1
|
Miyashita A, Mikami K, Nakajima H, Yu Y, Miyauchi M, Sekimizu K. Silkworm (Bombyx mori) as a novel infection model for fish-derived Aeromonas hydrophila. Drug Discov Ther 2025; 19:83-89. [PMID: 40301084 DOI: 10.5582/ddt.2025.01026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Aeromonas hydrophila is a significant pathogenic bacterium in aquaculture and the ornamental fish industry, causing lethal infections in fish and contributing to rising drug resistance. This leads to substantial economic losses and underscores the urgent need for new treatments and infection controls. However, the lack of a simple, sensitive infection model has hindered studies on the pathogenicity of A. hydrophila and therapeutic evaluation. This study introduces the silkworm (Bombyx mori) as a highly sensitive and cost-effective infection model for A. hydrophila. Using a strain isolated from diseased Wakins (goldfish), the pathogenicity of A. hydrophila was confirmed in silkworms, which exhibited a much lower median lethal dose (LD₅₀ = 0.3 CFU/larva) compared to Wakins (LD₅₀ = 5.1 × 10⁶ CFU/g body weight). This demonstrates the silkworm's higher sensitivity to A. hydrophila. The in vivo efficacy of three antibiotics (gentamicin, kanamycin, and tetracycline) was also tested. Gentamicin and kanamycin prolonged survival in both models, while tetracycline also showed efficacy in both models, though its effect was weaker in the silkworm model. This highlights the silkworm model's utility in evaluating bactericidal agents against A. hydrophila. This model addresses key limitations of traditional fish infection models, including low sensitivity, long experimental durations, and high costs. The silkworm-based method enables efficient investigation of A. hydrophila pathogenicity and rapid screening of potential treatments, accelerating the development of new therapeutic strategies for aquaculture and beyond.
Collapse
Affiliation(s)
| | - Kazuhiro Mikami
- Institute of Medical Mycology, Teikyo University, Tokyo, Japan
- Graduate School of Medical Care and Technology, Teikyo University, Tokyo, Japan
| | - Hiroto Nakajima
- Institute of Medical Mycology, Teikyo University, Tokyo, Japan
| | - Yidong Yu
- Institute of Medical Mycology, Teikyo University, Tokyo, Japan
| | - Masanobu Miyauchi
- Institute of Medical Mycology, Teikyo University, Tokyo, Japan
- Department of Psychology, Faculty of Liberal Arts, Teikyo University, Tokyo, Japan
| | | |
Collapse
|
2
|
Wang Y, Ekblom C, Kruangkum T, Uribeondo JD, Söderhäll K, Söderhäll I. Specific host factors determine resistance in a North American crayfish to the crayfish plague, Aphanomyces astaci. FISH & SHELLFISH IMMUNOLOGY 2025; 163:110392. [PMID: 40347990 DOI: 10.1016/j.fsi.2025.110392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/22/2025] [Accepted: 05/03/2025] [Indexed: 05/14/2025]
Abstract
The crayfish plague is caused by the oomycete Aphanomyces astaci with North American crayfish (for example Pacifastacus leniusculus and Procambarus clarkii) serving as carriers and vectors for this pathogen. This poses a constant threat to native crayfish in Europe, Asia, South America and Australia, which all are highly susceptible to this pathogen. In this study we now show how the symbiotic balance between the pathogen and its host are maintained at the molecular level. The host factors involved in this balance between the pathogen, A. astaci and the host, P. leniusculus, are one glycine-rich antimicrobial peptide (GRP) that is specifically active against A. astaci, but not to other microorganisms and two Kazal proteinase inhibitors (KPI2 and KPILA) inhibit secreted A. astaci proteases by binding to subtilisin enzymes from the pathogen. Accordingly, the expression of GRP, KPI2, KPILA, as well as proPO mRNAs increases following A. astaci infection. Silencing GRP, or KPI2 + KPILA mRNAs results in death of the crayfish from infection. Over time, this host-pathogen relationship has evolved to allow resistant crayfish to coexist with A. astaci in their cuticle for life, provided critical components remain unaltered by environmental changes or other pathogens. It is unclear whether a similar relationship could develop between currently susceptible crayfish and A. astaci.
Collapse
Affiliation(s)
- Yanhong Wang
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Charlotta Ekblom
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Thanapong Kruangkum
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden; Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Kenneth Söderhäll
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Irene Söderhäll
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
3
|
Bagheri S, Soltanian S, Heidari AA, Gholamhosseini A. Toxicity effects of microplastics individually and in combination with Aeromonas hydrophila on freshwater crayfish (Astacus leptodactylous). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:1236-1246. [PMID: 39718694 DOI: 10.1007/s11356-024-35638-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/21/2024] [Indexed: 12/25/2024]
Abstract
Opportunistic pathogens, such as Aeromonas hydrophila, can cause damage to freshwater crayfish (Astacus leptodactylous) in some situations. In addition to direct damage to the body, microplastics (MPs) can also be responsible for transmitting pathogens to the animal. Accordingly, this research was prepared to investigate the effects of MP on the damage caused by A. hydrophila exposure in A. leptodactylous. Hepatic oxidative biomarkers, blood biochemical indices, and clinical signs were investigated in freshwater crayfish co-exposed to MPs (500 and 1000 mg kg-1) and A. hydrophila (5 and 10% of the median lethal dose (LD50)) for 30 days. In the hemolymph of infested crayfish with A. hydrophila, there were no significant changes in glutathione peroxidase activity or total antioxidant level. However, in some of the clinical parameters, exposure to MP alone had a significant effect. Cholesterol levels, glutathione peroxidase, catalase, and the activity of γ-glutamyltransferase reduced, conversely, glucose, malondialdehyde, and aspartate aminotransferase increased. After co-exposure to A. hydrophila and MPs, certain parameters elevated in the hemolymph of crayfish such as glucose, activity of alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase. However, total protein, cholesterol, γ-glutamyltransferase, glutathione peroxidase, catalase activity, and total antioxidants decreased. In contrast, elevation in malondialdehyde content and superoxide dismutase activity was observed in the hepatocytes of crayfish after co-exposure to A. hydrophila and MPs. To summarize, the investigation demonstrated that the interaction of MPs and A. hydrophila in crayfish has a synergistic effect on various factors.
Collapse
Affiliation(s)
- Sara Bagheri
- Division of Aquatic Animal Health & Diseases, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Siyavash Soltanian
- Division of Aquatic Animal Health & Diseases, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Amir Ali Heidari
- Division of Aquatic Animal Health & Diseases, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Amin Gholamhosseini
- Division of Aquatic Animal Health & Diseases, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
4
|
Paz EA, Chua EG, Palmer DG, Greeff JC, Liu S, Cheuquemán C, Hassan SU, Martin GB, Tay CY. Revealing the associated microflora hosted by the globally significant parasite Trichostrongylus colubriformis. Sci Rep 2024; 14:3723. [PMID: 38355890 PMCID: PMC10866999 DOI: 10.1038/s41598-024-53772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/05/2024] [Indexed: 02/16/2024] Open
Abstract
Trichostrongylus colubriformis is a parasitic helminth that primarily infects small ruminants, causing substantial economic losses in the livestock industry. Exploring the microbiome of this helminth might provide insights into the potential influence of its microbial community on the parasite's survival. We characterised the intestinal microbiome of T. colubriformis that had been collected from the duodenum of sheep, and compared the helminth microbiome with the duodenal microbiome of its host, aiming to identify contributions from the helminth's environment. At the same time, we explored the isolation of fastidious organisms from the harvested helminth. Primary alpha and beta diversity analyses of bacterial species revealed statistically significant differences between the parasite and the host, in terms of species richness and ecological composition. 16S rRNA differential abundance analysis showed that Mycoplasmoides and Stenotrophomonas were significantly present in T. colubriformis but not in the duodenal microbiome of the sheep. Furthermore, two bacteria, Aeromonas caviae and Aeromonas hydrophila, were isolated from T. colubriformis. Examinations of the genome highlight differences in genome size and profiles of antimicrobial resistance genes. Our results suggest that T. colubriformis carries a specific bacterial community that could be supporting the helminth's long-term survival in the host's digestive system.
Collapse
Affiliation(s)
- Erwin A Paz
- UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia.
- Helicobacter Research Laboratory, The Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, WA, 6009, Australia.
| | - Eng Guan Chua
- Helicobacter Research Laboratory, The Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Dieter G Palmer
- Department of Primary Industries and Regional Development Western Australia, 3 Baron-Hay Court South Perth, Perth, WA, 6151, Australia
| | - Johan C Greeff
- UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
- Department of Primary Industries and Regional Development Western Australia, 3 Baron-Hay Court South Perth, Perth, WA, 6151, Australia
| | - Shimin Liu
- UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Carolina Cheuquemán
- Medicina Veterinaria, Facultad de Ciencias Agropecuarias, Universidad del Alba, La Serena, Chile
| | - Shamshad Ul Hassan
- UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
- Helicobacter Research Laboratory, The Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Graeme B Martin
- UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Chin Yen Tay
- Helicobacter Research Laboratory, The Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
5
|
Pundee K, Akeprathumchai S, Tripetchkul S, Salaipeth L. Unveiling the microbial dynamics in vermicomposting with coir pith as earthworm substrate. Heliyon 2023; 9:e22945. [PMID: 38144354 PMCID: PMC10746422 DOI: 10.1016/j.heliyon.2023.e22945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
This study explored the impact of incorporating coir pith, a byproduct of the coconut industry, into the vermicomposting substrate of Eudrilus eugeniae earthworms. The groups were compared based on their diets: cow manure only or cow manure mixed with varying amounts of coir pith. The aim was to assess the effects of coir pith on earthworm growth, mortality and the microbial community involved in vermicomposting. Earthworms fed with higher proportions of coir pith (70 % w/w) experienced reduced growth (0.81 g/worm) and increased mortality (24.67 %) after 5 weeks of vermicomposting. These effects were attributed to the high level of total phenolic content in the system. Coir pith required specific bacteria for digestion and detoxification, and excessive intake disrupted the earthworms' digestion, thus hindering nutrient absorption. The study also examined the microbial composition of the vermicast samples and identified variations based on the diet. Bacterial taxa involved in lignocellulose degradation, such as Bacteriodota, Azospirillum, Chitinophagaceae, Marinomonas and Pantoea, exhibited decreased abundances in treatments with coir pith. Conversely, the abundances of potentially harmful bacteria, such as Aeromonas, increased with higher coir pith inclusion levels. This pioneering investigation sheds light on the feasibility of coir pith use in vermicomposting and emphasises the importance of optimising earthworm diets to enhance microbial ecological functions and improve vermicompost quality.
Collapse
Affiliation(s)
- Kanokwan Pundee
- College of Multidisciplinary Sciences, King Mongkut's University of Technology Thonburi, Tha Kham, Bang Khun Thian, Bangkok, 10150, Thailand
| | - Saengchai Akeprathumchai
- Biotechnology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Tha Kham, Bang Khun Thian, Bangkok, 10150, Thailand
| | - Sudarut Tripetchkul
- Natural Resource Management and Sustainability Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Tha Kham, Bang Khun Thian, Bangkok, 10150, Thailand
| | - Lakha Salaipeth
- Natural Resource Management and Sustainability Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Tha Kham, Bang Khun Thian, Bangkok, 10150, Thailand
- LigniTech-Lignin Technology Research Group, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Tha Kham, Bang Khun Thian, Bangkok, 10150, Thailand
| |
Collapse
|
6
|
Brar B, Kumar R, Sharma D, Sharma AK, Thakur K, Mahajan D, Kumar R. Metagenomic analysis reveals diverse microbial community and potential functional roles in Baner rivulet, India. J Genet Eng Biotechnol 2023; 21:147. [PMID: 38015339 PMCID: PMC10684477 DOI: 10.1186/s43141-023-00601-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND The health index of any population is directly correlated with the water quality, which in turn depends upon physicochemical characteristics and the microbiome of that aquatic source. For maintaining the water quality, knowledge of microbial diversity is a must. The present investigation attempts to evaluate the microflora of Baner. Metagenomics has been proven to be the technique for examining the genetic diversity of unculturable microbiota without using traditional culturing techniques. The microbial profile of Baner is analyzed using metagenomics for the first time to the best of our knowledge. RESULTS To explore the microbial diversity of Baner, metagenomics analysis from 3 different sites was done. Data analysis identified 29 phyla, 62 classes, 131 orders, 268 families, and 741 genera. Proteobacteria was found to be the most abundant phylum in all the sampling sites, with the highest abundance at S3 sampling site (94%). Bacteroidetes phylum was found to be second abundant in S1 and S2 site, whereas Actinobacteria was second dominant in sampling site S3. Enterobacteriaceae family was dominant in site S1, whereas Comamonadaceae and Pseudomonadaceae was abundant in sites S2 and S3 respectively. The Baner possesses an abundant bacterial profile that holds great promise for developing bioremediation tactics against a variety of harmful substances. CONCLUSION Baner river's metagenomic analysis offers the first insight into the microbial profile of this hilly stream. Proteobacteria was found to be the most abundant phylum in all the sampling sites indicating anthropogenic interference and sewage contamination. The highest abundance of proteobacteria at S3 reveals it to be the most polluted site, as it is the last sampling site downstream of the area under investigation, and falls after crossing the main city, so more human intervention and pollution were observed. Despite some pathogens, a rich profile of bacteria involved in bioremediation, xenobiotic degradation, and beneficial fish probiotics was observed, reflecting their potential applications for improving water quality and establishing a healthy aquaculture and fishery section.
