1
|
Luman/CREB3 knock-down inhibit hCG induced MLTC-1 apoptosis. Theriogenology 2020; 161:140-150. [PMID: 33310232 DOI: 10.1016/j.theriogenology.2020.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/20/2020] [Accepted: 11/17/2020] [Indexed: 12/25/2022]
Abstract
Luman has been reported to be involved in the formation of COP II-mediated transport vesicles that affect protein transportation and secretion. Western blotting, immunohistochemistry, immunofluorescence, and RT-qPCR indicated that Luman is widely expressed in the male mouse reproductive system. In sperm, Luman was mainly located in the sperm tail, and the expression level increased with sperm maturity. In the testis, Luman was located in Leydig cells. In MLTC-1, a high-concentration hCG treatment significantly increased GRP78, ATF6, p-IRE1, and p-EIF2S1 expression but had no effect on Luman expression. To investigate the role of Luman in hCG-induced ER stress (ERS), experiments were conducted to examine the consequences of short hairpin RNA (shRNA)-mediated Luman knockdown in MLTC-1 cells. Luman knockdown decreased the percentage of S phase cells and up-regulated Cyclin A1, Cyclin B1, and Cyclin D2 expression. ELISA and WB results showed that with Luman knockdown, Cyp11a1, p-IRE1, and p-EIF2S1 expression and testosterone secretion were significantly increased, while GRP78 and CHOP expression were decreased. Flow cytometry results showed that Luman knockdown reduced MLTC-1 cell apoptosis. RT-qPCR and WB results showed that Luman knockdown significantly up-regulated BCL-2 expression and decreased Caspase-3 and BAX expression. These data suggest that Luman is widely expressed in the male mouse reproductive system. In MLTC-1 cells, Luman knockdown up-regulated p-IRE1, p-EIF2S1, and BCL-2 expression and decreased GRP78, CHOP, BAX, and Caspase-3 expression. We propose that Luman knockdown reduces cell apoptosis through the ERS pathway, thereby promoting cell survival and testosterone secretion. These findings provide new insights into the role of Luman in hCG-induced ERS.
Collapse
|
2
|
Klug YA, Schwarzer R, Rotem E, Charni M, Nudelman A, Gramatica A, Zarmi B, Rotter V, Shai Y. The HIV gp41 Fusion Protein Inhibits T-Cell Activation through the Lentiviral Lytic Peptide 2 Motif. Biochemistry 2019; 58:818-832. [PMID: 30602116 DOI: 10.1021/acs.biochem.8b01175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The human immunodeficiency virus enters its host cells by membrane fusion, initiated by the gp41 subunit of its envelope protein. gp41 has also been shown to bind T-cell receptor (TCR) complex components, interfering with TCR signaling leading to reduced T-cell activation. This immunoinhibitory activity is suggested to occur during the membrane fusion process and is attributed to various membranotropic regions of the gp41 ectodomain and to the transmembrane domain. Although extensively studied, the cytosolic region of gp41, termed the cytoplasmic tail (CT), has not been examined in the context of immune suppression. Here we investigated whether the CT inhibits T-cell activation in different T-cell models by utilizing gp41-derived peptides and expressed full gp41 proteins. We found that a conserved region of the CT, termed lentiviral lytic peptide 2 (LLP2), specifically inhibits the activation of mouse, Jurkat, and human primary T-cells. This inhibition resulted in reduced T-cell proliferation, gene expression, cytokine secretion, and cell surface expression of CD69. Differential activation of the TCR signaling cascade revealed that CT-based immune suppression occurs downstream of the TCR complex. Moreover, LLP2 peptide treatment of Jurkat and primary human T-cells impaired Akt but not NFκB and ERK1/2 activation, suggesting that immune suppression occurs through the Akt pathway. These findings identify a novel gp41 T-cell suppressive element with a unique inhibitory mechanism that can take place post-membrane fusion.
