1
|
Wiatr M, Hadzhieva M, Lecerf M, Noé R, Justesen S, Lacroix-Desmazes S, Dragon-Durey MA, Dimitrov JD. Hyperoxidized Species of Heme Have a Potent Capacity to Induce Autoreactivity of Human IgG Antibodies. Int J Mol Sci 2023; 24:ijms24043416. [PMID: 36834827 PMCID: PMC9960230 DOI: 10.3390/ijms24043416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
The interaction of some human antibodies with heme results in posttranslational acquisition of binding to various self- and pathogen-derived antigens. The previous studies on this phenomenon were performed with oxidized heme (Fe3+). In the present study, we elucidated the effect of other pathologically relevant species of heme, i.e., species that were formed after contact of heme with oxidizing agents such as hydrogen peroxide, situations in which heme's iron could acquire higher oxidation states. Our data reveal that hyperoxidized species of heme have a superior capacity to heme (Fe3+) in triggering the autoreactivity of human IgG. Mechanistic studies demonstrated that oxidation status of iron was of critical importance for the heme's effect on antibodies. We also demonstrated that hyperoxidized heme species interacted at higher affinities with IgG and that this binding occurred through a different mechanism as compared to heme (Fe3+). Regardless of their profound functional impact on the antigen-binding properties of antibodies, hyperoxidized species of heme did not affect Fc-mediated functions of IgG, such as binding to the neonatal Fc receptor. The obtained data contribute to a better understanding of the pathophysiological mechanism of hemolytic diseases and of the origin of elevated antibody autoreactivity in patients with some hemolytic disorders.
Collapse
Affiliation(s)
- Marie Wiatr
- Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, Université Paris Cité, 75006 Paris, France
| | - Maya Hadzhieva
- Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, Université Paris Cité, 75006 Paris, France
| | - Maxime Lecerf
- Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, Université Paris Cité, 75006 Paris, France
| | - Rémi Noé
- Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, Université Paris Cité, 75006 Paris, France
| | - Sune Justesen
- Immunitrack Aps, Lersoe Park Alle 42, 2100 Copenhagen, Denmark
| | - Sébastien Lacroix-Desmazes
- Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, Université Paris Cité, 75006 Paris, France
| | - Marie-Agnès Dragon-Durey
- Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Service d’Immunologie Biologique, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, 75610 Paris, France
| | - Jordan D. Dimitrov
- Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Correspondence: ; Tel.: +33-144-278206
| |
Collapse
|
2
|
Toshkova N, Zhelyazkova V, Justesen S, Dimitrov JD. Conservative pattern of interaction of bat and human IgG antibodies with FcRn. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104579. [PMID: 36272453 DOI: 10.1016/j.dci.2022.104579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/03/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Recently, numerous studies report bats as reservoirs of emerging pathogens with little to no signs of infections. This is thought to be connected to the unique immune system of bats, which remains poorly characterized. Despite the physiological importance of the Neonatal Fc receptor (FcRn) in the homeostasis of IgG antibodies, it is unclear how its functional activity is evolutionary conservative among mammals, and so is the case for bats. Using surface plasmon resonance-based technology, we tested the interactions of IgG antibodies isolated from three bat species with recombinant human and mouse FcRn. Our data show that IgG from the studied bat species binds to both human and mouse FcRn, albeit with distinct affinities. Importantly, the binding pattern of bat IgG is similar to human IgG. This confirms the conservative nature of IgG-FcRn interaction and highlights the importance of FcRn IgG salvaging system in bats.
Collapse
Affiliation(s)
- Nia Toshkova
- National Museum of Natural History, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000, Sofia, Bulgaria; Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000, Sofia, Bulgaria.
| | - Violeta Zhelyazkova
- National Museum of Natural History, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000, Sofia, Bulgaria; Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, Université de Paris, 75006, Paris, France
| | - Sune Justesen
- Immunitrack Aps, Lersoe Park Alle 42, 2100, Copenhagen East, Denmark
| | - Jordan D Dimitrov
- Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, Université de Paris, 75006, Paris, France.
| |
Collapse
|
3
|
Rossini S, Noé R, Daventure V, Lecerf M, Justesen S, Dimitrov JD. V Region of IgG Controls the Molecular Properties of the Binding Site for Neonatal Fc Receptor. THE JOURNAL OF IMMUNOLOGY 2020; 205:2850-2860. [PMID: 33077645 DOI: 10.4049/jimmunol.2000732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/17/2020] [Indexed: 01/09/2023]
Abstract
Neonatal Fc receptor (FcRn) has a key role in the homeostasis of IgG. Despite its physiological and clinical importance, the interaction of IgG and FcRn remains not completely comprehended. Thus, IgG molecules with identical constant portions but with minor differences in their V regions have been demonstrated to interact with FcRn with a considerable heterogeneity in the binding affinity. To understand this discrepancy, we dissected the physicochemical mechanism of the interaction of 10 human IgG1 to human FcRn. The interactions of two Abs in the presence of their cognate Ags were also examined. Data from activation and equilibrium thermodynamics analyses as well as pH dependence of the kinetics revealed that the V region of IgG could modulate a degree of conformational changes and binding energy of noncovalent contacts at the FcRn binding interface. These results suggest that the V domains modulate FcRn binding site in Fc by allosteric effects. These findings contribute for a deeper understanding of the mechanism of IgG-FcRn interaction. They might also be of relevance for rational engineering of Abs for optimizing their pharmacokinetic properties.
