1
|
Khan MK, Rolff J. Insect immunity in the Anthropocene. Biol Rev Camb Philos Soc 2025; 100:698-723. [PMID: 39500735 PMCID: PMC11885697 DOI: 10.1111/brv.13158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 03/08/2025]
Abstract
Anthropogenic activities result in global change, including climate change, landscape degradation and pollution, that can alter insect physiology and immune defences. These changes may have contributed to global insect decline and the dynamics of insect-transmitted diseases. The ability of insects to mount immune responses upon infection is crucial for defence against pathogens and parasites. Suppressed immune defences reduce fitness by causing disease-driven mortality and elevated immune responses reduce energy available to invest in other fitness traits such as reproduction. Understanding the impact of anthropogenic factors on insect-pathogen interactions is therefore key to determining the contribution of anthropogenic global change to pathogen-driven global insect decline and the emergence and transmission of insect-borne diseases. Here, we synthesise evidence of the impact of anthropogenic factors on insect immunity. We found evidence that anthropogenic factors, such as insecticides and heavy metals, directly impacting insect immune responses by inhibiting immune activation pathways. Alternatively, factors such as global warming, heatwaves, elevated CO2 and landscape degradation can indirectly reduce insect immune responses via reducing the energy available for immune function. We further review how anthropogenic factors impact pathogen clearance and contribute to an increase in vector-borne diseases. We discuss the fitness cost of anthropogenic factors via pathogen-driven mortality and reduced reproductive output and how this can contribute to species extinction. We found that most research has determined the impact of a single anthropogenic factor on insect immune responses or pathogen resistance. We recommend studying the combined impact of multiple stressors on immune response and pathogen resistance to understand better how anthropogenic factors affect insect immunity. We conclude by highlighting the importance of initiatives to mitigate the impact of anthropogenic factors on insect immunity, to reduce the spread of vector-borne diseases, and to protect vulnerable ecosystems from emerging diseases.
Collapse
Affiliation(s)
- Md Kawsar Khan
- Institute of BiologyFreie Universität BerlinKönigin‐Luise‐Str. 1‐3Berlin14195Germany
- School of Natural SciencesMacquarie University18 Wally's Walk, North Ryde‐2109SydneyNSWAustralia
| | - Jens Rolff
- Institute of BiologyFreie Universität BerlinKönigin‐Luise‐Str. 1‐3Berlin14195Germany
| |
Collapse
|
2
|
Reda RM, Zaki EM, Aioub AAA, Metwally MMM, Mahsoub F. The potential effects of corn cob biochar on mitigating pendimethalin-induced toxicity in Nile tilapia (Oreochromis niloticus): Effects on hematological, biochemical, antioxidant-immune parameters, and histopathological alterations. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107213. [PMID: 39706133 DOI: 10.1016/j.aquatox.2024.107213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/07/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
This study aims to examine the restorative impact of corn cob biochar (CCB) on pendimethalin (PMD)-induced toxicity in Oreochromis niloticus. Fish were divided into four groups: the first control group without treatment, the second group (CCB) exposed to 10 g CCB/L, the third group (PDM) exposed to 0.355 mg PDM/L, and the fourth group (PDM+ CCB) receiving both 0.355 mg PDM/L and 10 g CCB/L for 30 days. PDM exposure resulted in behavioral alterations, low survival rate (73.33 %), hematological and biochemical impairments, increased oxidative stress, suppressed immunity, and histopathological damage in gill, liver, and brain tissues. Co-treatment with CCB significantly alleviated these effects, as evidenced by improved survival rate (88.88 %), hematological, biochemical, and antioxidant-immune parameters and reduced histopathological alterations. In conclusion, CCB demonstrated a promising potential to mitigate PDM-induced toxicity in O. niloticus by enhancing physiological, biochemical, and histological resilience.
