1
|
Sürmeli Y, Vardar-Yel N, Tütüncü HE. Recent advances of structure, function, and engineering of carboxylesterases for the pharmaceutical industry: A minireview. Int J Biol Macromol 2025; 307:142206. [PMID: 40107535 DOI: 10.1016/j.ijbiomac.2025.142206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/26/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
Carboxylesterases have a wide range of applications due to their catalytic efficiency, robust structure, and broad substrate specificity. These enzymes, which can hydrolyze carboxylic acid esters, amides, and thioesters, stand out with their regio- and enantioselective properties. They play a crucial role in synthesizing pharmaceutical intermediates, including secondary and tertiary alcohols, α-hydroxy acids, and various bioactive compounds. However, in some cases, the enantioselectivity of carboxylesterases may be insufficient to achieve conversions with the purity required by the pharmaceutical industry. This review summarizes the crucial role of carboxylesterases, particularly in the pharmaceutical field, focusing on the classification, structure, and engineering approaches. After introducing the main families of carboxylesterases, the structural studies are presented to give a comprehensive insight into the active site architecture and related key determinants for enantioselectivity. The protein engineering studies to improve the enantioselectivity of carboxylesterases are discussed along with solvent engineering and immobilization applications.
Collapse
Affiliation(s)
- Yusuf Sürmeli
- Department of Agricultural Biotechnology, Tekirdağ Namık Kemal University, 59030 Tekirdağ, Turkey
| | - Nurcan Vardar-Yel
- Department of Medical Laboratory Techniques, Altınbaş University, 34145 İstanbul, Turkey
| | - Havva Esra Tütüncü
- Department of Nutrition and Dietetics, Malatya Turgut Özal University, 44210 Malatya, Turkey.
| |
Collapse
|
2
|
Verma S, Choudhary S, Amith Kumar K, Mahto JK, Vamsi K AK, Mishra I, Prakash VB, Sircar D, Tomar S, Kumar Sharma A, Singla J, Kumar P. Mechanistic and structural insights into EstS1 esterase: A potent broad-spectrum phthalate diester degrading enzyme. Structure 2025; 33:247-261.e3. [PMID: 39642872 DOI: 10.1016/j.str.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/20/2024] [Accepted: 11/11/2024] [Indexed: 12/09/2024]
Abstract
Phthalate diesters are important pollutants and act as endocrine disruptors. While certain bacterial esterases have been identified for phthalate diesters degradation to monoesters, their structural and mechanistic characteristics remain largely unexplored. Here, we highlight the potential of the thermostable and pH-tolerant EstS1 esterase from Sulfobacillus acidophilus DSM10332 to degrade high molecular weight bis(2-ethylhexyl) phthalate (DEHP) by combining biophysical and biochemical approaches along with high-resolution EstS1 crystal structures of the apo form and with bound substrates, products, and their analogs to elucidate its mechanism. The catalytic tunnel mediates entry and exit of the substrate and product, respectively. The centralized Ser-His-Asp triad performs catalysis by a bi-bi ping-pong mechanism, forming a tetrahedral intermediate. Mutagenesis analysis showed that the Met207Ala mutation abolished DEHP binding at the active site, confirming its essential role in supporting catalysis. These findings underscore EstS1 as a promising tool for advancing technologies aimed at phthalate diesters biodegradation.
Collapse
Affiliation(s)
- Shalja Verma
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | - Shweta Choudhary
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | - Kamble Amith Kumar
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | - Jai Krishna Mahto
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | - Anil Kumar Vamsi K
- Department of Civil Engineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | - Ishani Mishra
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | | | - Debabrata Sircar
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | - Ashwani Kumar Sharma
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | - Jitin Singla
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
3
|
Sürmeli Y, Durmuş N, Şanlı-Mohamed G. Exploring the Structural Insights of Thermostable Geobacillus esterases by Computational Characterization. ACS OMEGA 2024; 9:32931-32941. [PMID: 39100300 PMCID: PMC11292637 DOI: 10.1021/acsomega.4c03818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024]
Abstract
This study conducted an in silico analysis of two biochemically characterized thermostable esterases, Est2 and Est3, from Geobacillus strains. To achieve this, the amino acid sequences of Est2 and Est3 were examined to assess their biophysicochemical properties, evolutionary connections, and sequence similarities. Three-dimensional models were constructed and validated through diverse bioinformatics tools. Molecular dynamics (MD) simulation was employed on a pNP-C2 ligand to explore interactions between enzymes and ligand. Biophysicochemical property analysis indicated that aliphatic indices and theoretical T m values of enzymes were between 82-83 and 55-65 °C, respectively. Molecular phylogeny placed Est2 and Est3 within Family XIII, alongside other Geobacillus esterases. DeepMSA2 revealed that Est2, Est3, and homologous sequences shared 12 conserved residues in their core domain (L39, D50, G53, G55, S57, G92, S94, G96, P108, P184, D193, and H223). BANΔIT analysis indicated that Est2 and Est3 had a significantly more rigid cap domain compared to Est30. Salt bridge analysis revealed that E150-R136, E124-K165, E137-R141, and E154-K157 salt bridges made Est2 and Est3 more stable compared to Est30. MD simulation indicated that Est3 exhibited greater fluctuations in the N-terminal region including conserved F25, cap domain, and C-terminal region, notably including H223, suggesting that these regions might influence esterase catalysis. The common residues in the ligand-binding sites of Est2-Est3 were determined as F25 and L167. The analysis of root mean square fluctuation (RMSF) revealed that region 1, encompassing F25 within the β2-α1 loop of Est3, exhibited higher fluctuations compared to those of Est2. Overall, this study might provide valuable insights for future investigations aimed at improving esterase thermostability and catalytic efficiency, critical industrial traits, through targeted amino acid modifications within the N-terminal region, cap domain, and C-terminal region using rational protein engineering techniques.
Collapse
Affiliation(s)
- Yusuf Sürmeli
- Department
of Agricultural Biotechnology, Tekirdağ
Namık Kemal University, 59030 Tekirdağ, Turkey
| | - Naciye Durmuş
- Department
of Molecular Biology and Genetics, İstanbul
Technical University, 34485 İstanbul, Turkey
| | | |
Collapse
|
4
|
Feng S, Xue M, Xie F, Zhao H, Xue Y. Characterization of Thermotoga maritima Esterase Capable of Hydrolyzing Bis(2-hydroxyethyl) Terephthalate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12045-12056. [PMID: 38753963 DOI: 10.1021/acs.jafc.4c01973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
The gene-encoding carboxylesterase (TM1022) from the hyperthermophilic bacterium Thermotoga maritima (T. maritima) was cloned and expressed in Escherichia coli Top10 and BL21 (DE3). Recombinant TM1022 showed the best activity at pH 8.0 and 85 °C and retained 57% activity after 8 h cultivation at 90 °C. TM1022 exhibited good stability at pH 6.0-9.0, maintaining 53% activity after incubation at pH 10.0 and 37 °C for 6 h. The esterase TM1022 exhibited the optimum thermo-alkali stability and kcat/Km (598.57 ± 19.97 s-1mM-1) for pN-C4. TM1022 hydrolyzed poly(ethylene terephthalate) (PET) degradation intermediates, such as bis(2-hydroxyethyl) terephthalate (BHET) and mono(2-hydroxyethyl) terephthalate (MHET). The Km, kcat, and kcat/Km values for BHET were 0.82 ± 0.01 mM, 2.20 ± 0.02 s-1, and 2.67 ± 0.02 mM-1 s-1, respectively; those for MHET were 2.43 ± 0.07 mM, 0.04 ± 0.001 s-1, and 0.02 ± 0.001 mM-1 s-1, respectively. When purified TM1022 was added to the cutinase BhrPETase, hydrolysis of PET from drinking water bottle tops produced pure terephthalic acids (TPA) with 166% higher yield than those obtained after 72 h of incubation with BhrPETase alone as control. The above findings demonstrate that the esterase TM1022 from T. maritima has substantial potential for depolymerizing PET into monomers for reuse.
Collapse
Affiliation(s)
- Sizhong Feng
- Department of Food Science and Nutrition, College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Mengke Xue
- Department of Food Science and Nutrition, College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Fang Xie
- Department of Food Science and Nutrition, College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Hongyang Zhao
- Department of Food Science and Nutrition, College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Yemin Xue
- Department of Food Science and Nutrition, College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| |
Collapse
|
5
|
Malunavicius V, Vaskevicius L, Gusaite A, Gudiukaite R. Rational and random mutagenesis of GDEst-95 carboxylesterase: New functionality insights. Int J Biol Macromol 2024; 256:128331. [PMID: 38013084 DOI: 10.1016/j.ijbiomac.2023.128331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/26/2023] [Accepted: 11/12/2023] [Indexed: 11/29/2023]
Abstract
Lipolytic enzymes are important contributors in industrial processes from lipid hydrolysis to biofuel production or even polyester biodegradation. While these enzymes can be used in numerous applications, the genotype-phenotype space of certain promising enzymes is still poorly explored. This limits the effective application of such biocatalysts. In this work the genotype space of a 55 kDa carboxylesterase GDEst-95 from Geobacillus sp. 95 was explored using site-directed mutagenesis and directed evolution methods. In this study four site-directed mutants (Gly108Arg, Ala410Arg, Leu226Arg, Leu411Ala) were created based on previous analysis of GDEst-95 carboxylesterase. Error-prone PCR resulted three mutants: two of them with distal mutations: GDEst-RM1 (Arg75Gln), GDEst-RM2 (Gly20Ser Arg75Gln) and the third, GDEst-RM3, with a distal (Ser210Gly) and Tyr317Ala (amino acid position near to the active site) mutation. Mutants with Ala substitution displayed approximately twofold higher specific activity. Arg mutations lead a reduced specific activity, retaining 2.86 % (Gly108Arg), 10.95 % (Ala410Arg), and 44.23 % (Leu226Arg) of lipolytic activity. All three random mutants displayed increased specific activity as well as improved catalytic properties. This research provides the first deeper insights into the functionality of understudied Geobacillus spp. carboxylesterases with 55 kDa in size.
