1
|
Nwigwe IJ, Kim YJ, Wacker DA, Kim TH. Boundary Associated Long Noncoding RNA Mediates Long-Range Chromosomal Interactions. PLoS One 2015; 10:e0136104. [PMID: 26302455 PMCID: PMC4547746 DOI: 10.1371/journal.pone.0136104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 07/29/2015] [Indexed: 11/17/2022] Open
Abstract
CCCTC binding factor (CTCF) is involved in organizing chromosomes into mega base-sized, topologically associated domains (TADs) along with other factors that define sub-TAD organization. CTCF-Cohesin interactions have been shown to be critical for transcription insulation activity as it stabilizes long-range interactions to promote proper gene expression. Previous studies suggest that heterochromatin boundary activity of CTCF may be independent of Cohesin, and there may be additional mechanisms for defining topological domains. Here, we show that a boundary site we previously identified known as CTCF binding site 5 (CBS5) from the homeotic gene cluster A (HOXA) locus exhibits robust promoter activity. This promoter activity from the CBS5 boundary element generates a long noncoding RNA that we designate as boundary associated long noncoding RNA-1 (blncRNA1). Functional characterization of this RNA suggests that the transcript stabilizes long-range interactions at the HOXA locus and promotes proper expression of HOXA genes. Additionally, our functional analysis also shows that this RNA is not needed in the stabilization of CTCF-Cohesin interactions however CTCF-Cohesin interactions are critical in the transcription of blncRNA1. Thus, the CTCF-associated boundary element, CBS5, employs both Cohesin and noncoding RNA to establish and maintain topologically associated domains at the HOXA locus.
Collapse
Affiliation(s)
- Ifeoma Jane Nwigwe
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, 06520, United States of America
| | - Yoon Jung Kim
- Center for Systems Biology and Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, 75080, United States of America
| | - David A. Wacker
- Departments of Internal and Emergency Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, United States of America
| | - Tae Hoon Kim
- Center for Systems Biology and Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, 75080, United States of America
| |
Collapse
|
2
|
Umasuthan N, Bathige SDNK, Whang I, Lim BS, Choi CY, Lee J. Insights into molecular profiles and genomic evolution of an IRAK4 homolog from rock bream (Oplegnathus fasciatus): immunogen- and pathogen-induced transcriptional expression. FISH & SHELLFISH IMMUNOLOGY 2015; 43:436-448. [PMID: 25555811 DOI: 10.1016/j.fsi.2014.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 12/04/2014] [Accepted: 12/15/2014] [Indexed: 06/04/2023]
Abstract
As a pivotal signaling mediator of toll-like receptor (TLR) and interleukin (IL)-1 receptor (IL-1R) signaling cascades, the IL-1R-associated kinase 4 (IRAK4) is engaged in the activation of host immunity. This study investigates the molecular and expressional profiles of an IRAK4-like homolog from Oplegnathus fasciatus (OfIRAK4). The OfIRAK4 gene (8.2 kb) was structured with eleven exons and ten introns. A putative coding sequence (1395bp) was translated to the OfIRAK protein of 464 amino acids. The deduced OfIRAK4 protein featured a bipartite domain structure composed of a death domain (DD) and a kinase domain (PKc). Teleost IRAK4 appears to be distinct and divergent from that of tetrapods in terms of its exon-intron structure and evolutionary relatedness. Analysis of the sequence upstream of translation initiation site revealed the presence of putative regulatory elements, including NF-κB-binding sites, which are possibly involved in transcriptional control of OfIRAK4. Quantitative real-time PCR (qPCR) was employed to assess the transcriptional expression of OfIRAK4 in different juvenile tissues and post-injection of different immunogens and pathogens. Ubiquitous basal mRNA expression was widely detected with highest level in liver. In vivo flagellin (FLA) challenge significantly intensified its mRNA levels in intestine, liver and head kidney indicating its role in FLA-induced signaling. Meanwhile, up-regulated expression was also determined in liver and head kidney of animals challenged with potent immunogens (LPS and poly I:C) and pathogens (Edwardsiella tarda and Streptococcus iniae and rock bream iridovirus (RBIV)). Taken together, these data implicate that OfIRAK4 might be engaged in antibacterial and antiviral immunity in rock bream.
