1
|
Zhang Y, Cui MM, Ke RN, Chen YD, Xie K. C-terminal frameshift mutations generate viable knockout mutants with developmental defects for three essential protein kinases. ABIOTECH 2024; 5:219-224. [PMID: 38974866 PMCID: PMC11224195 DOI: 10.1007/s42994-024-00165-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/19/2024] [Indexed: 07/09/2024]
Abstract
Loss-of-function mutants are fundamental resources for gene function studies. However, it is difficult to generate viable and heritable knockout mutants for essential genes. Here, we show that targeted editing of the C-terminal sequence of the embryo lethal gene MITOGEN-ACTIVATED PROTEIN KINASES 1 (OsMPK1) results in weak mutants. This C-terminal-edited osmpk1 mutants displayed severe developmental defects and altered disease resistance but generated tens of viable seeds that inherited the mutations. Using the same C-terminal editing approach, we also obtained viable mutants for a wall-associated protein kinase (Os07g0493200) and a leucine-rich repeat receptor-like protein kinase (Os01g0239700), while the null mutations of these genes were lethal. These data suggest that protein kinase activity could be reduced by introducing frameshift mutations adjacent to the C-terminus, which could generate valuable resources for gene function studies and tune protein kinase activity for signaling pathway engineering. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-024-00165-5.
Collapse
Affiliation(s)
- Yun Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Miao-Miao Cui
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Run-Nan Ke
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yue-Dan Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Kabin Xie
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
2
|
Rahman SMT, Zhou W, Deiters A, Haugh JM. Dissection of MKK6 and p38 Signaling Using Light-Activated Protein Kinases. Chembiochem 2024; 25:e202300551. [PMID: 37856284 DOI: 10.1002/cbic.202300551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 10/21/2023]
Abstract
Stress-activated signaling pathways orchestrate cellular behaviors and fates. Studying the precise role(s) of stress-activated protein kinases is challenging, because stress conditions induce adaptation and impose selection pressure. To meet this challenge, we have applied an optogenetic system with a single plasmid to express light-activated p38α or its upstream activator, MKK6, in conjunction with live-cell fluorescence microscopy. In starved cells, decaging of constitutively active p38α or MKK6 by brief exposure to UV light elicits rapid p38-mediated signaling, release of cytochrome c from mitochondria, and apoptosis with different kinetics. In parallel, light activation of p38α also suppresses autophagosome formation, similarly to stimulation with growth factors that activate PI3K/Akt/mTORC1 signaling. Active MKK6 negatively regulates serum-induced ERK activity, which is p38-independent as previously reported. Here, we reproduce that result with the one plasmid system and show that although decaging active p38α does not reduce basal ERK activity in our cells, it can block growth factor-stimulated ERK signaling in serum-starved cells. These results clarify the roles of MKK6 and p38α in dynamic signaling programs, which act in concert to actuate apoptotic death while suppressing cell survival mechanisms.
Collapse
Affiliation(s)
- Shah Md Toufiqur Rahman
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 7905, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Wenyuan Zhou
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Jason M Haugh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 7905, 911 Partners Way, Raleigh, NC, 27695, USA
| |
Collapse
|
3
|
Wang P, Feng Z, Chen S, Liang Y, Hou H, Ouyang Q, Yu H, Ye H, Cai L, Qi Y, Wu K, Luo H. A synthetic peptide from Sipunculus nudus promotes bone formation via Estrogen/MAPK signal pathway based on network pharmacology. Front Pharmacol 2023; 14:1173110. [PMID: 37168991 PMCID: PMC10165119 DOI: 10.3389/fphar.2023.1173110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/12/2023] [Indexed: 05/13/2023] Open
Abstract
The tripeptide Leu-Pro-Lys (LPK), derived from the Sipunculus nudus protein, was synthesized and studied to investigate its potential protective effect on bone formation. The effect and mechanism of LPK were analyzed through network pharmacology, bioinformatics, and experimental pharmacology. The study found that LPK at concentrations of 25 μg/mL and 50 μg/mL significantly increased ALP activity and mineralization in C3H10 cells. LPK also increased the expression of COL1A1 and promoted bone formation in zebrafish larvae. Network pharmacology predicted 148 interaction targets between LPK and bone development, and analysis of the protein-protein interaction network identified 13 hub genes, including ESR1, MAPK8, and EGFR, involved in bone development. Through KEGG enrichment pathways analysis, it was determined that LPK promotes bone development by regulating endocrine resistance, the relaxin signaling pathway, and the estrogen signaling pathway. Molecular docking results showed direct interactions between LPK and ESR1, MAPK8, and MAPK14. Additional verification experiments using western blot assay revealed that LPK significantly upregulated the expression of genes related to bone formation, including COL1A1, OPG, RUNX2, ESR1, phosphorylated MAPK14, and phosphorylated MAPK8 in C3H10 cells. These results suggest that LPK promotes bone formation by activating the estrogen/MAPK signaling pathway.
Collapse
Affiliation(s)
- Peiran Wang
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang, China
| | - Zhenhui Feng
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, China
| | - Siyu Chen
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, China
| | - Yingye Liang
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, China
| | - Haiyan Hou
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang, China
| | - Qianqian Ouyang
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, China
- Marine Traditional Chinese Medicine Sub-center of National Engineering Research Center for Modernization of Traditional Chinese Medicine, Zhanjiang, China
| | - Hui Yu
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, China
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
| | - Hua Ye
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, China
- Marine Traditional Chinese Medicine Sub-center of National Engineering Research Center for Modernization of Traditional Chinese Medicine, Zhanjiang, China
| | - Lei Cai
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Yi Qi
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, China
- Marine Traditional Chinese Medicine Sub-center of National Engineering Research Center for Modernization of Traditional Chinese Medicine, Zhanjiang, China
- *Correspondence: Yi Qi, Kefeng Wu,
| | - Kefeng Wu
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, China
- Marine Traditional Chinese Medicine Sub-center of National Engineering Research Center for Modernization of Traditional Chinese Medicine, Zhanjiang, China
- *Correspondence: Yi Qi, Kefeng Wu,
| | - Hui Luo
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, China
- Marine Traditional Chinese Medicine Sub-center of National Engineering Research Center for Modernization of Traditional Chinese Medicine, Zhanjiang, China
| |
Collapse
|
4
|
Zang Y, Wang H, Hao D, Kang Y, Zhang J, Li X, Zhang L, Yang Z, Zhang S. p38α Kinase Auto-Activation through Its Conformational Transition Induced by Tyr323 Phosphorylation. J Chem Inf Model 2022; 62:6639-6648. [PMID: 36394912 DOI: 10.1021/acs.jcim.2c00236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
p38α is a key serine/threonine kinase that can enable atypical auto-activation through Zap70 phosphorylation and initiate T cell receptor signaling. The auto-activation plays an important role in autoimmune diseases. Although the classical activation mechanism of p38α has been studied in-depth, the atypical activation mechanism of Y323 phosphorylation-induced p38α auto-activation remains largely unexplained, especially the regulatory effects of phosphorylation on different sites (Y323 vs T180). From the X-ray experimental data, we identified the inactive and active states of p38α using principal component analysis. To understand the auto-activation process and the internal driving mechanism, a computational paradigm that couples the targeted molecular dynamics simulations, the String Method, and the umbrella sampling strategy were employed to generate the conformational landscape of p38α, including p38α T180-Y323, p38α T180-pY323, and p38α pT180-pY323 systems (pT180/pY323: phosphorylated T180/Y323). We explored that pY323 could change the conformational distribution and promote the conformational transition of p38α from the inactive state to the active state. Auto-activation of p38α is regulated by pY323 through destabilization of the hydrophobic core structure and aided by R173. This study will further explain the conformational transition of p38α induced by Y323 phosphorylation and provide insights into the universal molecular auto-activation mechanism of the p38 subfamily at the atomic level.
Collapse
Affiliation(s)
- Yongjian Zang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - He Wang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Dongxiao Hao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Ying Kang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Jianwen Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Xuhua Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Zhiwei Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Shengli Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| |
Collapse
|
5
|
Zhang XH, Chen CH, Li H, Hsiang J, Wu X, Hu W, Horne D, Nam S, Shively J, Rosen ST. Targeting the non-ATP-binding pocket of the MAP kinase p38γ mediates a novel mechanism of cytotoxicity in cutaneous T-cell lymphoma (CTCL). FEBS Lett 2021; 595:2570-2592. [PMID: 34455585 PMCID: PMC8577799 DOI: 10.1002/1873-3468.14186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/31/2021] [Accepted: 08/19/2021] [Indexed: 02/01/2023]
Abstract
We describe here for the first time a lipid‐binding‐domain (LBD) in p38γ mitogen‐activated protein kinase (MAPK) involved in the response of T cells to a newly identified inhibitor, CSH71. We describe how CSH71, which binds to both the LBD and the ATP‐binding pocket of p38γ, is selectively cytotoxic to CTCL Hut78 cells but spares normal healthy peripheral blood mononuclear (PBMC) cells, and propose possible molecular mechanisms for its action. p38γ is a key player in CTCL development, and we expect that the ability to regulate its expression by specifically targeting the lipid‐binding domain will have important clinical relevance. Our findings characterize novel mechanisms of gene regulation in T lymphoma cells and validate the use of computational screening techniques to identify inhibitors for therapeutic development.
Collapse
Affiliation(s)
| | - Chih-Hong Chen
- Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Hongzhi Li
- Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Jack Hsiang
- Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Xiwei Wu
- Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Weidong Hu
- Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - David Horne
- Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Sangkil Nam
- Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Jack Shively
- Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Steven T Rosen
- Beckman Research Institute of City of Hope, Duarte, CA, USA
| |
Collapse
|
6
|
Atypical p38 Signaling, Activation, and Implications for Disease. Int J Mol Sci 2021; 22:ijms22084183. [PMID: 33920735 PMCID: PMC8073329 DOI: 10.3390/ijms22084183] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/29/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) p38 is an essential family of kinases, regulating responses to environmental stress and inflammation. There is an ever-increasing plethora of physiological and pathophysiological conditions attributed to p38 activity, ranging from cell division and embryonic development to the control of a multitude of diseases including retinal, cardiovascular, and neurodegenerative diseases, diabetes, and cancer. Despite the decades of intense investigation, a viable therapeutic approach to disrupt p38 signaling remains elusive. A growing body of evidence supports the pathological significance of an understudied atypical p38 signaling pathway. Atypical p38 signaling is driven by a direct interaction between the adaptor protein TAB1 and p38α, driving p38 autophosphorylation independent from the classical MKK3 and MKK6 pathways. Unlike the classical MKK3/6 signaling pathway, atypical signaling is selective for just p38α, and at present has only been characterized during pathophysiological stimulation. Recent studies have linked atypical signaling to dermal and vascular inflammation, myocardial ischemia, cancer metastasis, diabetes, complications during pregnancy, and bacterial and viral infections. Additional studies are required to fully understand how, when, where, and why atypical p38 signaling is induced. Furthermore, the development of selective TAB1-p38 inhibitors represents an exciting new opportunity to selectively inhibit pathological p38 signaling in a wide array of diseases.