Collapse
Affiliation(s)
- Sofia Rossini
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France; and
| | - Rémi Noé
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France; and
| | - Victoria Daventure
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France; and
| | - Maxime Lecerf
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France; and
| | | | - Jordan D Dimitrov
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France; and
| |
Collapse
|
4
|
Larsen MT, Rawsthorne H, Schelde KK, Dagnæs-Hansen F, Cameron J, Howard KA. Cellular recycling-driven in vivo half-life extension using recombinant albumin fusions tuned for neonatal Fc receptor (FcRn) engagement. J Control Release 2018; 287:132-141. [PMID: 30016735 DOI: 10.1016/j.jconrel.2018.07.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 10/28/2022]
Abstract
Recombinant albumin-drug genetic fusions are an effective technology to prolong the serum half-life of therapeutics that has resulted in marketed products. Indirect evidence suggests albumin fusions' long circulation is controlled by engagement with the cellular recycling neonatal Fc receptor (FcRn) in addition to reduced kidney filtration. In this work, we have used a panel of recombinant fusions, engineered with different human FcRn (hFcRn) affinity, including a novel high binding albumin variant (HBII), to directly define and importantly, control the intracellular mechanism as a half-life extension tuning method. mNeonGreen or mCherry fusion to the N-terminal of the recombinant human albumin (rHA) variants null-binder (rHA NB), wild-type (rHA WT), high-binder I (rHA HBI), and high-binder II (rHA HBII) did not generally interfere with hFcRn interaction determined by Biolayer Interferometry. Co-localisation of the albumins with endosomal, but not lysosomal, markers was shown by confocal microscopy for high, but not low, hFcRn binders in a human microvascular endothelial hFcRn overexpressing cell line (HMEC-1 FcRn) suggestive of endosomal compartmentalisation. Furthermore, a cellular recycling assay revealed increased recycling of albumin fusions for the high binding variants (mNeonGreen WT; ~1, mNeonGreen HBI; 5.26-fold higher, and mNeonGreen HBII; 5.77-fold higher) in the hFcRn overexpressing cell line. In vivo experiments demonstrated a direct in vitro recycling/in vivo half-life correlation with a longer circulation for the mCherry fusions engineered with high hFcRn affinity that was highest with the HBII variant of 30.1 h compared to 18.2 h for the mCherry WT. This work gives the first direct evidence for an FcRn-driven endosomal cellular recycling pathway for recombinant albumin fusions that correlates with half-life extension controlled by the affinity to hFcRn; promoting a versatile method to tune the pharmacokinetics of albumin fusion-based therapeutics not met by current technologies.
Collapse
Affiliation(s)
- Maja Thim Larsen
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Helen Rawsthorne
- Albumedix Ltd, Castle Court, 59 Castle Boulevard, Nottingham NG7 1FD, United Kingdom
| | - Karen Kræmmer Schelde
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Jason Cameron
- Albumedix Ltd, Castle Court, 59 Castle Boulevard, Nottingham NG7 1FD, United Kingdom
| | - Kenneth A Howard
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
5
|
Ng WK, Lim TS, Lai NS. Expression of soluble human Neonatal Fc-receptor (FcRn) in Escherichia coli through modification of growth environment. Protein Expr Purif 2016; 127:73-80. [PMID: 27412717 DOI: 10.1016/j.pep.2016.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/01/2016] [Accepted: 07/08/2016] [Indexed: 11/17/2022]
Abstract
Neonatal Fc-receptor (FcRn) with its affinity to immunoglobulin G (IgG) has been the subject of many pharmacokinetic studies in the past century. This protein is well known for its unique feature in maintaining the circulating IgG from degradation in blood plasma. FcRn is formed by non-covalent association between the α-chain with the β-2-microglobulin (β2m). Many studies have been conducted to produce FcRn in the laboratory, mainly using mammalian tissue culture as host for recombinant protein expression. In this study, we demonstrate a novel strategy to express the α-chain of FcRn using Escherichia coli as the expression host. The expression vector that carries the cDNA of the α-chain was transformed into expression host, Rosetta-gami 2 strain for inducible expression. The bacterial culture was grown in a modified growth medium which constitutes of terrific broth, sodium chloride (NaCl), glucose and betaine. A brief heat shock at 45 °C was carried out after induction, before the temperature for expression was reduced to 22 °C and grown for 16 h. The soluble form of the α-chain of FcRn expressed was tested in the ELISA and dot blot immunoassay to confirm its native functionality. The results implied that the α-chain of FcRn expressed using this method is functional and retains its pH-dependent affinity to IgG. Our study significantly suggests that the activity of human FcRn remain active and functional in the absence of β2m.
