1
|
Silva A, Duarte-Silva S, Martins PM, Rodrigues B, Serrenho D, Vilasboas-Campos D, Teixeira-Castro A, Vieyto-Nuñez J, Mieres-Perez J, Figueiredo F, Fraga J, Noble J, Lantz C, Sepanj N, Monteiro-Fernandes D, Guerreiro S, Neves-Carvalho A, Pereira-Sousa J, Klärner FG, Schrader T, Loo JA, Pastore A, Sanchez-Garcia E, Bitan G, Carvalho AL, Maciel P, Macedo-Ribeiro S. Allosteric Modulation of Pathological Ataxin-3 Aggregation: A Path to Spinocerebellar Ataxia Type-3 Therapies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.633970. [PMID: 39896516 PMCID: PMC11785186 DOI: 10.1101/2025.01.22.633970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Spinocerebellar ataxia type 3 (SCA3) is a rare inherited neurodegenerative disease caused by the expansion of a polyglutamine repeat in the protease ataxin-3 (Atx3). Despite extensive knowledge of the downstream pathophysiology, no disease-modifying therapies are currently available to halt disease progression. The accumulation of protein inclusions enriched in the polyQ-expanded Atx3 in neurons suggests that inhibiting its self-assembly may yield targeted therapeutic approaches. Here it is shown that a supramolecular tweezer, CLR01, binds to a lysine residue on a positively charged surface patch of the Atx3 catalytic Josephin domain. At this site, the binding of CLR01 decreases the conformational fluctuations of the distal flexible hairpin. This results in reduced exposure of the nearby aggregation-prone region, which overlaps with the substrate ubiquitin binding site and primes Atx3 self-assembly, ultimately delaying Atx3 amyloid fibril formation and reducing the secondary nucleation rate, a process linked to fibril proliferation and toxicity. These effects translate into the reversal of synapse loss in a SCA3 cultured cortical neuron model, an improved locomotor function in a C. elegans SCA3 model, and a delay in disease onset, accompanied by reduced severity of motor symptoms in a SCA3 mouse model. This study provides critical insights into Atx3 self-assembly, revealing a novel allosteric site for designing CLR01-inspired therapies targeting pathological aggregation pathways while sparing essential functional sites. These findings emphasize that targeting allosteric sites in amyloid-forming proteins may offer unique opportunities to develop safe therapeutic strategies for various protein misfolding disorders.
Collapse
Affiliation(s)
- Alexandra Silva
- i3S -Institute for Research and Innovation in Health, Porto University, Porto, Portugal
- Institute for Molecular and Cellular Biology (IBMC), Porto University, Porto, Portugal
| | - Sara Duarte-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Pedro M Martins
- i3S -Institute for Research and Innovation in Health, Porto University, Porto, Portugal
- Institute for Molecular and Cellular Biology (IBMC), Porto University, Porto, Portugal
| | - Beatriz Rodrigues
- Center for Neuroscience and Cell Biology (CNC-UC) & Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Débora Serrenho
- Center for Neuroscience and Cell Biology (CNC-UC) & Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Daniela Vilasboas-Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Andreia Teixeira-Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Julio Vieyto-Nuñez
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Joel Mieres-Perez
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Francisco Figueiredo
- i3S -Institute for Research and Innovation in Health, Porto University, Porto, Portugal
- Institute for Molecular and Cellular Biology (IBMC), Porto University, Porto, Portugal
| | - Joana Fraga
- i3S -Institute for Research and Innovation in Health, Porto University, Porto, Portugal
- Institute for Molecular and Cellular Biology (IBMC), Porto University, Porto, Portugal
| | - James Noble
- King's College London, London, United Kingdom
| | - Carter Lantz
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Niki Sepanj
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Daniela Monteiro-Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Sara Guerreiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Andreia Neves-Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Joana Pereira-Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | | | - Thomas Schrader
- Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | | | - Elsa Sanchez-Garcia
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Brain Research Institute and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ana Luísa Carvalho
- Center for Neuroscience and Cell Biology (CNC-UC) & Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Sandra Macedo-Ribeiro
- i3S -Institute for Research and Innovation in Health, Porto University, Porto, Portugal
- Institute for Molecular and Cellular Biology (IBMC), Porto University, Porto, Portugal
| |
Collapse
|
2
|
Figueiredo F, Sárkány Z, Silva A, Vilasboas-Campos D, Maciel P, Teixeira-Castro A, Martins PM, Macedo-Ribeiro S. Drug repurposing of dopaminergic drugs to inhibit ataxin-3 aggregation. Biomed Pharmacother 2023; 165:115258. [PMID: 37549460 DOI: 10.1016/j.biopha.2023.115258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/24/2023] [Accepted: 07/29/2023] [Indexed: 08/09/2023] Open
Abstract
The accumulation of mutant ataxin-3 (Atx3) in neuronal nuclear inclusions is a pathological hallmark of Machado-Joseph disease (MJD), also known as Spinocerebellar Ataxia Type 3. Decreasing the protein aggregation burden is a possible disease-modifying strategy to tackle MJD and other neurodegenerative disorders for which only symptomatic treatments are currently available. We performed a drug repurposing screening to identify inhibitors of Atx3 aggregation with known toxicological and pharmacokinetic profiles. Interestingly, dopamine hydrochloride and other catecholamines are among the most potent inhibitors of Atx3 aggregation in vitro. Our results indicate that low micromolar concentrations of dopamine markedly delay the formation of mature amyloid fibrils of mutant Atx3 through the inhibition of the earlier oligomerization steps. Although dopamine itself does not cross the blood-brain barrier, dopamine levels in the brain can be increased by low doses of dopamine precursors and dopamine agonists commonly used to treat Parkinsonian symptoms. In agreement, treatment with levodopa ameliorated motor symptoms in a C. elegans model of MJD. These findings suggest a possible application of dopaminergic drugs to halt or reduce Atx3 accumulation in the brains of MJD patients.
Collapse
Affiliation(s)
- Francisco Figueiredo
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Zsuzsa Sárkány
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Alexandra Silva
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Daniela Vilasboas-Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Andreia Teixeira-Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Pedro M Martins
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.
| | - Sandra Macedo-Ribeiro
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.
| |
Collapse
|
3
|
Haver HN, Wedemeyer M, Butcher E, Peterson FC, Volkman BF, Scaglione KM. Mechanistic Insight into the Suppression of Polyglutamine Aggregation by SRCP1. ACS Chem Biol 2023; 18:549-560. [PMID: 36791332 PMCID: PMC10023506 DOI: 10.1021/acschembio.2c00893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Protein aggregation is a hallmark of the polyglutamine diseases. One potential treatment for these diseases is suppression of polyglutamine aggregation. Previous work identified the cellular slime mold Dictyostelium discoideum as being naturally resistant to polyglutamine aggregation. Further work identified serine-rich chaperone protein 1 (SRCP1) as a protein that is both necessary in Dictyostelium and sufficient in human cells to suppress polyglutamine aggregation. Therefore, understanding how SRCP1 suppresses aggregation may be useful for developing therapeutics for the polyglutamine diseases. Here we utilized a de novo protein modeling approach to generate predictions of SRCP1's structure. Using our best-fit model, we generated mutants that were predicted to alter the stability of SRCP1 and tested these mutants' stability in cells. Using these data, we identified top models of SRCP1's structure that are consistent with the C-terminal region of SRCP1 forming a β-hairpin with a highly dynamic N-terminal region. We next generated a series of peptides that mimic the predicted β-hairpin and validated that they inhibit aggregation of a polyglutamine-expanded mutant huntingtin exon 1 fragment in vitro. To further assess mechanistic details of how SRCP1 inhibits polyglutamine aggregation, we utilized biochemical assays to determine that SRCP1 inhibits secondary nucleation in a manner dependent upon the regions flanking the polyglutamine tract. Finally, to determine if SRCP1 more could generally suppress protein aggregation, we confirmed that it was sufficient to inhibit aggregation of polyglutamine-expanded ataxin-3. Together these studies provide details into the structural and mechanistic basis of the inhibition of protein aggregation by SRCP1.
Collapse
Affiliation(s)
- Holly N. Haver
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, 27710 USA
| | - Michael Wedemeyer
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226 USA
| | - Erin Butcher
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, 27710 USA
| | - Francis C. Peterson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226 USA
| | - Brian F. Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226 USA
| | - K. Matthew Scaglione
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, 27710 USA
- Department of Neurology, Duke University, Durham, NC, 27710 USA
- Duke Center for Neurodegeneration and Neurotherapeutics, Durham, NC, 27710 USA
| |
Collapse
|
4
|
A Robust Assay to Monitor Ataxin-3 Amyloid Fibril Assembly. Cells 2022; 11:cells11121969. [PMID: 35741099 PMCID: PMC9222203 DOI: 10.3390/cells11121969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 02/05/2023] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is caused by the expansion of a glutamine repeat in the protein ataxin-3, which is deposited as intracellular aggregates in affected brain regions. Despite the controversial role of ataxin-3 amyloid structures in SCA3 pathology, the identification of molecules with the capacity to prevent aberrant self-assembly and stabilize functional conformation(s) of ataxin-3 is a key to the development of therapeutic solutions. Amyloid-specific kinetic assays are routinely used to measure rates of protein self-assembly in vitro and are employed during screening for fibrillation inhibitors. The high tendency of ataxin-3 to assemble into oligomeric structures implies that minor changes in experimental conditions can modify ataxin-3 amyloid assembly kinetics. Here, we determine the self-association rates of ataxin-3 and present a detailed study of the aggregation of normal and pathogenic ataxin-3, highlighting the experimental conditions that should be considered when implementing and validating ataxin-3 amyloid progress curves in different settings and in the presence of ataxin-3 interactors. This assay provides a unique and robust platform to screen for modulators of the first steps of ataxin-3 aggregation—a starting point for further studies with cell and animal models of SCA3.
Collapse
|
5
|
Ulamec SM, Brockwell DJ, Radford SE. Looking Beyond the Core: The Role of Flanking Regions in the Aggregation of Amyloidogenic Peptides and Proteins. Front Neurosci 2020; 14:611285. [PMID: 33335475 PMCID: PMC7736610 DOI: 10.3389/fnins.2020.611285] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
Amyloid proteins are involved in many neurodegenerative disorders such as Alzheimer's disease [Tau, Amyloid β (Aβ)], Parkinson's disease [alpha-synuclein (αSyn)], and amyotrophic lateral sclerosis (TDP-43). Driven by the early observation of the presence of ordered structure within amyloid fibrils and the potential to develop inhibitors of their formation, a major goal of the amyloid field has been to elucidate the structure of the amyloid fold at atomic resolution. This has now been achieved for a wide variety of sequences using solid-state NMR, microcrystallography, X-ray fiber diffraction and cryo-electron microscopy. These studies, together with in silico methods able to predict aggregation-prone regions (APRs) in protein sequences, have provided a wealth of information about the ordered fibril cores that comprise the amyloid fold. Structural and kinetic analyses have also shown that amyloidogenic proteins often contain less well-ordered sequences outside of the amyloid core (termed here as flanking regions) that modulate function, toxicity and/or aggregation rates. These flanking regions, which often form a dynamically disordered "fuzzy coat" around the fibril core, have been shown to play key parts in the physiological roles of functional amyloids, including the binding of RNA and in phase separation. They are also the mediators of chaperone binding and membrane binding/disruption in toxic amyloid assemblies. Here, we review the role of flanking regions in different proteins spanning both functional amyloid and amyloid in disease, in the context of their role in aggregation, toxicity and cellular (dys)function. Understanding the properties of these regions could provide new opportunities to target disease-related aggregation without disturbing critical biological functions.