Collapse
Affiliation(s)
- Vilius Malunavicius
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekis avenue 7, LT-10257 Vilnius, Lithuania
| | - Laurynas Vaskevicius
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekis avenue 7, LT-10257 Vilnius, Lithuania
| | - Ausrine Gusaite
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekis avenue 7, LT-10257 Vilnius, Lithuania
| | - Renata Gudiukaite
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekis avenue 7, LT-10257 Vilnius, Lithuania.
| |
Collapse
|
6
|
Fellner M, Walsh A, Dela Ahator S, Aftab N, Sutherland B, Tan EW, Bakker AT, Martin NI, van der Stelt M, Lentz CS. Biochemical and Cellular Characterization of the Function of Fluorophosphonate-Binding Hydrolase H (FphH) in Staphylococcus aureus Support a Role in Bacterial Stress Response. ACS Infect Dis 2023; 9:2119-2132. [PMID: 37824340 PMCID: PMC10644348 DOI: 10.1021/acsinfecdis.3c00246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Indexed: 10/14/2023]
Abstract
The development of new treatment options for bacterial infections requires access to new targets for antibiotics and antivirulence strategies. Chemoproteomic approaches are powerful tools for profiling and identifying novel druggable target candidates, but their functions often remain uncharacterized. Previously, we used activity-based protein profiling in the opportunistic pathogen Staphylococcus aureus to identify active serine hydrolases termed fluorophosphonate-binding hydrolases (Fph). Here, we provide the first characterization of S. aureus FphH, a conserved, putative carboxylesterase (referred to as yvaK in Bacillus subtilis) at the molecular and cellular level. First, phenotypic characterization of fphH-deficient transposon mutants revealed phenotypes during growth under nutrient deprivation, biofilm formation, and intracellular survival. Biochemical and structural investigations revealed that FphH acts as an esterase and lipase based on a fold well suited to act on a small to long hydrophobic unbranched lipid group within its substrate and can be inhibited by active site-targeting oxadiazoles. Prompted by a previous observation that fphH expression was upregulated in response to fusidic acid, we found that FphH can deacetylate this ribosome-targeting antibiotic, but the lack of FphH function did not infer major changes in antibiotic susceptibility. In conclusion, our results indicate a functional role of this hydrolase in S. aureus stress responses, and hypothetical functions connecting FphH with components of the ribosome rescue system that are conserved in the same gene cluster across Bacillales are discussed. Our atomic characterization of FphH will facilitate the development of specific FphH inhibitors and probes to elucidate its physiological role and validity as a drug target.
Collapse
Affiliation(s)
- Matthias Fellner
- Biochemistry
Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Annabel Walsh
- Biochemistry
Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Stephen Dela Ahator
- Research
Group for Host-Microbe Interactions, Department of Medical Biology
and Centre for New Antibacterial Strategies (CANS) UiT, The Arctic University of Norway, 9037 Tromsø, Norway
| | - Nadia Aftab
- Research
Group for Host-Microbe Interactions, Department of Medical Biology
and Centre for New Antibacterial Strategies (CANS) UiT, The Arctic University of Norway, 9037 Tromsø, Norway
| | - Ben Sutherland
- Department
of Chemistry, Division of Sciences, University
of Otago, Dunedin 9054, New Zealand
| | - Eng W. Tan
- Department
of Chemistry, Division of Sciences, University
of Otago, Dunedin 9054, New Zealand
| | - Alexander T. Bakker
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
| | - Nathaniel I. Martin
- Biological
Chemistry Group, Institute of Biology Leiden, Leiden University, 2333
BE Leiden, The Netherlands
| | - Mario van der Stelt
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
| | - Christian S. Lentz
- Research
Group for Host-Microbe Interactions, Department of Medical Biology
and Centre for New Antibacterial Strategies (CANS) UiT, The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|
7
|
Zhang J, Wang H, Luo Z, Yang Z, Zhang Z, Wang P, Li M, Zhang Y, Feng Y, Lu D, Zhu Y. Computational design of highly efficient thermostable MHET hydrolases and dual enzyme system for PET recycling. Commun Biol 2023; 6:1135. [PMID: 37945666 PMCID: PMC10636135 DOI: 10.1038/s42003-023-05523-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
Recently developed enzymes for the depolymerization of polyethylene terephthalate (PET) such as FAST-PETase and LCC-ICCG are inhibited by the intermediate PET product mono(2-hydroxyethyl) terephthalate (MHET). Consequently, the conversion of PET enzymatically into its constituent monomers terephthalic acid (TPA) and ethylene glycol (EG) is inefficient. In this study, a protein scaffold (1TQH) corresponding to a thermophilic carboxylesterase (Est30) was selected from the structural database and redesigned in silico. Among designs, a double variant KL-MHETase (I171K/G130L) with a similar protein melting temperature (67.58 °C) to that of the PET hydrolase FAST-PETase (67.80 °C) exhibited a 67-fold higher activity for MHET hydrolysis than FAST-PETase. A fused dual enzyme system comprising KL-MHETase and FAST-PETase exhibited a 2.6-fold faster PET depolymerization rate than FAST-PETase alone. Synergy increased the yield of TPA by 1.64 fold, and its purity in the released aromatic products reached 99.5%. In large reaction systems with 100 g/L substrate concentrations, the dual enzyme system KL36F achieved over 90% PET depolymerization into monomers, demonstrating its potential applicability in the industrial recycling of PET plastics. Therefore, a dual enzyme system can greatly reduce the reaction and separation cost for sustainable enzymatic PET recycling.
Collapse
Affiliation(s)
- Jun Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Hongzhao Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhaorong Luo
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhenwu Yang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zixuan Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Pengyu Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Mengyu Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yi Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yue Feng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Diannan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| | - Yushan Zhu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
8
|
Hwang J, Yoo W, Shin SC, Kim KK, Kim HW, Do H, Lee JH. Structural and Biochemical Insights into Bis(2-hydroxyethyl) Terephthalate Degrading Carboxylesterase Isolated from Psychrotrophic Bacterium Exiguobacterium antarcticum. Int J Mol Sci 2023; 24:12022. [PMID: 37569396 PMCID: PMC10418727 DOI: 10.3390/ijms241512022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
This study aimed to elucidate the crystal structure and biochemically characterize the carboxylesterase EaEst2, a thermotolerant biocatalyst derived from Exiguobacterium antarcticum, a psychrotrophic bacterium. Sequence and phylogenetic analyses showed that EaEst2 belongs to the Family XIII group of carboxylesterases. EaEst2 has a broad range of substrate specificities for short-chain p-nitrophenyl (pNP) esters, 1-naphthyl acetate (1-NA), and 1-naphthyl butyrate (1-NB). Its optimal pH is 7.0, losing its enzymatic activity at temperatures above 50 °C. EaEst2 showed degradation activity toward bis(2-hydroxyethyl) terephthalate (BHET), a polyethylene terephthalate degradation intermediate. We determined the crystal structure of EaEst2 at a 1.74 Å resolution in the ligand-free form to investigate BHET degradation at a molecular level. Finally, the biochemical stability and immobilization of a crosslinked enzyme aggregate (CLEA) were assessed to examine its potential for industrial application. Overall, the structural and biochemical characterization of EaEst2 demonstrates its industrial potency as a biocatalyst.
Collapse
Affiliation(s)
- Jisub Hwang
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 21990, Republic of Korea;
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| | - Wanki Yoo
- Department of Chemistry, Graduate School of General Studies, Sookmyung Women’s University, Seoul 04310, Republic of Korea;
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea; (K.K.K.); (H.-W.K.)
| | - Seung Chul Shin
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea;
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea; (K.K.K.); (H.-W.K.)
| | - Han-Woo Kim
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea; (K.K.K.); (H.-W.K.)
| | - Hackwon Do
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 21990, Republic of Korea;
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| | - Jun Hyuck Lee
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 21990, Republic of Korea;
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| |
Collapse
|
9
|
Johan UUM, Rahman RNZRA, Kamarudin NHA, Latip W, Ali MSM. A new hyper-thermostable carboxylesterase from Anoxybacillus geothermalis D9. Int J Biol Macromol 2022; 222:2486-2497. [DOI: 10.1016/j.ijbiomac.2022.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
|
10
|
Identification, Characterization, and Preliminary X-ray Diffraction Analysis of a Novel Esterase (ScEst) from Staphylococcus chromogenes. CRYSTALS 2022. [DOI: 10.3390/cryst12040546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Ester prodrugs can develop novel antibiotics and have potential therapeutic applications against multiple drug-resistant bacteria. The antimicrobial activity of these prodrugs is activated after being cleaved by the esterases produced by the pathogen. Here, novel esterase ScEst originating from Staphylococcus chromogenes NCTC10530, which causes dairy cow mastitis, was identified, characterized, and analyzed using X-ray crystallography. The gene encoding ScEst was cloned into the pVFT1S vector and overexpressed in E. coli. The recombinant ScEst protein was obtained by affinity and size-exclusion purification. ScEst showed substrate preference for the short chain length of acyl derivatives. It was crystallized in an optimized solution composed of 0.25 M ammonium citrate tribasic (pH 7.0) and 20% PEG 3350 at 296 K. A total of 360 X-ray diffraction images were collected at a 1.66 Å resolution. ScEst crystal belongs to the space group of P212121 with the unit cell parameters of a = 50.23 Å, b = 68.69 Å, c = 71.15 Å, and α = β = γ = 90°. Structure refinement after molecular replacement is under progress. Further biochemical studies will elucidate the hydrolysis mechanism of ScEst. Overall, this study is the first to report the functional characterization of an esterase from Staphylococcus chromogenes, which is potentially useful in elaborating its hydrolysis mechanism.
Collapse
|
11
|
Lusty Beech J, Clare R, Kincannon WM, Erickson E, McGeehan JE, Beckham GT, DuBois JL. A flexible kinetic assay efficiently sorts prospective biocatalysts for PET plastic subunit hydrolysis. RSC Adv 2022; 12:8119-8130. [PMID: 35424733 PMCID: PMC8982334 DOI: 10.1039/d2ra00612j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/25/2022] [Indexed: 11/21/2022] Open
Abstract
Esterase enzymes catalyze diverse hydrolysis reactions with important biological, commercial, and biotechnological applications. For the improvement of these biocatalysts, there is a need for widely accessible, inexpensive, and adaptable activity screening assays that identify enzymes with particular substrate specificities. Natural systems for biopolymer bioconversion, and likely those designed to mimic them, depend on cocktails of enzymes, each of which specifically targets the intact material as well as water-soluble subunits of varying size. In this work, we have adapted a UV/visible assay using pH-sensitive sulfonphthalein dyes for the real-time quantification of ester hydrolysis of bis-(2-hydroxyethyl) terephthalate (BHET), a subunit of polyethylene terephthalate (PET) plastic. We applied this method to a diverse set of known PET hydrolases and commercial esterases in a microplate format. The approach identified four PET hydrolases and one commercial esterase with high levels of specificity for BHET hydrolysis. Five additional PET hydrolases and three commercial esterases, including a thermophilic enzyme, effectively hydrolyzed both BHET and its monoester product MHET (mono-(2-hydroxyethyl) terephthalate). Specific activities were discernible within one hour and reactions reached an unequivocal endpoint well within 24 hours. The results from the UV/visible method correlated well with conventional HPLC analysis of the reaction products. We examined the suitability of the method toward variable pH, temperature, enzyme preparation method, mono- and multi-ester substrate type, and level of sensitivity versus stringency, finding the assay to be easily adaptable to diverse screening conditions and kinetic measurements. This method offers an accurate, easily accessible, and cost-effective route towards high-throughput library screening to support the discovery, directed evolution, and protein engineering of these critical biocatalysts.