Collapse
Affiliation(s)
- Yoel A Klug
- Department of Biomolecular Sciences , Weizmann Institute of Science , Rehovot 7610001 , Israel
| | - Roland Schwarzer
- Gladstone Institute for Virology and Immunology , University of California, San Francisco , San Francisco , California 94158 , United States
| | - Etai Rotem
- Department of Biomolecular Sciences , Weizmann Institute of Science , Rehovot 7610001 , Israel
| | - Meital Charni
- Department of Molecular Cell Biology , Weizmann Institute of Science , Rehovot 7610001 , Israel
| | - Alon Nudelman
- Department of Biomolecular Sciences , Weizmann Institute of Science , Rehovot 7610001 , Israel
| | - Andrea Gramatica
- Gladstone Institute for Virology and Immunology , University of California, San Francisco , San Francisco , California 94158 , United States
| | - Batya Zarmi
- Department of Biomolecular Sciences , Weizmann Institute of Science , Rehovot 7610001 , Israel
| | - Varda Rotter
- Department of Molecular Cell Biology , Weizmann Institute of Science , Rehovot 7610001 , Israel
| | - Yechiel Shai
- Department of Biomolecular Sciences , Weizmann Institute of Science , Rehovot 7610001 , Israel
| |
Collapse
|
3
|
Sabaratnam K, Renner M, Paesen G, Harlos K, Nair V, Owens RJ, Grimes JM. Insights from the crystal structure of the chicken CREB3 bZIP suggest that members of the CREB3 subfamily transcription factors may be activated in response to oxidative stress. Protein Sci 2019; 28:779-787. [PMID: 30653278 PMCID: PMC6423718 DOI: 10.1002/pro.3573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/14/2019] [Indexed: 12/23/2022]
Abstract
cAMP response element binding Protein 3 (CREB3) is an endoplasmic reticulum (ER) membrane‐bound transcription factor, which belongs to the basic leucine zipper (bZIP) superfamily of eukaryotic transcription factors. CREB3 plays a role in the ER‐stress induced unfolded protein response (UPR) and is a multifunctional cellular factor implicated in a number of biological processes including cell proliferation and migration, tumor suppression, and immune‐related gene expression. To gain structural insights into the transcription factor, we determined the crystal structure of the conserved bZIP domain of chicken CREB3 (chCREB3) to a resolution of 3.95 Å. The X‐ray structure provides evidence that chCREB3 can form a stable homodimer. The chCREB3 bZIP has a structured, pre‐formed DNA binding region, even in the absence of DNA, a feature that could potentially enhance both the DNA binding specificity and affinity of chCREB3. Significantly, the homodimeric bZIP possesses an intermolecular disulfide bond that connects equivalent cysteine residues of the parallel helices in the leucine zipper region. This disulfide bond in the hydrophobic core of the bZIP may increase the stability of the homodimer under oxidizing conditions. Moreover, sequence alignment of bZIP sequences from chicken, human, and mouse reveals that only members of the CREB3 subfamily contain this cysteine residue, indicating that it could act as a redox‐sensor. Taken together, these results suggest that the activity of these transcription factors may be redox‐regulated and they may be activated in response to oxidative stress. PDB Code(s): 6IAK
Collapse
Affiliation(s)
- Keshalini Sabaratnam
- Division of Structural Biology, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, United Kingdom.,The Pirbright Institute, Woking, Guildford, Surrey, GU24 0NF, United Kingdom
| | - Max Renner
- Division of Structural Biology, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, United Kingdom
| | - Guido Paesen
- Division of Structural Biology, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, United Kingdom
| | - Karl Harlos
- Division of Structural Biology, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, United Kingdom
| | - Venugopal Nair
- The Pirbright Institute, Woking, Guildford, Surrey, GU24 0NF, United Kingdom
| | - Raymond J Owens
- Division of Structural Biology, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, United Kingdom.,The Research Complex at Harwell, Oxfordshire, OX11 0FA, United Kingdom
| | - Jonathan M Grimes
- Division of Structural Biology, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, United Kingdom.,Diamond Light Source Limited, Oxfordshire, OX11 0DE, United Kingdom
| |
Collapse
|
4
|
Hacker B, Schultheiß C, Döring M, Kurzik-Dumke U. Molecular partners of hNOT/ALG3, the human counterpart of the Drosophila NOT and yeast ALG3 gene, suggest its involvement in distinct cellular processes relevant to congenital disorders of glycosylation, cancer, neurodegeneration and a variety of further pathologies. Hum Mol Genet 2018; 27:1858-1878. [DOI: 10.1093/hmg/ddy087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/06/2018] [Indexed: 01/04/2023] Open