Collapse
Affiliation(s)
| | | | - Sheena E. Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
6
|
Martins PM, Navarro S, Silva A, Pinto MF, Sárkány Z, Figueiredo F, Pereira PJB, Pinheiro F, Bednarikova Z, Burdukiewicz M, Galzitskaya OV, Gazova Z, Gomes CM, Pastore A, Serpell LC, Skrabana R, Smirnovas V, Ziaunys M, Otzen DE, Ventura S, Macedo-Ribeiro S. MIRRAGGE - Minimum Information Required for Reproducible AGGregation Experiments. Front Mol Neurosci 2020; 13:582488. [PMID: 33328883 PMCID: PMC7729192 DOI: 10.3389/fnmol.2020.582488] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Reports on phase separation and amyloid formation for multiple proteins and aggregation-prone peptides are recurrently used to explore the molecular mechanisms associated with several human diseases. The information conveyed by these reports can be used directly in translational investigation, e.g., for the design of better drug screening strategies, or be compiled in databases for benchmarking novel aggregation-predicting algorithms. Given that minute protocol variations determine different outcomes of protein aggregation assays, there is a strong urge for standardized descriptions of the different types of aggregates and the detailed methods used in their production. In an attempt to address this need, we assembled the Minimum Information Required for Reproducible Aggregation Experiments (MIRRAGGE) guidelines, considering first-principles and the established literature on protein self-assembly and aggregation. This consensus information aims to cover the major and subtle determinants of experimental reproducibility while avoiding excessive technical details that are of limited practical interest for non-specialized users. The MIRRAGGE table (template available in Supplementary Information) is useful as a guide for the design of new studies and as a checklist during submission of experimental reports for publication. Full disclosure of relevant information also enables other researchers to reproduce results correctly and facilitates systematic data deposition into curated databases.
Collapse
Affiliation(s)
- Pedro M Martins
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Susanna Navarro
- Institut de Biotecnologia i Biomedicina - Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Alexandra Silva
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Maria F Pinto
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Zsuzsa Sárkány
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Francisco Figueiredo
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.,International Iberian Nanotechnology Laboratory - Department of Atomic Structure - Composition of Materials, Braga, Portugal
| | - Pedro José Barbosa Pereira
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Francisca Pinheiro
- Institut de Biotecnologia i Biomedicina - Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Zuzana Bednarikova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
| | - Michał Burdukiewicz
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Oxana V Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia.,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Zuzana Gazova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
| | - Cláudio M Gomes
- Biosystems and Integrative Sciences Institute and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Annalisa Pastore
- UK-DRI Centre at King's College London, the Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Louise C Serpell
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Rostislav Skrabana
- Department of Neuroimmunology, Axon Neuroscience R&D Services SE, Bratislava, Slovakia.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Vytautas Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Mantas Ziaunys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina - Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Sandra Macedo-Ribeiro
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
7
|
Pinto MF, Figueiredo F, Silva A, Pombinho AR, Pereira PJB, Macedo-Ribeiro S, Rocha F, Martins PM. Major Improvements in Robustness and Efficiency during the Screening of Novel Enzyme Effectors by the 3-Point Kinetics Assay. SLAS DISCOVERY 2020; 26:373-382. [PMID: 32981414 DOI: 10.1177/2472555220958386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The throughput level currently reached by automatic liquid handling and assay monitoring techniques is expected to facilitate the discovery of new modulators of enzyme activity. Judicious and dependable ways to interpret vast amounts of information are, however, required to effectively answer this challenge. Here, the 3-point method of kinetic analysis is proposed as a means to significantly increase the hit success rates and decrease the number of falsely identified compounds (false positives). In this post-Michaelis-Menten approach, each screened reaction is probed in three different occasions, none of which necessarily coincide with the initial period of constant velocity. Enzymology principles rather than subjective criteria are applied to identify unwanted outliers such as assay artifacts, and then to accurately distinguish true enzyme modulation effects from false positives. The exclusion and selection criteria are defined based on the 3-point reaction coordinates, whose relative positions along the time-courses may change from well to well or from plate to plate, if necessary. The robustness and efficiency of the new method is illustrated during a small drug repurposing screening of potential modulators of the deubiquinating activity of ataxin-3, a protein implicated in Machado-Joseph disease. Apparently, intractable Z factors are drastically enhanced after (1) eliminating spurious results, (2) improving the normalization method, and (3) increasing the assay resilience to systematic and random variability. Numerical simulations further demonstrate that the 3-point analysis is highly sensitive to specific, catalytic, and slow-onset modulation effects that are particularly difficult to detect by typical endpoint assays.
Collapse
Affiliation(s)
- Maria Filipa Pinto
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia (LEPABE), Faculdade de Engenharia da Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Francisco Figueiredo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.,International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
| | - Alexandra Silva
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - António R Pombinho
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Pedro José Barbosa Pereira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Sandra Macedo-Ribeiro
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Fernando Rocha
- Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia (LEPABE), Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
| | - Pedro M Martins
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| |
Collapse
|
8
|
Rosselli-Murai LK, Joseph JG, Lopes-Cendes I, Liu AP, Murai MJ. The Machado-Joseph disease-associated form of ataxin-3 impacts dynamics of clathrin-coated pits. Cell Biol Int 2020; 44:1252-1259. [PMID: 31970864 DOI: 10.1002/cbin.11312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/22/2020] [Indexed: 12/14/2022]
Abstract
Expansion above a certain threshold in the polyglutamine (polyQ) tract of ataxin-3 is the main cause of neurodegeneration in Machado-Joseph disease. Ataxin-3 contains an N-terminal catalytic domain, called Josephin domain, and a highly aggregation-prone C-terminal domain containing the polyQ tract. Recent work has shown that protein aggregation inhibits clathrin-mediated endocytosis (CME). However, the effects of polyQ expansion in ataxin-3 on CME have not been investigated. We hypothesize that the expansion of the polyQ tract in ataxin-3 could impact CME. Here, we report that both the wild-type and the expanded ataxin-3 reduce transferrin internalization and expanded ataxin-3 impacts dynamics of clathrin-coated pits (CCPs) by reducing CCP nucleation and increasing short-lived abortive CCPs. Since endocytosis plays a central role in regulating receptor uptake and cargo release, our work highlights a potential mechanism linking protein aggregation to cellular dysregulation.
Collapse
Affiliation(s)
- Luciana K Rosselli-Murai
- Department of Pharmacology, University of Michigan Medical School, 2301 MSRB III, 1150 W. Medical Center Dr., Ann Arbor, Michigan, 48109, USA.,Department of Mechanical Engineering, University of Michigan, 2674 GGB, 2350 Hayward, Ann Arbor, Michigan, 48109, USA
| | - Jophin G Joseph
- Department of Mechanical Engineering, University of Michigan, 2674 GGB, 2350 Hayward, Ann Arbor, Michigan, 48109, USA
| | - Iscia Lopes-Cendes
- Department of Medical Genetics, School of Medical Sciences, University of Campinas, R. Tessália Vieira de Camargo, 126, Campinas, São Paulo, 13083-970, Brazil.,The Brazilian Institute of Neuroscience and Neurotechnology, R. Vital Brasil, 251, Campinas, São Paulo, 13083-888, Brazil
| | - Allen P Liu
- Department of Mechanical Engineering, University of Michigan, 2674 GGB, 2350 Hayward, Ann Arbor, Michigan, 48109, USA
| | - Marcelo J Murai
- Department of Pharmacology, University of Michigan Medical School, 2301 MSRB III, 1150 W. Medical Center Dr., Ann Arbor, Michigan, 48109, USA.,Department of Medical Genetics, School of Medical Sciences, University of Campinas, R. Tessália Vieira de Camargo, 126, Campinas, São Paulo, 13083-970, Brazil
| |
Collapse
|
9
|
Orlando G, Silva A, Macedo-Ribeiro S, Raimondi D, Vranken W. Accurate prediction of protein beta-aggregation with generalized statistical potentials. Bioinformatics 2019; 36:2076-2081. [DOI: 10.1093/bioinformatics/btz912] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 11/27/2019] [Accepted: 12/03/2019] [Indexed: 01/04/2023] Open
Abstract
Abstract
Motivation
Protein beta-aggregation is an important but poorly understood phenomena involved in diseases as well as in beneficial physiological processes. However, while this task has been investigated for over 50 years, very little is known about its mechanisms of action. Moreover, the identification of regions involved in aggregation is still an open problem and the state-of-the-art methods are often inadequate in real case applications.
Results
In this article we present AgMata, an unsupervised tool for the identification of such regions from amino acidic sequence based on a generalized definition of statistical potentials that includes biophysical information. The tool outperforms the state-of-the-art methods on two different benchmarks. As case-study, we applied our tool to human ataxin-3, a protein involved in Machado–Joseph disease. Interestingly, AgMata identifies aggregation-prone residues that share the very same structural environment. Additionally, it successfully predicts the outcome of in vitro mutagenesis experiments, identifying point mutations that lead to an alteration of the aggregation propensity of the wild-type ataxin-3.
Availability and implementation
A python implementation of the tool is available at https://bitbucket.org/bio2byte/agmata.
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Gabriele Orlando
- Interuniversity Institute of Bioinformatics in Brussels, ULB/VUB, Triomflaan, Brussels 1050, Belgium
- Structural Biology, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Alexandra Silva
- IBMC-Instituto de Biologia Molecular e Celular
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal
| | - Sandra Macedo-Ribeiro
- IBMC-Instituto de Biologia Molecular e Celular
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal
| | | | - Wim Vranken
- Interuniversity Institute of Bioinformatics in Brussels, ULB/VUB, Triomflaan, Brussels 1050, Belgium
- Structural Biology, Vrije Universiteit Brussel, Brussels 1050, Belgium
- Centre for Structural Biology, VIB, Brussels 1050, Belgium
| |
Collapse
|
10
|
Da Silva JD, Teixeira-Castro A, Maciel P. From Pathogenesis to Novel Therapeutics for Spinocerebellar Ataxia Type 3: Evading Potholes on the Way to Translation. Neurotherapeutics 2019; 16:1009-1031. [PMID: 31691128 PMCID: PMC6985322 DOI: 10.1007/s13311-019-00798-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD), is a neurodegenerative disorder caused by a polyglutamine expansion in the ATXN3 gene. In spite of the identification of a clear monogenic cause 25 years ago, the pathological process still puzzles researchers, impairing prospects for an effective therapy. Here, we propose the disruption of protein homeostasis as the hub of SCA3 pathogenesis, being the molecular mechanisms and cellular pathways that are deregulated in SCA3 downstream consequences of the misfolding and aggregation of ATXN3. Moreover, we attempt to provide a realistic perspective on how the translational/clinical research in SCA3 should evolve. This was based on molecular findings, clinical and epidemiological characteristics, studies of proposed treatments in other conditions, and how that information is essential for their (re-)application in SCA3. This review thus aims i) to critically evaluate the current state of research on SCA3, from fundamental to translational and clinical perspectives; ii) to bring up the current key questions that remain unanswered in this disorder; and iii) to provide a frame on how those answers should be pursued.