Collapse
Affiliation(s)
- Navaneethaiyer Umasuthan
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea
| | - S D N K Bathige
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea
| | - Ilson Whang
- Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea
| | - Bong-Soo Lim
- Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea
| | - Cheol Young Choi
- Division of Marine Environment and Bioscience, Korea Maritime University, Busan 606-791, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea.
| |
Collapse
|
3
|
Prickett AR, Barkas N, McCole RB, Hughes S, Amante SM, Schulz R, Oakey RJ. Genome-wide and parental allele-specific analysis of CTCF and cohesin DNA binding in mouse brain reveals a tissue-specific binding pattern and an association with imprinted differentially methylated regions. Genome Res 2013; 23:1624-35. [PMID: 23804403 PMCID: PMC3787260 DOI: 10.1101/gr.150136.112] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 06/20/2013] [Indexed: 11/25/2022]
Abstract
DNA binding factors are essential for regulating gene expression. CTCF and cohesin are DNA binding factors with central roles in chromatin organization and gene expression. We determined the sites of CTCF and cohesin binding to DNA in mouse brain, genome wide and in an allele-specific manner with high read-depth ChIP-seq. By comparing our results with existing data for mouse liver and embryonic stem (ES) cells, we investigated the tissue specificity of CTCF binding sites. ES cells have fewer unique CTCF binding sites occupied than liver and brain, consistent with a ground-state pattern of CTCF binding that is elaborated during differentiation. CTCF binding sites without the canonical consensus motif were highly tissue specific. In brain, a third of CTCF and cohesin binding sites coincide, consistent with the potential for many interactions between cohesin and CTCF but also many instances of independent action. In the context of genomic imprinting, CTCF and/or cohesin bind to a majority but not all differentially methylated regions, with preferential binding to the unmethylated parental allele. Whether the parental allele-specific methylation was established in the parental germlines or post-fertilization in the embryo is not a determinant in CTCF or cohesin binding. These findings link CTCF and cohesin with the control regions of a subset of imprinted genes, supporting the notion that imprinting control is mechanistically diverse.
Collapse
Affiliation(s)
- Adam R. Prickett
- Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London, SE1 9RT, United Kingdom
| | - Nikolaos Barkas
- Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London, SE1 9RT, United Kingdom
| | - Ruth B. McCole
- Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London, SE1 9RT, United Kingdom
| | - Siobhan Hughes
- Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London, SE1 9RT, United Kingdom
| | - Samuele M. Amante
- Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London, SE1 9RT, United Kingdom
| | - Reiner Schulz
- Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London, SE1 9RT, United Kingdom
| | - Rebecca J. Oakey
- Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London, SE1 9RT, United Kingdom
| |
Collapse
|
4
|
Cui JG, Li YY, Zhao Y, Bhattacharjee S, Lukiw WJ. Differential regulation of interleukin-1 receptor-associated kinase-1 (IRAK-1) and IRAK-2 by microRNA-146a and NF-kappaB in stressed human astroglial cells and in Alzheimer disease. J Biol Chem 2010; 285:38951-60. [PMID: 20937840 DOI: 10.1074/jbc.m110.178848] [Citation(s) in RCA: 234] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Specific microRNAs (miRNAs), small non-coding RNAs that support homeostatic gene expression, are significantly altered in abundance in human neurological disorders. In monocytes, increased expression of an NF-κB-regulated miRNA-146a down-regulates expression of the interleukin-1 receptor-associated kinase-1 (IRAK-1), an essential component of Toll-like/IL-1 receptor signaling. Here we extend those observations to the hippocampus and neocortex of Alzheimer disease (AD) brain and to stressed human astroglial (HAG) cells in primary culture. In 66 control and AD samples we note a significant up-regulation of miRNA-146a coupled to down-regulation of IRAK-1 and a compensatory up-regulation of IRAK-2. Using miRNA-146a-, IRAK-1-, or IRAK-2 promoter-luciferase reporter constructs, we observe decreases in IRAK-1 and increases in miRNA-146a and IRAK-2 expression in interleukin-1β (IL-1β) and amyloid-β-42 (Aβ42) peptide-stressed HAG cells. NF-κB-mediated transcriptional control of human IRAK-2 was localized to between -119 and +12 bp of the immediate IRAK-2 promoter. The NF-κB inhibitors curcumin, pyrrolidine dithiocarbamate or CAY10512 abrogated both IRAK-2 and miRNA-146a expression, whereas IRAK-1 was up-regulated. Incubation of a protected antisense miRNA-146a was found to inhibit miRNA-146a and restore IRAK-1, whereas IRAK-2 remained unaffected. These data suggest a significantly independent regulation of IRAK-1 and IRAK-2 in AD and in IL-1β+Aβ42 peptide-stressed HAG cells and that an inducible, NF-κB-sensitive, miRNA-146a-mediated down-regulation of IRAK-1 coupled to an NF-κB-induced up-regulation of IRAK-2 expression drives an extensively sustained inflammatory response. The interactive signaling of NF-κB and miRNA-146a further illustrate interplay between inducible transcription factors and pro-inflammatory miRNAs that regulate brain IRAK expression. The combinatorial use of NF-κB inhibitors with miRNA-146a or antisense miRNA-146a may have potential as a bi-pronged therapeutic strategy directed against IRAK-2-driven pathogenic signaling.
