1
|
Liu S, Payne AM, Wang J, Zhu L, Paknejad N, Eng ET, Liu W, Miao Y, Hite RK, Huang XY. Architecture and activation of single-pass transmembrane receptor guanylyl cyclase. Nat Struct Mol Biol 2025; 32:469-478. [PMID: 39543315 DOI: 10.1038/s41594-024-01426-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
The heart, in addition to its primary role in blood circulation, functions as an endocrine organ by producing cardiac hormone natriuretic peptides. These hormones regulate blood pressure through the single-pass transmembrane receptor guanylyl cyclase A (GC-A), also known as natriuretic peptide receptor 1. The binding of the peptide hormones to the extracellular domain of the receptor activates the intracellular guanylyl cyclase domain of the receptor to produce the second messenger cyclic guanosine monophosphate. Despite their importance, the detailed architecture and domain interactions within full-length GC-A remain elusive. Here we present cryo-electron microscopy structures, functional analyses and molecular dynamics simulations of full-length human GC-A, in both the absence and the presence of atrial natriuretic peptide. The data reveal the architecture of full-length GC-A, highlighting the spatial arrangement of its various functional domains. This insight is crucial for understanding how different parts of the receptor interact and coordinate during activation. The study elucidates the molecular basis of how extracellular signals are transduced across the membrane to activate the intracellular guanylyl cyclase domain.
Collapse
Affiliation(s)
- Shian Liu
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Alexander M Payne
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional Ph.D. Program in Chemical Biology, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Jinan Wang
- Computational Medicine Program and Department of Pharmacology, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA
| | - Lan Zhu
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Navid Paknejad
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Edward T Eng
- Simons Electron Microscopy Center, National Resource for Automated Molecular Microscopy, New York Structural Biology Center, New York, NY, USA
| | - Wei Liu
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yinglong Miao
- Computational Medicine Program and Department of Pharmacology, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA
| | - Richard K Hite
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xin-Yun Huang
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, USA.
| |
Collapse
|
2
|
Dickinson YA, Moyes AJ, Hobbs AJ. C-type natriuretic peptide (CNP): The cardiovascular system and beyond. Pharmacol Ther 2024; 262:108708. [PMID: 39154787 DOI: 10.1016/j.pharmthera.2024.108708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
C-type natriuretic peptide (CNP) represents the 'local' member of the natriuretic peptide family, functioning in an autocrine or paracrine capacity to modulate a hugely diverse portfolio of physiological processes. Whilst the best-characterised of these regulatory roles are in the cardiovascular system, akin to its predominantly endocrine siblings atrial (ANP) and brain (BNP) natriuretic peptides, CNP governs many additional, unrelated mechanisms including bone growth, gamete maturation, auditory processing, and neuronal integrity. Furthermore, there is currently great interest in mimicking the biological activity of CNP for therapeutic gain in many of these disparate organ systems. Herein, we provide an overview of the physiology, pathophysiology and pharmacology of CNP in both cardiovascular and non-cardiovascular settings.
Collapse
Affiliation(s)
- Yasmin A Dickinson
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Barts & The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Amie J Moyes
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Barts & The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Adrian J Hobbs
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Barts & The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
3
|
Rampuria P, Mosyak L, Root AR, Svenson K, Agostino MJ, LaVallie ER. Molecular insights into recognition of GUCY2C by T-cell engaging bispecific antibody anti-GUCY2CxCD3. Sci Rep 2023; 13:13408. [PMID: 37591971 PMCID: PMC10435522 DOI: 10.1038/s41598-023-40467-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023] Open
Abstract
The intestinal epithelial receptor Guanylyl Cyclase C (GUCY2C) is a tumor-associated cell surface antigen expressed across gastrointestinal malignancies that can serve as an efficacious target for colorectal cancer immunotherapy. Here, we describe a yeast surface-display approach combined with an orthogonal peptide-based mapping strategy to identify the GUCY2C binding epitope of a novel anti-GUCY2CxCD3 bispecific antibody (BsAb) that recently advanced into the clinic for the treatment of cancer. The target epitope was localized to the N-terminal helix H2 of human GUCY2C, which enabled the determination of the crystal structure of the minimal GUCY2C epitope in complex with the anti-GUCY2C antibody domain. To understand if this minimal epitope covers the entire antibody binding region and to investigate the impact of epitope position on the antibody's activity, we further determined the structure of this interaction in the context of the full-length extracellular domain (ECD) of GUCY2C. We found that this epitope is positioned on the protruding membrane-distal helical region of GUCY2C and that its specific location on the surface of GUCY2C dictates the close spatial proximity of the two antigen arms in a diabody arrangement essential to the tumor killing activity of GUCY2CxCD3 BsAb.
Collapse
Affiliation(s)
- Pragya Rampuria
- Biomedicine Design, Pfizer Inc., 610 Main St., Cambridge, MA, 02139, USA.
| | - Lidia Mosyak
- Biomedicine Design, Pfizer Inc., 610 Main St., Cambridge, MA, 02139, USA.
| | - Adam R Root
- Generate Biomedicines Inc, Cambridge, MA, USA
| | - Kristine Svenson
- Biomedicine Design, Pfizer Inc., 610 Main St., Cambridge, MA, 02139, USA
| | | | - Edward R LaVallie
- Biomedicine Design, Pfizer Inc., 610 Main St., Cambridge, MA, 02139, USA
| |
Collapse
|
4
|
Cheng C, Zhang J, Li X, Xue F, Cao L, Meng L, Sui W, Zhang M, Zhao Y, Xi B, Yu X, Xu F, Yang J, Zhang Y, Zhang C. NPRC deletion mitigated atherosclerosis by inhibiting oxidative stress, inflammation and apoptosis in ApoE knockout mice. Signal Transduct Target Ther 2023; 8:290. [PMID: 37553374 PMCID: PMC10409771 DOI: 10.1038/s41392-023-01560-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/24/2023] [Accepted: 07/07/2023] [Indexed: 08/10/2023] Open
Abstract
Previous studies suggested a beneficial effect of natriuretic peptides in animal models of cardiovascular disease, but the role of natriuretic peptide receptor C (NPRC) in the pathogenesis of atherosclerosis (AS) remains unknown. This study was designed to test the hypothesis that NPRC may promote AS lesion formation and instability by enhancing oxidative stress, inflammation, and apoptosis via protein kinase A (PKA) signaling. ApoE-/- mice were fed chow or Western diet for 12 weeks and NPRC expression was significantly increased in the aortic tissues of Western diet-fed mice. Systemic NPRC knockout mice were crossed with ApoE-/- mice to generate ApoE-/-NPRC-/- mice, and NPRC deletion resulted in a significant decrease in the size and instability of aortic atherosclerotic lesions in ApoE-/-NPRC-/- versus ApoE-/- mice. In addition, endothelial cell-specific NPRC knockout attenuated atherosclerotic lesions in mice. In contrast, endothelial cell overexpression of NPRC aggravated the size and instability of atherosclerotic aortic lesions in mice. Experiments in vitro showed that NPRC knockdown in human aortic endothelial cells (HAECs) inhibited ROS production, pro-inflammatory cytokine expression and endothelial cell apoptosis, and increased eNOS expression. Furthermore, NPRC knockdown in HAECs suppressed macrophage migration, cytokine expression, and phagocytosis via its effects on endothelial cells. On the contrary, NPRC overexpression in endothelial cells resulted in opposite effects. Mechanistically, the anti-inflammation and anti-atherosclerosis effects of NPRC deletion involved activation of cAMP/PKA pathway, leading to downstream upregulated AKT1 pathway and downregulated NF-κB pathway. In conclusion, NPRC deletion reduced the size and instability of atherosclerotic lesions in ApoE-/- mice via attenuating inflammation and endothelial cell apoptosis and increasing eNOS expression by modulating cAMP/PKA-AKT1 and NF-κB pathways. Thus, targeting NPRC may provide a promising approach to the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Cheng Cheng
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Jie Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaodong Li
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Fei Xue
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Lei Cao
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Linlin Meng
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wenhai Sui
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Meng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yuxia Zhao
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Department of Traditional Chinese Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Bo Xi
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Feng Xu
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Jianmin Yang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Yun Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
- Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Cheng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
- Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
5
|
Vink S, Akondi KB, Jin J, Poth K, Torres AM, Kuchel PW, Burke SL, Head GA, Alewood PF. Taipan Natriuretic Peptides Are Potent and Selective Agonists for the Natriuretic Peptide Receptor A. Molecules 2023; 28:molecules28073063. [PMID: 37049825 PMCID: PMC10095932 DOI: 10.3390/molecules28073063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 04/14/2023] Open
Abstract
Cardiovascular ailments are a major cause of mortality where over 1.3 billion people suffer from hypertension leading to heart-disease related deaths. Snake venoms possess a broad repertoire of natriuretic peptides with therapeutic potential for treating hypertension, congestive heart failure, and related cardiovascular disease. We now describe several taipan (Oxyuranus microlepidotus) natriuretic peptides TNPa-e which stimulated cGMP production through the natriuretic peptide receptor A (NPR-A) with higher potencies for the rat NPR-A (rNPR-A) over human NPR-A (hNPR-A). TNPc and TNPd were the most potent, demonstrating 100- and 560-fold selectivity for rNPR-A over hNPR-A. In vivo studies found that TNPc decreased diastolic and systolic blood pressure (BP) and increased heart rate (HR) in conscious normotensive rabbits, to a level that was similar to that of human atrial natriuretic peptide (hANP). TNPc also enhanced the bradycardia due to cardiac afferent stimulation (Bezold-Jarisch reflex). This indicated that TNPc possesses the ability to lower blood pressure and facilitate cardiac vagal afferent reflexes but unlike hANP does not produce tachycardia. The 3-dimensional structure of TNPc was well defined within the pharmacophoric disulfide ring, displaying two turn-like regions (RMSD = 1.15 Å). Further, its much greater biological stability together with its selectivity and potency will enhance its usefulness as a biological tool.