Collapse
Affiliation(s)
- Jorge Diogo Da Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Andreia Teixeira-Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
11
|
Contessotto MG, Rosselli-Murai LK, Garcia MCC, Oliveira CL, Torriani IL, Lopes-Cendes I, Murai MJ. The Machado-Joseph disease-associated expanded form of ataxin-3: Overexpression, purification, and preliminary biophysical and structural characterization. Protein Expr Purif 2018; 152:40-45. [DOI: 10.1016/j.pep.2018.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/15/2018] [Accepted: 07/14/2018] [Indexed: 01/14/2023]
|
12
|
Polyglutamine-Independent Features in Ataxin-3 Aggregation and Pathogenesis of Machado-Joseph Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1049:275-288. [PMID: 29427109 DOI: 10.1007/978-3-319-71779-1_14] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The expansion of a trinucleotide (CAG) repeat, translated into a polyglutamine expanded sequence in the protein encoded by the MJD gene, was identified over 20 years ago as the causative mutation in a severe neurodegenerative disorder originally diagnosed in individuals of Portuguese ancestry. This incapacitating disease, called Machado-Joseph disease or spinocebellar ataxia type 3, is integrated into a larger group of neurodegenerative disorders-the polyglutamine expansion disorders-caused by extension of a CAG repeat in the coding sequence of otherwise unrelated genes. These diseases are generally linked with the appearance of intracellular inclusions , which despite having a controversial role in disease appearance and development represent a characteristic common fingerprint in all polyglutamine-related disorders. Although polyglutamine expansion is an obvious trigger for neuronal dysfunction, the role of the different domains of these complex proteins in the function and aggregation properties of the carrier proteins is being uncovered in recent studies. In this review the current knowledge about the structural and functional features of full-length ataxin-3 protein will be discussed. The intrinsic conformational dynamics and interplay between the globular and intrinsically disordered regions of ataxin-3 will be highlighted, and a perspective picture of the role of known ataxin-3 post-translational modifications on regulating ataxin-3 aggregation and function will be drawn.
Collapse
|
13
|
Ruggeri FS, Habchi J, Cerreta A, Dietler G. AFM-Based Single Molecule Techniques: Unraveling the Amyloid Pathogenic Species. Curr Pharm Des 2017; 22:3950-70. [PMID: 27189600 PMCID: PMC5080865 DOI: 10.2174/1381612822666160518141911] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/17/2016] [Indexed: 01/05/2023]
Abstract
Background A wide class of human diseases and neurodegenerative disorders, such as Alzheimer’s disease, is due to the failure of a specific peptide or protein to keep its native functional conformational state and to undergo a conformational change into a misfolded state, triggering the formation of fibrillar cross-β sheet amyloid aggregates. During the fibrillization, several coexisting species are formed, giving rise to a highly heterogeneous mixture. Despite its fundamental role in biological function and malfunction, the mechanism of protein self-assembly and the fundamental origins of the connection between aggregation, cellular toxicity and the biochemistry of neurodegeneration remains challenging to elucidate in molecular detail. In particular, the nature of the specific state of proteins that is most prone to cause cytotoxicity is not established. Methods: In the present review, we present the latest advances obtained by Atomic Force Microscopy (AFM) based techniques to unravel the biophysical properties of amyloid aggregates at the nanoscale. Unraveling amyloid single species biophysical properties still represents a formidable experimental challenge, mainly because of their nanoscale dimensions and heterogeneous nature. Bulk techniques, such as circular dichroism or infrared spectroscopy, are not able to characterize the heterogeneity and inner properties of amyloid aggregates at the single species level, preventing a profound investigation of the correlation between the biophysical properties and toxicity of the individual species. Conclusion: The information delivered by AFM based techniques could be central to study the aggregation pathway of proteins and to design molecules that could interfere with amyloid aggregation delaying the onset of misfolding diseases.
Collapse
Affiliation(s)
- Francesco Simone Ruggeri
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, United Kingdom.
| | | | | | | |
Collapse
|
14
|
Costa MDC, Ashraf NS, Fischer S, Yang Y, Schapka E, Joshi G, McQuade TJ, Dharia RM, Dulchavsky M, Ouyang M, Cook D, Sun D, Larsen MJ, Gestwicki JE, Todi SV, Ivanova MI, Paulson HL. Unbiased screen identifies aripiprazole as a modulator of abundance of the polyglutamine disease protein, ataxin-3. Brain 2017; 139:2891-2908. [PMID: 27645800 DOI: 10.1093/brain/aww228] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/24/2016] [Indexed: 11/14/2022] Open
Abstract
No disease-modifying treatment exists for the fatal neurodegenerative polyglutamine disease known both as Machado-Joseph disease and spinocerebellar ataxia type 3. As a potential route to therapy, we identified small molecules that reduce levels of the mutant disease protein, ATXN3. Screens of a small molecule collection, including 1250 Food and Drug Administration-approved drugs, in a novel cell-based assay, followed by secondary screens in brain slice cultures from transgenic mice expressing the human disease gene, identified the atypical antipsychotic aripiprazole as one of the hits. Aripiprazole increased longevity in a Drosophila model of Machado-Joseph disease and effectively reduced aggregated ATXN3 species in flies and in brains of transgenic mice treated for 10 days. The aripiprazole-mediated decrease in ATXN3 abundance may reflect a complex response culminating in the modulation of specific components of cellular protein homeostasis. Aripiprazole represents a potentially promising therapeutic drug for Machado-Joseph disease and possibly other neurological proteinopathies.
Collapse
Affiliation(s)
| | - Naila S Ashraf
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Svetlana Fischer
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Yemen Yang
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Emily Schapka
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Gnanada Joshi
- Department of Pharmacology, Wayne State University, Detroit, MI, USA
| | - Thomas J McQuade
- Center for Chemical Genomics, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Rahil M Dharia
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Mark Dulchavsky
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Michelle Ouyang
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - David Cook
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Duxin Sun
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Martha J Larsen
- Center for Chemical Genomics, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, Institute for Neurodegenerative Diseases, University of California at San Francisco, San Francisco, CA, USA
| | - Sokol V Todi
- Department of Pharmacology, Wayne State University, Detroit, MI, USA.,Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Magdalena I Ivanova
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.,Department of Biophysics, University of Michigan, Ann Arbor, MI, USA
| | - Henry L Paulson
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
15
|
Silva A, Almeida B, Fraga JS, Taboada P, Martins PM, Macedo-Ribeiro S. Distribution of Amyloid-Like and Oligomeric Species from Protein Aggregation Kinetics. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Alexandra Silva
- IBMC-Instituto de Biologia Molecular e Celular and I3s-Instituto de Investigação e Inovação em Saúde Portugal; Universidade do Porto; 4150-180 Porto Portugal
| | - Bruno Almeida
- IBMC-Instituto de Biologia Molecular e Celular and I3s-Instituto de Investigação e Inovação em Saúde Portugal; Universidade do Porto; 4150-180 Porto Portugal
- Present address: Life and Health Sciences Research Institute (ICVS); School of Medicine; University of Minho; 4710-057 Braga Portugal
- ICVS/3B's-PT Government Associate Laboratory; University of Minho; Braga/Guimarães Portugal
| | - Joana S. Fraga
- IBMC-Instituto de Biologia Molecular e Celular and I3s-Instituto de Investigação e Inovação em Saúde Portugal; Universidade do Porto; 4150-180 Porto Portugal
| | - Pablo Taboada
- Área de Física de la Materia Condensada; Facultad de Física; Universidad de Santiago de Compostela; Instituto de Investigación Sanitaria (IDIS) de Santiago de Compostela; Spain
| | - Pedro M. Martins
- IBMC-Instituto de Biologia Molecular e Celular and I3s-Instituto de Investigação e Inovação em Saúde Portugal; Universidade do Porto; 4150-180 Porto Portugal
- LEPABE-Departamento de Engenharia Química; Faculdade de Engenharia da Universidade do Porto; Rua Dr. Roberto Frias 4200-465 Porto Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar; Universidade do Porto; Portugal
| | - Sandra Macedo-Ribeiro
- IBMC-Instituto de Biologia Molecular e Celular and I3s-Instituto de Investigação e Inovação em Saúde Portugal; Universidade do Porto; 4150-180 Porto Portugal
| |
Collapse
|
16
|
Silva A, Almeida B, Fraga JS, Taboada P, Martins PM, Macedo-Ribeiro S. Distribution of Amyloid-Like and Oligomeric Species from Protein Aggregation Kinetics. Angew Chem Int Ed Engl 2017; 56:14042-14045. [PMID: 28906069 DOI: 10.1002/anie.201707345] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Indexed: 12/13/2022]
Abstract
Amyloid fibrils and soluble oligomers are two types of protein aggregates associated with neurodegeneration. Classic therapeutic strategies try to prevent the nucleation and spread of amyloid fibrils, whilst diffusible oligomers have emerged as promising drug targets affecting downstream pathogenic processes. We developed a generic protein aggregation model and validate it against measured compositions of fibrillar and non-fibrillar assemblies of ataxin-3, a protein implicated in Machado-Joseph disease. The derived analytic rate-law equations can be used to 1) identify the presence of parallel aggregation pathways and 2) estimate the critical sizes of amyloid fibrils. The discretized population balance supporting our model is the first to quantitatively fit time-resolved measurements of size and composition of both amyloid-like and oligomeric species. The new theoretical framework can be used to screen a new class of drugs specifically targeting toxic oligomers.
Collapse
Affiliation(s)
- Alexandra Silva
- IBMC-Instituto de Biologia Molecular e Celular and I3s-Instituto de Investigação e Inovação em Saúde Portugal, Universidade do Porto, 4150-180, Porto, Portugal
| | - Bruno Almeida
- IBMC-Instituto de Biologia Molecular e Celular and I3s-Instituto de Investigação e Inovação em Saúde Portugal, Universidade do Porto, 4150-180, Porto, Portugal.,Present address: Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - Joana S Fraga
- IBMC-Instituto de Biologia Molecular e Celular and I3s-Instituto de Investigação e Inovação em Saúde Portugal, Universidade do Porto, 4150-180, Porto, Portugal
| | - Pablo Taboada
- Área de Física de la Materia Condensada, Facultad de Física, Universidad de Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS) de Santiago de Compostela, Spain
| | - Pedro M Martins
- IBMC-Instituto de Biologia Molecular e Celular and I3s-Instituto de Investigação e Inovação em Saúde Portugal, Universidade do Porto, 4150-180, Porto, Portugal.,LEPABE-Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.,ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Sandra Macedo-Ribeiro
- IBMC-Instituto de Biologia Molecular e Celular and I3s-Instituto de Investigação e Inovação em Saúde Portugal, Universidade do Porto, 4150-180, Porto, Portugal
| |
Collapse
|
17
|
Polyglutamine expansion diseases: More than simple repeats. J Struct Biol 2017; 201:139-154. [PMID: 28928079 DOI: 10.1016/j.jsb.2017.09.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/24/2017] [Accepted: 09/15/2017] [Indexed: 12/27/2022]
Abstract
Polyglutamine (polyQ) repeat-containing proteins are widespread in the human proteome but only nine of them are associated with highly incapacitating neurodegenerative disorders. The genetic expansion of the polyQ tract in disease-related proteins triggers a series of events resulting in neurodegeneration. The polyQ tract plays the leading role in the aggregation mechanism, but other elements modulate the aggregation propensity in the context of the full-length proteins, as implied by variations in the length of the polyQ tract required to trigger the onset of a given polyQ disease. Intrinsic features such as the presence of aggregation-prone regions (APRs) outside the polyQ segments and polyQ-flanking sequences, which synergistically participate in the aggregation process, are emerging for several disease-related proteins. The inherent polymorphic structure of polyQ stretches places the polyQ proteins in a central position in protein-protein interaction networks, where interacting partners may additionally shield APRs or reshape the aggregation course. Expansion of the polyQ tract perturbs the cellular homeostasis and contributes to neuronal failure by modulating protein-protein interactions and enhancing toxic oligomerization. Post-translational modifications further regulate self-assembly either by directly altering the intrinsic aggregation propensity of polyQ proteins, by modulating their interaction with different macromolecules or by modifying their withdrawal by the cell quality control machinery. Here we review the recent data on the multifaceted aggregation pathways of disease-related polyQ proteins, focusing on ataxin-3, the protein mutated in Machado-Joseph disease. Further mechanistic understanding of this network of events is crucial for the development of effective therapies for polyQ diseases.
