1
|
Hundakova A, Leva L, Toman M, Knotek Z. A ferret model of immunosuppression induced with dexamethasone. Vet Immunol Immunopathol 2021; 243:110362. [PMID: 34826685 DOI: 10.1016/j.vetimm.2021.110362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 12/21/2022]
Abstract
Ferrets are nowadays frequently used as animal models for biomedical purposes; in many cases, immunosuppression of experimental animals is necessary. The aim of this study was to evaluate the effect of intramuscular dexamethasone administration (2 mg/kg as the initiation dose continued with 1 mg/kg q 12 h applied 5 times) on ferret's immune system. In comparison with ferrets which received the saline (n = 5), significantly lower total counts of leukocytes (P < 0.01), lymphocytes (P < 0.01) and monocyte (P < 0.05), as well as absolute numbers of CD4+CD8- (P < 0.01) and CD4-CD8+ (P < 0.01) subsets were noted in dexamethasone treated ferrets (n = 5) the first day after the treatment (D1). Absolute number of CD79+ lymphocytes remained unchanged throughout the experiment. The proliferation activity of lymphocytes in dexamethasone treated ferrets was lower only in D1 using concanavalin A (conA), phytohemagglutinin (PHA) and pokeweed mitogen (PWM); statistical significance was noted using PHA 40 (P < 0.05) and PWM 10 (P < 0.01). Lower neutrophil activity (P < 0.01) was detected in D1 after the dexamethasone treatment in both production of reactive oxygen species (chemiluminescence test) and ingestion of particles (phagocytosis assay). The dexamethasone treatment proved to be useful for short-term immunosuppression in ferrets. The results closely resembled data previously reported in human studies and indicate classification of ferrets as steroid-resistant species.
Collapse
Affiliation(s)
- Anna Hundakova
- Avian and Exotic Animal Clinic, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackeho trida 1946/1, 612 42, Brno, Czech Republic.
| | - Lenka Leva
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Miroslav Toman
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic; Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackeho trida 1946/1, 612 42, Brno, Czech Republic
| | - Zdenek Knotek
- Avian and Exotic Animal Clinic, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackeho trida 1946/1, 612 42, Brno, Czech Republic
| |
Collapse
|
2
|
Animal Models Utilized for the Development of Influenza Virus Vaccines. Vaccines (Basel) 2021; 9:vaccines9070787. [PMID: 34358203 PMCID: PMC8310120 DOI: 10.3390/vaccines9070787] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 12/25/2022] Open
Abstract
Animal models have been an important tool for the development of influenza virus vaccines since the 1940s. Over the past 80 years, influenza virus vaccines have evolved into more complex formulations, including trivalent and quadrivalent inactivated vaccines, live-attenuated vaccines, and subunit vaccines. However, annual effectiveness data shows that current vaccines have varying levels of protection that range between 40–60% and must be reformulated every few years to combat antigenic drift. To address these issues, novel influenza virus vaccines are currently in development. These vaccines rely heavily on animal models to determine efficacy and immunogenicity. In this review, we describe seasonal and novel influenza virus vaccines and highlight important animal models used to develop them.
Collapse
|
3
|
Rioux M, Francis ME, Swan CL, Ge A, Kroeker A, Kelvin AA. The Intersection of Age and Influenza Severity: Utility of Ferrets for Dissecting the Age-Dependent Immune Responses and Relevance to Age-Specific Vaccine Development. Viruses 2021; 13:678. [PMID: 33920917 PMCID: PMC8071347 DOI: 10.3390/v13040678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023] Open
Abstract
Many factors impact the host response to influenza virus infection and vaccination. Ferrets have been an indispensable reagent for influenza virus research for almost one hundred years. One of the most significant and well-known factors affecting human disease after infection is host age. Another significant factor is the virus, as strain-specific disease severity is well known. Studying age-related impacts on viral infection and vaccination outcomes requires an animal model that reflects both the physiological and immunological changes that occur with human aging, and sensitivity to differentially virulent influenza viruses. The ferret is uniquely susceptible to a plethora of influenza viruses impacting humans and has proven extremely useful in studying the clinical and immunological pictures of influenza virus infection. Moreover, ferrets developmentally have several of the age-related physiological changes that occur in humans throughout infancy, adulthood, old age, and pregnancy. In this review, we discuss ferret susceptibility to influenza viruses, summarize previous influenza studies using ferrets as models of age, and finally, highlight the application of ferret age models in the pursuit of prophylactic and therapeutic agents to address age-related influenza disease severity.
Collapse
Affiliation(s)
- Melissa Rioux
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H4R2, Canada; (M.R.); (A.G.)
| | - Magen E. Francis
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N5E3, Canada; (M.E.F.); (C.L.S.); (A.K.)
| | - Cynthia L. Swan
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N5E3, Canada; (M.E.F.); (C.L.S.); (A.K.)
| | - Anni Ge
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H4R2, Canada; (M.R.); (A.G.)
| | - Andrea Kroeker
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N5E3, Canada; (M.E.F.); (C.L.S.); (A.K.)
| | - Alyson A. Kelvin
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H4R2, Canada; (M.R.); (A.G.)
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N5E3, Canada; (M.E.F.); (C.L.S.); (A.K.)
- Department of Pediatrics, Division of Infectious Disease, Faculty of Medicine, Dalhousie University, Halifax, NS B3K6R8, Canada
- The Canadian Center for Vaccinology (IWK Health Centre, Dalhousie University and the Nova Scotia Health Authority), Halifax, NS B3K6R8, Canada
- Department of Biochemistry, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N5E5, Canada
| |
Collapse
|
4
|
Wong J, Layton D, Wheatley AK, Kent SJ. Improving immunological insights into the ferret model of human viral infectious disease. Influenza Other Respir Viruses 2019; 13:535-546. [PMID: 31583825 PMCID: PMC6800307 DOI: 10.1111/irv.12687] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/14/2022] Open
Abstract
Ferrets are a well-established model for studying both the pathogenesis and transmission of human respiratory viruses and evaluation of antiviral vaccines. Advanced immunological studies would add substantial value to the ferret models of disease but are hindered by the low number of ferret-reactive reagents available for flow cytometry and immunohistochemistry. Nevertheless, progress has been made to understand immune responses in the ferret model with a limited set of ferret-specific reagents and assays. This review examines current immunological insights gained from the ferret model across relevant human respiratory diseases, with a focus on influenza viruses. We highlight key knowledge gaps that need to be bridged to advance the utility of ferrets for immunological studies.
Collapse
Affiliation(s)
- Julius Wong
- Department of Microbiology and ImmunologyPeter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVic.Australia
| | - Daniel Layton
- CSIRO Health and BiosecurityAustralian Animal Health LaboratoriesGeelongVic.Australia
| | - Adam K. Wheatley
- Department of Microbiology and ImmunologyPeter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVic.Australia
| | - Stephen J. Kent
- Department of Microbiology and ImmunologyPeter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVic.Australia
- Melbourne Sexual Health Centre and Department of Infectious DiseasesAlfred Hospital and Central Clinical SchoolMonash UniversityMelbourneVic.Australia
- ARC Centre for Excellence in Convergent Bio‐Nano Science and TechnologyUniversity of MelbourneParkvilleVic.Australia
| |
Collapse
|
5
|
Abstract
Ferrets are an ideal animal model in which to study the transmission of respiratory viruses as well as disease progression and vaccine efficacy because of their close anatomical and physiological resemblances to humans. However, a paucity of reagents and standardized procedures has hampered research progress, especially for studying cell-mediated immunity. The approaches described here-leukocyte isolation from whole blood and secondary lymphoid tissues-are generalizable, highly reproducible, and deliver single cell suspensions with excellent cell viability. Importantly, we have now developed assays to quantify key cellular components and antigen-specific T cell responses at the single cell level from multiple tissue compartments following influenza infection in ferrets. Collectively, these methods were instrumental in flow cytometry studies that revealed alterations in immune cell composition and distribution across lymphoid tissues following viral infection. Furthermore, sorting of T cell populations and peptide restimulation ex vivo in cytokine ELISpot assays has provided novel insight into the influenza-specific CD4 and CD8 T cell repertoire. The detailed procedures for these techniques are described in this chapter and can likely be adapted for the analyses of responses to many respiratory pathogens.