Collapse
Affiliation(s)
- Simone Vink
- Institute for Molecular Bioscience, The University of Queensland, St Lucia 4072, Australia
| | - Kalyana Bharati Akondi
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Jean Jin
- Institute for Molecular Bioscience, The University of Queensland, St Lucia 4072, Australia
| | - Kim Poth
- Institute for Molecular Bioscience, The University of Queensland, St Lucia 4072, Australia
| | - Allan M Torres
- Nanoscale Organisation and Dynamics Group, Western Sydney University, Penrith 2759, Australia
| | - Philip W Kuchel
- School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| | - Sandra L Burke
- Baker Heart and Diabetes Institute, Melbourne 3004, Australia
| | - Geoffrey A Head
- Baker Heart and Diabetes Institute, Melbourne 3004, Australia
| | - Paul F Alewood
- Institute for Molecular Bioscience, The University of Queensland, St Lucia 4072, Australia
| |
Collapse
|
6
|
Caveney NA, Tsutsumi N, Garcia KC. Structural insight into guanylyl cyclase receptor hijacking of the kinase-Hsp90 regulatory mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528495. [PMID: 36824799 PMCID: PMC9948968 DOI: 10.1101/2023.02.14.528495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Membrane receptor guanylyl cyclases play a role in many important facets of human physiology, ranging from regulation of blood pressure to the regulation of intestinal fluid secretion. The structural mechanisms which influence the regulation of these important physiological effects have yet to be explored. We present the 3.9 Å resolution cryoEM structure of the human membrane receptor guanylyl cyclase GC-C in complex with Hsp90 and its co-chaperone Cdc37, providing insight into the mechanism of Cdc37 mediated binding of GC-C to the Hsp90 regulatory complex. As a membrane protein and non-kinase client of Hsp90-Cdc37, this work shows remarkable plasticity of Cdc37 to interact with a broad array of clients having significant sequence variation. Further, this work shows how membrane receptor guanylyl cyclases hijack the regulatory mechanisms used for active kinases to facilitate their regulation. Given the known druggability of Hsp90, these insights can guide the further development of mGC targeted therapeutics and lead to new avenues to treat hypertension, inflammatory bowel disease, and other mGC related conditions.
Collapse
|
7
|
Mitchell SM, Pajovich HT, Broas SM, Hugo MM, Banerjee IA. Molecular dynamics simulations and in vitro studies of hybrid decellularized leaf-peptide-polypyrrole composites for potential tissue engineering applications. J Biomol Struct Dyn 2023; 41:1665-1680. [PMID: 34990308 DOI: 10.1080/07391102.2021.2023643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Tissue engineering (TE) aims to repair and regenerate damaged tissue by an assimilation of optimal combination of cells specific to the tissue with an appropriate biomaterial. In this work, a new biomaterial for potential cardiac TE applications was developed by utilizing a combination of in silico studies and in vitro experiments. Molecular dynamics (MD) simulations for the formation of the novel composite prepared from the decellularized leaf components cellulose and pectin along with the VEGF derived peptide (NYLTHRQ) and polypyrrole (PPy) was carried out to assess self-assembly, mechanical properties, and interactions with integrin and NPR-C receptors which are commonly found in cells of cardiac tissue. Results of molecular dynamics simulations indicated the successful formation of stable assemblies. MD simulations also revealed that the scaffold successfully interacted with integrin and NPR-C receptors. As a proof of concept, beet leaves were decellularized (DC) and cross-linked with NYLTHRQ and PPy using layer-by-layer assembly. Decellularization (DC) was confirmed by DNA and protein quantification. Incorporation of the NYLTHRQ peptide and polypyrrole was confirmed by FTIR spectroscopy and SEM imaging. The DC-NYLTHRQ-PPy scaffold was seeded with co-cultured cardiomyocytes and vascular smooth muscle cells. The scaffold promoted cell proliferation and adhesion. Actin and Troponin T immunofluorescence staining showed the presence of these critical cardiomyocyte markers. Thus, for the first time we have developed a decellularized leaf-peptide-PPy composite scaffold by a combination of in silico studies and laboratory analyses that may have potential applications in cardiac TE.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Sarah M Broas
- Department of Chemistry, Fordham University, Bronx, NY, USA
| | - Mindy M Hugo
- Department of Chemistry, Fordham University, Bronx, NY, USA
| | | |
Collapse
|
8
|
In Silico Study of the Mechanisms Underlying the Action of the Snake Natriuretic-Like Peptide Lebetin 2 during Cardiac Ischemia. Toxins (Basel) 2022; 14:toxins14110787. [PMID: 36422961 PMCID: PMC9699598 DOI: 10.3390/toxins14110787] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Lebetin 2 (L2), a natriuretic-like peptide (NP), exerts potent cardioprotection in myocardial infarction (MI), with stronger effects than B-type natriuretic peptide (BNP). To determine the molecular mechanisms underlying its cardioprotection effect, we used molecular modeling, molecular docking and molecular dynamics (MD) simulation to describe the binding mode, key interaction residues as well as mechanistic insights into L2 interaction with NP receptors (NPRs). L2 binding affinity was determined for human, rat, mouse and chicken NPRs, and the stability of receptor-ligand complexes ascertained during 100 ns-long MD simulations. We found that L2 exhibited higher affinity for all human NPRs compared to BNP, with a rank preference for NPR-A > NPR-C > NPR-B. Moreover, L2 affinity for human NPR-A and NPR-C was higher in other species. Both docking and MD studies revealed that the NPR-C-L2 interaction was stronger in all species compared to BNP. Due to its higher affinity to human receptors, L2 could be used as a therapeutic approach in MI patients. Moreover, the stronger interaction of L2 with NPR-C could highlight a new L2 signaling pathway that would explain its additional effects during cardiac ischemia. Thus, L2 is a promising candidate for drug design toward novel compounds with high potency, affinity and stability.
Collapse
|
9
|
Myhre PL, Prescott MF, Claggett B, Felker GM, Butler J, Piña IL, Maisel AS, Williamson KM, Ward JH, Solomon SD, Januzzi JL. Comparative Effect of Angiotensin Receptor Neprilysin Inhibition on B-type Natriuretic Peptide Levels Measured by Three Different Assays: The PROVE-HF Study. Clin Chem 2022; 68:1391-1398. [DOI: 10.1093/clinchem/hvac148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/08/2022] [Indexed: 12/11/2022]
Abstract
Abstract
Background
Several different B-type natriuretic peptide (BNP) assays are used clinically for diagnostic and prognostic evaluation of heart failure (HF). BNP binds weakly to neprilysin and is cleaved in multiple areas adjacent to the binding sites for the antibodies used in these immunoassays. We assessed the changes in BNP following neprilysin inhibition as measured by 3 immunoassays that recognize different epitopes.
Methods
Among 130 participants with HF with reduced ejection fraction, blood was collected prior to treatment with sacubitril/valsartan (sac/val) and then repeatedly measured through 52 weeks of treatment. BNP concentrations were measured with 3 widely used BNP assays (Siemens, Abbott, and Quidel).
Results
Study participants had a mean age of 65 ± 13 years and 76% were men. The median BNP concentration at baseline was 133 ng/L by the Siemens assay, 127 ng/L by the Abbott assay, and 141 ng/L by the Quidel assay. Following initiation of sac/val, there were significantly greater declines in BNP measured by Quidel and Abbott (P = 0.009 and P < 0.001), respectively (both with N-terminal capture antibodies), compared to Siemens (with C-terminal capture antibodies). The difference from baseline was not statistically significant until after week 12 (mean –10.1% for Quidel and –14.3% for Abbott) compared to non-significant differences before 12 weeks (mean –4.5% for Quidel and –6.0% for Abbott).
Conclusions
Following initiation of sac/val, BNP measurements may modestly differ depending on the assay method used, particularly after a few months of treatment. Whether these differences relate to neprilysin-mediated degradation of antibody binding sites deserves further study.
Study registration
PROVE-HF ClinicalTrials.gov Identifier: NCT02887183.
Collapse
Affiliation(s)
- Peder L Myhre
- Cardiovascular Division, Brigham and Women’s Hospital , Boston, MA , USA
- Division of Medicine, Akershus University Hospital and University of Oslo , Oslo , Norway
| | | | - Brian Claggett
- Cardiovascular Division, Brigham and Women’s Hospital , Boston, MA , USA
| | - G Michael Felker
- Duke University Medical School and Duke Clinical Research Institute , Durham, NC , USA
| | - Javed Butler
- University of Mississippi Medical School , Jackson, MS , USA
| | | | | | | | | | - Scott D Solomon
- Cardiovascular Division, Brigham and Women’s Hospital , Boston, MA , USA
| | - James L Januzzi
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Baim Institute for Clinical Research , Boston, MA , USA
| |
Collapse
|
10
|
Purification, characterization, and preliminary serial crystallography diffraction advances structure determination of full-length human particulate guanylyl cyclase A receptor. Sci Rep 2022; 12:11824. [PMID: 35821229 PMCID: PMC9276669 DOI: 10.1038/s41598-022-15798-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Particulate Guanylyl Cyclase Receptor A (pGC-A) is a natriuretic peptide membrane receptor, playing a vital role in controlling cardiovascular, renal, and endocrine functions. The extracellular domain interacts with natriuretic peptides and triggers the intracellular guanylyl cyclase domain to convert GTP to cGMP. To effectively develop methods to regulate pGC-A, structural information on the full-length form is needed. However, structural data on the transmembrane and intracellular domains are lacking. This work presents expression and optimization using baculovirus, along with the first purification of functional full-length human pGC-A. In vitro assays revealed the pGC-A tetramer was functional in detergent micelle solution. Based on our purification results and previous findings that dimer formation is required for functionality, we propose a tetramer complex model with two functional subunits. Previous research suggested pGC-A signal transduction is an ATP-dependent, two-step mechanism. Our results show the binding ligand also moderately activates pGC-A, and ATP is not crucial for activation of guanylyl cyclase. Furthermore, crystallization of full-length pGC-A was achieved, toward determination of its structure. Needle-shaped crystals with 3 Å diffraction were observed by serial crystallography. This work paves the road for determination of the full-length pGC-A structure and provides new information on the signal transduction mechanism.