Collapse
Affiliation(s)
- Woei Kean Ng
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Ngit Shin Lai
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia.
| |
Collapse
|
6
|
Petersen SS, Kläning E, Ebbesen MF, Andersen B, Cameron J, Sørensen ES, Howard KA. Neonatal Fc Receptor Binding Tolerance toward the Covalent Conjugation of Payloads to Cysteine 34 of Human Albumin Variants. Mol Pharm 2015; 13:677-82. [DOI: 10.1021/acs.molpharmaceut.5b00605] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Steffan S. Petersen
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus, Denmark
- Department
of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Eva Kläning
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus, Denmark
- Department
of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Morten F. Ebbesen
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus, Denmark
- Department
of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | | | - Jason Cameron
- Novozymes Biopharma UK Ltd., Castle Court, 59 Castle Boulevard, NG7 1FD Nottingham, United Kingdom
| | - Esben S. Sørensen
- Department
of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Kenneth A. Howard
- Interdisciplinary
Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus, Denmark
- Department
of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| |
Collapse
|
7
|
Abstract
INTRODUCTION The Fc receptors (FcRs) and their interactions with immunoglobulin and innate immune opsonins, such as C-reactive protein, are key players in humoral and cellular immune responses. As the effector mechanism for some therapeutic monoclonal antibodies, and often a contributor to the pathogenesis and progression of autoimmunity, FcRs are promising targets for treating autoimmune diseases. AREAS COVERED This review discusses the nature of different FcRs and the various mechanisms of their involvement in initiating and modulating immunocyte functions and their biological consequences. It describes a range of current strategies in targeting FcRs and manipulating their interaction with specific ligands, while presenting the pros and cons of these approaches. This review also discusses potential new strategies including regulation of FcR expression and receptor crosstalk. EXPERT OPINION FcRs are appealing targets in the treatment of inflammatory autoimmune diseases. However, there are still knowledge limitations and technical challenges, the most important being a better understanding of the individual roles of each of the FcRs and enhancement of the specificity in targeting particular cell types and specific FcRs.
Collapse
Affiliation(s)
- Xinrui Li
- The University of Alabama , SHEL 272, 1825 University Blvd, Birmingham, AL 35294 , USA
| | | |
Collapse
|
8
|
Neuber T, Frese K, Jaehrling J, Jäger S, Daubert D, Felderer K, Linnemann M, Höhne A, Kaden S, Kölln J, Tiller T, Brocks B, Ostendorp R, Pabst S. Characterization and screening of IgG binding to the neonatal Fc receptor. MAbs 2014; 6:928-42. [PMID: 24802048 DOI: 10.4161/mabs.28744] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The neonatal Fc receptor (FcRn) protects immunoglobulin G (IgG) from degradation and increases the serum half-life of IgG, thereby contributing to a higher concentration of IgG in the serum. Because altered FcRn binding may result in a reduced or prolonged half-life of IgG molecules, it is advisable to characterize Fc receptor binding of therapeutic antibody lead candidates prior to the start of pre-clinical and clinical studies. In this study, we characterized the interactions between FcRn of different species (human, cynomolgus monkey, mouse and rat) and nine IgG molecules from different species and isotypes with common variable heavy (VH) and variable light chain (VL) domains. Binding was analyzed at acidic and neutral pH using surface plasmon resonance (SPR) and biolayer interferometry (BLI). Furthermore, we transferred the well-accepted, but low throughput SPR-based method for FcRn binding characterization to the BLI-based Octet platform to enable a higher sample throughput allowing the characterization of FcRn binding already during early drug discovery phase. We showed that the BLI-based approach is fit-for-purpose and capable of discriminating between IgG molecules with significant differences in FcRn binding affinities. Using this high-throughput approach we investigated FcRn binding of 36 IgG molecules that represented all VH/VL region combinations available in the fully human, recombinant antibody library Ylanthia®. Our results clearly showed normal FcRn binding profiles for all samples. Hence, the variations among the framework parts, complementarity-determining region (CDR) 1 and CDR2 of the fragment antigen binding (Fab) domain did not significantly change FcRn binding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Anne Höhne
- MorphoSys AG; Martinsried/Planegg, Germany
| | | | | | | | | | | | | |
Collapse
|
9
|
Seijsing J, Lindborg M, Löfblom J, Uhlén M, Gräslund T. Robust expression of the human neonatal Fc receptor in a truncated soluble form and as a full-length membrane-bound protein in fusion with eGFP. PLoS One 2013; 8:e81350. [PMID: 24260574 PMCID: PMC3832405 DOI: 10.1371/journal.pone.0081350] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 10/11/2013] [Indexed: 11/20/2022] Open
Abstract