Collapse
Affiliation(s)
- Rasha M Reda
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia 44511, Egypt.
| | - Eman M Zaki
- Department of Reproduction and Fish Physiology, Central laboratory for Aquaculture Research (CLAR), Abbassa, Agriculture research Centre, Giza 44662, Egypt
| | - Ahmed A A Aioub
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed M M Metwally
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, King Salman International University, Ras Sudr, Egypt; Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia 44511, Egypt
| | - Fatma Mahsoub
- Department of Animal & Poultry Production, Faculty of Technology and Development, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
3
|
Luigia Vommaro M, Korša A, Sofia Lindeza A, Giglio A, Kurtz J. The combined effect of herbicide and Bacillus thuringiensis exposure delays development in the red flour beetle. J Invertebr Pathol 2024; 207:108227. [PMID: 39477143 DOI: 10.1016/j.jip.2024.108227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/17/2024] [Accepted: 10/27/2024] [Indexed: 11/07/2024]
Abstract
The use of herbicides and their long persistence in the environment have raised concerns about potential harm to ecosystems and human health. However, there is a gap in the knowledge regarding the effects of continuous exposure to residues or admitted field doses on non-target organisms such as insects that inhabit croplands and play key ecological roles. Furthermore, the potential impact of this exposure on host-pathogen interactions remains largely unstudied. This study adopted an eco-immunological perspective, investigating the influence of herbicides on an organism's interaction with natural pathogens. The impact of this combination of multiple stressors was studied in larvae of the red flour beetle, Tribolium castaneum Herbst, 1797, previously treated with a pendimethalin-based commercial formulation (PND) and exposed to the natural entomopathogen Bacillus thuringiensis (1x109, 1x1010 cells/mL). The effects of three PND concentrations (i.e. a recommended field rate, a soil contaminant concentration and the maximum residue limit admitted in grain in EU countries: 4L/ha, 13 and 0.05 ppm, respectively) on life history traits such as developmental time, pupation rate and survival rate and the expression levels of antimicrobial peptides (AMPs) were assessed. The results showed that even at doses considered safe for human consumption or field application, exposure to PND had an impact on beetle larvae, affecting their vulnerability to B. thuringiensis. The combined experience of exposure to PND and B. thuringiensis at the larval stage resulted in a delay of larval development, a reduction in the number of pupae and emerging adults, and alterations in their body condition. Moreover, changes in the expression levels of the analysed AMPs, including Attacin 1, Defensin 2 and Coleoptericin 2, were recorded as markers for immune activity against the bacterium. The findings of this study highlight the general need for further studies on the effects of commonly used herbicides on the physiology of non-target organisms and on host-pathogen interactions at the community level. Additionally, there is a need for the establishment of revised residual levels that are deemed non-toxic to soil organisms and humans.
Collapse
Affiliation(s)
- Maria Luigia Vommaro
- Department of Biology, Ecology and Earth Science, University of Calabria, Arcavacata di Rende, Cosenza, Italy; Animal Evolutionary Ecology Group, Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Ana Korša
- Animal Evolutionary Ecology Group, Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Ana Sofia Lindeza
- Animal Evolutionary Ecology Group, Institute for Evolution and Biodiversity, University of Münster, Münster, Germany; Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Anita Giglio
- Department of Biology, Ecology and Earth Science, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Joachim Kurtz
- Animal Evolutionary Ecology Group, Institute for Evolution and Biodiversity, University of Münster, Münster, Germany.
| |
Collapse
|
4
|
El Kholy S, Ayorinde T, Sayes CM, Al Naggar Y. Microplastic exposure reduced the defecation rate, altered digestive enzyme activities, and caused histological and ultracellular changes in the midgut tissues of the ground beetle (Blaps polychresta). JOURNAL OF INSECT PHYSIOLOGY 2024; 158:104697. [PMID: 39154709 DOI: 10.1016/j.jinsphys.2024.104697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Concerns about microplastic (MP) pollution in terrestrial systems are increasing. It is believed that the overall amount of MPs in the terrestrial system could be 4-23 times higher than that in the ocean. Agricultural ecosystems are among the most polluted areas with MPs. Terrestrial organisms such as ground beetles, will be more vulnerable to MPs in various agricultural soil types because they are common in garden and agricultural areas. Therefore, this work aims to assess for the first time the potential adverse effects of chronic exposure for 30 days of ground beetles to a field-realistic concentration of 2 % (w/w) of three different irregularly shaped MPs polymers: Polystyrene (PS), polyethylene terephthalate (PET), and polyamide 6 (PA; i.e., nylon 6) on their health. The results showed no effect on beetle survival; nevertheless, there was a decrease in beetle defecation rate, particularly in beetles exposed to PS-MPs, and a change in the activity of midgut digestive enzymes. The effects on digestive enzymes (amylase, protease, lipase, and α-glucosidase) were polymer and enzyme specific. Furthermore, histological and cytological studies demonstrated the decomposition of the midgut peritrophic membrane, as well as abnormally shaped nuclei, vacuolation, disordered microvilli, necrosis of goblet and columnar cells, and necrosis of mitochondria in midgut cells. Given the importance of ground beetles as predators in most agricultural and garden settings, the reported adverse impacts of MPs on their health may impact their existence and ecological functions.