Collapse
|
6
|
Korenkov DA, Laurie KL, Reading PC, Carolan LA, Chan KF, Isakova-Sivak II, Smolonogina TA, Subbarao K, Barr IG, Villanueva J, Shcherbik S, Bousse T, Rudenko LG. Safety, immunogenicity and protection of A(H3N2) live attenuated influenza vaccines containing wild-type nucleoprotein in a ferret model. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2018; 64:95-104. [PMID: 29929009 PMCID: PMC6330673 DOI: 10.1016/j.meegid.2018.06.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/14/2018] [Accepted: 06/16/2018] [Indexed: 11/21/2022]
Abstract
Live attenuated influenza vaccines (LAIVs) are promising tools for the induction of broad protection from influenza due to their ability to stimulate cross-reactive T cells against influenza pathogens. One of the major targets for cytotoxic T-cell immunity is viral nucleoprotein (NP), which is relatively conserved among antigenically distant influenza viruses. Nevertheless, a diversity of epitope composition has been found in the NP protein of different lineages of influenza A viruses. The H2N2 master donor virus which is currently used as a backbone for the LAIV and donor of the six genomic segments encoding the internal proteins, A/Leningrad/134/17/57 (MDV Len/17), was isolated 60 years ago. As such, NP-specific T-cell immunity induced upon vaccination with classical LAIVs with a 6:2 genome composition containing this older NP might be suboptimal against currently circulating influenza viruses. In this study, a panel of H3N2 LAIV candidates with wild-type NP genes derived from circulating viruses were generated by reverse genetics (5:3 genome composition). These viruses displayed the cold adaptation and temperature sensitivity phenotypes of MDV Len/17 in vitro. LAIVs with both 6:2 and 5:3 genome compositions were attenuated and replicated to a similar extent in the upper respiratory tract of ferrets. LAIVs were immunogenic as high neutralizing and hemagglutination inhibition serum antibody titers were detected 21 days after infection. All vaccinated animals were protected against infection with heterologous H3N2 influenza A viruses. Thus, LAIV with a 5:3 genome composition is safe, immunogenic and can induce cross-protective immunity.
Collapse
MESH Headings
- Animal Diseases/immunology
- Animal Diseases/prevention & control
- Animal Diseases/virology
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Disease Models, Animal
- Female
- Ferrets
- Genome, Viral
- Immunogenicity, Vaccine
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza Vaccines/adverse effects
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Male
- Neutralization Tests
- Nucleoproteins/genetics
- Nucleoproteins/immunology
- Orthomyxoviridae Infections/veterinary
- Vaccination
- Vaccines, Attenuated/adverse effects
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
Collapse
Affiliation(s)
- Daniil A Korenkov
- Department of Virology, Institute of Experimental Medicine, 12, acad. Pavlova street, Saint Petersburg, Russia.
| | - Karen L Laurie
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory at The Peter Doherty Institute for Infection & Immunity, Melbourne, Australia
| | - Patrick C Reading
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory at The Peter Doherty Institute for Infection & Immunity, Melbourne, Australia
| | - Louise A Carolan
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory at The Peter Doherty Institute for Infection & Immunity, Melbourne, Australia
| | - Kok Fei Chan
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory at The Peter Doherty Institute for Infection & Immunity, Melbourne, Australia
| | - Irina I Isakova-Sivak
- Department of Virology, Institute of Experimental Medicine, 12, acad. Pavlova street, Saint Petersburg, Russia
| | - Tatiana A Smolonogina
- Department of Virology, Institute of Experimental Medicine, 12, acad. Pavlova street, Saint Petersburg, Russia
| | - Kanta Subbarao
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory at The Peter Doherty Institute for Infection & Immunity, Melbourne, Australia
| | - Ian G Barr
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory at The Peter Doherty Institute for Infection & Immunity, Melbourne, Australia
| | | | | | - Tatiana Bousse
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Larisa G Rudenko
- Department of Virology, Institute of Experimental Medicine, 12, acad. Pavlova street, Saint Petersburg, Russia
| |
Collapse
|
7
|
Abstract
Since the initial report in 1911, the domestic ferret has become an invaluable biomedical research model. While widely recognized for its utility in influenza virus research, ferrets are used for a variety of infectious and noninfectious disease models due to the anatomical, metabolic, and physiological features they share with humans and their susceptibility to many human pathogens. However, there are limitations to the model that must be overcome for maximal utility for the scientific community. Here, we describe important recent advances that will accelerate biomedical research with this animal model.
Collapse
|
8
|
Abstract
The development of novel therapeutics and vaccines to treat or prevent disease caused by filoviruses, such as Ebola and Marburg viruses, depends on the availability of animal models that faithfully recapitulate clinical hallmarks of disease as it is observed in humans. In particular, small animal models (such as mice and guinea pigs) are historically and frequently used for the primary evaluation of antiviral countermeasures, prior to testing in nonhuman primates, which represent the gold-standard filovirus animal model. In the past several years, however, the filovirus field has witnessed the continued refinement of the mouse and guinea pig models of disease, as well as the introduction of the hamster and ferret models. We now have small animal models for most human-pathogenic filoviruses, many of which are susceptible to wild type virus and demonstrate key features of disease, including robust virus replication, coagulopathy, and immune system dysfunction. Although none of these small animal model systems perfectly recapitulates Ebola virus disease or Marburg virus disease on its own, collectively they offer a nearly complete set of tools in which to carry out the preclinical development of novel antiviral drugs.
Collapse
Affiliation(s)
- Logan Banadyga
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, 745 Bannatyne Street, Winnipeg, MB R3E 0J9, Canada
| | - Gary Wong
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, 745 Bannatyne Street, Winnipeg, MB R3E 0J9, Canada
- Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People’s Hospital, 29 Bulan Road, Longgang District, Shenzhen, China, 518000
| | - Xiangguo Qiu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, 745 Bannatyne Street, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
9
|
Layton DS, Xiao X, Bentley JD, Lu L, Stewart CR, Bean AGD, Adams TE. Development of an anti-ferret CD4 monoclonal antibody for the characterisation of ferret T lymphocytes. J Immunol Methods 2017; 444:29-35. [PMID: 28216237 PMCID: PMC7094458 DOI: 10.1016/j.jim.2017.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/01/2017] [Accepted: 02/14/2017] [Indexed: 12/21/2022]
Abstract
The ferret is an established animal model for a number of human respiratory viral infections, such as influenza virus and more recently, Ebola virus. However, a paucity of immunological reagents has hampered the study of cellular immune responses. Here we describe the development and characterisation of a novel monoclonal antibody (mAb) against the ferret CD4 antigen and the characterisation of ferret CD4 T lymphocytes. Recombinant production and purification of the ferret CD4 ectodomain soluble protein allowed hybridoma generation and the generation of a mAb (FeCD4) showing strong binding to ferret CD4 protein and lymphoid cells by flow cytometry. FeCD4 bound to its cognate antigen post-fixation with paraformaldehyde (PFA) which is routinely used to inactivate highly pathogenic viruses. We have also used FeCD4 in conjunction with other immune cell markers to characterise ferret T cells in both primary and secondary lymphoid organs. In summary, we have developed an important reagent for the study of cellular immunological responses in the ferret model of infectious disease.