Collapse
Affiliation(s)
- Bhavna Brar
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India
| | - Ravi Kumar
- Department of Microbiology, Dr. Rajendra Prasad Government Medical College & Hospital, Tanda, Kangra, Himachal Pradesh, India
| | - Dixit Sharma
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India
| | - Amit Kumar Sharma
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India
| | - Kushal Thakur
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India
| | - Danish Mahajan
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India
| | - Rakesh Kumar
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India.
| |
Collapse
|
7
|
Grbin D, Geček S, Miljanović A, Pavić D, Hudina S, Žučko J, Rieder J, Pisano SRR, Adrian-Kalchhauser I, Bielen A. Comparison of exoskeleton microbial communities of co-occurring native and invasive crayfish species. J Invertebr Pathol 2023; 201:107996. [PMID: 37783231 DOI: 10.1016/j.jip.2023.107996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/04/2023]
Abstract
Host-associated microbial communities are an important determinant of individual fitness and have recently been highlighted as one of the factors influencing the success of invasive species. Invasive hosts introduce their microbes into the new environment, and then both the host and its associated microbes enter into a series of interactions with the native macroscopic and microscopic biota. As these processes are largely unexplored, we aimed to compare the exoskeletal microbial communities of co-occurring and phylogenetically related crayfish: the native narrow-clawed crayfish Pontastacus leptodactylus and the invasive signal crayfish Pacifastacus leniusculus from the recently invaded Korana River, Croatia. The results of high-throughput 16S rRNA sequencing showed that the exoskeletal microbiome of both species is very diverse, significantly influenced by the local environment and dominated by low abundance bacterial families from the phylum Proteobacteria. Furthermore, the exoskeletal microbiomes of the crayfish species differed significantly in the composition and abundance of Amplicon Sequence Variants (ASVs), suggesting that they are to some extent shaped by species-specific intrinsic factors, despite sharing a common habitat. However, over 95% of the bacterial genera associated with the exoskeleton were detected in the exoskeleton samples of both native and invasive crayfish. We paid particular attention to two known crayfish pathogens, Aphanomyces astaci and Saprolegnia parasitica, and find that both species carry low amounts of both pathogens. On the side, we find that a non-standard ddPCR protocol outperforms standard qPCR test for A. astaci under low concentration conditions. Taken together, our results indicate the possibility of bidirectional mixing and homogenisation of exoskeleton microbiome. As such, they can serve as a baseline in future detangling of the processes that act together to shape the microbiomes of co-occuring native and invasive congeners during biological invasions.
Collapse
Affiliation(s)
- Dorotea Grbin
- Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia; Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Sunčana Geček
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Anđela Miljanović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Dora Pavić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Sandra Hudina
- Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia.
| | - Jurica Žučko
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Jessica Rieder
- Institute for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland; Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland; Swiss Institute of Bioinformatics, Quartier Sorge - Batiment Amphipole, 1015 Lausanne, Switzerland.
| | - Simone R R Pisano
- Institute for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland.
| | - Irene Adrian-Kalchhauser
- Institute for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland.
| | - Ana Bielen
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| |
Collapse
|
8
|
Zhao Y, Liu Y, Wu J, Kong D, Zhao S, Li G, Li W. Swamp eel aldehyde reductase is involved in response to nitrosative stress via regulating NO/GSH levels. JOURNAL OF FISH BIOLOGY 2023; 103:529-543. [PMID: 37266950 DOI: 10.1111/jfb.15471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/01/2023] [Indexed: 06/03/2023]
Abstract
Aldehyde reductase (ALR) plays key roles in the detoxification of toxic aldehyde. In this study, the authors cloned the swamp eel ALR gene using rapid amplification of cDNA ends-PCR (RACE-PCR). The recombinant protein (rALR) was expressed in Escherichia coli and purified using a Ni2+ -NTA chelating column. The rALR protein exhibited efficient reductive activity towards several aldehydes, ketones and S-nitrosoglutathione (GSNO). A spot assay suggested that the recombinant E. coli strain expressing rALR showed better resistance to formaldehyde, sodium nitrite and GSNO stress, suggesting that swamp eel ALR is crucial for redox homeostasis in vivo. Consequently, the authors investigated the effect of rALR on the oxidative parameters of the liver in swamp eels challenged with Aeromonas hydrophila. The hepatic glutathione (GSH) content significantly increased, and the hepatic NO content and levels of reactive oxygen species and reactive nitrogen species significantly decreased when rALR was administered. In addition, the mRNA expression of hepatic Alr, HO1 and Nrf2 was significantly upregulated, whereas the expression levels of NF-κB, IL-1β and NOS1 were significantly downregulated in the rALR-administered group. Collectively, these results suggest that ALR is involved in the response to nitrosative stress by regulating GSH/NO levels in the swamp eel.
Collapse
Affiliation(s)
- Yuhe Zhao
- College of Life Sciences, Yangtze University, Jingzhou, China
| | - Yang Liu
- College of Life Sciences, Yangtze University, Jingzhou, China
| | - Jianfen Wu
- College of Life Sciences, Yangtze University, Jingzhou, China
| | - Dan Kong
- College of Life Sciences, Yangtze University, Jingzhou, China
| | - Sifan Zhao
- College of Life Sciences, Yangtze University, Jingzhou, China
| | - Guopan Li
- College of Life Sciences, Yangtze University, Jingzhou, China
| | - Wei Li
- College of Life Sciences, Yangtze University, Jingzhou, China
| |
Collapse
|
9
|
Yuan H, Xie M, Hu N, Zheng Y, Hou C, Tan B, Shi L, Zhang S. Growth, immunity and transcriptome response to different stocking densities in Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2023; 139:108924. [PMID: 37406891 DOI: 10.1016/j.fsi.2023.108924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/11/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
The effects of different stocking densities on Litopenaeus vannamei were investigated from the aspects of growth performance, immune response and transcriptome in this experiment. L. vannamei (initial body weight: 0.30 ± 0.02 g) were reared for 8 weeks at three stocking densities of 100 (LSD), 200 (MSD) and 300 (HSD) shrimp/m³, respectively. The results showed that the survival rate (SR), final body weight (FBW), weight gain rate (WGR), specific growth ratio (SGR) and protein efficiency ratio (PER) of L. vannamei significantly decreased, while the feed factor (FCR) significantly increased with the increase of stocking density. After Vibrio parahemolyticus infection, the SR of L. vannamei in the HSD group was significantly lower than that in the LSD and MSD groups. Increasing stocking density significantly increased the activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lysozyme (LYS) while significantly decreased the activities of catalase (CAT) and phenol oxidase (PO) in the serum of L. vannamei. Similar changes of the gene expression as the activities of immune enzymes were found in the hemocytes. Pairwise comparison between the LSD, MSD and HSD group in the transcriptome analysis identified that there were 304, 1376 and 2083 differentially expressed genes (DEGs) in LSD vs MSD, MSD vs HSD and LSD vs HSD, respectively. Among them, most of the immune-related DEGs were down-regulated and metabolism-related DEGs were up-regulated with the increasing stocking density. In addition, KEGG enrichment pathway analysis revealed that several immune and metabolic related pathways including PI3K-Akt signaling pathway and AMPK signaling pathway were significantly enriched. Of these, the PI3K-Akt signaling pathway had the most DEGs and was also the most significantly enriched pathway. Furthermore, 16 DEGs (such as FOXO, PCK2 and CTSC, etc.) and partial immune enzyme activity (such as AST, CAT and PO, etc.) changes were closely correlated with the increase of stocking density when partial immune-related DEGs and immune-related enzymes were analyzed jointly. All these results indicated that changes in stocking density had a significant effect on the growth performance, immunity and transcriptome of L. vannamei.
Collapse
Affiliation(s)
- Hang Yuan
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Minghua Xie
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Naijie Hu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Yudong Zheng
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Cuihong Hou
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Beiping Tan
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China; GuangDong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, 524088, China
| | - Lili Shi
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Shuang Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China; GuangDong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, 524088, China.
| |
Collapse
|
10
|
Alvanou MV, Feidantsis K, Staikou A, Apostolidis AP, Michaelidis B, Giantsis IA. Probiotics, Prebiotics, and Synbiotics Utilization in Crayfish Aquaculture and Factors Affecting Gut Microbiota. Microorganisms 2023; 11:1232. [PMID: 37317206 DOI: 10.3390/microorganisms11051232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 06/16/2023] Open
Abstract
Aquaculture is affected by numerous factors that may cause various health threats that have to be controlled by the most environmentally friendly approaches. In this context, prebiotics, probiotics, and synbiotics are frequently incorporated into organisms' feeding rations to ameliorate the health status of the host's intestine, enhancing its functionality and physiological performance, and to confront increasing antimicrobial resistance. The first step in this direction is the understanding of the complex microbiome system of the organism in order to administer the optimal supplement, in the best concentration, and in the correct way. In the present review, pre-, pro-, and synbiotics as aquaculture additives, together with the factors affecting gut microbiome in crayfish, are discussed, combined with their future prospective outcomes. Probiotics constitute non-pathogenic bacteria, mainly focused on organisms' energy production and efficient immune response; prebiotics constitute fiber indigestible by the host organism, which promote the preferred gastrointestinal tract microorganisms' growth and activity towards the optimum balance between the gastrointestinal and immune system's microbiota; whereas synbiotics constitute their combination as a blend. Among pro-, pre-, and synbiotics' multiple benefits are boosted immunity, increased resistance towards pathogens, and overall welfare promotion. Furthermore, we reviewed the intestinal microbiota abundance and composition, which are found to be influenced by a plethora of factors, including the organism's developmental stage, infection by pathogens, diet, environmental conditions, culture methods, and exposure to toxins. Intestinal microbial communities in crayfish exhibit high plasticity, with infections leading to reduced diversity and abundance. The addition of synbiotic supplementation seems to provide better results than probiotics and prebiotics separately; however, there are still conflicting results regarding the optimal concentration.
Collapse
Affiliation(s)
- Maria V Alvanou
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece
| | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Science, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Alexandra Staikou
- Laboratory of Marine and Terrestrial Animal Diversity, Department of Zoology, Facultyof Science, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki,Greece
| | - Apostolos P Apostolidis
- Laboratory of Ichthyology & Fisheries, Department of Animal Production, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Science, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis A Giantsis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece
- Laboratory of Ichthyology & Fisheries, Department of Animal Production, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
11
|
Hernández-Pérez A, Söderhäll I. Intestinal microbiome in crayfish: Its role upon growth and disease presentation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 145:104703. [PMID: 37004928 DOI: 10.1016/j.dci.2023.104703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/31/2023] [Accepted: 03/29/2023] [Indexed: 05/20/2023]
Abstract
The intestine-associated microbiota in crustaceans are considered a key element for maintaining homeostasis and health within the organisms. Recently, efforts have been made to characterize bacterial communities of freshwater crustaceans, including crayfish, and their interplay with the host's physiology and the aquatic environments. As a result, it has become evident that crayfish intestinal microbial communities display high plasticity, which is strongly influenced by both the diet, especially in aquaculture, and the environment. Moreover, studies regarding the characterization and distribution of the microbiota along the gut portions led to the discovery of bacteria with probiotic potential. The addition of these microorganisms to their food has shown a limited positive correlation with the growth and development of crayfish freshwater species. Finally, there is evidence that infections, particularly those from viral etiology, lead to low diversity and abundance of the intestinal microbial communities. In the present article, we have reviewed data on the crayfish' intestinal microbiota, highlighting the most frequently observed taxa and emphasizing the dominance of phylum within this community. In addition, we have also searched for evidence of microbiome manipulation and its potential impact on productive parameters, and discussed the role of the microbiome in the regulation of diseases presentation, and environmental perturbations.
Collapse
Affiliation(s)
- Ariadne Hernández-Pérez
- Departamento de Medicina y Zootecnia de Abejas, Conejos y Organismos Acuáticos. Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica s/n, 04510, Ciudad Universitaria, México.
| | - Irene Söderhäll
- Department of Organismal Biology, Uppsala University, Norbyvägen 18A, 752 36, Uppsala, Sweden
| |
Collapse
|
12
|
Wanyan R, Pan M, Mai Z, Xiong X, Su W, Yang J, Yu Q, Wang X, Han Q, Li H, Wang G, Wu S. Distribution and influencing factors of antibiotic resistance genes of crayfish (Procambarus clarkii) intestine in main crayfish breeding provinces in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159611. [PMID: 36273569 DOI: 10.1016/j.scitotenv.2022.159611] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The propagation of antibiotic resistance genes (ARGs) has become a global public health concern. However, the distribution and influencing factors of ARGs, especially high-risk ARGs, in the gut of aquaculture animals remain unclear. Here, we employed 16S rRNA gene sequencing and high-throughput quantitative PCR techniques to determine crayfish gut microbiota and ARGs collected from 40 culture ponds in major crayfish farming provinces of China. We detected 74 ARGs in crayfish gut. Among them, the beta-lactamase and tetracycline resistance genes were dominant. The total ARG abundance was the highest in Hubei Province. High-risk ARGs were also found in crayfish gut, and ermB had the highest abundance and distributed in Anhui, Hubei, Henan and Jiangxi Province. In addition, opportunistic pathogens (Streptococcus, Aeromonas and Acinetobacter) might be potential hosts for ARGs, including high-risk ARGs. Finally, habitat, environmental factors (NO3-N, pH and temperature), microbial alpha diversity and mobile genetic elements (MGEs) showed significant influence on ARGs profiles. Generally, our results illustrate that ARGs are prevalent in crayfish gut and may pose potential risk to human health, which will help develop targeted strategies for the risk management and assessment of ARGs in the aquaculture.