Collapse
Affiliation(s)
- Samar El Kholy
- Zoology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Taiwo Ayorinde
- Department of Environmental Science, Baylor University, Waco, TX 76706, USA
| | - Christie M Sayes
- Department of Environmental Science, Baylor University, Waco, TX 76706, USA
| | - Yahya Al Naggar
- Zoology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; Applied College, Center of Bee Research and its Products, Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia.
| |
Collapse
|
5
|
Vommaro ML, Giglio A. Cytotoxic and genotoxic effects of a pendimethalin-based herbicide in Apis mellifera. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116565. [PMID: 38870738 DOI: 10.1016/j.ecoenv.2024.116565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/22/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
Public concern about the effects of pesticides on non-target organisms has increased in the recent years. Nevertheless, there is a limited number of studies that address the actual toxic effects of herbicides on insects. This study investigated the side effects of herbicides on non-target organisms inhabiting agroecosystems and performing essential ecological and economic functions such as crop pollination. We analysed morphological alterations in the gut, Malpighian tubules and circulating haemocytes of Apis mellifera workers as markers of exposure effects. A commercial formulation of a pendimethalin-based herbicide (PND) was administered orally under laboratory conditions at a realistic concentration admitted in the field (330gL-1 of active ingredient., 4 L ha-1 for cereal and vegetable crops). The worker bees were exposed to a single application of PND for a period of one week, to simulate the exposure that can occur when foraging bees accidentally drink drops of contaminated water upon treatments. Histopathological analyses of the midgut, ileum and Malpighian tubules showed alterations over time (from 24 to 72 h after the beginning of exposure) such as loss of epithelial organisation, cellular vacuolisation and altered pyknotic nuclei as well as disruption of the peritrophic membrane over time. Semiquantitative analyses of the midgut showed a significant increase in the organ injury index 24 and 72 h after the initial exposure in PND-exposed bees compared to control bees. In addition, a change in positivity to Gram staining was observed in the midgut histological sections. A recovery of cytotoxic effects was observed one week after the initial exposure, which was favoured by the periodic renewal of the intestinal epithelium and the herbicide dissipation time. Cytochemical staining with Giemsa of haemocytes from PND-treated workers over 24 and 72 h showed significant nuclear alterations such as lobed or polymorphic nuclei and micronuclei compared to bees in the control group. These results show that the dose of PND used to protect crops from weeds can lead to significant cytotoxic and genotoxic effects in non-target organisms such as honey bees. In croplands, the sublethal effects on cell morphology can impair vital physiological processes such as nutrition, osmoregulation, and resistance to pathogens, contributing to the decline in biodiversity and abundance of species that play a prominent ecological role, such as pollinators.
Collapse
Affiliation(s)
- Maria Luigia Vommaro
- University of Calabria, Department of Biology, Ecology and Earth Science, Rende, Italy
| | - Anita Giglio
- University of Calabria, Department of Biology, Ecology and Earth Science, Rende, Italy.