Collapse
|
18
|
Kuiper EFE, de Mattos EP, Jardim LB, Kampinga HH, Bergink S. Chaperones in Polyglutamine Aggregation: Beyond the Q-Stretch. Front Neurosci 2017; 11:145. [PMID: 28386214 PMCID: PMC5362620 DOI: 10.3389/fnins.2017.00145] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/08/2017] [Indexed: 01/12/2023] Open
Abstract
Expanded polyglutamine (polyQ) stretches in at least nine unrelated proteins lead to inherited neuronal dysfunction and degeneration. The expansion size in all diseases correlates with age at onset (AO) of disease and with polyQ protein aggregation, indicating that the expanded polyQ stretch is the main driving force for the disease onset. Interestingly, there is marked interpatient variability in expansion thresholds for a given disease. Between different polyQ diseases the repeat length vs. AO also indicates the existence of modulatory effects on aggregation of the upstream and downstream amino acid sequences flanking the Q expansion. This can be either due to intrinsic modulation of aggregation by the flanking regions, or due to differential interaction with other proteins, such as the components of the cellular protein quality control network. Indeed, several lines of evidence suggest that molecular chaperones have impact on the handling of different polyQ proteins. Here, we review factors differentially influencing polyQ aggregation: the Q-stretch itself, modulatory flanking sequences, interaction partners, cleavage of polyQ-containing proteins, and post-translational modifications, with a special focus on the role of molecular chaperones. By discussing typical examples of how these factors influence aggregation, we provide more insight on the variability of AO between different diseases as well as within the same polyQ disorder, on the molecular level.
Collapse
Affiliation(s)
- E F E Kuiper
- Department of Cell Biology, University Medical Center Groningen, University of Groningen Groningen, Netherlands
| | - Eduardo P de Mattos
- Department of Cell Biology, University Medical Center Groningen, University of GroningenGroningen, Netherlands; Programa de Pós-Graduação em Genética e Biologia Molecular, Department of Genetics, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto AlegrePorto Alegre, Brazil
| | - Laura B Jardim
- Programa de Pós-Graduação em Genética e Biologia Molecular, Department of Genetics, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto AlegrePorto Alegre, Brazil; Departamento de Medicina Interna, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil
| | - Harm H Kampinga
- Department of Cell Biology, University Medical Center Groningen, University of Groningen Groningen, Netherlands
| | - Steven Bergink
- Department of Cell Biology, University Medical Center Groningen, University of Groningen Groningen, Netherlands
| |
Collapse
|
19
|
Adegbuyiro A, Sedighi F, Pilkington AW, Groover S, Legleiter J. Proteins Containing Expanded Polyglutamine Tracts and Neurodegenerative Disease. Biochemistry 2017; 56:1199-1217. [PMID: 28170216 DOI: 10.1021/acs.biochem.6b00936] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Several hereditary neurological and neuromuscular diseases are caused by an abnormal expansion of trinucleotide repeats. To date, there have been 10 of these trinucleotide repeat disorders associated with an expansion of the codon CAG encoding glutamine (Q). For these polyglutamine (polyQ) diseases, there is a critical threshold length of the CAG repeat required for disease, and further expansion beyond this threshold is correlated with age of onset and symptom severity. PolyQ expansion in the translated proteins promotes their self-assembly into a variety of oligomeric and fibrillar aggregate species that accumulate into the hallmark proteinaceous inclusion bodies associated with each disease. Here, we review aggregation mechanisms of proteins with expanded polyQ-tracts, structural consequences of expanded polyQ ranging from monomers to fibrillar aggregates, the impact of protein context and post-translational modifications on aggregation, and a potential role for lipid membranes in aggregation. As the pathogenic mechanisms that underlie these disorders are often classified as either a gain of toxic function or loss of normal protein function, some toxic mechanisms associated with mutant polyQ tracts will also be discussed.
Collapse
Affiliation(s)
- Adewale Adegbuyiro
- The C. Eugene Bennett Department of Chemistry, 217 Clark Hall, West Virginia University , Morgantown, West Virginia 26506, United States
| | - Faezeh Sedighi
- The C. Eugene Bennett Department of Chemistry, 217 Clark Hall, West Virginia University , Morgantown, West Virginia 26506, United States
| | - Albert W Pilkington
- The C. Eugene Bennett Department of Chemistry, 217 Clark Hall, West Virginia University , Morgantown, West Virginia 26506, United States
| | - Sharon Groover
- The C. Eugene Bennett Department of Chemistry, 217 Clark Hall, West Virginia University , Morgantown, West Virginia 26506, United States
| | - Justin Legleiter
- The C. Eugene Bennett Department of Chemistry, 217 Clark Hall, West Virginia University , Morgantown, West Virginia 26506, United States.,Blanchette Rockefeller Neurosciences Institute, Robert C. Byrd Health Sciences Center, P.O. Box 9304, West Virginia University , Morgantown, West Virginia 26506, United States.,NanoSAFE, P.O. Box 6223, West Virginia University , Morgantown, West Virginia 26506, United States
| |
Collapse
|
20
|
Matos CA, Nóbrega C, Louros SR, Almeida B, Ferreiro E, Valero J, Pereira de Almeida L, Macedo-Ribeiro S, Carvalho AL. Ataxin-3 phosphorylation decreases neuronal defects in spinocerebellar ataxia type 3 models. J Cell Biol 2016; 212:465-80. [PMID: 26880203 PMCID: PMC4754714 DOI: 10.1083/jcb.201506025] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Ataxin-3, the protein involved in spinocerebellar ataxia type 3 or Machado-Joseph disease, causes dendritic and synapse loss in cultured neurons when expanded, and mutation of phosphorylation site S12 reduces aggregation, neuronal loss, and synapse loss. Different neurodegenerative diseases are caused by aberrant elongation of repeated glutamine sequences normally found in particular human proteins. Although the proteins involved are ubiquitously distributed in human tissues, toxicity targets only defined neuronal populations. Changes caused by an expanded polyglutamine protein are possibly influenced by endogenous cellular mechanisms, which may be harnessed to produce neuroprotection. Here, we show that ataxin-3, the protein involved in spinocerebellar ataxia type 3, also known as Machado-Joseph disease, causes dendritic and synapse loss in cultured neurons when expanded. We report that S12 of ataxin-3 is phosphorylated in neurons and that mutating this residue so as to mimic a constitutive phosphorylated state counters the neuromorphologic defects observed. In rats stereotaxically injected with expanded ataxin-3–encoding lentiviral vectors, mutation of serine 12 reduces aggregation, neuronal loss, and synapse loss. Our results suggest that S12 plays a role in the pathogenic pathways mediated by polyglutamine-expanded ataxin-3 and that phosphorylation of this residue protects against toxicity.
Collapse
Affiliation(s)
- Carlos A Matos
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Clévio Nóbrega
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Susana R Louros
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Bruno Almeida
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
| | - Elisabete Ferreiro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Jorge Valero
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal Ikerbasque Basque Foundation for Science and Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, E-48170 Zamudio, Spain
| | - Luís Pereira de Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Sandra Macedo-Ribeiro
- Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
| | - Ana Luísa Carvalho
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3004-517 Coimbra, Portugal
| |
Collapse
|
21
|
Infrared nanospectroscopy characterization of oligomeric and fibrillar aggregates during amyloid formation. Nat Commun 2015. [PMID: 26215704 PMCID: PMC4525161 DOI: 10.1038/ncomms8831] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Amyloids are insoluble protein fibrillar aggregates. The importance of characterizing their aggregation has steadily increased because of their link to human diseases and material science applications. In particular, misfolding and aggregation of the Josephin domain of ataxin-3 is implicated in spinocerebellar ataxia-3. Infrared nanospectroscopy, simultaneously exploiting atomic force microscopy and infrared spectroscopy, can characterize at the nanoscale the conformational rearrangements of proteins during their aggregation. Here we demonstrate that we can individually characterize the oligomeric and fibrillar species formed along the amyloid aggregation. We describe their secondary structure, monitoring at the nanoscale an α-to-β transition, and couple these studies with an independent measurement of the evolution of their intrinsic stiffness. These results suggest that the aggregation of Josephin proceeds from the monomer state to the formation of spheroidal intermediates with a native structure. Only successively, these intermediates evolve into misfolded aggregates and into the final fibrils. The onset of neurodegenerative disorders is associated at the molecular level with insoluble protein aggregates, named amyloids. Here, the authors characterize by infrared nanospectroscopy and nanomechanical studies, the amyloid aggregation at the individual species scale.
Collapse
|
22
|
Almeida B, Abreu IA, Matos CA, Fraga JS, Fernandes S, Macedo MG, Gutiérrez-Gallego R, Pereira PJB, Carvalho AL, Macedo-Ribeiro S. SUMOylation of the brain-predominant Ataxin-3 isoform modulates its interaction with p97. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1950-9. [PMID: 26073430 DOI: 10.1016/j.bbadis.2015.06.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 05/12/2015] [Accepted: 06/08/2015] [Indexed: 11/18/2022]
Abstract
BACKGROUND Machado-Joseph Disease (MJD), a form of dominantly inherited ataxia belonging to the group of polyQ expansion neurodegenerative disorders, occurs when a threshold value for the number of glutamines in Ataxin-3 (Atx3) polyglutamine region is exceeded. As a result of its modular multidomain architecture, Atx3 is known to engage in multiple macromolecular interactions, which might be unbalanced when the polyQ tract is expanded, culminating in the aggregation and formation of intracellular inclusions, a unifying fingerprint of this group of neurodegenerative disorders. Since aggregation is specific to certain brain regions, localization-dependent posttranslational modifications that differentially affect Atx3 might also contribute for MJD. METHODS We combined in vitro and cellular approaches to address SUMOylation in the brain-predominant Atx3 isoform and assessed the impact of this posttranslational modification on Atx3 self-assembly and interaction with its native partner, p97. RESULTS We demonstrate that Atx3 is SUMOylated at K356 both in vitro and in cells, which contributes for decreased formation of amyloid fibrils and for increased affinity towards p97. CONCLUSIONS AND GENERAL SIGNIFICANCE These findings highlight the role of SUMOylation as a regulator of Atx3 function, with implications on Atx3 protein interaction network and self-assembly, with potential impact for further understanding the molecular mechanisms underlying MJD pathogenesis.