Collapse
|
11
|
Lauffer P, Boudin E, van der Kaay DCM, Koene S, van Haeringen A, van Tellingen V, Van Hul W, Prickett TCR, Mortier G, Espiner EA, van Duyvenvoorde HA. Broadening the Spectrum of Loss-of-Function Variants in NPR-C-Related Extreme Tall Stature. J Endocr Soc 2022; 6:bvac019. [PMID: 35233476 PMCID: PMC8879884 DOI: 10.1210/jendso/bvac019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 11/28/2022] Open
Abstract
CONTEXT Natriuretic peptide receptor-C (NPR-C, encoded by NPR3) belongs to a family of cell membrane-integral proteins implicated in various physiological processes, including longitudinal bone growth. NPR-C acts as a clearance receptor of natriuretic peptides, including C-type natriuretic peptide (CNP), that stimulate the cGMP-forming guanylyl cyclase-coupled receptors NPR-A and NPR-B. Pathogenic variants in CNP, NPR2, and NPR3 may cause a tall stature phenotype associated with macrodactyly of the halluces and epiphyseal dysplasia. OBJECTIVE Here we report on a boy with 2 novel biallelic inactivating variants of NPR3. METHODS History and clinical characteristics were collected. Biochemical indices of natriuretic peptide clearance and in vitro cellular localization of NPR-C were studied to investigate causality of the identified variants. RESULTS We identified 2 novel compound heterozygous NPR3 variants c.943G>A p.(Ala315Thr) and c.1294A>T p.(Ile432Phe) in a boy with tall stature and macrodactyly of the halluces. In silico analysis indicated decreased stability of NPR-C, presumably resulting in increased degradation or trafficking defects. Compared to other patients with NPR-C loss-of-function, the phenotype seemed to be milder: pseudo-epiphyses in hands and feet were absent, biochemical features were less severe, and there was some co-localization of p.(Ile432Phe) NPR-C with the cell membrane, as opposed to complete cytoplasmic retention. CONCLUSION With this report on a boy with tall stature and macrodactyly of the halluces we further broaden the genotypic and phenotypic spectrum of NPR-C-related tall stature.
Collapse
Affiliation(s)
- Peter Lauffer
- Department of Pediatric Endocrinology, Emma Children’s Hospital, Amsterdam University Medical Center, 1105 AZ Amsterdam, the Netherlands
| | - Eveline Boudin
- Department of Medical Genetics, Antwerp University Hospital and University of Antwerp, 2650 Edegem, Belgium
| | - Daniëlle C M van der Kaay
- Department of Pediatric Endocrinology, Sophia Children’s Hospital, Erasmus Medical Center, 3015 GD Rotterdam, the Netherlands
| | - Saskia Koene
- Department of Clinical Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Arie van Haeringen
- Department of Clinical Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Vera van Tellingen
- Department of Pediatrics, Catharina Hospital, 5623 EJ Eindhoven, the Netherlands
| | - Wim Van Hul
- Department of Medical Genetics, Antwerp University Hospital and University of Antwerp, 2650 Edegem, Belgium
| | | | - Geert Mortier
- Department of Medical Genetics, Antwerp University Hospital and University of Antwerp, 2650 Edegem, Belgium
| | - Eric A Espiner
- Department of Medicine, University of Otago, 8140 Christchurch, New Zealand
| | | |
Collapse
|
12
|
Nisar M, Paracha RZ, Gul A, Arshad I, Ejaz S, Murad D, Khan S, Mustansar Z. Interaction Analysis of Adenovirus L5 Protein With Pancreatic Cancer Cell Surface Receptor to Analyze Its Affinity for Oncolytic Virus Therapy. Front Oncol 2022; 12:832277. [PMID: 35359382 PMCID: PMC8960272 DOI: 10.3389/fonc.2022.832277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
This study seeks to investigate the interaction profile of the L5 protein of oncolytic adenovirus with the overexpressed surface receptors of pancreatic cancer. This is an important area of research because pancreatic cancer is one of the most fatal malignancies with a very low patient survival rate. Multiple therapies to date to improve the survival rate are reported; however, they show a comparatively low success rate. Among them, oncolytic virus therapy is a type of immunotherapy that is currently under deliberation by researchers for multiple cancer types in various clinical trials. Talimogene laherparepvec (T-VEC) is the first oncolytic virus approved by the US Food and Drug Administration (FDA) for melanoma. The oncolytic virus not only kills cancer cells but also activates the anticancer immune response. Therefore, it is preferred over others to deal with aggressive pancreatic cancer. The efficacy of therapy primarily depends on how effectively the oncolytic virus enters and infects the cancer cell. Cell surface receptors and their interactions with virus coat proteins are a crucial step for oncolytic virus entry and a pivotal determinant. The L5 proteins of the virus coat are the first to interact with host cell surface receptors. Therefore, the objective of this study is to analyze the interaction profile of the L5 protein of oncolytic adenovirus with overexpressed surface receptors of pancreatic cancer. The L5 proteins of three adenovirus serotypes HAdV2, HAdV5, and HAdV3 were utilized in this study. Overexpressed pancreatic cancer receptors include SLC2A1, MET, IL1RAP, NPR3, GABRP, SLC6A6, and TMPRSS4. The protein structures of viral and cancer cell protein were docked using the High Ambiguity Driven protein–protein DOCKing (HADDOCK) server. The binding affinity and interaction profile of viral proteins against all the receptors were analyzed. Results suggest that the HAdV3 L5 protein shows better interaction as compared to HAdV2 and HAdV5 by elucidating high binding affinity with 4 receptors (NPR3, GABRP, SLC6A6, and TMPRSS4). The current study proposed that HAdV5 or HAdV2 virus pseudotyped with the L5 protein of HAdV3 can be able to effectively infect pancreatic cancer cells. Moreover, the current study surmises that the affinity maturation of HAdV3 L5 can enhance virus attachment with all the receptors of cancer cells.
Collapse
Affiliation(s)
- Maryum Nisar
- Research Center for Modelling and Simulation (RCMS), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Rehan Zafar Paracha
- Research Center for Modelling and Simulation (RCMS), National University of Sciences and Technology (NUST), Islamabad, Pakistan
- *Correspondence: Rehan Zafar Paracha,
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Iqra Arshad
- Research Center for Modelling and Simulation (RCMS), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Saima Ejaz
- Research Center for Modelling and Simulation (RCMS), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Didar Murad
- Research Center for Modelling and Simulation (RCMS), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Shahzeb Khan
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Zartasha Mustansar
- Research Center for Modelling and Simulation (RCMS), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
13
|
PDE-Mediated Cyclic Nucleotide Compartmentation in Vascular Smooth Muscle Cells: From Basic to a Clinical Perspective. J Cardiovasc Dev Dis 2021; 9:jcdd9010004. [PMID: 35050214 PMCID: PMC8777754 DOI: 10.3390/jcdd9010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular diseases are important causes of mortality and morbidity worldwide. Vascular smooth muscle cells (SMCs) are major components of blood vessels and are involved in physiologic and pathophysiologic conditions. In healthy vessels, vascular SMCs contribute to vasotone and regulate blood flow by cyclic nucleotide intracellular pathways. However, vascular SMCs lose their contractile phenotype under pathological conditions and alter contractility or signalling mechanisms, including cyclic nucleotide compartmentation. In the present review, we focus on compartmentalized signaling of cyclic nucleotides in vascular smooth muscle. A deeper understanding of these mechanisms clarifies the most relevant axes for the regulation of vascular tone. Furthermore, this allows the detection of possible changes associated with pathological processes, which may be of help for the discovery of novel drugs.
Collapse
|
14
|
Cheng C, Xue F, Sui W, Meng L, Xie L, Zhang C, Yang J, Zhang Y. Deletion of natriuretic peptide receptor C alleviates adipose tissue inflammation in hypercholesterolemic Apolipoprotein E knockout mice. J Cell Mol Med 2021; 25:9837-9850. [PMID: 34528389 PMCID: PMC8505842 DOI: 10.1111/jcmm.16931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 12/16/2022] Open
Abstract
The inflammation of adipose tissue is one of the most common secondary pathological changes in atherosclerosis, which in turn influences the process of atherosclerosis. Natriuretic peptides have been revealed important effect in regulating adipose metabolism. However, the relationship between natriuretic peptide receptor C and inflammation of adipose tissue in atherosclerosis remains unknown. This study aims to explore the effect natriuretic peptide receptor C exerts on the regulation of the adipose inflammation in atherosclerotic mice induced by western-type diet and its overlying mechanisms. To clarify the importance of NPRC of adipose inflammation in atherosclerotic mice, NPRC expression was measured in mice fed with chow diet and western-type diet for 12 weeks and we found a considerable increase in adipose tissue of atherosclerotic mice. Global NPRC knockout in mice was bred onto ApoE-/- mice to generate NPRC-/- ApoE-/- mice, which displayed remarked increase in browning of white adipose tissue and lipolysis of adipose tissue and decrease in adipose inflammation manifested by decreased macrophage invasion to form less CLS (crown-like structure), reduced oxidative stress and alleviated expression of TNFα, IL-6, IL-1β and MCP1, but increased expression of adiponectin in adipose tissue. Moreover, our study showed that white adipose tissue browning in NPRC-/- ApoE-/- atherosclerotic mice was associated with decreased inflammatory response through cAMP/PKA signalling activation. These results identify NPRC as a novel regulator for adipose inflammation in atherosclerotic mice by modulating white adipose tissue browning.
Collapse
Affiliation(s)
- Cheng Cheng
- Department of CardiologyThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Fei Xue
- Department of CardiologyThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Wenhai Sui
- Department of CardiologyThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Linlin Meng
- Department of CardiologyThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Lin Xie
- Department of CardiologyThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Cheng Zhang
- Department of CardiologyThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Jianmin Yang
- Department of CardiologyThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Yun Zhang
- Department of CardiologyThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| |
Collapse
|
15
|
Ploeg MC, Munts C, Prinzen FW, Turner NA, van Bilsen M, van Nieuwenhoven FA. Piezo1 Mechanosensitive Ion Channel Mediates Stretch-Induced Nppb Expression in Adult Rat Cardiac Fibroblasts. Cells 2021; 10:cells10071745. [PMID: 34359915 PMCID: PMC8303625 DOI: 10.3390/cells10071745] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 01/30/2023] Open
Abstract
In response to stretch, cardiac tissue produces natriuretic peptides, which have been suggested to have beneficial effects in heart failure patients. In the present study, we explored the mechanism of stretch-induced brain natriuretic peptide (Nppb) expression in cardiac fibroblasts. Primary adult rat cardiac fibroblasts subjected to 4 h or 24 h of cyclic stretch (10% 1 Hz) showed a 6.6-fold or 3.2-fold (p < 0.05) increased mRNA expression of Nppb, as well as induction of genes related to myofibroblast differentiation. Moreover, BNP protein secretion was upregulated 5.3-fold in stretched cardiac fibroblasts. Recombinant BNP inhibited TGFβ1-induced Acta2 expression. Nppb expression was >20-fold higher in cardiomyocytes than in cardiac fibroblasts, indicating that cardiac fibroblasts were not the main source of Nppb in the healthy heart. Yoda1, an agonist of the Piezo1 mechanosensitive ion channel, increased Nppb expression 2.1-fold (p < 0.05) and significantly induced other extracellular matrix (ECM) remodeling genes. Silencing of Piezo1 reduced the stretch-induced Nppb and Tgfb1 expression in cardiac fibroblasts. In conclusion, our study identifies Piezo1 as mediator of stretch-induced Nppb expression, as well as other remodeling genes, in cardiac fibroblasts.