| |
Collapse
|
6
|
de Souza AR, Bernardes RC, Barbosa WF, Dos Santos Araújo R, Martins GF, Lima MAP. A mixture of mesotrione and atrazine harms adults and larvae of the predatory wasp Polistes satan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171526. [PMID: 38458447 DOI: 10.1016/j.scitotenv.2024.171526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Herbicides have been intensively used for weed control, raising concerns about their potentially adverse effects on non-target organisms. Research on the effects of these common agrochemicals on beneficial insects and the ecosystem services they provide (e.g., predation and pollination) is scarce. Therefore, we tested whether a commercial formulation comprising a mixture of mesotrione and atrazine was detrimental to adult females and larvae of the Neotropical predatory social wasp Polistes satan, which is an effective natural enemy of crop pests. Wasps were individually fed syrups contaminated with different concentrations of the herbicide above and below the maximum label rate (MLR = 12 mL/L). Survival was assessed. The locomotor activity, immune response, and midgut morphology of adults as well as the immune response of the larvae were also studied. Herbicide concentrations far above the MLR (12, 40, and 100 times) caused adult mortality, whereas lower concentrations (0.5, 1, and 6 times) did not. Herbicide exposure at 0.5 to 12 times the MLR increased adult activity. Adult exposure at 0.1 or 0.5 times the MLR did not affect melanotic encapsulation of foreign bodies but led to changes in the morphology of the midgut epithelium and peritrophic matrix. In larvae, the ingestion of herbicide at 0.1 or 0.2 times the MLR (corresponding to 9.6 and 19.2 ng of herbicide per individual) did not cause mortality but decreased their melanization-encapsulation response. Increased locomotor activity in herbicide-exposed adults can affect their foraging activity. The altered midgut morphology of adults coupled with the decreased immune response in larvae caused by herbicide exposure at realistic concentrations can increase the susceptibility of wasps to infections. Therefore, herbicides are toxic to predatory wasps.
Collapse
Affiliation(s)
- André Rodrigues de Souza
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, SP, Brazil.
| | | | | | - Renan Dos Santos Araújo
- Istituto de Ciências Biológicas e da Saúde, Campus Universitário do Araguaia, Universidade Federal de Mato Grosso, Pontal do Araguaia, MT, Brazil
| | | | | |
Collapse
|
7
|
Vommaro ML, Zanchi C, Angelone T, Giglio A, Kurtz J. Herbicide exposure alters the effect of the enthomopathogen Beauveria bassiana on immune gene expression in mealworm beetles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122662. [PMID: 37778488 DOI: 10.1016/j.envpol.2023.122662] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/03/2023]
Abstract
Concerns have grown worldwide about the potentially far-reaching effects of herbicides on functional biodiversity in agroecosystems. Repeated applications over time can lead to accumulation of residues in soil, water, and food and may have negative impacts on non-target organisms. However, the effects of herbicide residues on interspecific relationships, such as host-pathogen interactions, are poorly studied. In this study, we evaluated the effects of two different concentrations of a commercial pendimethalin-based formulation (PND), the residual contamination (S, 13 ppm) in treated soils and the maximum residue level allowed by the European Commission in cereals (EU, 0.05 ppm). We tested the effect of PND on the biological interaction between the mealworm beetle Tenebrio molitor Linnaeus, 1758 and the entomopathogenic fungus Beauveria bassiana Vuillemin, 1912 (Bb, strain KVL 03-144) at two concentrations (LC50 5 × 105 conidia mL-1 and LC100 1 × 107 conidia mL-1). We checked the survival of beetles exposed to PND or/and inoculated with B. bassiana, the expression of four antimicrobial peptides (AMPs), and finally how PND affects in vitro germination of fungus. The exposure to PND had no significant effects on the survival of either control or Bb-exposed beetles. In the mealworm beetle, upregulation of gene expression of the inducible AMPs Tenecin 1, 2, and 4 was observed in PND-treated beetles after inoculation with Bb, while the levels of the non-inducible AMP Tenecin 3 were similar between treatments. In conclusion, our findings demonstrate that admitted residual doses of currently used herbicides modify an important component of the inducible immune response of an insect. This did not translate into an effect on the survival to B. bassiana in our system. However, residual doses of the herbicide at 13 ppm may temporarily affect fungal germination. These results raise questions about the compatibility of bioinsecticides with synthetic pesticides and the effects of herbicide residues on host-pathogen interactions.