Affiliation(s)
- Benedikt Hacker
- Laboratory for Comparative Tumour Biology, Institute of Medical Microbiology and Hygiene, University Medical Centre, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Christoph Schultheiß
- Laboratory for Comparative Tumour Biology, Institute of Medical Microbiology and Hygiene, University Medical Centre, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Michael Döring
- Laboratory for Comparative Tumour Biology, Institute of Medical Microbiology and Hygiene, University Medical Centre, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Ursula Kurzik-Dumke
- Laboratory for Comparative Tumour Biology, Institute of Medical Microbiology and Hygiene, University Medical Centre, Johannes Gutenberg University, 55131 Mainz, Germany
| |
Collapse
|
5
|
Beraud C, Lemaire M, Perez Bercoff D. Reassessment of the capacity of the HIV-1 Env cytoplasmic domain to trigger NF-κB activation. Virol J 2018; 15:35. [PMID: 29454367 PMCID: PMC5816530 DOI: 10.1186/s12985-018-0941-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/31/2018] [Indexed: 02/07/2023] Open
Abstract
The cytoplasmic domain of lentiviral Envelopes (EnvCD) ensures Env incorporation into nascent virions and regulates Env trafficking to and from the plasma membrane. It has also been reported to promote transcription from the viral LTR both directly and indirectly. Noticeably, the HIV-1 and SIVmac239 EnvCDs were described to trigger nuclear translocation of NF-κB (Postler, Cell Host Microbes 2012). Given the paramount importance of identifying viral and host factors regulating HIV transcription, cellular signaling pathways and latency, and given that viral replication capacity is dependent on Env, we asked whether HIV EnvCDs from different HIV-1 subtypes differently modulated NF-κB. To that aim, we evaluated the ability of primary HIV-1 Envs from subtypes B and C to activate the NF-κB pathway. Primary subtype B and C Envs all failed to activate the NF-κB pathway. In contrast, when the EnvCD of HIV-1 Envs was fused to the the CD8-α chain, it induced ~ 10-fold increase in NF-κB induction, and this increase was much stronger with a truncated form of the HIV EnvCD lacking the 76 C-terminal residues and containing the proposed TAK-1 binding domain. Our results indicate that the HIV-1 EnvCD is unlikely to trigger the NF-κB pathway in its native trimeric form.
Collapse
Affiliation(s)
- Cyprien Beraud
- Department of Infection and Immunity, Molecular Signaling and Virus-Host Interactions group, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
| | - Morgane Lemaire
- Department of Infection and Immunity, Molecular Signaling and Virus-Host Interactions group, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
| | - Danielle Perez Bercoff
- Department of Infection and Immunity, Molecular Signaling and Virus-Host Interactions group, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
6
|
Zhao X, Li P, An K, Jia X, Cheng Y, Jia T. Chlamydia pneumoniae inclusion membrane protein Cpn0147 interacts with host protein CREB3. PLoS One 2017; 12:e0185593. [PMID: 28957394 PMCID: PMC5619797 DOI: 10.1371/journal.pone.0185593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/17/2017] [Indexed: 11/18/2022] Open
Abstract
Chlamydiae are Gram-negative obligate intracellular bacteria that cause diseases with significant medical and economic impacts. Like other chlamydial species, Chlamydia pneumoniae possesses a unique developmental cycle, the infectious elementary body gains access to the susceptible host cell, where it transforms into the replicative reticulate body. The cytoplasmic vacuole where Chlamydia pneumoniae replicates is called an inclusion, which is extensively modified by the insertion of chlamydial effectors known as inclusion membrane proteins (Incs). The C. pneumoniae-specific inclusion membrane protein (Inc) Cpn0147 contains domains that are predicted to be exposed to the host cytoplasm. To map host cell binding partners of Cpn0147, a yeast two-hybrid system was used to screen Cpn0147 against a HeLa cell cDNA library, which led to the finding that Cpn0147 interacted with the host cell protein cyclic adenosine monophosphate (cAMP)-responsive element (CRE)-binding protein (CREB3). The interaction was validated by co-immunoprecipitation of Cpn0147 with CREB3 from HeLa cells ectopically expressing both. Furthermore, Cpn0147 and CREB3 were co-localised in HeLa cells under confocal fluorescence microscopy. The above observations suggest that CREB3 may directly bind to the cytoplasmic domain of Cpn0147 to mediate the interactions of chlamydial inclusions with host cell endoplasmic reticulum.