Collapse
Affiliation(s)
- Bruno Almeida
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - Isabel A Abreu
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - Carlos A Matos
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Joana S Fraga
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - Sara Fernandes
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - Maria G Macedo
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - Ricardo Gutiérrez-Gallego
- Bioanalysis Group, Neurosciences Research Program, Hospital del Mar Medical Research Institute (IMIM)-Parque de Salud Mar, 08003 Barcelona, Spain; Department of Experimental and Health Sciences, Pompeu Fabra University, 08003 Barcelona, Spain
| | - Pedro José Barbosa Pereira
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - Ana Luísa Carvalho
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Sandra Macedo-Ribeiro
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.
| |
Collapse
|
23
|
Scarff CA, Almeida B, Fraga J, Macedo-Ribeiro S, Radford SE, Ashcroft AE. Examination of Ataxin-3 (atx-3) Aggregation by Structural Mass Spectrometry Techniques: A Rationale for Expedited Aggregation upon Polyglutamine (polyQ) Expansion. Mol Cell Proteomics 2015; 14:1241-53. [PMID: 25700012 PMCID: PMC4424396 DOI: 10.1074/mcp.m114.044610] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/18/2015] [Indexed: 01/13/2023] Open
Abstract
Expansion of polyglutamine stretches leads to the formation of polyglutamine-containing neuronal aggregates and neuronal death in nine diseases for which there currently are no treatments or cures. This is largely due to a lack in understanding of the mechanisms by which expanded polyglutamine regions contribute to aggregation and disease. To complicate matters further, several of the polyglutamine-disease related proteins, including ataxin-3, have a multistage aggregation mechanism in which flanking domain self-assembly precedes polyglutamine aggregation yet is influenced by polyglutamine expansion. How polyglutamine expansion influences flanking domain aggregation is poorly understood. Here, we use a combination of mass spectrometry and biophysical approaches to investigate this issue for ataxin-3. We show that the conformational dynamics of the flanking Josephin domain in ataxin-3 with an expanded polyglutamine tract are altered in comparison to those exhibited by its nonexpanded counterpart, specifically within the aggregation-prone region of the Josephin domain (amino acid residues 73-96). Expansion thus exposes this region more frequently in ataxin-3 containing an expanded polyglutamine tract, providing a molecular explanation of why aggregation is accelerated upon polyglutamine expansion. Here, harnessing the power of ion mobility spectrometry-mass spectrometry, oligomeric species formed during aggregation are characterized and a model for oligomer growth proposed. The results suggest that a conformational change occurs at the dimer level that initiates self-assembly. New insights into ataxin-3 fibril architecture are also described, revealing the region of the Josephin domain involved in protofibril formation and demonstrating that polyglutamine aggregation proceeds as a distinct second step after protofibril formation without requiring structural rearrangement of the protofibril core. Overall, the results enable the effect of polyglutamine expansion on every stage of ataxin-3 self-assembly, from monomer through to fibril, to be described and a rationale for expedited aggregation upon polyglutamine expansion to be provided.
Collapse
Affiliation(s)
- Charlotte A Scarff
- From the ‡Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Bruno Almeida
- §IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-4180 Porto, Portugal
| | - Joana Fraga
- §IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-4180 Porto, Portugal
| | - Sandra Macedo-Ribeiro
- §IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-4180 Porto, Portugal
| | - Sheena E Radford
- From the ‡Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK;
| | - Alison E Ashcroft
- From the ‡Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK;
| |
Collapse
|
24
|
Gershenson A, Gierasch LM, Pastore A, Radford SE. Energy landscapes of functional proteins are inherently risky. Nat Chem Biol 2014; 10:884-91. [PMID: 25325699 PMCID: PMC4416114 DOI: 10.1038/nchembio.1670] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 09/19/2014] [Indexed: 01/08/2023]
Abstract
Evolutionary pressure for protein function leads to unavoidable sampling of conformational states that are at risk of misfolding and aggregation. The resulting tension between functional requirements and the risk of misfolding and/or aggregation in the evolution of proteins is becoming more and more apparent. One outcome of this tension is sensitivity to mutation, in which only subtle changes in sequence that may be functionally advantageous can tip the delicate balance toward protein aggregation. Similarly, increasing the concentration of aggregation-prone species by reducing the ability to control protein levels or compromising protein folding capacity engenders increased risk of aggregation and disease. In this Perspective, we describe examples that epitomize the tension between protein functional energy landscapes and aggregation risk. Each case illustrates how the energy landscapes for the at-risk proteins are sculpted to enable them to perform their functions and how the risks of aggregation are minimized under cellular conditions using a variety of compensatory mechanisms.
Collapse
Affiliation(s)
- Anne Gershenson
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Lila M Gierasch
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Annalisa Pastore
- Department of Clinical Neurosciences, King’s College London, Denmark Hill Campus, London, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| |
Collapse
|
25
|
Bonanomi M, Natalello A, Visentin C, Pastori V, Penco A, Cornelli G, Colombo G, Malabarba MG, Doglia SM, Relini A, Regonesi ME, Tortora P. Epigallocatechin-3-gallate and tetracycline differently affect ataxin-3 fibrillogenesis and reduce toxicity in spinocerebellar ataxia type 3 model. Hum Mol Genet 2014; 23:6542-52. [PMID: 25030034 DOI: 10.1093/hmg/ddu373] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The polyglutamine (polyQ)-containing protein ataxin-3 (AT3) triggers the neurodegenerative disease spinocerebellar ataxia type 3 (SCA3) when its polyQ tract is expanded beyond a critical length. This results in protein aggregation and generation of toxic oligomers and fibrils. Currently, no effective treatment is available for such and other polyQ diseases. Therefore, plenty of investigations are being carried on to assess the mechanism of action and the therapeutic potential of anti-amyloid agents. The polyphenol compound epigallocatechin-3-gallate (EGCG) and tetracycline have been shown to exert some effect in preventing fibrillogenesis of amyloidogenic proteins. Here, we have incubated an expanded AT3 variant with either compound to assess their effects on the aggregation pattern. The process was monitored by atomic force microscopy and Fourier transform infrared spectroscopy. Whereas in the absence of any treatment, AT3 gives rise to amyloid β-rich fibrils, whose hallmark is the typical glutamine side-chain hydrogen bonding, when incubated in the presence of EGCG it generated soluble, SDS-resistant aggregates, much poorer in β-sheets and devoid of any ordered side-chain hydrogen bonding. These are off-pathway species that persist until the latest incubation time and are virtually absent in the control sample. In contrast, tetracycline did not produce major alterations in the structural features of the aggregated species compared with the control, but substantially increased their solubility. Both compounds significantly reduced toxicity, as shown by the MTT assay in COS-7 cell line and in a transgenic Caenorhabditis elegans strain expressing in the nervous system an AT3 expanded variant in fusion with GFP.
Collapse
Affiliation(s)
| | - Antonino Natalello
- Department of Biotechnologies and Biosciences, Department of Physics G. Occhialini
| | | | | | - Amanda Penco
- Department of Physics, University of Genoa, 16146 Genoa, Italy
| | | | | | - Maria G Malabarba
- IFOM, The FIRC Institute of Molecular Oncology Foundation, 20139 Milan, Italy, Department of Health Sciences, University of Milan, 20122 Milan, Italy and
| | - Silvia M Doglia
- Department of Biotechnologies and Biosciences, Department of Physics G. Occhialini
| | - Annalisa Relini
- Department of Physics, University of Genoa, 16146 Genoa, Italy, National Institute of Biostructures and Biosystems (INBB), 00136 Rome, Italy
| | - Maria E Regonesi
- Department of Biotechnologies and Biosciences, Department of Statistics and Quantitative Methods, University of Milano-Bicocca, 20126 Milan, Italy,
| | | |
Collapse
|
26
|
Menon RP, Soong D, de Chiara C, Holt M, McCormick JE, Anilkumar N, Pastore A. Mapping the self-association domains of ataxin-1: identification of novel non overlapping motifs. PeerJ 2014; 2:e323. [PMID: 24711972 PMCID: PMC3970802 DOI: 10.7717/peerj.323] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/07/2014] [Indexed: 12/13/2022] Open
Abstract
The neurodegenerative disease spinocerebellar ataxia type 1 (SCA1) is caused by aggregation and misfolding of the ataxin-1 protein. While the pathology correlates with mutations that lead to expansion of a polyglutamine tract in the protein, other regions contribute to the aggregation process as also non-expanded ataxin-1 is intrinsically aggregation-prone and forms nuclear foci in cell. Here, we have used a combined approach based on FRET analysis, confocal microscopy and in vitro techniques to map aggregation-prone regions other than polyglutamine and to establish the importance of dimerization in self-association/foci formation. Identification of aggregation-prone regions other than polyglutamine could greatly help the development of SCA1 treatment more specific than that based on targeting the low complexity polyglutamine region.
Collapse
Affiliation(s)
- Rajesh P Menon
- MRC National Institute for Medical Research, The Ridgeway , London , UK
| | - Daniel Soong
- Randall Division for Cell and Molecular Biophysics, New Hunt's House, King's College London , Guy's Campus, London , UK ; British Heart Foundation Centre of Research Excellence, King's College London , Denmark Hill Campus, London , UK
| | - Cesira de Chiara
- MRC National Institute for Medical Research, The Ridgeway , London , UK
| | - Mark Holt
- Randall Division for Cell and Molecular Biophysics, New Hunt's House, King's College London , Guy's Campus, London , UK
| | - John E McCormick
- MRC National Institute for Medical Research, The Ridgeway , London , UK
| | - Narayana Anilkumar
- British Heart Foundation Centre of Research Excellence, King's College London , Denmark Hill Campus, London , UK
| | - Annalisa Pastore
- MRC National Institute for Medical Research, The Ridgeway , London , UK ; Department of Molecular Neuroscience, Institute of Psychiatry, King's College London , Denmark Hill Campus, London , UK
| |
Collapse
|
27
|
Saunders HM, Hughes VA, Cappai R, Bottomley SP. Conformational behavior and aggregation of ataxin-3 in SDS. PLoS One 2013; 8:e69416. [PMID: 23894474 PMCID: PMC3718759 DOI: 10.1371/journal.pone.0069416] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/11/2013] [Indexed: 01/08/2023] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is one of nine polyglutamine (polyQ) diseases all characterized by the presence of intraneuronal inclusions that contain aggregated protein. Aggregation of ataxin-3, the causative protein of SCA3, has been well characterized in vitro, with both pathogenic and non-pathogenic length ataxin-3 undergoing fibrillogenesis. However, only ataxin-3 containing an expanded polyQ tract leads to SCA3. Therefore other cellular factors, not present in previous in vitro studies, may modulate aggregation during disease. The interactions between fibrillar species and cell membranes have been characterized in a number of amyloid diseases, including Huntington’s Disease, and these interactions affect aggregation and toxicity. We have characterized the effects of the membrane mimetic sodium dodecyl sulfate (SDS) on ataxin-3 structure and aggregation, to show that both micellar and non-micellar SDS have differing effects on the two stages of ataxin-3 aggregation. We also demonstrate that fibrillar ataxin-3 binds phospholipids, in particular phosphorylated phosphotidylinositols. These results highlight the effect of intracellular factors on the ataxin-3 misfolding landscape and their implications in SCA3 and polyQ diseases in general are discussed.
Collapse
Affiliation(s)
- Helen M. Saunders
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Victoria A. Hughes
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Roberto Cappai
- Department of Pathology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Stephen P. Bottomley
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
28
|
Scarff CA, Sicorello A, Tomé RJ, Macedo-Ribeiro S, Ashcroft AE, Radford SE. A tale of a tail: Structural insights into the conformational properties of the polyglutamine protein ataxin-3. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2013; 345-347:63-70. [PMID: 25844046 PMCID: PMC4375668 DOI: 10.1016/j.ijms.2012.08.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 05/24/2023]
Abstract
Ataxin-3 is the protein responsible for the neurodegenerative polyglutamine disease Spinocerebellar ataxia type 3. Full structural characterisation of ataxin-3 is required to aid in understanding the mechanism of disease. Despite extensive study, little is known about the conformational properties of the full-length protein, in either its non-expanded healthy or expanded pathogenic forms, particularly since its polyglutamine-containing region has denied structural elucidation. In this work, travelling-wave ion mobility spectrometry-mass spectrometry and limited proteolysis have been used to compare the conformational properties of full-length non-expanded ataxin-3 (14Q) and its isolated N-terminal Josephin domain (JD). Limited proteolysis experiments have confirmed that the JD is stable, being extremely resistant to trypsin digestion, with the exception of the α2/α3 hairpin which is flexible and exposed to protease cleavage in solution. The C-terminal region of ataxin-3 which contains the glutamine-rich sequences is largely unstructured, showing little resistance to limited proteolysis. Using ion mobility spectrometry-mass spectrometry we show that ataxin-3 (14Q) adopts a wide range of conformational states in vitro conferred by the flexibility of its C-terminal tail and the α2/α3 hairpin of the N-terminal JD. This study highlights how the power of MS-based approaches to protein structural characterisation can be particularly useful when the target protein is aggregation-prone and has intrinsically unordered regions.