Collapse
|
7
|
Abstract
One third of the western population suffers from nonalcoholic fatty liver disease (NAFLD), which may ultimately develop into hepatocellular carcinoma (HCC). The molecular event(s) that triggers the disease are not clear. Current understanding, known as the multiple hits model, suggests that NAFLD is a result of diverse events at several tissues (e.g., liver, adipose tissues, and intestine) combined with changes in metabolism and microbiome. In contrast to this prevailing concept, we report that fatty liver could be triggered by a single mutated protein expressed only in the liver. We established a transgenic system that allows temporally controlled activation of the MAP kinase p38α in a tissue-specific manner by induced expression of intrinsically active p38α allele. Here we checked the effect of exclusive activation in the liver. Unexpectedly, induction of p38α alone was sufficient to cause macrovesicular fatty liver. Animals did not become overweight, showing that fatty liver can be imposed solely by a genetic modification in liver per se and can be separated from obesity. Active p38α-induced fatty liver is associated with up-regulation of MUC13, CIDEA, PPARγ, ATF3, and c-jun mRNAs, which are up-regulated in human HCC. Shutting off expression of the p38α mutant resulted in reversal of symptoms. The findings suggest that p38α plays a direct causative role in fatty liver diseases and perhaps in other chronic inflammatory diseases. As p38α activity was induced by point mutations, it could be considered a proto-inflammatory gene (proto-inflammagene).
Collapse
|
8
|
Matsuoka T, Miyauchi R, Nagaoka N, Hasegawa J. Mitigation of liquid-liquid phase separation of a monoclonal antibody by mutations of negative charges on the Fab surface. PLoS One 2020; 15:e0240673. [PMID: 33125371 PMCID: PMC7598502 DOI: 10.1371/journal.pone.0240673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/30/2020] [Indexed: 01/02/2023] Open
Abstract
Some monoclonal antibodies undergo liquid-liquid phase separation owing to self-attractive associations involving electrostatic and other soft interactions, thereby rendering monoclonal antibodies unsuitable as therapeutics. To mitigate the phase separation, formulation optimization is often performed. However, this is sometimes unsuccessful because of the limited time for the development of therapeutic antibodies. Thus, protein mutations with appropriate design are required. In this report, we describe a case study involving the design of mutants of negatively charged surface residues to reduce liquid-liquid phase separation propensity. Physicochemical analysis of the resulting mutants demonstrated the mutual correlation between the sign of second virial coefficient B2, the Fab dipole moment, and the reduction of liquid-liquid phase separation propensity. Moreover, both the magnitude and direction of the dipole moment appeared to be essential for liquid-liquid phase separation propensity, where electrostatic interaction was the dominant mechanism. These findings could contribute to a better design of mutants with reduced liquid-liquid phase separation propensity and improved drug-like biophysical properties.
Collapse
Affiliation(s)
- Tatsuji Matsuoka
- Modality Research Laboratories, Daiichi Sankyo, Co., Ltd., Shinagawa, Tokyo, Japan
| | - Ryuki Miyauchi
- Modality Research Laboratories, Daiichi Sankyo, Co., Ltd., Shinagawa, Tokyo, Japan
| | - Nobumi Nagaoka
- Modality Research Laboratories, Daiichi Sankyo, Co., Ltd., Shinagawa, Tokyo, Japan
| | - Jun Hasegawa
- Modality Research Laboratories, Daiichi Sankyo, Co., Ltd., Shinagawa, Tokyo, Japan
| |
Collapse
|
9
|
Gur-Arie L, Eitan-Wexler M, Weinberger N, Rosenshine I, Livnah O. The bacterial metalloprotease NleD selectively cleaves mitogen-activated protein kinases that have high flexibility in their activation loop. J Biol Chem 2020; 295:9409-9420. [PMID: 32404367 DOI: 10.1074/jbc.ra120.013590] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/07/2020] [Indexed: 01/07/2023] Open
Abstract
Microbial pathogens often target the host mitogen-activated protein kinase (MAPK) network to suppress host immune responses. We previously identified a bacterial type III secretion system effector, termed NleD, a metalloprotease that inactivates MAPKs by specifically cleaving their activation loop. Here, we show that NleDs form a growing family of virulence factors harbored by human and plant pathogens as well as insect symbionts. These NleDs disable specifically Jun N-terminal kinases (JNKs) and p38s that are required for host immune response, whereas extracellular signal-regulated kinase (ERK), which is essential for host cell viability, remains intact. We investigated the mechanism that makes ERK resistant to NleD cleavage. Biochemical and structural analyses revealed that NleD exclusively targets activation loops with high conformational flexibility. Accordingly, NleD cleaved the flexible loops of JNK and p38 but not the rigid loop of ERK. Our findings elucidate a compelling mechanism of native substrate proteolysis that is promoted by entropy-driven specificity. We propose that such entropy-based selectivity is a general attribute of proteolytic enzymes.
Collapse
Affiliation(s)
- Lihi Gur-Arie
- Department Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maayan Eitan-Wexler
- Department of Biological Chemistry, Alexander Silverman Institute of Life Sciences, The Wolfson Centre for Applied Structural Biology, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nina Weinberger
- Department of Biological Chemistry, Alexander Silverman Institute of Life Sciences, The Wolfson Centre for Applied Structural Biology, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ilan Rosenshine
- Department Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Oded Livnah
- Department of Biological Chemistry, Alexander Silverman Institute of Life Sciences, The Wolfson Centre for Applied Structural Biology, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
10
|
Yeung W, Ruan Z, Kannan N. Emerging roles of the αC-β4 loop in protein kinase structure, function, evolution, and disease. IUBMB Life 2020; 72:1189-1202. [PMID: 32101380 DOI: 10.1002/iub.2253] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/07/2020] [Indexed: 12/11/2022]
Abstract
The faithful propagation of cellular signals in most organisms relies on the coordinated functions of a large family of protein kinases that share a conserved catalytic domain. The catalytic domain is a dynamic scaffold that undergoes large conformational changes upon activation. Most of these conformational changes, such as movement of the regulatory αC-helix from an "out" to "in" conformation, hinge on a conserved, but understudied, loop termed the αC-β4 loop, which mediates conserved interactions to tether flexible structural elements to the kinase core. We previously showed that the αC-β4 loop is a unique feature of eukaryotic protein kinases. Here, we review the emerging roles of this loop in kinase structure, function, regulation, and diseases. Through a kinome-wide analysis, we define the boundaries of the loop for the first time and show that sequence and structural variation in the loop correlate with conformational and regulatory variation. Many recurrent disease mutations map to the αC-β4 loop and contribute to drug resistance and abnormal kinase activation by relieving key auto-inhibitory interactions associated with αC-helix and inter-lobe movement. The αC-β4 loop is a hotspot for post-translational modifications, protein-protein interaction, and Hsp90 mediated folding. Our kinome-wide analysis provides insights for hypothesis-driven characterization of understudied kinases and the development of allosteric protein kinase inhibitors.
Collapse
Affiliation(s)
- Wayland Yeung
- Institute of Bioinformatics, University of Georgia, Athens, Georgia
| | - Zheng Ruan
- Institute of Bioinformatics, University of Georgia, Athens, Georgia
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, Athens, Georgia.,Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia
| |
Collapse
|
11
|
Tatebayashi K, Yamamoto K, Tomida T, Nishimura A, Takayama T, Oyama M, Kozuka-Hata H, Adachi-Akahane S, Tokunaga Y, Saito H. Osmostress enhances activating phosphorylation of Hog1 MAP kinase by mono-phosphorylated Pbs2 MAP2K. EMBO J 2020; 39:e103444. [PMID: 32011004 PMCID: PMC7049814 DOI: 10.15252/embj.2019103444] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/22/2019] [Accepted: 01/08/2020] [Indexed: 12/21/2022] Open
Abstract
The MAP kinase (MAPK) Hog1 is the central regulator of osmoadaptation in yeast. When cells are exposed to high osmolarity, the functionally redundant Sho1 and Sln1 osmosensors, respectively, activate the Ste11‐Pbs2‐Hog1 MAPK cascade and the Ssk2/Ssk22‐Pbs2‐Hog1 MAPK cascade. In a canonical MAPK cascade, a MAPK kinase kinase (MAP3K) activates a MAPK kinase (MAP2K) by phosphorylating two conserved Ser/Thr residues in the activation loop. Here, we report that the MAP3K Ste11 phosphorylates only one activating phosphorylation site (Thr‐518) in Pbs2, whereas the MAP3Ks Ssk2/Ssk22 can phosphorylate both Ser‐514 and Thr‐518 under optimal osmostress conditions. Mono‐phosphorylated Pbs2 cannot phosphorylate Hog1 unless the reaction between Pbs2 and Hog1 is enhanced by osmostress. The lack of the osmotic enhancement of the Pbs2‐Hog1 reaction suppresses Hog1 activation by basal MAP3K activities and prevents pheromone‐to‐Hog1 crosstalk in the absence of osmostress. We also report that the rapid‐and‐transient Hog1 activation kinetics at mildly high osmolarities and the slow and prolonged activation kinetics at severely high osmolarities are both caused by a common feedback mechanism.
Collapse
Affiliation(s)
- Kazuo Tatebayashi
- Laboratory of Molecular Genetics, Frontier Research Unit, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Division of Molecular Cell Signaling, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Katsuyoshi Yamamoto
- Division of Molecular Cell Signaling, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Taichiro Tomida
- Department of Physiology, School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Akiko Nishimura
- Division of Molecular Cell Signaling, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tomomi Takayama
- Division of Molecular Cell Signaling, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Masaaki Oyama
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroko Kozuka-Hata
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satomi Adachi-Akahane
- Department of Physiology, School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Yuji Tokunaga
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Haruo Saito
- Division of Molecular Cell Signaling, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Aoto PC, Stanfield RL, Wilson IA, Dyson HJ, Wright PE. A Dynamic Switch in Inactive p38γ Leads to an Excited State on the Pathway to an Active Kinase. Biochemistry 2019; 58:5160-5172. [PMID: 31794659 DOI: 10.1021/acs.biochem.9b00932] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The inactive state of mitogen-activated protein kinases (MAPKs) adopts an open conformation while the active state exists in a compact form stabilized by phosphorylation. In the active state, eukaryotic kinases undergo breathing motions related to substrate binding and product release that have not previously been detected in the inactive state. However, docking interactions of partner proteins with inactive MAPK kinases exhibit allostery in binding of activating kinases. Interactions at a site distant from the activation loop are coupled to the configuration of the activation loop, suggesting that the inactive state may also undergo concerted dynamics. X-ray crystallographic studies of nonphosphorylated, inactive p38γ reveal differences in domain orientations and active site structure in the two molecules in the asymmetric unit. One molecule resembles an inactive kinase with an open active site. The second molecule has a rotation of the N-lobe that leads to partial compaction of the active site, resulting in a conformation that is intermediate between the inactive open state and the fully closed state of the activated kinase. Although the compact state of apo p38γ displays several of the features of the activated enzyme, it remains catalytically inert. In solution, the kinase fluctuates on a millisecond time scale between the open ground state and a weakly populated excited state that is similar in structure to the compact state observed in the crystal. The nuclear magnetic resonance and crystal structure data imply that interconversion between the open and compact states involves a molecular switch associated with the DFG loop.