Collapse
Affiliation(s)
- Xia Zhao
- Laboratory Medicine College, Hebei North University, Zhang Jiakou, Hebei Province, PR China
| | - Ping Li
- Laboratory Medicine College, Hebei North University, Zhang Jiakou, Hebei Province, PR China
| | - Kang An
- Laboratory Medicine College, Hebei North University, Zhang Jiakou, Hebei Province, PR China
| | - Xiaohui Jia
- Laboratory Medicine College, Hebei North University, Zhang Jiakou, Hebei Province, PR China
| | - Yongting Cheng
- Laboratory Medicine College, Hebei North University, Zhang Jiakou, Hebei Province, PR China
| | - Tianjun Jia
- Laboratory Medicine College, Hebei North University, Zhang Jiakou, Hebei Province, PR China
- * E-mail:
| |
Collapse
|
7
|
The Envelope Cytoplasmic Tail of HIV-1 Subtype C Contributes to Poor Replication Capacity through Low Viral Infectivity and Cell-to-Cell Transmission. PLoS One 2016; 11:e0161596. [PMID: 27598717 PMCID: PMC5012655 DOI: 10.1371/journal.pone.0161596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/08/2016] [Indexed: 12/15/2022] Open
Abstract
The cytoplasmic tail (gp41CT) of the HIV-1 envelope (Env) mediates Env incorporation into virions and regulates Env intracellular trafficking. Little is known about the functional impact of variability in this domain. To address this issue, we compared the replication of recombinant virus pairs carrying the full Env (Env viruses) or the Env ectodomain fused to the gp41CT of NL4.3 (EnvEC viruses) (12 subtype C and 10 subtype B pairs) in primary CD4+ T-cells and monocyte-derived-macrophages (MDMs). In CD4+ T-cells, replication was as follows: B-EnvEC = B-Env>C-EnvEC>C-Env, indicating that the gp41CT of subtype C contributes to the low replicative capacity of this subtype. In MDMs, in contrast, replication capacity was comparable for all viruses regardless of subtype and of gp41CT. In CD4+ T-cells, viral entry, viral release and viral gene expression were similar. However, infectivity of free virions and cell-to-cell transmission of C-Env viruses released by CD4+ T-cells was lower, suggestive of lower Env incorporation into virions. Subtype C matrix only minimally rescued viral replication and failed to restore infectivity of free viruses and cell-to-cell transmission. Taken together, these results show that polymorphisms in the gp41CT contribute to viral replication capacity and suggest that the number of Env spikes per virion may vary across subtypes. These findings should be taken into consideration in the design of vaccines.
Collapse
|
8
|
Steckbeck JD, Kuhlmann AS, Montelaro RC. Structural and functional comparisons of retroviral envelope protein C-terminal domains: still much to learn. Viruses 2014; 6:284-300. [PMID: 24441863 PMCID: PMC3917443 DOI: 10.3390/v6010284] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/06/2014] [Indexed: 01/24/2023] Open
Abstract
Retroviruses are a family of viruses that cause a broad range of pathologies in animals and humans, from the apparently harmless, long-term genomic insertion of endogenous retroviruses, to tumors induced by the oncogenic retroviruses and acquired immunodeficiency syndrome (AIDS) resulting from human immunodeficiency virus infection. Disease can be the result of diverse mechanisms, including tumorigenesis induced by viral oncogenes or immune destruction, leading to the gradual loss of CD4 T-cells. Of the virally encoded proteins common to all retroviruses, the envelope (Env) displays perhaps the most diverse functionality. Env is primarily responsible for binding the cellular receptor and for effecting the fusion process, with these functions mediated by protein domains localized to the exterior of the virus. The remaining C-terminal domain may have the most variable functionality of all retroviral proteins. The C-terminal domains from three prototypical retroviruses are discussed, focusing on the different structures and functions, which include fusion activation, tumorigenesis and viral assembly and lifecycle influences. Despite these genetic and functional differences, however, the C-terminal domains of these viruses share a common feature in the modulation of Env ectodomain conformation. Despite their differences, perhaps each system still has information to share with the others.
