1
|
Jantakee K, Panwong S, Sattayawat P, Sumankan R, Saengmuang S, Choowongkomon K, Panya A. Clinacanthus nutans (Burm. f.) Lindau Extract Inhibits Dengue Virus Infection and Inflammation in the Huh7 Hepatoma Cell Line. Antibiotics (Basel) 2024; 13:705. [PMID: 39200005 PMCID: PMC11350823 DOI: 10.3390/antibiotics13080705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/29/2024] [Accepted: 07/08/2024] [Indexed: 09/01/2024] Open
Abstract
Dengue virus (DENV) infection has emerged as a global health problem, with no specific treatment available presently. Clinacanthus nutans (Burm. f.) Lindau extract has been used in traditional medicine for its anti-inflammatory and antiviral properties. We thus hypothesized C. nutans had a broad-ranged activity to inhibit DENV and the liver inflammation caused by DENV infection. The study showed that treatment using C. nutans extract during DENV infection (co-infection step) showed the highest efficiency in lowering the viral antigen concentration to 22.87 ± 6.49% at 31.25 μg/mL. In addition, the virus-host cell binding assay demonstrated that C. nutans treatment greatly inhibited the virus after its binding to Huh7 cells. Moreover, it could remarkably lower the expression of cytokine and chemokine genes, including TNF-α, CXCL10, IL-6, and IL-8, in addition to inflammatory mediator COX-2 genes. Interestingly, the activation of the NF-κB signaling cascade after C. nutans extract treatment was dramatically decreased, which could be the underlying mechanism of its anti-inflammatory activity. The HPLC profile showed that gallic acid was the bioactive compound of C. nutans extract and might be responsible for the antiviral properties of C. nutans. Taken together, our results revealed the potential of C. nutans extract to inhibit DENV infection and lower inflammation in infected cells.
Collapse
Affiliation(s)
- Kanyaluck Jantakee
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (K.J.); (P.S.)
| | - Suthida Panwong
- Doctoral of Philosophy Program in Applied Microbiology (International Program), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Pachara Sattayawat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (K.J.); (P.S.)
- Cell Engineering for Cancer Therapy Research Group, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ratchaneewan Sumankan
- Graduate Master’s Degree Program in Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (R.S.); (S.S.)
| | - Sasithorn Saengmuang
- Graduate Master’s Degree Program in Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (R.S.); (S.S.)
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| | - Aussara Panya
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (K.J.); (P.S.)
- Cell Engineering for Cancer Therapy Research Group, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
2
|
Verma R, Pandey AK, Chakraborty R, Prakash S, Jain A. Toll-Like receptor 3 genetic polymorphism in dengue encephalitis. J Family Med Prim Care 2024; 13:2397-2403. [PMID: 39027870 PMCID: PMC11254067 DOI: 10.4103/jfmpc.jfmpc_1785_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 07/20/2024] Open
Abstract
CONTEXT Dengue is one of the important vector-borne viral diseases affecting humans with diverse manifestations. Toll-like receptors (TLR) are pattern recognition receptors and play an important role in innate immunity against microbes. TLR3 plays a critical role in controlling the innate immune response mediated by flaviviruses such as dengue. AIM We attempted to study the susceptibility of single nucleotide polymorphism of the TLR3 gene in dengue encephalitis (DE) patients and determine the association in terms of genotype, allele, and haplotype distribution along with the clinical outcome. SETTINGS AND DESIGN It was a case-controlled observational study in a tertiary care hospital. METHODS AND MATERIAL We investigated the single nucleotide polymorphism in the TLR3 Leu412Phe gene using real-time polymerase chain reaction in 29 cases of DE and compared them with equal number of age- and sex-matched dengue patients without neurological features. STATISTICAL ANALYSIS USED The genotype and allele frequencies were compared using a two-sided Chi-square or Fisher's exact test. RESULTS The findings revealed that the genotypic distribution of TLR3 Leu412Phe polymorphism for the mutant genotype Phe/Phe (TT) demonstrated increased association of DE (31.03% vs 6.8%, P 0.019, odds ratio 6.075, 95% confidence interval 1.181-31.245). However, the number of heterozygous (H) genotype (Leu/Phe-CT) and mutant Phe allele (T) did not show any statistically significant association. TLR3 gene polymorphism did not show any correlation with mortality outcome at 1 month. CONCLUSION The presence of mutant TLR3 Leu412Phe polymorphism may confer the propensity to have DE in patients with dengue infection in the Indian population. TLR3 polymorphism did not affect mortality outcome at 1 month.
Collapse
Affiliation(s)
- Rajesh Verma
- Department of Neurology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Atul K. Pandey
- Department of Neurology, Maharani Laxmi Bai Medical College and Hospital, Jhansi, Uttar Pradesh, India
| | - Rajarshi Chakraborty
- Department of Neurology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Shantanu Prakash
- Department of Microbiology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Amita Jain
- Department of Microbiology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
3
|
Tarasuk M, Songprakhon P, Muhamad P, Panya A, Sattayawat P, Yenchitsomanus PT. Dual action effects of ethyl-p-methoxycinnamate against dengue virus infection and inflammation via NF-κB pathway suppression. Sci Rep 2024; 14:9322. [PMID: 38654034 PMCID: PMC11039621 DOI: 10.1038/s41598-024-60070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
Dengue virus (DENV) infection can lead to severe outcomes through a virus-induced cytokine storm, resulting in vascular leakage and inflammation. An effective treatment strategy should target both virus replication and cytokine storm. This study identified Kaempferia galanga L. (KG) extract as exhibiting anti-DENV activity. The major bioactive compound, ethyl-p-methoxycinnamate (EPMC), significantly reduced DENV-2 infection, virion production, and viral protein synthesis in HepG2 and A549 cells, with half-maximal effective concentration (EC50) values of 22.58 µM and 6.17 µM, and impressive selectivity indexes (SIs) of 32.40 and 173.44, respectively. EPMC demonstrated efficacy against all four DENV serotypes, targeting the replication phase of the virus life cycle. Importantly, EPMC reduced DENV-2-induced cytokines (IL-6 and TNF-α) and chemokines (RANTES and IP-10), as confirmed by immunofluorescence and immunoblot analyses, indicating inhibition of NF-κB activation. EPMC's role in preventing excessive inflammatory responses suggests it as a potential candidate for dengue treatment. Absorption, distribution, metabolism, excretion, and toxicity (ADMET) and drug-likeness for EPMC were predicted using SwissADME and ProTox II servers, showing good drug-like properties without toxicity. These findings highlight KG extract and EPMC as promising candidates for future anti-dengue therapeutics, offering a dual-action approach by inhibiting virus replication and mitigating inflammatory reactions.
Collapse
Affiliation(s)
- Mayuri Tarasuk
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Pucharee Songprakhon
- Division of Molecular Medicine, Research Department, and Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Phunuch Muhamad
- Drug Discovery and Development Center, Office of Advanced Science and Technology, Thammasat University, Pathum Thani, Thailand
| | - Aussara Panya
- Cell Engineering for Cancer Therapy Research Group, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Pachara Sattayawat
- Cell Engineering for Cancer Therapy Research Group, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Pa-Thai Yenchitsomanus
- Division of Molecular Medicine, Research Department, and Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
4
|
S. K, Sudha L, Navaneetha Krishnan M. Water cycle tunicate swarm algorithm based deep residual network for virus detection with gene expression data. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING: IMAGING & VISUALIZATION 2023. [DOI: 10.1080/21681163.2023.2165161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Karthi S.
- Department of Computer Science and Engineering, Annamalai University, Chidambaram, India
| | - L.R. Sudha
- Department of Computer Science and Engineering, Annamalai University, Chidambaram, India
| | - M. Navaneetha Krishnan
- Department of Computer Science and Engineering, St Joseph College of Engineering, Chennai, India
| |
Collapse
|
5
|
Pinheiro MBM, Rozini SV, Quirino-Teixeira AC, Barbosa-Lima G, Lopes JF, Sacramento CQ, Bozza FA, Bozza PT, Hottz ED. Dengue induces iNOS expression and nitric oxide synthesis in platelets through IL-1R. Front Immunol 2022; 13:1029213. [PMID: 36569864 PMCID: PMC9767985 DOI: 10.3389/fimmu.2022.1029213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Dengue is an arthropod-born disease caused by dengue virus (DENV), that may manifest as a mild illness or severe form, characterized by hemorrhagic fever and shock. Nitric oxide (NO) is a vasodilator signaling molecule and an inhibitor of platelet aggregation known to be increased in platelets from dengue patients. However, the mechanisms underlying NO synthesis by platelets during dengue are not yet elucidated. IL-1β is a pro-inflammatory cytokine able to induce iNOS expression in leukocytes and present in dengue patients at high levels. Nevertheless, the role of IL-1β in platelet activation, especially regarding iNOS expression, are not clear. Methods We prospectively followed a cohort of 28 dengue-infected patients to study NO synthesis in platelets and its relationship with disease outcomes. We used in vitro infection and stimulation models to gain insights on the mechanisms. Results and Discussion We confirmed that platelets from dengue patients express iNOS and produce higher levels of NO during the acute phase compared to healthy volunteers, returning to normal levels after recovery. Platelet NO production during acute dengue infection was associated with the presence of warning signs, hypoalbuminemia and hemorrhagic manifestations, suggesting a role in dengue pathophysiology. By investigating the mechanisms, we evidenced increased iNOS expression in platelets stimulated with dengue patients´ plasma, indicating induction by circulating inflammatory mediators. We then investigated possible factors able to induce platelet iNOS expression and observed higher levels of IL-1β in plasma from patients with dengue, which were correlated with NO production by platelets. Since platelets can synthesize and respond to IL-1β, we investigated whether IL-1β induces iNOS expression and NO synthesis in platelets. We observed that recombinant human IL-1β enhanced iNOS expression and dose-dependently increased NO synthesis by platelets. Finally, platelet infection with DENV in vitro induced iNOS expression and NO production, besides the secretion of both IL-1α and IL-1β. Importantly, treatment with IL-1 receptor antagonist or a combination of anti-IL-1α and anti-IL-1β antibodies prevented DENV-induced iNOS expression and NO synthesis. Our data show that DENV induces iNOS expression and NO production in platelets through mechanisms depending on IL-1 receptor signaling.
Collapse
Affiliation(s)
- Mariana Brandi Mendonça Pinheiro
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Stephane Vicente Rozini
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Anna Cecíllia Quirino-Teixeira
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Giselle Barbosa-Lima
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Juliana F. Lopes
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Carolina Q. Sacramento
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil,National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, Brazil
| | - Fernando A. Bozza
- National Institute of Infectious Disease Evandro Chagas, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil,D’Or Institute for Research and Education, Rio de Janeiro, Brazil
| | - Patrícia T. Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Eugenio D. Hottz
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil,Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil,*Correspondence: Eugenio D. Hottz,
| |
Collapse
|
6
|
Inflammatory signaling in dengue-infected platelets requires translation and secretion of nonstructural protein 1. Blood Adv 2021; 4:2018-2031. [PMID: 32396616 DOI: 10.1182/bloodadvances.2019001169] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Emerging evidence identifies major contributions of platelets to inflammatory amplification in dengue, but the mechanisms of infection-driven platelet activation are not completely understood. Dengue virus nonstructural protein-1 (DENV NS1) is a viral protein secreted by infected cells with recognized roles in dengue pathogenesis, but it remains unknown whether NS1 contributes to the inflammatory phenotype of infected platelets. This study shows that recombinant DENV NS1 activated platelets toward an inflammatory phenotype that partially reproduced DENV infection. NS1 stimulation induced translocation of α-granules and release of stored factors, but not of newly synthesized interleukin-1β (IL-1β). Even though both NS1 and DENV were able to induce pro-IL-1β synthesis, only DENV infection triggered caspase-1 activation and IL-1β release by platelets. A more complete thromboinflammatory phenotype was achieved by synergistic activation of NS1 with classic platelet agonists, enhancing α-granule translocation and inducing thromboxane A2 synthesis (thrombin and platelet-activating factor), or activating caspase-1 for IL-1β processing and secretion (adenosine triphosphate). Also, platelet activation by NS1 partially depended on toll-like receptor-4 (TLR-4), but not TLR-2/6. Finally, the platelets sustained viral genome translation and replication, but did not support the release of viral progeny to the extracellular milieu, characterizing an abortive viral infection. Although DENV infection was not productive, translation of the DENV genome led to NS1 expression and release by platelets, contributing to the activation of infected platelets through an autocrine loop. These data reveal distinct, new mechanisms for platelet activation in dengue, involving DENV genome translation and NS1-induced platelet activation via platelet TLR4.