Collapse
|
13
|
Lopez ED, Burastero O, Arcon JP, Defelipe LA, Ahn NG, Marti MA, Turjanski AG. Kinase Activation by Small Conformational Changes. J Chem Inf Model 2019; 60:821-832. [PMID: 31714778 DOI: 10.1021/acs.jcim.9b00782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Protein kinases (PKs) are allosteric enzymes that play an essential role in signal transduction by regulating a variety of key cellular processes. Most PKs suffer conformational rearrangements upon phosphorylation that strongly enhance the catalytic activity. Generally, it involves the movement of the phosphorylated loop toward the active site and the rotation of the whole C-terminal lobe. However, not all kinases undergo such a large configurational change: The MAPK extracellular signal-regulated protein kinases ERK1 and ERK2 achieve a 50 000 fold increase in kinase activity with only a small motion of the C-terminal region. In the present work, we used a combination of molecular simulation tools to characterize the conformational landscape of ERK2 in the active (phosphorylated) and inactive (unphosphorylated) states in solution in agreement with NMR experiments. We show that the chemical reaction barrier is strongly dependent on ATP conformation and that the "active" low-barrier configuration is subtly regulated by phosphorylation, which stabilizes a key salt bridge between the conserved Lys52 and Glu69 belonging to helix-C and promotes binding of a second Mg ion. Our study highlights that the on-off switch embedded in the kinase fold can be regulated by small, medium, and large conformational changes.
Collapse
Affiliation(s)
- Elias D Lopez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , Ciudad Autónoma de Buenos Aires , Argentina
| | - Osvaldo Burastero
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , Ciudad Autónoma de Buenos Aires , Argentina
| | - Juan P Arcon
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , Ciudad Autónoma de Buenos Aires , Argentina
| | - Lucas A Defelipe
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , Ciudad Autónoma de Buenos Aires , Argentina
| | - Natalie G Ahn
- Department of Chemistry and Biochemistry , University of Colorado , Boulder , Colorado 80309 , United States
| | - Marcelo A Marti
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , Ciudad Autónoma de Buenos Aires , Argentina
| | - Adrian G Turjanski
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , Ciudad Autónoma de Buenos Aires , Argentina
| |
Collapse
|
14
|
Baig MS, Liu D, Muthu K, Roy A, Saqib U, Naim A, Faisal SM, Srivastava M, Saluja R. Heterotrimeric complex of p38 MAPK, PKCδ, and TIRAP is required for AP1 mediated inflammatory response. Int Immunopharmacol 2017; 48:211-218. [PMID: 28528205 DOI: 10.1016/j.intimp.2017.04.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/18/2017] [Accepted: 04/26/2017] [Indexed: 01/02/2023]
Abstract
Inflammation could be described as a physiological response of the body to tissue injury, pathogen invasion, and irritants. During the inflammatory phase, cells of both the innate as well as adaptive immune system are activated and recruited to the site of inflammation. These mediators are downstream targets for the transcription factors; activator protein-1 (AP1), nuclear factor kappa-light-chain-enhancer (NF-κB), signal transducers and activators of transcription factors (STAT1), as well as interferon regulatory factors (IRFs), which control the expression of most immunomodulatory genes. There is a significant increase in active p38 mitogen-activated protein kinase (p38MAK) immediately after lipopolysaccharide (LPS) stimulation, which results in the activation of AP-1 transcription factor and expression of proinflammatory cytokines, IL-12 and IL-23. We studied the novel mechanism of p38 MAPK activation through the formation of a heterotrimeric complex of Protein kinase C delta type (PKCδ), Toll-Interleukin 1 Receptor (TIR) Domain Containing Adaptor Protein (TIRAP), and p38 proteins. TIRAP serves as an adaptor molecule which brings PKCδ and p38 in close proximity. The complex facilitates the activation of p38MAPK by PKCδ. Therefore, we propose that disruption of the heterotrimeric complex may be a good strategy to dampen the inflammatory response. Structure-based design of small molecules or peptides targetting PKCδ-TIRAP or TIRAP-p38 interfaces would be beneficial for therapy in AP1 mediated inflammatory diseases.
Collapse
Affiliation(s)
- Mirza S Baig
- Centre for Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India.
| | - Dongfang Liu
- Centre for Inflammation & Epigenetics, Houston Methodist Research Institute, Houston, Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Kannan Muthu
- Centre for Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Anjali Roy
- Centre for Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Uzma Saqib
- Discipline of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore (IITI), Indore, India
| | - Adnan Naim
- Centre for Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Syed M Faisal
- National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| | - Mansi Srivastava
- Centre for Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rohit Saluja
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Bhopal, India
| |
Collapse
|
15
|
Park JY, Yun Y, Chung KY. Conformations of JNK3α splice variants analyzed by hydrogen/deuterium exchange mass spectrometry. J Struct Biol 2016; 197:271-278. [PMID: 27998708 DOI: 10.1016/j.jsb.2016.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/13/2016] [Accepted: 12/15/2016] [Indexed: 10/20/2022]
Abstract
c-Jun N-terminal kinases (JNKs) are members of the mitogen-activated protein kinase (MAPK) family that regulate apoptosis, inflammation, cytokine production, and metabolism. MAPKs undergo various splicing within their kinase domains. Unlike other MAPKs, JNKs have alternative splicing at the C-terminus, resulting in long and short variants. Functional or conformational effects due to the elongated C-terminal tail in the long splice variants have not been investigated nor has the conformation of the C-terminal tail been analyzed. Here, we analyzed the conformation of the elongated C-terminal tail and investigated conformational differences between long and short splice variants of JNKs using JNK3α2 and JNK3α1 as models. We adopted hydrogen/deuterium exchange mass spectrometry (HDX-MS) to analyze the conformation. HDX-MS revealed that the C-terminal tail is mostly intrinsically disordered, and that the conformation of the kinase domain of JNK3α2 is more dynamic than that of JNK3α1. The different conformation dynamics between long and short splice variants of JNK3α might affect the cellular functions of JNK3.
Collapse
Affiliation(s)
- Ji Young Park
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Youngjoo Yun
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
16
|
Pellegrini E, Palencia A, Braun L, Kapp U, Bougdour A, Belrhali H, Bowler MW, Hakimi MA. Structural Basis for the Subversion of MAP Kinase Signaling by an Intrinsically Disordered Parasite Secreted Agonist. Structure 2016; 25:16-26. [PMID: 27889209 PMCID: PMC5222587 DOI: 10.1016/j.str.2016.10.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/21/2016] [Accepted: 10/25/2016] [Indexed: 01/07/2023]
Abstract
The causative agent of toxoplasmosis, the intracellular parasite Toxoplasma gondii, delivers a protein, GRA24, into the cells it infects that interacts with the mitogen-activated protein (MAP) kinase p38α (MAPK14), leading to activation and nuclear translocation of the host kinase and a subsequent inflammatory response that controls the progress of the parasite. The purification of a recombinant complex of GRA24 and human p38α has allowed the molecular basis of this activation to be determined. GRA24 is shown to be intrinsically disordered, binding two kinases that act independently, and is the only factor required to bypass the canonical mitogen-activated protein kinase activation pathway. An adapted kinase interaction motif (KIM) forms a highly stable complex that competes with cytoplasmic regulatory partners. In addition, the recombinant complex forms a powerful in vitro tool to evaluate the specificity and effectiveness of p38α inhibitors that have advanced to clinical trials, as it provides a hitherto unavailable stable and highly active form of p38α. Toxoplasmosis controls its host immune response via a protein effector, GRA24 A recombinant complex of GRA24 and MAPK p38α demonstrates how the protein works An adapted KIM domain ensures activation and a sustained inflammatory response The recombinant complex is useful in the evaluation of p38 inhibitors
Collapse
Affiliation(s)
- Erika Pellegrini
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France; Unit for Virus Host Cell Interactions, Université Grenoble Alpes-EMBL-CNRS, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Andrés Palencia
- IAB, Team Host-Pathogen Interactions & Immunity to Infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38700 Grenoble, France
| | - Laurence Braun
- IAB, Team Host-Pathogen Interactions & Immunity to Infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38700 Grenoble, France
| | - Ulrike Kapp
- Structural Biology Group, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Alexandre Bougdour
- IAB, Team Host-Pathogen Interactions & Immunity to Infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38700 Grenoble, France
| | - Hassan Belrhali
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France; Unit for Virus Host Cell Interactions, Université Grenoble Alpes-EMBL-CNRS, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France.
| | - Matthew W Bowler
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France; Unit for Virus Host Cell Interactions, Université Grenoble Alpes-EMBL-CNRS, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France.
| | - Mohamed-Ali Hakimi
- IAB, Team Host-Pathogen Interactions & Immunity to Infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38700 Grenoble, France.
| |
Collapse
|
17
|
Beenstock J, Mooshayef N, Engelberg D. How Do Protein Kinases Take a Selfie (Autophosphorylate)? Trends Biochem Sci 2016; 41:938-953. [DOI: 10.1016/j.tibs.2016.08.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 07/13/2016] [Accepted: 08/02/2016] [Indexed: 12/18/2022]
|
18
|
Wang B, Qin X, Wu J, Deng H, Li Y, Yang H, Chen Z, Liu G, Ren D. Analysis of crystal structure of Arabidopsis MPK6 and generation of its mutants with higher activity. Sci Rep 2016; 6:25646. [PMID: 27160427 PMCID: PMC4861982 DOI: 10.1038/srep25646] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/20/2016] [Indexed: 12/02/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades, which are the highly conserved signalling modules in eukaryotic organisms, have been shown to play important roles in regulating growth, development, and stress responses. The structures of various MAPKs from yeast and animal have been solved, and structure-based mutants were generated for their function analyses, however, the structures of plant MAPKs remain unsolved. Here, we report the crystal structure of Arabidopsis MPK6 at a 3.0 Å resolution. Although MPK6 is topologically similar to ERK2 and p38, the structures of the glycine-rich loop, MAPK insert, substrate binding sites, and L16 loop in MPK6 show notable differences from those of ERK2 and p38. Based on the structural comparison, we constructed MPK6 mutants and analyzed their kinase activity both in vitro and in planta. MPK6F364L and MPK6F368L mutants, in which Phe364 and Phe368 in the L16 loop were changed to Leu, respectively, acquired higher intrinsic kinase activity and retained the normal MAPKK activation property. The expression of MPK6 mutants with basal activity is sufficient to induce camalexin biosynthesis; however, to induce ethylene and leaf senescence, the expression of MPK6 mutants with higher activity is required. The results suggest that these mutants can be used to analyze the specific biological functions of MPK6.