Collapse
Affiliation(s)
- Jonathan D Steckbeck
- Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | - Anne-Sophie Kuhlmann
- Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | - Ronald C Montelaro
- Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
9
|
Tappenden DM, Hwang HJ, Yang L, Thomas RS, LaPres JJ. The Aryl-Hydrocarbon Receptor Protein Interaction Network (AHR-PIN) as Identified by Tandem Affinity Purification (TAP) and Mass Spectrometry. J Toxicol 2013; 2013:279829. [PMID: 24454361 PMCID: PMC3870133 DOI: 10.1155/2013/279829] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/09/2013] [Accepted: 10/14/2013] [Indexed: 12/28/2022] Open
Abstract
The aryl-hydrocarbon receptor (AHR), a ligand activated PAS superfamily transcription factor, mediates most, if not all, of the toxicity induced upon exposure to various dioxins, dibenzofurans, and planar polyhalogenated biphenyls. While AHR-mediated gene regulation plays a central role in the toxic response to dioxin exposure, a comprehensive understanding of AHR biology remains elusive. AHR-mediated signaling starts in the cytoplasm, where the receptor can be found in a complex with the heat shock protein of 90 kDa (Hsp90) and the immunophilin-like protein, aryl-hydrocarbon receptor-interacting protein (AIP). The role these chaperones and other putative interactors of the AHR play in the toxic response is not known. To more comprehensively define the AHR-protein interaction network (AHR-PIN) and identify other potential pathways involved in the toxic response, a proteomic approach was undertaken. Using tandem affinity purification (TAP) and mass spectrometry we have identified several novel protein interactions with the AHR. These interactions physically link the AHR to proteins involved in the immune and cellular stress responses, gene regulation not mediated directly via the traditional AHR:ARNT heterodimer, and mitochondrial function. This new insight into the AHR signaling network identifies possible secondary signaling pathways involved in xenobiotic-induced toxicity.
Collapse
Affiliation(s)
- Dorothy M. Tappenden
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA
- Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824-1319, USA
| | - Hye Jin Hwang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA
- Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI 48824-1319, USA
| | - Longlong Yang
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709, USA
| | - Russell S. Thomas
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709, USA
| | - John J. LaPres
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA
- Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824-1319, USA
- Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI 48824-1319, USA
| |
Collapse
|
10
|
Ye J. Roles of regulated intramembrane proteolysis in virus infection and antiviral immunity. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1828:2926-32. [PMID: 24099010 PMCID: PMC3837687 DOI: 10.1016/j.bbamem.2013.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 01/24/2023]
Abstract
Regulated intramembrane proteolysis (RIP) is a signaling mechanism through which transmembrane precursor proteins are cleaved to liberate their cytoplasmic and/or luminal/extracellular fragments from membranes so that these fragments are able to function at a new location. Recent studies have indicated that this proteolytic reaction plays an important role in host-virus interaction. On one hand, RIP transfers the signal from the endoplasmic reticulum (ER) to nucleus to activate antiviral genes in response to alteration of the ER caused by viral infection. On the other hand, RIP can be hijacked by virus to process transmembrane viral protein precursors and to destroy transmembrane antiviral proteins. Understanding this Yin and Yang side of RIP may lead to new strategies to combat viral infection. This article is part of a Special Issue entitled: Intramembrane Proteases.
Collapse
Affiliation(s)
- Jin Ye
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9046, USA.