Collapse
|
7
|
Rajput R, Sharma J, Nair MT, Khanna M, Arora P, Sood V. Regulation of Host Innate Immunity by Non-Coding RNAs During Dengue Virus Infection. Front Cell Infect Microbiol 2020; 10:588168. [PMID: 33330133 PMCID: PMC7734804 DOI: 10.3389/fcimb.2020.588168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
An estimated 3.9 billion individuals in 128 nations (about 40% of global population) are at risk of acquiring dengue virus infection. About 390 million cases of dengue are reported each year with higher prevalence in the developing world. A recent modeling-based report suggested that half of the population across the globe is at risk of dengue virus infection. In any given dengue outbreak, a percentage of infected population develops severe clinical manifestations, and this remains one of the “unsolved conundrums in dengue pathogenesis”. Although, host immunity and virus serotypes are known to modulate the infection, there are still certain underlying factors that play important roles in modulating dengue pathogenesis. Advanced genomics-based technologies have led to identification of regulatory roles of non-coding RNAs. Accumulating evidence strongly suggests that viruses and their hosts employ non-coding RNAs to modulate the outcome of infection in their own favor. The foremost ones seem to be the cellular microRNAs (miRNAs). Being the post-transcriptional regulators, miRNAs can be regarded as direct switches capable of turning “on” or “off” the viral replication process. Recently, role of long non-coding RNAs (lncRNAs) in modulating viral infections via interferon dependent or independent signaling has been recognized. Hence, we attempt to identify the “under-dog”, the non-coding RNA regulators of dengue virus infection. Such essential knowledge will enhance the understanding of dengue virus infection in holistic manner, by exposing the specific molecular targets for development of novel prophylactic, therapeutic or diagnostic strategies.
Collapse
Affiliation(s)
- Roopali Rajput
- Department of Microbiology (Virology Unit), Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India.,Department of Molecular Medicine, National Institute of Tuberculosis and Respiratory Diseases, New Delhi, India
| | - Jitender Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Bathinda, India
| | - Mahima T Nair
- Department of Zoology, Hansraj College, University of Delhi, Delhi, India
| | - Madhu Khanna
- Department of Microbiology (Virology Unit), Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Pooja Arora
- Department of Zoology, Hansraj College, University of Delhi, Delhi, India
| | - Vikas Sood
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
8
|
Zanini F, Pu SY, Bekerman E, Einav S, Quake SR. Single-cell transcriptional dynamics of flavivirus infection. eLife 2018; 7:32942. [PMID: 29451494 PMCID: PMC5826272 DOI: 10.7554/elife.32942] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/08/2018] [Indexed: 12/25/2022] Open
Abstract
Dengue and Zika viral infections affect millions of people annually and can be complicated by hemorrhage and shock or neurological manifestations, respectively. However, a thorough understanding of the host response to these viruses is lacking, partly because conventional approaches ignore heterogeneity in virus abundance across cells. We present viscRNA-Seq (virus-inclusive single cell RNA-Seq), an approach to probe the host transcriptome together with intracellular viral RNA at the single cell level. We applied viscRNA-Seq to monitor dengue and Zika virus infection in cultured cells and discovered extreme heterogeneity in virus abundance. We exploited this variation to identify host factors that show complex dynamics and a high degree of specificity for either virus, including proteins involved in the endoplasmic reticulum translocon, signal peptide processing, and membrane trafficking. We validated the viscRNA-Seq hits and discovered novel proviral and antiviral factors. viscRNA-Seq is a powerful approach to assess the genome-wide virus-host dynamics at single cell level.
Collapse
Affiliation(s)
- Fabio Zanini
- Department of Bioengineering, Stanford University, Stanford, United States
| | - Szu-Yuan Pu
- Division of Infectious Diseases, Department of Medicine, Stanford University School of Medicine, Stanford, United States.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States
| | - Elena Bekerman
- Division of Infectious Diseases, Department of Medicine, Stanford University School of Medicine, Stanford, United States.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States
| | - Shirit Einav
- Division of Infectious Diseases, Department of Medicine, Stanford University School of Medicine, Stanford, United States.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States
| | - Stephen R Quake
- Department of Bioengineering, Stanford University, Stanford, United States.,Department of Applied Physics, Stanford University, Stanford, United States.,Chan Zuckerberg Biohub, San Francisco, United States
| |
Collapse
|
9
|
Anaplerotic Role of Glucose in the Oxidation of Endogenous Fatty Acids during Dengue Virus Infection. mSphere 2018; 3:mSphere00458-17. [PMID: 29404419 PMCID: PMC5793041 DOI: 10.1128/msphere.00458-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/20/2017] [Indexed: 12/21/2022] Open
Abstract
Dengue virus infection is a major cause of human arbovirosis, for which clinical and experimental evidence supports the idea that liver dysfunction and lipid metabolism disorders are characteristics of severe disease. Analyzing mitochondrial bioenergetics, here we show that infection of hepatic cells with dengue virus favors the cellular capacity of metabolizing glucose, impairing the normal metabolic flexibility that allows the oxidative machinery to switch among the main energetic substrates. However, instead of being used as an energy source, glucose performs an anaplerotic role in the oxidation of endogenous fatty acids, which become the main energetic substrate during infection. Taken together, the results shed light on metabolic mechanisms that may explain the profound alterations in lipid metabolism for severe dengue patients, contributing to the understanding of dengue physiopathology. Dengue virus (DENV) is among the most important human arboviruses and is clinically and experimentally associated with lipid metabolism disorders. Using high-resolution respirometry, we analyzed the metabolic switches induced by DENV in a human hepatic cell line. This experimental approach allowed us to determine the contribution of fatty acids, glutamine, glucose, and pyruvate to mitochondrial bioenergetics, shedding light on the mechanisms involved in DENV-induced metabolic alterations. We found that while infection strongly inhibits glutamine oxidation, it increases the cellular capacity of metabolizing glucose; remarkably, though, this substrate, instead being used as an energy source, performs an anaplerotic role in the oxidation of endogenous lipids. Fatty acids become the main energetic substrate in infected cell, and through the pharmacological modulation of β-oxidation we demonstrated that this pathway is essential for virus replication. Interestingly, infected cells were much less susceptible to the Crabtree effect, i.e., the glucose-mediated inhibition of mitochondrial oxygen consumption, suggesting that infection favors cellular respiration by increasing ADP availability. IMPORTANCE Dengue virus infection is a major cause of human arbovirosis, for which clinical and experimental evidence supports the idea that liver dysfunction and lipid metabolism disorders are characteristics of severe disease. Analyzing mitochondrial bioenergetics, here we show that infection of hepatic cells with dengue virus favors the cellular capacity of metabolizing glucose, impairing the normal metabolic flexibility that allows the oxidative machinery to switch among the main energetic substrates. However, instead of being used as an energy source, glucose performs an anaplerotic role in the oxidation of endogenous fatty acids, which become the main energetic substrate during infection. Taken together, the results shed light on metabolic mechanisms that may explain the profound alterations in lipid metabolism for severe dengue patients, contributing to the understanding of dengue physiopathology.
Collapse
|
10
|
Soe HJ, Khan AM, Manikam R, Samudi Raju C, Vanhoutte P, Sekaran SD. High dengue virus load differentially modulates human microvascular endothelial barrier function during early infection. J Gen Virol 2017; 98:2993-3007. [PMID: 29182510 DOI: 10.1099/jgv.0.000981] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Plasma leakage is the main pathophysiological feature in severe dengue, resulting from altered vascular barrier function associated with an inappropriate immune response triggered upon infection. The present study investigated functional changes using an electric cell-substrate impedance sensing system in four (brain, dermal, pulmonary and retinal) human microvascular endothelial cell (MEC) lines infected with purified dengue virus, followed by assessment of cytokine profiles and the expression of inter-endothelial junctional proteins. Modelling of changes in electrical impedance suggests that vascular leakage in dengue-infected MECs is mostly due to the modulation of cell-to-cell interactions, while this loss of vascular barrier function observed in the infected MECs varied between cell lines and DENV serotypes. High levels of inflammatory cytokines (IL-6 and TNF-α), chemokines (CXCL1, CXCL5, CXCL11, CX3CL1, CCL2 and CCL20) and adhesion molecules (VCAM-1) were differentially produced in the four infected MECs. Further, the tight junctional protein, ZO-1, was down-regulated in both the DENV-1-infected brain and pulmonary MECs, while claudin-1, PECAM-1 and VE-cadherin were differentially expressed in these two MECs after infection. Non-purified virus stock was also studied to investigate the impact of virus stock purity on dengue-specific immune responses, and the results suggest that virus stock propagated through cell culture may include factors that mask or alter the DENV-specific immune responses of the MECs. The findings of the present study show that high DENV load differentially modulates human microvascular endothelial barrier function and disrupts the function of inter-endothelial junctional proteins during early infection with organ-specific cytokine production.
Collapse
Affiliation(s)
- Hui Jen Soe
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Asif M Khan
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Serdang, Selangor, Malaysia
| | - Rishya Manikam
- Trauma and Emergency (Academic), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chandramathi Samudi Raju
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Paul Vanhoutte
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, Hong Kong SAR
| | - Shamala Devi Sekaran
- Department of Medical Microbiology, Faculty of Medicine, MAHSA University, Selangor, Malaysia.,Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Interplay between dengue virus and Toll-like receptors, RIG-I/MDA5 and microRNAs: Implications for pathogenesis. Antiviral Res 2017; 147:47-57. [DOI: 10.1016/j.antiviral.2017.09.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 12/25/2022]
|
12
|
Sano D, Tazawa M, Inaba M, Kadoya S, Watanabe R, Miura T, Kitajima M, Okabe S. Selection of cellular genetic markers for the detection of infectious poliovirus. J Appl Microbiol 2017; 124:1001-1007. [PMID: 29078036 DOI: 10.1111/jam.13621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 10/15/2017] [Accepted: 10/16/2017] [Indexed: 01/01/2023]
Abstract
AIMS Cellular responses of an established cell line from human intestinal epithelial cells (INT-407 cells) against poliovirus (PV) infections were investigated in order to find cellular genetic markers for infectious PV detection. METHODS AND RESULTS Gene expression profile of INT-407 cells was analysed by DNA microarray technique when cells were infected with poliovirus 1 (PV1) (sabin) at multiplicity of infection of 10-3 and incubated for 12 h. Poliovirus infection significantly altered the gene expressions of two ion channels, KCNJ4 and SCN7A. The expression profile of KCNJ4 gene was further investigated by real-time RT-qPCR, and it was found that KCNJ4 gene was significantly regulated at 24 h postinfection of PV1. CONCLUSIONS KCNJ4 gene, coding a potassium channel protein, is proposed as a cellular genetic marker for infectious PV detection. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first study to show the availability of cellular responses to detect infectious PV. The selection of cellular genetic markers for infectious viruses using DNA microarray and RT-qPCR can be applicable for the other enteric viruses.