Studies on the neonatal Fc receptor (FcRn) have revealed a multitude of important functions in mammals, including protection of IgG and serum albumin (SA) from lysosomal degradation. The pharmacokinetic behavior of therapeutic antibodies, IgG-Fc- and SA-containing drugs is therefore influenced by their interaction with FcRn. Pre-clinical development of such drugs is facilitated if their interaction with FcRn can be studied in vitro. For this reason we have developed a robust system for production of the soluble extracellular domain of human FcRn as well as the full-length receptor as fusion to green fluorescent protein, taking advantage of a lentivirus-based gene delivery system where stable over-expressing cells are easily and rapidly generated. Production of the extracellular domain in multiple-layered culture flasks, followed by affinity purification using immobilized IgG, resulted in capture of milligram amounts of soluble receptor per liter cell culture with retained IgG binding. The receptor was further characterized by SDS-PAGE, western blotting, circular dichroism spectroscopy, ELISA, surface plasmon resonance and a temperature stability assay showing a functional and stable protein of high purity. The full-length receptor was found to be successfully over-expressed in a membrane-bound form with retained pH-dependent IgG- and SA-binding.
Collapse
Affiliation(s)
- Johan Seijsing
- School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | - John Löfblom
- School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Mathias Uhlén
- School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Torbjörn Gräslund
- School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
10
|
Braendstrup P, Justesen S, Østerbye T, Nielsen LLB, Mallone R, Vindeløv L, Stryhn A, Buus S. MHC class II tetramers made from isolated recombinant α and β chains refolded with affinity-tagged peptides. PLoS One 2013; 8:e73648. [PMID: 24023895 PMCID: PMC3759463 DOI: 10.1371/journal.pone.0073648] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/22/2013] [Indexed: 12/24/2022] Open
Abstract
Targeting CD4+ T cells through their unique antigen-specific, MHC class II-restricted T cell receptor makes MHC class II tetramers an attractive strategy to identify, validate and manipulate these cells at the single cell level. Currently, generating class II tetramers is a specialized undertaking effectively limiting their use and emphasizing the need for improved methods of production. Using class II chains expressed individually in E. coli as versatile recombinant reagents, we have previously generated peptide-MHC class II monomers, but failed to generate functional class II tetramers. Adding a monomer purification principle based upon affinity-tagged peptides, we here provide a robust method to produce class II tetramers and demonstrate staining of antigen-specific CD4+ T cells. We also provide evidence that both MHC class II and T cell receptor molecules largely accept affinity-tagged peptides. As a general approach to class II tetramer generation, this method should support rational CD4+ T cell epitope discovery as well as enable specific monitoring and manipulation of CD4+ T cell responses.
Collapse
Affiliation(s)
- Peter Braendstrup
- Laboratory of Experimental Immunology, University of Copenhagen, Copenhagen, Denmark
- Allogeneic Hematopoietic Cell Transplantation Laboratory, Department of Hematology, Rigshospitalet, Copenhagen, Denmark
| | - Sune Justesen
- Laboratory of Experimental Immunology, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Østerbye
- Laboratory of Experimental Immunology, University of Copenhagen, Copenhagen, Denmark
| | | | - Roberto Mallone
- Institut National de la Santé et de la Recherche Médicale, Unité 1016, Cochin Institute, DeAR Lab Avenir, Paris, France
| | - Lars Vindeløv
- Allogeneic Hematopoietic Cell Transplantation Laboratory, Department of Hematology, Rigshospitalet, Copenhagen, Denmark
| | - Anette Stryhn
- Laboratory of Experimental Immunology, University of Copenhagen, Copenhagen, Denmark
| | - Søren Buus
- Laboratory of Experimental Immunology, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
11
|
Andersen JT, Gonzalez-Pajuelo M, Foss S, Landsverk OJB, Pinto D, Szyroki A, de Haard HJ, Saunders M, Vanlandschoot P, Sandlie I. Selection of nanobodies that target human neonatal Fc receptor. Sci Rep 2013; 3:1118. [PMID: 23346375 PMCID: PMC3552320 DOI: 10.1038/srep01118] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 12/19/2012] [Indexed: 01/17/2023] Open
Abstract
FcRn is a key player in several immunological and non-immunological processes, as it mediates maternal-fetal transfer of IgG, regulates the serum persistence of IgG and albumin, and transports both ligands between different cellular compartments. In addition, FcRn enhances antigen presentation. Thus, there is an intense interest in studies of how FcRn binds and transports its cargo within and across several types of cells, and FcRn detection reagents are in high demand. Here we report on phage display-selected Nanobodies that target human FcRn. The Nanobodies were obtained from a variable-domain repertoire library isolated from a llama immunized with recombinant human FcRn. One candidate, Nb218-H4, was shown to bind FcRn with high affinity at both acidic and neutral pH, without competing ligand binding and interfering with FcRn functions, such as transcytosis of IgG. Thus, Nb218-H4 can be used as a detection probe and as a tracker for visualization of FcRn-mediated cellular transport.