Collapse
Affiliation(s)
- Daniel S Layton
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia.
| | - Xiaowen Xiao
- CSIRO Manufacturing, Parkville, Victoria, Australia
| | | | - Louis Lu
- CSIRO Manufacturing, Parkville, Victoria, Australia
| | - Cameron R Stewart
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Andrew G D Bean
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | | |
Collapse
|
10
|
Ferrets Infected with Bundibugyo Virus or Ebola Virus Recapitulate Important Aspects of Human Filovirus Disease. J Virol 2016; 90:9209-23. [PMID: 27489269 DOI: 10.1128/jvi.01033-16] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/26/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Bundibugyo virus (BDBV) is the etiological agent of a severe hemorrhagic fever in humans with a case-fatality rate ranging from 25 to 36%. Despite having been known to the scientific and medical communities for almost 1 decade, there is a dearth of studies on this pathogen due to the lack of a small animal model. Domestic ferrets are commonly used to study other RNA viruses, including members of the order Mononegavirales To investigate whether ferrets were susceptible to filovirus infections, ferrets were challenged with a clinical isolate of BDBV. Animals became viremic within 4 days and succumbed to infection between 8 and 9 days, and a petechial rash was observed with moribund ferrets. Furthermore, several hallmarks of human filoviral disease were recapitulated in the ferret model, including substantial decreases in lymphocyte and platelet counts and dysregulation of key biochemical markers related to hepatic/renal function, as well as coagulation abnormalities. Virological, histopathological, and immunohistochemical analyses confirmed uncontrolled BDBV replication in the major organs. Ferrets were also infected with Ebola virus (EBOV) to confirm their susceptibility to another filovirus species and to potentially establish a virus transmission model. Similar to what was seen with BDBV, important hallmarks of human filoviral disease were observed in EBOV-infected ferrets. This study demonstrates the potential of this small animal model for studying BDBV and EBOV using wild-type isolates and will accelerate efforts to understand filovirus pathogenesis and transmission as well as the development of specific vaccines and antivirals. IMPORTANCE The 2013-2016 outbreak of Ebola virus in West Africa has highlighted the threat posed by filoviruses to global public health. Bundibugyo virus (BDBV) is a member of the genus Ebolavirus and has caused outbreaks in the past but is relatively understudied, likely due to the lack of a suitable small animal model. Such a model for BDBV is crucial to evaluating vaccines and therapies and potentially understanding transmission. To address this, we demonstrated that ferrets are susceptible models to BDBV infection as well as to Ebola virus infection and that no virus adaptation is required. Moreover, these animals develop a disease that is similar to that seen in humans and nonhuman primates. We believe that this will improve the ability to study BDBV and provide a platform to test vaccines and therapeutics.
Collapse
|
11
|
DiPiazza A, Richards K, Batarse F, Lockard L, Zeng H, García-Sastre A, Albrecht RA, Sant AJ. Flow Cytometric and Cytokine ELISpot Approaches To Characterize the Cell-Mediated Immune Response in Ferrets following Influenza Virus Infection. J Virol 2016; 90:7991-8004. [PMID: 27356897 PMCID: PMC4988159 DOI: 10.1128/jvi.01001-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/18/2016] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Influenza virus infections represent a significant socioeconomic and public health burden worldwide. Although ferrets are considered by many to be ideal for modeling human responses to influenza infection and vaccination, efforts to understand the cellular immune response have been severely hampered by a paucity of standardized procedures and reagents. In this study, we developed flow cytometric and T cell enzyme-linked immunosorbent spot (ELISpot) approaches to characterize the leukocyte composition and antigen-specific T cell response within key lymphoid tissues following influenza virus infection in ferrets. Through a newly designed and implemented set of serological reagents, we used multiparameter flow cytometry to directly quantify the frequency of CD4(+) and CD8(+) T cells, Ig(+) B cells, CD11b(+) myeloid-derived cells, and major histocompatibility complex (MHC) class II-positive antigen-presenting cells (APCs) both prior to and after intranasal infection with A/California/04/09 (H1N1). We found that the leukocyte composition was altered at 10 days postinfection, with notable gains in the frequency of T cells and myeloid cells within the draining lymph node. Furthermore, these studies revealed that the antigen specificity of influenza virus-reactive CD4 and CD8 T cells was very broad, with recognition of the viral HA, NA, M1, NS1, and NP proteins, and that total reactivity to influenza virus postinfection represented approximately 0.1% of the circulating peripheral blood mononuclear cells (PBMC). Finally, we observed distinct patterns of reactivity between individual animals, suggesting heterogeneity at the MHC locus in ferrets within commercial populations, a finding of considerable interest in efforts to move the ferret model forward for influenza vaccine and challenge studies. IMPORTANCE Ferrets are an ideal animal model to study transmission, diseases, and vaccine efficacies of respiratory viruses because of their close anatomical and physiological resemblances to humans. However, a lack of reagents has limited our understanding of the cell-mediated immune response following infection and vaccination. In this study, we used cross-reactive and ferret-specific antibodies to study the leukocyte composition and antigen-specific CD4 and CD8 T cell responses following influenza A/California/04/09 (H1N1) virus infection. These studies revealed strikingly distinct patterns of reactivity between CD4 and CD8 T cells, which were overlaid with differences in protein-specific responses between individual animals. Our results provide a first, in-depth look at the T cell repertoire in response to influenza infection and suggest that there is considerable heterogeneity at the MHC locus, which is akin to that in humans and an area of intense research interest.
Collapse
Affiliation(s)
- Anthony DiPiazza
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Katherine Richards
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Frances Batarse
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Laura Lockard
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Hui Zeng
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mt. Sinai, New York, New York, USA Global Health and Emerging Pathogens Institute at Icahn School of Medicine, New York, New York, USA Department of Medicine, Icahn School of Medicine at Mt. Sinai, New York, New York, USA
| | - Randy A Albrecht
- Department of Microbiology, Icahn School of Medicine at Mt. Sinai, New York, New York, USA Global Health and Emerging Pathogens Institute at Icahn School of Medicine, New York, New York, USA
| | - Andrea J Sant
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
12
|
Oh DY, Hurt AC. Using the Ferret as an Animal Model for Investigating Influenza Antiviral Effectiveness. Front Microbiol 2016; 7:80. [PMID: 26870031 PMCID: PMC4740393 DOI: 10.3389/fmicb.2016.00080] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/18/2016] [Indexed: 01/12/2023] Open
Abstract
The concern of the emergence of a pandemic influenza virus has sparked an increased effort toward the development and testing of novel influenza antivirals. Central to this is the animal model of influenza infection, which has played an important role in understanding treatment effectiveness and the effect of antivirals on host immune responses. Among the different animal models of influenza, ferrets can be considered the most suitable for antiviral studies as they display most of the human-like symptoms following influenza infections, they can be infected with human influenza virus without prior viral adaptation and have the ability to transmit influenza virus efficiently between one another. However, an accurate assessment of the effectiveness of an antiviral treatment in ferrets is dependent on three major experimental considerations encompassing firstly, the volume and titer of virus, and the route of viral inoculation. Secondly, the route and dose of drug administration, and lastly, the different methods used to assess clinical symptoms, viral shedding kinetics and host immune responses in the ferrets. A good understanding of these areas is necessary to achieve data that can accurately inform the human use of influenza antivirals. In this review, we discuss the current progress and the challenges faced in these three major areas when using the ferret model to measure influenza antiviral effectiveness.