Collapse
Affiliation(s)
- Maria Luigia Vommaro
- Department of Biology, Ecology and Earth Science, University of Calabria, Via Bucci, 87036, Arcavacata di Rende, Cosenza, Italy; Animal Evolutionary Ecology Group, Institute for Evolution and Biodiversity, Universityof Münster, Hüferstr. 1, 48149, Münster, Germany.
| | - Caroline Zanchi
- Animal Evolutionary Ecology Group, Institute for Evolution and Biodiversity, Universityof Münster, Hüferstr. 1, 48149, Münster, Germany; Institute for Biology, Freie Universität Berlin, Königin-Luise Str. 1-3, 14 195, Berlin, Germany
| | - Tommaso Angelone
- Department of Biology, Ecology and Earth Science, University of Calabria, Via Bucci, 87036, Arcavacata di Rende, Cosenza, Italy
| | - Anita Giglio
- Department of Biology, Ecology and Earth Science, University of Calabria, Via Bucci, 87036, Arcavacata di Rende, Cosenza, Italy
| | - Joachim Kurtz
- Animal Evolutionary Ecology Group, Institute for Evolution and Biodiversity, Universityof Münster, Hüferstr. 1, 48149, Münster, Germany
| |
Collapse
|
8
|
Pinheiro RA, Duque TS, Barroso GM, Soares MA, Cabral CM, Zanuncio JC, Dos Santos JB. Herbicides may threaten advances in biological control of diseases and pests. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:111850-111870. [PMID: 37848791 DOI: 10.1007/s11356-023-30198-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/27/2023] [Indexed: 10/19/2023]
Abstract
Advances in agriculture include integrated methods of controlling pests, diseases, and weeds with biocontrollers, which are constantly increasing, along with herbicides. The objective is to present a systematic review of the main reports of herbicide effects on non-target organisms used in applied biological control and those naturally occurring in the ecosystems controlling pests. The categories were divided into predatory and parasitoid arthropods. Three hundred and fifty reports were analyzed, being 58.3% with parasitoids and 41.7% with predators. Lethal or sublethal effects of herbicides on reproduction, predation, genotoxicity, and abundance of biological control organisms have been reported. Two hundred and four reports of the impact of herbicides on parasitoids were analyzed. The largest number of reports was with parasitoids of the genus Trichogramma, with wide use in managing pests of the herbicide-tolerant transgenic plants. Most tests evaluating effects on parasitism, emergence, and mortality of natural enemies subjected to herbicides are with parasitoids of Lepidoptera eggs with a high diversity and use in managing these pests in different crops. Additive and synergistic effects of molecules increase the risks of herbicide mixtures. Herbicide use for weed management must integrate other control methods, as the chemical can impact natural enemies, reducing the biological control of pests.
Collapse
Affiliation(s)
- Rodrigo Almeida Pinheiro
- Departamento de Agronomia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, 39100-000, Diamantina, Minas Gerais, Brasil
| | - Tayna Sousa Duque
- Departamento de Agronomia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, 39100-000, Diamantina, Minas Gerais, Brasil
| | - Gabriela Madureira Barroso
- Departamento de Agronomia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, 39100-000, Diamantina, Minas Gerais, Brasil.