Collapse
Affiliation(s)
- Meike C. Ploeg
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (M.C.P.); (C.M.); (F.W.P.); (M.v.B.)
| | - Chantal Munts
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (M.C.P.); (C.M.); (F.W.P.); (M.v.B.)
| | - Frits W. Prinzen
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (M.C.P.); (C.M.); (F.W.P.); (M.v.B.)
| | - Neil A. Turner
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK;
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds LS2 9JT, UK
| | - Marc van Bilsen
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (M.C.P.); (C.M.); (F.W.P.); (M.v.B.)
| | - Frans A. van Nieuwenhoven
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (M.C.P.); (C.M.); (F.W.P.); (M.v.B.)
- Correspondence:
| |
Collapse
|
16
|
In Silico Prediction, Molecular Docking and Dynamics Studies of Steroidal Alkaloids of Holarrhena pubescens Wall. ex G. Don to Guanylyl Cyclase C: Implications in Designing of Novel Antidiarrheal Therapeutic Strategies. Molecules 2021; 26:molecules26144147. [PMID: 34299422 PMCID: PMC8305770 DOI: 10.3390/molecules26144147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 01/08/2023] Open
Abstract
The binding of heat stable enterotoxin (STa) secreted by enterotoxigenic Escherichia coli (ETEC) to the extracellular domain of guanylyl cyclase c (ECDGC-C) causes activation of a signaling cascade, which ultimately results in watery diarrhea. We carried out this study with the objective of finding ligands that would interfere with the binding of STa on ECDGC-C. With this view in mind, we tested the biological activity of a alkaloid rich fraction of Holarrhena pubescens against ETEC under in vitro conditions. Since this fraction showed significant antibacterial activity against ETEC, we decided to test the screen binding affinity of nine compounds of steroidal alkaloid type from Holarrhena pubescens against extracellular domain (ECD) by molecular docking and identified three compounds with significant binding energy. Molecular dynamics simulations were performed for all the three lead compounds to establish the stability of their interaction with the target protein. Pharmacokinetics and toxicity profiling of these leads demonstrated that they possessed good drug-like properties. Furthermore, the ability of these leads to inhibit the binding of STa to ECD was evaluated. This was first done by identifying amino acid residues of ECDGC-C binding to STa by protein-protein docking. The results were matched with our molecular docking results. We report here that holadysenterine, one of the lead compounds that showed a strong affinity for the amino acid residues on ECDGC-C, also binds to STa. This suggests that holadysenterine has the potential to inhibit binding of STa on ECD and can be considered for future study, involving its validation through in vitro assays and animal model studies.
Collapse
|
17
|
Dehghanbanadaki N, Taghdir M, Naderi-Manesh H. Investigation of Atrial Natriuretic Peptide as A Competitive Inhibitory Candidate Against Wnt/β-Catenin Signalling: A Molecular Dynamics Approach. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-020-10085-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
He Y, Liu Y, Zhou M, Xie K, Tang Y, Huang H, Huang C. C-type natriuretic peptide suppresses ventricular arrhythmias in rats with acute myocardial ischemia. Peptides 2020; 126:170238. [PMID: 31870937 DOI: 10.1016/j.peptides.2019.170238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 11/23/2022]
Abstract
This study aimed to investigate the effects of C-type natriuretic peptide (CNP) on ventricular arrhythmias in rats with acute myocardial ischemia (AMI). Forty male Sprague-Dawley rats were randomly divided into sham group (n = 10), AMI group (n = 15) and AMI + CNP group (n = 15). AMI model was induced by ligating the left anterior descending branch of the coronary artery, and CNP was pumped through the femoral vein starting 30 min before ischemia and continuing until 1 h after AMI. The occurrence of ventricular arrhythmias after ischemia and heart rate variability (HRV) were recorded and analyzed. The plasma norepinephrine level was detected at 15 min after AMI. Ventricular electrophysiological parameters including ventricular effective refractory period (ERP), ERP dispersion, ventricular action potential duration (APD) alternans and ventricular fibrillation threshold (VFT) were measured one hour after AMI. Then, the expressions of cyclic guanosine monophosphate in myocardial tissue and left stellate ganglion were examined. Compared to sham group, AMI significantly shortened the ERP, augmented ERP dispersion, elevated APD alternans cycle length, reduced VFT, and increased the incidence of ventricular arrhythmias. Moreover, AMI increased the sympathetic component of HRV, raised plasma norepinephrine levels, and decreased the cyclic guanosine monophosphate levels in myocardium and left stellate ganglion. All those changes were attenuated by CNP treatment. These findings suggest that CNP protected against ventricular arrhythmias in rats with AMI, potentially by inhibiting ischemia-induced cardiac sympathetic hyperactivity and cardiac electrophysiology instability.
Collapse
Affiliation(s)
- Yan He
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yu Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China.
| | - Mingmin Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ke Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
19
|
Lebetin Peptides, A New Class of Potent Platelet Aggregation Inhibitors: Chemical Synthesis, Biological Activity and NMR Spectroscopic Study. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-019-09812-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Grandchamp A, Tahir S, Monget P. Natriuretic peptides appeared after their receptors in vertebrates. BMC Evol Biol 2019; 19:215. [PMID: 31771521 PMCID: PMC6878697 DOI: 10.1186/s12862-019-1517-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/20/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND In mammals, the natriuretic system contains three natriuretic peptides, NPPA, NPPB and NPPC, that bind to three transmembrane receptors, NPR1, NPR2 and NPR3. The natriuretic peptides are known only in vertebrates. In contrast, the receptors have orthologs in all the animal taxa and in plants. However, in non-vertebrates, these receptors do not have natriuretic properties, and most of their ligands are unknown. How was the interaction of the NP receptors and the NP established in vertebrates? Do natriuretic peptides have orthologs in non-vertebrates? If so, what was the function of the interaction? How did that function change? If not, are the NP homologous to ancestral NPR ligands? Or did the receptor's binding pocket completely change during evolution? METHODS In the present study, we tried to determine if the pairs of natriuretic receptors and their ligands come from an ancestral pair, or if the interaction only appeared in vertebrates. Alignments, modeling, docking, research of positive selection, and motif research were performed in order to answer this question. RESULTS We discovered that the binding pocket of the natriuretic peptide receptors was completely remodeled in mammals. We found several peptides in non vertebrates that could be related to human natriuretic peptides, but a set of clues, as well as modeling and docking analysis, suggest that the natriuretic peptides undoubtedly appeared later than their receptors during animal evolution. We suggest here that natriuretic peptide receptors in non vertebrates bind to other ligands. CONCLUSIONS The present study further support that vertebrate natriuretic peptides appeared after their receptors in the tree of life. We suggest the existence of peptides that resemble natriuretic peptides in non-vertebrate species, that might be the result of convergent evolution.
Collapse
Affiliation(s)
- Anna Grandchamp
- PRC, UMR85, INRA, CNRS, IFCE, Université de Tours, F-37380 Nouzilly, France
| | - Shifa Tahir
- PRC, UMR85, INRA, CNRS, IFCE, Université de Tours, F-37380 Nouzilly, France
| | - Philippe Monget
- PRC, UMR85, INRA, CNRS, IFCE, Université de Tours, F-37380 Nouzilly, France
| |
Collapse
|
21
|
Forte M, Madonna M, Schiavon S, Valenti V, Versaci F, Zoccai GB, Frati G, Sciarretta S. Cardiovascular Pleiotropic Effects of Natriuretic Peptides. Int J Mol Sci 2019; 20:3874. [PMID: 31398927 PMCID: PMC6719167 DOI: 10.3390/ijms20163874] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/03/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023] Open
Abstract
Atrial natriuretic peptide (ANP) is a cardiac hormone belonging to the family of natriuretic peptides (NPs). ANP exerts diuretic, natriuretic, and vasodilatory effects that contribute to maintain water-salt balance and regulate blood pressure. Besides these systemic properties, ANP displays important pleiotropic effects in the heart and in the vascular system that are independent of blood pressure regulation. These functions occur through autocrine and paracrine mechanisms. Previous works examining the cardiac phenotype of loss-of-function mouse models of ANP signaling showed that both mice with gene deletion of ANP or its receptor natriuretic peptide receptor A (NPR-A) developed cardiac hypertrophy and dysfunction in response to pressure overload and chronic ischemic remodeling. Conversely, ANP administration has been shown to improve cardiac function in response to remodeling and reduces ischemia-reperfusion (I/R) injury. ANP also acts as a pro-angiogenetic, anti-inflammatory, and anti-atherosclerotic factor in the vascular system. Pleiotropic effects regarding brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP) were also reported. In this review, we discuss the current evidence underlying the pleiotropic effects of NPs, underlying their importance in cardiovascular homeostasis.
Collapse
Affiliation(s)
| | | | - Sonia Schiavon
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| | - Valentina Valenti
- Department of Cardiology, Santa Maria Goretti Hospital, 04100 Latina, Italy
| | - Francesco Versaci
- Department of Cardiology, Santa Maria Goretti Hospital, 04100 Latina, Italy
| | - Giuseppe Biondi Zoccai
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
- Mediterranea Cardiocentro, 80122 Napoli, Italy
| | - Giacomo Frati
- IRCCS NEUROMED, 86077 Pozzilli, Italy
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| | - Sebastiano Sciarretta
- IRCCS NEUROMED, 86077 Pozzilli, Italy.