Collapse
Affiliation(s)
- D Sano
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - M Tazawa
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan
| | - M Inaba
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - S Kadoya
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan
| | - R Watanabe
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan
| | - T Miura
- Department of Environmental Health, National Institute of Public Health, Saitama, Japan
| | - M Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan
| | - S Okabe
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
13
|
Trugilho MRDO, Hottz ED, Brunoro GVF, Teixeira-Ferreira A, Carvalho PC, Salazar GA, Zimmerman GA, Bozza FA, Bozza PT, Perales J. Platelet proteome reveals novel pathways of platelet activation and platelet-mediated immunoregulation in dengue. PLoS Pathog 2017; 13:e1006385. [PMID: 28542641 PMCID: PMC5453622 DOI: 10.1371/journal.ppat.1006385] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 06/01/2017] [Accepted: 04/27/2017] [Indexed: 12/27/2022] Open
Abstract
Dengue is the most prevalent human arbovirus disease worldwide. Dengue virus (DENV) infection causes syndromes varying from self-limiting febrile illness to severe dengue. Although dengue pathophysiology is not completely understood, it is widely accepted that increased inflammation plays important roles in dengue pathogenesis. Platelets are blood cells classically known as effectors of hemostasis which have been increasingly recognized to have major immune and inflammatory activities. Nevertheless, the phenotype and effector functions of platelets in dengue pathogenesis are not completely understood. Here we used quantitative proteomics to investigate the protein content of platelets in clinical samples from patients with dengue compared to platelets from healthy donors. Our assays revealed a set of 252 differentially abundant proteins. In silico analyses associated these proteins with key molecular events including platelet activation and inflammatory responses, and with events not previously attributed to platelets during dengue infection including antigen processing and presentation, proteasome activity, and expression of histones. From these results, we conducted functional assays using samples from a larger cohort of patients and demonstrated evidence for platelet activation indicated by P-selectin (CD62P) translocation and secretion of granule-stored chemokines by platelets. In addition, we found evidence that DENV infection triggers HLA class I synthesis and surface expression by a mechanism depending on functional proteasome activity. Furthermore, we demonstrate that cell-free histone H2A released during dengue infection binds to platelets, increasing platelet activation. These findings are consistent with functional importance of HLA class I, proteasome subunits, and histones that we found exclusively in proteome analysis of platelets in samples from dengue patients. Our study provides the first in-depth characterization of the platelet proteome in dengue, and sheds light on new mechanisms of platelet activation and platelet-mediated immune and inflammatory responses. Dengue is the most frequent hemorrhagic viral disease and re-emergent infection in the world. Recent decades were marked by a progressive global expansion of the infection including a higher frequency of severe dengue. Currently there is no effective vaccinal coverage or specific therapies, while efforts aimed at vector control have failed to stop the progression of epidemics and expansion of the disease. An increased understanding of the molecular physiology is of paramount importance for the establishment of new therapeutic targets and better clinical management. Dengue fever is characterized by thrombocytopenia and vascular leak. Although thrombocytopenia is a hallmark of dengue, the molecular phenotype and activities of platelets in the pathogenesis of dengue is not well elucidated. This work characterizes the proteome of platelets isolated from patients with dengue and includes validation of functionally-linked protein networks that we identified, using samples from a larger cohort of dengue patients. Moreover, in vitro experiments revealed activities of platelets that have recognized importance to dengue pathogenesis, including chemokine release, antigen presentation, and proteasome activity. Finally, our results identify circulating histones as a novel mechanism of platelet activation in dengue. These findings provide new evidence for platelet immune activities in dengue illness, and mark an advance in the understanding of this disease.
Collapse
Affiliation(s)
- Monique Ramos de Oliveira Trugilho
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Eugenio Damaceno Hottz
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Laboratório de Análise de Glicoconjugados, Departamento de Bioquímica, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil
| | | | - André Teixeira-Ferreira
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Paulo Costa Carvalho
- Laboratório de Proteômica e Engenharia de Proteínas, Instituto Carlos Chagas (ICC), Fiocruz, Curitiba, Paraná, Brazil
| | - Gustavo Adolfo Salazar
- Computational Biology Group, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Guy A. Zimmerman
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States of America
| | - Fernando A. Bozza
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Patrícia T. Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- * E-mail: , (PTB); (JP)
| | - Jonas Perales
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- * E-mail: , (PTB); (JP)
| |
Collapse
|
14
|
Kayesh MEH, Kitab B, Sanada T, Hayasaka D, Morita K, Kohara M, Tsukiyama-Kohara K. Susceptibility and initial immune response of Tupaia belangeri cells to dengue virus infection. INFECTION GENETICS AND EVOLUTION 2017; 51:203-210. [PMID: 28392469 DOI: 10.1016/j.meegid.2017.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 01/03/2023]
Abstract
Dengue is an emerging disease of great public health significance worldwide. The lack of a suitable infection model has hampered dengue virus (DENV) pathogenesis study, and developing a suitable small animal model has been a long-standing challenge. The aim of this study was to develop a feasible experimental model of DENV infection using Tupaia belangeri. The susceptibility of tupaia to DENV infection and characteristics of its innate immune response were examined in vitro. We found that tupaia fibroblast cells support replication of DENV serotypes 1-4 with a linear increase in viral load 24-96h post-infection in both cells and culture supernatants. DENV-2 resulted in the highest viral growth among all serotypes. To characterize the innate immune response in tupaia cells during the early phase of DENV infection, we first evaluated the evolutionary relationship between tupaia Toll-like receptors (TLR1-9) and those of other mammalian species. Phylogenetic analysis showed that tupaia TLRs are evolutionarily much closer to human than they are to rodent. We next established an innate immune response measurement system by assessing the mRNA expression of TLR1-9 and four cytokines in DENV-infected tupaia cells. All serotypes induced the upregulation of TLR8 mRNA expression in infected tupaia cells. Silencing of TLR8 led to an increase in viral replication, indicating the existence of antiviral response through TLR8 on DENV infection. Although upregulation of IFN-β and IL-6 expression was only observed in DENV-1 infected cells and a significant suppression of TNF-α was observed in DENV-2 infected cells alone, IL-8 was upregulated in all DENV-1-4. Thus, this study demonstrates for the first time the susceptibility of tupaia cells to DENV infections and the role of TLR8 in the anti-viral response of tupaia cells to DENV. These findings demonstrate the potential utility of tupaia as a model for DENV research in the future.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan; Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Bouchra Kitab
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan; Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Takahiro Sanada
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Japan
| | | | - Kouichi Morita
- Institute of Tropical Medicine, Nagasaki University, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Japan
| | - Kyoko Tsukiyama-Kohara
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan; Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan; Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
15
|
Toll like receptor 3 and viral infections of nervous system. J Neurol Sci 2017; 372:40-48. [DOI: 10.1016/j.jns.2016.11.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 10/26/2016] [Accepted: 11/15/2016] [Indexed: 02/06/2023]
|
16
|
Rosales-Martinez D, Gutierrez-Xicotencatl L, Badillo-Godinez O, Lopez-Guerrero D, Santana-Calderon A, Cortez-Gomez R, Ramirez-Pliego O, Esquivel-Guadarrama F. Rotavirus activates dendritic cells derived from umbilical cord blood monocytes. Microb Pathog 2016; 99:162-172. [DOI: 10.1016/j.micpath.2016.08.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 07/05/2016] [Accepted: 08/18/2016] [Indexed: 11/30/2022]
|
17
|
Clarke JN, Davies LK, Calvert JK, Gliddon BL, Shujari WHA, Aloia AL, Helbig KJ, Beard MR, Pitson SM, Carr JM. Reduction in sphingosine kinase 1 influences the susceptibility to dengue virus infection by altering antiviral responses. J Gen Virol 2015; 97:95-109. [PMID: 26541871 DOI: 10.1099/jgv.0.000334] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Sphingosine kinase (SK) 1 is a host kinase that enhances some viral infections. Here we investigated the ability of SK1 to modulate dengue virus (DENV) infection in vitro. Overexpression of SK1 did not alter DENV infection; however, targeting SK1 through chemical inhibition resulted in reduced DENV RNA and infectious virus release. DENV infection of SK1⁻/ ⁻ murine embryonic fibroblasts (MEFs) resulted in inhibition of infection in an immortalized line (iMEF) but enhanced infection in primary MEFs (1°MEFs). Global cellular gene expression profiles showed expected innate immune mRNA changes in DENV-infected WT but no induction of these responses in SK1⁻/⁻ iMEFs. Reverse transciption PCR demonstrated a low-level induction of IFN-β and poor induction of mRNA for the interferon-stimulated genes (ISGs) viperin, IFIT1 and CXCL10 in DENV-infected SK1⁻/⁻ compared with WT iMEFs. Similarly, reduced induction of ISGs was observed in SK1⁻/⁻ 1°MEFs, even in the face of high-level DENV replication. In both iMEFs and 1°MEFs, DENV infection induced production of IFN-β protein. Additionally, higher basal levels of antiviral factors (IRF7, CXCL10 and OAS1) were observed in uninfected SK1⁻/⁻ iMEFs but not 1°MEFs. This suggests that, in this single iMEF line, lack of SK1 upregulates the basal levels of factors that may protect cells against DENV infection. More importantly, regardless of the levels of DENV replication, all cells that lacked SK1 produced IFN-β but were refractory to induction of ISGs such as viperin, IFIT1 and CXCL10. Based on these findings, we propose new roles for SK1 in affecting innate responses that regulate susceptibility to DENV infection.
Collapse
Affiliation(s)
- Jennifer N Clarke
- Microbiology and Infectious Diseases, School of Medicine, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Lorena K Davies
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia 5000, Australia
| | - Julie K Calvert
- Microbiology and Infectious Diseases, School of Medicine, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Briony L Gliddon
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia 5000, Australia
| | - Wisam H Al Shujari
- Microbiology and Infectious Diseases, School of Medicine, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Amanda L Aloia
- Microbiology and Infectious Diseases, School of Medicine, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Karla J Helbig
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Michael R Beard
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia 5000, Australia
| | - Jillian M Carr
- Microbiology and Infectious Diseases, School of Medicine, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| |
Collapse
|
18
|
Polymorphisms in RNA sensing toll like receptor genes and its association with clinical outcomes of dengue virus infection. Immunobiology 2015; 220:164-8. [PMID: 25446400 DOI: 10.1016/j.imbio.2014.09.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 09/26/2014] [Indexed: 01/31/2023]
Abstract
Functional polymorphisms in RNA recognizing toll like receptors (TLR) 3, 7, 8 and toll-interleukin-1 receptor domain containing adapter protein adapter (TIRAP) coding genes were investigated in 120 dengue cases [87 dengue fever (DF) cases and 33 dengue hemorrhagic fever (DHF) cases] and 109 healthy controls (HC) to identify their association with clinical outcomes of dengue virus infection. Results revealed significantly lower frequency of TLR3 rs3775291 T allele [DHF vs. DF P = 0.015 odds ratio (OR) with 95% confidence interval (CI) 0.390 (0.160–0.880); DHF vs. HC P = 0.018 OR with 95% CI 0.410 (0.170–0.900)] and ‘T’ allele carriers [DHF vs. DF P = 0.008 OR with 95% CI 0.288 (0.115–0.722); DHF vs. HC P = 0.040 OR with 95% CI 0.393 (0.162–0.956)] and higher frequency of TIRAP rs8177374 ‘C/T’ genotype [DHF vs. HC P = 0.020 OR with 95% CI 2.643 (1.167–5.986)] in DHF. Higher frequency of TLR8 rs3764879–rs3764880 haplotype C-A was observed in male DF cases compared to male HC [P = 0.025 OR with 95% CI 2.185 (1.101–4.336)]. The results suggest that TLR3 and TIRAP gene variants influence the risk for DHF.