Collapse
Affiliation(s)
- Jessica Lusty Beech
- Department of Chemistry and Biochemistry, Montana State University Bozeman MT 59717 USA
- BOTTLE Consortium Golden CO 80401 USA
| | - Rita Clare
- Department of Chemistry and Biochemistry, Montana State University Bozeman MT 59717 USA
- BOTTLE Consortium Golden CO 80401 USA
| | - William M Kincannon
- Department of Chemistry and Biochemistry, Montana State University Bozeman MT 59717 USA
- BOTTLE Consortium Golden CO 80401 USA
| | - Erika Erickson
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory Golden CO 80401 USA
- BOTTLE Consortium Golden CO 80401 USA
| | - John E McGeehan
- Centre for Enzyme Innovation, School of Biological Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth Portsmouth PO1 2DY UK
- BOTTLE Consortium Golden CO 80401 USA
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory Golden CO 80401 USA
- BOTTLE Consortium Golden CO 80401 USA
| | - Jennifer L DuBois
- Department of Chemistry and Biochemistry, Montana State University Bozeman MT 59717 USA
- BOTTLE Consortium Golden CO 80401 USA
| |
Collapse
|
12
|
Ding J, Liu Y, Gao Y, Zhang C, Wang Y, Xu B, Yang Y, Wu Q, Huang Z. Biodegradation of λ-cyhalothrin through cell surface display of bacterial carboxylesterase. CHEMOSPHERE 2022; 289:133130. [PMID: 34863720 DOI: 10.1016/j.chemosphere.2021.133130] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/27/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
Pyrethroids are the third widespread used insecticides globally which have been extensively applied in agricultural or household environments. Due to continuous applications, pyrethroids have been detected both in living cells and environments. The permanent exposure to pyrethroids have caused substantial health risks and ecosystem concerns. In this work, a λ-cyhalothrin (one kind of pyrethroid insecticides) degrading bacterium Bacillus velezensis sd was isolated and a carboxylesterase gene, CarCB2 was characterized. A whole cell biocatalyst was developed for λ-cyhalothrin biodegradation by displaying CarCB2 on the surface of Escherichia coli cells. CarCB2 was successfully displayed and functionally expressed on E. coli cells with optimal pH and temperature of 7.5 and 30 °C, using p-NPC4 as substrate, respectively. The whole cell biocatalyst exhibited better stability than the purified CarCB2, and approximately 120%, 60% or 50% of its original activity at 4 °C, 30 °C or 37 °C over a period of 35 d was retained, respectively. No enzymatic activity was detected when incubated the purified CarCB2 at 30 °C for 120 h, or 37 °C for 72 h, respectively. Additionally, 30 mg/L of λ-cyhalothrin was degraded in citrate-phosphate buffer by 10 U of the whole cell biocatalyst in 150 min. This work reveals that the whole cell biocatalyst affords a promising approach for efficient biodegradation of λ-cyhalothrin, and might have the potential to be applied in further environmental bioremediation of other different kinds of pyrethroid insecticides.
Collapse
Affiliation(s)
- Junmei Ding
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, 650500, China.
| | - Yan Liu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Yanxiu Gao
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Chengbo Zhang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Yafei Wang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Bo Xu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Yunjuan Yang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Qian Wu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, 650500, China.
| |
Collapse
|
13
|
Zhang H, Wen B, Liu Y, Du G, Wei X, Imam KMSU, Zhou H, Fan S, Wang F, Wang Y, Xin F. A reverse catalytic triad Asp containing loop shaping a wide substrate binding pocket of a feruloyl esterase from Lactobacillus plantarum. Int J Biol Macromol 2021; 184:92-100. [PMID: 34116094 DOI: 10.1016/j.ijbiomac.2021.06.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/08/2021] [Accepted: 06/06/2021] [Indexed: 11/18/2022]
Abstract
Feruloyl esterase is an indispensable biocatalyst in food processing, pesticide and pharmaceutical industries, catalyzing the cleavage of the ester bond cross-linked between the polysaccharide side chain of hemicellulose and ferulic acid in plant cell walls. LP_0796 from Lactobacillus plantarum was identified as a feruloyl esterase that may have potential applications in the food industry, but the lack of the substrate recognition and catalytic mechanisms limits its application. Here, LP_0796 showed the highest activity towards methyl caffeate at pH 6.6 and 40 °C. The crystal structure of LP_0796 was determined at 2.5 Å resolution and featured a catalytic triad Asp195-containing loop facing the opposite direction, thus forming a wider substrate binding pocket. Molecular docking simulation and site-directed mutagenesis studies further demonstrated that in addition to the catalytic triad (Ser94, Asp195, His225), Arg125 and Val128 played essential roles in the function of the active site. Our data also showed that Asp mutation of Ala23 and Ile198 increased the catalytic efficiency to 4- and 5-fold, respectively. Collectively, this work provided a better understanding of the substrate recognition and catalytic mechanisms of LP_0796 and may facilitate the future protein design of this important feruloyl esterase.
Collapse
Affiliation(s)
- Haowen Zhang
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Boting Wen
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yusi Liu
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guoming Du
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xue Wei
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Khandaker Md Sharif Uddin Imam
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huan Zhou
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Shilong Fan
- Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fengzhong Wang
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yulu Wang
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Fengjiao Xin
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
14
|
An integrated overview of bacterial carboxylesterase: Structure, function and biocatalytic applications. Colloids Surf B Biointerfaces 2021; 205:111882. [PMID: 34087776 DOI: 10.1016/j.colsurfb.2021.111882] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022]
Abstract
Carboxylesterases (CEs) are members of prominent esterase, and as their name imply, they catalyze the cleavage of ester linkages. By far, a considerable number of novel CEs have been identified to investigate their exquisite physiological and biochemical properties. They are abundant enzymes in nature, widely distributed in relatively broad temperature range and in various sources; both macroorganisms and microorganisms. Given the importance of these enzymes in broad industries, interest in the study of their mechanisms and structural-based engineering are greatly increasing. This review presents the current state of knowledge and understanding about the structure and functions of this ester-metabolizing enzyme, primarily from bacterial sources. In addition, the potential biotechnological applications of bacterial CEs are also encompassed. This review will be useful in understanding the molecular basis and structural protein of bacterial CEs that are significant for the advancement of enzymology field in industries.
Collapse
|
15
|
Denesyuk A, Dimitriou PS, Johnson MS, Nakayama T, Denessiouk K. The acid-base-nucleophile catalytic triad in ABH-fold enzymes is coordinated by a set of structural elements. PLoS One 2020; 15:e0229376. [PMID: 32084230 PMCID: PMC7034887 DOI: 10.1371/journal.pone.0229376] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/05/2020] [Indexed: 01/09/2023] Open
Abstract
The alpha/beta-Hydrolases (ABH) are a structural class of proteins that are found widespread in nature and includes enzymes that can catalyze various reactions in different substrates. The catalytic versatility of the ABH fold enzymes, which has been a valuable property in protein engineering applications, is based on a similar acid-base-nucleophile catalytic mechanism. In our research, we are concerned with the structure that surrounds the key units of the catalytic machinery, and we have previously found conserved structural organizations that coordinate the catalytic acid, the catalytic nucleophile and the residues of the oxyanion hole. Here, we explore the architecture that surrounds the catalytic histidine at the active sites of enzymes from 40 ABH fold families, where we have identified six conserved interactions that coordinate the catalytic histidine next to the catalytic acid and the catalytic nucleophile. Specifically, the catalytic nucleophile is coordinated next to the catalytic histidine by two weak hydrogen bonds, while the catalytic acid is directly involved in the coordination of the catalytic histidine through by two weak hydrogen bonds. The imidazole ring of the catalytic histidine is coordinated by a CH-π contact and a hydrophobic interaction. Moreover, the catalytic triad residues are connected with a residue that is located at the core of the active site of ABH fold, which is suggested to be the fourth member of a “structural catalytic tetrad”. Besides their role in the stability of the catalytic mechanism, the conserved elements of the catalytic site are actively involved in ligand binding and affect other properties of the catalytic activity, such as substrate specificity, enantioselectivity, pH optimum and thermostability of ABH fold enzymes. These properties are regularly targeted in protein engineering applications, and thus, the identified conserved structural elements can serve as potential modification sites in order to develop ABH fold enzymes with altered activities.
Collapse
Affiliation(s)
- Alexander Denesyuk
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Russia
- * E-mail:
| | - Polytimi S. Dimitriou
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Mark S. Johnson
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Toru Nakayama
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Konstantin Denessiouk
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| |
Collapse
|
16
|
Carboxylic Ester Hydrolases in Bacteria: Active Site, Structure, Function and Application. CRYSTALS 2019. [DOI: 10.3390/cryst9110597] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Carboxylic ester hydrolases (CEHs), which catalyze the hydrolysis of carboxylic esters to produce alcohol and acid, are identified in three domains of life. In the Protein Data Bank (PDB), 136 crystal structures of bacterial CEHs (424 PDB codes) from 52 genera and metagenome have been reported. In this review, we categorize these structures based on catalytic machinery, structure and substrate specificity to provide a comprehensive understanding of the bacterial CEHs. CEHs use Ser, Asp or water as a nucleophile to drive diverse catalytic machinery. The α/β/α sandwich architecture is most frequently found in CEHs, but 3-solenoid, β-barrel, up-down bundle, α/β/β/α 4-layer sandwich, 6 or 7 propeller and α/β barrel architectures are also found in these CEHs. Most are substrate-specific to various esters with types of head group and lengths of the acyl chain, but some CEHs exhibit peptidase or lactamase activities. CEHs are widely used in industrial applications, and are the objects of research in structure- or mutation-based protein engineering. Structural studies of CEHs are still necessary for understanding their biological roles, identifying their structure-based functions and structure-based engineering and their potential industrial applications.
Collapse
|
17
|
Bertolani SJ, Siegel JB. A new benchmark illustrates that integration of geometric constraints inferred from enzyme reaction chemistry can increase enzyme active site modeling accuracy. PLoS One 2019; 14:e0214126. [PMID: 30947258 PMCID: PMC6448891 DOI: 10.1371/journal.pone.0214126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 03/07/2019] [Indexed: 01/06/2023] Open
Abstract
Enzymes play a critical role in a wide array of industrial, medical, and research applications and with the recent explosion of genomic sequencing, we now have sequences for millions of enzymes for which there is no known structure. In order to utilize modern computational design tools for constructing inhibitors or engineering novel catalysts, the ability to accurately model enzymes is critical. A popular approach for modeling enzymes are comparative modeling techniques which can often accurately predict the global structural features. However, achieving atomic accuracy of an active site remains a challenge and is an issue when trying to utilize the molecular details for designing inhibitors or enhanced catalysts. Here we explore integrating knowledge about the required geometric orientation of conserved catalytic residues into the comparative modeling process in order to improve modeling accuracy. In order to investigate the utility of adding this information, we first carefully construct a benchmark set of reference structures to use. Consistent with previous findings, our benchmark demonstrates that the geometry between catalytic residues across an enzyme family is conserved and does not tend to deviate by more than 0.5Å. We then find that by integrating these geometric constraints during modeling, we can double the number of atomic level accuracy models (<1Å RMSD to the crystal structure ligand) within our benchmarking dataset, even for targets with templates as low as 20-30% sequence identity. Catalytic residues within an enzyme family are highly conserved and can often be readily identified through comparative sequence analysis to a known structure within the enzyme family. Therefore utilizing this readily available information has the potential to significantly improve drug design and enzyme engineering efforts for which there is no known structure for the enzyme of interest.