Collapse
Affiliation(s)
- Ding Y Oh
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, MelbourneVIC, Australia; School of Applied and Biomedical Sciences, Federation University Australia, GippslandVIC, Australia
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, MelbourneVIC, Australia; Melbourne School of Population and Global Health, University of Melbourne, ParkvilleVIC, Australia
| |
Collapse
|
13
|
Characterization of the Localized Immune Response in the Respiratory Tract of Ferrets following Infection with Influenza A and B Viruses. J Virol 2015; 90:2838-48. [PMID: 26719259 DOI: 10.1128/jvi.02797-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 12/20/2015] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED The burden of infection with seasonal influenza viruses is significant. Each year is typically characterized by the dominance of one (sub)type or lineage of influenza A or B virus, respectively. The incidence of disease varies annually, and while this may be attributed to a particular virus strain or subtype, the impacts of prior immunity, population differences, and variations in clinical assessment are also important. To improve our understanding of the impacts of seasonal influenza viruses, we directly compared clinical symptoms, virus shedding, and expression of cytokines, chemokines, and immune mediators in the upper respiratory tract (URT) of ferrets infected with contemporary A(H1N1)pdm09, A(H3N2), or influenza B virus. Gene expression in the lower respiratory tract (LRT) was also assessed. Clinical symptoms were minimal. Overall cytokine/chemokine profiles in the URT were consistent in pattern and magnitude between animals infected with influenza A and B viruses, and peak expression levels of interleukin-1α (IL-1α), IL-1β, IL-6, IL-12p40, alpha interferon (IFN-α), IFN-β, and tumor necrosis factor alpha (TNF-α) mRNAs correlated with peak levels of viral shedding. MCP1 and IFN-γ were expressed after the virus peak. Granzymes A and B and IL-10 reached peak expression as the virus was cleared and seroconversion was detected. Cytokine/chemokine gene expression in the LRT following A(H1N1)pdm09 virus infection reflected the observations seen for the URT but was delayed 2 or 3 days, as was virus replication. These data indicate that disease severities and localized immune responses following infection with seasonal influenza A and B viruses are similar, suggesting that other factors are likely to modulate the incidence and impact of seasonal influenza. IMPORTANCE Both influenza A and B viruses cocirculate in the human population, and annual influenza seasons are typically dominated by an influenza A virus subtype or an influenza B virus lineage. Surveillance data indicate that the burden of disease is higher in some seasons, yet it is unclear whether this is due to specific virus strains or to other factors, such as cross-reactive immunity or clinical definitions of influenza. We directly compared disease severities and localized inflammatory responses to different seasonal influenza virus strains, including the 2009 pandemic strain, in healthy naive ferrets. We found that the disease severities and the cytokine and chemokine responses were similar irrespective of the seasonal strain or the location of the infection in the respiratory tract. This suggests that factors other than the immune response to a particular virus (sub)type contribute to the variable impact of influenza virus infection in a population.
Collapse
|
14
|
Lower Respiratory Tract Infection of the Ferret by 2009 H1N1 Pandemic Influenza A Virus Triggers Biphasic, Systemic, and Local Recruitment of Neutrophils. J Virol 2015; 89:8733-48. [PMID: 26063430 DOI: 10.1128/jvi.00817-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/04/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Infection of the lower respiratory tract by influenza A viruses results in increases in inflammation and immune cell infiltration in the lung. The dynamic relationships among the lung microenvironments, the lung, and systemic host responses during infection remain poorly understood. Here we used extensive systematic histological analysis coupled with live imaging to gain access to these relationships in ferrets infected with the 2009 H1N1 pandemic influenza A virus (H1N1pdm virus). Neutrophil levels rose in the lungs of H1N1pdm virus-infected ferrets 6 h postinfection and became concentrated at areas of the H1N1pdm virus-infected bronchiolar epithelium by 1 day postinfection (dpi). In addition, neutrophil levels were increased throughout the alveolar spaces during the first 3 dpi and returned to baseline by 6 dpi. Histochemical staining revealed that neutrophil infiltration in the lungs occurred in two waves, at 1 and 3 dpi, and gene expression within microenvironments suggested two types of neutrophils. Specifically, CCL3 levels, but not CXCL8/interleukin 8 (IL-8) levels, were higher within discrete lung microenvironments and coincided with increased infiltration of neutrophils into the lung. We used live imaging of ferrets to monitor host responses within the lung over time with [(18)F]fluorodeoxyglucose (FDG). Sites in the H1N1pdm virus-infected ferret lung with high FDG uptake had high levels of proliferative epithelium. In summary, neutrophils invaded the H1N1pdm virus-infected ferret lung globally and focally at sites of infection. Increased neutrophil levels in microenvironments did not correlate with increased FDG uptake; hence, FDG uptake may reflect prior infection and inflammation of lungs that have experienced damage, as evidenced by bronchial regeneration of tissues in the lungs at sites with high FDG levels. IMPORTANCE Severe influenza disease is characterized by an acute infection of the lower airways that may progress rapidly to organ failure and death. Well-developed animal models that mimic human disease are essential to understanding the complex relationships of the microenvironment, organ, and system in controlling virus replication, inflammation, and disease progression. Employing the ferret model of H1N1pdm virus infection, we used live imaging and comprehensive histological analyses to address specific hypotheses regarding spatial and temporal relationships that occur during the progression of infection and inflammation. We show the general invasion of neutrophils at the organ level (lung) but also a distinct pattern of localized accumulation within the microenvironment at the site of infection. Moreover, we show that these responses were biphasic within the lung. Finally, live imaging revealed an early and sustained host metabolic response at sites of infection that may reflect damage and repair of tissues in the lungs.
Collapse
|
15
|
Enkirch T, von Messling V. Ferret models of viral pathogenesis. Virology 2015; 479-480:259-70. [PMID: 25816764 PMCID: PMC7111696 DOI: 10.1016/j.virol.2015.03.017] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 01/28/2015] [Accepted: 03/02/2015] [Indexed: 11/26/2022]
Abstract
Emerging and well-known viral diseases remain one the most important global public health threats. A better understanding of their pathogenesis and mechanisms of transmission requires animal models that accurately reproduce these aspects of the disease. Here we review the role of ferrets as an animal model for the pathogenesis of different respiratory viruses with an emphasis on influenza and paramyxoviruses. We will describe the anatomic and physiologic characteristics that contribute to the natural susceptibility of ferrets to these viruses, and provide an overview of the approaches available to analyze their immune responses. Recent insights gained using this model will be highlighted, including the development of new prophylactic and therapeutic approaches. To provide decision criteria for the use of this animal model, its strengths and limitations will be discussed. Ferrets as models for respiratory virus pathogenesis. Ferrets as models for vaccine and drug efficacy assessment. Immunological tools for ferrets. Housing and handling of ferrets.