Collapse
Affiliation(s)
- Charlotte A. Scarff
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Alessandro Sicorello
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Ricardo J.L. Tomé
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Sandra Macedo-Ribeiro
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Alison E. Ashcroft
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Sheena E. Radford
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
29
|
Almeida B, Fernandes S, Abreu IA, Macedo-Ribeiro S. Trinucleotide repeats: a structural perspective. Front Neurol 2013; 4:76. [PMID: 23801983 PMCID: PMC3687200 DOI: 10.3389/fneur.2013.00076] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 06/04/2013] [Indexed: 11/29/2022] Open
Abstract
Trinucleotide repeat (TNR) expansions are present in a wide range of genes involved in several neurological disorders, being directly involved in the molecular mechanisms underlying pathogenesis through modulation of gene expression and/or the function of the RNA or protein it encodes. Structural and functional information on the role of TNR sequences in RNA and protein is crucial to understand the effect of TNR expansions in neurodegeneration. Therefore, this review intends to provide to the reader a structural and functional view of TNR and encoded homopeptide expansions, with a particular emphasis on polyQ expansions and its role at inducing the self-assembly, aggregation and functional alterations of the carrier protein, which culminates in neuronal toxicity and cell death. Detail will be given to the Machado-Joseph Disease-causative and polyQ-containing protein, ataxin-3, providing clues for the impact of polyQ expansion and its flanking regions in the modulation of ataxin-3 molecular interactions, function, and aggregation.
Collapse
Affiliation(s)
- Bruno Almeida
- Instituto de Biologia Molecular e Celular, Universidade do Porto , Porto , Portugal
| | | | | | | |
Collapse
|
30
|
Laço MN, Cortes L, Travis SM, Paulson HL, Rego AC. Valosin-containing protein (VCP/p97) is an activator of wild-type ataxin-3. PLoS One 2012; 7:e43563. [PMID: 22970133 PMCID: PMC3435318 DOI: 10.1371/journal.pone.0043563] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 07/26/2012] [Indexed: 01/11/2023] Open
Abstract
Alterations in the ubiquitin-proteasome system (UPS) have been reported in several neurodegenerative disorders characterized by protein misfolding and aggregation, including the polylgutamine diseases. Machado-Joseph disease (MJD) or Spinocerebellar Ataxia type 3 is caused by a polyglutamine-encoding CAG expansion in the ATXN3 gene, which encodes a 42 kDa deubiquitinating enzyme (DUB), ataxin-3. We investigated ataxin-3 deubiquitinating activity and the functional relevance of ataxin-3 interactions with two proteins previously described to interact with ataxin-3, hHR23A and valosin-containing protein (VCP/p97). We confirmed ataxin-3 affinity for both hHR23A and VCP/p97. hHR23A and ataxin-3 were shown to co-localize in discrete nuclear foci, while VCP/p97 was primarily cytoplasmic. hHR23A and VCP/p97 recombinant proteins were added, separately or together, to normal and expanded ataxin-3 in in vitro deubiquitination assays to evaluate their influence on ataxin-3 activity. VCP/p97 was shown to be an activator specifically of wild-type ataxin-3, exhibiting no effect on expanded ataxin-3, In contrast, we observed no significant alterations in ataxin-3 enzyme kinetics or substrate preference in the presence of hHR23A alone or in combination with VCP. Based on our results we propose a model where ataxin-3 normally functions with its interactors to specify the cellular fate of ubiquitinated proteins.
Collapse
Affiliation(s)
- Mário N. Laço
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Luisa Cortes
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Sue M. Travis
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Henry L. Paulson
- Department of Neurology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail: (HLP); (ACR)
| | - A. Cristina Rego
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- * E-mail: (HLP); (ACR)
| |
Collapse
|
31
|
Temperature profoundly affects ataxin-3 fibrillogenesis. Biochimie 2012; 94:1026-31. [DOI: 10.1016/j.biochi.2012.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 01/03/2012] [Indexed: 12/16/2022]
|
32
|
Santambrogio C, Frana AM, Natalello A, Papaleo E, Regonesi ME, Doglia SM, Tortora P, Invernizzi G, Grandori R. The role of the central flexible region on the aggregation and conformational properties of human ataxin-3. FEBS J 2012; 279:451-63. [DOI: 10.1111/j.1742-4658.2011.08438.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Costa MDC, Paulson HL. Toward understanding Machado-Joseph disease. Prog Neurobiol 2011; 97:239-57. [PMID: 22133674 DOI: 10.1016/j.pneurobio.2011.11.006] [Citation(s) in RCA: 216] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 11/10/2011] [Accepted: 11/14/2011] [Indexed: 12/16/2022]
Abstract
Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3 (SCA3), is the most common inherited spinocerebellar ataxia and one of many polyglutamine neurodegenerative diseases. In MJD, a CAG repeat expansion encodes an abnormally long polyglutamine (polyQ) tract in the disease protein, ATXN3. Here we review MJD, focusing primarily on the function and dysfunction of ATXN3 and on advances toward potential therapies. ATXN3 is a deubiquitinating enzyme (DUB) whose highly specialized properties suggest that it participates in ubiquitin-dependent proteostasis. By virtue of its interactions with VCP, various ubiquitin ligases and other ubiquitin-linked proteins, ATXN3 may help regulate the stability or activity of many proteins in diverse cellular pathways implicated in proteotoxic stress response, aging, and cell differentiation. Expansion of the polyQ tract in ATXN3 is thought to promote an altered conformation in the protein, leading to changes in interactions with native partners and to the formation of insoluble aggregates. The development of a wide range of cellular and animal models of MJD has been crucial to the emerging understanding of ATXN3 dysfunction upon polyQ expansion. Despite many advances, however, the principal molecular mechanisms by which mutant ATXN3 elicits neurotoxicity remain elusive. In a chronic degenerative disease like MJD, it is conceivable that mutant ATXN3 triggers multiple, interconnected pathogenic cascades that precipitate cellular dysfunction and eventual cell death. A better understanding of these complex molecular mechanisms will be important as scientists and clinicians begin to focus on developing effective therapies for this incurable, fatal disorder.
Collapse
Affiliation(s)
- Maria do Carmo Costa
- Department of Neurology, University of Michigan, A. Alfred Taubman Biomedical Sciences Research Building-BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA.
| | | |
Collapse
|
34
|
Laço MN, Oliveira CR, Paulson HL, Rego AC. Compromised mitochondrial complex II in models of Machado-Joseph disease. Biochim Biophys Acta Mol Basis Dis 2011; 1822:139-49. [PMID: 22037589 DOI: 10.1016/j.bbadis.2011.10.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 10/03/2011] [Accepted: 10/12/2011] [Indexed: 10/16/2022]
Abstract
Machado-Joseph disease (MJD), also known as Spinocerebellar Ataxia type 3, is an inherited dominant autosomal neurodegenerative disorder. An expansion of Cytosine-Adenine-Guanine (CAG) repeats in the ATXN3 gene is translated as an expanded polyglutamine domain in the disease protein, ataxin-3. Selective neurodegeneration in MJD is evident in several subcortical brain regions including the cerebellum. Mitochondrial dysfunction has been proposed as a mechanism of neurodegeneration in polyglutamine disorders. In this study, we used different cell models and transgenic mice to assess the importance of mitochondria on cytotoxicity observed in MJD. Transiently transfected HEK cell lines with expanded (Q84) ataxin-3 exhibited a higher susceptibility to 3-nitropropionic acid (3-NP), an irreversible inhibitor of mitochondrial complex II. Increased susceptibility to 3-NP was also detected in stably transfected PC6-3 cells that inducibly express expanded (Q108) ataxin-3 in a tetracycline-regulated manner. Moreover, cerebellar granule cells from MJD transgenic mice were more sensitive to 3-NP inhibition than wild-type cerebellar neurons. PC6-3 (Q108) cells differentiated into a neuronal-like phenotype with nerve growth factor (NGF) exhibited a significant decrease in mitochondrial complex II activity. Mitochondria from MJD transgenic mouse model and lymphoblast cell lines derived from MJD patients also showed a trend toward reduced complex II activity. Our results suggest that mitochondrial complex II activity is moderately compromised in MJD, which may designate a common feature in polyglutamine toxicity.
Collapse
Affiliation(s)
- Mário N Laço
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | | | | |
Collapse
|
35
|
Location trumps length: polyglutamine-mediated changes in folding and aggregation of a host protein. Biophys J 2011; 100:2773-82. [PMID: 21641323 DOI: 10.1016/j.bpj.2011.04.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 04/05/2011] [Accepted: 04/08/2011] [Indexed: 11/21/2022] Open
Abstract
Expanded CAG diseases are progressive neurodegenerative disorders in which specific proteins have an unusually long polyglutamine stretch. Although these proteins share no other sequence or structural homologies, they all aggregate into intracellular inclusions that are believed to be pathological. We sought to determine what impact the position and number of glutamines have on the structure and aggregation of the host protein, apomyoglobin. Variable-length polyQ tracts were inserted either into the loop between the C- and D-helices (Q(n)CD) or at the N-terminus (Q(n)NT). The Q(n)CD mutants lost some α-helix and gained unordered and/or β-sheet in a length-dependent manner. These mutants were partially unfolded and rapidly assembled into soluble chain-like oligomers. In sharp contrast, the Q(n)NT mutants largely retained wild-type tertiary structure but associated into long, fibrillar aggregates. Control proteins with glycine-serine repeats (GS(8)CD and GS(8)NT) were produced. GS(8)CD exhibited similar structural perturbations and aggregation characteristics to an analogously sized Q(16)CD, indicating that the observed effects are independent of amino acid composition. In contrast to Q(16)NT, GS(8)NT did not form fibrillar aggregates. Thus, soluble oligomers are produced through structural perturbation and do not require polyQ, whereas classic fibrils arise from specific polyQ intermolecular interactions in the absence of misfolding.