| | - Marcus Alvarenga Soares
- Departamento de Agronomia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, 39100-000, Diamantina, Minas Gerais, Brasil
| | - Cassia Michelle Cabral
- Departamento de Biologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, 39100-000, Diamantina, Minas Gerais, Brasil
| | - José Cola Zanuncio
- Departamento de Entomologia/BIOAGRO, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brasil
| | - José Barbosa Dos Santos
- Departamento de Agronomia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, 39100-000, Diamantina, Minas Gerais, Brasil
| |
Collapse
|
9
|
Bi Y, Wu L, Li B, Hao Y, Li Z, Zhang J, Cheng A, Yuan G, Fan J. Effects of beauvericin on the blood cells of Bombyx mori. J Invertebr Pathol 2023; 201:108003. [PMID: 37838064 DOI: 10.1016/j.jip.2023.108003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
In this study, silkworms were treated by injection of the bioactive depsipeptide beauvericin (BEA) to explore its effect on the cellular immunity of larvae of the silkworm Bombyx mori. The results showed that: The LC50 of BEA for silkworms on the 3rd day of the 4th instar was 362.36 µM. The total count of circulating hemocytes in the silkworms decreased at 12 h after injection with 350 µM BEA, and reached the minimum value at 72 h post-treatment; at 48 h post-treatment, a large number of nodules formed by the aggregation of blood cells of the silkworms were observed under the light microscope. The survival rate of hemocytes in the larvae treated with BEA was significantly reduced in a dose-dependent manner in vivo and in vitro. The encapsulation of Q-Sepharose Fast Flow (QFF) gel particles by hemocytes in the treatment group was significantly higher than that in the control group at 1.5 h and 3 h post-treatment (P < 0.05). Moreover, the melanization ratio of QFF gel particles kept increasing with treatment time. The melanization rate at 24 h after treatment was significantly higher than that at other times (P < 0.05), reaching 55.33 %. Under the scanning electron microscope, BEA-treated larvae showed protrusions on the surface of their blood cells in vivo. Under the transmission electron microscope, it was observed that silkworm hemocytes were vacuolated. This study demonstrated that BEA had an effect on the blood cells of silkworms, and has thrown some light on the inhibitory effect and mechanism of BEA on insect cellular immunity.
Collapse
Affiliation(s)
- Yong Bi
- College of Forestry, Shanxi Agricultural University, Jinzhong 030800, China
| | - Lingzhi Wu
- College of Forestry, Shanxi Agricultural University, Jinzhong 030800, China
| | - Baozhen Li
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong 030619, China.
| | - Yanping Hao
- College of Forestry, Shanxi Agricultural University, Jinzhong 030800, China
| | - Zixiao Li
- College of Forestry, Shanxi Agricultural University, Jinzhong 030800, China
| | - Jiwei Zhang
- College of Forestry, Shanxi Agricultural University, Jinzhong 030800, China
| | - Aiying Cheng
- College of Forestry, Shanxi Agricultural University, Jinzhong 030800, China
| | - Guizhen Yuan
- College of Forestry, Shanxi Agricultural University, Jinzhong 030800, China
| | - Jinhua Fan
- College of Forestry, Shanxi Agricultural University, Jinzhong 030800, China.
| |
Collapse
|
10
|
Naccarato A, Vommaro ML, Amico D, Sprovieri F, Pirrone N, Tagarelli A, Giglio A. Triazine Herbicide and NPK Fertilizer Exposure: Accumulation of Heavy Metals and Rare Earth Elements, Effects on Cuticle Melanization, and Immunocompetence in the Model Species Tenebrio molitor. TOXICS 2023; 11:499. [PMID: 37368599 DOI: 10.3390/toxics11060499] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023]
Abstract
The increasing use of agrochemicals, including fertilizers and herbicides, has led to worrying metal contamination of soils and waters and raises serious questions about the effects of their transfer to different levels of the trophic web. Accumulation and biomagnification of essential (K, Na, Mg, Zn, Ca), nonessential (Sr, Hg, Rb, Ba, Se, Cd, Cr, Pb, As), and rare earth elements (REEs) were investigated in newly emerged adults of Tenebrio molitor exposed to field-admitted concentrations of a metribuzin-based herbicide and an NPK blend fertilizer. Chemical analyses were performed using inductively coupled plasma tandem mass spectrometry (ICP-MS/MS) supported by unsupervised pattern recognition techniques. Physiological parameters such as cuticle melanization, cellular (circulating hemocytes), and humoral (phenoloxidase enzyme activity) immune responses and mass loss were tested as exposure markers in both sexes. The results showed that NPK fertilizer application is the main cause of REE accumulation in beetles over time, besides toxic elements (Sr, Hg, Cr, Rb, Ba, Ni, Al, V, U) also present in the herbicide-treated beetles. The biomagnification of Cu and Zn suggested a high potential for food web transfer in agroecosystems. Gender differences in element concentrations suggested that males and females differ in element uptake and excretion. Differences in phenotypic traits show that exposure affects metabolic pathways involving sequestration and detoxification during the transition phase from immature-to-mature beetles, triggering a redistribution of resources between sexual maturation and immune responses. Our findings highlight the importance of setting limits for metals and REEs in herbicides and fertilizers to avoid adverse effects on species that provide ecosystem services and contribute to soil health in agroecosystems.