Collapse
Affiliation(s)
- Bo Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xinghua Qin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Juan Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hongying Deng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuan Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hailian Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhongzhou Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Guoqin Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dongtao Ren
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
19
|
Tighter αC-helix-αL16-helix interactions seem to make p38α less prone to activation by autophosphorylation than Hog1. Biosci Rep 2016; 36:BSR20160020. [PMID: 26987986 PMCID: PMC4847175 DOI: 10.1042/bsr20160020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/16/2016] [Indexed: 12/18/2022] Open
Abstract
A structural element termed ‘hydrophobic core’ is a suppressor of spontaneous autophosphorylation in Hog1 and p38s. Practically any mutation in this core of Hog1, but not of p38, evokes spontaneous autophosphorylation. This inherent autophosphorylation suppressor is tighter in mammalian's p38s. Many eukaryotic protein kinases (EPKs) are autoactivated through autophosphorylation of their activation loop. Mitogen-activated protein (MAP) kinases do not autophosphorylate spontaneously; relying instead upon mitogen-activated protein kinase (MAPK) kinases (MKKs) for their activation loop phosphorylation. Yet, in previous studies we identified mutations in the yeast MAPK high osmolarity glycerol (Hog1) that render it capable of spontaneous autophosphorylation and consequently intrinsically active (MKK-independent). Four of the mutations occurred in hydrophobic residues, residing in the αC-helix, which is conserved in all EPKs, and in the αL16-helix that is unique to MAPKs. These four residues interact together forming a structural element termed ‘hydrophobic core’. A similar element exists in the Hog1’s mammalian orthologues p38s. Here we show that the ‘hydrophobic core’ is a loose suppressor of Hog1’s autophosphorylation. We inserted 18 point mutations into this core, 17 of which were able to render Hog1 MKK-independent. In p38s, however, only a very few mutations in the equivalent residues rendered these proteins intrinsically active. Structural analysis revealed that a salt bridge between the αC-helix and the αL16-helix that exists in p38α may not exist in Hog1. This bond further stabilizes the ‘hydrophobic core’ of p38, making p38 less prone to de-repressing its concealed autophosphorylation. Mutating equivalent hydrophobic residues in Jnk1 and Erk2 has no effect on their autophosphorylation. We propose that specific structural elements developed in the course of evolution to suppress spontaneous autophosphorylation of Hog1/p38. The suppressors were kept wobbly, probably to allow activation by induced autophosphorylation, but became stricter in mammalian p38s than in the yeast Hog1.
Collapse
|
20
|
Co-conserved MAPK features couple D-domain docking groove to distal allosteric sites via the C-terminal flanking tail. PLoS One 2015; 10:e0119636. [PMID: 25799139 PMCID: PMC4370755 DOI: 10.1371/journal.pone.0119636] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 02/02/2015] [Indexed: 11/19/2022] Open
Abstract
Mitogen activated protein kinases (MAPKs) form a closely related family of kinases that control critical pathways associated with cell growth and survival. Although MAPKs have been extensively characterized at the biochemical, cellular, and structural level, an integrated evolutionary understanding of how MAPKs differ from other closely related protein kinases is currently lacking. Here, we perform statistical sequence comparisons of MAPKs and related protein kinases to identify sequence and structural features associated with MAPK functional divergence. We show, for the first time, that virtually all MAPK-distinguishing sequence features, including an unappreciated short insert segment in the β4-β5 loop, physically couple distal functional sites in the kinase domain to the D-domain peptide docking groove via the C-terminal flanking tail (C-tail). The coupling mediated by MAPK-specific residues confers an allosteric regulatory mechanism unique to MAPKs. In particular, the regulatory αC-helix conformation is controlled by a MAPK-conserved salt bridge interaction between an arginine in the αC-helix and an acidic residue in the C-tail. The salt-bridge interaction is modulated in unique ways in individual sub-families to achieve regulatory specificity. Our study is consistent with a model in which the C-tail co-evolved with the D-domain docking site to allosterically control MAPK activity. Our study provides testable mechanistic hypotheses for biochemical characterization of MAPK-conserved residues and new avenues for the design of allosteric MAPK inhibitors.
Collapse
|
21
|
Beenstock J, Ben-Yehuda S, Melamed D, Admon A, Livnah O, Ahn NG, Engelberg D. The p38β mitogen-activated protein kinase possesses an intrinsic autophosphorylation activity, generated by a short region composed of the α-G helix and MAPK insert. J Biol Chem 2014; 289:23546-56. [PMID: 25006254 DOI: 10.1074/jbc.m114.578237] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinases are regulated by a large number of mechanisms that vary from one kinase to another. However, a fundamental activation mechanism shared by all protein kinases is phosphorylation of a conserved activation loop threonine residue. This is achieved in many cases via autophosphorylation. The mechanism and structural basis for autophosphorylation are not clear and are in fact enigmatic because this phosphorylation occurs when the kinase is in its inactive conformation. Unlike most protein kinases, MAP kinases are not commonly activated by autophosphorylation but rather by MEK-dependent phosphorylation. Here we show that p38β, a p38 isoform that is almost identical to p38α, is exceptional and spontaneously autoactivates by autophosphorylation. We identified a 13-residue-long region composed of part of the αG-helix and the MAPK insert that triggers the intrinsic autophosphorylation activity of p38β. When inserted into p38α, this fragment renders it spontaneously active in vitro and in mammalian cells. We further found that an interaction between the N terminus and a particular region of the C-terminal extension suppresses the intrinsic autophosphorylation of p38β in mammalian cells. Thus, this study identified the structural motif responsible for the unique autophosphorylation capability of p38β and the motif inhibiting this activity in living cells. It shows that the MAPK insert and C-terminal extension, structural motifs that are unique to MAPKs, play a critical role in controlling autophosphorylation.
Collapse
Affiliation(s)
- Jonah Beenstock
- From the Department of Biological Chemistry, Institute of Life Science and
| | - Sheer Ben-Yehuda
- From the Department of Biological Chemistry, Institute of Life Science and
| | - Dganit Melamed
- the Faculty of Biology, Smoler Proteomics Center, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Arie Admon
- the Faculty of Biology, Smoler Proteomics Center, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Oded Livnah
- From the Department of Biological Chemistry, Institute of Life Science and the Wolfson Centre for applied Structural Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Natalie G Ahn
- the Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado 80309, and
| | - David Engelberg
- From the Department of Biological Chemistry, Institute of Life Science and the CREATE-NUS-HUJ, Cellular & Molecular Mechanisms of Inflammation Program, National University of Singapore, Singapore 138602
| |
Collapse
|
22
|
Maimon A, Mogilevsky M, Shilo A, Golan-Gerstl R, Obiedat A, Ben-Hur V, Lebenthal-Loinger I, Stein I, Reich R, Beenstock J, Zehorai E, Andersen C, Thorsen K, Ørntoft T, Davis R, Davidson B, Mu D, Karni R. Mnk2 Alternative Splicing Modulates the p38-MAPK Pathway and Impacts Ras-Induced Transformation. Cell Rep 2014; 7:501-513. [DOI: 10.1016/j.celrep.2014.03.041] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 02/13/2014] [Accepted: 03/13/2014] [Indexed: 11/29/2022] Open
|
23
|
Parker LJ, Taruya S, Tsuganezawa K, Ogawa N, Mikuni J, Honda K, Tomabechi Y, Handa N, Shirouzu M, Yokoyama S, Tanaka A. Kinase crystal identification and ATP-competitive inhibitor screening using the fluorescent ligand SKF86002. ACTA ACUST UNITED AC 2014; 70:392-404. [PMID: 24531473 DOI: 10.1107/s1399004713028654] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 10/17/2013] [Indexed: 11/10/2022]
Abstract
The small kinase inhibitor SKF86002 lacks intrinsic fluorescence but becomes fluorescent upon binding to the ATP-binding sites of p38 mitogen-activated protein kinase (p38α). It was found that co-crystals of this compound with various kinases were distinguishable by their strong fluorescence. The co-crystals of SKF86002 with p38α, Pim1, ASK1, HCK and AMPK were fluorescent. Addition of SKF86002, which binds to the ATP site, to the co-crystallization solution of HCK promoted protein stability and thus facilitated the production of crystals that otherwise would not grow in the apo form. It was further demonstrated that the fluorescence of SKF86002 co-crystals can be applied to screen for candidate kinase inhibitors. When a compound binds competitively to the ATP-binding site of a kinase crystallized with SKF86002, it displaces the fluorescent SKF86002 and the crystal loses its fluorescence. Lower fluorescent signals were reported after soaking SKF86002-Pim1 and SKF86002-HCK co-crystals with the inhibitors quercetin, a quinazoline derivative and A-419259. Determination of the SKF86002-Pim1 and SKF86002-HCK co-crystal structures confirmed that SKF86002 interacts with the ATP-binding sites of Pim1 and HCK. The structures of Pim1-SKF86002 crystals soaked with the inhibitors quercetin and a quinazoline derivative and of HCK-SKF86002 crystals soaked with A-419259 were determined. These structures were virtually identical to the deposited crystal structures of the same complexes. A KINOMEscan assay revealed that SKF86002 binds a wide variety of kinases. Thus, for a broad range of kinases, SKF86002 is useful as a crystal marker, a crystal stabilizer and a marker to identify ligand co-crystals for structural analysis.
Collapse
Affiliation(s)
- Lorien J Parker
- Systems and Structural Biology Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Shigenao Taruya
- Systems and Structural Biology Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Keiko Tsuganezawa
- Systems and Structural Biology Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Naoko Ogawa
- Systems and Structural Biology Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Junko Mikuni
- Systems and Structural Biology Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Keiko Honda
- Systems and Structural Biology Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Yuri Tomabechi
- Systems and Structural Biology Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Noriko Handa
- Systems and Structural Biology Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Mikako Shirouzu
- Systems and Structural Biology Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Shigeyuki Yokoyama
- Systems and Structural Biology Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Akiko Tanaka
- Systems and Structural Biology Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| |
Collapse
|
24
|
Bougdour A, Tardieux I, Hakimi MA. Toxoplasmaexports dense granule proteins beyond the vacuole to the host cell nucleus and rewires the host genome expression. Cell Microbiol 2014; 16:334-43. [DOI: 10.1111/cmi.12255] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 12/17/2013] [Accepted: 12/18/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Alexandre Bougdour
- CNRS; UMR5163; LAPM; Grenoble 38041 France
- Université Joseph Fourier; Grenoble 38000 France
| | - Isabelle Tardieux
- Institut Cochin; INSERM U1016; CNRS UMR 8104; Université Paris Descartes; Paris 75014 France
| | - Mohamed-Ali Hakimi
- CNRS; UMR5163; LAPM; Grenoble 38041 France
- Université Joseph Fourier; Grenoble 38000 France
| |
Collapse
|
25
|
DeNicola GF, Martin ED, Chaikuad A, Bassi R, Clark J, Martino L, Verma S, Sicard P, Tata R, Atkinson RA, Knapp S, Conte MR, Marber MS. Mechanism and consequence of the autoactivation of p38α mitogen-activated protein kinase promoted by TAB1. Nat Struct Mol Biol 2013; 20:1182-90. [PMID: 24037507 PMCID: PMC3822283 DOI: 10.1038/nsmb.2668] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 08/02/2013] [Indexed: 11/09/2022]
Abstract
p38α mitogen-activated protein kinase (p38α) is activated by a variety of mechanisms, including autophosphorylation initiated by TGFβ-activated kinase 1 binding protein 1 (TAB1) during myocardial ischemia and other stresses. Chemical-genetic approaches and coexpression in mammalian, bacterial and cell-free systems revealed that mouse p38α autophosphorylation occurs in cis by direct interaction with TAB1(371-416). In isolated rat cardiac myocytes and perfused mouse hearts, TAT-TAB1(371-416) rapidly activates p38 and profoundly perturbs function. Crystal structures and characterization in solution revealed a bipartite docking site for TAB1 in the p38α C-terminal kinase lobe. TAB1 binding stabilizes active p38α and induces rearrangements within the activation segment by helical extension of the Thr-Gly-Tyr motif, allowing autophosphorylation in cis. Interference with p38α recognition by TAB1 abolishes its cardiac toxicity. Such intervention could potentially circumvent the drawbacks of clinical pharmacological inhibitors of p38 catalytic activity.