Collapse
Affiliation(s)
- T Enkirch
- Veterinary Medicine Division, Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany
| | - V von Messling
- Veterinary Medicine Division, Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany.
| |
Collapse
|
16
|
Animal models for influenza viruses: implications for universal vaccine development. Pathogens 2014; 3:845-74. [PMID: 25436508 PMCID: PMC4282889 DOI: 10.3390/pathogens3040845] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/10/2014] [Accepted: 10/10/2014] [Indexed: 01/22/2023] Open
Abstract
Influenza virus infections are a significant cause of morbidity and mortality in the human population. Depending on the virulence of the influenza virus strain, as well as the immunological status of the infected individual, the severity of the respiratory disease may range from sub-clinical or mild symptoms to severe pneumonia that can sometimes lead to death. Vaccines remain the primary public health measure in reducing the influenza burden. Though the first influenza vaccine preparation was licensed more than 60 years ago, current research efforts seek to develop novel vaccination strategies with improved immunogenicity, effectiveness, and breadth of protection. Animal models of influenza have been essential in facilitating studies aimed at understanding viral factors that affect pathogenesis and contribute to disease or transmission. Among others, mice, ferrets, pigs, and nonhuman primates have been used to study influenza virus infection in vivo, as well as to do pre-clinical testing of novel vaccine approaches. Here we discuss and compare the unique advantages and limitations of each model.
Collapse
|
17
|
Music N, Reber AJ, Lipatov AS, Kamal RP, Blanchfield K, Wilson JR, Donis RO, Katz JM, York IA. Influenza vaccination accelerates recovery of ferrets from lymphopenia. PLoS One 2014; 9:e100926. [PMID: 24968319 PMCID: PMC4072694 DOI: 10.1371/journal.pone.0100926] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 06/01/2014] [Indexed: 01/06/2023] Open
Abstract
Ferrets are a useful animal model for human influenza virus infections, since they closely mimic the pathogenesis of influenza viruses observed in humans. However, a lack of reagents, especially for flow cytometry of immune cell subsets, has limited research in this model. Here we use a panel of primarily species cross-reactive antibodies to identify ferret T cells, cytotoxic T lymphocytes (CTL), B cells, and granulocytes in peripheral blood. Following infection with seasonal H3N2 or H1N1pdm09 influenza viruses, these cell types showed rapid and dramatic changes in frequency, even though clinically the infections were mild. The loss of B cells and CD4 and CD8 T cells, and the increase in neutrophils, were especially marked 1–2 days after infection, when about 90% of CD8+ T cells disappeared from the peripheral blood. The different virus strains led to different kinetics of leukocyte subset alterations. Vaccination with homologous vaccine reduced clinical symptoms slightly, but led to a much more rapid return to normal leukocyte parameters. Assessment of clinical symptoms may underestimate the effectiveness of influenza vaccine in restoring homeostasis.
Collapse
Affiliation(s)
- Nedzad Music
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Adrian J. Reber
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Aleksandr S. Lipatov
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ram P. Kamal
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Kristy Blanchfield
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jason R. Wilson
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ruben O. Donis
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jacqueline M. Katz
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ian A. York
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
18
|
Carolan LA, Butler J, Rockman S, Guarnaccia T, Hurt AC, Reading P, Kelso A, Barr I, Laurie KL. TaqMan real time RT-PCR assays for detecting ferret innate and adaptive immune responses. J Virol Methods 2014; 205:38-52. [PMID: 24797460 PMCID: PMC7113642 DOI: 10.1016/j.jviromet.2014.04.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/17/2014] [Accepted: 04/25/2014] [Indexed: 11/16/2022]
Abstract
The ferret model is used to study human disease and physiology. TaqMan realtime RT-PCR assays for ferret cytokine and chemokine mRNA were developed. Cytokine and chemokine patterns in ferret cells were similar to other mammals. A comprehensive panel of mRNAs can be measured in samples of limited quantity.
The ferret is an excellent model for many human infectious diseases including influenza, SARS-CoV, henipavirus and pneumococcal infections. The ferret is also used to study cystic fibrosis and various cancers, as well as reproductive biology and physiology. However, the range of reagents available to measure the ferret immune response is very limited. To address this deficiency, high-throughput real time RT-PCR TaqMan assays were developed to measure the expression of fifteen immune mediators associated with the innate and adaptive immune responses (IFNα, IFNβ, IFNγ, IL1α, IL1β, IL2, IL4, IL6, IL8, IL10, IL12p40, IL17, Granzyme A, MCP1, TNFα), as well as four endogenous housekeeping genes (ATF4, HPRT, GAPDH, L32). These assays have been optimized to maximize reaction efficiency, reduce the amount of sample required (down to 1 ng RNA per real time RT-PCR reaction) and to select the most appropriate housekeeping genes. Using these assays, the expression of each of the tested genes could be detected in ferret lymph node cells stimulated with mitogens or infected with influenza virus in vitro. These new tools will allow a more comprehensive analysis of the ferret immune responses following infection or in other disease states.
Collapse
Affiliation(s)
- Louise A Carolan
- WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria, 3000, Australia
| | - Jeff Butler
- WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria, 3000, Australia; CSIRO Australian Animal Health Laboratory, East Geelong, 3219, Australia
| | - Steve Rockman
- bioCSL Limited, Parkville, 3052, Australia; Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria, 3010, Australia
| | - Teagan Guarnaccia
- WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria, 3000, Australia; Monash University Gippsland, Churchill, 3842, Australia
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria, 3000, Australia
| | - Patrick Reading
- WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria, 3000, Australia
| | - Anne Kelso
- WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria, 3000, Australia
| | - Ian Barr
- WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria, 3000, Australia
| | - Karen L Laurie
- WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria, 3000, Australia.
| |
Collapse
|
19
|
Thangavel RR, Bouvier NM. Animal models for influenza virus pathogenesis, transmission, and immunology. J Immunol Methods 2014; 410:60-79. [PMID: 24709389 PMCID: PMC4163064 DOI: 10.1016/j.jim.2014.03.023] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/22/2014] [Accepted: 03/24/2014] [Indexed: 12/24/2022]
Abstract
In humans, infection with an influenza A or B virus manifests typically as an acute and self-limited upper respiratory tract illness characterized by fever, cough, sore throat, and malaise. However, influenza can present along a broad spectrum of disease, ranging from sub-clinical or even asymptomatic infection to a severe primary viral pneumonia requiring advanced medical supportive care. Disease severity depends upon the virulence of the influenza virus strain and the immune competence and previous influenza exposures of the patient. Animal models are used in influenza research not only to elucidate the viral and host factors that affect influenza disease outcomes in and spread among susceptible hosts, but also to evaluate interventions designed to prevent or reduce influenza morbidity and mortality in man. This review will focus on the three animal models currently used most frequently in influenza virus research - mice, ferrets, and guinea pigs - and discuss the advantages and disadvantages of each.
Collapse
Affiliation(s)
- Rajagowthamee R Thangavel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Nicole M Bouvier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
20
|
van Els C, Mjaaland S, Næss L, Sarkadi J, Gonczol E, Smith Korsholm K, Hansen J, de Jonge J, Kersten G, Warner J, Semper A, Kruiswijk C, Oftung F. Fast vaccine design and development based on correlates of protection (COPs). Hum Vaccin Immunother 2014; 10:1935-48. [PMID: 25424803 PMCID: PMC4186026 DOI: 10.4161/hv.28639] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/14/2014] [Accepted: 03/24/2014] [Indexed: 01/02/2023] Open
Abstract
New and reemerging infectious diseases call for innovative and efficient control strategies of which fast vaccine design and development represent an important element. In emergency situations, when time is limited, identification and use of correlates of protection (COPs) may play a key role as a strategic tool for accelerated vaccine design, testing, and licensure. We propose that general rules for COP-based vaccine design can be extracted from the existing knowledge of protective immune responses against a large spectrum of relevant viral and bacterial pathogens. Herein, we focus on the applicability of this approach by reviewing the established and up-coming COPs for influenza in the context of traditional and a wide array of new vaccine concepts. The lessons learnt from this field may be applied more generally to COP-based accelerated vaccine design for emerging infections.