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy.
| |
Collapse
|
22
|
Conole D, Myers SH, Mota F, Hobbs AJ, Selwood DL. Biophysical screening methods for extracellular domain peptide receptors, application to natriuretic peptide receptor C ligands. Chem Biol Drug Des 2019; 93:1011-1020. [PMID: 30218492 PMCID: PMC6879014 DOI: 10.1111/cbdd.13395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/15/2018] [Accepted: 09/04/2018] [Indexed: 12/20/2022]
Abstract
Endothelium-derived C-type natriuretic peptide possesses cytoprotective and anti-atherogenic functions that regulate vascular homeostasis. The vasoprotective effects of C-type natriuretic peptide are somewhat mediated by the natriuretic peptide receptor C, suggesting that this receptor represents a novel therapeutic target for the treatment of cardiovascular diseases. In order to facilitate our drug discovery efforts, we have optimized an array of biophysical methods including surface plasmon resonance, fluorescence polarization and thermal shift assays to aid in the design, assessment and characterization of small molecule agonist interactions with natriuretic peptide receptors. Assay conditions are investigated to explore the feasibility and dynamic range of each method, and peptide-based agonists and antagonists are used as controls to validate these conditions. Once established, each technique was compared and contrasted with respect to their drug discovery utility. We foresee that such techniques will facilitate the discovery and development of potential therapeutic agents for NPR-C and other large extracellular domain membrane receptors.
Collapse
Affiliation(s)
- Daniel Conole
- Wolfson Institute for Biomedical ResearchUniversity College LondonLondonUK
| | - Samuel H. Myers
- Wolfson Institute for Biomedical ResearchUniversity College LondonLondonUK
| | - Filipa Mota
- Wolfson Institute for Biomedical ResearchUniversity College LondonLondonUK
| | - Adrian J. Hobbs
- William Harvey Research InstituteHeart Centre, Barts & The London School of MedicineQueen Mary University of LondonLondonUK
| | - David L. Selwood
- Wolfson Institute for Biomedical ResearchUniversity College LondonLondonUK
| |
Collapse
|
23
|
Moyes AJ, Hobbs AJ. C-type Natriuretic Peptide: A Multifaceted Paracrine Regulator in the Heart and Vasculature. Int J Mol Sci 2019; 20:E2281. [PMID: 31072047 PMCID: PMC6539462 DOI: 10.3390/ijms20092281] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022] Open
Abstract
C-type natriuretic peptide (CNP) is an autocrine and paracrine mediator released by endothelial cells, cardiomyocytes and fibroblasts that regulates vital physiological functions in the cardiovascular system. These roles are conveyed via two cognate receptors, natriuretic peptide receptor B (NPR-B) and natriuretic peptide receptor C (NPR-C), which activate different signalling pathways that mediate complementary yet distinct cellular responses. Traditionally, CNP has been deemed the endothelial component of the natriuretic peptide system, while its sibling peptides, atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), are considered the endocrine guardians of cardiac function and blood volume. However, accumulating evidence indicates that CNP not only modulates vascular tone and blood pressure, but also governs a wide range of cardiovascular effects including the control of inflammation, angiogenesis, smooth muscle and endothelial cell proliferation, atherosclerosis, cardiomyocyte contractility, hypertrophy, fibrosis, and cardiac electrophysiology. This review will focus on the novel physiological functions ascribed to CNP, the receptors/signalling mechanisms involved in mediating its cardioprotective effects, and the development of therapeutics targeting CNP signalling pathways in different disease pathologies.
Collapse
Affiliation(s)
- Amie J Moyes
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
24
|
Matsuo A, Nagai-Okatani C, Nishigori M, Kangawa K, Minamino N. Natriuretic peptides in human heart: Novel insight into their molecular forms, functions, and diagnostic use. Peptides 2019; 111:3-17. [PMID: 30120963 DOI: 10.1016/j.peptides.2018.08.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 08/12/2018] [Accepted: 08/13/2018] [Indexed: 01/16/2023]
Abstract
Among the three natriuretic peptides, atrial/A-type natriuretic peptide (ANP) and brain/B-type natriuretic peptide (BNP) are primarily produced by, and secreted from, heart tissue. They maintain cardiovascular homeostasis by binding to natriuretic peptide receptor-A. Since plasma ANP and BNP concentrations, as well as expression, are elevated in response to increased body fluid volume and pressure load on the heart wall, these peptides are widely utilized as diagnostic biomarkers for evaluating heart failure. Regardless of their high utility, differences in their molecular forms between healthy and diseased subjects and how these relate to pathophysiology have not well been examined. Recent studies have shown that the circulating molecular forms of ANP and BNP are not uniform; bioactive α-ANP is the major ANP form, whereas the weakly active proBNP is the major BNP form. The relative ratios of the different molecular forms are altered under different pathophysiological conditions. These facts indicate that detailed measurements of each form may provide useful information on the pathophysiological state of heart tissue. Here, we revisit the relationship between the molecular forms of, and pathophysiological alterations in, human ANP and BNP and discuss the possible utility of the measurement of each of the molecular forms. The third peptide, C-type natriuretic peptide, activates natriuretic peptide receptor-B, but little is known about its production and function in the heart because of its extremely low levels. However, through recent studies, its role in the heart is gradually becoming clear. Here, we summarize its molecular forms, assay systems, and functions in the heart.
Collapse
Affiliation(s)
- Ayaka Matsuo
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Osaka 565-8565, Japan
| | - Chiaki Nagai-Okatani
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan
| | - Mitsuhiro Nishigori
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Osaka 565-8565, Japan
| | - Kenji Kangawa
- Research Institute, National Cerebral and Cardiovascular Center, Suita, Osaka 565-8565, Japan
| | - Naoto Minamino
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Osaka 565-8565, Japan.
| |
Collapse
|
25
|
Xiao P, Li H, Li X, Song D. Analytical barriers in clinical B-type natriuretic peptide measurement and the promising analytical methods based on mass spectrometry technology. ACTA ACUST UNITED AC 2018; 57:954-966. [DOI: 10.1515/cclm-2018-0956] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/22/2018] [Indexed: 12/28/2022]
Abstract
Abstract
B-type natriuretic peptide (BNP) is a circulating biomarker that is mainly applied in heart failure (HF) diagnosis and to monitor disease progression. Because some identical amino acid sequences occur in the precursor and metabolites of BNP, undesirable cross-reactions are common in immunoassays. This review first summarizes current analytical methods, such as immunoassay- and mass spectrometry (MS)-based approaches, including the accuracy of measurement and the inconsistency of the results. Second, the review presents some promising approaches to resolve the current barriers in clinical BNP measurement, such as how to decrease cross-reactions and increase the measurement consistency. Specific approaches include research on novel BNP assays with higher-specificity chemical antibodies, the development of International System of Units (SI)-traceable reference materials, and the development of structure characterization methods based on state-of-the-art ambient and ion mobility MS technologies. The factors that could affect MS analysis are also discussed, such as biological sample cleanup and peptide ionization efficiency. The purpose of this review is to explore and identify the main problems in BNP clinical measurement and to present three types of approaches to resolve these problems, namely, materials, methods and instruments. Although novel approaches are proposed here, in practice, it is worth noting that the BNP-related peptides including unprocessed proBNP were all measured in clinical BNP assays. Therefore, approaches that aimed to measure a specific BNP or proBNP might be an effective way for the standardization of a particular BNP form measurement, instead of the standardization of “total” immunoreactive BNP assays in clinical at present.
Collapse
Affiliation(s)
- Peng Xiao
- Division of Chemical Metrology and Analytical Science , National Institute of Metrology , Beijing 100029 , P.R. China , Phone: +86-10-64228896, Fax: +86-10-64271639
| | - Hongmei Li
- Division of Chemical Metrology and Analytical Science , National Institute of Metrology , Beijing 100029 , P.R. China , Phone: +86-10-64228896, Fax: +86-10-64271639
| | - Xianjiang Li
- Division of Chemical Metrology and Analytical Science , National Institute of Metrology , Beijing , P.R. China
| | - Dewei Song
- Division of Chemical Metrology and Analytical Science , National Institute of Metrology , Beijing , P.R. China
| |
Collapse
|
26
|
Podewin T, Broichhagen J, Frost C, Groneberg D, Ast J, Meyer-Berg H, Fine NHF, Friebe A, Zacharias M, Hodson DJ, Trauner D, Hoffmann-Röder A. Optical control of a receptor-linked guanylyl cyclase using a photoswitchable peptidic hormone. Chem Sci 2017; 8:4644-4653. [PMID: 28626572 PMCID: PMC5471452 DOI: 10.1039/c6sc05044a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/09/2017] [Indexed: 12/11/2022] Open
Abstract
The optical control over biological function with small photoswitchable molecules has gathered significant attention in the last decade. Herein, we describe the design and synthesis of a small library of photoswitchable peptidomimetics based upon human atrial natriuretic peptide (ANP), in which the photochromic amino acid [3-(3-aminomethyl)phenylazo]phenylacetic acid (AMPP) is incorporated into the peptide backbone. The endogeneous hormone ANP signals via the natriuretic peptide receptor A (NPR-A) through raising intracellular cGMP concentrations, and is involved in blood pressure regulation and sodium homeostasis, as well as lipid metabolism and pancreatic function. The cis- and trans-isomers of one of our peptidomimetics, termed TOP271, exhibit a four-fold difference in NPR-A mediated cGMP synthesis in vitro. Despite this seemingly small difference, TOP271 enables large, optically-induced conformational changes ex vivo and transforms the NPR-A into an endogenous photoswitch. Thus, application of TOP271 allows the reversible generation of cGMP using light and remote control can be afforded over vasoactivity in explanted murine aortic rings, as well as pancreatic beta cell function in islets of Langerhans. This study demonstrates the broad applicability of TOP271 to enzyme-dependent signalling processes, extends the toolbox of photoswitchable molecules to all classes of transmembrane receptors and utilizes photopharmacology to deduce receptor activation on a molecular level.