Collapse
Affiliation(s)
- Steve J. Bertolani
- Department of Chemistry, University of California Davis, Davis, California, United States of America
| | - Justin B. Siegel
- Department of Chemistry, University of California Davis, Davis, California, United States of America
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California, United States of America
- Genome Center, University of California Davis, Davis, California, United States of America
| |
Collapse
|
18
|
Nakamura AM, Kadowaki MAS, Godoy A, Nascimento AS, Polikarpov I. Low-resolution envelope, biophysical analysis and biochemical characterization of a short-chain specific and halotolerant carboxylesterase from Bacillus licheniformis. Int J Biol Macromol 2018; 120:1893-1905. [PMID: 30290254 DOI: 10.1016/j.ijbiomac.2018.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 09/30/2018] [Accepted: 10/01/2018] [Indexed: 11/26/2022]
|
19
|
Varejão N, De-Andrade RA, Almeida RV, Anobom CD, Foguel D, Reverter D. Structural Mechanism for the Temperature-Dependent Activation of the Hyperthermophilic Pf2001 Esterase. Structure 2018; 26:199-208.e3. [PMID: 29307486 DOI: 10.1016/j.str.2017.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 09/28/2017] [Accepted: 12/06/2017] [Indexed: 10/18/2022]
Abstract
Lipases and esterases constitute a group of enzymes that catalyze the hydrolysis or synthesis of ester bonds. A major biotechnological interest corresponds to thermophilic esterases, due to their intrinsic stability at high temperatures. The Pf2001 esterase from Pyrococcus furiosus reaches its optimal activity between 70°C and 80°C. The crystal structure of the Pf2001 esterase shows two different conformations: monomer and dimer. The structures reveal important rearrangements in the "cap" subdomain between monomer and dimer, by the formation of an extensive intertwined helical interface. Moreover, the dimer interface is essential for the formation of the hydrophobic channel for substrate selectivity, as confirmed by mutagenesis and kinetic analysis. We also provide evidence for dimer formation at high temperatures, a process that correlates with its enzymatic activation. Thus, we propose a temperature-dependent activation mechanism of the Pf2001 esterase via dimerization that is necessary for the substrate channel formation in the active-site cleft.
Collapse
Affiliation(s)
- Nathalia Varejão
- Institut de Biotecnologia i de Biomedicina and Departamento de Bioquimica i Biologia Molecular, Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain; Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Rafael A De-Andrade
- Instituto de Química, Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio de Janeiro, 21941-909 Rio de Janeiro, Brazil
| | - Rodrigo V Almeida
- Instituto de Química, Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio de Janeiro, 21941-909 Rio de Janeiro, Brazil
| | - Cristiane D Anobom
- Instituto de Química, Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio de Janeiro, 21941-909 Rio de Janeiro, Brazil
| | - Debora Foguel
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil.
| | - David Reverter
- Institut de Biotecnologia i de Biomedicina and Departamento de Bioquimica i Biologia Molecular, Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
20
|
Gudiukaite R, Sadauskas M, Gegeckas A, Malunavicius V, Citavicius D. Construction of a novel lipolytic fusion biocatalyst GDEst-lip for industrial application. J Ind Microbiol Biotechnol 2017; 44:799-815. [PMID: 28105534 DOI: 10.1007/s10295-017-1905-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/07/2017] [Indexed: 01/11/2023]
Abstract
The gene encoding esterase (GDEst-95) from Geobacillus sp. 95 was cloned and sequenced. The resulting open reading frame of 1497 nucleotides encoded a protein with calculated molecular weight of 54.7 kDa, which was classified as a carboxylesterase with an identity of 93-97% to carboxylesterases from Geobacillus bacteria. This esterase can be grouped into family VII of bacterial lipolytic enzymes, was active at broad pH (7-12) and temperature (5-85 °C) range and displayed maximum activity toward short acyl chain p-nitrophenyl (p-NP) esters. Together with GD-95 lipase from Geobacillus sp. strain 95, GDEst-95 esterase was used for construction of fused chimeric biocatalyst GDEst-lip. GDEst-lip esterase/lipase possessed high lipolytic activity (600 U/mg), a broad pH range of 6-12, thermoactivity (5-85 °C), thermostability and resistance to various organic solvents or detergents. For these features GDEst-lip biocatalyst has high potential for applications in various industrial areas. In this work the effect of additional homodomains on monomeric GDEst-95 esterase and GD-95 lipase activity, thermostability, substrate specificity and catalytic properties was also investigated. Altogether, this article shows that domain fusing strategies can modulate the activity and physicochemical characteristics of target enzymes for industrial applications.
Collapse
Affiliation(s)
- Renata Gudiukaite
- Institute of Biosciences, Vilnius University, Sauletekio Avenue 7, 10257, Vilnius, Lithuania.
| | - Mikas Sadauskas
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Sauletekio Avenue 7, 10257, Vilnius, Lithuania
| | - Audrius Gegeckas
- Institute of Biosciences, Vilnius University, Sauletekio Avenue 7, 10257, Vilnius, Lithuania
| | - Vilius Malunavicius
- Institute of Biosciences, Vilnius University, Sauletekio Avenue 7, 10257, Vilnius, Lithuania
| | - Donaldas Citavicius
- Institute of Biosciences, Vilnius University, Sauletekio Avenue 7, 10257, Vilnius, Lithuania
| |
Collapse
|
21
|
Structural and biochemical characterisation of Archaeoglobus fulgidus esterase reveals a bound CoA molecule in the vicinity of the active site. Sci Rep 2016; 6:25542. [PMID: 27160974 PMCID: PMC4861933 DOI: 10.1038/srep25542] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/18/2016] [Indexed: 11/28/2022] Open
Abstract
A new carboxyl esterase, AF-Est2, from the hyperthermophilic archaeon Archaeoglobus fulgidus has been cloned, over-expressed in Escherichia coli and biochemically and structurally characterized. The enzyme has high activity towards short- to medium-chain p-nitrophenyl carboxylic esters with optimal activity towards the valerate ester. The AF-Est2 has good solvent and pH stability and is very thermostable, showing no loss of activity after incubation for 30 min at 80 °C. The 1.4 Å resolution crystal structure of AF-Est2 reveals Coenzyme A (CoA) bound in the vicinity of the active site. Despite the presence of CoA bound to the AF-Est2 this enzyme has no CoA thioesterase activity. The pantetheine group of CoA partially obstructs the active site alcohol pocket suggesting that this ligand has a role in regulation of the enzyme activity. A comparison with closely related α/β hydrolase fold enzyme structures shows that the AF-Est2 has unique structural features that allow CoA binding. A comparison of the structure of AF-Est2 with the human carboxyl esterase 1, which has CoA thioesterase activity, reveals that CoA is bound to different parts of the core domain in these two enzymes and approaches the active site from opposite directions.
Collapse
|
22
|
Lee YS. Isolation and Characterization of a Novel Cold-Adapted Esterase, MtEst45, from Microbulbifer thermotolerans DAU221. Front Microbiol 2016; 7:218. [PMID: 26973604 PMCID: PMC4773448 DOI: 10.3389/fmicb.2016.00218] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/10/2016] [Indexed: 11/30/2022] Open
Abstract
A novel esterase, MtEst45, was isolated from a fosmid genomic library of Microbulbifer thermotolerans DAU221. The encoding gene is predicted to have a mass of 45,564 Da and encodes 495 amino acids, excluding a 21 amino acid signal peptide. MtEst45 showed a low amino acid identity (approximately 23–24%) compared with other lipolytic enzymes belonging to Family III, a closely related bacterial lipolytic enzyme family. MtEst45 also showed a conserved GXSXG motif, G131IS133YG135, which was reported as active site of known lipolytic enzymes, and the putative catalytic triad composed of D237 and H265. Because these mutants of MtEst45, which was S133A, D237N, and H265L, had no activity, these catalytic triad is deemed essential for the enzyme catalysis. MtEst45 was overexpressed in Escherichia coli BL21 (DE3) and purified via His-tag affinity chromatography. The optimal pH and temperature of MtEst45 were estimated to be 8.17 and 46.27°C by response surface methodology, respectively. Additionally, MtEst45 was also active between 1 and 15°C. The optimal hydrolysis substrate for MtEst45 among p-nitrophenyl esters (C2–C18) was p-nitrophenyl butyrate, and the Km and Vmax values were 0.0998 mM and 550 μmol/min/mg of protein, respectively. MtEst45 was strongly inhibited by Hg2+, Zn2+, and Cu2+ ions; by phenylmethanesulfonyl fluoride; and by β-mercaptoethanol. Ca2+ did not affect the enzyme's activity. These biochemical properties, sequence identity, and phylogenetic analysis suggest that MtEst45 represents a novel and valuable bacterial lipolytic enzyme family and is useful for biotechnological applications.
Collapse
Affiliation(s)
- Yong-Suk Lee
- Department of Biotechnology, Dong-A University Busan, South Korea
| |
Collapse
|
23
|
Ferrer M, Bargiela R, Martínez-Martínez M, Mir J, Koch R, Golyshina OV, Golyshin PN. Biodiversity for biocatalysis: A review of the α/β-hydrolase fold superfamily of esterases-lipases discovered in metagenomes. BIOCATAL BIOTRANSFOR 2016. [DOI: 10.3109/10242422.2016.1151416] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Sayer C, Szabo Z, Isupov MN, Ingham C, Littlechild JA. The Structure of a Novel Thermophilic Esterase from the Planctomycetes Species, Thermogutta terrifontis Reveals an Open Active Site Due to a Minimal 'Cap' Domain. Front Microbiol 2015; 6:1294. [PMID: 26635762 PMCID: PMC4655241 DOI: 10.3389/fmicb.2015.01294] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/06/2015] [Indexed: 11/29/2022] Open
Abstract
A carboxyl esterase (TtEst2) has been identified in a novel thermophilic bacterium, Thermogutta terrifontis from the phylum Planctomycetes and has been cloned and over-expressed in Escherichia coli. The enzyme has been characterized biochemically and shown to have activity toward small p-nitrophenyl (pNP) carboxylic esters with optimal activity for pNP-acetate. The enzyme shows moderate thermostability retaining 75% activity after incubation for 30 min at 70°C. The crystal structures have been determined for the native TtEst2 and its complexes with the carboxylic acid products propionate, butyrate, and valerate. TtEst2 differs from most enzymes of the α/β-hydrolase family 3 as it lacks the majority of the ‘cap’ domain and its active site cavity is exposed to the solvent. The bound ligands have allowed the identification of the carboxyl pocket in the enzyme active site. Comparison of TtEst2 with structurally related enzymes has given insight into how differences in their substrate preference can be rationalized based upon the properties of their active site pockets.