Collapse
|
19
|
Li Y, Wu S, Pu J, Huang X, Zhang P. Dengue virus up-regulates expression of notch ligands Dll1 and Dll4 through interferon-β signalling pathway. Immunology 2015; 144:127-38. [PMID: 25041739 DOI: 10.1111/imm.12357] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/05/2014] [Accepted: 07/08/2014] [Indexed: 12/13/2022] Open
Abstract
The Notch signalling pathway is involved in multiple cellular processes and has been recently indicated to modulate the host immune response. However, the role of the Notch pathway in dengue virus (DENV) infection remains unknown. Our study has screened the expression profile of Notch receptors, ligands and target genes in human monocytes, macrophages and dendritic cells in response to DENV infection. The real-time PCR data showed that Notch ligand Dll1 was significantly induced in DENV-infected monocytes; and receptor Notch4, ligands Dll1 and Dll4, and target Hes1 were dramatically enhanced in DENV-infected macrophages and dendritic cells. In macrophages, induction of Dll1 and Dll4 mediated by DENV2 was increased by treatment with interferon-β (IFN-β), and was impaired by neutralization of IFN-β. The DENV-induced Dll1 and Dll4 expression level was decreased by silencing key innate immune molecules, including Toll-like receptor 3 (TLR3), MyD88, RIG-I and IPS-I. In IFN-receptor-depleted macrophages, the Dll1 and Dll4 induction was significantly alleviated. Functionally, activation of Notch signalling by Dll1 in CD4(+) T cells enhanced the expression of a T helper type 1 (Th1) cytokine IFN-γ, while Notch activation in macrophages had no direct effect on replication of DENV. Our data revealed that the expressions of Notch ligands in antigen-presenting cells were differentially induced by DENV via innate immune signalling, which is important for Th1/Th2 differentiation during adaptive immune response.
Collapse
Affiliation(s)
- Yuye Li
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | |
Collapse
|
20
|
Abstract
Lipid droplets (LDs) are intracellular structures that regulate neutral lipid homeostasis. In mammals, LD synthesis is inhibited by rapamycin, a known inhibitor of the mTORC1 pathway. In Saccharomyces cerevisiae, LD dynamics are modulated by the growth phase; however, the regulatory pathways involved are unknown. Therefore, we decided to study the role of the TORC1 pathway on LD metabolism in S. cerevisiae. Interestingly, rapamycin treatment resulted in a fast LD replenishment and growth inhibition. The discovery that osmotic stress (1 M sorbitol) also induced LD synthesis but not growth inhibition suggested that the induction of LDs in yeast is not a secondary response to reduced growth. The induction of LDs by rapamycin was due to increased triacylglycerol but not sterol ester synthesis. Induction was dependent on the TOR downstream effectors, the PP2A-related phosphatase Sit4p and the regulatory protein Tap42p. The TORC1-controlled transcriptional activators Gln3p, Gat1p, Rtg1p, and Rtg3p, but not Msn2p and Msn4p, were required for full induction of LDs by rapamycin. Furthermore, we show that the deletion of Gln3p and Gat1p transcription factors, which are activated in response to nitrogen availability, led to abnormal LD dynamics. These results reveal that the TORC1 pathway is involved in neutral lipid homeostasis in yeast.
Collapse
|
21
|
Silva MMCD, Gil LHVG, Marques ETDA, Calzavara-Silva CE. Potential biomarkers for the clinical prognosis of severe dengue. Mem Inst Oswaldo Cruz 2014; 108:755-62. [PMID: 24037198 PMCID: PMC3970693 DOI: 10.1590/0074-0276108062013012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/21/2013] [Indexed: 01/27/2023] Open
Abstract
Currently, several assays can confirm acute dengue infection at the
point-of-care. However, none of these assays can predict the severity of the
disease symptoms. A prognosis test that predicts the likelihood of a dengue
patient to develop a severe form of the disease could permit more efficient
patient triage and treatment. We hypothesise that mRNA expression of apoptosis
and innate immune response-related genes will be differentially regulated during
the early stages of dengue and might predict the clinical outcome. Aiming to
identify biomarkers for dengue prognosis, we extracted mRNA from the peripheral
blood mononuclear cells of mild and severe dengue patients during the febrile
stage of the disease to measure the expression levels of selected genes by
quantitative polymerase chain reaction. The selected candidate biomarkers were
previously identified by our group as differentially expressed in microarray
studies. We verified that the mRNA coding for CFD, MAGED1, PSMB9, PRDX4 and
FCGR3B were differentially expressed between patients who developed clinical
symptoms associated with the mild type of dengue and patients who showed
clinical symptoms associated with severe dengue. We suggest that this gene
expression panel could putatively serve as biomarkers for the clinical prognosis
of dengue haemorrhagic fever.
Collapse
Affiliation(s)
- Mayara Marques Carneiro da Silva
- Laboratório de Virologia e Terapia Experimental, Departamento de Virologia, Centro de Pesquisas Aggeu Magalhães, Fiocruz, RecifePE, Brasil
| | | | | | | |
Collapse
|
22
|
Modulation of α-enolase post-translational modifications by dengue virus: increased secretion of the basic isoforms in infected hepatic cells. PLoS One 2014; 9:e88314. [PMID: 25171719 PMCID: PMC4149363 DOI: 10.1371/journal.pone.0088314] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 01/06/2014] [Indexed: 11/19/2022] Open
Abstract
Hepatic cells are major sites of dengue virus (DENV) replication and liver injury constitutes a characteristic of severe forms of dengue. The role of hepatic cells in dengue pathogenesis is not well established, but since hepatocytes are the major source of plasma proteins, changes in protein secretion by these cells during infection might contribute to disease progression. Previously, we showed that DENV infection alters the secretion pattern of hepatic HepG2 cells, with α-enolase appearing as one of the major proteins secreted in higher levels by infected cells. ELISA analysis demonstrated that DENV infection modulates α-enolase secretion in HepG2 cells in a dose-dependent manner, but has no effect on its gene expression and on the intracellular content of the protein as assessed by PCR and western blot analyses, respectively. Two-dimensional western blots showed that both intracellular and secreted forms of α-enolase appear as five spots, revealing α-enolase isoforms with similar molecular weights but distinct isoeletric points. Remarkably, quantification of each spot content revealed that DENV infection shifts the isoform distribution pattern of secreted α-enolase towards the basic isoforms, whereas the intracellular protein remains unaltered, suggesting that post-translational modifications might be involved in α-enolase secretion by infected cells. These findings provide new insights into the mechanisms underlying α-enolase secretion by hepatic cells and its relationship with the role of liver in dengue pathogenesis. In addition, preliminary results obtained with plasma samples from DENV-infected patients suggest an association between plasma levels of α-enolase and disease severity. Since α-enolase binds plasminogen and modulates its activation, it is plausible to speculate the association of the increase in α-enolase secretion by infected hepatic cells with the haemostatic dysfunction observed in dengue patients including the promotion of fibrinolysis and vascular permeability alterations.
Collapse
|
23
|
Khanlari Z, Sabahi F, Hosseini SY, Ghaderi M. HCV NS3 Blocking Effect on IFN Induced ISGs Like Viperin and IL28 With and Without NS4A. HEPATITIS MONTHLY 2014; 14:e17822. [PMID: 24976840 PMCID: PMC4071354 DOI: 10.5812/hepatmon.17822] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 03/09/2014] [Accepted: 04/13/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hepatitis C virus (HCV) is able to down-regulate innate immune response. It is important to know the immune pathways that this virus interacts with. HCV non-structural protein 3 (NS3) plays an important role in this viral feature. HCV NS3 protein could affect the expression of antiviral protein such as viperin, and interleukin 28whichare important proteins in antiviral response. OBJECTIVES HCV has developed different mechanisms to maintain a persistent infection, especially by disrupting type I interferon response and subsequent suppression of expression of Interferon stimulatory genes (ISGs). Viperin, a member of ISGs, is considered as a host antiviral protein, which interferes with viral replication. Since it is a good target for some viruses to evade host responses, it is interesting to study if HCV has evolved a mechanism to interfere with this member of ISGs. MATERIALS AND METHODS We evaluated the impact of NS3, NS3/4A and a mutated nonfunctional NS3 on ISGs expression such as viperin and IL-28 after the induction of IFN signaling Jak-STAT pathway using IFN-. RESULTS NS3 protein disrupted the expressions of viperin gene and IL-28, an inducer for the expression of ISGs and viperin itself. By comparing the roles of NS3 and NS3/4A protease activities in suppressing the innate immune responses, we also showed that NS3 (without NS4A) has the ability to down-regulate ISGs expression, similar to that of NS3/4A. CONCLUSIONS ISGs expression is impeded by NS3 protease activity and its interaction with Jak-STAT pathway proteins. In addition, the NS3/4A substrates spectrum seems to be similar to those of NS3.
Collapse
Affiliation(s)
- Zahra Khanlari
- Department of Medical Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, IR Iran
| | - Farzaneh Sabahi
- Department of Medical Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, IR Iran
| | - Seyed Younes Hosseini
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Mostafa Ghaderi
- Department of Medical Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, IR Iran
| |
Collapse
|
24
|
Targeting host factors to treat West Nile and dengue viral infections. Viruses 2014; 6:683-708. [PMID: 24517970 PMCID: PMC3939478 DOI: 10.3390/v6020683] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 02/03/2014] [Accepted: 02/04/2014] [Indexed: 01/15/2023] Open
Abstract
West Nile (WNV) and Dengue (DENV) viruses are major arboviral human pathogens belonging to the genus Flavivirus. At the current time, there are no approved prophylactics (e.g., vaccines) or specific therapeutics available to prevent or treat human infections by these pathogens. Due to their minimal genome, these viruses require many host molecules for their replication and this offers a therapeutic avenue wherein host factors can be exploited as treatment targets. Since several host factors appear to be shared by many flaviviruses the strategy may result in pan-flaviviral inhibitors and may also attenuate the rapid emergence of drug resistant mutant viruses. The scope of this strategy is greatly enhanced by the recent en masse identification of host factors impacting on WNV and DENV infection. Excellent proof-of-principle experimental demonstrations for host-targeted control of infection and infection-induced pathogenesis have been reported for both WNV and DENV. These include exploiting not only those host factors supporting infection, but also targeting host processes contributing to pathogenesis and innate immune responses. While these early studies validated the host-targeting approach, extensive future investigations spanning a range of aspects are needed for a successful deployment in humans.