Collapse
Affiliation(s)
- Jian Guo Cui
- Department of Ophthalmology, Louisiana State University Health Science Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | |
Collapse
|
5
|
Xie Q, Gan L, Wang J, Wilson I, Li L. Loss of the innate immunity negative regulator IRAK-M leads to enhanced host immune defense against tumor growth. Mol Immunol 2007; 44:3453-61. [PMID: 17477969 PMCID: PMC2956318 DOI: 10.1016/j.molimm.2007.03.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 03/21/2007] [Accepted: 03/26/2007] [Indexed: 10/23/2022]
Abstract
IRAK-M is a negative regulator of innate immunity signaling processes. Although attenuation of innate immunity may help to prevent excessive inflammation, it may also lead to compromised immune surveillance of tumor cells and contribute to tumor formation and growth. Here, we demonstrate that IRAK-M(-/-) mice are resistant to tumor growth upon inoculation with transplantable tumor cells. Immune cells from IRAK-M(-/-) mice are responsible for the anti-tumor effect, since adoptive transfer of splenocytes from IRAK-M(-/-) mice to wild type mice can transfer the tumor-resistant phenotype. Upon tumor cell challenge, there are elevated populations of CD4(+) and CD8(+) T cells and a decreased population of CD4(+) CD25(+)Foxp3(+) regulatory T cells in IRAK-M(-/-) splenocytes. Furthermore, we observe that IRAK-M deficiency leads to elevated proliferation and activation of T cells and B cells. Enhanced NFkappaB activation directly caused by IRAK-M deficiency may explain elevated activation of T and B cells. In addition, macrophages from IRAK-M(-/-) mice exhibit enhanced phagocytic function toward acetylated LDL and apoptotic thymocytes. Collectively, we demonstrate that IRAK-M is directly involved in the regulation of both innate and adaptive immune signaling processes, and deletion of IRAK-M enhances host anti-tumor immune response.