Collapse
Affiliation(s)
- Jan Terje Andersen
- Centre for Immune Regulation (CIR) and Department of Molecular Biosciences, University of Oslo, Oslo, Norway.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Yazaki PJ, Lee B, Channappa D, Cheung CW, Crow D, Chea J, Poku E, Li L, Andersen JT, Sandlie I, Orcutt KD, Wittrup KD, Shively JE, Raubitschek A, Colcher D. A series of anti-CEA/anti-DOTA bispecific antibody formats evaluated for pre-targeting: comparison of tumor uptake and blood clearance. Protein Eng Des Sel 2012; 26:187-93. [PMID: 23175797 DOI: 10.1093/protein/gzs096] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A series of anti-tumor/anti-chelate bispecific antibody formats were developed for pre-targeted radioimmunotherapy. Based on the anti-carcinoembryonic antigen humanized hT84.66-M5A monoclonal antibody and the anti-DOTA C8.2.5 scFv antibody fragment, this cognate series of bispecific antibodies were radioiodinated to determine their tumor targeting, biodistribution and pharmacokinetic properties in a mouse xenograft tumor model. The in vivo biodistribution studies showed that all the bispecific antibodies exhibited specific high tumor uptake but the tumor targeting was approximately one-half of the parental anti-CEA mAb due to faster blood clearance. Serum stability and FcRn studies showed no apparent reason for the faster blood clearance. A dual radiolabel biodistribution study revealed that the (111)In-DOTA bispecific antibody had increased liver and spleen uptake, not seen for the (125)I-version due to metabolism and release of the radioiodine from the cells. These data suggest increased clearance of the antibody fusion formats by the mononuclear phagocyte system. Importantly, a pre-targeted study showed specific tumor uptake of (177)Lu-DOTA and a tumor : blood ratio of 199 : 1. This pre-targeted radiotherapeutic and substantial reduction in the radioactive exposure to the bone marrow should enhance the therapeutic potential of RIT.
Collapse
Affiliation(s)
- Paul J Yazaki
- Department of Cancer Immunotherapeutics & Tumor Immunology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Competition for FcRn-mediated transport gives rise to short half-life of human IgG3 and offers therapeutic potential. Nat Commun 2011; 2:599. [PMID: 22186895 PMCID: PMC3247843 DOI: 10.1038/ncomms1608] [Citation(s) in RCA: 215] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 11/23/2011] [Indexed: 01/03/2023] Open
Abstract
Human IgG3 displays the strongest effector functions of all IgG subclasses but has a short half-life for unresolved reasons. Here we show that IgG3 binds to IgG-salvage receptor (FcRn), but that FcRn-mediated transport and rescue of IgG3 is inhibited in the presence of IgG1 due to intracellular competition between IgG1 and IgG3. We reveal that this occurs because of a single amino acid difference at position 435, where IgG3 has an arginine instead of the histidine found in all other IgG subclasses. While the presence of R435 in IgG increases binding to FcRn at neutral pH, it decreases binding at acidic pH, affecting the rescue efficiency-but only in the presence of H435-IgG. Importantly, we show that in humans the half-life of the H435-containing IgG3 allotype is comparable to IgG1. H435-IgG3 also gave enhanced protection against a pneumococcal challenge in mice, demonstrating H435-IgG3 to be a candidate for monoclonal antibody therapies.