Collapse
|
25
|
Guabiraba R, Ryffel B. Dengue virus infection: current concepts in immune mechanisms and lessons from murine models. Immunology 2014; 141:143-56. [PMID: 24182427 PMCID: PMC3904235 DOI: 10.1111/imm.12188] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 12/21/2022] Open
Abstract
Dengue viruses (DENV), a group of four serologically distinct but related flaviviruses, are responsible for one of the most important emerging viral diseases. This mosquito-borne disease has a great impact in tropical and subtropical areas of the world in terms of illness, mortality and economic costs, mainly due to the lack of approved vaccine or antiviral drugs. Infections with one of the four serotypes of DENV (DENV-1-4) result in symptoms ranging from an acute, self-limiting febrile illness, dengue fever, to severe dengue haemorrhagic fever or dengue shock syndrome. We reviewed the existing mouse models of infection, including the DENV-2-adapted strain P23085. The role of CC chemokines, interleukin-17 (IL-17), IL-22 and invariant natural killer T cells in mediating the exacerbation of disease in immune-competent mice is highlighted. Investigations in both immune-deficient and immune-competent mouse models of DENV infection may help to identify key host–pathogen factors and devise novel therapies to restrain the systemic and local inflammatory responses associated with severe DENV infection.
Collapse
Affiliation(s)
- Rodrigo Guabiraba
- Institute of Infection, Immunity and Inflammation, Glasgow Biomedical Research Centre, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgow, UK
- Université d’Orléans and CNRS, UMR 7355 Molecular and Experimental Immunology and NeurogeneticsOrléans, France
| | - Bernhard Ryffel
- Université d’Orléans and CNRS, UMR 7355 Molecular and Experimental Immunology and NeurogeneticsOrléans, France
- IIDMM, UCTCape Town, South Africa
- Artimmune SASOrléans, France
| |
Collapse
|
26
|
Stępkowski TM, Brzóska K, Kruszewski M. Silver nanoparticles induced changes in the expression of NF-κB related genes are cell type specific and related to the basal activity of NF-κB. Toxicol In Vitro 2014; 28:473-8. [PMID: 24462830 DOI: 10.1016/j.tiv.2014.01.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/02/2014] [Accepted: 01/13/2014] [Indexed: 01/07/2023]
Abstract
Silver nanoparticles (AgNPs) are widely used in industry and medicine but the recent evidence for their cytotoxicity rise a concern about the safety of their use. We have previously shown that human A549 cells are resistant to AgNPs cytotoxicity, as compared with similarly treated HepG2 cells. In order to check for the role of the NF-κB signaling pathway in response of A549 and HepG2 cell lines to the treatment with 20 nm and 200 nm AgNps, we analyzed the expression of 84 key genes related to the functionality of the NF-κB signaling pathway. We observed considerable alternations in gene expression in HepG2 cells treated with 20 nm AgNPs, and minor changes when exposed to 200 nm AgNPs. Surprisingly, no changes in gene expression were observed in A549 cells treated with both size AgNPs. Using the NF-κB luciferase reporter system, we further tested the basal activity and inducibility of the NF-κB pathway in both cell lines and found that the inducibility of NF-κB signaling in A549 cells is approximately 5 times lower than this of HepG2 cells, but the basal activity is approximately 3.5 times higher. In accordance, the NF-κB activation after AgNPs treatment was observed in HepG2 but not in A549. Altogether indicate that NF-kB mediated cellular response to AgNPs is cell type specific and related to the basal activity of NF-κB.
Collapse
Affiliation(s)
- T M Stępkowski
- Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Dorodna 16, 03-195 Warsaw, Poland.
| | - K Brzóska
- Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Dorodna 16, 03-195 Warsaw, Poland.
| | - M Kruszewski
- Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Dorodna 16, 03-195 Warsaw, Poland; Institute of Agricultural Medicine, Department of Molecular Biology and Translational Research, Jaczewskiego 2, 20-090 Lublin, Poland.
| |
Collapse
|
27
|
Martínez-Betancur V, Marín-Villa M, Martínez-Gutierrez M. Infection of epithelial cells with dengue virus promotes the expression of proteins favoring the replication of certain viral strains. J Med Virol 2013; 86:1448-58. [PMID: 24374781 DOI: 10.1002/jmv.23857] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2013] [Indexed: 11/12/2022]
Abstract
Dengue virus (DENV) is the causative agent of dengue and severe dengue. To understand better the dengue virus-host interaction, it is important to determine how the expression of cellular proteins is modified due to infection. Therefore, a comparison of protein expression was conducted in Vero cells infected with two different DENV strains, both serotype 2: DENV-2/NG (associated with dengue) and DENV-2/16681 (associated with severe dengue). The viability of the infected cells was determined, and neither strain induced cell death at 48 hr. In addition, the viral genomes and infectious viral particles were quantified, and the genome of the DENV-2/16681 strain was determined to have a higher replication rate compared with the DENV-2/NG strain. Finally, the proteins from infected and uninfected cultures were separated using two-dimensional gel electrophoresis, and the differentially expressed proteins were identified by mass spectrometry. Compared with the uninfected controls, the DENV-2/NG- and DENV-2/16681-infected cultures had five and six differentially expressed proteins, respectively. The most important results were observed when the infected cultures were compared to each other (DENV-2/NG vs. DENV-2/16681), and 18 differentially expressed proteins were identified. Based on their cellular functions, many of these proteins were linked to the increase in the replication efficiency of DENV. Among the proteins were calreticulin, acetyl coenzyme A, acetyl transferase, and fatty acid-binding protein. It was concluded that the infection of Vero cells with DENV-2/NG or DENV-2/16681 differentially modifies the expression of certain proteins, which can, in turn, facilitate infection.
Collapse
Affiliation(s)
- Viviana Martínez-Betancur
- Programa de Estudio y Control de Enfermedades Tropicales-PECET, Universidad de Antioquia, Medellin, Colombia
| | | | | |
Collapse
|
28
|
Liu Z, Ji Y, Huang X, Fu Y, Wei J, Cai X, Zhu Q. An adapted duck Tembusu virus induces systemic infection and mediates antibody-dependent disease severity in mice. Virus Res 2013; 176:216-22. [DOI: 10.1016/j.virusres.2013.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/20/2013] [Accepted: 06/21/2013] [Indexed: 10/26/2022]
|
29
|
Guabiraba R, Besnard AG, Marques RE, Maillet I, Fagundes CT, Conceição TM, Rust NM, Charreau S, Paris I, Lecron JC, Renauld JC, Quesniaux V, Da Poian AT, Arruda LB, Souza DG, Ryffel B, Teixeira MM. IL-22 modulates IL-17A production and controls inflammation and tissue damage in experimental dengue infection. Eur J Immunol 2013; 43:1529-44. [PMID: 23505056 DOI: 10.1002/eji.201243229] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/06/2013] [Accepted: 03/07/2013] [Indexed: 01/21/2023]
Abstract
Dengue virus (DENV), a mosquito-borne flavivirus, is a public health problem in many tropical countries. IL-22 and IL-17A are key cytokines in several infectious and inflammatory diseases. We have assessed the contribution of IL-22 and IL-17A in the pathogenesis of experimental dengue infection using a mouse-adapted DENV serotype 2 strain (P23085) that causes a disease that resembles severe dengue in humans. We show that IL-22 and IL-17A are produced upon DENV-2 infection in immune-competent mice. Infected IL-22(-/-) mice had increased lethality, neutrophil accumulation and pro-inflammatory cytokines in tissues, notably IL-17A. Viral load was increased in spleen and liver of infected IL-22(-/-) mice. There was also more severe liver injury, as seen by increased transaminases levels and tissue histopathology. γδ T cells and NK cells are sources of IL-17A and IL-22, respectively, in liver and spleen. We also show that DENV-infected HepG2 cells treated with rhIL-22 had reduced cell death and decreased IL-6 production. IL-17RA(-/-) mice were protected upon infection and IL-17A-neutralizing-Ab-treatment partially reversed the phenotype observed in IL-22(-/-) -infected mice. We suggest that disrupting the balance between IL-22 and IL-17A levels may represent an important strategy to reduce inflammation and tissue injury associated with severe dengue infection.
Collapse
Affiliation(s)
- Rodrigo Guabiraba
- Immunopharmacology, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Suttitheptumrong A, Khunchai S, Panaampon J, Yasamut U, Morchang A, Puttikhunt C, Noisakran S, Haegeman G, Yenchitsomanus PT, Limjindaporn T. Compound A, a dissociated glucocorticoid receptor modulator, reduces dengue virus-induced cytokine secretion and dengue virus production. Biochem Biophys Res Commun 2013; 436:283-8. [PMID: 23743190 DOI: 10.1016/j.bbrc.2013.05.094] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 05/23/2013] [Indexed: 12/22/2022]
|
31
|
Hottz ED, Oliveira MF, Nunes PCG, Nogueira RMR, Valls-de-Souza R, Da Poian AT, Weyrich AS, Zimmerman GA, Bozza PT, Bozza FA. Dengue induces platelet activation, mitochondrial dysfunction and cell death through mechanisms that involve DC-SIGN and caspases. J Thromb Haemost 2013; 11:951-62. [PMID: 23433144 PMCID: PMC3971842 DOI: 10.1111/jth.12178] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/19/2013] [Indexed: 01/28/2023]
Abstract
BACKGROUND Worldwide, dengue is the most prevalent human arbovirus disease. Dengue infection may cause a range of clinical manifestations from self-limiting febrile illness through to a life-threatening syndrome accompanied by both bleeding and shock. Thrombocytopenia is frequently observed in mild and severe disease; however, the mechanisms involved in DENV-induced platelet activation and thrombocytopenia are incompletely understood. PATIENTS AND METHODS Freshly isolated platelets from patients with dengue were evaluated for markers of activation, mitochondrial alteration and activation of cell death pathways. In parallel, we examined direct DENV-induced activation and apoptosis of platelets obtained from healthy subjects. RESULTS We found that platelets from DENV-infected patients exhibited increased activation by comparison to control subjects. Moreover, platelets from DENV-infected patients exhibited classic signs of the intrinsic pathway of apoptosis that include increased surface phosphatidylserine exposure, mitochondrial depolarization and activation of caspase-9 and -3. Indeed, thrombocytopenia was shown to strongly associate with enhanced platelet activation and cell death in DENV-infected patients. Platelet activation, mitochondrial dysfunction and caspase-dependent phosphatidylserine exposure on platelets were also observed when platelets from healthy subjects were directly exposed to DENV in vitro. DENV-induced platelet activation was shown to occur through mechanisms largely dependent on DC-SIGN. CONCLUSIONS Together our results demonstrate that platelets from patients with dengue present signs of activation, mitochondrial dysfunction and activation of the apoptosis caspase cascade, which may contribute to the development of thrombocytopenia in patients with dengue. Our results also suggest the involvement of DC-SIGN as a critical receptor in DENV-dependent platelet activation.