Collapse
Affiliation(s)
- Gian Felice DeNicola
- King's College London British Heart Foundation Centre of Excellence. The Rayne Institute, St Thomas' Hospital Campus, London, SE1 7EH, UK
- Randall Division of Cell and Molecular Biophysics, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Eva Denise Martin
- King's College London British Heart Foundation Centre of Excellence. The Rayne Institute, St Thomas' Hospital Campus, London, SE1 7EH, UK
| | - Apirat Chaikuad
- University of Oxford, Nuffield Department of Clinical Medicine, Structural Genomics Consortium, Oxford OX3 7LD, UK
| | - Rekha Bassi
- King's College London British Heart Foundation Centre of Excellence. The Rayne Institute, St Thomas' Hospital Campus, London, SE1 7EH, UK
| | - James Clark
- King's College London British Heart Foundation Centre of Excellence. The Rayne Institute, St Thomas' Hospital Campus, London, SE1 7EH, UK
| | - Luigi Martino
- Randall Division of Cell and Molecular Biophysics, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Sharwari Verma
- King's College London British Heart Foundation Centre of Excellence. The Rayne Institute, St Thomas' Hospital Campus, London, SE1 7EH, UK
| | - Pierre Sicard
- King's College London British Heart Foundation Centre of Excellence. The Rayne Institute, St Thomas' Hospital Campus, London, SE1 7EH, UK
| | - Renée Tata
- Randall Division of Cell and Molecular Biophysics, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - R Andrew Atkinson
- Randall Division of Cell and Molecular Biophysics, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Stefan Knapp
- University of Oxford, Nuffield Department of Clinical Medicine, Structural Genomics Consortium, Oxford OX3 7LD, UK
- Department of Biochemistry and Molecular Biology, George Washington University, Washington, DC 20037, USA
- University of Oxford, Nuffield Department of Clinical Medicine, Target Discovery Institute, Oxford OX3 7FZ, UK
| | - Maria R Conte
- Randall Division of Cell and Molecular Biophysics, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Michael S Marber
- King's College London British Heart Foundation Centre of Excellence. The Rayne Institute, St Thomas' Hospital Campus, London, SE1 7EH, UK
| |
Collapse
|
26
|
Braun L, Brenier-Pinchart MP, Yogavel M, Curt-Varesano A, Curt-Bertini RL, Hussain T, Kieffer-Jaquinod S, Coute Y, Pelloux H, Tardieux I, Sharma A, Belrhali H, Bougdour A, Hakimi MA. A Toxoplasma dense granule protein, GRA24, modulates the early immune response to infection by promoting a direct and sustained host p38 MAPK activation. ACTA ACUST UNITED AC 2013; 210:2071-86. [PMID: 24043761 PMCID: PMC3782045 DOI: 10.1084/jem.20130103] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Toxoplasma gondii secretes a novel dense granule protein, GRA24, that traffics from the vacuole to the host cell nucleus where it prolongs p38a activation and correlates with proinflammatory cytokine production. Toxoplasma gondii, the causative agent of toxoplasmosis, is an obligate intracellular protozoan parasite that resides inside a parasitophorous vacuole. During infection, Toxoplasma actively remodels the transcriptome of its hosting cells with profound and coupled impact on the host immune response. We report that Toxoplasma secretes GRA24, a novel dense granule protein which traffics from the vacuole to the host cell nucleus. Once released into the host cell, GRA24 has the unique ability to trigger prolonged autophosphorylation and nuclear translocation of the host cell p38α MAP kinase. This noncanonical kinetics of p38α activation correlates with the up-regulation of the transcription factors Egr-1 and c-Fos and the correlated synthesis of key proinflammatory cytokines, including interleukin-12 and the chemokine MCP-1, both known to control early parasite replication in vivo. Remarkably, the GRA24–p38α complex is defined by peculiar structural features and uncovers a new regulatory signaling path distinct from the MAPK signaling cascade and otherwise commonly activated by stress-related stimuli or various intracellular microbes.
Collapse
Affiliation(s)
- Laurence Braun
- Centre National de la Recherche Scientifique (CNRS), UMR5163, Laboratoire Adaptation et Pathogénie des Microorganismes, F-38041 Grenoble, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Humphreys JM, Piala AT, Akella R, He H, Goldsmith EJ. Precisely ordered phosphorylation reactions in the p38 mitogen-activated protein (MAP) kinase cascade. J Biol Chem 2013; 288:23322-30. [PMID: 23744074 PMCID: PMC3743502 DOI: 10.1074/jbc.m113.462101] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/31/2013] [Indexed: 01/04/2023] Open
Abstract
The MAP kinase cascades, composed of a MAP3K, a MAP2K, and a MAPK, control switch responses to extracellular stimuli and stress in eukaryotes. The most important feature of these modules is thought to be the two double phosphorylation reactions catalyzed by MAP3Ks and MAP2Ks. We addressed whether the reactions are sequential or random in the p38 MAP kinase module. Mass spectrometry was used to track the phosphorylation of the MAP2K MEK6 by two MAP3Ks, TAO2 and ASK1, and the subsequent phosphorylation of p38α by MEK6/S*T* (where S (Ser) and T (Thr) are the two phosphorylation sites and * denotes phosphorylation). Both double phosphorylation reactions are precisely ordered. MEK6 is phosphorylated first on Thr-211 and then on Ser-207 by both MAP3Ks. This is the first demonstration of a precise reaction order for a MAP2K. p38α is phosphorylated first on Tyr-182 and then on Thr-180, the same reaction order observed previously in ERK2. Thus, intermediates were MEK6/ST* and p38α/TY*. Similarly, the phosphorylation of the p38α transcription factor substrate ATF2 occurs in a precise sequence. Progress curves for the appearance of intermediates were fit to kinetic models. The models confirmed the reaction order, revealed processivity in the phosphorylation of MEK6 by ASK1, and suggested that the order of phosphorylation is dictated by both binding and catalysis rates.
Collapse
Affiliation(s)
- John M. Humphreys
- From the Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Alexander T. Piala
- From the Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Radha Akella
- From the Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Haixia He
- From the Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Elizabeth J. Goldsmith
- From the Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
28
|
Zhang G, He LS, Wong YH, Qian PY. MKK3 was involved in larval settlement of the barnacle Amphibalanus amphitrite through activating the kinase activity of p38MAPK. PLoS One 2013; 8:e69510. [PMID: 23922727 PMCID: PMC3726695 DOI: 10.1371/journal.pone.0069510] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/10/2013] [Indexed: 01/05/2023] Open
Abstract
The p38 mitogen-activated protein kinase (p38MAPK) plays a key role in larval settlement of the barnacle Amphibalanus amphitrite. To study the signaling pathway associated with p38MAPK during larval settlement, we sought to identify the upstream kinase of p38MAPK. Three MKKs (MKK3, MKK4 and MKK7) and three MAPKs (p38MAPK, ERK and JNK) in A. amphitrite were cloned and recombinantly expressed in E. coli. Through kinase assays, we found that MKK3, but not MKK4 or MKK7, phosphorylated p38MAPK. Furthermore, MKK3 activity was specific to p38MAPK, as it did not phosphorylate ERK or JNK. To further investigate the functional relationship between MKK3 and p38MAPK in vivo, we studied the localization of phospho-MKK3 (pMKK3) and MKK3 by immunostaining. Consistent with the patterns of p38MAPK and phospho-p38MAPK (pp38MAPK), pMKK3 and MKK3 mainly localized to the antennules of the cyprids. Western blot analysis revealed that pMKK3 levels, like pp38MAPK levels, were elevated at cyprid stage, compared to nauplii and juvenile stages. Moreover, pMKK3 levels increased after treatment with adult barnacle crude extracts, suggesting that MKK3 might mediate the stimulatory effects of adult barnacle extracts on the p38MAPK pathway.
Collapse
Affiliation(s)
- Gen Zhang
- KAUST Global Collaborative Research Program, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Li-Sheng He
- KAUST Global Collaborative Research Program, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yue Him Wong
- KAUST Global Collaborative Research Program, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Pei-Yuan Qian
- KAUST Global Collaborative Research Program, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
29
|
Wang Q, Feng J, Wang J, Zhang X, Zhang D, Zhu T, Wang W, Wang X, Jin J, Cao J, Li X, Peng H, Li Y, Shen B, Zhang J. Disruption of TAB1/p38α interaction using a cell-permeable peptide limits myocardial ischemia/reperfusion injury. Mol Ther 2013; 21:1668-77. [PMID: 23877036 DOI: 10.1038/mt.2013.90] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 03/22/2013] [Indexed: 12/22/2022] Open
Abstract
Targeting the adaptor protein (transforming growth factor-β (TGF-β)-activated protein kinase 1 (TAK1)-binding protein 1) (TAB1)-mediated non-canonical activation of p38α to limit ischemia/reperfusion (I/R) injury after an acute myocardial infarction seems to be attractive since TAB1/p38α interaction occurs specifically in very limited circumstances and possesses unique structural basis. However, so far no TAB1/p38α interaction inhibitor has been reported due to the limited knowledge about the interfaces. In this study, we sought to identify key amino acids essential for the unique mode of interaction with computer-guided molecular simulations and molecular docking. After validation of the predicted three-dimensional (3-D) structure of TAB1/p38α complex, we designed several peptides and evaluated whether they could block TAB1/p38α interaction with selectivity. We found that a cell-permeable peptide worked as a selective TAB1/p38α interaction inhibitor and decreased myocardial I/R injury. To our knowledge, this is the first TAB1/p38α interaction inhibitor.
Collapse
Affiliation(s)
- Qingyang Wang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Tzarum N, Komornik N, Ben Chetrit D, Engelberg D, Livnah O. DEF pocket in p38α facilitates substrate selectivity and mediates autophosphorylation. J Biol Chem 2013; 288:19537-47. [PMID: 23671282 DOI: 10.1074/jbc.m113.464511] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signaling processes are primarily promoted by molecular recognition and corresponding protein-protein interactions. One of the key eukaryotic signaling pathways is the MAP kinase cascade involved in vital cellular processes such as cell proliferation, differentiation, apoptosis, and stress response. The principle recognition site of MAP kinases, the common docking (CD) region, forms selective interactions with substrates, upstream activators, and phosphatases. A second docking site, defined as the DEF site interaction pocket (DEF pocket), is formed subsequent to ERK2 and p38α activation. Both crystal structures of p38α in its dually phosphorylated form and of intrinsically active mutants showed the DEF pocket, giving motivation for studying its role in substrate activation and selectivity. Mutating selected DEF pocket residues significantly decreased the phosphorylation levels of three p38α substrates (ATFII, Elk-1, and MBP) with no apparent effect on the phosphorylation of MK2 kinase. Conversely, mutating the CD region gave the opposite effect, suggesting p38α substrates can be classified into DEF-dependent and DEF-independent substrates. In addition, mutating DEF pocket residues decreased the autophosphorylation capability of intrinsically active p38α mutants, suggesting DEF-mediated trans-autophosphorylation in p38α. These results could contribute to understanding substrate selectivity of p38α and serve as a platform for designing p38α-selective DEF site blockers, which partially inhibit p38α binding DEF-dependent substrates, whereas maintaining its other functions intact. In this context, preliminary results using synthetic peptides reveal significant inhibition of substrate phosphorylation by activated p38α.