Collapse
Affiliation(s)
- Qifa Xie
- Laboratory of Innate Immunity and Inflammation, Department of Biological Sciences, Fralin Biotechnology Center, Virginia Tech, Blacksburg, VA 24061
| | - Lu Gan
- Laboratory of Innate Immunity and Inflammation, Department of Biological Sciences, Fralin Biotechnology Center, Virginia Tech, Blacksburg, VA 24061
| | - Jianxia Wang
- Laboratory of Innate Immunity and Inflammation, Department of Biological Sciences, Fralin Biotechnology Center, Virginia Tech, Blacksburg, VA 24061
| | - Ingred Wilson
- Laboratory of Innate Immunity and Inflammation, Department of Biological Sciences, Fralin Biotechnology Center, Virginia Tech, Blacksburg, VA 24061
| | - Liwu Li
- Laboratory of Innate Immunity and Inflammation, Department of Biological Sciences, Fralin Biotechnology Center, Virginia Tech, Blacksburg, VA 24061
| |
Collapse
|
6
|
Koesters C, Unger B, Bilic I, Schmidt U, Bluml S, Lichtenberger B, Schreiber M, Stockl J, Ellmeier W. Regulation of dendritic cell differentiation and subset distribution by the zinc finger protein CTCF. Immunol Lett 2007; 109:165-74. [PMID: 17368809 DOI: 10.1016/j.imlet.2007.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 02/11/2007] [Accepted: 02/11/2007] [Indexed: 11/28/2022]
Abstract
The molecular mechanisms that regulate DC differentiation and subset distribution are largely unknown. In this study we report the identification of the C(2)H(2) zinc finger transcription factors (TF) CTCF as a regulator of DC differentiation. CTCF was expressed in human and murine DC and its expression was downregulated during the differentiation of human monocyte-derived DC. Enforced expression of CTCF during the differentiation of murine BM-derived DC (BMDC) caused increased apoptosis and reduced proliferation leading to a dramatically reduced number of CTCF transduced DC. The CTCF expressing BMDC that developed had a more immature phenotype than control cells, and showed defects in maturation upon TLR stimulation. Furthermore, in vivo expression of CTCF led to an increase in the percentage of plasmacytoid DC (pDC) within the DC lineage. Our data provide new insight into molecular mechanisms regulating DC differentiation and subset development and identify CTCF as a factor involved in the regulation of these important processes.
Collapse
Affiliation(s)
- Christina Koesters
- Institute of Immunology, Medical University of Vienna, Lazarettgasse 19, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Chernukhin I, Shamsuddin S, Kang SY, Bergström R, Kwon YW, Yu W, Whitehead J, Mukhopadhyay R, Docquier F, Farrar D, Morrison I, Vigneron M, Wu SY, Chiang CM, Loukinov D, Lobanenkov V, Ohlsson R, Klenova E. CTCF interacts with and recruits the largest subunit of RNA polymerase II to CTCF target sites genome-wide. Mol Cell Biol 2007; 27:1631-48. [PMID: 17210645 PMCID: PMC1820452 DOI: 10.1128/mcb.01993-06] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 11/17/2006] [Accepted: 12/18/2006] [Indexed: 01/14/2023] Open
Abstract
CTCF is a transcription factor with highly versatile functions ranging from gene activation and repression to the regulation of insulator function and imprinting. Although many of these functions rely on CTCF-DNA interactions, it is an emerging realization that CTCF-dependent molecular processes involve CTCF interactions with other proteins. In this study, we report the association of a subpopulation of CTCF with the RNA polymerase II (Pol II) protein complex. We identified the largest subunit of Pol II (LS Pol II) as a protein significantly colocalizing with CTCF in the nucleus and specifically interacting with CTCF in vivo and in vitro. The role of CTCF as a link between DNA and LS Pol II has been reinforced by the observation that the association of LS Pol II with CTCF target sites in vivo depends on intact CTCF binding sequences. "Serial" chromatin immunoprecipitation (ChIP) analysis revealed that both CTCF and LS Pol II were present at the beta-globin insulator in proliferating HD3 cells but not in differentiated globin synthesizing HD3 cells. Further, a single wild-type CTCF target site (N-Myc-CTCF), but not the mutant site deficient for CTCF binding, was sufficient to activate the transcription from the promoterless reporter gene in stably transfected cells. Finally, a ChIP-on-ChIP hybridization assay using microarrays of a library of CTCF target sites revealed that many intergenic CTCF target sequences interacted with both CTCF and LS Pol II. We discuss the possible implications of our observations with respect to plausible mechanisms of transcriptional regulation via a CTCF-mediated direct link of LS Pol II to the DNA.
Collapse
Affiliation(s)
- Igor Chernukhin
- Department of Biological Sciences, Central Campus, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Gaszner M, Felsenfeld G. Insulators: exploiting transcriptional and epigenetic mechanisms. Nat Rev Genet 2006; 7:703-13. [PMID: 16909129 DOI: 10.1038/nrg1925] [Citation(s) in RCA: 477] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Insulators are DNA sequence elements that prevent inappropriate interactions between adjacent chromatin domains. One type of insulator establishes domains that separate enhancers and promoters to block their interaction, whereas a second type creates a barrier against the spread of heterochromatin. Recent studies have provided important advances in our understanding of the modes of action of both types of insulator. These new insights also suggest that the mechanisms of action of both enhancer blockers and barriers might not be unique to these types of element, but instead are adaptations of other gene-regulatory mechanisms.