Collapse
Affiliation(s)
- Ruijun Wanyan
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Meijing Pan
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhan Mai
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiong Xiong
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanghong Su
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jiawei Yang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qiaoling Yu
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xiaochen Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qian Han
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Gansu 730000, China
| | - Guitang Wang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shangong Wu
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
13
|
Liu Y, Ai X, Sun R, Yang Y, Zhou S, Dong J, Yang Q. Residue, biotransformation, risk assessment and withdrawal time of enrofloxacin in red swamp crayfish (Procambarus clarkii). CHEMOSPHERE 2022; 307:135657. [PMID: 35820477 DOI: 10.1016/j.chemosphere.2022.135657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Crayfish is a very popular aquatic food in many countries, and enrofloxacin (ENR) and ciprofloxacin (CIP) was the most frequently detected in aquatic products. However, limited information is available on the residue characterization, biotransformation rate and withdrawal period (WT) of ENR and CIP in crayfish and health risk via consumption of ENR and CIP remained crayfish. Herein, a comprehensive investigation was conducted to study residue depletion, biotransformation, ingestion risk, and WT of ENR and its predominate metabolite CIP in crayfish following different routes with repeated doses. The results showed that the elimination half-life (T1/2) of target compounds in crayfish were all in order of hepatopancreas > muscle > gill, and the order of T1/2 in different crayfish tissues were intramuscular (IM) route > oral (PO) treatment > immersion (IMMR) administration. The biotransformation rates from ENR to CIP varied from 0.75% to 3.45% in crayfish tissues following different exposure routes. The high dietary risk (RQ > 1) consuming muscle and hepatopancreas of ENR and CIP remained crayfish occurred at early after different administrations. WT is the key to control the drug residue risk, and the longest WT of marker residue of ENR in crayfish was calculated to be 51 d (1275 °C-day).
Collapse
Affiliation(s)
- Yongtao Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China; Hubei Province Engineering and Technology Research Center for Aquatic Product Quality and Safety, Wuhan, 430223, China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing, 100141, China.
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China; Hubei Province Engineering and Technology Research Center for Aquatic Product Quality and Safety, Wuhan, 430223, China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing, 100141, China.
| | - Ruyu Sun
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Yibin Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China; Hubei Province Engineering and Technology Research Center for Aquatic Product Quality and Safety, Wuhan, 430223, China
| | - Shun Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China; Hubei Province Engineering and Technology Research Center for Aquatic Product Quality and Safety, Wuhan, 430223, China
| | - Jing Dong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China; Hubei Province Engineering and Technology Research Center for Aquatic Product Quality and Safety, Wuhan, 430223, China
| | - Qiuhong Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China; Hubei Province Engineering and Technology Research Center for Aquatic Product Quality and Safety, Wuhan, 430223, China
| |
Collapse
|
14
|
Abdul Kari Z, Wee W, Mohamad Sukri SA, Che Harun H, Hanif Reduan MF, Irwan Khoo M, Van Doan H, Wen Goh K, Seong Wei L. Role of phytobiotics in relieving the impacts of Aeromonas hydrophila infection on aquatic animals: A mini-review. Front Vet Sci 2022; 9:1023784. [PMID: 36277060 PMCID: PMC9582345 DOI: 10.3389/fvets.2022.1023784] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/15/2022] [Indexed: 11/04/2022] Open
Abstract
Aeromonas hydrophila is a ubiquitous bacterium with various hosts that causes mass mortality in farm-raised fish species and significant economic losses. The current antibiotic treatment is ineffective in controlling this bacterium infection in aquaculture species. Therefore, an evaluation of potential phytobiotics is needed to find an alternative antimicrobial agent to reduce the over-reliance on antibiotics in aquaculture and safeguard public and environmental health. Furthermore, the rise in antibiotic resistance cases among pathogenic bacteria indicates an urgent need for new fish and shellfish health management solutions. In this context, phytobiotics applications in aquaculture can be defined as any medicinal plant-based antimicrobial agent used in fish and shellfish health management. This review will focus on the impacts of Motile Aeromonas Septicemia (MAS) due to A. hydrophila in aquaculture, the potential of phytobiotics in enhancing the tolerance of aquaculture species against MAS and the combination of phytobiotics with other antimicrobial and therapeutic agents against MAS.
Collapse
Affiliation(s)
- Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
| | - Wendy Wee
- Center of Fundamental and Continuing Education, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Suniza Anis Mohamad Sukri
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
| | - Hasnita Che Harun
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
| | - Mohd Farhan Hanif Reduan
- Department of Paraclinical Study, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Bharu, Kelantan, Malaysia
| | - Martina Irwan Khoo
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai, Thailand
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Lee Seong Wei
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
| |
Collapse
|
15
|
Zhao C, Wen H, Huang S, Weng S, He J. A Novel Disease (Water Bubble Disease) of the Giant Freshwater Prawn Macrobrachium rosenbergii Caused by Citrobacter freundii: Antibiotic Treatment and Effects on the Antioxidant Enzyme Activity and Immune Responses. Antioxidants (Basel) 2022; 11:1491. [PMID: 36009210 PMCID: PMC9405353 DOI: 10.3390/antiox11081491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
The giant freshwater prawn, Macrobrachium rosenbergii, is an important and economical aquaculture species widely farmed in tropical and subtropical areas of the world. A new disease, "water bubble disease (WBD)", has emerged and resulted in a large loss of M. rosenbergii cultured in China. A water bubble with a diameter of about 7 mm under the carapace represents the main clinical sign of diseased prawns. In the present study, Citrobacter freundii was isolated and identified from the water bubble. The optimum temperature, pH, and salinity of the C. freundii were 32 °C, 6, and 1%, respectively. A challenging experiment showed that C. freundii caused the same typical signs of WBD in prawns. Median lethal dose of the C. freundii to prawn was 104.94 CFU/g. According to the antibiogram tests of C. freundii, florfenicol and ofloxacin were selected to evaluate their therapeutic effects against C. freundii in prawn. After the challenge with C. freundii, 86.67% and 72.22% survival of protective effects against C. freundii were evaluated in the oral florfenicol pellets and oral ofloxacin pellets feding prawns, respectively, whereas the mortality of prawns without fed antibiotics was 93%. After antibiotic treatment and C. freundii infection, the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), malondialdehyde (MDA), acid phosphatase (ACP), alkaline phosphatase (ALP), and lysozyme (LZM) in the hemolymph and hepatopancreas of the prawns and the immune-related gene expression levels of Cu/Zn-SOD, CAT, GPx, GST, LZM, ACP, anti-lipopolysaccharide factor, crustin, cyclophilin A, and C-type lectin in hepatopancreas were all significantly changed, indicating that innate immune responses were induced by C. freundii. These results can be beneficial for the prevention and control of C. freundii in prawns.
Collapse
Affiliation(s)
- Caiyuan Zhao
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou 510006, China;
| | - Huagen Wen
- Southtern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Science, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou 510006, China; (H.W.); (S.H.); (S.W.)
| | - Shengsheng Huang
- Southtern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Science, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou 510006, China; (H.W.); (S.H.); (S.W.)
| | - Shaoping Weng
- Southtern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Science, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou 510006, China; (H.W.); (S.H.); (S.W.)
| | - Jianguo He
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou 510006, China;
- Southtern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Science, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou 510006, China; (H.W.); (S.H.); (S.W.)
| |
Collapse
|
16
|
Foysal MJ, Dao TTT, Fotedar R, Gupta SK, Tay A, Chaklader MR. Sources of protein diet differentially stimulate the gut and water microbiota under freshwater crayfish, marron (Cherax cainii, Austin 2002) culture. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:286-298. [PMID: 35130581 PMCID: PMC9303337 DOI: 10.1111/1758-2229.13049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 01/06/2022] [Accepted: 01/23/2022] [Indexed: 05/29/2023]
Abstract
To reduce the reliance on fishmeal (FM), other protein sources have been evaluated on cultured animals. In a 60-days feeding trial, marrons (Cherax cainii) were fed a FM diet and five test diets containing 100% of plant-based protein sources such as soybean, lupin and valorised animal-based proteins such as poultry-by-product, black soldier fly and tuna hydrolysate. At the end of the trial, DNA samples from marron gut and rearing water were investigated through DNA-based 16S rRNA gene sequencing. Plant-based diets increased abundance for Aeromonas, Flavobacterium and Vogesella, whereas animal and insect proteins influenced diverse bacterial groups in the gut linked to various metabolic activities. Insect meal in the water favoured the growth of Firmicutes and lactic acid bacteria, beneficial for the marron health. Aeromonas richness in the gut and reared water signified the ubiquitous nature of the genus in the environment. The higher bacterial diversity in the gut and water with PBP and BSF was further supported by qPCR quantification of the bacterial single-copy gene, rpoB. The overall results suggested that PBP and BSF can exhibit positive and influential effects on the gut and water microbial communities, hence can be used as sustainable ingredients for the crayfish aquaculture.
Collapse
Affiliation(s)
- Md Javed Foysal
- School of Molecular and Life SciencesCurtin UniversityBentleyWAAustralia
- Department of Genetic Engineering and BiotechnologyShahjalal University of Science and TechnologySylhetBangladesh
| | - Thi Thanh Thuy Dao
- School of Molecular and Life SciencesCurtin UniversityBentleyWAAustralia
| | - Ravi Fotedar
- School of Molecular and Life SciencesCurtin UniversityBentleyWAAustralia
| | | | - Alfred Tay
- Helicobacter Research Laboratory, Marshall Centre for Infectious Disease Research and Training, School of Biomedical SciencesUniversity of Western AustraliaPerthWAAustralia
| | - Md Reaz Chaklader
- School of Molecular and Life SciencesCurtin UniversityBentleyWAAustralia
| |
Collapse
|
17
|
Bekavac A, Beck A, Dragičević P, Dragun Z, Maguire I, Ivanković D, Fiket Ž, Gračan R, Hudina S. Disturbance in invasion? Idiopathic necrotizing hepatopancreatitis in the signal crayfish Pacifastacus leniusculus (Dana, 1852) in Croatia. JOURNAL OF FISH DISEASES 2022; 45:261-276. [PMID: 34751441 DOI: 10.1111/jfd.13552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
As the most successful crayfish invader and possible vector for infectious agents, signal crayfish Pacifastacus leniusculus is among the major drivers of the native crayfish species decline in Europe. We describe histopathological manifestation and frequency of newly detected idiopathic necrotizing hepatopancreatitis along the invasion range of the signal crayfish in the Korana River in Croatia. Our results show extremely high prevalence of necrotizing hepatopancreatitis (97.3%), with 58.9% of individuals displaying mild and 31.5% moderate histopathological changes in the hepatopancreas, also reflected in the lower hepatosomatic index of analysed animals. Recorded histopathological changes were more frequent in the invasion core where population density is higher. Our preliminary screening of co-occurring native narrow-clawed crayfish Pontastacus leptodactylus showed lower incidence (33.3%) and only mild hepatopancreatic lesions, but potentially highlighted the susceptibility of native crayfish populations to this disease. Pilot analyses of dissolved trace and macro elements in water, sediment fractions and crayfish hepatopancreas do not highlight alarming or unusually high concentrations of analysed elements. Hepatopancreas microbiome analysis, using 16S rRNA gene amplicon sequencing, identified taxonomic groups that should be further investigated, along with impacts of the disease on health and viability of both invasive and native crayfish populations.
Collapse
Affiliation(s)
- Ana Bekavac
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
- Department of Histology and Embryology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ana Beck
- Veterinary Pathologist, Zagreb, Croatia
| | - Paula Dragičević
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Zrinka Dragun
- Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ivana Maguire
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Dušica Ivanković
- Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Ruđer Bošković Institute, Zagreb, Croatia
| | - Željka Fiket
- Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Ruđer Bošković Institute, Zagreb, Croatia
| | - Romana Gračan
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Sandra Hudina
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
18
|
Zheng N, Wang N, Wang ZY, Abdallah G, Zhang BY, Wang S, Yao Q, Chen YK, Wang QJ, Zhang DM. Effect of infection with Aeromonas hydrophila on antioxidant capacity, inflammation response, and apoptosis proteins in Chinese mitten crab (Eriocheir sinensis). Comp Biochem Physiol C Toxicol Pharmacol 2022; 252:109220. [PMID: 34718187 DOI: 10.1016/j.cbpc.2021.109220] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/25/2021] [Accepted: 10/20/2021] [Indexed: 11/03/2022]
Abstract
Aeromonas hydrophila (A. hydrophila) as a serious bacterial disease endangering aquaculture and the Chinese mitten crabs (Eriocheir sinensis) industry. The present study was conducted to investigate the effects of A. hydrophila on the antioxidant, inflammation, immunity and apoptosis of the E. sinensis. The E. sinensis (female: 150 crabs and male: 150 crabs; 67.11 ± 0.76 g) were randomly divided into the control group (Foot injection with 200 μl PBS) and infection group (Foot injection with 200 μl A. hydrophila of 106 cfu/mL). The hepatopancreas and serum was collected to detect the related indicators after injection 24 h. The results showed that A. hydrophila significantly reduced the malondialdehyde (MDA) level and gamma-glutamyl-cysteine synthetase (γ-GCS) activity in the hepatopancreas of male and female crabs (P < 0.05). A.hydrophila also significantly decreased the total-superoxide dismutase (T-SOD) activity while the levels of total antioxidant capacity (T-AOC) and total glutathione (T-GSH) were significantly increased in the hepatopancreas and serum of male crabs (P < 0.05). At the transcriptional level, the expression of catalase (CAT) and glutathione peroxidases (GPx), Glutathione S-transferase (GST) in the hepatopancreas of male and female crabs was significantly reduced compared to the control group (P < 0.05). However, A. hydrophila could not significantly change the Kelch-like ECH-associated protein 1 (Keap1) gene expression level in both of male and female carbs. A. hydrophila injection for 24 h, the lysozyme (LZM) and phenoloxidase (PO) activity was significantly increased in the hepatopancreas and serum of the male and female crabs (P < 0.05). Simultaneous increase of immune-related enzyme activity (acid phosphatase and alkaline phosphatase) was found in the serum of male and female crabs (P < 0.05). However, the acid phosphatase (ACP) and alkaline phosphatase (ALP) activity was significantly decreased in the hepatopancreas of male and female crabs (P < 0.05). Meanwhile, the LZM mRNA level was significantly decreased in the hepatopancreas of E. sinensis (P < 0.05). Furthermore, A. hydrophila significantly inhibited the mRNA expression of immune regulated factors (Interleukin enhancer binding factor 2: ILF2, interleukin-16: IL-16, Toll-like receptor: TLR) in the male and female crabs. The levels of inflammatory cytokines (interleukin-1β: IL-1β, interleukin-6: IL-6, interleukin-8: IL-8, interleukin-10: IL-10) were significantly increased in the hepatopancreas of male and female crabs. Moreover, A.hydrophila increased the mRNA expression of apoptosis - related genes in male crabs (p38 mitogen-activated protein kinase: p38, adamalysin 17: ADAM17, Cysteine-aspartic acid protease 3: Caspase 3, and Bcl-2-associated X: BAX), but reduced the expression of p38, ADAM17, Caspase 3 and BAX genes in female crabs. In conclusion, A. hydrophila could induce oxidative stress and the response of inflammation and immunity, and also trigger the mRNA expression changes of apoptosis related-genes in E. sinensis. This study provides a theoretical basis for the study of E. sinensis diseases.