Collapse
Affiliation(s)
- Eugenio D. Hottz
- Laboratório de Immunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Laboratório de Immunofarmacologia, Instituto de Pesquisa Clinica Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Marcus F. Oliveira
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Priscila C. G. Nunes
- Laboratório de Flavivirus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Rita Maria R. Nogueira
- Laboratório de Flavivirus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Rogério Valls-de-Souza
- Laboratório de Immunofarmacologia, Instituto de Pesquisa Clinica Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Andréa T. Da Poian
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Andrew S. Weyrich
- The Molecular Medicine Program, University of Utah, Salt Lake City, UT, United States of America
- Department of Medicine, University of Utah, Salt Lake City, UT, United States of America
| | - Guy A. Zimmerman
- Department of Medicine, University of Utah, Salt Lake City, UT, United States of America
| | - Patricia T. Bozza
- Laboratório de Immunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Fernando A. Bozza
- Laboratório de Immunofarmacologia, Instituto de Pesquisa Clinica Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
32
|
Costa VV, Fagundes CT, Souza DG, Teixeira MM. Inflammatory and innate immune responses in dengue infection: protection versus disease induction. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1950-61. [PMID: 23567637 DOI: 10.1016/j.ajpath.2013.02.027] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 02/01/2013] [Accepted: 02/05/2013] [Indexed: 01/28/2023]
Abstract
Dengue disease is a mosquito-borne viral disease of expanding geographical range and incidence. Infection by one of the four serotypes of dengue virus induces a spectrum of disease manifestations, ranging from asymptomatic to life-threatening Dengue hemorrhagic fever/dengue shock syndrome. Many efforts have been made to elucidate several aspects of dengue virus-induced disease, but the pathogenesis of disease is complex and remains unclear. Understanding the mechanisms involved in the early stages of infection is crucial to determine and develop safe therapeutics to prevent the severe outcomes of disease without interfering with control of infection. In this review, we discuss the dual role of the innate and inflammatory pathways activated during dengue disease in mediating both protection and exacerbation of disease. We show that some mediators involved in each of these responses differ substantially, suggesting that interfering in disease-associated immune pathways may represent a potential therapeutic opportunity for the treatment of severe dengue.
Collapse
Affiliation(s)
- Vivian Vasconcelos Costa
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | |
Collapse
|
33
|
Sessions OM, Tan Y, Goh KC, Liu Y, Tan P, Rozen S, Ooi EE. Host cell transcriptome profile during wild-type and attenuated dengue virus infection. PLoS Negl Trop Dis 2013; 7:e2107. [PMID: 23516652 PMCID: PMC3597485 DOI: 10.1371/journal.pntd.0002107] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 01/28/2013] [Indexed: 01/22/2023] Open
Abstract
Dengue viruses 1-4 (DENV1-4) rely heavily on the host cell machinery to complete their life cycle, while at the same time evade the host response that could restrict their replication efficiency. These requirements may account for much of the broad gene-level changes to the host transcriptome upon DENV infection. However, host gene function is also regulated through transcriptional start site (TSS) selection and post-transcriptional modification to the RNA that give rise to multiple gene isoforms. The roles these processes play in the host response to dengue infection have not been explored. In the present study, we utilized RNA sequencing (RNAseq) to identify novel transcript variations in response to infection with both a pathogenic strain of DENV1 and its attenuated derivative. RNAseq provides the information necessary to distinguish the various isoforms produced from a single gene and their splice variants. Our data indicate that there is an extensive amount of previously uncharacterized TSS and post-transcriptional modifications to host RNA over a wide range of pathways and host functions in response to DENV infection. Many of the differentially expressed genes identified in this study have previously been shown to be required for flavivirus propagation and/or interact with DENV gene products. We also show here that the human transcriptome response to an infection by wild-type DENV or its attenuated derivative differs significantly. This differential response to wild-type and attenuated DENV infection suggests that alternative processing events may be part of a previously uncharacterized innate immune response to viral infection that is in large part evaded by wild-type DENV.
Collapse
Affiliation(s)
- October M. Sessions
- Program in Emerging Infectious Disease, Duke-NUS Graduate Medical School, Singapore
| | - Ying Tan
- Program in Emerging Infectious Disease, Duke-NUS Graduate Medical School, Singapore
| | - Kenneth C. Goh
- Program in Emerging Infectious Disease, Duke-NUS Graduate Medical School, Singapore
| | - Yujing Liu
- Centre for Computational Biology, Duke-NUS Graduate Medical School, Singapore
- Computational Systems Biology, Singapore-MIT Alliance, National University of Singapore, Singapore
| | - Patrick Tan
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore
| | - Steve Rozen
- Centre for Computational Biology, Duke-NUS Graduate Medical School, Singapore
| | - Eng Eong Ooi
- Program in Emerging Infectious Disease, Duke-NUS Graduate Medical School, Singapore
- * E-mail:
| |
Collapse
|
34
|
da Conceição TM, Rust NM, Berbel ACER, Martins NB, do Nascimento Santos CA, Da Poian AT, de Arruda LB. Essential role of RIG-I in the activation of endothelial cells by dengue virus. Virology 2013; 435:281-92. [PMID: 23089253 DOI: 10.1016/j.virol.2012.09.038] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 06/12/2012] [Accepted: 09/28/2012] [Indexed: 01/09/2023]
Abstract
Dengue virus (DENV) infection is associated to exacerbated inflammatory response and structural and functional alterations in the vascular endothelium. However, the mechanisms underlying DENV-induced endothelial cell activation and their role in the inflammatory response were not investigated so far. We demonstrated that human brain microvascular endothelial cells (HBMECs) are susceptible to DENV infection, which induces the expression of the cytoplasmic pattern recognition receptor (PRR) RIG-I. Infection of HBMECs promoted an increase in the production of type I IFN and proinflammatory cytokines, which were abolished after RIG-I silencing. DENV-infected HBMECs also presented a higher ICAM-1 expression dependent on RIG-I activation as well. On the other hand, ablation of RIG-I did not interfere with virus replication. Our data suggest that RIG-I activation by DENV may participate in the disease pathogenesis through the modulation of cytokine release and expression of adhesion molecules, probably contributing to leukocyte recruitment and amplification of the inflammatory response.
Collapse
Affiliation(s)
- Thaís Moraes da Conceição
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, CCS, Bloco E, lab. E-018. Av. Carlos Chagas Filho, 373. Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
35
|
Yoksan S, Rabablert J, Chaiyo K, Rajchakam S, Tiewcharoen S, Rabablert N, Kerdkriangkrai S, Samngamnim N, Phurttikul W, Luangboribun T. Cytokine gene expression in human hepatocytes infected with dengue virus serotype 3 (strain-16562). Health (London) 2013. [DOI: 10.4236/health.2013.59206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
El-Bacha T, Da Poian AT. Virus-induced changes in mitochondrial bioenergetics as potential targets for therapy. Int J Biochem Cell Biol 2012; 45:41-6. [PMID: 23036789 DOI: 10.1016/j.biocel.2012.09.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 09/16/2012] [Accepted: 09/25/2012] [Indexed: 10/27/2022]
Abstract
Infectious diseases such as those caused by virus, account for a vast proportion of deaths worldwide. Re-emerging aspects of host-virus interactions in recent literature include the vital role played by host metabolism on viral replication and the pro-active participation of mitochondria in this process. Different viruses use distinctive strategies to modulate mitochondrial bioenergetics and enhance viral replication. As a result, energy yielding metabolic pathways are programmed to provide both energy and biosynthetic resources to drive viral protein synthesis and produce infectious particles. Therefore, metabolic antagonists may prove important not only to outline efficient therapy strategies but also to shed light on the pathogenesis of viral infections. This article is part of a Directed Issue entitled: Bioenergetic dysfunction, adaptation and therapy.
Collapse
Affiliation(s)
- Tatiana El-Bacha
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ 21941-902, Brazil.
| | | |
Collapse
|
37
|
Souza AA, Miranda MN, da Silva SF, Bozaquel-Morais B, Masuda CA, Ghislain M, Montero-Lomelí M. Expression of the glucose transporter HXT1 involves the Ser-Thr protein phosphatase Sit4 in Saccharomyces cerevisiae. FEMS Yeast Res 2012; 12:907-17. [PMID: 22882630 DOI: 10.1111/j.1567-1364.2012.00839.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 08/02/2012] [Accepted: 08/06/2012] [Indexed: 11/29/2022] Open
Abstract
We studied the effect of the loss of the Ser-Thr protein phosphatase Sit4, an important post-translational regulator, on the steady-state levels of the low-affinity glucose transporter Hxt1p and observed a delay in its appearance after high glucose induction, slow growth, and diminished glucose consumption. By analyzing the known essential pathway necessary to induce Hxt1p, we observed a partial inhibition of casein kinase I activity. In both WT and sit4Δ strains, the transcript was induced with no significant difference at 15 min of glucose induction; however, after 45 min, a clear difference in the level of expression was observed being 45% higher in WT than in sit4Δ strain. As at early time of induction, the HXT1 transcript was present but not the protein in the sit4Δ strain we analyzed association of HXT1 with ribosomes, which revealed a significant difference in the association profile; in the mutant strain, the HXT1 transcript associated with a larger set of ribosomal fractions than it did in the WT strain, suggesting also a partial defect in protein synthesis. Overexpression of the translation initiation factor TIF2/eIF4A led to an increase in Hxt1p abundance in the WT strain only. It was concluded that Sit4p ensures that HXT1 transcript is efficiently transcribed and translated thus increasing protein levels of Hxt1p when high glucose levels are present.
Collapse
Affiliation(s)
- Andréa A Souza
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Dengue viruses cause two severe diseases that alter vascular fluid barrier functions, dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Preexisting antibodies to dengue virus disposes patients to immune-enhanced edema (DSS) or hemorrhagic (DHF) disease following infection by a discrete dengue virus serotype. Although the endothelium is the primary vascular fluid barrier, direct effects of dengue virus on endothelial cells (ECs) have not been considered primary factors in pathogenesis. Here, we show that dengue virus infection of human ECs elicits immune-enhancing EC responses. Our results suggest that rapid early dengue virus proliferation within ECs is permitted by dengue virus regulation of early, but not late, beta interferon (IFN-β) responses. The analysis of EC responses following synchronous dengue virus infection revealed the high-level induction and secretion of immune cells (T cells, B cells, and mast cells) as well as activating and recruiting cytokines BAFF (119-fold), IL-6/8 (4- to 7-fold), CXCL9/10/11 (45- to 338-fold), RANTES (724-fold), and interleukin-7 (IL-7; 128-fold). Moreover, we found that properdin factor B, an alternative pathway complement activator that directs chemotactic anaphylatoxin C3a and C5a production, was induced 34-fold. Thus, dengue virus-infected ECs evoke key inflammatory responses observed in dengue virus patients which are linked to DHF and DSS. Our findings suggest that dengue virus-infected ECs directly contribute to immune enhancement, capillary permeability, viremia, and immune targeting of the endothelium. These data implicate EC responses in dengue virus pathogenesis and further rationalize therapeutic targeting of the endothelium as a means of reducing the severity of dengue virus disease.
Collapse
|
39
|
Liu S, Kelvin DJ, Leon AJ, Jin L, Farooqui A. Induction of Fas mediated caspase-8 independent apoptosis in immune cells by Armigeres subalbatus saliva. PLoS One 2012; 7:e41145. [PMID: 22815944 PMCID: PMC3398892 DOI: 10.1371/journal.pone.0041145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/18/2012] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND It is widely recognized that the introduction of saliva of bloodsucking arthropods at the site of pathogen transmission might play a central role in vector-borne infections. However, how the interaction between salivary components and the host immune system takes place and which physiological processes this leads to has yet to be investigated. Armigeres subalbatus is one of the prominent types of mosquitoes involved in the transmission of parasitic and viral diseases in humans and animals. METHODOLOGY/PRINCIPAL FINDINGS Using murine peritoneal macrophages and lymphocytes, and human peripheral mononuclear cells (PBMCs), this study shows that saliva of the female Ar. subalbatus induces apoptosis via interaction with the Fas receptor within a few hours but without activating caspase-8. The process further activates downstream p38 MAPK signaling, a cascade that leads to the induction of apoptosis in capase-3 dependent manner. We further illustrate that Ar. subalbatus saliva suppresses proinflammatory cytokines without changing IL-10 levels, which might happen as a result of apoptosis. CONCLUSIONS Our study shows for the first time that saliva-induced apoptosis is the leading phenomenon exerted by Ar.subalbatus that impede immune cells leading to the suppression of their effecter mechanism.