Collapse
Affiliation(s)
- Netanel Tzarum
- Department of Biological Chemistry, The Alexander Silverman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | |
Collapse
|
31
|
Yang SH, Sharrocks AD, Whitmarsh AJ. MAP kinase signalling cascades and transcriptional regulation. Gene 2012; 513:1-13. [PMID: 23123731 DOI: 10.1016/j.gene.2012.10.033] [Citation(s) in RCA: 328] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 10/08/2012] [Accepted: 10/18/2012] [Indexed: 02/06/2023]
Abstract
The MAP kinase (MAPK) signalling pathways play fundamental roles in a wide range of cellular processes and are often deregulated in disease states. One major mode of action for these pathways is in controlling gene expression, in particular through regulating transcription. In this review, we discuss recent significant advances in this area. In particular we focus on the mechanisms by which MAPKs are targeted to the nucleus and chromatin, and once there, how they impact on chromatin structure and subsequent gene regulation. We also discuss how systems biology approaches have contributed to our understanding of MAPK signaling networks, and also how the MAPK pathways intersect with other regulatory pathways in the nucleus. Finally, we summarise progress in studying the physiological functions of key MAPK transcriptional targets.
Collapse
Affiliation(s)
- Shen-Hsi Yang
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | | | | |
Collapse
|
32
|
Tzarum N, Eisenberg-Domovich Y, Gills JJ, Dennis PA, Livnah O. Lipid molecules induce p38α activation via a novel molecular switch. J Mol Biol 2012; 424:339-53. [PMID: 23079240 DOI: 10.1016/j.jmb.2012.10.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/05/2012] [Accepted: 10/09/2012] [Indexed: 11/19/2022]
Abstract
p38α mitogen-activated protein kinase (MAPK) is generally activated by dual phosphorylation but has also been shown to exhibit alternative activation modes. One of these modes included a direct interaction with phosphatidylinositol ether lipid analogues (PIA) inducing p38α autoactivation and apoptosis. Perifosine, an Akt inhibitor in phase II clinical trials, also showed p38α activation properties similarly to those of PIAs. The crystal structures of p38α in complex with PIA23, PIA24 and perifosine provide insights into this unique activation mode. The activating molecules bind a unique hydrophobic binding site in the kinase C'-lobe formed in part by the MAPK insert region. In addition, there are conformational changes in the short αEF/αF loop region that acts as an activation switch, inducing autophosphorylation. Structural and biochemical characterization of the αEF/αF loop identified Trp197 as a key residue in the lipid binding and in p38α catalytic activity. The lipid binding site also accommodates hydrophobic inhibitor molecules and, thus, can serve as a novel p38α-target for specific activation or inhibition, with novel therapeutic implications.
Collapse
Affiliation(s)
- Netanel Tzarum
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences and The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | |
Collapse
|
33
|
Osmostress induces autophosphorylation of Hog1 via a C-terminal regulatory region that is conserved in p38α. PLoS One 2012; 7:e44749. [PMID: 22984552 PMCID: PMC3439401 DOI: 10.1371/journal.pone.0044749] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 08/06/2012] [Indexed: 11/19/2022] Open
Abstract
Many protein kinases require phosphorylation at their activation loop for induction of catalysis. Mitogen-activated protein kinases (MAPKs) are activated by a unique mode of phosphorylation, on neighboring Tyrosine and Threonine residues. Whereas many kinases obtain their activation via autophosphorylation, MAPKs are usually phosphorylated by specific, dedicated, MAPK kinases (MAP2Ks). Here we show however, that the yeast MAPK Hog1, known to be activated by the MAP2K Pbs2, is activated in pbs2Δ cells via an autophosphorylation activity that is induced by osmotic pressure. We mapped a novel domain at the Hog1 C-terminal region that inhibits this activity. Removal of this domain provides a Hog1 protein that is partially independent of MAP2K, namely, partially rescues osmostress sensitivity of pbs2Δ cells. We further mapped a short domain (7 amino acid residues long) that is critical for induction of autophosphorylation. Its removal abolishes autophosphorylation, but maintains Pbs2-mediated phosphorylation. This 7 amino acids stretch is conserved in the human p38α. Similar to the case of Hog1, it’s removal from p38α abolishes p38α’s autophosphorylation capability, but maintains, although reduces, its activation by MKK6. This study joins a few recent reports to suggest that, like many protein kinases, MAPKs are also regulated via induced autoactivation.
Collapse
|
34
|
Rajaiya J, Yousuf MA, Singh G, Stanish H, Chodosh J. Heat shock protein 27 mediated signaling in viral infection. Biochemistry 2012; 51:5695-702. [PMID: 22734719 DOI: 10.1021/bi3007127] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Heat shock proteins (HSPs) play a critical role in many intracellular processes, including apoptosis and delivery of other proteins to intracellular compartments. Small HSPs have been shown previously to participate in many cellular functions, including IL-8 induction. Human adenovirus infection activates intracellular signaling, involving particularly the c-Src and mitogen-activated protein kinases [Natarajan, K., et al. (2003) J. Immunol. 170, 6234-6243]. HSP27 and MK2 are also phosphorylated, and c-Src, and its downstream targets, p38, ERK1/2, and c-Jun-terminal kinase (JNK), differentially mediate IL-8 and MCP-1 expression. Specifically, activation and translocation of transcription factor NFκB-p65 occurs in a p38-dependent fashion [Rajaiya, J., et al. (2009) Mol. Vision 15, 2879-2889]. Herein, we report a novel role for HSP27 in an association of p38 with NFκB-p65. Immunoprecipitation assays of virus-infected but not mock-infected cells revealed a signaling complex including p38 and NFκB-p65. Transfection with HSP27 short interfering RNA (siRNA) but not scrambled RNA disrupted this association and reduced the level of IL-8 expression. Transfection with HSP27 siRNA also reduced the level of nuclear localization of NFκB-p65 and p38. By use of tagged p38 mutants, we found that amino acids 279-347 of p38 are necessary for the association of p38 with NFκB-p65. These studies strongly suggest that HSP27, p38, and NFκB-p65 form a signalosome in virus-infected cells and influence downstream expression of pro-inflammatory mediators.
Collapse
Affiliation(s)
- Jaya Rajaiya
- Howe Laboratory, Mass Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
35
|
Palacios L, Dickinson RJ, Sacristán-Reviriego A, Didmon MP, Marín MJ, Martín H, Keyse SM, Molina M. Distinct docking mechanisms mediate interactions between the Msg5 phosphatase and mating or cell integrity mitogen-activated protein kinases (MAPKs) in Saccharomyces cerevisiae. J Biol Chem 2011; 286:42037-42050. [PMID: 22006927 PMCID: PMC3234975 DOI: 10.1074/jbc.m111.286948] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
MAPK phosphatases (MKPs) are negative regulators of signaling pathways with distinct MAPK substrate specificities. For example, the yeast dual specificity phosphatase Msg5 dephosphorylates the Fus3 and Slt2 MAPKs operating in the mating and cell wall integrity pathways, respectively. Like other MAPK-interacting proteins, most MKPs bind MAPKs through specific docking domains. These include D-motifs, which contain basic residues that interact with acidic residues in the common docking (CD) domain of MAPKs. Here we show that Msg5 interacts not only with Fus3, Kss1, and Slt2 but also with the pseudokinase Slt2 paralog Mlp1. Using yeast two-hybrid and in vitro interaction assays, we have identified distinct regions within the N-terminal domain of Msg5 that differentially bind either the MAPKs Fus3 and Kss1 or Slt2 and Mlp1. Whereas a canonical D-site within Msg5 mediates interaction with the CD domains of Fus3 and Kss1, a novel motif (102IYT104) within Msg5 is involved in binding to Slt2 and Mlp1. Furthermore, mutation of this site prevents the phosphorylation of Msg5 by Slt2. This motif is conserved in Sdp1, another MKP that dephosphorylates Slt2, as well as in Msg5 orthologs from other yeast species. A region spanning amino acids 274–373 within Slt2 and Mlp1 mediates binding to this Msg5 motif in a CD domain-independent manner. In contrast, Slt2 uses its CD domain to bind to its upstream activator Mkk1. This binding flexibility may allow MAPK pathways to exploit additional regulatory controls in order to provide fine modulation of both pathway activity and specificity.
Collapse
Affiliation(s)
- Lorena Palacios
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias, 28040 Madrid, Spain
| | - Robin J Dickinson
- Cancer Research-UK Stress Response Laboratory, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| | - Almudena Sacristán-Reviriego
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias, 28040 Madrid, Spain
| | - Mark P Didmon
- Cancer Research-UK Stress Response Laboratory, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| | - María José Marín
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias, 28040 Madrid, Spain
| | - Humberto Martín
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias, 28040 Madrid, Spain
| | - Stephen M Keyse
- Cancer Research-UK Stress Response Laboratory, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom.
| | - María Molina
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias, 28040 Madrid, Spain.
| |
Collapse
|
36
|
López-Santalla M, Salvador-Bernáldez M, González-Alvaro I, Castañeda S, Ortiz AM, García-García MI, Kremer L, Roncal F, Mulero J, Martínez-A C, Salvador JM. Tyr³²³-dependent p38 activation is associated with rheumatoid arthritis and correlates with disease activity. ACTA ACUST UNITED AC 2011; 63:1833-42. [PMID: 21452291 DOI: 10.1002/art.30375] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The p38 MAPK is important in the pathogenic immune response in rheumatoid arthritis (RA). The p38 molecule can be activated through phosphorylation on Thr¹⁸⁰-Tyr¹⁸² by upstream MAPK kinases and via an alternative pathway through phosphorylation on Tyr³²³. We undertook this study to quantify the phosphorylation of Tyr³²³ p38 and of Thr¹⁸⁰-Tyr¹⁸² p38 on T cells from healthy controls and patients with RA or ankylosing spondylitis (AS) to identify variables associated with p38 phosphorylation and disease activity. METHODS We measured p38 phosphorylation on Tyr³²³ and Thr¹⁸⁰-Tyr¹⁸² by flow cytometry and Western blotting on T cells from 30 control subjects, 33 AS patients, 30 patients with RA in remission, and 79 patients with active RA. We collected the clinical characteristics and analyzed correlations between clinical variables, the Disease Activity Score in 28 joints (DAS28), and p38 phosphorylation levels. Multivariate regression analysis was performed to identify variables associated with p38 phosphorylation on Tyr³²³ and Thr¹⁸⁰-Tyr¹⁸². RESULTS Phosphorylation of p38 on Tyr³²³ was higher in T cells from patients with active RA (P = 0.008 versus healthy controls) than in patients with RA in remission or in patients with AS. Tyr³²³ p38 phosphorylation was associated with disease activity determined by the DAS28 (P = 0.017). Enhanced p38 phosphorylation was linked to Lck-mediated activation of the Tyr³²³-dependent pathway in the absence of upstream MAPKK activation. CONCLUSION Our results indicate that phosphorylation status on Tyr³²³ p38 correlates with RA disease activity and suggest that the Tyr³²³-dependent pathway is an attractive target for down-regulation of p38 activity in RA patients.