Collapse
Affiliation(s)
- Nan Zheng
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, Changchun 130118, China
| | - Ning Wang
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, Changchun 130118, China
| | - Zhuo-Yu Wang
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, Changchun 130118, China
| | - Ghonimy Abdallah
- Key Laboratory of Sustainable Development of Marine Fisheries, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Fish Farming and Technology Institute, Suez Canal University, Ismailia 41522, Egypt
| | - Bao-Yuan Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, Changchun 130118, China
| | - Sen Wang
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, Changchun 130118, China
| | - Qi Yao
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, Changchun 130118, China
| | - Yu-Ke Chen
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, Changchun 130118, China
| | - Qiu-Ju Wang
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, Changchun 130118, China.
| | - Dong-Ming Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Jilin, Changchun 130118, China; Tonghua Normal University, Jilin, Tonghua 134000, China.
| |
Collapse
|
19
|
Hernández-Pérez A, Zamora-Briseño JA, Söderhäll K, Söderhäll I. Gut microbiome alterations in the crustacean Pacifastacus leniusculus exposed to environmental concentrations of antibiotics and effects on susceptibility to bacteria challenges. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104181. [PMID: 34175331 DOI: 10.1016/j.dci.2021.104181] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/20/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Gut-associated microbiota in crustaceans are recognized as a key element for maintaining homeostasis and health in the animal. Since the richness of these microbial communities is strongly influenced by the local environment, especially in aquatic organisms, it is important to address to what extent environmental variations can affect these communities. In the present study, we used high-throughput 16S rRNA sequencing technology to study the composition of gut-associated microbiota of the crayfish Pacifastacus leniusculus after exposure to environmentally-relevant concentrations of an antibiotic, namely sulfamethoxazole. Also, we examined if alterations of microbiota caused by environmentally-relevant concentrations of this antibiotic affected the host susceptibility to bacterial diseases, including Vibrio species. As a result, we found high individual variability of bacterial abundance and composition in the intestinal microbiome of crayfish, in both antibiotic-exposed and antibiotic-free crayfish. However, an increase of chitinolytic bacteria including Vibrio spp. was detected in some animals exposed to the antibiotic. Moreover, when crayfish susceptibility to bacterial infections was tested, the antibiotic-exposed crayfish survived longer than the control crayfish group. This study represents the first approach for investigating the interplay between crayfish and intestinal bacteria during antibiotic-pollution scenarios. Results herein should be considered by scientists before planning experiments under laboratory conditions, especially to study environmental effects on aquatic animals' intestinal health and immune status.
Collapse
Affiliation(s)
- Ariadne Hernández-Pérez
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36, Uppsala, Sweden.
| | - Jesús Alejandro Zamora-Briseño
- Red de Manejo Biorracional de Plagas y Vectores, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec 351, El Haya, Xalapa 91073, Veracruz, Mexico
| | - Kenneth Söderhäll
- SciLife Laboratory, Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36, Uppsala, Sweden
| | - Irene Söderhäll
- SciLife Laboratory, Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36, Uppsala, Sweden.
| |
Collapse
|
20
|
Zhou J, Zhao Z, Zhang L, Huang Z, Zhao H, Duan Y, Ke H, Li H, Du J, Li Q. Integrative analysis identifies the quality advantage and corresponding regulatory mechanism of paddy field-cultured crayfish (Procambarus clarkii). Appl Microbiol Biotechnol 2021; 105:7451-7461. [PMID: 34542688 DOI: 10.1007/s00253-021-11563-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 11/28/2022]
Abstract
Procambarus clarkii is the dominant economic variety of crayfish in China, and paddy field shrimp cultivation is an organic mode of traditional rice-fish cultivation, with paddy field shrimp being the country's prevailing aquatic product. However, little has been reported on the differences in meat quality and digestive ability between paddy field and pond fish. In this study, the muscle composition and digestive function regulation of P. clarkii in ponds and paddies were studied to explore the influence of paddy field culture on P. clarkii quality. The results showed that the muscle composition of paddy field shrimp was significantly changed, with increased protein and decreased lipid levels. Through the study of the hepatopancreas and intestinal microbial diversity of P. clarkii, we hypothesized that rice farming may cause changes in its bacterial spectrum, stimulate the digestive functions of its intestines and hepatopancreas, cause differential expression of multi-substance metabolic pathways, and ultimately result in the substances' deposition in its muscles. This study revealed the impact of rice cultivation on P. clarkii from the perspective of meta-metabolism, and it demonstrated the advantages of paddy field shrimp cultivation.Key points• We explored the influence of paddy field culture on P. clarkii quality.• Muscle composition of paddy field shrimp was significantly changed, with increased protein and decreased lipid levels in paddy field.• Rice farming caused changes in its bacterial spectrum and stimulated the digestive functions of hepatopancreas.
Collapse
Affiliation(s)
- Jian Zhou
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611731, China
| | - Zhongmeng Zhao
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611731, China
| | - Lu Zhang
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611731, China
| | - Zhipeng Huang
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611731, China
| | - Han Zhao
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611731, China
| | - Yuanliang Duan
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611731, China
| | - Hongyu Ke
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611731, China
| | - Huadong Li
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611731, China
| | - Jun Du
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611731, China
| | - Qiang Li
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611731, China.
| |
Collapse
|
21
|
Huang L, Wu BL, He JX, Zhang Y, Chen J, Chen XJ. Molecular characterization and functional analysis of the lysosomal cathepsin D-like gene in red swamp crayfish, Procambarus clarkii. Genome 2021; 64:1041-1051. [PMID: 34323597 DOI: 10.1139/gen-2020-0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aspartic proteinases are one of the four families of proteinase enzymes that are widely present in living organisms. They are involved in various physiological events, such as protein degradation, development, and host defense. However, the characterization and functional roles of aspartic proteinases remain to be elucidated in crustaceans. Here, we characterized a fragment of cathepsin D-like cDNA from red swamp crayfish, Procambarus clarkii (Pc-cathepsin D-like). The open reading frame of the Pc-cathepsin D-like gene contained 1152 bp, encoding a protein of 383 amino acid residues. We also evaluated the immunological role of the Pc-cathepsin D-like gene in vivo. Spatial distribution analysis revealed that the Pc-cathepsin D-like mRNA was high in the hepatopancreas, followed by the gut, gills, and hemocytes of P. clarkii. The expression levels of the Pc-cathepsin D-like gene increased following challenge with viral (polyinosinic: polycytidylic acid) and bacterial (lipopolysaccharides, peptidoglycan) PAMPs compared with PBS injection. The suppression of the Pc-cathepsin D-like gene by RNA interference significantly increased the expression of immune-associated genes. These results showed that the Pc-cathepsin D-like gene has an essential biological role in innate immune responses because it regulates the expression of immune-associated genes.
Collapse
Affiliation(s)
- Long Huang
- Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, Fisher Institute of Anhui Academy of Agricultural Sciences, Hefei, 230031, China.,Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, Fisher Institute of Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Ben-Li Wu
- Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, Fisher Institute of Anhui Academy of Agricultural Sciences, Hefei, 230031, China.,Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, Fisher Institute of Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Ji-Xiang He
- Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, Fisher Institute of Anhui Academy of Agricultural Sciences, Hefei, 230031, China.,Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, Fisher Institute of Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Ye Zhang
- Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, Fisher Institute of Anhui Academy of Agricultural Sciences, Hefei, 230031, China.,Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, Fisher Institute of Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Jing Chen
- Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, Fisher Institute of Anhui Academy of Agricultural Sciences, Hefei, 230031, China.,Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, Fisher Institute of Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Xia-Jun Chen
- Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, Fisher Institute of Anhui Academy of Agricultural Sciences, Hefei, 230031, China.,Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, Fisher Institute of Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| |
Collapse
|
22
|
Kausar S, Abbas MN, Cui H. A review on the DNA methyltransferase family of insects: Aspect and prospects. Int J Biol Macromol 2021; 186:289-302. [PMID: 34237376 DOI: 10.1016/j.ijbiomac.2021.06.205] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/22/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022]
Abstract
The DNA methyltransferase family contains a conserved set of DNA-modifying enzymatic proteins. They are responsible for epigenetic gene modulation, such as transcriptional silencing, transcription activation, and post-transcriptional modulation. Recent research has revealed that the canonical DNA methyltransferases (DNMTs) biological roles go beyond their traditional functions of establishing and maintaining DNA methylation patterns. Although a complete DNA methylation toolkit is absent in most insect orders, recent evidence indicates the de novo DNA methylation and maintenance function remain conserved. Studies using various molecular approaches provided evidence that DNMTs are multi-functional proteins. However, still in-depth studies on their biological role lack due to the least studied area in insects. Here, we review the DNA methylation toolkit of insects, focusing on recent research on various insect orders, which exhibit DNA methylation at different levels, and for which DNMTs functional studies have become available in recent years. We survey research on the potential roles of DNMTs in the regulation of gene transcription in insect species. DNMTs participate in different physiological processes by interacting with other epigenetic factors. Future studies on insect's DNMTs will benefit to understand developmental processes, responses to various stimuli, and adaptability of insects to different environmental conditions.
Collapse
Affiliation(s)
- Saima Kausar
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
23
|
Zhang Q, Lin Y, Zhang T, Wu Y, Fang P, Wang S, Wu Z, Hao J, Li A. Etiological characteristics of "tail blister disease" of Australian redclaw crayfish (Cherax quadricarinatus). J Invertebr Pathol 2021; 184:107643. [PMID: 34224726 DOI: 10.1016/j.jip.2021.107643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/07/2021] [Accepted: 06/28/2021] [Indexed: 11/30/2022]
Abstract
In November 2019, an acute disease outbreak in Australian redclaw crayfish (Cherax quadricarinatus) occurred in a farm in Hubei, China, with a cumulative mortality rate of over 80%. One of the characteristic symptoms of the disease was blisters on the tail. This symptom is also common in diseased Procambarus clarkii every year in this country, but the causative agent has not been determined. This study analyzed the etiological characteristics of this disease. Bacterial isolation and identification combined with high-throughput sequencing analysis were conducted to obtain the microbiota characteristics in the hemolymph, hepatopancreas, and intestines. Results showed that this outbreak was caused by infection from Aeromonas hydrophila and Aeromonas veronii. The underlying cause was stress imposed on crayfish during transferring from outdoor pond to indoor pond because of temperature drops. Aeromonas infection caused remarkable changes in the structure of the microbial composition in the hemolymph, hepatopancreas, and intestines of the crayfish. The abundance of Aeromonas in the hemolymph of the sick crayfish was as high as 99.33%. In particular, KEGG metabolic pathway analysis showed that some antibiotic synthesis, enterobactin biosynthesis, and myo-inositol degradation pathways were abundant in healthy crayfish hemolymphs, which may be the mechanism of maintaining crayfish health. Conversely, inhibition of these pathways led to the disorder of microbiota structure, finally leading to the occurrence of diseases. To the knowledge of the authors, this study was the first to use high-throughput amplicon sequencing targeting the 16S rRNA gene to find the causative bacteria in aquatic animals. This protocol can provide more comprehensive and reliable evidence for pathogen identification, even if the pathogenic bacteria are anaerobes or other hard-to-culture bacteria.
Collapse
Affiliation(s)
- Qianqian Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, China; National Aquatic Biological Resource Center, NABRC, Wuhan, China
| | - Yaoyao Lin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Tanglin Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yafeng Wu
- Fisheries Technical Extension Centre of Jiangsu Province, Nanjing, China
| | - Ping Fang
- Fisheries Technical Extension Centre of Jiangsu Province, Nanjing, China
| | - Shuyi Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jingwen Hao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Aihua Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, China; National Aquatic Biological Resource Center, NABRC, Wuhan, China.
| |
Collapse
|
24
|
Bouallegui Y. A Comprehensive Review on Crustaceans' Immune System With a Focus on Freshwater Crayfish in Relation to Crayfish Plague Disease. Front Immunol 2021; 12:667787. [PMID: 34054837 PMCID: PMC8155518 DOI: 10.3389/fimmu.2021.667787] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/27/2021] [Indexed: 12/21/2022] Open
Abstract
Freshwater crayfish immunity has received great attention due to the need for urgent conservation. This concern has increased the understanding of the cellular and humoral defense systems, although the regulatory mechanisms involved in these processes need updating. There are, however, aspects of the immune response that require clarification and integration. The particular issues addressed in this review include an overall description of the oomycete Aphanomyces astaci, the causative agent of the pandemic plague disease, which affects freshwater crayfish, and an overview of crustaceans' immunity with a focus on freshwater crayfish. It includes a classification system of hemocyte sub-types, the molecular factors involved in hematopoiesis and the differential role of the hemocyte subpopulations in cell-mediated responses, including hemocyte infiltration, inflammation, encapsulation and the link with the extracellular trap cell death pathway (ETosis). In addition, other topics discussed include the identity and functions of hyaline cells, the generation of neoplasia, and the emerging topic of the role of sessile hemocytes in peripheral immunity. Finally, attention is paid to the molecular execution of the immune response, from recognition by the pattern recognition receptors (PRRs), the role of the signaling network in propagating and maintaining the immune signals, to the effector elements such as the putative function of the Down syndrome adhesion molecules (Dscam) in innate immune memory.