Collapse
Affiliation(s)
- Shanshan Liu
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, Shantou, People’s Republic of China
- Department of Pathogen Biology, Shantou University Medical College, Shantou, People’s Republic of China
| | - David J. Kelvin
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, Shantou, People’s Republic of China
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Alberto J. Leon
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, Shantou, People’s Republic of China
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Liqun Jin
- Department of Pathogen Biology, Shantou University Medical College, Shantou, People’s Republic of China
- * E-mail: (LJ); (AF)
| | - Amber Farooqui
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, Shantou, People’s Republic of China
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- * E-mail: (LJ); (AF)
| |
Collapse
|
40
|
Bustos-Arriaga J, García-Machorro J, León-Juárez M, García-Cordero J, Santos-Argumedo L, Flores-Romo L, Méndez-Cruz AR, Juárez-Delgado FJ, Cedillo-Barrón L. Activation of the innate immune response against DENV in normal non-transformed human fibroblasts. PLoS Negl Trop Dis 2011; 5:e1420. [PMID: 22206025 PMCID: PMC3243703 DOI: 10.1371/journal.pntd.0001420] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 10/21/2011] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND When mosquitoes infected with DENV are feeding, the proboscis must traverse the epidermis several times ("probing") before reaching a blood vessel in the dermis. During this process, the salivary glands release the virus, which is likely to interact first with cells of the various epidermal and dermal layers, cells which could be physiologically relevant to DENV infection and replication in humans. However, important questions are whether more abundant non-hematopoietic cells such as fibroblasts become infected, and whether they play any role in antiviral innate immunity in the very early stages of infection, or even if they might be used by DENV as primary replication cells. METHODOLOGY/PRINCIPAL FINDINGS Fibroblasts freshly released from healthy skin and infected 12 hours after their isolation show a positive signal for DENV. In addition, when primary skin fibroblast cultures were established and subsequently infected, we showed DENV-2 antigen-positive intracellular signal at 24 hours and 48 hours post-infection. Moreover, the fibroblasts showed productive infection in a conventional plaque assay. The skin fibroblasts infected with DENV-2 underwent potent signaling through both TLR3 and RIG- 1, but not Mda5, triggering up-regulation of IFNβ, TNFα, defensin 5 (HB5) and β defensin 2 (HβD2). In addition, DENV infected fibroblasts showed increased nuclear translocation of interferon (IFN) regulatory factor 3 (IRF3), but not interferon regulatory factor 7 (IRF7), when compared with mock-infected fibroblasts. CONCLUSIONS/SIGNIFICANCE In this work, we demonstrated the high susceptibility to DENV infection by primary fibroblasts from normal human skin, both in situ and in vitro. Our results suggest that these cells may contribute to the pro-inflammatory and anti-viral microenvironment in the early stages of interaction with DENV-2. Furthermore, the data suggest that fibroblast may also be used as a primary site of DENV replication and provide viral particles that may contribute to subsequent viral dissemination.
Collapse
Affiliation(s)
- José Bustos-Arriaga
- Departamento de Biomedicina Molecular Centro de Investigación y de Estudios Avanzados, México Distrito Federal, Mexico
| | - Jazmín García-Machorro
- Departamento de Biomedicina Molecular Centro de Investigación y de Estudios Avanzados, México Distrito Federal, Mexico
| | - Moisés León-Juárez
- Departamento de Biomedicina Molecular Centro de Investigación y de Estudios Avanzados, México Distrito Federal, Mexico
| | - Julio García-Cordero
- Departamento de Biomedicina Molecular Centro de Investigación y de Estudios Avanzados, México Distrito Federal, Mexico
| | - Leopoldo Santos-Argumedo
- Departamento de Biomedicina Molecular Centro de Investigación y de Estudios Avanzados, México Distrito Federal, Mexico
| | - Leopoldo Flores-Romo
- Departamento de Biología Celular Centro de Investigación y de Estudios Avanzados, México Distrito Federal, Mexico
| | - A. René Méndez-Cruz
- Laboratorio de Inmunología UMF de la FES Iztacala Universidad Autónoma de México, Tlalnepantla Estado de México, Mexico
| | | | - Leticia Cedillo-Barrón
- Departamento de Biomedicina Molecular Centro de Investigación y de Estudios Avanzados, México Distrito Federal, Mexico
| |
Collapse
|
41
|
Dengue virus capsid protein binding to hepatic lipid droplets (LD) is potassium ion dependent and is mediated by LD surface proteins. J Virol 2011; 86:2096-108. [PMID: 22130547 DOI: 10.1128/jvi.06796-11] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Dengue virus (DENV) affects millions of people, causing more than 20,000 deaths annually. No effective treatment for the disease caused by DENV infection is currently available, partially due to the lack of knowledge on the basic aspects of the viral life cycle, including the molecular basis of the interaction between viral components and cellular compartments. Here, we characterized the properties of the interaction between the DENV capsid (C) protein and hepatic lipid droplets (LDs), which was recently shown to be essential for the virus replication cycle. Zeta potential analysis revealed a negative surface charge of LDs, with an average surface charge of -19 mV. The titration of LDs with C protein led to an increase of the surface charge, which reached a plateau at +13.7 mV, suggesting that the viral protein-LD interaction exposes the protein cationic surface to the aqueous environment. Atomic force microscopy (AFM)-based force spectroscopy measurements were performed by using C protein-functionalized AFM tips. The C protein-LD interaction was found to be strong, with a single (un)binding force of 33.6 pN. This binding was dependent on high intracellular concentrations of potassium ions but not sodium. The inhibition of Na(+)/K(+)-ATPase in DENV-infected cells resulted in the dissociation of C protein from LDs and a 50-fold inhibition of infectious virus production but not of RNA replication, indicating a biological relevance for the potassium-dependent interaction. Limited proteolysis of the LD surface impaired the C protein-LD interaction, and force measurements in the presence of specific antibodies indicated that perilipin 3 (TIP47) is the major DENV C protein ligand on the surface of LDs.
Collapse
|
42
|
Fagundes CT, Costa VV, Cisalpino D, Souza DG, Teixeira MM. Therapeutic opportunities in dengue infection. Drug Dev Res 2011. [DOI: 10.1002/ddr.20455] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
43
|
Liang Z, Wu S, Li Y, He L, Wu M, Jiang L, Feng L, Zhang P, Huang X. Activation of Toll-like receptor 3 impairs the dengue virus serotype 2 replication through induction of IFN-β in cultured hepatoma cells. PLoS One 2011; 6:e23346. [PMID: 21829730 PMCID: PMC3150425 DOI: 10.1371/journal.pone.0023346] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 07/15/2011] [Indexed: 12/01/2022] Open
Abstract
Toll-like receptors (TLRs) play an important role in innate immunity against invading pathogens. Although TLR signaling has been indicated to protect cells from infection of several viruses, the role of TLRs in Dengue virus (DENV) replication is still unclear. In the present study, we examined the replication of DENV serotype 2 (DENV2) by challenging hepatoma cells HepG2 with different TLR ligands. Activation of TLR3 showed an antiviral effect, while pretreatment of other TLR ligands (including TLR1/2, TLR2/6, TLR4, TLR5 or TLR7/8) did not show a significant effect. TLR3 ligand poly(I∶C) treatment prior to viral infection or simultaneously, but not post-treatment, significantly down-regulated virus replication. Pretreatment with poly(I∶C) reduced viral mRNA expression and viral staining positive cells, accompanying an induction of the type I interferon (IFN-β) and type III IFN (IL-28A/B). Intriguingly, neutralization of IFN-β alone successfully restored the poly(I∶C)-inhibited replication of DENV2. The poly(I∶C)-mediated effects, including IFN induction and DENV2 suppression, were significantly reversed by IKK inhibitor, further suggesting that IFN-β is the dominant factor involved in the poly(I∶C) mediated antiviral effect. Our study presented the first evidence to show that activation of TLR3 is effective in blocking DENV2 replication via IFN-β, providing an experimental clue that poly(I∶C) may be a promising immunomodulatory agent against DENV infection and might be applicable for clinical prevention.
Collapse
Affiliation(s)
- Zhaoduan Liang
- Department of Immunology, Institute of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Siyu Wu
- Department of Immunology, Institute of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Yuye Li
- Department of Immunology, Institute of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Li He
- Department of Immunology, Institute of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Minhao Wu
- Department of Immunology, Institute of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Lifang Jiang
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Lianqiang Feng
- Department of Immunology, Institute of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Ping Zhang
- Department of Immunology, Institute of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- * E-mail: (XH); (PZ)
| | - Xi Huang
- Department of Immunology, Institute of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- * E-mail: (XH); (PZ)
| |
Collapse
|
44
|
Tolfvenstam T, Lindblom A, Schreiber MJ, Ling L, Chow A, Ooi EE, Hibberd ML. Characterization of early host responses in adults with dengue disease. BMC Infect Dis 2011; 11:209. [PMID: 21810247 PMCID: PMC3163546 DOI: 10.1186/1471-2334-11-209] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 08/02/2011] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND While dengue-elicited early and transient host responses preceding defervescence could shape the disease outcome and reveal mechanisms of the disease pathogenesis, assessment of these responses are difficult as patients rarely seek healthcare during the first days of benign fever and thus data are lacking. METHODS In this study, focusing on early recruitment, we performed whole-blood transcriptional profiling on dengue virus PCR positive patients sampled within 72 h of self-reported fever presentation (average 43 h, SD 18.6 h) and compared the signatures with autologous samples drawn at defervescence and convalescence and to control patients with fever of other etiology. RESULTS In the early dengue fever phase, a strong activation of the innate immune response related genes were seen that was absent at defervescence (4-7 days after fever debut), while at this second sampling genes related to biosynthesis and metabolism dominated. Transcripts relating to the adaptive immune response were over-expressed in the second sampling point with sustained activation at the third sampling. On an individual gene level, significant enrichment of transcripts early in dengue disease were chemokines CCL2 (MCP-1), CCL8 (MCP-2), CXCL10 (IP-10) and CCL3 (MIP-1α), antimicrobial peptide β-defensin 1 (DEFB1), desmosome/intermediate junction component plakoglobin (JUP) and a microRNA which may negatively regulate pro-inflammatory cytokines in dengue infected peripheral blood cells, mIR-147 (NMES1). CONCLUSIONS These data show that the early response in patients mimics those previously described in vitro, where early assessment of transcriptional responses has been easily obtained. Several of the early transcripts identified may be affected by or mediate the pathogenesis and deserve further assessment at this timepoint in correlation to severe disease.