Collapse
Affiliation(s)
- Tom Podewin
- Department of Chemistry and Center for Integrated Protein Science , LMU Munich , Butenandtstr. 5-13 , 81377 Munich , Germany . ;
| | - Johannes Broichhagen
- Department of Chemistry and Center for Integrated Protein Science , LMU Munich , Butenandtstr. 5-13 , 81377 Munich , Germany . ;
| | - Christina Frost
- Department of Physics , Technical University of Munich , James-Franck-Str. 1 , 85748 Garching , Germany
| | - Dieter Groneberg
- Julius-Maximilian-University Würzburg , Institute of Physiology , Röntgenring 9 , 97070 Würzburg , Germany
| | - Julia Ast
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE) , University of Birmingham , Edgbaston , B15 2TT , UK
- Centre for Endocrinology , Diabetes and Metabolism , Birmingham Health Partners , Birmingham , B15 2TH , UK
| | - Helena Meyer-Berg
- Department of Chemistry and Center for Integrated Protein Science , LMU Munich , Butenandtstr. 5-13 , 81377 Munich , Germany . ;
| | - Nicholas H F Fine
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE) , University of Birmingham , Edgbaston , B15 2TT , UK
- Centre for Endocrinology , Diabetes and Metabolism , Birmingham Health Partners , Birmingham , B15 2TH , UK
| | - Andreas Friebe
- Julius-Maximilian-University Würzburg , Institute of Physiology , Röntgenring 9 , 97070 Würzburg , Germany
| | - Martin Zacharias
- Department of Physics , Technical University of Munich , James-Franck-Str. 1 , 85748 Garching , Germany
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE) , University of Birmingham , Edgbaston , B15 2TT , UK
- Centre for Endocrinology , Diabetes and Metabolism , Birmingham Health Partners , Birmingham , B15 2TH , UK
| | - Dirk Trauner
- Department of Chemistry and Center for Integrated Protein Science , LMU Munich , Butenandtstr. 5-13 , 81377 Munich , Germany . ;
| | - Anja Hoffmann-Röder
- Department of Chemistry and Center for Integrated Protein Science , LMU Munich , Butenandtstr. 5-13 , 81377 Munich , Germany . ;
| |
Collapse
|
27
|
Pseudomonas aeruginosa Expresses a Functional Human Natriuretic Peptide Receptor Ortholog: Involvement in Biofilm Formation. mBio 2015; 6:mBio.01033-15. [PMID: 26307165 PMCID: PMC4550695 DOI: 10.1128/mbio.01033-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Considerable evidence exists that bacteria detect eukaryotic communication molecules and modify their virulence accordingly. In previous studies, it has been demonstrated that the increasingly antibiotic-resistant pathogen Pseudomonas aeruginosa can detect the human hormones brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP) at micromolar concentrations. In response, the bacterium modifies its behavior to adapt to the host physiology, increasing its overall virulence. The possibility of identifying the bacterial sensor for these hormones and interfering with this sensing mechanism offers an exciting opportunity to directly affect the infection process. Here, we show that BNP and CNP strongly decrease P. aeruginosa biofilm formation. Isatin, an antagonist of human natriuretic peptide receptors (NPR), prevents this effect. Furthermore, the human NPR-C receptor agonist cANF4-23 mimics the effects of natriuretic peptides on P. aeruginosa, while sANP, the NPR-A receptor agonist, appears to be weakly active. We show in silico that NPR-C, a preferential CNP receptor, and the P. aeruginosa protein AmiC have similar three-dimensional (3D) structures and that both CNP and isatin bind to AmiC. We demonstrate that CNP acts as an AmiC agonist, enhancing the expression of the ami operon in P. aeruginosa. Binding of CNP and NPR-C agonists to AmiC was confirmed by microscale thermophoresis. Finally, using an amiC mutant strain, we demonstrated that AmiC is essential for CNP effects on biofilm formation. In conclusion, the AmiC bacterial sensor possesses structural and pharmacological profiles similar to those of the human NPR-C receptor and appears to be a bacterial receptor for human hormones that enables P. aeruginosa to modulate biofilm expression. The bacterium Pseudomonas aeruginosa is a highly dangerous opportunist pathogen for immunocompromised hosts, especially cystic fibrosis patients. The sites of P. aeruginosa infection are varied, with predominance in the human lung, in which bacteria are in contact with host molecular messengers such as hormones. The C-type natriuretic peptide (CNP), a hormone produced by lung cells, has been described as a bacterial virulence enhancer. In this study, we showed that the CNP hormone counteracts P. aeruginosa biofilm formation and we identified the bacterial protein AmiC as the sensor involved in the CNP effects. We showed that AmiC could bind specifically CNP. These results show for the first time that a human hormone could be sensed by bacteria through a specific protein, which is an ortholog of the human receptor NPR-C. The bacterium would be able to modify its lifestyle by favoring virulence factor production while reducing biofilm formation.
Collapse
|
28
|
Mota F, Gane P, Hampden-Smith K, Allerston CK, Garthwaite J, Selwood DL. A new small molecule inhibitor of soluble guanylate cyclase. Bioorg Med Chem 2015; 23:5303-10. [PMID: 26264842 PMCID: PMC4558462 DOI: 10.1016/j.bmc.2015.07.074] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 12/22/2022]
Abstract
Soluble guanylate cyclase (sGC) is a haem containing enzyme that regulates cardiovascular homeostasis and multiple mechanisms in the central and peripheral nervous system. Commonly used inhibitors of sGC activity act through oxidation of the haem moiety, however they also bind haemoglobin and this limits their bioavailability for in vivo studies. We have discovered a new class of small molecule inhibitors of sGC and have characterised a compound designated D12 (compound 10) which binds to the catalytic domain of the enzyme with a KD of 11 μM in a SPR assay.
Collapse
Affiliation(s)
- Filipa Mota
- The Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Paul Gane
- The Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Kathryn Hampden-Smith
- The Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Charles K Allerston
- Structural Genomics Consortium, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - John Garthwaite
- The Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - David L Selwood
- The Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, United Kingdom.
| |
Collapse
|
29
|
Tail wags the dog: activity of krait natriuretic peptide is determined by its C-terminal tail in a natriuretic peptide receptor-independent manner. Biochem J 2015; 469:255-66. [DOI: 10.1042/bj20150281] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/18/2015] [Indexed: 12/31/2022]
Abstract
Action mechanism of a novel natriuretic peptide from snake venom.
Collapse
|
30
|
Pereira NL, Lin D, Pelleymounter L, Moon I, Stilling G, Eckloff BW, Wieben ED, Redfield MM, Burnett JC, Yee VC, Weinshilboum RM. Natriuretic peptide receptor-3 gene (NPR3): nonsynonymous polymorphism results in significant reduction in protein expression because of accelerated degradation. CIRCULATION. CARDIOVASCULAR GENETICS 2013; 6:201-10. [PMID: 23493048 PMCID: PMC3685298 DOI: 10.1161/circgenetics.112.964742] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND- The primary role of natriuretic peptide receptor-3 (NPR3) or NPR-C is in the clearance of natriuretic peptides that play an important role in modulating intravascular volume and vascular tone. Genetic variation in NPR3 has been associated with variation in blood pressure and obesity. Despite the importance of NPR3, sequence variation in the gene has not been addressed using DNA from different ethnic populations. We set out to identify and functionally characterize genetic variation in NPR3 in 3 ethnic groups. METHODS AND RESULTS- DNA samples from 96 European American, 96 African American, and 96 Han Chinese American healthy subjects were used to resequence NPR3 exons, splice junctions, and flanking regions. We identified 105 polymorphisms, 50 of which were novel, including 8 nonsynonymous single-nucleotide polymorphisms, 7 were novel. Expression constructs were created for the nonsynonymous single-nucleotide polymorphisms. HEK293 cells were transfected with constructs for wild type and variant allozymes; and recombinant proteins were measured by quantitative Western blot analysis. The most significant change in NPR3 protein was observed for the Arg146 variant allozyme, with 20% of wild-type protein, primarily because of autophagy-dependent degradation. NPR3 structural modeling confirmed that the Arg146 variant protein was not compatible with wild-type conformation and could result in protein misfolding or instability. CONCLUSIONS- Multiple novel NPR3 genetic polymorphisms were identified in 3 ethnic groups. The Arg146 allozyme displayed a significant decrease in protein quantity because of degradation mediated predominantly by autophagy. This genetic variation could have a significant effect on the metabolism of natriuretic peptides with potential clinical implications.
Collapse
Affiliation(s)
- Naveen L Pereira
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Dutta A, Shrivastava IH, Sukumaran M, Greger IH, Bahar I. Comparative dynamics of NMDA- and AMPA-glutamate receptor N-terminal domains. Structure 2012; 20:1838-49. [PMID: 22959625 PMCID: PMC3496038 DOI: 10.1016/j.str.2012.08.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 08/07/2012] [Accepted: 08/09/2012] [Indexed: 12/23/2022]
Abstract
Ionotropic glutamate receptors (iGluRs) harbor two extracellular domains: the membrane-proximal ligand-binding domain (LBD) and the distal N-terminal domain (NTD). These are involved in signal sensing: the LBD binds L-glutamate, which activates the receptor channel. Ligand binding to the NTD modulates channel function in the NMDA receptor subfamily of iGluRs, which has not been observed for the AMPAR subfamily to date. Structural data suggest that AMPAR NTDs are packed into tight dimers and have lost their signaling potential. Here, we assess NTD dynamics from both subfamilies, using a variety of computational tools. We describe the conformational motions that underly NMDAR NTD allosteric signaling. Unexpectedly, AMPAR NTDs are capable of undergoing similar dynamics; although dimerization imposes restrictions, the two subfamilies sample similar, interconvertible conformational subspaces. Finally, we solve the crystal structure of AMPAR GluA4 NTD, and combined with molecular dynamics simulations, we characterize regions pivotal for an as-yet-unexplored dynamic spectrum of AMPAR NTDs.