| |
Collapse
|
11
|
Pfeiffer T, Ruppert T, Schaal H, Bosch V. Detection and initial characterization of protein entities consisting of the HIV glycoprotein cytoplasmic C-terminal domain alone. Virology 2013; 441:85-94. [DOI: 10.1016/j.virol.2013.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 02/26/2013] [Accepted: 03/13/2013] [Indexed: 11/29/2022]
|
12
|
Steckbeck JD, Sun C, Sturgeon TJ, Montelaro RC. Detailed topology mapping reveals substantial exposure of the "cytoplasmic" C-terminal tail (CTT) sequences in HIV-1 Env proteins at the cell surface. PLoS One 2013; 8:e65220. [PMID: 23724133 PMCID: PMC3664582 DOI: 10.1371/journal.pone.0065220] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/24/2013] [Indexed: 01/20/2023] Open
Abstract
Substantial controversy surrounds the membrane topology of the HIV-1 gp41 C-terminal tail (CTT). While few studies have been designed to directly address the topology of the CTT, results from envelope (Env) protein trafficking studies suggest that the CTT sequence is cytoplasmically localized, as interactions with intracellular binding partners are required for proper Env targeting. However, previous studies from our lab demonstrate the exposure of a short CTT sequence, the Kennedy epitope, at the plasma membrane of intact Env-expressing cells, the exposure of which is not observed on viral particles. To address the topology of the entire CTT sequence, we serially replaced CTT sequences with a VSV-G epitope tag sequence and examined reactivity of cell- and virion-surface Env to an anti-VSV-G monoclonal antibody. Our results demonstrate that the majority of the CTT sequence is accessible to antibody binding on the surface of Env expressing cells, and that the CTT-exposed Env constitutes 20–50% of the cell-surface Env. Cell surface CTT exposure was also apparent in virus-infected cells. Passive transfer of Env through cell culture media to Env negative (non-transfected) cells was not responsible for the apparent cell surface CTT exposure. In contrast to the cell surface results, CTT-exposed Env was not detected on infectious pseudoviral particles containing VSV-G-substituted Env. Finally, a monoclonal antibody directed to the Kennedy epitope neutralized virus in a temperature-dependent manner in a post-attachment neutralization assay. Collectively, these results suggest that the membrane topology of the HIV gp41 CTT is more complex than the widely accepted intracytoplasmic model.
Collapse
Affiliation(s)
- Jonathan D. Steckbeck
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Chengqun Sun
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Timothy J. Sturgeon
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ronald C. Montelaro
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
13
|
Santos da Silva E, Mulinge M, Perez Bercoff D. The frantic play of the concealed HIV envelope cytoplasmic tail. Retrovirology 2013; 10:54. [PMID: 23705972 PMCID: PMC3686653 DOI: 10.1186/1742-4690-10-54] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 05/01/2013] [Indexed: 11/18/2022] Open
Abstract
Lentiviruses have unusually long envelope (Env) cytoplasmic tails, longer than those of other retroviruses. Whereas the Env ectodomain has received much attention, the gp41 cytoplasmic tail (gp41-CT) is one of the least studied parts of the virus. It displays relatively high conservation compared to the rest of Env. It has been long established that the gp41-CT interacts with the Gag precursor protein to ensure Env incorporation into the virion. The gp41-CT contains distinct motifs and domains that mediate both intensive Env intracellular trafficking and interactions with numerous cellular and viral proteins, optimizing viral infectivity. Although they are not fully understood, a multiplicity of interactions between the gp41-CT and cellular factors have been described over the last decade; these interactions illustrate how Env expression and incorporation into virions is a finely tuned process that has evolved to best exploit the host system with minimized genetic information. This review addresses the structure and topology of the gp41-CT of lentiviruses (mainly HIV and SIV), their domains and believed functions. It also considers the cellular and viral proteins that have been described to interact with the gp41-CT, with a particular focus on subtype-related polymorphisms.
Collapse
|
14
|
Expression and localization of Luman RNA and protein during mouse implantation and decidualization. Theriogenology 2013; 80:138-44.e1-2. [PMID: 23683694 DOI: 10.1016/j.theriogenology.2013.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 02/25/2013] [Accepted: 02/25/2013] [Indexed: 11/23/2022]
Abstract
Luman (also known as LZIP and CREB3) is a basic leucine zipper transcription factor of the cAMP response element-binding protein/activating transcription factor gene family. Although Luman had specific roles near termination of Drosophila embryogenesis, the physiological functions of Luman in female mammals have apparently not been reported. Therefore, our objective was to investigate the spatiotemporal expression and regulation of Luman in the mouse uterus during the peri-implantation period. Luman protein was clearly present in the luminal and glandular epithelium on days 1 to 4 of pregnancy (day 1, presence of a vaginal plug) and was observed in decidual cells on day 6 of pregnancy. Expression had progressively increased to day 7 when the second decidual zone was formed. On day 8, apoptosis of the decidualized cells was present, and Luman protein expression was decreased (in close association with decidualization). Luman protein was also present in decidual cells of the artificially decidualized uterus. The expression of Luman was regulated by an activated embryo (according to its expression patterns during pseudopregnancy and delayed implantation). Furthermore, expression of Luman was induced by estrogen in ovariectomized mice. We have concluded that Luman might have important roles in embryo implantation and decidualization.