Collapse
Affiliation(s)
- Younes Bouallegui
- LR01ES14 Laboratory of Environmental Biomonitoring, Faculty of Sciences of Bizerte, University of Carthage, Bizerte, Tunisia
| |
Collapse
|
25
|
Prevalence, Virulence Gene Distribution and Alarming the Multidrug Resistance of Aeromonas hydrophila Associated with Disease Outbreaks in Freshwater Aquaculture. Antibiotics (Basel) 2021; 10:antibiotics10050532. [PMID: 34064504 PMCID: PMC8147934 DOI: 10.3390/antibiotics10050532] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/01/2021] [Accepted: 05/02/2021] [Indexed: 01/15/2023] Open
Abstract
The study aims to evaluate the infection prevalence, virulence gene distribution and antimicrobial resistance of Aeromonas hydrophila associated in diseased outbreaks of cultured freshwater fish in Northern Vietnam. The confirmed A. hydrophila were screened for the presence of the five pitutative-virulence genes including aerolysin (aerA), hemolysin (hlyA), cytotonic enterotoxin (act), heat-labile cytotonic enterotoxin (alt), and heat-stable enterotoxin (ast), and examined the susceptibility to 16 antibiotics. A total of 236 A. hydrophila isolates were recovered and confirmed from 506 diseased fish by phenotypic tests, PCR assays, and gyrB, rpoB sequenced analyses, corresponding to the infection prevalence at 46.4%. A total of 88.9% of A. hydrophila isolates harbored at least one of the tested virulence genes. The genes aerA and act were most frequently found (80.5% and 80.1%, respectively) while the ast gene was absent in all isolates. The resistance to oxacillin, amoxicillin and vancomycin exhibited the highest frequencies (>70%), followed by erythromycin, oxytetracycline, florfenicol, and sulfamethoxazole/trimethoprim (9.3–47.2%). The multiple antibiotic resistance (MAR) index ranged between 0.13–0.88 with 74.7% of the isolates having MAR values higher than 0.2. The results present a warning for aquaculture farmers and managers in preventing the spread of A. hydrophila and minimizing antibiotic resistance of this pathogen in fish farming systems.
Collapse
|
26
|
Dragičević P, Bielen A, Petrić I, Hudina S. Microbial pathogens of freshwater crayfish: A critical review and systematization of the existing data with directions for future research. JOURNAL OF FISH DISEASES 2021; 44:221-247. [PMID: 33345337 DOI: 10.1111/jfd.13314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 06/12/2023]
Abstract
Despite important ecological role and growing commercial value of freshwater crayfish, their diseases are underresearched and many studies examining potential crayfish pathogens do not thoroughly address their epizootiology, pathology or biology. This study reviews over 100 publications on potentially pathogenic viruses, bacteria, fungi and fungal-like microorganisms reported in crayfish and systematizes them based on whether pathogenicity has been observed in an analysed species. Conclusions on pathogenicity were based on successful execution of infectivity trials. For 40.6% of examined studies, microbes were successfully systematized, while for more than a half (59.4%) no conclusion on pathogenicity could be made. Fungi and fungal-like microorganisms were the most studied group of microbes with the highest number of analysed hosts, followed by bacteria and viruses. Our analysis demonstrated the need for: (a) inclusion of higher number of potential host species in the case of viruses, (b) research of bacterial effects in tissues other than haemolymph, and (c) more research into potential fungal and fungal-like pathogens other than Aphanomyces astaci. We highlight the encountered methodological challenges and biases and call for a broad but standardized framework for execution of infectivity trials that would enable systematic data acquisition on interactions between microbes and the host.
Collapse
Affiliation(s)
- Paula Dragičević
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Ana Bielen
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | | | - Sandra Hudina
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
27
|
Liu M, Chen C, Wu QC, Chen JL, Dai LS, Hui Chu S, Liu QN. Chitinase involved in immune regulation by mediated the toll pathway of crustacea Procambarus clarkii. FISH & SHELLFISH IMMUNOLOGY 2021; 110:67-74. [PMID: 33383178 DOI: 10.1016/j.fsi.2020.12.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Chitinase can degrade chitin and play an essential role in animal immunity and plant defense. The immune functions of Chitinase in Procambarus clarkii (P. clarkii) remain to elucidate. Here, we identified PcChitinase 2 gene sequence from P. clarkii and studied its spatial and temporal expression profiles. The PcChitinase 2 transcribed unequally in different tissues; however, its expression was highest in those of stomach, gut, and hepatopancreas. The challenge with lipolysaccharide or peptidoglycan significantly up-regulated the expression of PcChitinase 2 in hepatopancreas. The knockdown of the PcChitinase 2 gene by double-stranded RNA suppressed most of the Toll-pathway-related immune genes (phospholipase, lectin, sptazle Cactus, serine proteikinase, anti-lipopolysaccharide factor, and Toll) production were significantly increased. Our results suggest PcChitinase 2 may be involved in the innate immune responses of P. clarkii by modulating the toll pathway.
Collapse
Affiliation(s)
- Min Liu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832003, China; School of Wetlands, Yancheng Teachers University, Yancheng 224007, PR China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Chen Chen
- College of Life Science, Anhui Agricultural University, 130 Changjiang West Road 230036, PR China
| | - Qi-Cheng Wu
- School of Wetlands, Yancheng Teachers University, Yancheng 224007, PR China
| | - Jia-Le Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Li-Shang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China.
| | - Sheng Hui Chu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832003, China; School of Wetlands, Yancheng Teachers University, Yancheng 224007, PR China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China.
| | - Qiu-Ning Liu
- School of Wetlands, Yancheng Teachers University, Yancheng 224007, PR China; Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, Fishery Institute of Anhui Academy of Agricultural Sciences, Hefei, 230031, China.
| |
Collapse
|
28
|
Hernández-Pérez A, Söderhäll K, Sirikharin R, Jiravanichpaisal P, Söderhäll I. Vibrio areninigrae as a pathogenic bacterium in a crustacean. J Invertebr Pathol 2020; 178:107517. [PMID: 33333063 DOI: 10.1016/j.jip.2020.107517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/25/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022]
Abstract
The occurrence of infectious diseases poses a significant threat to the aquaculture industry worldwide. Therefore, characterization of potentially harmful pathogens is one of the most important strategies to control disease outbreaks. In the present study, we investigated for the first time the pathogenicity of two Vibrio species, Vibrio metschnikovii, a foodborne pathogen that causes fatalities in humans, and Vibrio areninigrae, a bacteria isolated from black sand in Korea, using a crustacean model, the signal crayfish Pacifastacus leniusculus. Mortality challenges indicated that injection of V. metschnikovii (108 CFU/crayfish) has a mortality percentage of 22% in crayfish. In contrast, injection of P. leniusculus with 108 or 107 CFU of V. areninigrae resulted in 100% mortality within one and two days post-injection, respectively. V. areninigrae was successfully re-isolated from hepatopancreas of infected crayfish and caused 100% mortality when reinjected into new healthy crayfish. As a consequence of this infection, histopathological analysis revealed nodule formation in crayfish hepatopancreas, heart, and gills, as well as sloughed cells inside hepatopancreatic tubules and atrophy. Moreover, extracellular crude products (ECP's) were obtained from V. areninigrae in order to investigate putative virulence factors. In vivo challenges with ECP's caused >90% mortalities within the first 24 h. In vitro challenges with ECP's of hemocytes induced cytotoxicity of hemocytes within the first hour of exposure. These findings represent the first report that V. areninigrae is a highly pathogenic bacterium that can cause disease in crustaceans. On the contrary, V. metschnikovii could not represent a threat for freshwater crayfish.
Collapse
Affiliation(s)
- Ariadne Hernández-Pérez
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden
| | - Kenneth Söderhäll
- SciLife Laboratory, Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden
| | - Ratchanok Sirikharin
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden
| | | | - Irene Söderhäll
- SciLife Laboratory, Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden.
| |
Collapse
|
29
|
Dai LS, Kausar S, Gul I, Zhou HL, Abbas MN, Deng MJ. Molecular characterization of a heat shock protein 21 (Hsp21) from red swamp crayfish, Procambarus clarkii in response to immune stimulation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 111:103755. [PMID: 32526290 DOI: 10.1016/j.dci.2020.103755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Small heat shock proteins are a molecular chaperone and implicated in various physiological and stress processes in animals. However, the immunological functions of Hsp genes remain to elucidate in the crustaceans, particularly in red swamp crayfish, Procambarus clarkii. Here we report the cloning of heat shock protein 21 from the P. clarkii (hereafter Pc-Hsp21). The open reading frame of Pc-Hsp21 was 555 base pairs, encoding a protein of 184 amino acid residues with an alpha-crystallin family domain. Quantitative real-time PCR (qRT-PCR) analysis revealed a constitutive transcript expression of Pc-Hsp21 in the tested tissue, with the highest in hepatopancreas. The transcript abundance for this gene enhanced in hepatopancreas following immune challenge with the lipopolysaccharide, peptidoglycan, and poly I:C compared to the control group. The depletion of Pc-Hsp21 by double-stranded RNA altered transcript expression profiles of several genes in hepatopancreas, genes involved in the crucial immunological pathways of P. clarkii. These results suggest that Pc-Hsp21 plays an essential biological role in the microbial stress response by modulating the expression of immune-related genes in P. clarkii.
Collapse
Affiliation(s)
- Li-Shang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Saima Kausar
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China; Department of Zoology and Fisheries, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Isma Gul
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China; Department of Zoology and Fisheries, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Hai-Ling Zhou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China; Department of Zoology and Fisheries, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Ming-Jie Deng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China.
| |
Collapse
|
30
|
Yu XM, Chen JL, Abbas MN, Gul I, Kausar S, Dai LS. Characterization of the cathepsin D in Procambarus clarkii and its biological role in innate immune responses. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 111:103766. [PMID: 32525034 DOI: 10.1016/j.dci.2020.103766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Cathepsin D belongs to aspartic protease family, produced in the rough endoplasmic reticulum, and then transported to lysosomes, where it participates in various physiological processes. Despite its importance, only a few reports available on the functional role of cathepsin D in crustaceans. Herein, we cloned a cDNA fragment of cathepsin D from the hepatopancreas of the red swamp crayfish, Procambarus clarkii (Pc-cathepsin D) for the first time. It included 1158 base pairs open reading frame, encoding a protein of 385 amino acids. Multiple alignment analysis confirmed the presence of aspartic proteinase active sites and N glycosylation sites. Pc-cathepsin D mRNA expression was high in the gills followed by gut, heart, hepatopancreas of P. clarkii. At different time points post-infection with lipopolysaccharides, peptidoglycan, or polyinosinic polycytidylic acid, Pc-cathepsin D mRNA expression significantly enhanced compared with the control group. Knockdown of the Pc-cathepsin D by double-stranded RNA, strikingly, changed the expression of all the tested P. clarkii immune-associated genes, including Pc-Toll, Pc-lectin, Pc-cactus, Pc-anti-lipopolysaccharide factor, Pc-phospholipase, and Pc-sptzale. Altogether, these results suggest that Pc-cathepsin D is needed to confer innate immunity against microbial pathogens by modulating the expression of crucial transcripts that encode immune-associated genes.
Collapse
Affiliation(s)
- Xiao-Min Yu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Jia-Le Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China; Department of Zoology and Fisheries, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Isma Gul
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China; Department of Zoology and Fisheries, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Saima Kausar
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, China; Department of Zoology and Fisheries, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Li-Shang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China.
| |
Collapse
|
31
|
Jiang Z, Li X, Gao X, Jiang Q, Chen Q, Zhang S, Tong S, Liu X, Zhu J, Zhang X. Pathogenicity of Aeromonas hydrophila causing mass mortalities of Procambarus clarkia and its induced host immune response. Microb Pathog 2020; 147:104376. [PMID: 32645422 DOI: 10.1016/j.micpath.2020.104376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 11/16/2022]
Abstract
Outbreaks of mass mortalities among cultured Procambarus clarkia occurred in a commercial hatchery during the spring of 2019 in Jiangsu province of China. Here, we exploit the pathogenicity and immune response of Aeromonas hydrophila (GPC1-2), which was isolated from diseased P. clarkia. Crayfish challenged showed similar pathological signs to the naturally diseased P. clarkia, lethal dose 50% (LD50) of the strain GPC1-2 to P. clarkia was 3.8 × 106 CFU/mL. Detection of virulence-associated genes by PCR indicated that the strain GPC1-2 carried hlyA, aerA, alt, ast, act, aha, ahp, ahpA, and ahpB. Histopathological analysis of hepatopancreas revealed that the hepatic tubule lumen and the gap between the hepatic tubules became larger, and the brush border disappeared in the P. clarkia infected by GPC1-2. Quantitive real-time PCR (qRT-PCR) was undertaken to measure mRNA expression levels for six immune-related genes in P. clarkia after A. hydrophila infection. The expression level of proPO, NOS, ALF1, TLR2, PX, and AST were detected in hemolymph, hepatopancreas, gill and intestine tissues, and clear transcriptional activation of these genes were observed in the infected individuals. These results revealed pathogenicity of A. hydrophila and its activation of host immune response, which will provide a scientific reference for the breeding and disease prevention in P. clarkia culture.