Collapse
Affiliation(s)
- Christopher Sayer
- The Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| | | | - Michail N Isupov
- The Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| | | | - Jennifer A Littlechild
- The Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| |
Collapse
|
25
|
Rational design of a carboxylic esterase RhEst1 based on computational analysis of substrate binding. J Mol Graph Model 2015; 62:319-324. [DOI: 10.1016/j.jmgm.2015.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 11/23/2022]
|
26
|
Rauwerdink A, Kazlauskas RJ. How the Same Core Catalytic Machinery Catalyzes 17 Different Reactions: the Serine-Histidine-Aspartate Catalytic Triad of α/β-Hydrolase Fold Enzymes. ACS Catal 2015; 5:6153-6176. [PMID: 28580193 DOI: 10.1021/acscatal.5b01539] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enzymes within a family often catalyze different reactions. In some cases, this variety stems from different catalytic machinery, but in other cases the machinery is identical; nevertheless, the enzymes catalyze different reactions. In this review, we examine the subset of α/β-hydrolase fold enzymes that contain the serine-histidine-aspartate catalytic triad. In spite of having the same protein fold and the same core catalytic machinery, these enzymes catalyze seventeen different reaction mechanisms. The most common reactions are hydrolysis of C-O, C-N and C-C bonds (Enzyme Classification (EC) group 3), but other enzymes are oxidoreductases (EC group 1), acyl transferases (EC group 2), lyases (EC group 4) or isomerases (EC group 5). Hydrolysis reactions often follow the canonical esterase mechanism, but eight variations occur where either the formation or cleavage of the acyl enzyme intermediate differs. The remaining eight mechanisms are lyase-type elimination reactions, which do not have an acyl enzyme intermediate and, in four cases, do not even require the catalytic serine. This diversity of mechanisms from the same catalytic triad stems from the ability of the enzymes to bind different substrates, from the requirements for different chemical steps imposed by these new substrates and, only in about half of the cases, from additional hydrogen bond partners or additional general acids/bases in the active site. This detailed analysis shows that binding differences and non-catalytic residues create new mechanisms and are essential for understanding and designing efficient enzymes.
Collapse
Affiliation(s)
- Alissa Rauwerdink
- Department of Biochemistry, Molecular Biology & Biophysics and The Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
| | - Romas J. Kazlauskas
- Department of Biochemistry, Molecular Biology & Biophysics and The Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
| |
Collapse
|
27
|
Leis B, Angelov A, Mientus M, Li H, Pham VTT, Lauinger B, Bongen P, Pietruszka J, Gonçalves LG, Santos H, Liebl W. Identification of novel esterase-active enzymes from hot environments by use of the host bacterium Thermus thermophilus. Front Microbiol 2015; 6:275. [PMID: 25904908 PMCID: PMC4389547 DOI: 10.3389/fmicb.2015.00275] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/19/2015] [Indexed: 01/27/2023] Open
Abstract
Functional metagenomic screening strategies, which are independent of known sequence information, can lead to the identification of truly novel genes and enzymes. Since E. coli has been used exhaustively for this purpose as a host, it is important to establish alternative expression hosts and to use them for functional metagenomic screening for new enzymes. In this study we show that Thermus thermophilus HB27 is an excellent screening host and can be used as an alternative provider of truly novel biocatalysts. In a previous study we constructed mutant strain BL03 with multiple markerless deletions in genes for major extra- and intracellular lipolytic activities. This esterase-diminished strain was no longer able to grow on defined minimal medium supplemented with tributyrin as the sole carbon source and could be used as a host to screen for metagenomic DNA fragments that could complement growth on tributyrin. Several thousand single fosmid clones from thermophilic metagenomic libraries from heated compost and hot spring water samples were subjected to a comparative screening for esterase activity in both T. thermophilus strain BL03 and E. coli EPI300. We scored a greater number of active esterase clones in the thermophilic bacterium than in the mesophilic E. coli. From several thousand functionally screened clones only two thermostable α/β-fold hydrolase enzymes with high amino acid sequence similarity to already characterized enzymes were identifiable in E. coli. In contrast, five further fosmids were found that conferred lipolytic activities in T. thermophilus only. Four open reading frames (ORFs) were found which did not share significant similarity to known esterase enzymes but contained the conserved GXSXG motif regularly found in lipolytic enzymes. Two of the genes were expressed in both hosts and the novel thermophilic esterases, which based on their primary structures could not be assigned to known esterase or lipase families, were purified and preliminarily characterized. Our work underscores the benefit of using additional screening hosts other than E. coli for the identification of novel biocatalysts with industrial relevance.
Collapse
Affiliation(s)
- Benedikt Leis
- Department of Microbiology, Technische Universität München Freising, Germany
| | - Angel Angelov
- Department of Microbiology, Technische Universität München Freising, Germany
| | - Markus Mientus
- Department of Microbiology, Technische Universität München Freising, Germany
| | - Haijuan Li
- Department of Microbiology, Technische Universität München Freising, Germany
| | - Vu T T Pham
- Department of Microbiology, Technische Universität München Freising, Germany
| | - Benjamin Lauinger
- Research Center Juelich, Institute of Bioorganic Chemistry, Heinrich-Heine-Universität Düsseldorf Juelich, Germany
| | - Patrick Bongen
- Research Center Juelich, Institute of Bioorganic Chemistry, Heinrich-Heine-Universität Düsseldorf Juelich, Germany
| | - Jörg Pietruszka
- Research Center Juelich, Institute of Bioorganic Chemistry, Heinrich-Heine-Universität Düsseldorf Juelich, Germany
| | - Luís G Gonçalves
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa Oeiras, Portugal
| | - Helena Santos
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa Oeiras, Portugal
| | - Wolfgang Liebl
- Department of Microbiology, Technische Universität München Freising, Germany
| |
Collapse
|
28
|
Luan ZJ, Li FL, Dou S, Chen Q, Kong XD, Zhou J, Yu HL, Xu JH. Substrate channel evolution of an esterase for the synthesis of cilastatin. Catal Sci Technol 2015. [DOI: 10.1039/c5cy00085h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Error-prone PCR and site-directed mutagenesis around substrate channel were employed for improving an esterase (RhEst1) activity towards Cilastatin building block. RhEst1A147I/V148F/G254A showed 20 times higher activity than the native enzyme in whole cell biotransformation.
Collapse
Affiliation(s)
- Zheng-Jiao Luan
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Centre for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Fu-Long Li
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Centre for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Shuai Dou
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Centre for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Qi Chen
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Centre for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Xu-Dong Kong
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Centre for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Jiahai Zhou
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Centre for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Centre for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
29
|
Ohara K, Unno H, Oshima Y, Hosoya M, Fujino N, Hirooka K, Takahashi S, Yamashita S, Kusunoki M, Nakayama T. Structural insights into the low pH adaptation of a unique carboxylesterase from Ferroplasma: altering the pH optima of two carboxylesterases. J Biol Chem 2014; 289:24499-510. [PMID: 25043762 DOI: 10.1074/jbc.m113.521856] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate the mechanism for low pH adaptation by a carboxylesterase, structural and biochemical analyses of EstFa_R (a recombinant, slightly acidophilic carboxylesterase from Ferroplasma acidiphilum) and SshEstI (an alkaliphilic carboxylesterase from Sulfolobus shibatae DSM5389) were performed. Although a previous proteomics study by another group showed that the enzyme purified from F. acidiphilum contained an iron atom, EstFa_R did not bind to iron as analyzed by inductively coupled plasma MS and isothermal titration calorimetry. The crystal structures of EstFa_R and SshEstI were determined at 1.6- and 1.5-Å resolutions, respectively. EstFa_R had a catalytic triad with an extended hydrogen bond network that was not observed in SshEstI. Quadruple mutants of both proteins were created to remove or introduce the extended hydrogen bond network. The mutation on EstFa_R enhanced its catalytic efficiency and gave it an alkaline pH optimum, whereas the mutation on SshEstI resulted in opposite effects (i.e. a decrease in the catalytic efficiency and a downward shift in the optimum pH). Our experimental results suggest that the low pH optimum of EstFa_R activity was a result of the unique extended hydrogen bond network in the catalytic triad and the highly negatively charged surface around the active site. The change in the pH optimum of EstFa_R happened simultaneously with a change in the catalytic efficiency, suggesting that the local flexibility of the active site in EstFa_R could be modified by quadruple mutation. These observations may provide a novel strategy to elucidate the low pH adaptation of serine hydrolases.
Collapse
Affiliation(s)
- Kazuhiro Ohara
- From the Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-11, Sendai 980-8579, Japan
| | - Hideaki Unno
- Graduate School of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan, and
| | - Yasuhiro Oshima
- From the Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-11, Sendai 980-8579, Japan
| | - Miho Hosoya
- From the Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-11, Sendai 980-8579, Japan
| | - Naoto Fujino
- From the Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-11, Sendai 980-8579, Japan
| | - Kazutake Hirooka
- From the Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-11, Sendai 980-8579, Japan
| | - Seiji Takahashi
- From the Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-11, Sendai 980-8579, Japan
| | - Satoshi Yamashita
- From the Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-11, Sendai 980-8579, Japan,
| | - Masami Kusunoki
- Faculty of Life and Environmental Sciences, University of Yamanashi, 4-3-37 Takeda, Kofu 400-8511, Japan
| | - Toru Nakayama
- From the Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-11, Sendai 980-8579, Japan
| |
Collapse
|
30
|
Ju H, Pandian R, Kim K, Kim KK, Kim TD. Crystallization and preliminary X-ray analysis of a novel type of lipolytic hydrolase from Bacillus licheniformis. Acta Crystallogr F Struct Biol Commun 2014; 70:473-475. [PMID: 24699742 PMCID: PMC3976066 DOI: 10.1107/s2053230x14004142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 02/22/2014] [Indexed: 11/10/2022] Open
Abstract
With increasing demand in biotechnological applications, the identification and characterization of novel lipolytic enzymes are of great importance. The crystallization and preliminary X-ray crystallographic study of a novel type of hydrolase from Bacillus licheniformis (BL28) are described here. Recombinant BL28 protein containing a C-terminal His tag was overproduced in Escherichia coli and purified to homogeneity. BL28 was crystallized using 0.2 M ammonium acetate, 0.1 M sodium citrate tribasic dihydrate pH 5.6, 30%(w/v) PEG 4000 as a crystallizing solution. X-ray diffraction data were collected to a resolution of 1.67 Å with an Rmerge of 5.8%. The BL28 crystals belonged to the tetragonal space group P41212, with unit-cell parameters a = b = 57.89, c = 167.25 Å. A molecular-replacement solution was obtained and structure refinement of BL28 is in progress.