Collapse
Affiliation(s)
- Cécile van Els
- National Institute for Public Health and the Environment; Bilthoven, the Netherlands
| | | | - Lisbeth Næss
- Norwegian Institute of Public Health; Oslo, Norway
| | - Julia Sarkadi
- National Center for Epidemiology (NCE); Budapest, Hungary
| | - Eva Gonczol
- National Center for Epidemiology (NCE); Budapest, Hungary
| | | | - Jon Hansen
- Statens Serum Institut; Copenhagen, Denmark
| | - Jørgen de Jonge
- National Institute for Public Health and the Environment; Bilthoven, the Netherlands
| | - Gideon Kersten
- Institute for Translational Vaccinology; Bilthoven, the Netherlands
- Leiden Academic Center for Drug Research; University of Leiden; The Netherlands
| | | | | | - Corine Kruiswijk
- Institute for Translational Vaccinology; Bilthoven, the Netherlands
| | | |
Collapse
|
21
|
Vidaña B, Majó N, Pérez M, Montoya M, Martorell J, Martínez J. Immune System Cells in Healthy Ferrets. Vet Pathol 2013; 51:775-86. [DOI: 10.1177/0300985813502815] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The ferret has emerged as an excellent animal model to characterize several physiologic and pathologic conditions. The distribution and characterization of different types of immune system cells were studied in healthy ferret tissues. Eight primary antibodies were tested for immunohistochemistry in formalin-fixed tissues: anti-CD3, anti-CD79α, anti-CD20, anti-HLA-DR, anti-lysozyme, anti-CD163, anti-SWC3, and anti-Mac387. The anti-CD3 antibody labeled T cells mainly in interfollicular and paracortical areas of lymph nodes, cortex and thymic medulla, and periarteriolar lymphoid sheaths in the spleen. The anti-CD79α and anti-CD20 antibodies immunolabeled B cells located in lymphoid follicles at lymph nodes, spleen, and Peyer patches. The CD79α and CD20 antibodies also labeled cells with nonlymphoid morphology in atypical B-cell locations. The anti-HLA-DR antibody labeled macrophages, some populations of B and T lymphocytes, and different populations of dendritic cells in lymph nodes, Peyer patches, spleen, and thymus. The anti-lysozyme antibody immunolabeled macrophages in the liver, lymph nodes, spleen, and thymus. The Mac-387, CD163, and SWC3 antibodies did not show any positive reaction in formalin-fixed or frozen tissues. To elucidate the origin of the uncommon CD79α/CD20 positive cells, a double immunohistochemistry was carried out using the anti-HLA-DR + the anti-CD79α, the anti-HLA-DR + the anti-CD20, and the anti-lysozyme + the anti-CD79α antibodies. Double labeling was mainly observed when the anti-HLA-DR + the anti-CD79α antibodies were combined. The immunohistologic characterization and distribution of these immune system cells in healthy ferret tissues should be of value in future comparative studies of diseases in ferrets.
Collapse
Affiliation(s)
- B. Vidaña
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallés), Spain
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallés), Spain
| | - N. Majó
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallés), Spain
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallés), Spain
| | - M. Pérez
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallés), Spain
| | - M. Montoya
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallés), Spain
- Institut de Recerca i Tecnologia Agroalimentaria (IRTA), Barcelona, Spain
| | - J. Martorell
- Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallés), Spain
| | - J. Martínez
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallés), Spain
| |
Collapse
|
22
|
Cheng X, Zengel JR, Suguitan AL, Xu Q, Wang W, Lin J, Jin H. Evaluation of the humoral and cellular immune responses elicited by the live attenuated and inactivated influenza vaccines and their roles in heterologous protection in ferrets. J Infect Dis 2013; 208:594-602. [PMID: 23656978 DOI: 10.1093/infdis/jit207] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The humoral and cellular immune responses elicited by the trivalent live attenuated influenza vaccine (LAIV) and the trivalent inactivated influenza vaccine (TIV) were evaluated in the ferret model, using newly developed ferret immunological reagents and assays. In contrast to the TIV, which only induced immune responses in primed animals, LAIV induced strong influenza virus-specific serum antibody and T-cell responses in both naive and influenza-seropositive animals. The LAIV offered significant protection against a heterologous H1N1 virus challenge infection in the upper respiratory tract. Influenza virus-specific immunoglobulin A (IgA) and immunoglobulin G (IgG) antibody-secreting cells (ASCs) and influenza virus-specific CD4(+) and CD8(+) T cells were detected in the circulation and local paratracheal draining lymph nodes. The frequency of the influenza-specific ASCs in the local lymph nodes appeared to correlate with the degree of protection in the upper respiratory tract. The protection conferred by the LAIV could be attributed not only to the antibody response but also to the cell-mediated and local mucosal immune responses, particularly in naive ferrets. These findings may explain why the LAIV is immunologically superior and offers immediate protection after a single dose in children.
Collapse
Affiliation(s)
- Xing Cheng
- MedImmune, Mountain View, California 94043, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Sui H, Olivier AK, Klesney-Tait JA, Brooks L, Tyler SR, Sun X, Skopec A, Kline J, Sanchez PG, Meyerholz DK, Zavazava N, Iannettoni M, Engelhardt JF, Parekh KR. Ferret lung transplant: an orthotopic model of obliterative bronchiolitis. Am J Transplant 2013; 13:467-473. [PMID: 23205765 PMCID: PMC3638989 DOI: 10.1111/j.1600-6143.2012.04337.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/25/2012] [Accepted: 10/14/2012] [Indexed: 01/25/2023]
Abstract
Obliterative bronchiolitis (OB) is the primary cause of late morbidity and mortality following lung transplantation. Current animal models do not reliably develop OB pathology. Given the similarities between ferret and human lung biology, we hypothesized an orthotopic ferret lung allograft would develop OB. Orthotopic left lower lobe transplants were successfully performed in 22 outbred domestic ferrets in the absence of immunosuppression (IS; n = 5) and presence of varying IS protocols (n = 17). CT scans were performed to evaluate the allografts. At intervals between 3-6 months the allografts were examined histologically for evidence of acute/chronic rejection. IS protects allografts from acute rejection and early graft loss. Reduction of IS dosage by 50% allowed development of controlled rejection. Allografts developed infiltrates on CT and classic histologic acute rejection and lymphocytic bronchiolitis. Cycling of IS, to induce repeated episodes of controlled rejection, promoted classic histologic hallmarks of OB including fibrosis-associated occlusion of the bronchiolar airways in all allografts of long-term survivors. In conclusion, we have developed an orthotopic lung transplant model in the ferret with documented long-term functional allograft survival. Allografts develop acute rejection and lymphocytic bronchiolitis, similar to humans. Long-term survivors develop histologic changes in the allografts that are hallmarks of OB.