Collapse
Affiliation(s)
- Attilio Naccarato
- Department of Chemistry and Chemical Technologies, University of Calabria,87036 Rende, Italy
| | - Maria Luigia Vommaro
- Department of Biology, Ecology and Earth Science, University of Calabria, 87036 Rende, Italy
| | - Domenico Amico
- CNR-Institute of Atmospheric Pollution Research, 87036 Rende, Italy
| | | | - Nicola Pirrone
- CNR-Institute of Atmospheric Pollution Research, 87036 Rende, Italy
| | - Antonio Tagarelli
- Department of Chemistry and Chemical Technologies, University of Calabria,87036 Rende, Italy
| | - Anita Giglio
- Department of Biology, Ecology and Earth Science, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
11
|
The immunotoxicity of ten insecticides against insect hemocyte cells in vitro. In Vitro Cell Dev Biol Anim 2022; 58:912-921. [PMID: 36443536 DOI: 10.1007/s11626-022-00738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/04/2022] [Indexed: 11/29/2022]
Abstract
Hemocytes in the hemolymph of insects perform innate immunity, but systematic studies to compare immunotoxicity of pesticides on hemocytes are still few. In this study, an insect hemocyte system was used to assess the impact of pesticides with different modes of action, which included loss of cell viability, inhibition of hemophagocytosis, and reduction of nitric oxide synthase (NOS) activity. Results showed that piericidin A was the most cytotoxic to hemocytes, chlorfluazuron and hexaflumuron were the next. Also, piericidin A, chlorfenapyr, and fipronil had strong inhibitory effects on hemophagocytosis, and the effects of piericidin A and chlorfenapyr were persistent, while that of fipronil was short-lived. Moreover, fenoxycarb and hexaflumuron selectively inhibited granulocyte phagocytosis, tebufenozide only showed inhibition on plasmatocyte phagocytosis, but both inhibitory effects were transient. Furthermore, fenoxycarb and hexaflumuron showed a short-term strong inhibitory effect on the activity of NOS, chlorfenapyr and piericidin A showed a weak induction of NOS activity, while other pesticides exhibited a strong induction. Taken together, piericidin A was the most toxic and imidacloprid was the least toxic to hemocytes, and the alterations in hemocyte functions compromised immunity.
Collapse
|
12
|
Giglio A, Vommaro ML. Dinitroaniline herbicides: a comprehensive review of toxicity and side effects on animal non-target organisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76687-76711. [PMID: 36175724 PMCID: PMC9581837 DOI: 10.1007/s11356-022-23169-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/18/2022] [Indexed: 05/23/2023]
Abstract
The widespread use of herbicides has increased concern about the hazards and risks to animals living in terrestrial and aquatic ecosystems. A comprehensive understanding of their effective action at different levels of biological organization is critical for establishing guidelines to protect ecosystems and human health. Dinitroanilines are broad-spectrum pre-emergence herbicides currently used for weed control in the conventional agriculture. They are considered extremely safe agrochemicals because they act specifically on tubulin proteins and inhibit shoot and root growth of plants. However, there is a lack of toxicity information regarding the potential risk of exposure to non-target organisms. The aim of the present review is to focus on side effects of the most commonly used active ingredients, e.g. pendimethalin, oryzalin, trifluralin and benfluralin, on animal non-target cells of invertebrates and vertebrates. Acute toxicity varies from slightly to high in terrestrial and aquatic species (i.e. nematodes, earthworms, snails, insects, crustaceans, fish and mammals) depending on the species-specific ability of tested organisms to adsorb and discharge toxicants. Cytotoxicity, genotoxicity and activation of oxidative stress pathways as well as alterations of physiological, metabolic, morphological, developmental and behavioural traits, reviewed here, indicate that exposure to sublethal concentrations of active ingredients poses a clear hazard to animals and humans. Further research is required to evaluate the molecular mechanisms of action of these herbicides in the animal cell and on biological functions at multiple levels, from organisms to communities, including the effects of commercial formulations.