Collapse
Affiliation(s)
- Hansol Ju
- Department of Applied Chemistry and Biological Engineering, College of Engineering, Ajou University, Suwon 443-749, Republic of Korea
| | - Ramesh Pandian
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Kyungmin Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - T. Doohun Kim
- Department of Applied Chemistry and Biological Engineering, College of Engineering, Ajou University, Suwon 443-749, Republic of Korea
| |
Collapse
|
31
|
Rozeboom HJ, Godinho LF, Nardini M, Quax WJ, Dijkstra BW. Crystal structures of two Bacillus carboxylesterases with different enantioselectivities. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:567-75. [PMID: 24418394 DOI: 10.1016/j.bbapap.2014.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/02/2014] [Accepted: 01/05/2014] [Indexed: 01/08/2023]
Abstract
Naproxen esterase (NP) from Bacillus subtilis Thai I-8 is a carboxylesterase that catalyzes the enantioselective hydrolysis of naproxenmethylester to produce S-naproxen (E>200). It is a homolog of CesA (98% sequence identity) and CesB (64% identity), both produced by B. subtilis strain 168. CesB can be used for the enantioselective hydrolysis of 1,2-O-isopropylideneglycerol (solketal) esters (E>200 for IPG-caprylate). Crystal structures of NP and CesB, determined to a resolution of 1.75Å and 2.04Å, respectively, showed that both proteins have a canonical α/β hydrolase fold with an extra N-terminal helix stabilizing the cap subdomain. The active site in both enzymes is located in a deep hydrophobic groove and includes the catalytic triad residues Ser130, His274, and Glu245. A product analog, presumably 2-(2-hydroxyethoxy)acetic acid, was bound in the NP active site. The enzymes have different enantioselectivities, which previously were shown to result from only a few amino acid substitutions in the cap domain. Modeling of a substrate in the active site of NP allowed explaining the different enantioselectivities. In addition, Ala156 may be a determinant of enantioselectivity as well, since its side chain appears to interfere with the binding of certain R-enantiomers in the active site of NP. However, the exchange route for substrate and product between the active site and the solvent is not obvious from the structures. Flexibility of the cap domain might facilitate such exchange. Interestingly, both carboxylesterases show higher structural similarity to meta-cleavage compound (MCP) hydrolases than to other α/β hydrolase fold esterases.
Collapse
Affiliation(s)
- Henriëtte J Rozeboom
- Laboratory of Biophysical Chemistry, Centre of Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Luis F Godinho
- Department of Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Marco Nardini
- Laboratory of Biophysical Chemistry, Centre of Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Wim J Quax
- Department of Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Bauke W Dijkstra
- Laboratory of Biophysical Chemistry, Centre of Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
32
|
Charbonneau DM, Beauregard M. Role of key salt bridges in thermostability of G. thermodenitrificans EstGtA2: distinctive patterns within the new bacterial lipolytic enzyme subfamily XIII.2 [corrected]. PLoS One 2013; 8:e76675. [PMID: 24116134 PMCID: PMC3792869 DOI: 10.1371/journal.pone.0076675] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/24/2013] [Indexed: 02/07/2023] Open
Abstract
Bacterial lipolytic enzymes were originally classified into eight different families defined by Arpigny and Jaeger (families I-VIII). Recently, the discovery of new lipolytic enzymes allowed for extending the original classification to fourteen families (I-XIV). We previously reported that G. thermodenitrificans EstGtA2 (access no. AEN92268) belonged to a novel group of bacterial lipolytic enzymes. Here we propose a 15(th) family (family XV) and suggest criteria for the assignation of protein sequences to the N' subfamily. Five selected salt bridges, hallmarks of the N' subfamily (E3/R54, E12/R37, E66/R140, D124/K178 and D205/R220) were disrupted in EstGtA2 using a combinatorial alanine-scanning approach. A set of 14 (R/K→A) mutants was produced, including five single, three double, three triple and three quadruple mutants. Despite a high tolerance to non-conservative mutations for folding, all the alanine substitutions were destabilizing (decreasing T m by 5 to 14°C). A particular combination of four substitutions exceeded this tolerance and prevents the correct folding of EstGtA2, leading to enzyme inactivation. Although other mutants remain active at low temperatures, the accumulation of more than two mutations had a dramatic impact on EstGtA2 activity at high temperatures suggesting an important role of these conserved salt bridge-forming residues in thermostability of lipolytic enzymes from the N' subfamily. We also identified a particular interloop salt bridge in EstGtA2 (D194/H222), located at position i -2 and i -4 residues from the catalytic Asp and His respectively which is conserved in other related bacterial lipolytic enzymes (families IV and XIII) with high tolerance to mutations and charge reversal. We investigated the role of residue identity at position 222 in controlling stability-pH dependence in EstGtA2. The introduction of a His to Arg mutation led to increase thermostability under alkaline pH. Our results suggest primary targets for optimization of EstGtA2 for specific biotechnological purposes.
Collapse
Affiliation(s)
- David M. Charbonneau
- Département de chimie-physique, Centre de recherche sur les matériaux lignocellulosiques, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
- PROTEO (Quebec network for research on protein structure, function and engineering), Université Laval, Québec, Québec, Canada
| | - Marc Beauregard
- Département de chimie-physique, Centre de recherche sur les matériaux lignocellulosiques, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
- PROTEO (Quebec network for research on protein structure, function and engineering), Université Laval, Québec, Québec, Canada
| |
Collapse
|
33
|
Improved thermostability of a Bacillus subtilis esterase by domain exchange. Appl Microbiol Biotechnol 2013; 98:1719-26. [DOI: 10.1007/s00253-013-5053-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/08/2013] [Accepted: 06/11/2013] [Indexed: 01/24/2023]
|
34
|
Rao L, Xue Y, Zheng Y, Lu JR, Ma Y. A novel alkaliphilic bacillus esterase belongs to the 13(th) bacterial lipolytic enzyme family. PLoS One 2013; 8:e60645. [PMID: 23577139 PMCID: PMC3618048 DOI: 10.1371/journal.pone.0060645] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 03/01/2013] [Indexed: 11/21/2022] Open
Abstract
Background Microbial derived lipolytic hydrolysts are an important class of biocatalysts because of their huge abundance and ability to display bioactivities under extreme conditions. In spite of recent advances, our understanding of these enzymes remains rudimentary. The aim of our research is to advance our understanding by seeking for more unusual lipid hydrolysts and revealing their molecular structure and bioactivities. Methodology/Principal Findings Bacillus. pseudofirmus OF4 is an extreme alkaliphile with tolerance of pH up to 11. In this work we successfully undertook a heterologous expression of a gene estof4 from the alkaliphilic B. pseudofirmus sp OF4. The recombinant protein called EstOF4 was purified into a homologous product by Ni-NTA affinity and gel filtration. The purified EstOF4 was active as dimer with the molecular weight of 64 KDa. It hydrolyzed a wide range of substrates including p-nitrophenyl esters (C2–C12) and triglycerides (C2–C6). Its optimal performance occurred at pH 8.5 and 50°C towards p-nitrophenyl caproate and triacetin. Sequence alignment revealed that EstOF4 shared 71% identity to esterase Est30 from Geobacillus stearothermophilus with a typical lipase pentapeptide motif G91LS93LG95. A structural model developed from homology modeling revealed that EstOF4 possessed a typical esterase 6α/7β hydrolase fold and a cap domain. Site-directed mutagenesis and inhibition studies confirmed the putative catalytic triad Ser93, Asp190 and His220. Conclusion EstOF4 is a new bacterial esterase with a preference to short chain ester substrates. With a high sequence identity towards esterase Est30 and several others, EstOF4 was classified into the same bacterial lipolytic family, Family XIII. All the members in this family originate from the same bacterial genus, bacillus and display optimal activities from neutral pH to alkaline conditions with short and middle chain length substrates. However, with roughly 70% sequence identity, these enzymes showed hugely different thermal stabilities, indicating their diverse thermal adaptations via just changing a few amino acid residues.
Collapse
Affiliation(s)
- Lang Rao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- The Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Yanfen Xue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yingying Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- The Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Jian R. Lu
- Biological Physics Laboratory, School of Physics and Astronomy, the University of Manchester, Manchester, United Kingdom
- * E-mail: (JRL) (JL); (YM) (YM)
| | - Yanhe Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (JRL) (JL); (YM) (YM)
| |
Collapse
|
35
|
Nobili A, Gall MG, Pavlidis IV, Thompson ML, Schmidt M, Bornscheuer UT. Use of ‘small but smart’ libraries to enhance the enantioselectivity of an esterase fromBacillus stearothermophilustowards tetrahydrofuran-3-yl acetate. FEBS J 2013; 280:3084-93. [DOI: 10.1111/febs.12137] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/08/2013] [Accepted: 01/15/2013] [Indexed: 12/01/2022]
Affiliation(s)
- Alberto Nobili
- Department of Biotechnology and Enzyme Catalysis; Institute of Biochemistry; Greifswald University; Germany
| | - Markus G. Gall
- Department of Biotechnology and Enzyme Catalysis; Institute of Biochemistry; Greifswald University; Germany
| | - Ioannis V. Pavlidis
- Department of Biotechnology and Enzyme Catalysis; Institute of Biochemistry; Greifswald University; Germany
| | - Mark L. Thompson
- Department of Biotechnology and Enzyme Catalysis; Institute of Biochemistry; Greifswald University; Germany
| | - Marlen Schmidt
- Department of Biotechnology and Enzyme Catalysis; Institute of Biochemistry; Greifswald University; Germany
| | - Uwe T. Bornscheuer
- Department of Biotechnology and Enzyme Catalysis; Institute of Biochemistry; Greifswald University; Germany
| |
Collapse
|
36
|
Chiş L, Hriscu M, Bica A, Toşa M, Nagy G, Róna G, G. Vértessy B, Dan Irimie F. Molecular cloning and characterization of a thermostable esterase/lipase produced by a novel Anoxybacillus flavithermus strain. J GEN APPL MICROBIOL 2013; 59:119-34. [DOI: 10.2323/jgam.59.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
37
|
Chow J, Kovacic F, Dall Antonia Y, Krauss U, Fersini F, Schmeisser C, Lauinger B, Bongen P, Pietruszka J, Schmidt M, Menyes I, Bornscheuer UT, Eckstein M, Thum O, Liese A, Mueller-Dieckmann J, Jaeger KE, Streit WR. The metagenome-derived enzymes LipS and LipT increase the diversity of known lipases. PLoS One 2012; 7:e47665. [PMID: 23112831 PMCID: PMC3480424 DOI: 10.1371/journal.pone.0047665] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 09/13/2012] [Indexed: 11/18/2022] Open
Abstract
Triacylglycerol lipases (EC 3.1.1.3) catalyze both hydrolysis and synthesis reactions with a broad spectrum of substrates rendering them especially suitable for many biotechnological applications. Most lipases used today originate from mesophilic organisms and are susceptible to thermal denaturation whereas only few possess high thermotolerance. Here, we report on the identification and characterization of two novel thermostable bacterial lipases identified by functional metagenomic screenings. Metagenomic libraries were constructed from enrichment cultures maintained at 65 to 75 °C and screened resulting in the identification of initially 10 clones with lipolytic activities. Subsequently, two ORFs were identified encoding lipases, LipS and LipT. Comparative sequence analyses suggested that both enzymes are members of novel lipase families. LipS is a 30.2 kDa protein and revealed a half-life of 48 h at 70 °C. The lipT gene encoded for a multimeric enzyme with a half-life of 3 h at 70 °C. LipS had an optimum temperature at 70 °C and LipT at 75 °C. Both enzymes catalyzed hydrolysis of long-chain (C(12) and C(14)) fatty acid esters and additionally hydrolyzed a number of industry-relevant substrates. LipS was highly specific for (R)-ibuprofen-phenyl ester with an enantiomeric excess (ee) of 99%. Furthermore, LipS was able to synthesize 1-propyl laurate and 1-tetradecyl myristate at 70 °C with rates similar to those of the lipase CalB from Candida antarctica. LipS represents the first example of a thermostable metagenome-derived lipase with significant synthesis activities. Its X-ray structure was solved with a resolution of 1.99 Å revealing an unusually compact lid structure.