Collapse
|
14
|
Magistrelli G, Malinge P, Anceriz N, Desmurs M, Venet S, Calloud S, Daubeuf B, Kosco-Vilbois M, Fischer N. Robust recombinant FcRn production in mammalian cells enabling oriented immobilization for IgG binding studies. J Immunol Methods 2011; 375:20-9. [PMID: 21939661 DOI: 10.1016/j.jim.2011.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 09/01/2011] [Accepted: 09/01/2011] [Indexed: 12/28/2022]
Abstract
The MHC class-I related receptor or neonatal Fc receptor (FcRn) protects IgG and albumin from degradation by rescuing them in endothelial cells in a pH dependent fashion and consequently increases their respective half-lives. Monoclonal antibody-based therapies are of increasing interest and characterizing the interaction with FcRn is important for the development of an antibody candidate. In order to facilitate the production of soluble FcRn suitable for interaction studies, we generated semi-stable pools co-expressing FcRn α-chain, β2-microglobulin, biotin ligase and EGFP using a dual promoter, multi-cistronic vector. Human and mouse FcRn were purified in the mg/L range of culture medium and a single purification step was sufficient to reach a high level of purity. The receptors were characterized by ELISA, flow cytometry and surface plasmon resonance and shown to be functional. The single site biotinylation facilitated the directional immobilization of FcRn on the sensor chip and significantly increased the response level of the surface compared to amine coupling used in previous studies. Using this system, the affinity constants of seven IgGs, from various species and isotypes, were determined for human and mouse FcRn, including two hamster isotypes. These results confirm the higher selectivity of the human receptor and the promiscuous binding of mFcRn to IgGs from different species.
Collapse
|
15
|
Feng Y, Gong R, Dimitrov DS. Design, expression and characterization of a soluble single-chain functional human neonatal Fc receptor. Protein Expr Purif 2011; 79:66-71. [PMID: 21453773 PMCID: PMC3134118 DOI: 10.1016/j.pep.2011.03.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 03/21/2011] [Accepted: 03/22/2011] [Indexed: 11/23/2022]
Abstract
The neonatal Fc receptor (FcRn) is responsible for transporting maternal IgGs to fetus/newborns and maintaining the homeostasis of IgGs in adults. FcRn resembles class I major histocompatibility complex in structure, and is composed of a transmembrane heavy chain and an invariant beta 2 microglobulin. Changes in the affinity of IgGs to FcRn lead to changes in the half-life of engineered IgGs and Fc fusion proteins. Longer half-life of therapeutic antibodies means lower dose and longer interval between administering. For some diagnostic agents including imaging or radio-labeled agents a shorter half life in circulation results in lower non-specific binding and decreased side effects. Therefore, studying the interaction of FcRn and therapeutic antibodies has direct clinical implications. A reliable method to prepare soluble and functional FcRn protein is essential for such studies. In this study, we describe a new method to express in mammalian cells soluble human FcRn (sFcRn) as a single-chain soluble fusion protein. The highly hydrophilic beta 2 microglobulin was joined with the hydrophobic heavy chain via a 15 amino acid linker. The single-chain fusion protein format not only improved the expression level of the heavy chain but also simplified the purification process. The sFcRn maintained its pH-dependent binding to IgG. This method typically yielded ∼1 mg/100ml culture without optimization, and is easy to scale up for production of large quantities.
Collapse
Affiliation(s)
- Yang Feng
- Protein Interactions Group, CCR Nanobiology Program, NCI-Frederick, NIH, Frederick, MD 21702, United States.
| | | | | |
Collapse
|
16
|
Jung ST, Kang TH, Georgiou G. Efficient expression and purification of human aglycosylated Fcgamma receptors in Escherichia coli. Biotechnol Bioeng 2010; 107:21-30. [PMID: 20506277 DOI: 10.1002/bit.22785] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Effector Fc gamma receptors (FcgammaRs) are expressed on the surface of a variety of cells of hematopoietic lineage and serve as a bridge between adaptive and innate immune responses. The interaction between immune complexes, formed by IgG class antibodies that are crosslinked with antigen, and FcgammaRs triggers signaling cascades that result in numerous cellular responses including the activation or donwregulation of cytotoxic responses, cytokine release, and antibody synthesis. Here, the extracellular domains of the human type I transmembrane FcgammaRs were expressed in Escherichia coli and their interactions to subclass IgGs (IgG1, IgG2, IgG3, and IgG4) antibodies were analyzed. Expression using fully synthetic E. coli codon optimized FcgammaR genes and optimization of sequences for N-terminal translation initiation region through mRNA secondary structure prediction enabled us to achieve high yield of purified, bacterially expressed receptors, including FcgammaRI and FcgammaRIIIa which have not been successfully expressed in bacteria until now. The aglycosylated FcgammaRs showed similar IgG subclass binding selectivity compared to the respective glycosylated FcgammaRs expressed in mammalian cells.