Collapse
|
37
|
Tzarum N, Engelberg D, Livnah O. Conformational bias imposed by source microseeds results in structural ambiguity. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:877-84. [PMID: 21821885 PMCID: PMC3151118 DOI: 10.1107/s1744309111017970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 05/12/2011] [Indexed: 11/10/2022]
Abstract
The p38 MAP kinase pathway is an essential component of numerous cellular signalling networks which are usually activated in response to extracellular environmental stress conditions. In addition to the canonical activation, several alternative activation pathways have been identified for p38; one of these, in which p38 is initially phosphorylated on Tyr323 and consequently autoactivated, is exclusive to T cells and is induced by TCR activation. Intrinsically active and inactive mutants at position 323 have been developed in order to evaluate the structural changes that occur upon TCR-induced activation. In order to promote crystal growth, cross streak-seeding techniques were utilized. This technique has gained popularity in promoting crystal growth when spontaneous nucleation induces critical defects or is being entirely hindered. The crystal characteristics of some mutants were highly similar to those of the wild-type source seeds (form A). In contrast, other mutants crystallized spontaneously with a different space group and molecular packing (form B). One of the active mutants (Y323T) crystallized in both crystal forms, displaying different packing characteristics and significant differences in molecular conformation that were clearly dictated by the source seeds. This implies that the source seeds used in cross streak-seeding could, in some cases, impose bias on the structural outcome of the studied molecule. Such incidents could occur when the conformational freedom permits crystal packing while not reflecting the authentic structure.
Collapse
Affiliation(s)
- Netanel Tzarum
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - David Engelberg
- The Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Oded Livnah
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
38
|
Rothweiler U, Åberg E, Johnson KA, Hansen TE, Jørgensen JB, Engh RA. p38α MAP kinase dimers with swapped activation segments and a novel catalytic loop conformation. J Mol Biol 2011; 411:474-85. [PMID: 21699901 DOI: 10.1016/j.jmb.2011.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Revised: 06/06/2011] [Accepted: 06/08/2011] [Indexed: 01/08/2023]
Abstract
Many protein kinase functions, including autophosphorylation in trans, require dimerization, possibly by activation segment exchange. Such dimers have been reported for a few autophosphorylating protein kinases, but not for mitogen-activated protein kinases (MAPKs). Activation of MAPKs proceeds not only via the well-characterized action of dual T/Y specificity MAPK kinases, phosphorylating both residues of the MAPK TxY activation loop motif, but also via a noncanonical activation pathway triggered by phosphorylation at Tyr323 and homodimerization. Here, we report the 2. 7-Å-resolution structure of p38α MAPK from Salmo salar in a novel domain-swapped homodimeric form. The tyrosines of the conserved sequence YxAPE anchor the swapped activation segments in a configuration suitable for autophosphorylation in trans and provide a model for the noncanonical pathway. In the dimer, a structural unit containing Tyr323 is formed at a dimerization contact region that stabilizes the HRD catalytic loop in a unique inactive geometry. This feature is consistent with the requirement of Tyr323 phosphorylation for the initiation of the noncanonical pathway. Despite the interacting surface of more than 2600 Å(2), the dimer is not obligate, as gel filtration shows the dimerization to occur only at relatively high concentrations. The transition from monomer to dimer involves a relatively simple hinged displacement of helix EF and adjacent residues. Thus, dimer formation is likely to be transient, compatible with functional requirements for autophosphorylation, allowing further modulation, for example, by scaffolding mechanisms.
Collapse
Affiliation(s)
- Ulli Rothweiler
- Department of Chemistry, The Norwegian Structural Biology Centre, University of Tromsø, 9037 Tromsø, Norway
| | | | | | | | | | | |
Collapse
|
39
|
Wen HC, Avivar-Valderas A, Sosa MS, Girnius N, Farias EF, Davis RJ, Aguirre-Ghiso JA. p38α Signaling Induces Anoikis and Lumen Formation During Mammary Morphogenesis. Sci Signal 2011; 4:ra34. [PMID: 21610252 PMCID: PMC3229273 DOI: 10.1126/scisignal.2001684] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The stress-activated protein kinase (SAPK) p38 can induce apoptosis, and its inhibition facilitates mammary tumorigenesis. We found that during mammary acinar morphogenesis in MCF-10A cells grown in three-dimensional culture, detachment of luminal cells from the basement membrane stimulated mitogen-activated protein kinase (MAPK) kinases 3 and 6 (MKK3/6) and p38α signaling to promote anoikis. p38α signaling increased transcription of the death-promoting protein BimEL by phosphorylating the activating transcription factor 2 (ATF-2) and increasing c-Jun protein abundance, leading to cell death by anoikis and acinar lumen formation. Inhibition of p38α or ATF-2 caused luminal filling reminiscent of that observed in ductal carcinoma in situ (DCIS). The mammary glands of MKK3/6 knockout mice (MKK3(-/-)/MKK6(+/- )) showed accelerated branching morphogenesis relative to those of wild-type mice, as well as ductal lumen occlusion due to reduced anoikis. This phenotype was recapitulated by systemic pharmacological inhibition of p38α and β (p38α/β) in wild-type mice. Moreover, the development of DCIS-like lesions showing marked ductal occlusion was accelerated in MMTV-Neu transgenic mice treated with inhibitors of p38α and p38β. We conclude that p38α is crucial for the development of hollow ducts during mammary gland development, a function that may be crucial to its ability to suppress breast cancer.
Collapse
Affiliation(s)
- Huei-Chi Wen
- Department of Medicine, Tisch Cancer Institute at Mount Sinai, Mount Sinai School of Medicine, New York, NY 10029, USA
- Department of Otolaryngology, Tisch Cancer Institute at Mount Sinai, Mount Sinai School of Medicine, New York, NY 10029, USA
- Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Rensselaer, NY 12144, USA
| | - Alvaro Avivar-Valderas
- Department of Medicine, Tisch Cancer Institute at Mount Sinai, Mount Sinai School of Medicine, New York, NY 10029, USA
- Department of Otolaryngology, Tisch Cancer Institute at Mount Sinai, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Maria Soledad Sosa
- Department of Medicine, Tisch Cancer Institute at Mount Sinai, Mount Sinai School of Medicine, New York, NY 10029, USA
- Department of Otolaryngology, Tisch Cancer Institute at Mount Sinai, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Nomeda Girnius
- Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Eduardo F. Farias
- Department of Medicine, Tisch Cancer Institute at Mount Sinai, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Roger J. Davis
- Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Julio A. Aguirre-Ghiso
- Department of Medicine, Tisch Cancer Institute at Mount Sinai, Mount Sinai School of Medicine, New York, NY 10029, USA
- Department of Otolaryngology, Tisch Cancer Institute at Mount Sinai, Mount Sinai School of Medicine, New York, NY 10029, USA
| |
Collapse
|
40
|
Akella R, Min X, Wu Q, Gardner KH, Goldsmith EJ. The third conformation of p38α MAP kinase observed in phosphorylated p38α and in solution. Structure 2011; 18:1571-8. [PMID: 21134636 DOI: 10.1016/j.str.2010.09.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Revised: 09/01/2010] [Accepted: 09/22/2010] [Indexed: 01/22/2023]
Abstract
MAPKs engage substrates, MAP2Ks, and phosphatases via a docking groove in the C-terminal domain of the kinase. Prior crystallographic studies on the unphosphorylated MAPKs p38α and ERK2 defined the docking groove and revealed long-range conformational changes affecting the activation loop and active site of the kinase induced by peptide. Solution NMR data presented here for unphosphorylated p38α with a MEK3b-derived peptide (p38α/pepMEK3b) validate these findings. Crystallograhic data from doubly phosphorylated active p38α (p38α/T∗GY∗/pepMEK3b) reveal a structure similar to unphosphorylated p38α/MEK3b, and distinct from phosphorylated p38γ (p38γ/T∗GY∗) and ERK2 (ERK2/T∗EY∗). The structure supports the idea that MAP kinases adopt three distinct conformations: unphosphorylated, phosphorylated, and a docking peptide-induced form.
Collapse
Affiliation(s)
- Radha Akella
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA
| | | | | | | | | |
Collapse
|
41
|
Active Mutants of the TCR-Mediated p38α Alternative Activation Site Show Changes in the Phosphorylation Lip and DEF Site Formation. J Mol Biol 2011; 405:1154-69. [PMID: 21146537 DOI: 10.1016/j.jmb.2010.11.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 11/08/2010] [Accepted: 11/10/2010] [Indexed: 12/20/2022]
|
42
|
Ota A, Zhang J, Ping P, Han J, Wang Y. Specific regulation of noncanonical p38alpha activation by Hsp90-Cdc37 chaperone complex in cardiomyocyte. Circ Res 2010; 106:1404-12. [PMID: 20299663 PMCID: PMC2891038 DOI: 10.1161/circresaha.109.213769] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
RATIONALE p38 is an important stress activated protein kinase involved in gene regulation, proliferation, differentiation, and cell death regulation in heart. p38 kinase activity can be induced through canonical pathway via upstream kinases or by noncanonical autophosphorylation. The intracellular p38 kinase activity is tightly regulated and maintained at low level under basal condition. The underlying regulatory mechanism for canonical p38 kinase activation is well-studied, but the regulation of noncanonical p38 autophosphorylation remains poorly understood. OBJECTIVE We investigated the molecular basis for the regulation of noncanonical p38 autophosphorylation and its potential functional impact in cardiomyocytes. METHODS AND RESULTS Using both proteomic and biochemical tools, we established that heat shock protein (Hsp)90-Cdc37 chaperones are part of the p38alpha signaling complex in mammalian cells both in vitro and in vivo. The Hsp90-Cdc37 chaperone complex interacts with p38 via direct binding between p38 and Cdc37. Cdc37 expression is both sufficient and necessary to suppress noncanonical p38 activation via autophosphorylation at either basal state or under TAB1 (TAK1 binding protein-1) induction. In contrast, Cdc37 expression has no impact on p38 activation by canonical upstream kinase MKK3 or oxidative stress. Furthermore, Hsp90 inhibition results in p38 activation via autophosphorylation, and p38 activity contribute to apoptotic cell death induced by Hsp90 inhibition. CONCLUSION Our study has revealed a so far uncharacterized function of Hsp90-Cdc37 as an endogenous regulator of noncanonical p38 activity.