Collapse
|
36
|
Matos CA, de Macedo-Ribeiro S, Carvalho AL. Polyglutamine diseases: The special case of ataxin-3 and Machado–Joseph disease. Prog Neurobiol 2011; 95:26-48. [DOI: 10.1016/j.pneurobio.2011.06.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 06/06/2011] [Accepted: 06/07/2011] [Indexed: 10/18/2022]
|
37
|
Bettencourt C, Lima M. Machado-Joseph Disease: from first descriptions to new perspectives. Orphanet J Rare Dis 2011; 6:35. [PMID: 21635785 PMCID: PMC3123549 DOI: 10.1186/1750-1172-6-35] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 06/02/2011] [Indexed: 11/23/2022] Open
Abstract
Machado-Joseph Disease (MJD), also known as spinocerebellar ataxia type 3 (SCA3), represents the most common form of SCA worldwide. MJD is an autosomal dominant neurodegenerative disorder of late onset, involving predominantly the cerebellar, pyramidal, extrapyramidal, motor neuron and oculomotor systems; although sharing features with other SCAs, the identification of minor, but more specific signs, facilitates its differential diagnosis. MJD presents strong phenotypic heterogeneity, which has justified the classification of patients into three main clinical types. Main pathological lesions are observed in the spinocerebellar system, as well as in the cerebellar dentate nucleus. MJD's causative mutation consists in an expansion of an unstable CAG tract in exon 10 of the ATXN3 gene, located at 14q32.1. Haplotype-based studies have suggested that two main founder mutations may explain the present global distribution of the disease; the ancestral haplotype is of Asian origin, and has an estimated age of around 5,800 years, while the second mutational event has occurred about 1,400 years ago. The ATXN3 gene encodes for ataxin-3, which is ubiquitously expressed in neuronal and non-neuronal tissues, and, among other functions, is thought to participate in cellular protein quality control pathways. Mutated ATXN3 alleles consensually present about 61 to 87 CAG repeats, resulting in an expanded polyglutamine tract in ataxin-3. This altered protein gains a neurotoxic function, through yet unclear mechanisms. Clinical variability of MJD is only partially explained by the size of the CAG tract, which leaves a residual variance that should be explained by still unknown additional factors. Several genetic tests are available for MJD, and Genetic Counseling Programs have been created to better assist the affected families, namely on what concerns the possibility of pre-symptomatic testing. The main goal of this review was to bring together updated knowledge on MJD, covering several aspects from its initial descriptions and clinical presentation, through the discovery of the causative mutation, its origin and dispersion, as well as molecular genetics aspects considered essential for a better understanding of its neuropathology. Issues related with molecular testing and Genetic Counseling, as well as recent progresses and perspectives on genetic therapy, are also addressed.
Collapse
Affiliation(s)
- Conceição Bettencourt
- Center of Research in Natural Resources (CIRN) and Department of Biology, University of the Azores, Ponta Delgada, Portugal
- Institute for Molecular and Cellular Biology (IBMC), University of Porto, Porto, Portugal
- Laboratorio de Biología Molecular, Instituto de Enfermedades Neurológicas de Guadalajara, Fundación Socio-Sanitaria de Castilla-La Mancha, Guadalajara, Spain
| | - Manuela Lima
- Center of Research in Natural Resources (CIRN) and Department of Biology, University of the Azores, Ponta Delgada, Portugal
- Institute for Molecular and Cellular Biology (IBMC), University of Porto, Porto, Portugal
| |
Collapse
|
38
|
Masino L, Nicastro G, De Simone A, Calder L, Molloy J, Pastore A. The Josephin domain determines the morphological and mechanical properties of ataxin-3 fibrils. Biophys J 2011; 100:2033-42. [PMID: 21504740 PMCID: PMC3077691 DOI: 10.1016/j.bpj.2011.02.056] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 02/15/2011] [Accepted: 02/25/2011] [Indexed: 12/15/2022] Open
Abstract
Fibrillar aggregation of the protein ataxin-3 is linked to the inherited neurodegenerative disorder Spinocerebellar ataxia type 3, a member of the polyQ expansion disease family. We previously reported that aggregation and stability of the nonpathological form of ataxin-3, carrying an unexpanded polyQ tract, are modulated by its N-terminal Josephin domain. It was also shown that expanded ataxin-3 aggregates via a two-stage mechanism initially involving Josephin self-association, followed by a polyQ-dependent step. Despite this recent progress, however, the exact mechanism of ataxin-3 fibrilization remains elusive. Here, we have used electron microscopy, atomic force microscopy, and other biophysical techniques to characterize the morphological and mechanical properties of nonexpanded ataxin-3 fibrils. By comparing aggregates of ataxin-3 and of the isolated Josephin domain, we show that the two proteins self-assemble into fibrils with markedly similar features over the temperature range 37-50°C. Estimates of persistence length and Young's modulus of the fibrils reveal a great flexibility. Our data indicate that, under physiological conditions, during early aggregation Josephin retains a nativelike secondary structure but loses its enzymatic activity. The results suggest a key role of Josephin in ataxin-3 fibrillar aggregation.
Collapse
Affiliation(s)
- Laura Masino
- Division of Molecular Structure, Medical Research Council, National Institute for Medical Research, London, United Kingdom
| | - Giuseppe Nicastro
- Division of Molecular Structure, Medical Research Council, National Institute for Medical Research, London, United Kingdom
| | - Alfonso De Simone
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Lesley Calder
- Division of Molecular Structure, Medical Research Council, National Institute for Medical Research, London, United Kingdom
| | - Justin Molloy
- Division of Molecular Structure, Medical Research Council, National Institute for Medical Research, London, United Kingdom
| | - Annalisa Pastore
- Division of Molecular Structure, Medical Research Council, National Institute for Medical Research, London, United Kingdom
| |
Collapse
|
39
|
A major role for side-chain polyglutamine hydrogen bonding in irreversible ataxin-3 aggregation. PLoS One 2011; 6:e18789. [PMID: 21533208 PMCID: PMC3076451 DOI: 10.1371/journal.pone.0018789] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 03/18/2011] [Indexed: 11/19/2022] Open
Abstract
The protein ataxin-3 consists of an N-terminal globular Josephin domain (JD) and an unstructured C-terminal region containing a stretch of consecutive glutamines that triggers the neurodegenerative disorder spinocerebellar ataxia type 3, when it is expanded beyond a critical threshold. The disease results from misfolding and aggregation, although the pathway and structure of the aggregation intermediates are not fully understood. In order to provide insight into the mechanism of the process, we monitored the aggregation of a normal (AT3Q24) ataxin-3, an expanded (AT3Q55) ataxin-3, and the JD in isolation. We observed that all of them aggregated, although the latter did so at a much slower rate. Furthermore, the expanded AT3Q55 displayed a substantially different behavior with respect to the two other variants in that at the latest stages of the process it was the only one that did the following: i) lost its reactivity towards an anti-oligomer antibody, ii) generated SDS-insoluble aggregates, iii) gave rise to bundles of elongated fibrils, and iv) displayed two additional bands at 1604 and 1656 cm−1 in FTIR spectroscopy. Although these were previously observed in other aggregated polyglutamine proteins, no one has assigned them unambiguously, yet. By H/D exchange experiments we show for the first time that they can be ascribed to glutamine side-chain hydrogen bonding, which is therefore the hallmark of irreversibly SDS-insoluble aggregated protein. FTIR spectra also showed that main-chain intermolecular hydrogen bonding preceded that of glutamine side-chains, which suggests that the former favors the latter by reorganizing backbone geometry.
Collapse
|
40
|
Laura M, Giuseppe N, Lesley C, Michele V, Annalisa P. Functional interactions as a survival strategy against abnormal aggregation. FASEB J 2011; 25:45-54. [PMID: 20810784 PMCID: PMC3005437 DOI: 10.1096/fj.10-161208] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 08/19/2010] [Indexed: 01/20/2023]
Abstract
Protein aggregation is under intense scrutiny because of its role in human disease. Although increasing evidence indicates that protein native states are highly protected against aggregation, the specific protection mechanisms are poorly understood. Insight into such mechanisms can be gained through study of the relatively few proteins that aggregate under native conditions. Ataxin-3, the protein responsible for Spinocerebellar ataxia type 3, a polyglutamine expansion disease, represents one of such examples. Polyglutamine expansion is central for determining solubility and aggregation rates of ataxin-3, but these properties are profoundly modulated by its N-terminal Josephin domain. This work aims at identifying the regions that promote Josephin fibrillogenesis and rationalizing the mechanisms that protect Josephin and nonexpanded ataxin-3 from aberrant aggregation. Using different biophysical techniques, aggregation propensity predictions and rational design of amino acid substitutions, we show that Josephin has an intrinsic tendency to fibrillize under native conditions and that fibrillization is promoted by two solvent-exposed patches, which are also involved in recognition of natural substrates, such as ubiquitin. Indeed, designed mutations at these patches or substrate binding significantly reduce Josephin aggregation kinetics. Our results provide evidence that protein nonpathologic function can play an active role in preventing aberrant fibrillization and suggest the molecular mechanism whereby this occurs in ataxin-3.
Collapse
Affiliation(s)
- Masino Laura
- Medical Research Council National Institute for Medical Research, London, UK; and
| | - Nicastro Giuseppe
- Medical Research Council National Institute for Medical Research, London, UK; and
| | - Calder Lesley
- Medical Research Council National Institute for Medical Research, London, UK; and
| | | | - Pastore Annalisa
- Medical Research Council National Institute for Medical Research, London, UK; and
| |
Collapse
|
41
|
Hands SL, Wyttenbach A. Neurotoxic protein oligomerisation associated with polyglutamine diseases. Acta Neuropathol 2010; 120:419-37. [PMID: 20514488 DOI: 10.1007/s00401-010-0703-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 05/20/2010] [Accepted: 05/23/2010] [Indexed: 02/07/2023]
Abstract
Polyglutamine (polyQ) diseases are associated with a CAG/polyQ expansion mutation in unrelated proteins. Upon elongation of the glutamine tract, disease proteins aggregate within cells, mainly in the central nervous system (CNS) and this aggregation process is associated with neurotoxicity. However, it remains unclear to what extent and how this aggregation causes neuronal dysfunction in the CNS. Aiming at preventing neuronal dysfunction, it will be crucial to determine the links between aggregation and cellular dysfunction, understand the folding pathway of polyQ proteins and discover the relative neurotoxicity of polyQ protein species formed along the aggregation pathway. Here, we review what is known about conformations of polyQ peptides and proteins in their monomeric state from experimental and modelling data, how conformational changes of polyQ proteins relate to their oligomerisation and morphology of aggregates and which cellular function are impaired by oligomers, in vitro and in vivo. We also summarise the key modulatory cellular mechanisms and co-factors, which could affect the folding pathway and kinetics of polyQ aggregation. Although many studies have investigated the relationship between polyQ aggregation and toxicity, these have mainly focussed on investigating changes in the formation of the classical hallmark of polyQ diseases, i.e. microscopically visible inclusion bodies. However, recent studies in which oligomeric species have been considered start to shed light on the identity of neurotoxic oligomeric species. Initial evidence suggests that conformational changes induced by polyQ expansions and their surrounding sequence lead to the formation of particular oligomeric intermediates that may differentially affect neurotoxicity.
Collapse
Affiliation(s)
- Sarah L Hands
- Southampton Neuroscience Group, School of Biological Sciences, University of Southampton, Southampton SO16 7PX, UK
| | | |
Collapse
|
42
|
Nicastro G, Todi SV, Karaca E, Bonvin AMJJ, Paulson HL, Pastore A. Understanding the role of the Josephin domain in the PolyUb binding and cleavage properties of ataxin-3. PLoS One 2010; 5:e12430. [PMID: 20865150 PMCID: PMC2928749 DOI: 10.1371/journal.pone.0012430] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 07/29/2010] [Indexed: 11/18/2022] Open
Abstract
Ataxin-3, the disease protein in the neurodegenerative disorder Spinocerebellar Ataxia Type 3 or Machado Joseph disease, is a cysteine protease implicated in the ubiquitin proteasome pathway. It contains multiple ubiquitin binding sites through which it anchors polyubiquitin chains of different linkages that are then cleaved by the N-terminal catalytic (Josephin) domain. The properties of the ubiquitin interacting motifs (UIMs) in the C-terminus of ataxin-3 are well established. Very little is known, however, about how two recently identified ubiquitin-binding sites in the Josephin domain contribute to ubiquitin chain binding and cleavage. In the current study, we sought to define the specific contribution of the Josephin domain to the catalytic properties of ataxin-3 and assess how the topology and affinity of these binding sites modulate ataxin-3 activity. Using NMR we modeled the structure of diUb/Josephin complexes and showed that linkage preferences are imposed by the topology of the two binding sites. Enzymatic studies further helped us to determine a precise hierarchy between the sites. We establish that the structure of Josephin dictates specificity for K48-linked chains. Site 1, which is close to the active site, is indispensable for cleavage. Our studies open the way to understand better the cellular function of ataxin-3 and its link to pathology.