Collapse
Affiliation(s)
- Jennifer Chow
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany
| | - Filip Kovacic
- Institute of Molecular Enzyme Technology, Heinrich Heine University Duesseldorf, Research Center Juelich, Juelich, Germany
| | - Yuliya Dall Antonia
- European Molecular Biology Laboratory (EMBL) Hamburg Outstation, c/o Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - Ulrich Krauss
- Institute of Molecular Enzyme Technology, Heinrich Heine University Duesseldorf, Research Center Juelich, Juelich, Germany
| | - Francesco Fersini
- European Molecular Biology Laboratory (EMBL) Hamburg Outstation, c/o Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - Christel Schmeisser
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany
| | - Benjamin Lauinger
- Institute of Bioorganic Chemistry, Heinrich Heine University Duesseldorf, Research Center Juelich, Juelich, Germany
| | - Patrick Bongen
- Institute of Bioorganic Chemistry, Heinrich Heine University Duesseldorf, Research Center Juelich, Juelich, Germany
| | - Joerg Pietruszka
- Institute of Bioorganic Chemistry, Heinrich Heine University Duesseldorf, Research Center Juelich, Juelich, Germany
| | - Marlen Schmidt
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Greifswald, Germany
| | - Ina Menyes
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Greifswald, Germany
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Greifswald, Germany
| | - Marrit Eckstein
- Bioprocess Development Consumer Specialties and Biocatalysis Biotechnology, Evonik Industries AG, Essen, Germany
| | - Oliver Thum
- Bioprocess Development Consumer Specialties and Biocatalysis Biotechnology, Evonik Industries AG, Essen, Germany
| | - Andreas Liese
- Institute of Technical Biocatalysis, Hamburg University of Technology, Hamburg, Germany
| | - Jochen Mueller-Dieckmann
- European Molecular Biology Laboratory (EMBL) Hamburg Outstation, c/o Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Duesseldorf, Research Center Juelich, Juelich, Germany
| | - Wolfgang R. Streit
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany
| |
Collapse
|
38
|
Overexpression, Purification, and Biochemical Characterization of the Esterase Est0796 from Lactobacillus plantarum WCFS1. Mol Biotechnol 2012; 54:651-60. [DOI: 10.1007/s12033-012-9607-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Linder M, Johansson AJ, Olsson TSG, Liebeschuetz J, Brinck T. Computational design of a Diels-Alderase from a thermophilic esterase: the importance of dynamics. J Comput Aided Mol Des 2012; 26:1079-95. [PMID: 22983490 DOI: 10.1007/s10822-012-9601-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 09/03/2012] [Indexed: 12/01/2022]
Abstract
A novel computational Diels-Alderase design, based on a relatively rare form of carboxylesterase from Geobacillus stearothermophilus, is presented and theoretically evaluated. The structure was found by mining the PDB for a suitable oxyanion hole-containing structure, followed by a combinatorial approach to find suitable substrates and rational mutations. Four lead designs were selected and thoroughly modeled to obtain realistic estimates of substrate binding and prearrangement. Molecular dynamics simulations and DFT calculations were used to optimize and estimate binding affinity and activation energies. A large quantum chemical model was used to capture the salient interactions in the crucial transition state (TS). Our quantitative estimation of kinetic parameters was validated against four experimentally characterized Diels-Alderases with good results. The final designs in this work are predicted to have rate enhancements of ≈ 10(3)-10(6) and high predicted proficiencies. This work emphasizes the importance of considering protein dynamics in the design approach, and provides a quantitative estimate of the how the TS stabilization observed in most de novo and redesigned enzymes is decreased compared to a minimal, 'ideal' model. The presented design is highly interesting for further optimization and applications since it is based on a thermophilic enzyme (T (opt) = 70 °C).
Collapse
Affiliation(s)
- Mats Linder
- Applied Physical Chemistry, KTH Royal Institute of Technology, Teknikringen 30, 100 44, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
40
|
Structure and activity of the cold-active and anion-activated carboxyl esterase OLEI01171 from the oil-degrading marine bacterium Oleispira antarctica. Biochem J 2012; 445:193-203. [PMID: 22519667 DOI: 10.1042/bj20112113] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The uncharacterized α/β-hydrolase protein OLEI01171 from the psychrophilic marine bacterium Oleispira antarctica belongs to the PF00756 family of putative esterases, which also includes human esterase D. In the present paper we show that purified recombinant OLEI01171 exhibits high esterase activity against the model esterase substrate α-naphthyl acetate at 5-30°C with maximal activity at 15-20°C. The esterase activity of OLEI01171 was stimulated 3-8-fold by the addition of chloride or several other anions (0.1-1.0 M). Compared with mesophilic PF00756 esterases, OLEI01171 exhibited a lower overall protein thermostability. Two crystal structures of OLEI01171 were solved at 1.75 and 2.1 Å resolution and revealed a classical serine hydrolase catalytic triad and the presence of a chloride or bromide ion bound in the active site close to the catalytic Ser148. Both anions were found to co-ordinate a potential catalytic water molecule located in the vicinity of the catalytic triad His257. The results of the present study suggest that the bound anion perhaps contributes to the polarization of the catalytic water molecule and increases the rate of the hydrolysis of an acyl-enzyme intermediate. Alanine replacement mutagenesis of OLEI01171 identified ten amino acid residues important for esterase activity. The replacement of Asn225 by lysine had no significant effect on the activity or thermostability of OLEI01171, but resulted in a detectable increase of activity at 35-45°C. The present study has provided insight into the molecular mechanisms of activity of a cold-active and anion-activated carboxyl esterase.
Collapse
|
41
|
Fersini F, Dall’Antonia Y, Chow J, Streit WR, Mueller-Dieckmann J. Cloning, expression, purification and preliminary X-ray analysis of a putative metagenome-derived lipase. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:923-6. [PMID: 22869123 PMCID: PMC3412774 DOI: 10.1107/s1744309112025651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 06/05/2012] [Indexed: 03/22/2024]
Abstract
LipS is a novel thermostable putative lipase that was isolated from a metagenomic library using functional screening methods. The corresponding gene shows high similarity to that encoding a putative but uncharacterized esterase from Symbiobacterium thermophilum IAM14863 (99% nucleotide-sequence similarity). Two different constructs of the recombinant lipase were crystallized. Crystals belonging to space group P4(2)2(1)2 diffracted X-ray radiation to 2.8 Å resolution and crystals belonging to space group P4 diffracted to 2.0 Å resolution. The most probable content of their asymmetric units were two molecules (P4(2)2(1)2) and four or five molecules (P4), respectively.
Collapse
Affiliation(s)
- Francesco Fersini
- EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany
| | | | - Jennifer Chow
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | - Wolfgang R. Streit
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | | |
Collapse
|
42
|
Fu G, Yuan H, Li C, Lu CD, Gadda G, Weber IT. Conformational Changes and Substrate Recognition in Pseudomonas aeruginosa d-Arginine Dehydrogenase,. Biochemistry 2010; 49:8535-45. [DOI: 10.1021/bi1005865] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Congran Li
- Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chung-Dar Lu
- Departments of Biology
- The Center for Biotechnology and Drug Design
| | - Giovanni Gadda
- Departments of Biology
- Chemistry
- The Center for Biotechnology and Drug Design
| | - Irene T. Weber
- Departments of Biology
- Chemistry
- The Center for Biotechnology and Drug Design
| |
Collapse
|
43
|
Charbonneau DM, Meddeb-Mouelhi F, Beauregard M. A novel thermostable carboxylesterase from Geobacillus thermodenitrificans: evidence for a new carboxylesterase family. J Biochem 2010; 148:299-308. [PMID: 20587647 DOI: 10.1093/jb/mvq064] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A novel gene encoding an esterase from Geobacillus thermodenitrificans strain CMB-A2 was cloned, sequenced and functionally expressed in Escherichia coli M15. Sequence analysis revealed an open reading frame of 747 bp corresponding to a polypeptide of 249 amino acid residues (named EstGtA2). After purification, a specific activity of 2.58 U mg(-1) was detected using p-NP caprylate (C8) at 50 degrees C and pH 8.0 (optimal conditions). The enzyme catalyses the hydrolysis of triglycerides (tributyrin) and a variety of p-nitrophenyl esters with different fatty acyl chain length (C4-C16). The enzyme has potential for various industrial applications since it is characterized by its activity under a wide range of pH, from 25 to 65 degrees C. Using Geobacillus stearothermophilus Est30 esterase structure as template, a model of EstGtA2 was built using ESyPred3D. Analysis of this structural model allowed identifying putative sequence features that control EstGtA2 enzymatic properties. Based on sequence properties, multiple sequence comparisons and phylogenetic analyses, this enzyme appears to belong to a new family of carboxylesterases.
Collapse
Affiliation(s)
- David M Charbonneau
- Département de chimie-biologie, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500 Trois-Rivières (Québec) G9A 5H7, Canada
| | | | | |
Collapse
|
44
|
A cold-adapted esterase of a novel marine isolate, Pseudoalteromonas arctica: gene cloning, enzyme purification and characterization. Extremophiles 2010; 14:273-85. [PMID: 20217440 DOI: 10.1007/s00792-010-0306-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 02/22/2010] [Indexed: 12/12/2022]
Abstract
A gene encoding an esterase (estO) was identified and sequenced from a gene library screen of the psychrotolerant bacterium Pseudoalteromonas arctica. Analysis of the 1,203 bp coding region revealed that the deduced peptide sequence is composed of 400 amino acids with a predicted molecular mass of 44.1 kDa. EstO contains a N-terminal esterase domain and an additional OsmC domain at the C-terminus (osmotically induced family of proteins). The highly conserved five-residue motif typical for all alpha/beta hydrolases (G x S x G) was detected from position 104 to 108 together with a putative catalytic triad consisting of Ser(106), Asp(196), and His(225). Sequence comparison showed that EstO exhibits 90% amino acid identity with hypothetical proteins containing similar esterase and OsmC domains but only around 10% identity to the amino acid sequences of known esterases. EstO variants with and without the OsmC domain were produced and purified as His-tag fusion proteins in E. coli. EstO displayed an optimum pH of 7.5 and optimum temperature of 25 degrees C with more than 50% retained activity at the freezing point of water. The thermostability of EstO (50% activity after 5 h at 40 degrees C) dramatically increased in the truncated variant (50% activity after 2.5 h at 90 degrees C). Furthermore, the esterase displays broad substrate specificity for esters of short-chain fatty acids (C(2)-C(8)).