Collapse
Affiliation(s)
- Ziyan Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xixi Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaojian Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Qun Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Qiyun Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Shuangming Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Shuaiqi Tong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaodan Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Jian Zhu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi, 214081, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
32
|
Li CS, Kausar S, Gul I, Yao XX, Li MY, Chen CC, Abbas MN, Dai LS. Heat shock protein 20 from Procambarus clarkii is involved in the innate immune responses against microbial infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 106:103638. [PMID: 32017956 DOI: 10.1016/j.dci.2020.103638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/31/2020] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
Small heat shock proteins (shsps) are conserved across invertebrate species. They are implicated in the modulation of various biological processes, such as immune responses, abiotic stress tolerance metamorphosis, and embryonic development. Herein, we identified a heat shock protein 20 from the red swamp crayfish, Procambarus clarkii (named as Pc-Hsp20), and performed in vivo studies to elucidate its physiological functions in the innate immunity. The open reading frame of Pc-Hsp20 was 609 base pair, encoding a protein of 202 amino acid residues with a hsp20/alpha crystallin family domain. Pc-Hsp20 was ubiquitously expressed in various tissues; however, it was highest in the hepatopancreas. The challenge with immune elicitors remarkably enhanced the transcript level of Pc-Hsp20 in the hepatopancreas when compared with the control. Administration of double-stranded RNA could significantly reduce expression of the Pc-Hsp20 mRNAs, and most of the immune-related genes expression enhanced with a variable concentration in the hepatopancreas. Altogether, these results suggest that Pc-Hsp20 may participate in innate immunity against microbial pathogens.
Collapse
Affiliation(s)
- Chang-Sheng Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China; School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Saima Kausar
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, PR China; Department of Zoology and Fisheries, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Isma Gul
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, PR China; Department of Zoology and Fisheries, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Xiao-Xiao Yao
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Meng-Yi Li
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Cheng-Chun Chen
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China.
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, 400715, PR China; Department of Zoology and Fisheries, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Li-Shang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China.
| |
Collapse
|
33
|
Lang L, Bao M, Jing W, Chen W, Wang L. Clone, identification and functional characterization of a novel toll (Shtoll1) from the freshwater crab Sinopotamon henanense in response to cadmium exposure and Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2020; 98:401-413. [PMID: 31953198 DOI: 10.1016/j.fsi.2020.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/31/2019] [Accepted: 01/05/2020] [Indexed: 06/10/2023]
Abstract
Toll is essential in innate immune system which is important for defense against bacterial, fungal and viral infections in invertebrates. Our previous study showed that cadmium (Cd) could change the expression pattern of ShToll3 in the epithelium (gills and midgut from the freshwater crab Sinopotamon henanense) infected by Aeromonas hydrophila. To investigate the diverse innate immune roles of crustacean homolog Tolls, in this study, we cloned Shtoll1 from S. henanense. The full-length cDNA of Shtoll1 was 4746 bp, with an ORF of 3033 bp encoding a putative protein of 111 amino acids, a 5'-untranslated region of 255 bp and a 3'-untranslated region of 1713 bp. Phylogenetic analysis showed that ShToll1 was clustered into the group of DmToll1, DmToll 4 and DmToll 5. In addition, the tissue distribution results showed that Shtoll1 was expressed widely in different tissues, with the highest expression in heamocytes. Besides, Shtoll1 expressions were upregulated in heamocytes and hepatopancreas after A. hydrophila infection. At the same time, the increase of Shtoll1 expressions were examined in heamocytes in response to Cd exposure and A. hydrophila infection in combination. Through western blotting and immunohistochemical analysis, the ShToll1 expressions in heamocytes were increased in response to A. hydrophila and Cd independently as well as in combination. Moreover, the mRNA level of three antimicrobial peptides (AMPs) alf5, alf6, and c-lys, which possibly responded to Cd and A. hydrophila stimulation through Shtoll1, were analyzed. Thus, we conclude that Cd expand the susceptibility of ShToll1 to A. hydrophila infection in heamocytes. This suggest that ShToll1 may contribute to the innate immune defense of S. henanense against A. hydrophila and Cd in heamocytes.
Collapse
Affiliation(s)
- Lang Lang
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, China
| | - Minnan Bao
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, China
| | - Weixin Jing
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, China
| | - Wei Chen
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Lan Wang
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, China.
| |
Collapse
|
34
|
Wang Q, Huang C, Liu K, Lu M, Dan SF, Xu Y, Xu Y, Zhu P, Pan H. Cloning and expression of three heat shock protein genes in the gills of Cherax quadricarinatus responding to bacterial challenge. Microb Pathog 2020; 142:104043. [PMID: 32032768 DOI: 10.1016/j.micpath.2020.104043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 12/13/2022]
Abstract
Cherax quadricarinatus is seriously affected by multiple types of pathogens, including bacteria and viruses, and has been widely transplanted around the world. Heat shock proteins (Hsps) are a group of molecular chaperones that play important roles in promoting the proper refolding and blocking the aggregation of denatured proteins. In this study, CqHsp60, CqHsp70 and CqHsp90 from C. quadricarinatus were cloned, and their expression patterns were analysed. The CDS (coding sequence) lengths of the CqHsp60, CqHsp70 and CqHsp90 genes were 1731 bp, 1932 bp and 2199 bp, encoding 576, 643 and 732 amino acids, respectively. CqHsp60 was 99.13%, 98.78% and 88.63% identical to the corresponding sequences of Cherax cainii, Cherax destructor and Eriocheir sinensis, respectively. CqHsp70 showed 99.84%, 92.73% and 91.58% identity to the corresponding sequences of C. cainii, C. destructor and E. sinensis, while CqHsp90 was 98.25%, 98.51% and 91.41% identical with those of C. cainii, C. destructor and E. sinensis, respectively. The expression patterns of the three CqHsps were different between males and females. CqHsp60 and CqHsp70 exhibited the highest expression in the hepatopancreas of males and the gonads of females, and CqHsp90 presented the highest expression in the gonads of males and hepatopancreas of females. After pathogenic inoculation, the death trend of C. quadricarinatus at different time points was the same in association with different pathogens, with most deaths occurring within 6 h post-inoculation. The trend of CqHsp transcription at different time points was the same among the groups treated with Vibrio alginolyticus, Vibrio parahemolyticus and Aeromonas hydrophila, exhibiting upregulation first and then downregulation. The expression of CqHsp60 and CqHsp70 in the gills of living C. quadricarinatus was less than 3.5 times that in the PBS group, but in the gills of dead C. quadricarinatus under A. hydrophila inoculation, its expression was more than 5-9 times that in the PBS group. CqHsp90 expression changed dramatically in the V. alginolyticus, V. parahemolyticus and A. hydrophila groups, in which it exceeded 50 times the level in the PBS group. These results indicated that CqHsps could induce the activation of the immune system within a short time and that CqHsp90 could be used as a more effective molecular biomarker than CqHsp70 and CqHsp60 in a pathogenic bacterium-polluted environment.
Collapse
Affiliation(s)
- Qiong Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, 530005, PR China; Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, Guangxi, 530005, PR China
| | - Chunmei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, 530005, PR China; Nanning Zhi Ao Biological Technology Co., Ltd., Nanning, Guangxi, 530005, PR China
| | - Ke Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, 530005, PR China; Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, Guangxi, 530005, PR China
| | - Min Lu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, Guangxi, 530005, PR China
| | - Solomon Felix Dan
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, Guangxi, 530005, PR China
| | - Youhou Xu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, Guangxi, 530005, PR China
| | - Yixue Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, 530005, PR China
| | - Peng Zhu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, Guangxi, 530005, PR China.
| | - Hongping Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, 530005, PR China.
| |
Collapse
|
35
|
Xu W, Li H, Wu L, Jin J, Zhu X, Han D, Liu H, Yang Y, Xu X, Xie S. Dietary Scenedesmus ovalternus improves disease resistance of overwintering gibel carp (Carassius gibelio) by alleviating toll-like receptor signaling activation. FISH & SHELLFISH IMMUNOLOGY 2020; 97:351-358. [PMID: 31874297 DOI: 10.1016/j.fsi.2019.12.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/29/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
This study was conducted to investigate the effect of dietary Scenedesmus ovalternus on the growth and disease resistance of gibel carp (Carassius gibelio) during overwintering. Gibel carp (initial body weight: 90.39 ± 0.33 g) were fed with diets containing 0% or 4% Scenedesmus ovalternus (DS0 and DS4) for 4 weeks during the early overwintering period, and then all fish were left unfed during the late overwintering period. A bacterial challenge test using Aeromonas hydrophila was subsequently conducted. The 4% Scenedesmus ovalternus diet had no effect on the growth of gibel carp (P > 0.05), but did improve the survival rate after the challenge (P ≤ 0.05). In the DS0 group, the bacterial challenge decreased the contents of complement 3 (C3), immunoglobulin M (IgM), interleukin 2 (IL2) and tumor necrosis factor α (TNFα) in fish (P < 0.05); in the DS4 group, the challenge increased total antioxidant capacity (T-AOC) and myeloperoxidase (MPO) activity but decreased IL2 and TNFα contents (P < 0.05). The activities of MPO and contents of C3, IgM and TNFα were higher in the DS4 group than that fed the DS0 diet after bacterial challenge (P < 0.05). Compared to pre challenge, the expression levels of toll like receptor 2 (TLR2), toll like receptor 3 (TLR3), toll like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), Toll/IL-1 receptor domain-containing adaptor protein (TIRAP), TIR-domain-containing adapter-inducing interferon β (TRIF), nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor α (IκBα), transforming growth factor β (TGFβ), interleukin 1β (IL1β), tumor necrosis factor α1 (TNFα1) and interleukin 10 (IL10) in the head kidney of gibel carp were induced after challenge (P < 0.05). Gibel carp fed the DS4 diet showed lower expression of TGFβ in head kidney before the challenge and lower expression of TLR2, TLR3, TLR4, TIRAP, TRIF, IκBα, TNFα1, IL10 and TGFβ after the challenge than that fed the DS0 diet (P < 0.05). Overall, Scenedesmus ovalternus supplement enhanced the resistances of gibel carp against A. hydrophila after overwintering via the TLR signaling pathway.
Collapse
Affiliation(s)
- Wenjie Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Hongyan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liyun Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junyan Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Wuhan, 430070, China.
| | - Xiaoming Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Wuhan, 430070, China
| | - Dong Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Wuhan, 430070, China
| | - Haokun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Wuhan, 430070, China
| | - Yunxia Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Wuhan, 430070, China
| | - Xudong Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Shouqi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Wuhan, 430070, China
| |
Collapse
|
36
|
Kwon J, Kim SG, Kim SW, Yun S, Kim HJ, Giri SS, Han SJ, Oh WT, Park SC. A Case of Mortality Caused by Aeromonas hydrophila in Wild-Caught Red-Eyed Crocodile Skinks ( Tribolonotus gracilis). Vet Sci 2019; 7:vetsci7010004. [PMID: 31905799 PMCID: PMC7159033 DOI: 10.3390/vetsci7010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/18/2019] [Accepted: 12/28/2019] [Indexed: 01/02/2023] Open
Abstract
Aeromonas hydrophila, a Gram-negative bacterium commonly found in aquatic environments, is pathogenic to amphibians, reptiles, and mammals. In human medicine, the clinical symptoms of aeromonad infection include not only gastroenteritis but also extraintestinal infections, such as wounds, cellulitis, and septicemia, in immunocompromised and immunocompetent individuals. In this study, ten red-eyed crocodile skinks (Tribolonotus gracilis) that shared the same space were found dead 7 days after being shipped from Indonesia. The necropsy revealed A. hydrophila to be the causative agent, and the isolates were susceptible to most antibiotics, based on an antimicrobial susceptibility test. Seven virulence factors (act, ast, alt, aerA, fla, gcaT, and ahyB) considered to be associated with virulence were detected by PCR. Microscopic examination revealed several necrotic lesions and melano-macrophage centers in the tissue slides. Reptiles caught in the wild for trade experience captivity stress. Furthermore, in the winter, reptiles are easily exposed to the cold atmosphere. These stresses can negatively impact the immunity of these ectotherms, making them vulnerable to A. hydrophila infections. Therefore, to avoid such opportunistic infections and mortality following exposure to severe stress, medical care is recommended. The studies of alternatives, such as bacteriophage and bacteriocin, are needed for a preventive application.