Collapse
Affiliation(s)
- H. Sui
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - A. K. Olivier
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - J. A. Klesney-Tait
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - L. Brooks
- Department of Cardiothoracic Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - S. R. Tyler
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - X. Sun
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - A. Skopec
- Department of Cardiothoracic Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - J. Kline
- Department of Cardiothoracic Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - P. G. Sanchez
- Department of Cardiothoracic Surgery, University of Maryland, Baltimore, MD
| | - D. K. Meyerholz
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - N. Zavazava
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - M. Iannettoni
- Department of Cardiothoracic Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - J. F. Engelhardt
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - K. R. Parekh
- Department of Cardiothoracic Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA
| |
Collapse
|
24
|
Belser JA, Katz JM, Tumpey TM. The ferret as a model organism to study influenza A virus infection. Dis Model Mech 2011; 4:575-9. [PMID: 21810904 PMCID: PMC3180220 DOI: 10.1242/dmm.007823] [Citation(s) in RCA: 278] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Influenza is a human pathogen that continues to pose a public health threat. The use of small mammalian models has become indispensable for understanding the virulence of influenza viruses. Among numerous species used in the laboratory setting, only the ferret model is equally well suited for studying both the pathogenicity and transmissibility of human and avian influenza viruses. Here, we compare the advantages and limitations of the mouse, ferret and guinea pig models for research with influenza A viruses, emphasizing the multifarious uses of the ferret in the assessment of influenza viruses with pandemic potential. Research performed in the ferret model has provided information, support and guidance for the public health response to influenza viruses in humans. We highlight the recent and emerging uses of this species in influenza virus research that are advancing our understanding of virus-host interactions.
Collapse
Affiliation(s)
- Jessica A Belser
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | | | | |
Collapse
|
25
|
Ellebedy AH, Fabrizio TP, Kayali G, Oguin TH, Brown SA, Rehg J, Thomas PG, Webby RJ. Contemporary seasonal influenza A (H1N1) virus infection primes for a more robust response to split inactivated pandemic influenza A (H1N1) Virus vaccination in ferrets. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1998-2006. [PMID: 20962210 PMCID: PMC3008197 DOI: 10.1128/cvi.00247-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Revised: 07/27/2010] [Accepted: 10/06/2010] [Indexed: 11/20/2022]
Abstract
Human influenza pandemics occur when influenza viruses to which the population has little or no immunity emerge and acquire the ability to achieve human-to-human transmission. In April 2009, cases of a novel H1N1 influenza virus in children in the southwestern United States were reported. It was retrospectively shown that these cases represented the spread of this virus from an ongoing outbreak in Mexico. The emergence of the pandemic led to a number of national vaccination programs. Surprisingly, early human clinical trial data have shown that a single dose of nonadjuvanted pandemic influenza A (H1N1) 2009 monovalent inactivated vaccine (pMIV) has led to a seroprotective response in a majority of individuals, despite earlier studies showing a lack of cross-reactivity between seasonal and pandemic H1N1 viruses. Here we show that previous exposure to a contemporary seasonal H1N1 influenza virus and to a lesser degree a seasonal influenza virus trivalent inactivated vaccine is able to prime for a higher antibody response after a subsequent dose of pMIV in ferrets. The more protective response was partially dependent on the presence of CD8(+) cells. Two doses of pMIV were also able to induce a detectable antibody response that provided protection from subsequent challenge. These data show that previous infection with seasonal H1N1 influenza viruses likely explains the requirement for only a single dose of pMIV in adults and that vaccination campaigns with the current pandemic influenza vaccines should reduce viral burden and disease severity in humans.
Collapse
Affiliation(s)
- Ali H. Ellebedy
- Department of Infectious Diseases, Department of Immunology, Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105-3678
| | - Thomas P. Fabrizio
- Department of Infectious Diseases, Department of Immunology, Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105-3678
| | - Ghazi Kayali
- Department of Infectious Diseases, Department of Immunology, Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105-3678
| | - Thomas H. Oguin
- Department of Infectious Diseases, Department of Immunology, Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105-3678
| | - Scott A. Brown
- Department of Infectious Diseases, Department of Immunology, Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105-3678
| | - Jerold Rehg
- Department of Infectious Diseases, Department of Immunology, Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105-3678
| | - Paul G. Thomas
- Department of Infectious Diseases, Department of Immunology, Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105-3678
| | - Richard J. Webby
- Department of Infectious Diseases, Department of Immunology, Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105-3678
| |
Collapse
|
26
|
Bodewes R, Kreijtz JHCM, van Amerongen G, Geelhoed-Mieras MM, Verburgh RJ, Heldens JGM, Bedwell J, van den Brand JMA, Kuiken T, van Baalen CA, Fouchier RAM, Osterhaus ADME, Rimmelzwaan GF. A single immunization with CoVaccine HT-adjuvanted H5N1 influenza virus vaccine induces protective cellular and humoral immune responses in ferrets. J Virol 2010; 84:7943-52. [PMID: 20519384 PMCID: PMC2916550 DOI: 10.1128/jvi.00549-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 05/24/2010] [Indexed: 11/20/2022] Open
Abstract
Highly pathogenic avian influenza A viruses of the H5N1 subtype continue to circulate in poultry, and zoonotic transmissions are reported frequently. Since a pandemic caused by these highly pathogenic viruses is still feared, there is interest in the development of influenza A/H5N1 virus vaccines that can protect humans against infection, preferably after a single vaccination with a low dose of antigen. Here we describe the induction of humoral and cellular immune responses in ferrets after vaccination with a cell culture-derived whole inactivated influenza A virus vaccine in combination with the novel adjuvant CoVaccine HT. The addition of CoVaccine HT to the influenza A virus vaccine increased antibody responses to homologous and heterologous influenza A/H5N1 viruses and increased virus-specific cell-mediated immune responses. Ferrets vaccinated once with a whole-virus equivalent of 3.8 microg hemagglutinin (HA) and CoVaccine HT were protected against homologous challenge infection with influenza virus A/VN/1194/04. Furthermore, ferrets vaccinated once with the same vaccine/adjuvant combination were partially protected against infection with a heterologous virus derived from clade 2.1 of H5N1 influenza viruses. Thus, the use of the novel adjuvant CoVaccine HT with cell culture-derived inactivated influenza A/H5N1 virus antigen is a promising and dose-sparing vaccine approach warranting further clinical evaluation.
