrow, inducible GFP expression was not confined to, or inclusive of, all cells expressing the classical macrophage markers, such as F4/80. However, GFP-expressing cells in thioglycollate-elicited peritoneal macrophages were also positive for F4/80 and monocyte-macrophage-specific 2 antigen. Interestingly, flow analysis also indicated little overlap between the F4/80 and CSF-1R-positive populations. Fresh-frozen samples of tissues known to contain macrophages revealed GFP-expressing cells with variable morphologies. CONCLUSION Our results show that the hCD68 promoter directs gene expression in a macrophage population distinct from that defined by classical monocyte-macrophage markers or promoters. Whether this population is functionally distinct remains to be established.
Collapse
|
33
|
Sommer CA, Stadtfeld M, Murphy GJ, Hochedlinger K, Kotton DN, Mostoslavsky G. Induced pluripotent stem cell generation using a single lentiviral stem cell cassette. Stem Cells 2009; 27:543-9. [PMID: 19096035 DOI: 10.1634/stemcells.2008-1075] [Citation(s) in RCA: 492] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Induced pluripotent stem (iPS) cells can be generated using retroviral vectors expressing Oct4, Klf4, Sox2, and cMyc. Most prior studies have required multiple retroviral vectors for reprogramming, resulting in high numbers of genomic integrations in iPS cells and limiting their use for therapeutic applications. Here we describe the use of a single lentiviral vector expressing a "stem cell cassette" composed of the four transcription factors and a combination of 2A peptide and internal ribosome entry site technology, generating iPS cells from postnatal fibroblasts. iPS cells generated in this manner display embryonic stem cell-like morphology, express stem cell markers, and exhibit in vivo pluripotency, as evidenced by their ability to differentiate in teratoma assays and their robust contribution to mouse chimeras. Combining all factors into a single transcript achieves the most efficient reprogramming system to date and allows derivation of iPS cells with a single viral integration. The use of a single lentiviral vector for reprogramming represents a powerful laboratory tool and a significant step toward the application of iPS technology for clinical purposes.
Collapse
Affiliation(s)
- Cesar A Sommer
- Department of Medicine, Boston University School of Medicine, Massachusetts 02118, USA
| | | | | | | | | | | |
Collapse
|
34
|
Tian J, Andreadis ST. Independent and high-level dual-gene expression in adult stem-progenitor cells from a single lentiviral vector. Gene Ther 2009; 16:874-84. [PMID: 19440229 PMCID: PMC2714872 DOI: 10.1038/gt.2009.46] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 04/02/2009] [Accepted: 04/03/2009] [Indexed: 11/08/2022]
Abstract
Expression of multiple genes from the same target cell is required in several technological and therapeutic applications such as quantitative measurements of promoter activity or in vivo tracking of stem cells. In spite of such need, reaching independent and high-level dual-gene expression cannot be reliably accomplished by current gene transfer vehicles. To address this issue, we designed a lentiviral vector carrying two transcriptional units separated by polyadenylation, terminator and insulator sequences. With this design, the expression level of both genes was as high as that yielded from lentiviral vectors containing only a single transcriptional unit. Similar results were observed with several promoters and cell types including epidermal keratinocytes, bone marrow mesenchymal stem cells and hair follicle stem cells. Notably, we demonstrated quantitative dynamic monitoring of gene expression in primary cells with no need for selection protocols suggesting that this optimized lentivirus may be useful in high-throughput gene expression profiling studies.
Collapse
MESH Headings
- Adult
- Adult Stem Cells/cytology
- Adult Stem Cells/metabolism
- Bone Marrow Cells
- Carcinoma, Squamous Cell
- Cells, Cultured
- Cloning, Molecular
- Flow Cytometry
- Gene Expression Profiling
- Gene Expression Regulation, Viral/genetics
- Genetic Vectors/genetics
- Hair Follicle
- Humans
- Insulator Elements
- Lentivirus/genetics
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Microscopy, Fluorescence
- Organ Specificity
- Polyadenylation
- Promoter Regions, Genetic
- Regulatory Sequences, Nucleic Acid/genetics
- Terminator Regions, Genetic
- Transcription, Genetic
- Transduction, Genetic
Collapse
Affiliation(s)
- Jun Tian
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, NY 14260
| | - Stelios T. Andreadis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, NY 14260
- Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203
| |
Collapse
|
35
|
Pichugin AV, Yan BS, Sloutsky A, Kobzik L, Kramnik I. Dominant role of the sst1 locus in pathogenesis of necrotizing lung granulomas during chronic tuberculosis infection and reactivation in genetically resistant hosts. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:2190-201. [PMID: 19443700 DOI: 10.2353/ajpath.2009.081075] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Significant host heterogeneity in susceptibility to tuberculosis exists both between and within mammalian species. Using a mouse model of infection with virulent Mycobacterium tuberculosis (Mtb), we identified the genetic locus sst1 that controls the progression of pulmonary tuberculosis in immunocompetent hosts. In this study, we demonstrate that within the complex, multigenic architecture of tuberculosis susceptibility, sst1 functions to control necrosis within tuberculosis lesions in the lungs; this lung-specific sst1 effect is independent of both the route of infection and genetic background of the host. Moreover, sst1-dependent necrosis was observed at low bacterial loads in the lungs during reactivation of the disease after termination of anti-tuberculosis drug therapy. We demonstrate that in sst1-susceptible hosts, nonlinked host resistance loci control both lung inflammation and production of inflammatory mediators by Mtb-infected macrophages. Although interactions of the sst1-susceptible allele with genetic modifiers determine the type of the pulmonary disease progression, other resistance loci do not abolish lung necrosis, which is, therefore, the core sst1-dependent phenotype. Sst1-susceptible mice from tuberculosis-resistant and -susceptible genetic backgrounds reproduce a clinical spectrum of pulmonary tuberculosis and may be used to more accurately predict the efficacy of anti-tuberculosis interventions in genetically heterogeneous human populations.
Collapse
Affiliation(s)
- Alexander V Pichugin
- Departments of Immunology and Infectious Diseases, Harvard School of Public Health, 665 Huntington Ave., SPH-1, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|