Collapse
Affiliation(s)
- Anita Giglio
- Department of Biology, Ecology and Earth Science, University of Calabria, via Bucci, 87036, Rende, Italy.
| | - Maria Luigia Vommaro
- Department of Biology, Ecology and Earth Science, University of Calabria, via Bucci, 87036, Rende, Italy
| |
Collapse
|
13
|
Wang Y, Nan X, Hao S, Zhao K, Guo Y, Wang Q, Li W. AKT regulates hemocyte proliferation via glucose metabolism in Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2022; 127:247-255. [PMID: 35738489 DOI: 10.1016/j.fsi.2022.06.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/05/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Threonine-serine protein kinase (AKT) plays an important role in the regulation of essential biological processes such as cell metabolism and cell proliferation in several organisms. Eriocheir sinensis is a widely distributed crab that is exposed to complex and diverse biological environments and various diseases. We aimed to elucidate the immune function of AKT and the underlying mechanism in E. sinensis. In this study, we performed bioinformatics analysis of E. sinensis AKT (EsAkt) and found that the AKT protein was highly conserved across species. qRT-PCR showed high AKT expression in the liver and muscle tissues, and low expression in hemocytes. After stimulation with gram-positive Staphylococcus aureus or gram-negative Vibrio parahaemolyticus, E. sinensis AKT (EsAkt) was significantly up-regulated in hemocytes. Further, knockout of the EsAkt gene weakened cell glucose metabolism and inhibited cell proliferation. Taken together, these results suggest that EsAkt plays a key role in regulating hemocyte glucose metabolism and cell proliferation in Eriocheir sinensis.
Collapse
Affiliation(s)
- Yue Wang
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Xingyu Nan
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Shuqi Hao
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Ke Zhao
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Yanan Guo
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Qun Wang
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Weiwei Li
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, PR China.
| |
Collapse
|
14
|
Virtual sections and 3D reconstructions of female reproductive system in a carabid beetle using synchrotron X-ray phase-contrast microtomography. ZOOL ANZ 2022. [DOI: 10.1016/j.jcz.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Vommaro ML, Kurtz J, Giglio A. Morphological Characterisation of Haemocytes in the Mealworm Beetle Tenebrio molitor (Coleoptera, Tenebrionidae). INSECTS 2021; 12:insects12050423. [PMID: 34066849 PMCID: PMC8151185 DOI: 10.3390/insects12050423] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022]
Abstract
The immunocompetence of the mealworm beetle Tenebrio molitor has been well investigated at molecular and physiological levels, but information on morphological and functional characteristics of its immune cells (haemocytes) is still scarce and fragmentary. This study provides an updated overview of the morphology of circulating immune cells from mealworm beetle adults, using light and transmission electron microscopy. Based on their affinities for May-Grünwald Giemsa stain, haemocytes were defined as either eosinophilic, basophilic or neutral. Ultrastructural descriptions allowed to detect four main cell types in the haemolymph: prohaemocytes, plasmatocytes, granular cells and oenocytoids. The morphological plasticity of haemocytes and the evidence of mitotic circulating cells, intermediate cell stages, as well as autophagic activities suggest haemocyte proliferation, turnover and transdifferentiation as constantly active processes in the haemolymph. Cytochemical tests revealed differences in the distribution of carbohydrates among cell types underling the great plasticity of the immune response and the direct involvement of circulating immune cells in the resource allocation. In addition, our results provide a detailed morphological description of vesicle trafficking, macro- and microautophagy, apoptotic and necrotic processes, confirming the suitability of T. molitor haemocytes as a model for studying evolutionarily conserved cellular mechanisms.
Collapse
Affiliation(s)
- Maria Luigia Vommaro
- Department of Biology, Ecology and Earth Science, University of Calabria, 87036 Rende, Italy;
| | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany;
| | - Anita Giglio
- Department of Biology, Ecology and Earth Science, University of Calabria, 87036 Rende, Italy;
- Correspondence: ; Tel.: +39-098-449-2982; Fax: +39-098-449-2986
| |
Collapse
|