Collapse
|
37
|
Affiliation(s)
- Diane L. Waller
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI 54603 USA
| | - W. Gregory Cope
- Department of Applied Ecology, North Carolina State University, Raleigh NC 27695-7617 USA
| |
Collapse
|
38
|
Aeromonas hydrophila, an Emerging Causative Agent of Freshwater-Farmed Whiteleg shrimp Litopenaeus vannamei. Microorganisms 2019; 7:microorganisms7100450. [PMID: 31614964 PMCID: PMC6843590 DOI: 10.3390/microorganisms7100450] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/30/2019] [Accepted: 10/12/2019] [Indexed: 11/16/2022] Open
Abstract
Aeromonas hydrophila is a well-known bacterial pathogen associated with mass mortalities in aquaculture. Yet, few reports are available on whiteleg shrimp-pathogenic A. hydrophila. In the present study, a virulent isolate WS05 was confirmed as a causative agent of diseased freshwater-cultured whiteleg shrimp and showed a mean lethal dose (LD50) value of 4.8 × 104 CFU mL−1. It was identified phenotypically and molecularly as an A. hydrophila strain, and exhibited susceptibility to several veterinary antibiotics extensively used in aquaculture, including cotrimoxazole, doxycycline, florfenicol, neomycin, and tetracycline. In view of the strongest inhibition zone of florfenicol against isolate WS05, the synergistic effect of the combinations of florfenicol and herb extracts was further evaluated, and the result indicated that Punica granatum extract was a potential synergist of florfenicol against isolate WS05 and the fractional inhibitory concentration index (FICI) for the florfenicol-P. granatum extract was calculated as 0.31. When combined with 7.81 mg mL−1P. granatum extract, the minimum inhibitory concentration (MIC) of florfenicol against isolate WS05 was reduced from 0.50 to 0.03 mg L−1, and its activity against isolate WS05 was also enhanced with a significant reduction of ≥3.61 log in cell density after 24 h of treatment compared with that in the single drug treatment. In addition, the protective effect was potentiated by the combination of florfenicol and P. granatum extract, with a cumulative mortality of 36.66% (p < 0.05) and 33.33% (p < 0.05) lower than that in the single treatment with florfenicol and P. granatum extract after the challenge with isolate WS05 for seven days. As far as we know, this is the first study to describe whiteleg shrimp-pathogenic A. hydrophila and suggest P. granatum extract as a potential synergist of florfenicol against the A. hydrophila pathogen.
Collapse
|
39
|
Foysal MJ, Nguyen TTT, Chaklader MR, Siddik MAB, Tay CY, Fotedar R, Gupta SK. Marked variations in gut microbiota and some innate immune responses of fresh water crayfish, marron ( Cherax cainii, Austin 2002) fed dietary supplementation of Clostridium butyricum. PeerJ 2019; 7:e7553. [PMID: 31523510 PMCID: PMC6716501 DOI: 10.7717/peerj.7553] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/25/2019] [Indexed: 12/20/2022] Open
Abstract
This study aimed to investigate the effects of Clostridium butyricum as a dietary probiotic supplement in fishmeal based diet on growth, gut microbiota and immune performance of marron (Cherax cainii). Marron were randomly distributed into two different treatment groups, control and probiotic fed group. After 42 days of feeding trial, the results revealed a significant (P < 0.05) increase in growth due to increase in number of moults in marron fed probiotics. The probiotic diet also significantly enhanced the total haemocyte counts (THC), lysozyme activity in the haemolymph and protein content of the tail muscle in marron. Compared to control, the 16S rRNA sequences data demonstrated an enrichment of bacterial diversity in the probiotic fed marron where significant increase of Clostridium abundance was observed. The abundance for crayfish pathogen Vibrio and Aeromonas were found to be significantly reduced post feeding with probiotic diet. Predicted metabolic pathway revealed an increased activity for the metabolism and absorption of carbohydrate, degradation of amino acid, fatty acid and toxic compounds, and biosynthesis of secondary metabolites. C. butyricum supplementation also significantly modulated the expression level of immune-responsive genes of marron post challenged with Vibrio mimicus. The overall results suggest that C. butyricum could be used as dietary probiotic supplement in marron aquaculture.
Collapse
Affiliation(s)
- Md Javed Foysal
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia.,Department of Genetic Engineering and Biotechnology, Shahjalal University of Science & Technology, Sylhet, Bangladesh
| | - Thi Thu Thuy Nguyen
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Md Reaz Chaklader
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Muhammad A B Siddik
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia.,Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Chin-Yen Tay
- Helicobacter Research Laboratory, Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Ravi Fotedar
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Sanjay Kumar Gupta
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
| |
Collapse
|
40
|
Gonçalves Pessoa RB, de Oliveira WF, Marques DSC, Dos Santos Correia MT, de Carvalho EVMM, Coelho LCBB. The genus Aeromonas: A general approach. Microb Pathog 2019; 130:81-94. [PMID: 30849490 DOI: 10.1016/j.micpath.2019.02.036] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 02/07/2023]
Abstract
The genus Aeromonas comprises more than thirty Gram-negative bacterial species which mostly act as opportunistic microorganisms. These bacteria are distributed naturally in diverse aquatic ecosystems, where they are easily isolated from animals such as fish and crustaceans. A capacity for adaptation also makes Aeromonas able to colonize terrestrial environments and their inhabitants, so these microorganisms can be identified from different sources, such as soils, plants, fruits, vegetables, birds, reptiles, amphibians, among others. Infectious processes usually develop in immunocompromised humans; in fish and other marine animals this process occurs under conditions of stress. Such events are most often associated with incorrect practices in aquaculture. Aeromonas has element diverse ranges, denominated virulence factors, which promote adhesion, colonization and invasion into host cells. These virulence factors, such as membrane components, enzymes and toxins, for example, are differentially expressed among species, making some strains more virulent than others. Due to their diversity, no single virulence factor was considered determinant in the infectious process generated by these microorganisms. Unlike other genera, Aeromonas species are erroneously differentiated by conventional biochemical tests. Therefore, molecular assays are necessary for this purpose. Nevertheless, new means of identification have been considered in order to generate methods that, like molecular tests, can correctly identify these microorganisms. The main objectives of this review are to explain environmental and structural characteristics of the Aeromonas genus and to discuss virulence mechanisms that these bacteria use to infect aquatic organisms and humans, which are important aspects for aquaculture and public health, respectively. In addition, this review aims to clarify new tests for the precise identification of the species of Aeromonas, contributing to the exact and specific diagnosis of infections by these microorganisms and consequently the treatment.
Collapse
Affiliation(s)
- Rafael Bastos Gonçalves Pessoa
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP: 50670-420, Recife, Pernambuco, Brazil
| | - Weslley Felix de Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP: 50670-420, Recife, Pernambuco, Brazil
| | - Diego Santa Clara Marques
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP: 50670-420, Recife, Pernambuco, Brazil
| | - Maria Tereza Dos Santos Correia
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP: 50670-420, Recife, Pernambuco, Brazil
| | - Elba Verônica Matoso Maciel de Carvalho
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP: 50670-420, Recife, Pernambuco, Brazil
| | - Luana Cassandra Breitenbach Barroso Coelho
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP: 50670-420, Recife, Pernambuco, Brazil.
| |
Collapse
|
41
|
Geng R, Jia Y, Chi M, Wang Z, Liu H, Wang W. RNase1 alleviates the Aeromonas hydrophila-induced oxidative stress in blunt snout bream. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 91:8-16. [PMID: 30267738 DOI: 10.1016/j.dci.2018.09.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/23/2018] [Accepted: 09/23/2018] [Indexed: 06/08/2023]
Abstract
RNase1 is an enzyme important in host defense in vertebrates where it degrades the RNA of bacteria and viruses. We evaluated the effect of RNase1 on the resistance to Aeromonas hydrophila infection in Megalobrama amblycephala. The fish were randomly divided into four groups: a blank group (none-treated M. amblycephala), a control group (injected PBS), a challenge group (A. hydrophila-injected) and a treatment group (pre-treated with RNase1 24 h before the A. hydrophila injection), and we collected five tissues of each group. Then we recorded changes in the levels of glutathione (GSH), oxidized glutathione (GSSG), hepatic catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA) and lysozyme; and the relative mRNA expression of catalase (CAT), selenium-dependent glutathione peroxidase (GPx), Cu/Superoxide dismutase (Cu/Zn-SOD), glutamate-cysteine ligase (GCLC), glutathione reductase (GR) and nuclear factor erythroid 2-related factor 2 (Nrf2) for four groups. The expression of six genes was highest in liver and blood of the blank group. It was significantly higher in the gut of the treatment group (compared to control and challenge groups) 12 h after the infection. The treatment group exhibited a significant increase in GSH, SOD and CAT activity, and a decrease in GSSG, MDA and lysozyme content (compared to the control and challenge groups) 6 and 12 h after infection. These results suggest that supplementation with RNase1 protein can enhance resistance against A. hydrophila infections in M. amblycephala.
Collapse
Affiliation(s)
- Ruijing Geng
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yongyi Jia
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China.
| | - Meili Chi
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China.
| | - Zhiqiang Wang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Han Liu
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China; Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China.
| | - Weimin Wang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
42
|
Salighehzadeh R, Sharifiyazdi H, Akhlaghi M, Khalafian M, Gholamhosseini A, Soltanian S. Molecular and clinical evidence of Aeromonas hydrophila and Fusarium solani co-infection in narrow-clawed crayfish Astacus leptodactylus. DISEASES OF AQUATIC ORGANISMS 2019; 132:135-141. [PMID: 30628579 DOI: 10.3354/dao03309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Co-infections occur when a host is infected by 2 or more different pathogen types, either by secondary or simultaneous infections, and are very frequent in nature. In this study, 10 narrow-clawed crayfish Astacus leptodactylus with signs of disease were collected from Haft Baram Lake (Fars province, southern Iran). Samples of fluid from inside the intact abscess and melanized lesions in the cuticle were cultured aseptically onto brain heart infusion agar and Sabouraud dextrose agar for bacterial and fungal agents, respectively. After primary colony isolation for bacterial and fungal agents, the isolates were confirmed as Aeromonas hydrophila and Fusarium solani, using specific PCR methods based on 16S rDNA and internal transcribed spacer (ITS) rDNA sequences that produced a single band of 685 bp and 600 bp, respectively. Partial sequence analysis of the F. solani ITS showed 100% sequence identity among all our samples, as well as a close genetic relationship between this isolate (GenBank accession number MG519784) and those previously reported from loggerhead sea turtle Caretta caretta in Cape Verde (FJ948133, AM412641, and DQ535186), black-blotched stingray Taeniura melanopsila in Japan (LC019016), and American manatee Trichechus manatus in Japan (AB775569). The results indicate that narrow-clawed crayfish can be infected by A. hydrophila and F. solani simultaneously, and to the best of our knowledge, this is the first report of just such a co-infection in this host. Further studies are necessary to investigate the pathogenicity of these organisms and their effects on narrow-clawed crayfish.
Collapse
Affiliation(s)
- R Salighehzadeh
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | | | | | | | | |
Collapse
|
43
|
Liu C, Chang OQ, Zhang DF, Li KB, Wang F, Lin MH, Shi CB, Jiang L, Wang Q, Bergmann SM. Aeromonas shuberti as a cause of multi-organ necrosis in internal organs of Nile tilapia, Oreochromis niloticus. JOURNAL OF FISH DISEASES 2018; 41:1529-1538. [PMID: 30039866 DOI: 10.1111/jfd.12848] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 06/08/2023]
Abstract
A disease with white spots in internal organs of Nile tilapia occurred in Zhanjiang, southern China. Multiple, white nodules, 0.8-2.2 mm in diameter, were scattered throughout the liver, spleen and kidney of diseased fish. Signs of nodules reproduced after artificial infection with the isolated strain. Isolated bacteria were Gram-negative, facultative anaerobic, motile, short rod-shaped, with a length of 1.2-2.2 μm. Morphological and biochemical tests, as well as phylogenetic analysis, all strongly indicated that the isolate from tilapia is identical to Aeromonas schubertii (A. schubertii) which temporary named LF1708 strain. Antibiotic sensitivity assays showed the LF1708 is sensitive to 24 of 27 tested antibiotics. Pathogenicity test revealed that the isolate at the dose of 3.75 × 106 CFU/g killed 100% of experimental tilapia within 2 days and the dose of 1 × 107 CFU/g killed 100% of experimental zebrafish within 1 day. Histopathology of diseased tilapia infected with A. schubertii showed numerous necrotic lesions widely distributed in spleen, liver and kidney, and infiltration with a large number of bacteria. To our knowledge, this was the first report that associated A. schubertii with mortality in tilapia.
Collapse
Affiliation(s)
- C Liu
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, China
| | - O Q Chang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, China
| | - D F Zhang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, China
| | - K B Li
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, China
| | - F Wang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, China
| | - M H Lin
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, China
| | - C B Shi
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, China
| | - L Jiang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, China
| | - Q Wang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, China
| | - S M Bergmann
- Institute of Infectology, Friedrich-Loffler-Institut (FLI), Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| |
Collapse
|
44
|
Korkut GG, Söderhäll I, Söderhäll K, Noonin C. The effect of temperature on bacteria-host interactions in the freshwater crayfish, Pacifastacus leniusculus. J Invertebr Pathol 2018; 157:67-73. [DOI: 10.1016/j.jip.2018.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/29/2018] [Accepted: 08/01/2018] [Indexed: 10/28/2022]
|
45
|
Cao S, Zhang P, Zou T, Fei S, Han D, Jin J, Liu H, Yang Y, Zhu X, Xie S. Replacement of fishmeal by spirulina Arthrospira platensis affects growth, immune related-gene expression in gibel carp (Carassius auratus gibelio var. CAS III), and its challenge against Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2018; 79:265-273. [PMID: 29775741 DOI: 10.1016/j.fsi.2018.05.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/04/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
The present study examined the effect of dietary spirulina, Arthrospira platensis on growth performance, blood physiological indices, immune-related gene expressions and resistance of juvenile gibel carp against Aeromonas hydrophila infection. Four isonitrogenous (360 g kg-1) and isolipidic (90 g kg-1) diets were formulated with containing different levels of spirulina powder of 0 g (SP0, the control diet), 3.38 g (SP3.38), 6.76 g (SP6.76) and 13.52 g (SP13.52) per 100 g diet to replace 0%, 25%, 50% and 100% of fishmeal protein, respectively. And each diet was randomly assigned to triplicate tanks (150-L capacity per each) and each tank was stocked with 22 fish (15.37 ± 0.06 g). Fish were fed one of the tested diets up to satiation twice a day for 46 days. A challenge test was carried out after the feeding trial by injecting Aeromonas hydrophila intraperitoneally for 7 days. The results showed that fish growth, feeding rate in groups SP3.38 and SP6.76 were significantly higher than those of groups SP0 and SP13.52 (P < 0.05). Feed efficiency and protein retention rate had no significant difference among all tested groups. Plasma superoxide dismutase and phagocyte activity of blood leukocytes significantly increased in the spirulina-fed fish groups at 12-h post the bacterial challenge (P < 0.05). Both pre and post challenge test, plasma lysozyme activities in spirulina-fed groups were significantly higher than that in the control group (P < 0.05). Plasma malondialdehyde got the lowest value in the SP13.52 group before and after the challenge test. The transcriptional levels of TLR2 (Toll like receptor 2), myeloid differentiation factor 88 (MyD88), Toll/IL-1 receptor domain-containing adaptor protein (TIRAP), interleukin-1β (IL-1β) and tumor necrosis factor-α1 (TNF-α1) in spleen and kidney significantly increased post the bacterial challenge compared to the pre challenge. And the relative expressions of the immune-related genes of spirulina-fed fish groups were higher than those of the control group before and after the challenge test. The 7-day cumulative survival rate after the bacterial challenge was highest in the SP3.38 group (P < 0.05). The present results indicated that low dietary inclusion of spirulina significantly enhanced the immune response of gibel carp partly through TLR2 pathway and 3.38% of dietary spirulina was recommended for the juveniles based on the growth and immune response.