Collapse
Affiliation(s)
- Anindita Dutta
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
32
|
Robinson JW, Potter LR. Guanylyl cyclases A and B are asymmetric dimers that are allosterically activated by ATP binding to the catalytic domain. Sci Signal 2012; 5:ra65. [PMID: 22949736 DOI: 10.1126/scisignal.2003253] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It is not known how natriuretic peptides and adenosine triphosphate (ATP) activate guanylyl cyclase A (GC-A) and GC-B, which generate the second messenger cyclic guanosine monophosphate. We determined that natriuretic peptides increased the maximum rate of these enzymes >10-fold in a positive cooperative manner in the absence of ATP. In the absence of natriuretic peptides, ATP shifted substrate-velocity profiles from cooperative to linear but did not increase the affinity of GCs for the substrate guanosine triphosphate (GTP) since the Michaelis constant was unchanged. However, in the presence of natriuretic peptides, ATP competed with GTP for binding to an allosteric site, which enhanced the activation of GCs by decreasing the Michaelis constant. Thus, natriuretic peptide binding was required for communication of the allosteric activation signal to the catalytic site. The ability of ATP to activate GCs decreased and enzyme potency (a measure of sensitivity to stimulation) increased with increasing GTP concentrations. Point mutations in the purine-binding site of the catalytic domain abolished GC activity but not allosteric activation. Coexpression of inactive mutants produced half the activity expected for symmetric catalytic dimers. 2'-Deoxy-ATP and 2'-deoxy-GTP were poor allosteric activators, but 2'-deoxy-GTP was an effective substrate, consistent with distinct binding requirements for the allosteric and catalytic sites. We conclude that membrane GC domains are asymmetric homodimers with distinct and reciprocally regulated catalytic and allosteric sites that bind to GTP and ATP, respectively. These data define a new membrane GC activation model and provide evidence of a previously unidentified GC drug interaction site.
Collapse
Affiliation(s)
- Jerid W Robinson
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
33
|
Caffrey M, Li D, Dukkipati A. Membrane protein structure determination using crystallography and lipidic mesophases: recent advances and successes. Biochemistry 2012; 51:6266-88. [PMID: 22783824 DOI: 10.1021/bi300010w] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The crystal structure of the β(2)-adrenergic receptor in complex with an agonist and its cognate G protein has just recently been determined. It is now possible to explore in molecular detail the means by which this paradigmatic transmembrane receptor binds agonist, communicates the impulse or signaling event across the membrane, and sets in motion a series of G protein-directed intracellular responses. The structure was determined using crystals of the ternary complex grown in a rationally designed lipidic mesophase by the so-called in meso method. The method is proving to be particularly useful in the G protein-coupled receptor field where the structures of 13 distinct receptor types have been determined in the past 5 years. In addition to receptors, the method has proven to be useful with a wide variety of integral membrane protein classes that include bacterial and eukaryotic rhodopsins, light-harvesting complex II (LHII), photosynthetic reaction centers, cytochrome oxidases, β-barrels, an exchanger, and an integral membrane peptide. This attests to the versatility and range of the method and supports the view that the in meso method should be included in the arsenal of the serious membrane structural biologist. For this to happen, however, the reluctance to adopt it attributable, in part, to the anticipated difficulties associated with handling the sticky, viscous cubic mesophase in which crystals grow must be overcome. Harvesting and collecting diffraction data with the mesophase-grown crystals are also viewed with some trepidation. It is acknowledged that there are challenges associated with the method. Over the years, we have endeavored to establish how the method works at a molecular level and to make it user-friendly. To these ends, tools for handling the mesophase in the pico- to nanoliter volume range have been developed for highly efficient crystallization screening in manual and robotic modes. Methods have been implemented for evaluating the functional activity of membrane proteins reconstituted into the bilayer of the cubic phase as a prelude to crystallogenesis. Glass crystallization plates that provide unparalleled optical quality and sensitivity to nascent crystals have been built. Lipid and precipitant screens have been designed for a more rational approach to crystallogenesis such that the method can now be applied to an even wider variety of membrane protein types. In this work, these assorted advances are outlined along with a summary of the membrane proteins that have yielded to the method. The prospects for and the challenges that must be overcome to further develop the method are described.
Collapse
Affiliation(s)
- Martin Caffrey
- Membrane Structural and Functional Biology Group, School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland.
| | | | | |
Collapse
|
34
|
Geng Y, Xiong D, Mosyak L, Malito DL, Kniazeff J, Chen Y, Burmakina S, Quick M, Bush M, Javitch JA, Pin JP, Fan QR. Structure and functional interaction of the extracellular domain of human GABA(B) receptor GBR2. Nat Neurosci 2012; 15:970-8. [PMID: 22660477 PMCID: PMC3374333 DOI: 10.1038/nn.3133] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 05/10/2012] [Indexed: 11/08/2022]
Abstract
Inhibitory neurotransmission is mediated primarily by GABA. The metabotropic GABA(B) receptor is a G protein-coupled receptor central to mammalian brain function. Malfunction of GABA(B) receptor has been implicated in several neurological disorders. GABA(B) receptor functions as a heterodimeric assembly of GBR1 and GBR2 subunits, where GBR1 is responsible for ligand-binding and GBR2 is responsible for G protein coupling. Here we demonstrate that the GBR2 ectodomain directly interacts with the GBR1 ectodomain to increase agonist affinity by selectively stabilizing the agonist-bound conformation of GBR1. We present the crystal structure of the GBR2 ectodomain, which reveals a polar heterodimeric interface. We also identify specific heterodimer contacts from both subunits, and GBR1 residues involved in ligand recognition. Lastly, our structural and functional data indicate that the GBR2 ectodomain adopts a constitutively open conformation, suggesting a structural asymmetry in the active state of GABA(B) receptor that is unique to the GABAergic system.
Collapse
Affiliation(s)
- Yong Geng
- Department of Pharmacology, Columbia University, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Vink S, Jin A, Poth K, Head G, Alewood P. Natriuretic peptide drug leads from snake venom. Toxicon 2012; 59:434-45. [DOI: 10.1016/j.toxicon.2010.12.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 12/01/2010] [Indexed: 10/18/2022]
|
36
|
Fehrentz T, Schönberger M, Trauner D. Optochemical Genetics. Angew Chem Int Ed Engl 2011; 50:12156-82. [DOI: 10.1002/anie.201103236] [Citation(s) in RCA: 316] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Indexed: 11/09/2022]
|
37
|
|
38
|
Robinson JW, Potter LR. ATP potentiates competitive inhibition of guanylyl cyclase A and B by the staurosporine analog, Gö6976: reciprocal regulation of ATP and GTP binding. J Biol Chem 2011; 286:33841-4. [PMID: 21828054 DOI: 10.1074/jbc.m111.273565] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Natriuretic peptides and ATP activate and Gö6976 inhibits guanylyl cyclase (GC)-A and GC-B. Here, the mechanism of inhibition was determined. Gö6976 progressively increased the Michaelis-Menten constant and decreased the Hill coefficient without reducing the maximal velocity of GC-A and GC-B. In the presence of 1 mm ATP, the K(i) was 1 μm for both enzymes. Inhibition of GC-B was minimal in the absence of ATP, and 1 mm ATP increased the inhibition 4-fold. In a reciprocal manner, 10 μm Gö6976 increased the potency of ATP for GC-B 4-fold. In contrast to a recent study (Duda, T., Yadav, P., and Sharma, R. K. (2010) FEBS J. 277, 2550-2553), neither staurosporine nor Gö6976 activated GC-A or GC-B. This is the first study to show that Gö6976 reduces GTP binding and the first demonstration of a competitive inhibitor of a receptor guanylyl cyclase. We conclude that Gö6976 reduces GTP binding to the catalytic site of GC-A and GC-B and that ATP increases the magnitude of the inhibition.
Collapse
Affiliation(s)
- Jerid W Robinson
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
39
|
Iconomidou VA, Pheida D, Hamodraka ES, Antony C, Hoenger A, Hamodrakas SJ. An amyloidogenic determinant in n-terminal pro-brain natriuretic peptide (nt-probnp): Implications for cardiac amyloidoses. Biopolymers 2011; 98:67-75. [DOI: 10.1002/bip.21698] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Revised: 05/23/2011] [Accepted: 07/06/2011] [Indexed: 11/11/2022]
|
40
|
A critical pocket close to the glutamate binding site of mGlu receptors opens new possibilities for agonist design. Neuropharmacology 2011; 60:102-7. [DOI: 10.1016/j.neuropharm.2010.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 06/11/2010] [Accepted: 07/01/2010] [Indexed: 01/23/2023]
|
41
|
Regulation and therapeutic targeting of peptide-activated receptor guanylyl cyclases. Pharmacol Ther 2010; 130:71-82. [PMID: 21185863 DOI: 10.1016/j.pharmthera.2010.12.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 12/13/2010] [Indexed: 02/06/2023]
Abstract
Cyclic GMP is a ubiquitous second messenger that regulates a wide array of physiologic processes such as blood pressure, long bone growth, intestinal fluid secretion, phototransduction and lipolysis. Soluble and single-membrane-spanning enzymes called guanylyl cyclases (GC) synthesize cGMP. In humans, the latter group consists of GC-A, GC-B, GC-C, GC-E and GC-F, which are also known as NPR-A, NPR-B, StaR, Ret1-GC and Ret2-GC, respectively. Membrane GCs are activated by peptide ligands such as atrial natriuretic peptide (ANP), B-type natriuretic peptide (BNP), C-type natriuretic peptide (CNP), guanylin, uroguanylin, heat stable enterotoxin and GC-activating proteins. Nesiritide and carperitide are clinically approved peptide-based drugs that activate GC-A. CD-NP is an experimental heart failure drug that primarily activates GC-B but also activates GC-A at high concentrations and is resistant to degradation. Inactivating mutations in GC-B cause acromesomelic dysplasia type Maroteaux dwarfism and chromosomal mutations that increase CNP concentrations are associated with Marfanoid-like skeletal overgrowth. Pump-based CNP infusions increase skeletal growth in a mouse model of the most common type of human dwarfism, which supports CNP/GC-B-based therapies for short stature diseases. Linaclotide is a peptide activator of GC-C that stimulates intestinal motility and is in late-stage clinical trials for the treatment of chronic constipation. This review discusses the discovery of cGMP, guanylyl cyclases, the general characteristics and therapeutic applications of GC-A, GC-B and GC-C, and emphasizes the regulation of transmembrane guanylyl cyclases by phosphorylation and ATP.