Collapse
Affiliation(s)
- Asuka Ota
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095
| | - Jun Zhang
- Division of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095
| | - Peipei Ping
- Division of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095
| | - Jiahuai Han
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Yibin Wang
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095
- Division of Molecular Biology Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095
| |
Collapse
|
43
|
Qin Q, Liao G, Baudry M, Bi X. Cholesterol Perturbation in Mice Results in p53 Degradation and Axonal Pathology through p38 MAPK and Mdm2 Activation. PLoS One 2010; 5:e9999. [PMID: 20386595 PMCID: PMC2850309 DOI: 10.1371/journal.pone.0009999] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 03/10/2010] [Indexed: 11/27/2022] Open
Abstract
Perturbation of lipid metabolism, especially of cholesterol homeostasis, can be catastrophic to mammalian brain, as it has the highest level of cholesterol in the body. This notion is best illustrated by the severe progressive neurodegeneration in Niemann-Pick Type C (NPC) disease, one of the lysosomal storage diseases, caused by mutations in the NPC1 or NPC2 gene. In this study, we found that growth cone collapse induced by genetic or pharmacological disruption of cholesterol egress from late endosomes/lysosomes was directly related to a decrease in axonal and growth cone levels of the phosphorylated form of the tumor suppressor factor p53. Cholesterol perturbation-induced growth cone collapse and decrease in phosphorylated p53 were reduced by inhibition of p38 mitogen-activated protein kinase (MAPK) and murine double minute (Mdm2) E3 ligase. Growth cone collapse induced by genetic (npc1−/−) or pharmacological modification of cholesterol metabolism was Rho kinase (ROCK)-dependent and associated with increased RhoA protein synthesis; both processes were significantly reduced by P38 MAPK or Mdm2 inhibition. Finally, in vivo ROCK inhibition significantly increased phosphorylated p53 levels and neurofilaments in axons, and axonal bundle size in npc1−/− mice. These results indicate that NPC-related and cholesterol perturbation-induced axonal pathology is associated with an abnormal signaling pathway consisting in p38 MAPK activation leading to Mdm2-mediated p53 degradation, followed by ROCK activation. These results also suggest new targets for pharmacological treatment of NPC disease and other diseases associated with disruption of cholesterol metabolism.
Collapse
Affiliation(s)
- Qingyu Qin
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific (COMP), Western University of Health Sciences, Pomona, California, United States of America
| | - Guanghong Liao
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific (COMP), Western University of Health Sciences, Pomona, California, United States of America
| | - Michel Baudry
- Neuroscience Program, University of Southern California, Los Angeles, California, United States of America
| | - Xiaoning Bi
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific (COMP), Western University of Health Sciences, Pomona, California, United States of America
- * E-mail:
| |
Collapse
|
44
|
Kumphune S, Bassi R, Jacquet S, Sicard P, Clark JE, Verma S, Avkiran M, O'Keefe SJ, Marber MS. A chemical genetic approach reveals that p38alpha MAPK activation by diphosphorylation aggravates myocardial infarction and is prevented by the direct binding of SB203580. J Biol Chem 2009; 285:2968-75. [PMID: 19996096 DOI: 10.1074/jbc.m109.079228] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The use of nonselective pharmacological inhibitors has resulted in controversy regarding the mechanism and consequences of p38 activation during myocardial infarction. Classic p38 inhibitors such as SB203580 rely on a critical "gatekeeper" threonine residue for binding. We addressed these controversies by using mice in which the p38alpha alleles were targeted to cause substitution of the gatekeeper residue and resistance to inhibition. In homozygous drug-resistant compared with wild-type hearts, SB203580 failed to inhibit the activating phosphorylation of p38 or to reduce the infarction caused by myocardial ischemia. However, BIRB796, a p38 inhibitor not reliant on the gatekeeper for binding, similarly reduced p38-activating phosphorylation and infarction in both wild-type and knock-in mice, thereby excluding a nonspecific inhibitor-dependent phenotype resulting from the targeting strategy. Furthermore, the activation during myocardial ischemia involved phosphorylation of both the threonine and tyrosine residues in the activation loop of p38 despite the phosphorylation of the threonine alone being sufficient to create the epitope for dual phosphospecific antibody binding. Finally, SB203580 failed to reduce infarction in heterozygous drug-resistant hearts, suggesting that near complete inhibition of p38alpha kinase activity is necessary to elicit protection. These results indicate that, during myocardial ischemia, p38alpha (i) is the dominant-active p38 isoform, (ii) contributes to infarction, (iii) is responsible for the cardioprotective effect of SB203580, and (iv) is activated by a mechanism consistent with autodiphosphorylation despite this necessitating the phosphorylation of a tyrosine residue by an archetypal serine/threonine kinase.
Collapse
Affiliation(s)
- Sarawut Kumphune
- King's College London British Heart Foundation Centre, Cardiovascular Division, The Rayne Institute and StThomas' Hospital, London SE1 7EH, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Mittelstadt PR, Yamaguchi H, Appella E, Ashwell JD. T cell receptor-mediated activation of p38{alpha} by mono-phosphorylation of the activation loop results in altered substrate specificity. J Biol Chem 2009; 284:15469-74. [PMID: 19324872 PMCID: PMC2708844 DOI: 10.1074/jbc.m901004200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 03/20/2009] [Indexed: 12/25/2022] Open
Abstract
p38 MAPKs are typically activated by upstream MAPK kinases that phosphorylate a Thr-X-Tyr motif in the activation loop. An exception is the T cell antigen receptor signaling pathway, which bypasses the MAPK cascade and activates p38alpha and p38beta by phosphorylation of Tyr-323 and subsequent autophosphorylation of the activation loop. Here we show that, unlike the classic MAPK cascade, the alternative pathway results primarily in mono-phosphorylation of the activation loop residue Thr-180. Recombinant mono-phosphorylated and dual phosphorylated p38alpha differed widely with regard to activity and substrate preference. Altered substrate specificity was reproduced in T cells in which p38 was activated by the alternative or classical MAPK pathways. These findings suggest that T cells have evolved a mechanism to utilize p38 in a specialized manner independent of and distinct from the classical p38 MAPK signaling cascade.
Collapse
Affiliation(s)
| | - Hiroshi Yamaguchi
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Ettore Appella
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
46
|
Aberg E, Torgersen KM, Johansen B, Keyse SM, Perander M, Seternes OM. Docking of PRAK/MK5 to the atypical MAPKs ERK3 and ERK4 defines a novel MAPK interaction motif. J Biol Chem 2009; 284:19392-401. [PMID: 19473979 DOI: 10.1074/jbc.m109.023283] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ERK3 and ERK4 are atypical MAPKs in which the canonical TXY motif within the activation loop of the classical MAPKs is replaced by SEG. Both ERK3 and ERK4 bind, translocate, and activate the MAPK-activated protein kinase (MK) 5. The classical MAPKs ERK1/2 and p38 interact with downstream MKs (RSK1-3 and MK2-3, respectively) through conserved clusters of acidic amino acids, which constitute the common docking (CD) domain. In contrast to the classical MAPKs, the interaction between ERK3/4 and MK5 is strictly dependent on phosphorylation of the SEG motif of these kinases. Here we report that the conserved CD domain is dispensable for the interaction of ERK3 and ERK4 with MK5. Using peptide overlay assays, we have defined a novel MK5 interaction motif (FRIEDE) within both ERK4 and ERK3 that is essential for binding to the C-terminal region of MK5. This motif is located within the L16 extension lying C-terminal to the CD domain in ERK3 and ERK4 and a single isoleucine to lysine substitution in FRIEDE totally abrogates binding, activation, and translocation of MK5 by both ERK3 and ERK4. These findings are the first to demonstrate binding of a physiological substrate via this region of the L16 loop in a MAPK. Furthermore, the link between activation loop phosphorylation and accessibility of the FRIEDE interaction motif suggests a switch mechanism for these atypical MAPKs in which the phosphorylation status of the activation loop regulates the ability of both ERK3 and ERK4 to bind to a downstream effector.
Collapse
Affiliation(s)
- Espen Aberg
- Institutes of Pharmacy, Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Activation of immune cells to mediate an immune response is often triggered by potential 'danger' or 'stress' stimuli that the organism receives. Within the mitogen-activated protein kinases (MAPKs) family, the stress-activated protein kinase (SAPK) group was defined as group of kinases that activated by stimuli that cause cell stress. In the immune cells, SAPKs are activated by antigen receptors (B- or T-cell receptors), Toll-like receptors, cytokine receptors, and physical-chemical changes in the environment among other stimuli. The SAPKs are established to be important mediators of intracellular signaling during adaptive and innate immune responses. Here we summarize what is currently known about the role of two sub-groups of SAPKs - c-Jun NH(2)-terminal kinase and p38 MAPK-in the function of specific components of the immune system and the overall contribution to the immune response.
Collapse
Affiliation(s)
- Mercedes Rincón
- Immunology Program, Department of Medicine, University of Vermont, Burlington, VT 05405, USA.
| | | |
Collapse
|
48
|
Askari N, Beenstock J, Livnah O, Engelberg D. p38α Is Active in Vitro and in Vivo When Monophosphorylated at Threonine 180. Biochemistry 2009; 48:2497-504. [DOI: 10.1021/bi900024v] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nadav Askari
- Department of Biological Chemistry and The Wolfson Centre for Applied Structural Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel 91904
| | - Jonah Beenstock
- Department of Biological Chemistry and The Wolfson Centre for Applied Structural Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel 91904
| | - Oded Livnah
- Department of Biological Chemistry and The Wolfson Centre for Applied Structural Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel 91904
| | - David Engelberg
- Department of Biological Chemistry and The Wolfson Centre for Applied Structural Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel 91904
| |
Collapse
|
49
|
Genetic disruption of p38alpha Tyr323 phosphorylation prevents T-cell receptor-mediated p38alpha activation and impairs interferon-gamma production. Blood 2008; 113:2229-37. [PMID: 19011223 DOI: 10.1182/blood-2008-04-153304] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
T cells possess a p38 activation alternative pathway in which stimulation via the antigen receptor (T-cell receptor [TCR]) induces phosphorylation of p38alpha and beta on Tyr323. To assess the contribution of this pathway to normal T-cell function, we generated p38alpha knockin mice in which Tyr323 was replaced with Phe (p38alpha(Y323F)). TCR-mediated stimulation failed to activate p38alpha(Y323F) as measured by phosphorylation of the Thr-Glu-Tyr activation motif and p38alpha catalytic activity. Cell-cycle entry was delayed in TCR-stimulated p38alpha(Y323F) T cells, which also produced less interferon (IFN)-gamma than wild-type T cells in response to TCR-mediated but not TCR-independent stimuli. p38alpha(Y323F) mice immunized with T-helper 1 (Th1)-inducing antigens generated normal Th1 effector cells, but these cells produced less IFN-gamma than wild-type cells when stimulated through the TCR. Thus, the Tyr323-dependent pathway and not the classic mitogen-activated protein (MAP) kinase cascade is the physiologic means of p38alpha activation through the TCR and is necessary for normal Th1 function but not Th1 generation.
Collapse
|
50
|
The Crystal Structure of JNK2 Reveals Conformational Flexibility in the MAP Kinase Insert and Indicates Its Involvement in the Regulation of Catalytic Activity. J Mol Biol 2008; 383:885-93. [DOI: 10.1016/j.jmb.2008.08.086] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 08/15/2008] [Accepted: 08/24/2008] [Indexed: 12/28/2022]
|