Collapse
Affiliation(s)
- Thomas Tolfvenstam
- Genome Institute of Singapore, 60 Biopolis Street #02-01 Genome, Singapore.
| | | | | | | | | | | | | |
Collapse
|
45
|
Qin CF, Zhao H, Liu ZY, Jiang T, Deng YQ, Yu XD, Yu M, Qin ED. Retinoic acid inducible gene-I and melanoma differentiation-associated gene 5 are induced but not essential for dengue virus induced type I interferon response. Mol Biol Rep 2011; 38:3867-73. [PMID: 21113677 DOI: 10.1007/s11033-010-0502-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Accepted: 11/13/2010] [Indexed: 12/13/2022]
Abstract
Dengue viruses (DENVs) are important human pathogens that cause mild dengue fever, and severe dengue hemorrhagic fever/dengue shock syndrome, and no vaccine or antiviral therapy are currently available. At the initial stage of DENV infection, host pattern recognition receptors are responsible for sensing viral proteins or nucleic acids and initiating innate antiviral responses, including the activation of type I interferon (IFN) and proinflammatory cytokines. Two RNA helicases, retinoic acid inducible gene-I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5), are recently identified as cytoplasmic PPRs for virus infection. Here, in this study the involvement of RIG-I and MDA5 in DENV-induced IFN-β response A549 cells were investigated. DENV infection readily up-regulated RIG-I expression, activated IRF-3 and RIG-I mRNA transcription, and induced the production of IFN-β in A549 cells in a strain- and serotype-independent manner. While gene silencing of RIG-I by small interfering RNAs failed to significantly inhibit IFN-β production induced by DENV infection. Further experiments demonstrated that MDA5 was also induced by DENV infection, and MDA5 knockout did not block DENV induced IFN-β production in A549 cells. Our results demonstrated that both RIG-I and MDA5 were induced but neither of the two was essential for DENV induced IFN IFN-β response in A549 cells. These findings suggest that innate immune pathway are involved in the recognition of DENV by human non-immune cells, and provide insights for the understanding of the molecular mechanism for DENV-induced antiviral response.
Collapse
Affiliation(s)
- Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Morchang A, Yasamut U, Netsawang J, Noisakran S, Wongwiwat W, Songprakhon P, Srisawat C, Puttikhunt C, Kasinrerk W, Malasit P, Yenchitsomanus PT, Limjindaporn T. Cell death gene expression profile: role of RIPK2 in dengue virus-mediated apoptosis. Virus Res 2010; 156:25-34. [PMID: 21195733 DOI: 10.1016/j.virusres.2010.12.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 12/21/2010] [Accepted: 12/22/2010] [Indexed: 10/18/2022]
Abstract
Dengue virus (DENV) is a major emerging arthropod-borne pathogen, which infects individuals in both subtropical and tropical regions. Patients with DENV infection exhibit evidence of hepatocyte injury. However, the mechanisms of hepatocyte injury are unclear. Therefore we examined the expression of cell death genes during DENV-infection of HepG2 cells using real-time PCR arrays. The expression changes were consistent with activation of apoptosis and autophagy. Expression of the up-regulated genes, including RIPK2, HRK, TGF-β, PERK, and LC3B, was confirmed by quantitative real-time PCR. RIPK2 belongs to the receptor-interacting protein family of serine/threonine protein kinases, which is a crucial mediator of multiple stress responses that leads to the activation of caspase, NF-κB and MAP kinases including JNK and p38. RIPK2 activity is inhibited by the p38 MAPK pathway inhibitor SB203580. The effect of SB203580 on RIPK2 expression and DENV-induced apoptosis was tested in DENV-infected HepG2 cells. The inhibition of RIPK2 expression by SB203580 significantly reduced apoptosis. SB203580 also significantly reduced DENV capsid protein (DENVC)-mediated apoptosis. Suppression of endogenous RIPK2 in DENV-infected HepG2 cells by small interfering RNA (siRNA) significantly decreased apoptosis suggesting for the first time that RIPK2 plays a role in DENV-mediated apoptosis.
Collapse
Affiliation(s)
- Atthapan Morchang
- Medical Molecular Biology Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Guabiraba R, Marques RE, Besnard AG, Fagundes CT, Souza DG, Ryffel B, Teixeira MM. Role of the chemokine receptors CCR1, CCR2 and CCR4 in the pathogenesis of experimental dengue infection in mice. PLoS One 2010; 5:e15680. [PMID: 21206747 PMCID: PMC3012079 DOI: 10.1371/journal.pone.0015680] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 11/19/2010] [Indexed: 11/18/2022] Open
Abstract
Dengue virus (DENV), a mosquito-borne flavivirus, is a public health problem in many tropical countries. Recent clinical data have shown an association between levels of different chemokines in plasma and severity of dengue. We evaluated the role of CC chemokine receptors CCR1, CCR2 and CCR4 in an experimental model of DENV-2 infection in mice. Infection of mice induced evident clinical disease and tissue damage, including thrombocytopenia, hemoconcentration, lymphopenia, increased levels of transaminases and pro-inflammatory cytokines, and lethality in WT mice. Importantly, infected WT mice presented increased levels of chemokines CCL2/JE, CCL3/MIP-1α and CCL5/RANTES in spleen and liver. CCR1-/- mice had a mild phenotype with disease presentation and lethality similar to those of WT mice. In CCR2-/- mice, lethality, liver damage, levels of IL-6 and IFN-γ, and leukocyte activation were attenuated. However, thrombocytopenia, hemoconcentration and systemic TNF-α levels were similar to infected WT mice. Infection enhanced levels of CCL17/TARC, a CCR4 ligand. In CCR4-/- mice, lethality, tissue injury and systemic inflammation were markedly decreased. Despite differences in disease presentation in CCR-deficient mice, there was no significant difference in viral load. In conclusion, activation of chemokine receptors has discrete roles in the pathogenesis of dengue infection. These studies suggest that the chemokine storm that follows severe primary dengue infection associates mostly to development of disease rather than protection.
Collapse
Affiliation(s)
- Rodrigo Guabiraba
- Immunopharmacology, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Université d'Orléans and CNRS, UMR 6218, Molecular Immunology and Embryology, Orléans, France
| | - Rafael Elias Marques
- Immunopharmacology, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anne-Gaëlle Besnard
- Université d'Orléans and CNRS, UMR 6218, Molecular Immunology and Embryology, Orléans, France
| | - Caio T. Fagundes
- Immunopharmacology, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Danielle G. Souza
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bernhard Ryffel
- Université d'Orléans and CNRS, UMR 6218, Molecular Immunology and Embryology, Orléans, France
| | - Mauro M. Teixeira
- Immunopharmacology, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
48
|
Kubelka CF, Azeredo EL, Gandini M, Oliveira-Pinto LM, Barbosa LS, Damasco PV, Avila CAL, Motta-Castro ARC, Cunha RV, Cruz OG. Metalloproteinases are produced during dengue fever and MMP9 is associated with severity. J Infect 2010; 61:501-5. [PMID: 20863849 DOI: 10.1016/j.jinf.2010.09.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 09/13/2010] [Accepted: 09/14/2010] [Indexed: 02/04/2023]
|
49
|
Shih YT, Yang CF, Chen WJ. Upregulation of a novel eukaryotic translation initiation factor 5A (eIF5A) in dengue 2 virus-infected mosquito cells. Virol J 2010; 7:214. [PMID: 20819232 PMCID: PMC2942825 DOI: 10.1186/1743-422x-7-214] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Accepted: 09/07/2010] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Dengue virus, a mosquito-borne flavivirus, is the etiological agent of dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. It generally induces apoptosis in mammalian cells, but frequently results in persistent infection in mosquito cells. That mechanism remains to be explored. In turn, a genomic survey through subtractive hybridization (PCR-select cDNA subtraction) was conducted in order to find gene(s) that may play a role in interactions between the virus and its host cells. RESULTS Through this technique, we identified a novel eukaryotic translation initiation factor 5A (eIF5A) which is upregulated in Aedes albopictus-derived C6/36 cells infected by the type 2 dengue (Den-2) virus. The full-length of the identified eIF5A gene consisted of 1498 bp of nucleotides with a 41.39% G+C content, and it possessed a higher similarity and shorter evolutionary distance with insects than with other organisms. Upregulation of eIF5A in response to Den-2 virus infection was validated at both the RNA and protein levels. This phenomenon was also observed by confocal microscopy. In addition, cell death obviously occurred when eIF5A activity was inhibited in C6/36 cells even when they were infected by the virus. However, viral multiplication was not obviously affected in infected C6/36 cells when eIF5A activity was reduced. CONCLUSIONS Taken together, we postulated that eIF5A plays a role in preventing mosquito cells from death in response to Den-2 viral infection, thus facilitating continued viral growth and potential persistent infection in mosquito cells. It would be worthwhile to further investigate how its downstream factors or cofactors contribute to this phenomenon of dengue infection.
Collapse
Affiliation(s)
- Yu-Tzu Shih
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan 33332, Taiwan
| | - Chao-Fu Yang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan 33332, Taiwan
| | - Wei-June Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan 33332, Taiwan
- Department of Public Health and Parasitology, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan 33332, Taiwan
| |
Collapse
|
50
|
Priyadarshini D, Gadia RR, Tripathy A, Gurukumar KR, Bhagat A, Patwardhan S, Mokashi N, Vaidya D, Shah PS, Cecilia D. Clinical findings and pro-inflammatory cytokines in dengue patients in Western India: a facility-based study. PLoS One 2010; 5:e8709. [PMID: 20090849 PMCID: PMC2806829 DOI: 10.1371/journal.pone.0008709] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 12/21/2009] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Descriptions of dengue immunopathogenesis have largely relied on data from South-east Asia and America, while India is poorly represented. This study characterizes dengue cases from Pune, Western India, with respect to clinical profile and pro-inflammatory cytokines. METHODOLOGY/PRINCIPAL FINDINGS In 2005, 372 clinically suspected dengue cases were tested by MAC-ELISA and RT-PCR for dengue virus (DENV) aetiology. The clinical profile was recorded at the hospital. Circulating levels of IFN-gamma, TNF-alpha, IL-6, and IL-8 were assessed by ELISA and secondary infections were defined by IgM to IgG ratio. Statistical analysis was carried out using the SPSS 11.0 version. Of the 372 individuals, 221 were confirmed to be dengue cases. Three serotypes, DENV-1, 2 and 3 were co-circulating and one case of dual infection was identified. Of 221 cases, 159 presented with Dengue fever (DF) and 62 with Dengue hemorrhagic fever (DHF) of which six had severe DHF and one died of shock. There was a strong association of rash, abdominal pain and conjunctival congestion with DHF. Levels of IFN-gamma were higher in DF whereas IL-6 and IL-8 were higher in DHF cases (p<0.05). The mean levels of the three cytokines were higher in secondary compared to primary infections. Levels of IFN-gamma and IL-8 were higher in early samples collected 2-5 days after onset than late samples collected 6-15 days after onset. IFN-gamma showed significant decreasing time trend (p = 0.005) and IL-8 levels showed increasing trend towards significance in DHF cases (interaction p = 0.059). There was a significant association of IL-8 levels with thrombocytopenia and both IFN-gamma and IL-8 were positively associated with alanine transaminase levels. CONCLUSIONS/SIGNIFICANCE Rash, abdominal pain and conjunctival congestion could be prognostic symptoms for DHF. High levels of IL-6 and IL-8 were shown to associate with DHF. The time trend of IFN-gamma and IL-8 levels had greater significance than absolute values in DHF pathogenesis.
Collapse
Affiliation(s)
| | - Rajesh R. Gadia
- Department of General Medicine, King Edward Memorial Hospital, Pune, India
| | | | | | | | - Sampada Patwardhan
- Department of Microbiology, Deenanath Mangeshkar Hospital, Erandwane, Pune, India
| | - Nitin Mokashi
- Department of Microbiology, Yashwant Rao Chauhan Memorial Hospital, Pune, India
| | - Dhananjay Vaidya
- John Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | | | - D. Cecilia
- National Institute of Virology, Pune, India
| |
Collapse
|