Collapse
|
42
|
Liu H, Juo ZS, Hye-Ryong Shim A, Focia PJ, Chen X, Garcia KC, He X. Structural basis of semaphorin-plexin recognition and viral mimicry from Sema7A and A39R complexes with PlexinC1. Cell 2010; 142:749-61. [PMID: 20727575 PMCID: PMC2936782 DOI: 10.1016/j.cell.2010.07.040] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 06/08/2010] [Accepted: 07/20/2010] [Indexed: 12/19/2022]
Abstract
Repulsive signaling by Semaphorins and Plexins is crucial for the development and homeostasis of the nervous, immune, and cardiovascular systems. Sema7A acts as both an immune and a neural Semaphorin through PlexinC1, and A39R is a Sema7A mimic secreted by smallpox virus. We report the structures of Sema7A and A39R complexed with the Semaphorin-binding module of PlexinC1. Both structures show two PlexinC1 molecules symmetrically bridged by Semaphorin dimers, in which the Semaphorin and PlexinC1 beta propellers interact in an edge-on, orthogonal orientation. Both binding interfaces are dominated by the insertion of the Semaphorin's 4c-4d loop into a deep groove in blade 3 of the PlexinC1 propeller. A39R appears to achieve Sema7A mimicry by preserving key Plexin-binding determinants seen in the mammalian Sema7A complex that have evolved to achieve higher affinity binding to the host-derived PlexinC1. The complex structures support a conserved Semaphorin-Plexin recognition mode and suggest that Plexins are activated by dimerization.
Collapse
Affiliation(s)
- Heli Liu
- Northwestern University Feinberg School of Medicine, Department of Molecular Pharmacology & Biological Chemistry, Searle 8-417, 303 E Chicago Ave, Chicago, IL 60611, USA
| | - Z. Sean Juo
- Howard Hughes Medical Institute, and Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Beckman B171B, 279 Campus Dr, Stanford, CA 94305
| | - Ann Hye-Ryong Shim
- Northwestern University Feinberg School of Medicine, Department of Molecular Pharmacology & Biological Chemistry, Searle 8-417, 303 E Chicago Ave, Chicago, IL 60611, USA
| | - Pamela J. Focia
- Northwestern University Feinberg School of Medicine, Department of Molecular Pharmacology & Biological Chemistry, Searle 8-417, 303 E Chicago Ave, Chicago, IL 60611, USA
| | - Xiaoyan Chen
- Northwestern University Feinberg School of Medicine, Department of Molecular Pharmacology & Biological Chemistry, Searle 8-417, 303 E Chicago Ave, Chicago, IL 60611, USA
| | - K. Christopher Garcia
- Howard Hughes Medical Institute, and Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Beckman B171B, 279 Campus Dr, Stanford, CA 94305
| | - Xiaolin He
- Northwestern University Feinberg School of Medicine, Department of Molecular Pharmacology & Biological Chemistry, Searle 8-417, 303 E Chicago Ave, Chicago, IL 60611, USA
| |
Collapse
|
43
|
Molecular dynamics investigation of cyclic natriuretic peptides: Dynamic properties reflect peptide activity. J Mol Graph Model 2010; 28:834-41. [DOI: 10.1016/j.jmgm.2010.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 03/01/2010] [Accepted: 03/02/2010] [Indexed: 11/22/2022]
|
44
|
Shaikh N, Russo L, Papaleo E, Giannoni P, De Gioia L, Nicotra F, Quarto R, Cipolla L. C-type natriuretic peptide: Structural studies, fragment synthesis, and preliminary biological evaluation in human osteosarcoma cell lines. Biopolymers 2010; 94:213-9. [DOI: 10.1002/bip.21336] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Structural substrate conditions required for neutral endopeptidase-mediated natriuretic Peptide degradation. J Mol Biol 2009; 393:496-503. [PMID: 19686760 DOI: 10.1016/j.jmb.2009.08.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 08/10/2009] [Accepted: 08/11/2009] [Indexed: 11/21/2022]
Abstract
Natriuretic peptides are cyclic vasoactive peptide hormones with great diagnostic and therapeutic relevance. The main catabolic pathway postulated for natriuretic peptides is the degradation by neutral endopeptidase (NEP). However, B-type natriuretic peptide has been found to be resistant to NEP. Here, we compared the degradation of various mature, truncated, and recombinant natriuretic peptides by NEP. The degradation was clearly dependent on the length of the N- or C-terminus as well as on distinct sequence differences within the essential loop structure of the natriuretic peptides. Based on these findings, we developed a model for the interaction of NEP and natriuretic peptides that enables new insights into the mode of action and prediction of substrates of NEP, a peptidase that plays a key role in crucial (patho-) physiological processes.
Collapse
|
46
|
Longenecker KL, Ruan Q, Fry EH, Saldana SC, Brophy SE, Richardson PL, Tetin SY. Crystal structure and thermodynamic analysis of diagnostic mAb 106.3 complexed with BNP 5-13 (C10A). Proteins 2009; 76:536-47. [DOI: 10.1002/prot.22366] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Knake C, Burmann BM, Schweimer K, Matecko I, Rösch P. The membrane proximal extracellular domain of human hGC-B folds independently. J Biomol Struct Dyn 2008; 26:465-72. [PMID: 19108585 DOI: 10.1080/07391102.2009.10507261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Human Guanylyl Cyclase B (hGC-B) is a single-transmembrane receptor protein which upon binding C-type natriuretic peptide (CNP) to its extracellular domain catalyzes the intracellular conversion of GTP to the second messenger cGMP. cGMP in turn affects various physiological processes such as smooth muscle contraction, cell proliferation, phototransduction, and salt as well as fluid homeostasis. The 3-dimensional binding site of the peptide hormone is unknown, and the binding mechanism is not yet understood. Therefore, a model of the C-terminal moiety of the extracellular domain of human GC-B containing the potential binding site was derived from the crystal structure of (GC-A). The selected protein sequence was provided with an N-terminal TEV-cleavage site and fused with a 109 aa thioredoxin-tag and a hexahistidine-tag. The identity of the purified 25 kDa protein was confirmed by protein mass fingerprint and its secondary structure was determined by CD- and NMR-spectroscopy. The protein proved to be properly folded with the observed secondary structure matching the predicted secondary structure and the homologous structure in the extracellular domain of GC-A. Size exclusion chromatography confirmed the monomeric state of P-hGC-B.
Collapse
Affiliation(s)
- Claudia Knake
- Department of Biopolymers and Research Center for Bio-Macromolecules, University of Bayreuth, Universitatsstrabe 30, 95440 Bayreuth, Germany
| | | | | | | | | |
Collapse
|
48
|
Yoder AR, Kruse AC, Earhart CA, Ohlendorf DH, Potter LR. Reduced ability of C-type natriuretic peptide (CNP) to activate natriuretic peptide receptor B (NPR-B) causes dwarfism in lbab -/- mice. Peptides 2008; 29:1575-81. [PMID: 18554750 PMCID: PMC4429774 DOI: 10.1016/j.peptides.2008.04.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 04/28/2008] [Accepted: 04/30/2008] [Indexed: 12/20/2022]
Abstract
C-type natriuretic peptide (CNP) stimulates endochondrial ossification by activating the transmembrane guanylyl cyclase, natriuretic peptide receptor-B (NPR-B). Recently, a spontaneous autosomal recessive mutation that causes severe dwarfism in mice was identified. The mutant, called long bone abnormality (lbab), contains a single point mutation that converts an arginine to a glycine in a conserved coding region of the CNP gene, but how this mutation affects CNP activity has not been reported. Here, we determined that 30-fold to greater than 100-fold more CNP(lbab) was required to activate NPR-B as compared to wild-type CNP in whole cell cGMP elevation and membrane guanylyl cyclase assays. The reduced ability of CNP(lbab) to activate NPR-B was explained, at least in part, by decreased binding since 10-fold more CNP(lbab) than wild-type CNP was required to compete with [125I][Tyr0]CNP for receptor binding. Molecular modeling suggested that the conserved arginine is critical for binding to an equally conserved acidic pocket in NPR-B. These results indicate that reduced binding to and activation of NPR-B causes dwarfism in lbab(-/-) mice.
Collapse
Affiliation(s)
- Andrea R Yoder
- Department of Pharmacology, University of Minnesota, Twin Cities, 321 Church St SE, Minneapolis, MN 55455, USA.
| | | | | | | | | |
Collapse
|
49
|
Malito E, Hulse RE, Tang WJ. Amyloid beta-degrading cryptidases: insulin degrading enzyme, presequence peptidase, and neprilysin. Cell Mol Life Sci 2008; 65:2574-85. [PMID: 18470479 PMCID: PMC2756532 DOI: 10.1007/s00018-008-8112-4] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The accumulation of aggregates of amyloidogenic peptides is associated with numerous human diseases. One well studied example is the association between deposition of amyloid beta (Abeta) and Alzheimer's disease. Insulin degrading enzyme and neprilysin are involved in the clearance of Abeta, and presequence peptidase is suggested to play a role in the degradation of mitochondrial Abeta. Recent structural analyses reveal that these three peptidases contain a catalytic chamber (crypt) that selectively encapsulates and cleaves amyloidogenic peptides, hence the name cryptidase. The substrate selectivity of these cryptidases is determined by the size and charge distribution of their crypt as well as the conformational flexibility of substrates. The interaction of Abeta with the catalytic core of these cryptidases is controlled by conformational changes that make the catalytic chambers accessible for Abeta binding. These new structural and biochemical insights into cryptidases provide potential therapeutic strategies for the control of Abeta clearance.
Collapse
Affiliation(s)
- E. Malito
- Ben-May Department for Cancer Research, The University of Chicago, 929 East 57th Street, Chicago, IL 60637 United States
| | - R. E. Hulse
- Committee of Neurobiology, The University of Chicago, 947 East 58th Street, Chicago, IL 60637 United States
| | - W.-J. Tang
- Ben-May Department for Cancer Research, The University of Chicago, 929 East 57th Street, Chicago, IL 60637 United States
- Committee of Neurobiology, The University of Chicago, 947 East 58th Street, Chicago, IL 60637 United States
| |
Collapse
|
50
|
Yang F, Li Y, Ding B, Nie J, Wang H, Zhang X, Wang C, Ling S, Ni C, Dai Z, Tan Y, Wan Y. Reduced function and disassembled microtubules of cultured cardiomyocytes in spaceflight. Sci Bull (Beijing) 2008. [DOI: 10.1007/s11434-008-0167-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|