Collapse
Affiliation(s)
- Sang Taek Jung
- Department of Chemical Engineering, University of Texas, Austin, 78712, USA
| | | | | |
Collapse
|
17
|
Sesarman A, Vidarsson G, Sitaru C. The neonatal Fc receptor as therapeutic target in IgG-mediated autoimmune diseases. Cell Mol Life Sci 2010; 67:2533-50. [PMID: 20217455 PMCID: PMC11115620 DOI: 10.1007/s00018-010-0318-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 01/29/2010] [Accepted: 02/12/2010] [Indexed: 01/01/2023]
Abstract
Therapy approaches based on lowering levels of pathogenic autoantibodies represent rational, effective, and safe treatment modalities of autoimmune diseases. The neonatal Fc receptor (FcRn) is a major factor regulating the serum levels of IgG antibodies. While FcRn-mediated half-life extension is beneficial for IgG antibody responses against pathogens, it also prolongs the serum half-life of IgG autoantibodies and thus promotes tissue damage in autoimmune diseases. In the present review article, we examine current evidence on the relevance of FcRn in maintaining high autoantibody levels and discuss FcRn-targeted therapeutic approaches. Further investigation of the FcRn-IgG interaction will not only provide mechanistic insights into the receptor function, but should also greatly facilitate the design of therapeutics combining optimal pharmacokinetic properties with the appropriate antibody effector functions in autoimmune diseases.
Collapse
Affiliation(s)
- Alina Sesarman
- Department of Dermatology, University of Freiburg, Hauptstrasse 7, 79104 Freiburg, Germany
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Cassian Sitaru
- Department of Dermatology, University of Freiburg, Hauptstrasse 7, 79104 Freiburg, Germany
- Centre for Biological Signalling Studies (bioss), University of Freiburg, Freiburg, Germany
| |
Collapse
|
18
|
Lee CH, Choi DK, Choi HJ, Song MY, Kim YS. Expression of soluble and functional human neonatal Fc receptor in Pichia pastoris. Protein Expr Purif 2010; 71:42-8. [DOI: 10.1016/j.pep.2009.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Revised: 11/30/2009] [Accepted: 12/07/2009] [Indexed: 12/31/2022]
|
19
|
Rich RL, Myszka DG. Grading the commercial optical biosensor literature-Class of 2008: 'The Mighty Binders'. J Mol Recognit 2010; 23:1-64. [PMID: 20017116 DOI: 10.1002/jmr.1004] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Optical biosensor technology continues to be the method of choice for label-free, real-time interaction analysis. But when it comes to improving the quality of the biosensor literature, education should be fundamental. Of the 1413 articles published in 2008, less than 30% would pass the requirements for high-school chemistry. To teach by example, we spotlight 10 papers that illustrate how to implement the technology properly. Then we grade every paper published in 2008 on a scale from A to F and outline what features make a biosensor article fabulous, middling or abysmal. To help improve the quality of published data, we focus on a few experimental, analysis and presentation mistakes that are alarmingly common. With the literature as a guide, we want to ensure that no user is left behind.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
20
|
Andersen JT, Daba MB, Sandlie I. FcRn binding properties of an abnormal truncated analbuminemic albumin variant. Clin Biochem 2010; 43:367-72. [DOI: 10.1016/j.clinbiochem.2009.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 09/28/2009] [Accepted: 12/04/2009] [Indexed: 02/06/2023]
|
21
|
Roder G, Geironson L, Darabi A, Harndahl M, Schafer-Nielsen C, Skjødt K, Buus S, Paulsson K. The outermost N-terminal region of tapasin facilitates folding of major histocompatibility complex class I. Eur J Immunol 2009; 39:2682-94. [DOI: 10.1002/eji.200939364] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Baker K, Qiao SW, Kuo T, Kobayashi K, Yoshida M, Lencer WI, Blumberg RS. Immune and non-immune functions of the (not so) neonatal Fc receptor, FcRn. Semin Immunopathol 2009; 31:223-36. [PMID: 19495758 PMCID: PMC3898171 DOI: 10.1007/s00281-009-0160-9] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 05/14/2009] [Indexed: 02/06/2023]
Abstract
Careful regulation of the body's immunoglobulin-G (IgG) and albumin concentrations is necessitated by the importance of their respective functions. As such, the neonatal Fc receptor (FcRn) which, as a single receptor, is capable of regulating both of these molecules, has become an important focus of investigation. In addition to these essential protection functions, FcRn possesses a host of other functions that are equally as critical. During the very first stages of life, FcRn mediates the passive transfer of IgG from mother to offspring both before and after birth. In the adult, FcRn regulates the persistence of both IgG and albumin in the serum as well as the movement of IgG, and any bound cargo, between different compartments of the body. This shuttling allows for the movement not only of monomeric ligand but also of antigen/antibody complexes from one cell type to another in such a way as to facilitate the efficient initiation of immune responses towards opsonized pathogens. As such, FcRn continues to play the role of an immunological sensor throughout adult life, particularly in regions such as the gut which are exposed to a large number of infectious antigens. Increasing appreciation for the contributions of FcRn to both homeostatic and pathological states is generating an intense interest in the potential for therapeutic modulation of FcRn binding. A greater understanding of FcRn's pleiotropic roles is thus imperative for a variety of therapeutic purposes.