Collapse
Affiliation(s)
- R. Bodewes
- Department of Virology, Erasmus Medical Center, Dr. Molewaterplein 50, P.O. Box 2040, 3000 CA Rotterdam, Netherlands, Nobilon Schering-Plough, Exportstraat 39B, 5830 AH Boxmeer, Netherlands, Protherics Medicines Development Limited, a BTG Company, 5 Fleet Place, London EC4M 7RD, United Kingdom, Viroclinics Biosciences B.V., Rotterdam, Netherlands
| | - J. H. C. M. Kreijtz
- Department of Virology, Erasmus Medical Center, Dr. Molewaterplein 50, P.O. Box 2040, 3000 CA Rotterdam, Netherlands, Nobilon Schering-Plough, Exportstraat 39B, 5830 AH Boxmeer, Netherlands, Protherics Medicines Development Limited, a BTG Company, 5 Fleet Place, London EC4M 7RD, United Kingdom, Viroclinics Biosciences B.V., Rotterdam, Netherlands
| | - G. van Amerongen
- Department of Virology, Erasmus Medical Center, Dr. Molewaterplein 50, P.O. Box 2040, 3000 CA Rotterdam, Netherlands, Nobilon Schering-Plough, Exportstraat 39B, 5830 AH Boxmeer, Netherlands, Protherics Medicines Development Limited, a BTG Company, 5 Fleet Place, London EC4M 7RD, United Kingdom, Viroclinics Biosciences B.V., Rotterdam, Netherlands
| | - M. M. Geelhoed-Mieras
- Department of Virology, Erasmus Medical Center, Dr. Molewaterplein 50, P.O. Box 2040, 3000 CA Rotterdam, Netherlands, Nobilon Schering-Plough, Exportstraat 39B, 5830 AH Boxmeer, Netherlands, Protherics Medicines Development Limited, a BTG Company, 5 Fleet Place, London EC4M 7RD, United Kingdom, Viroclinics Biosciences B.V., Rotterdam, Netherlands
| | - R. J. Verburgh
- Department of Virology, Erasmus Medical Center, Dr. Molewaterplein 50, P.O. Box 2040, 3000 CA Rotterdam, Netherlands, Nobilon Schering-Plough, Exportstraat 39B, 5830 AH Boxmeer, Netherlands, Protherics Medicines Development Limited, a BTG Company, 5 Fleet Place, London EC4M 7RD, United Kingdom, Viroclinics Biosciences B.V., Rotterdam, Netherlands
| | - J. G. M. Heldens
- Department of Virology, Erasmus Medical Center, Dr. Molewaterplein 50, P.O. Box 2040, 3000 CA Rotterdam, Netherlands, Nobilon Schering-Plough, Exportstraat 39B, 5830 AH Boxmeer, Netherlands, Protherics Medicines Development Limited, a BTG Company, 5 Fleet Place, London EC4M 7RD, United Kingdom, Viroclinics Biosciences B.V., Rotterdam, Netherlands
| | - J. Bedwell
- Department of Virology, Erasmus Medical Center, Dr. Molewaterplein 50, P.O. Box 2040, 3000 CA Rotterdam, Netherlands, Nobilon Schering-Plough, Exportstraat 39B, 5830 AH Boxmeer, Netherlands, Protherics Medicines Development Limited, a BTG Company, 5 Fleet Place, London EC4M 7RD, United Kingdom, Viroclinics Biosciences B.V., Rotterdam, Netherlands
| | - J. M. A. van den Brand
- Department of Virology, Erasmus Medical Center, Dr. Molewaterplein 50, P.O. Box 2040, 3000 CA Rotterdam, Netherlands, Nobilon Schering-Plough, Exportstraat 39B, 5830 AH Boxmeer, Netherlands, Protherics Medicines Development Limited, a BTG Company, 5 Fleet Place, London EC4M 7RD, United Kingdom, Viroclinics Biosciences B.V., Rotterdam, Netherlands
| | - T. Kuiken
- Department of Virology, Erasmus Medical Center, Dr. Molewaterplein 50, P.O. Box 2040, 3000 CA Rotterdam, Netherlands, Nobilon Schering-Plough, Exportstraat 39B, 5830 AH Boxmeer, Netherlands, Protherics Medicines Development Limited, a BTG Company, 5 Fleet Place, London EC4M 7RD, United Kingdom, Viroclinics Biosciences B.V., Rotterdam, Netherlands
| | - C. A. van Baalen
- Department of Virology, Erasmus Medical Center, Dr. Molewaterplein 50, P.O. Box 2040, 3000 CA Rotterdam, Netherlands, Nobilon Schering-Plough, Exportstraat 39B, 5830 AH Boxmeer, Netherlands, Protherics Medicines Development Limited, a BTG Company, 5 Fleet Place, London EC4M 7RD, United Kingdom, Viroclinics Biosciences B.V., Rotterdam, Netherlands
| | - R. A. M. Fouchier
- Department of Virology, Erasmus Medical Center, Dr. Molewaterplein 50, P.O. Box 2040, 3000 CA Rotterdam, Netherlands, Nobilon Schering-Plough, Exportstraat 39B, 5830 AH Boxmeer, Netherlands, Protherics Medicines Development Limited, a BTG Company, 5 Fleet Place, London EC4M 7RD, United Kingdom, Viroclinics Biosciences B.V., Rotterdam, Netherlands
| | - A. D. M. E. Osterhaus
- Department of Virology, Erasmus Medical Center, Dr. Molewaterplein 50, P.O. Box 2040, 3000 CA Rotterdam, Netherlands, Nobilon Schering-Plough, Exportstraat 39B, 5830 AH Boxmeer, Netherlands, Protherics Medicines Development Limited, a BTG Company, 5 Fleet Place, London EC4M 7RD, United Kingdom, Viroclinics Biosciences B.V., Rotterdam, Netherlands
| | - G. F. Rimmelzwaan
- Department of Virology, Erasmus Medical Center, Dr. Molewaterplein 50, P.O. Box 2040, 3000 CA Rotterdam, Netherlands, Nobilon Schering-Plough, Exportstraat 39B, 5830 AH Boxmeer, Netherlands, Protherics Medicines Development Limited, a BTG Company, 5 Fleet Place, London EC4M 7RD, United Kingdom, Viroclinics Biosciences B.V., Rotterdam, Netherlands
| |
Collapse
|
27
|
Martel CJM, Aasted B. Characterization of antibodies against ferret immunoglobulins, cytokines and CD markers. Vet Immunol Immunopathol 2009; 132:109-15. [PMID: 19505731 DOI: 10.1016/j.vetimm.2009.05.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 04/28/2009] [Accepted: 05/11/2009] [Indexed: 11/25/2022]
Abstract
Ferret IgG and IgM were purified from normal serum, while ferret IgA was purified from bile. The estimated molecular weights of the immunoglobulin gamma, alpha and mu heavy chains were found to be 54kDa, 69kDa and 83kDa, respectively. For immunological (ELISA) quantification of ferret immunoglobulins, we identified and characterized polyclonal antibodies towards ferret IgG, IgM and IgA. We also identified 22 monoclonal antibodies (mAbs) raised mostly against human CD markers which cross-reacted with ferret leukocytes. These antibodies were originally specific against human CD8, CD9, CD14, CD18, CD25, CD29, CD32, CD44, CD61, CD71, CD79b, CD88, CD104, CD172a and mink CD3. Finally, we identified 4 cross-reacting mAbs with specificities against ferret interferon-gamma, TNF-alpha, interleukin-4 and interleukin-8.
Collapse
Affiliation(s)
- Cyril Jean-Marie Martel
- Laboratory of Immunology, Department of Veterinary Disease Biology, Faculty of Life Sciences, University of Copenhagen, Stigbojlen 7, 1870 Frederiksberg C, Denmark.
| | | |
Collapse
|
28
|
Barnard DL. Animal models for the study of influenza pathogenesis and therapy. Antiviral Res 2009; 82:A110-22. [PMID: 19176218 PMCID: PMC2700745 DOI: 10.1016/j.antiviral.2008.12.014] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2008] [Revised: 12/15/2008] [Accepted: 12/20/2008] [Indexed: 12/12/2022]
Abstract
Influenza A viruses causes a variety of illnesses in humans. The most common infection, seasonal influenza, is usually a mild, self-limited febrile syndrome, but it can be more severe in infants, the elderly, and immunodeficient persons, in whom it can progress to severe viral pneumonitis or be complicated by bacterial superinfection, leading to pneumonia and sepsis. Seasonal influenza also occasionally results in neurologic complications. Rarely, viruses that have spread from wild birds to domestic poultry can infect humans; such "avian influenza" can range in severity from mild conjunctivitis through the rapidly lethal disease seen in persons infected with the H5N1 virus that first emerged in Hong Kong in 1997. To develop effective therapies for this wide range of diseases, it is essential to have laboratory animal models that replicate the major features of illness in humans. This review describes models currently in use for elucidating influenza pathogenesis and evaluating new therapeutic agents.
Collapse
Affiliation(s)
- Dale L Barnard
- Institute for Antiviral Research, Utah State University, Logan, UT 84322-5600, USA.
| |
Collapse
|