Collapse
Affiliation(s)
- Giuseppe Nicastro
- National Institute for Medical Research, Medical Research Council, London, United Kingdom
| | - Sokol V. Todi
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ezgi Karaca
- Science Faculty, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Alexandre M. J. J. Bonvin
- Science Faculty, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Henry L. Paulson
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Annalisa Pastore
- National Institute for Medical Research, Medical Research Council, London, United Kingdom
| |
Collapse
|
43
|
Costa MDC, Bajanca F, Rodrigues AJ, Tomé RJ, Corthals G, Macedo-Ribeiro S, Paulson HL, Logarinho E, Maciel P. Ataxin-3 plays a role in mouse myogenic differentiation through regulation of integrin subunit levels. PLoS One 2010; 5:e11728. [PMID: 20668528 PMCID: PMC2909204 DOI: 10.1371/journal.pone.0011728] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 06/28/2010] [Indexed: 12/29/2022] Open
Abstract
Background During myogenesis several transcription factors and regulators of protein synthesis and assembly are rapidly degraded by the ubiquitin-proteasome system (UPS). Given the potential role of the deubiquitinating enzyme (DUB) ataxin-3 in the UPS, and the high expression of the murine ataxin-3 homolog in muscle during embryogenesis, we sought to define its role in muscle differentiation. Methodology/Principal Findings Using immunofluorescence analysis, we found murine ataxin-3 (mATX3) to be highly expressed in the differentiated myotome of E9.5 mouse embryos. C2C12 myoblasts depleted of mATX3 by RNA interference exhibited a round morphology, cell misalignment, and a delay in differentiation following myogenesis induction. Interestingly, these cells showed a down-regulation of α5 and α7 integrin subunit levels both by immunoblotting and immunofluorescence. Mouse ATX3 was found to interact with α5 integrin subunit and to stabilize this protein by repressing its degradation through the UPS. Proteomic analysis of mATX3-depleted C2C12 cells revealed alteration of the levels of several proteins related to integrin signaling. Conclusions Ataxin-3 is important for myogenesis through regulation of integrin subunit levels.
Collapse
Affiliation(s)
- Maria do Carmo Costa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Fernanda Bajanca
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | - Ana-João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | - Ricardo J. Tomé
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | | | - Sandra Macedo-Ribeiro
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Henry L. Paulson
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Elsa Logarinho
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- * E-mail:
| |
Collapse
|
44
|
Ge P, Luo Y, Wang H, Ling F. Anti-protein aggregation is a potential target for preventing delayed neuronal death after transient ischemia. Med Hypotheses 2009; 73:994-5. [DOI: 10.1016/j.mehy.2008.10.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2008] [Revised: 10/11/2008] [Accepted: 10/23/2008] [Indexed: 01/25/2023]
|
45
|
Bettencourt C, Santos C, Montiel R, Costa MDC, Cruz-Morales P, Santos LR, Simões N, Kay T, Vasconcelos J, Maciel P, Lima M. Increased transcript diversity: novel splicing variants of Machado-Joseph disease gene (ATXN3). Neurogenetics 2009; 11:193-202. [PMID: 19714377 DOI: 10.1007/s10048-009-0216-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 08/10/2009] [Indexed: 01/14/2023]
Abstract
Machado-Joseph disease (MJD) is a late-onset neurodegenerative disorder that presents clinical heterogeneity not completely explained by its causative mutation. MJD is caused by an expansion of a CAG tract at exon 10 of the ATXN3 gene (14q32.1), which encodes for ataxin-3. The main goal of this study was to analyze the occurrence of alternative splicing at the ATXN3 gene, by sequencing a total of 415 cDNAs clones (from 20 MJD patients and 14 controls). Two novel exons are described for the ATXN3 gene. Fifty-six alternative splicing variants, generated by four types of splicing events, were observed. From those variants, 50 were not previously described, and 26 were only found in MJD patients samples. Most of the variants (85.7%) present frameshift, which leads to the appearance of premature stop codons. Thirty-seven of the observed variants constitute good targets to nonsense-mediated decay, the remaining are likely to be translated into at least 20 different isoforms. The presence of ataxin-3 domains was assessed, and consequences of domain disruption are discussed. The present study demonstrates high variability in the ATXN3 gene transcripts, providing a basis for further investigation on the contribution of alternative splicing to the MJD pathogenic process, as well as to the larger group of the polyglutamine disorders.
Collapse
Affiliation(s)
- Conceição Bettencourt
- Center of Research in Natural Resources (CIRN), University of the Azores, Ponta Delgada, Portugal.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Saunders HM, Bottomley SP. Multi-domain misfolding: understanding the aggregation pathway of polyglutamine proteins. Protein Eng Des Sel 2009; 22:447-51. [DOI: 10.1093/protein/gzp033] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
47
|
Stawoska I, Wesełucha-Birczyńska A, Regonesi ME, Riva M, Tortora P, Stochel G. Interaction of selected divalent metal ions with human ataxin-3 Q36. J Biol Inorg Chem 2009; 14:1175-85. [DOI: 10.1007/s00775-009-0561-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2009] [Accepted: 06/18/2009] [Indexed: 11/24/2022]
|
48
|
ATX-3, CDC-48 and UBXN-5: a new trimolecular complex in Caenorhabditis elegans. Biochem Biophys Res Commun 2009; 386:575-81. [PMID: 19545544 DOI: 10.1016/j.bbrc.2009.06.092] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 06/10/2009] [Indexed: 11/22/2022]
Abstract
Ataxin-3 is the protein involved in Machado-Joseph disease, a neurodegenerative disorder caused by a polyglutamine expansion. Ataxin-3 binds ubiquitylated proteins and acts as a deubiquitylating enzyme in vitro. It was previously proposed that ataxin-3, along with the VCP/p97 protein, escorts ubiquitylated substrates for proteasomal degradation, although other players of this escort complex were not identified yet. In this work, we show that the Caenorhabditis elegans ataxin-3 protein (ATX-3) interacts with both VCP/p97 worm homologs, CDC-48.1 and CDC-48.2 and we map the interaction domains. We describe a motility defect in both ATX-3 and CDC-48.1 mutants and, in addition, we identify a new protein interactor, UBXN-5, potentially an adaptor of the CDC-48-ATX-3 escort complex. CDC-48 binds to both ATX-3 and UBXN-5 in a non-competitive manner, suggesting the formation of a trimolecular complex. Both CDC-48 and ATX-3, but not UBXN-5, were able to bind K-48 polyubiquitin chains, the standard signal for proteasomal degradation. Additionally, we describe several common interactors of ATX-3 and UBXN-5, some of which can be in vivo targets of this complex.
Collapse
|
49
|
Macedo-Ribeiro S, Cortes L, Maciel P, Carvalho AL. Nucleocytoplasmic shuttling activity of ataxin-3. PLoS One 2009; 4:e5834. [PMID: 19503814 PMCID: PMC2688764 DOI: 10.1371/journal.pone.0005834] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 05/08/2009] [Indexed: 01/02/2023] Open
Abstract
Spinocerebellar ataxia type-3, also known as Machado-Joseph Disease (MJD), is one of many inherited neurodegenerative disorders caused by polyglutamine-encoding CAG repeat expansions in otherwise unrelated genes. Disease protein misfolding and aggregation, often within the nucleus of affected neurons, characterize polyglutamine disorders. Several evidences have implicated the nucleus as the primary site of pathogenesis for MJD. However, the molecular determinants for the nucleocytoplasmic transport of human ataxin-3 (Atx3), the protein which is mutated in patients with MJD, are not characterized. In order to characterize the nuclear shuttling activity of Atx3, we performed yeast nuclear import assays and found that Atx3 is actively imported into the nucleus, by means of a classical nuclear localizing sequence formed by a cluster of lysine and arginine residues. On the other hand, when active nuclear export was inhibited using leptomycin B, a specific inhibitor of the nuclear export receptor CRM1, both endogenous Atx3 and transfected GFP-Atx3 accumulated inside the nucleus of a subpopulation of COS-7 cells, whereas both proteins are normally predominant in the cytoplasm. Additionally, using a Rev(1.4)-GFP nuclear export assay, we performed an extensive analysis of six putative aliphatic nuclear export motifs identified in Atx3 amino acid sequence. Although none of the tested peptide sequences were found to drive nuclear export when isolated, we have successfully mapped the region of Atx3 responsible for its CRM1-independent nuclear export activity. Curiously, the N-terminal Josephin domain alone is exported into the cytoplasm, but the nuclear export activity of Atx3 is significantly enhanced in a longer construct that is truncated after the two ubiquitin interaction motifs, upstream from the polyQ tract. Our data show that Atx3 is actively imported to and exported from the cell nucleus, and that its nuclear export activity is dependent on a motif located at its N-terminal region. Since pathological Atx3 aggregates in the nucleus of affected neurons in MJD, and there is in vivo evidence that nuclear localization of Atx3 is required for the manifestation of symptoms in MJD, defects in the nucleocytoplasmic shuttling activity of the protein may be involved in the nuclear accumulation and aggregation of expanded Atx3.
Collapse
Affiliation(s)
- Sandra Macedo-Ribeiro
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- * E-mail: (SMR); (ALC)
| | - Luísa Cortes
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | - Ana Luísa Carvalho
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Department of Zoology, University of Coimbra, Coimbra, Portugal
- * E-mail: (SMR); (ALC)
| |
Collapse
|
50
|
Williams AJ, Knutson TM, Colomer Gould VF, Paulson HL. In vivo suppression of polyglutamine neurotoxicity by C-terminus of Hsp70-interacting protein (CHIP) supports an aggregation model of pathogenesis. Neurobiol Dis 2009; 33:342-53. [PMID: 19084066 PMCID: PMC2662361 DOI: 10.1016/j.nbd.2008.10.016] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 10/23/2008] [Indexed: 01/13/2023] Open
Abstract
Perturbations in neuronal protein homeostasis likely contribute to disease pathogenesis in polyglutamine (polyQ) neurodegenerative disorders. Here we provide evidence that the co-chaperone and ubiquitin ligase, CHIP (C-terminus of Hsp70-interacting protein), is a central component to the homeostatic mechanisms countering toxic polyQ proteins in the brain. Genetic reduction or elimination of CHIP accelerates disease in transgenic mice expressing polyQ-expanded ataxin-3, the disease protein in Spinocerebellar Ataxia Type 3 (SCA3). In parallel, CHIP reduction markedly increases the level of ataxin-3 microaggregates, which partition in the soluble fraction of brain lysates yet are resistant to dissociation with denaturing detergent, and which precede the appearance of inclusions. The level of microaggregates in the CNS, but not of ataxin-3 monomer, correlates with disease severity. Additional cell-based studies suggest that either of two quality control ubiquitin ligases, CHIP or E4B, can reduce steady state levels of expanded, but not wild-type, ataxin-3. Our results support an aggregation model of polyQ disease pathogenesis in which ataxin-3 microaggregates are a neurotoxic species, and suggest that enhancing CHIP activity is a possible route to therapy for SCA3 and other polyQ diseases.
Collapse
Affiliation(s)
- Aislinn J Williams
- Graduate Program in Neuroscience and Medical Scientist Training Program, University of Iowa, 2206 MERF, Iowa City, IA 52242, USA.
| | | | | | | |
Collapse
|