Collapse
Affiliation(s)
- Kristi Baker
- Division of Gastroenterology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Shuo-Wang Qiao
- Rikshospitalet University Hospital, 0027 Oslo, Norway, University of Oslo, 0027 Oslo, Norway
| | - Timothy Kuo
- Division of Gastroenterology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Kanna Kobayashi
- Division of Gastroenterology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Masaru Yoshida
- Department of Gastroenterology & The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medecine, Hyogo, Japan
| | - Wayne I. Lencer
- Harvard Digestive Diseases Center, Boston, MA 02115, USA, GI Cell Biology, Division of Pediatric Gastroenterology and Nutrition, Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Richard S. Blumberg
- Division of Gastroenterology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA, Harvard Digestive Diseases Center, Boston, MA 02115, USA
| |
Collapse
|
23
|
Justesen S, Harndahl M, Lamberth K, Nielsen LLB, Buus S. Functional recombinant MHC class II molecules and high-throughput peptide-binding assays. Immunome Res 2009; 5:2. [PMID: 19416502 PMCID: PMC2690590 DOI: 10.1186/1745-7580-5-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 05/05/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Molecules of the class II major histocompability complex (MHC-II) specifically bind and present exogenously derived peptide epitopes to CD4+ T helper cells. The extreme polymorphism of the MHC-II hampers the complete analysis of peptide binding. It is also a significant hurdle in the generation of MHC-II molecules as reagents to study and manipulate specific T helper cell responses. Methods to generate functional MHC-II molecules recombinantly, and measure their interaction with peptides, would be highly desirable; however, no consensus methodology has yet emerged. RESULTS We generated alpha and beta MHC-II chain constructs, where the membrane-spanning regions were replaced by dimerization motifs, and the C-terminal of the beta chains was fused to a biotinylation signal peptide (BSP) allowing for in vivo biotinylation. These chains were produced separately as inclusion bodies in E. coli , extracted into urea, and purified under denaturing and non-reducing conditions using conventional column chromatography. Subsequently, diluting the two chains into a folding reaction with appropriate peptide resulted in efficient peptide-MHC-II complex formation. Several different formats of peptide-binding assay were developed including a homogeneous, non-radioactive, high-throughput (HTS) binding assay. Binding isotherms were generated allowing the affinities of interaction to be determined. The affinities of the best binders were found to be in the low nanomolar range. Recombinant MHC-II molecules and accompanying HTS peptide-binding assay were successfully developed for nine different MHC-II molecules including the DPA1*0103/DPB1*0401 (DP401) and DQA1*0501/DQB1*0201, where both alpha and beta chains are polymorphic, illustrating the advantages of producing the two chains separately. CONCLUSION We have successfully developed versatile MHC-II resources, which may assist in the generation of MHC class II -wide reagents, data, and tools.
Collapse
Affiliation(s)
- Sune Justesen
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
24
|
Andersen JT, Sandlie I. The Versatile MHC Class I-related FcRn Protects IgG and Albumin from Degradation: Implications for Development of New Diagnostics and Therapeutics. Drug Metab Pharmacokinet 2009; 24:318-32. [DOI: 10.2133/dmpk.24.318] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Ligand binding and antigenic properties of a human neonatal Fc receptor with mutation of two unpaired cysteine residues. FEBS J 2008; 275:4097-110. [PMID: 18637944 DOI: 10.1111/j.1742-4658.2008.06551.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The neonatal Fc receptor (FcRn) is a major histocompatibility complex class I-related molecule that regulates the half-life of IgG and albumin. In addition, FcRn directs the transport of IgG across both mucosal epithelium and placenta and also enhances phagocytosis in neutrophils. This new knowledge gives incentives for the design of IgG and albumin-based diagnostics and therapeutics. To study FcRn in vitro and to select and characterize FcRn binders, large quantities of soluble human FcRn are needed. In this report, we explored the impact of two free cysteine residues (C48 and C251) of the FcRn heavy chain on the overall structure and function of soluble human FcRn and described an improved bacterial production strategy based on removal of these residues, yielding approximately 70 mg.L(-1) of fermentation of refolded soluble human FcRn. The structural and functional integrity was proved by CD, surface plasmon resonance and MALDI-TOF peptide mapping analyses. The strategy may generally be translated to the large-scale production of other major histocompatibility complex class I-related molecules with nonfunctional unpaired cysteine residues. Furthermore, the anti-FcRn response in goats immunized with the FcRn heavy chain alone was analyzed following affinity purification on heavy chain-coupled Sepharose. Importantly, purified antibodies blocked the binding of both ligands to soluble human FcRn and were thus directed to both binding sites. This implies that the FcRn heavy chain, without prior assembly with human beta2-microglobulin, contains the relevant epitopes found in soluble human FcRn, and is therefore sufficient to obtain binders to either ligand-binding site. This finding will greatly facilitate the selection and characterization of such binders.
Collapse
|