Collapse
Affiliation(s)
- Shenping Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Peiyu Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tao Zou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shuzhan Fei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Dong Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, PR China
| | - Junyan Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, PR China
| | - Haokun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, PR China
| | - Yunxia Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, PR China
| | - Xiaoming Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, PR China.
| | - Shouqi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, PR China
| |
Collapse
|
46
|
Onming S, Thongda W, Li C, Sawatdichaikul O, McMillan N, Klinbunga S, Peatman E, Poompuang S. Bioinformatics characterization of a cathepsin B transcript from the giant river prawn, Macrobrachium rosenbergii: Homology modeling and expression analysis after Aeromonas hydrophila infection. Comp Biochem Physiol B Biochem Mol Biol 2018; 221-222:18-28. [PMID: 29649577 DOI: 10.1016/j.cbpb.2018.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Cathepsin B is a lysosomal proteolytic enzyme that has been suggested to play a role in pathological processes of immune system. In this study, the full-length cDNA sequence of cathepsin B transcript in the giant river prawn Macrobrachium rosenbergii (MrCTSB) was obtained from 454 pyrosequencing of cDNAs from hepatopancreas and muscle. It was 1158 bp in length, containing an open reading frame (ORF) of 987 bp corresponding to 328 amino acids. The predicted molecular mass and pI of MrCTSB protein was 36.04 kDa and 4.73. The major characteristics of MrCTSB protein consisted of a propeptide of C1 peptidase family at the N-terminus and a cysteine protease (Pept_C1) domain at the C-terminus. The 3-dimentional structure of MrCTSB was constructed by computer-assisted homology modeling. The folding of MrCTSB was highly conserved to human CTSB structure and the modeled MrCTSB displayed characteristics of cysteine proteinases superfamily. The docking study was performed to investigate binding interactions between known inhibitors against MrCTSB. Known inhibitors were oriented in the groove of catalytic site cleft. They bound to subsites from S2, S1, S1', and S2', respectively, with key residues in each subsite. Challenge of juvenile prawns with Aeromonas hydrophila revealed that the MrCTSB transcript in hepatopancreas significantly increased at 60-96 h post injection (hpi). This suggested that MrCTSB may play roles in innate immunity of M. rosenbergii. Our results provide useful information for a more comprehensive study in immune-related functions of MrCTSB.
Collapse
Affiliation(s)
- Saowalak Onming
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Ngamwongwan Road, Bangkok 10900, Thailand
| | - Wilawan Thongda
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Orathai Sawatdichaikul
- Department of Nutrition and Health, Institute of Food Research and Product Development, Kasetsart University, Bangkok 10900, Thailand
| | - Nichanun McMillan
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Ngamwongwan Road, Bangkok 10900, Thailand
| | - Sirawut Klinbunga
- Aquatic Molecular Genetics and Biotechnology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; Center of Excellence for Marine Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Eric Peatman
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Supawadee Poompuang
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Ngamwongwan Road, Bangkok 10900, Thailand.
| |
Collapse
|
47
|
Song C, Cui Y, Liu B, Xie J, Ge X, Xu P, Ren M, Miao L, Zhou Q, Lin Y. HSP60 and HSP90β from blunt snout bream, Megalobrama amblycephala: Molecular cloning, characterization, and comparative response to intermittent thermal stress and Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2018; 74:119-132. [PMID: 29306763 DOI: 10.1016/j.fsi.2017.12.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 12/17/2017] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
Heat shock proteins (HSPs) play critical roles in the process of anti-stress and immunity and are implicated in autoimmune diseases. In order to understand the comparative stress responses of HSP60 and HSP90β under intermittent thermal stress and Aeromonas hydrophila infection, we cloned their full-length cDNAs from Megalobrama amblycephala liver, predicted their secondary and tertiary structure, and examined their tissue-specific expression patterns. The full length of HSP60 and HSP90β cDNAs indicated that they included all signature sequences of corresponding protein families. They showed high homology to their counterparts in other species, and were consistent with the known classification of fishes based on phylogenetic analysis. HSP60 showed the highest expression in head-kidney, brain, and gill, while HSP90β presented higher in hindgut, liver, and brain. Significant mRNA expression differences were determined between HSP60 and HSP90β in tissues of bladder, liver, heart, and gill. During thermal stress and recovery phase, the highest expression of them were observed at the first recovery for 2 d and 1 d, respectively. The expression between them were extremely significant difference during the first recovery and second stress period. After A. hydrophila infection, their expressions were extremely significantly upregulated. The significant upregulation and rapid response indicated that they were sensitive to thermal stress and bacterial challenge. This study demonstrated that HSP60 and HSP90β might participate in innate immune and environmental responses of M. amblycephala. It indicated that they could be used as biomarkers to test the stress caused by local aquaculture environment.
Collapse
Affiliation(s)
- Changyou Song
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Yanting Cui
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Jun Xie
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Xianping Ge
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Mingchun Ren
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Linghong Miao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Qunlan Zhou
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Yan Lin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| |
Collapse
|
48
|
Lang L, Zhang Z, Jing W, Hwang JS, Lee SC, Wang L. Identification of a novel toll gene (Shtoll3) from the freshwater crab Sinopotamon henanense and its expression pattern changes in response to cadmium followed by Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2017; 71:177-190. [PMID: 29017939 DOI: 10.1016/j.fsi.2017.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 10/03/2017] [Accepted: 10/06/2017] [Indexed: 06/07/2023]
Abstract
Toll signaling is essential for expression of immune genes which are important for defense against bacterial, fungal and viral infections in invertebrates. Although several toll genes have been identified in the crustaceans, none of them has been investigated in freshwater crab Sinopotamon henanense. Moreover, the effect of cadmium (Cd) on toll gene expression has never been examined on the freshwater crabs which live in the sediments and are prone to heavy metal bioaccumulation. Our transcriptomic analysis of hepatopancreas tissue reveals that toll3 gene expression has been decreased when treated with Cd. In this study, we cloned one toll gene (hereby designated Shtoll3) from the crab. The full-length cDNA of Shtoll3 was 4488 bp, with an ORF of 3693 bp encoding a putative protein of 1230 amino acids, a 5'-untranslated region of 414 bp and a 3'-untranslated region of 781 bp. Phylogenetic analysis showed that ShToll3 was clustered into the group of DmToll8. The tissue distribution results showed that Shtoll3 was expressed widely in different tissues, with the highest in gills, and the lowest in hemocytes. Shtoll3 expression was down-regulated only in midguts after Aeromonas hydrophila infection. With Cd presence, Shtoll3 expression in response to A. hydrophila were up-regulated in midguts and gills, which was further confirmed by western blotting analysis. Moreover, the mRNA level of two antimicrobial peptides (AMPs) crustin and c-lys, which possibly responded to Cd and A. hydrophila stimulation through Shtoll3, were analysised. Thus, we conclude that Cd changes the susceptibility of Shtoll3 to A. hydrophila infection in gills and midguts. This suggest that Shtoll3 may contribute to the innate immune defense of S. henanense to A. hydrophila and Cd can modify the immune function in epithelium.
Collapse
Affiliation(s)
- Lang Lang
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
| | - Zuobing Zhang
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
| | - Weixin Jing
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, ROC
| | - Shao-Chin Lee
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
| | - Lan Wang
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China.
| |
Collapse
|
49
|
Qi XZ, Li DL, Tu X, Song CG, Ling F, Wang GX. Preliminary study on the relationship between dexamethasone and pathogen susceptibility on crucian carp (Carassius auratus). FISH & SHELLFISH IMMUNOLOGY 2016; 59:18-24. [PMID: 27744057 DOI: 10.1016/j.fsi.2016.10.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/12/2016] [Accepted: 10/10/2016] [Indexed: 06/06/2023]
Abstract
Dexamethasone, a known immunosuppressant, can inhibit the immune response and increase the amount of pathogen in body, but the role of dexamethasone affecting susceptibility of crucian carp (Carassius auratus) to pathogen is unclear. The effects of dexamethasone on susceptibility of crucian carp to Aeromonas hydrophila were investigated in this study. The fish were divided into four groups randomly and injected intraperitoneally by dexamethasone for 0 day (group D), 3 days (group C), 6 days (group B), and 9 days (group A), respectively. The serum lysozyme activity was significantly declined in group A, B and C. Relative immune gene expression such as il-1β, cxcl-8, tnfα and crp in kidney were down-regulation compared to group D. After that crucian carp were infected with A. hydrophila, crucian carp treated by dexamethasone had higher mortality (group A 95%, group B 76%, group C 31%) when compared to group D (4% mortality); the amount of pathogen in was significantly increased (P < 0.05) in liver, kidney and spleen of fish in group A-C compared to group D. These results implicated that higher susceptibility caused by dexamethasone may be induced by the decrease of lysozyme activity and the down-regulation of some immune genes.
Collapse
Affiliation(s)
- Xiao-Zhou Qi
- Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Dong-Liang Li
- Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Xiao Tu
- Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Chen-Guang Song
- Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | - Fei Ling
- Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China.
| | - Gao-Xue Wang
- Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China.
| |
Collapse
|
50
|
Romero A, Saraceni PR, Merino S, Figueras A, Tomás JM, Novoa B. The Animal Model Determines the Results of Aeromonas Virulence Factors. Front Microbiol 2016; 7:1574. [PMID: 27757107 PMCID: PMC5048442 DOI: 10.3389/fmicb.2016.01574] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/20/2016] [Indexed: 12/19/2022] Open
Abstract
The selection of an experimental animal model is of great importance in the study of bacterial virulence factors. Here, a bath infection of zebrafish larvae is proposed as an alternative model to study the virulence factors of Aeromonas hydrophila. Intraperitoneal infections in mice and trout were compared with bath infections in zebrafish larvae using specific mutants. The great advantage of this model is that bath immersion mimics the natural route of infection, and injury to the tail also provides a natural portal of entry for the bacteria. The implication of T3SS in the virulence of A. hydrophila was analyzed using the AH-1::aopB mutant. This mutant was less virulent than the wild-type strain when inoculated into zebrafish larvae, as described in other vertebrates. However, the zebrafish model exhibited slight differences in mortality kinetics only observed using invertebrate models. Infections using the mutant AH-1ΔvapA lacking the gene coding for the surface S-layer suggested that this protein was not totally necessary to the bacteria once it was inside the host, but it contributed to the inflammatory response. Only when healthy zebrafish larvae were infected did the mutant produce less mortality than the wild-type. Variations between models were evidenced using the AH-1ΔrmlB, which lacks the O-antigen lipopolysaccharide (LPS), and the AH-1ΔwahD, which lacks the O-antigen LPS and part of the LPS outer-core. Both mutants showed decreased mortality in all of the animal models, but the differences between them were only observed in injured zebrafish larvae, suggesting that residues from the LPS outer core must be important for virulence. The greatest differences were observed using the AH-1ΔFlaB-J (lacking polar flagella and unable to swim) and the AH-1::motX (non-motile but producing flagella). They were as pathogenic as the wild-type strain when injected into mice and trout, but no mortalities were registered in zebrafish larvae. This study demonstrates that zebrafish larvae can be used as a host model to assess the virulence factors of A. hydrophila. This model revealed more differences in pathogenicity than the in vitro models and enabled the detection of slight variations in pathogenesis not observed using intraperitoneal injections of mice or fish.
Collapse
Affiliation(s)
- Alejandro Romero
- Department of Immunology and Genomics, Marine Research Institute-Consejo Superior de Investigaciones Científicas, Vigo Spain
| | - Paolo R Saraceni
- Department of Immunology and Genomics, Marine Research Institute-Consejo Superior de Investigaciones Científicas, Vigo Spain
| | - Susana Merino
- Department of Microbiology, Faculty of Biology, University of Barcelona, Barcelona Spain
| | - Antonio Figueras
- Department of Immunology and Genomics, Marine Research Institute-Consejo Superior de Investigaciones Científicas, Vigo Spain
| | - Juan M Tomás
- Department of Microbiology, Faculty of Biology, University of Barcelona, Barcelona Spain
| | - Beatriz Novoa
- Department of Immunology and Genomics, Marine Research Institute-Consejo Superior de Investigaciones Científicas, Vigo Spain
| |
Collapse
|