Collapse
|
45
|
Kundu S, Roy D. Structural study of carboxylesterase from hyperthermophilic bacteria Geobacillus stearothermophilus by molecular dynamics simulation. J Mol Graph Model 2010; 28:820-7. [PMID: 20347362 DOI: 10.1016/j.jmgm.2010.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 02/25/2010] [Accepted: 03/01/2010] [Indexed: 11/27/2022]
Abstract
Carboxylesterases are ubiquitous enzymes with important physiological, industrial and medical applications such as synthesis and hydrolysis of stereo specific compounds, including the metabolic processing of drugs, and antimicrobial agents. Here, we have performed molecular dynamics simulations of carboxylesterase from hyperthermophilic bacterium Geobacillus stearothermophilus (GsEst) for 10ns each at five different temperatures namely at 300K, 343K, 373K, 473K and 500K. Profiles of root mean square fluctuation (RMSF) identify thermostable and thermosensitive regions of GsEst. Unfolding of GsEst initiates at the thermosensitive alpha-helices and proceeds to the thermostable beta-sheets. Five ion-pairs have been identified as critical ion-pairs for thermostability and are maintained stably throughout the higher temperature simulations. A detailed investigation of the active site residues of this enzyme suggests that the geometry of this site is well preserved up to 373K. Furthermore, the hydrogen bonds between Asp188 and His218 of the active site are stably maintained at higher temperatures imparting stability of this site. Radial distribution functions (RDFs) show similar pattern of solvent ordering and water penetration around active site residues up to 373K. Principal component analysis suggests that the motion of the entire protein as well as the active site is similar at 300K, 343K and 373K. Our study may help to identify the factors responsible for thermostability of GsEst that may endeavor to design enzymes with enhanced thermostability.
Collapse
|
46
|
Characterization of a novel thermostable carboxylesterase from Geobacillus kaustophilus HTA426 shows the existence of a new carboxylesterase family. J Bacteriol 2009; 191:3076-85. [PMID: 19304850 DOI: 10.1128/jb.01060-08] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene GK3045 (741 bp) from Geobacillus kaustophilus HTA426 was cloned, sequenced, and overexpressed into Escherichia coli Rosetta (DE3). The deduced protein was a 30-kDa monomeric esterase with high homology to carboxylesterases from Geobacillus thermoleovorans NY (99% identity) and Geobacillus stearothermophilus (97% identity). This protein suffered a proteolytic cut in E. coli, and the problem was overcome by introducing a mutation in the gene (K212R) without affecting the activity. The resulting Est30 showed remarkable thermostability at 65 degrees C, above the optimum growth temperature of G. kaustophilus HTA426. The optimum pH of the enzyme was 8.0. In addition, the purified enzyme exhibited stability against denaturing agents, like organic solvents, detergents, and urea. The protein catalyzed the hydrolysis of p-nitrophenyl esters of different acyl chain lengths, confirming the esterase activity. The sequence analysis showed that the protein contains a catalytic triad formed by Ser93, Asp192, and His222, and the Ser of the active site is located in the conserved motif Gly91-X-Ser93-X-Gly95 included in most esterases and lipases. However, this carboxylesterase showed no more than 17% sequence identity with the closest members in the eight families of microbial carboxylesterases. The three-dimensional structure was modeled by sequence alignment and compared with others carboxylesterases. The topological differences suggested the classification of this enzyme and other Geobacillus-related carboxylesterases in a new alpha/beta hydrolase family different from IV and VI.
Collapse
|
47
|
de Pascale D, Cusano AM, Autore F, Parrilli E, di Prisco G, Marino G, Tutino ML. The cold-active Lip1 lipase from the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 is a member of a new bacterial lipolytic enzyme family. Extremophiles 2008; 12:311-23. [PMID: 18437283 DOI: 10.1007/s00792-008-0163-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 10/12/2007] [Indexed: 11/28/2022]
Abstract
The genome of the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 was searched for the presence of genes encoding ester-hydrolysing enzymes. Amongst the others, the gene PSHAa0051 coding for a putative secreted esterase/lipase was selected. The psychrophilic gene was cloned, functionally over-expressed in P. haloplanktis TAC125, and the recombinant product (after named PhTAC125 Lip1) was purified. PhTAC125 Lip1 was found to be associated to the outer membrane and exhibited higher enzymatic activity towards synthetic substrates with long acyl chains. A structural model was constructed using the structure of carboxylesterase Est30 from Geobacillus stearothermophilus as template. The model covered the central part of the protein with the exceptions of PhTAC125 Lip1 N- and C-terminal regions, where the psychrophilic protein displays extra-domains. The constructed model showed a typical alpha/beta-hydrolase fold, and confirmed the presence of a canonical catalytic triad consisting of Ser, Asp and His. The sequence analysis showed that PhTAC125 Lip1 is distantly related to other lipolytic enzymes, but closely related to other putative psychrophilic esterases/lipases. The aligned proteins share common features, such as: (1) a conserved new active-site pentapeptide motif (LGG(F/L/Y)STG); (2) the likely extra-cytoplasmic localization, (3) the absence of a typical calcium-binding pocket, and (4) the absence of a canonical lid. These observations strongly suggest that aligned proteins constitute a novel lipase family, typical of psychrophilic marine gamma-proteobacteria, and PhTAC125 Lip1 could be considered the first characterised member of this family.
Collapse
Affiliation(s)
- Donatella de Pascale
- Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131 Naples, Italy.
| | | | | | | | | | | | | |
Collapse
|
48
|
Lun S, Bishai WR. Characterization of a Novel Cell Wall-anchored Protein with Carboxylesterase Activity Required for Virulence in Mycobacterium tuberculosis. J Biol Chem 2007; 282:18348-18356. [PMID: 17428787 DOI: 10.1074/jbc.m700035200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pooled mutant competition assays have shown that the Mycobacterium tuberculosis MT2282 gene (Rv2224c, annotated as encoding a proteinase) is required for bacterial survival in mice. To understand the mechanism of this requirement, we conducted a genetic and biochemical study of the MT2282 gene and its product. MT2282 encodes a member of the microbial esterase/lipase family with active site consensus sequences of G-X-S-X-G, and we have concluded that the MT2282 protein is, in fact, a cell wall-associated carboxylesterase rather than a proteinase, as initially annotated. The MT2282 gene product preferentially hydrolyzes ester bonds of substrates with intermediate carbon chain length. Purified MT2282 is a monomer with enzymatic catalysis properties that fit in the Michaelis-Menten kinetic model. Esterase activity was inhibited by paraoxon and dichlorvos. Replacement of Ser215, Asp450, and His477 by Ala in the consensus motifs completely abolishes esterase activity, suggesting that Ser215-Asp450-His477 forms a catalytic triad with Ser215 as an active site residue. To evaluate the role of the MT2282 in pathogenesis, the gene was deleted from the M. tuberculosis genome. BALB/c mouse aerosol infections showed reduced colony-forming unit loads in lungs and spleens and less lung pathology for the DeltaMT2282 mutant. High dose intravenous infection of mice with the mutant resulted in a significantly delayed time to death compared with the wild type or complemented mutant. These results indicate that MT2282 encodes a cell wall-associated carboxylesterase, which is required for full virulence of M. tuberculosis. We propose that MT2282 (Rv2224c) and its adjacent paralogous gene MT2281 (Rv2223c) be named caeA and caeB respectively, for carboxylesterase A and B.
Collapse
Affiliation(s)
- Shichun Lun
- Department of Medicine, Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | - William R Bishai
- Department of Medicine, Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231.
| |
Collapse
|
49
|
Levisson M, van der Oost J, Kengen SWM. Characterization and structural modeling of a new type of thermostable esterase from Thermotoga maritima. FEBS J 2007; 274:2832-42. [PMID: 17466017 DOI: 10.1111/j.1742-4658.2007.05817.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A bioinformatic screening of the genome of the hyperthermophilic bacterium Thermotoga maritima for ester-hydrolyzing enzymes revealed a protein with typical esterase motifs, though annotated as a hypothetical protein. To confirm its putative esterase function the gene (estD) was cloned, functionally expressed in Escherichia coli and purified to homogeneity. Recombinant EstD was found to exhibit significant esterase activity with a preference for short acyl chain esters (C4-C8). The monomeric enzyme has a molecular mass of 44.5 kDa and optimal activity around 95 degrees C and at pH 7. Its thermostability is relatively high with a half-life of 1 h at 100 degrees C, but less stable compared to some other hyperthermophilic esterases. A structural model was constructed with the carboxylesterase Est30 from Geobacillus stearothermophilus as a template. The model covered most of the C-terminal part of EstD. The structure showed an alpha/beta-hydrolase fold and indicated the presence of a typical catalytic triad consisting of a serine, aspartate and histidine, which was verified by site-directed mutagenesis and inhibition studies. Phylogenetic analysis showed that EstD is only distantly related to other esterases. A comparison of the active site pentapeptide motifs revealed that EstD should be grouped into a new family of esterases (Family 10). EstD is the first characterized member of this family.
Collapse
Affiliation(s)
- Mark Levisson
- Laboratory of Microbiology, Wageningen University, Hesselink van Suchtelenweg 4, 6703 GT Wageningen, The Netherlands.
| | | | | |
Collapse
|
50
|
Liu P, Ewis HE, Tai PC, Lu CD, Weber IT. Crystal structure of the Geobacillus stearothermophilus carboxylesterase Est55 and its activation of prodrug CPT-11. J Mol Biol 2007; 367:212-23. [PMID: 17239398 PMCID: PMC1950602 DOI: 10.1016/j.jmb.2006.12.067] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 12/21/2006] [Accepted: 12/27/2006] [Indexed: 01/07/2023]
Abstract
Several mammalian carboxylesterases were shown to activate the prodrug irinotecan (CPT-11) to produce 7-ethyl-10-hydroxycamptothecin (SN-38), a topoisomerase inhibitor used in cancer therapy. However, the potential use of bacterial carboxylesterases, which have the advantage of high stability, has not been explored. We present the crystal structure of the carboxyesterase Est55 from Geobacillus stearothermophilus and evaluation of its enzyme activity on CPT-11. Crystal structures were determined at pH 6.2 and pH 6.8 and resolution of 2.0 A and 1.58 A, respectively. Est55 folds into three domains, a catalytic domain, an alpha/beta domain and a regulatory domain. The structure is in an inactive form; the side-chain of His409, one of the catalytic triad residues, is directed away from the other catalytic residues Ser194 and Glu310. Moreover, the adjacent Cys408 is triply oxidized and lies in the oxyanion hole, which would block the binding of substrate, suggesting a regulatory role. However, Cys408 is not essential for enzyme activity. Mutation of Cys408 showed that hydrophobic side-chains were favorable, while polar serine was unfavorable for enzyme activity. Est55 was shown to hydrolyze CPT-11 into the active form SN-38. The mutant C408V provided a more stable enzyme for activation of CPT-11. Therefore, engineered thermostable Est55 is a candidate for use with irinotecan in enzyme-prodrug cancer therapy.
Collapse
Affiliation(s)
- Ping Liu
- Department of Biology, Molecular Basis of Disease Program, Georgia State University, Atlanta, GA 30303, USA
| | | | | | | | | |
Collapse
|