Collapse
Affiliation(s)
- Miklos Gaszner
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institues of Health, Bethesda, Maryland 20892-0540, USA
| | | |
Collapse
|
9
|
Pugacheva EM, Kwon YW, Hukriede NA, Pack S, Flanagan PT, Ahn JC, Park JA, Choi KS, Kim KW, Loukinov D, Dawid IB, Lobanenkov VV. Cloning and characterization of zebrafish CTCF: Developmental expression patterns, regulation of the promoter region, and evolutionary aspects of gene organization. Gene 2006; 375:26-36. [PMID: 16647825 DOI: 10.1016/j.gene.2006.01.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 12/28/2005] [Accepted: 01/31/2006] [Indexed: 11/20/2022]
Abstract
CTCF is a nuclear phosphoprotein capable of using different subsets of its 11 Zn fingers (ZF) for sequence-specific binding to many dissimilar DNA CTCF-target sites. Such sites were identified in the genomic DNA of various multicellular organisms, in which the CTCF gene was cloned, including insects, birds, rodents, and primates. CTCF/DNA-complexes formed in vivo with different 50-bp-long sequences mediate diverse functions such as positive and negative regulation of promoters, and organization of all known enhancer-blocking elements ("chromatin insulators") including constitutive and epigenetically regulated elements. Abnormal functions of certain CTCF sites are implicated in cancer and in epigenetic syndromes such as BWS and skewed X-inactivation. We describe here the cloning and characterization of the CTCF cDNA and promoter region from zebrafish, a valuable vertebrate model organism. The full-length zebrafish CTCF cDNA clone is 4244 bp in length with an open reading frame (ORF) of 2391 bp that encodes 797 amino acids. The zebrafish CTCF amino acid sequence shows high identity (up to 98% in the zinc finger region) with human CTCF, and perfect conservation of exon-intron organization. Southern blot analyses indicated that the zebrafish genome contains a single copy of the CTCF gene. In situ hybridization revealed the presence of zebrafish CTCF transcripts in all early stages of embryogenesis. Transfection assays with luciferase reporter-constructs identified a core promoter region within 146 bp immediately upstream of the transcriptional start site of zebrafish CTCF that is located at a highly conserved YY1/Initiator element.
Collapse
Affiliation(s)
- Elena M Pugacheva
- Molecular Pathology Section, Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Torrano V, Chernukhin I, Docquier F, D'Arcy V, León J, Klenova E, Delgado MD. CTCF regulates growth and erythroid differentiation of human myeloid leukemia cells. J Biol Chem 2005; 280:28152-61. [PMID: 15941718 DOI: 10.1074/jbc.m501481200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CTCF is a transcription factor and a candidate tumor suppressor that contains a DNA-binding domain composed of 11 zinc fingers. We reported previously that CTCF is differentially regulated during differentiation of human myeloid leukemia cells. In this study we aimed to investigate the role of CTCF in myeloid cell differentiation. A human cell line, K562, that can be chemically induced to differentiate into various hematopoietic lineages was chosen as a model system for this study. Several K562 cell lines with constitutive and conditional expression of CTCF have been generated. By using these model systems we demonstrated that: (i) ectopic expression of CTCF in K562 cells led to growth retardation and promotion of differentiation into the erythroid lineage; (ii) CTCF knock-down significantly inhibited differentiation of K562 cells into erythroid lineage; (iii) differentiation of K562 into the megakaryocytic lineage was not significantly affected; and (iv) down-regulation of MYC has been identified as one of the mechanisms by which CTCF promotes erythroid differentiation. Taken together our results demonstrate that CTCF is involved in the control of myeloid cell growth and differentiation.
Collapse
Affiliation(s)
- Verónica Torrano
- Grupo de Biología Molecular del Cáncer, Departamento de Biologia Molecular, Unidad de Biomedicina-CSIC, Universidad de Cantabria, 39011 Santander, Spain
| | | | | | | | | | | | | |
Collapse
|