Collapse
|
15
|
DenBoer LM, Iyer A, McCluggage ARR, Li Y, Martyn AC, Lu R. JAB1/CSN5 inhibits the activity of Luman/CREB3 by promoting its degradation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:921-9. [PMID: 23583719 DOI: 10.1016/j.bbagrm.2013.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 04/01/2013] [Accepted: 04/03/2013] [Indexed: 12/26/2022]
Abstract
Luman/CREB3 (also called LZIP) is an endoplasmic reticulum (ER)-bound transcription factor that has been implicated in the ER stress response. In this study, we used the region of Luman containing the basic DNA-binding domain as bait in a yeast two-hybrid screen and identified the Jun activation domain-binding protein 1 (JAB1) or the COP9 signalosome complex unit 5 (CSN5) as an interacting protein. We confirmed their direct binding by glutathione S-transferase pull-down assays, and verified the existence of such interaction in the cellular environment by mammalian two-hybrid and co-immunoprecipitation assays. Deletion mapping studies revealed that the MPN domain in JAB1 was essential and sufficient for the binding. JAB1 also colocalized with Luman in transfected cells. More interestingly, the nuclear form of Luman was shown to promote the translocation of JAB1 into the nucleus. We found that overexpression of JAB1 shortened the half-life of Luman by 67%, and repressed its transactivation function on GAL4 and unfolded protein response element (UPRE)-containing promoters. We therefore propose that JAB1 is a novel binding partner of Luman, which negatively regulates the activity of Luman by promoting its degradation.
Collapse
Affiliation(s)
- Lisa M DenBoer
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Yang Y, Jin Y, Martyn AC, Lin P, Song Y, Chen F, Hu L, Cui C, Li X, Li Q, Lu R, Wang A. Expression pattern implicates a potential role for luman recruitment factor in the process of implantation in uteri and development of preimplantation embryos in mice. J Reprod Dev 2013; 59:245-51. [PMID: 23400243 PMCID: PMC3934142 DOI: 10.1262/jrd.2012-137] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Luman/CREB3 recruitment factor (LRF or CREBRF) was identified as a regulator of Luman
(or CREB3) that is involved in the unfolded protein response during endoplasmic reticulum
stress. Luman is implicated in a multitude of functions ranging from viral infection and
immunity to cancer. The biological function of LRF, however, is unknown. In this paper, we
report that uteri of pregnant mice and embryos displayed enhanced LRF expression at all
stages, and the expressed LRF was found to be localized specifically at implantation
sites. On the other hand, uteri of mice induced for delayed implantation or pseudopregnant
mice showed low levels of LRF expression, suggesting that LRF mediates uterine receptivity
during implantation. Further, expression of LRF was found to be modulated by steroid
hormones such as progesterone and estradiol. This study thereby identifies a potential
role for LRF in the process of implantation in uteri and development of preimplantation
embryos in mice.
Collapse
Affiliation(s)
- Yanzhou Yang
- Key Open Laboratory of Animal Biotechnology, Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling Shaanxi 712100, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Envelope glycoproteins (Env) of lentiviruses typically possess unusually long cytoplasmic domains, often 150 amino acids or longer. It is becoming increasingly clear that these sequences contribute a diverse array of functional activities to the life cycle of their viruses. The cytoplasmic domain of gp41 (gp41CD) is required for replication of human immunodeficiency virus type 1 (HIV-1) in most but not all cell types, whereas it is largely dispensable for replication of simian immunodeficiency virus (SIV). Functionally, gp41CD has been shown to regulate rapid clathrin-mediated endocytosis of Env. The resultant low levels of Env expression at the cell surface likely serve as an immune avoidance mechanism to limit accessibility to the humoral immune response. Intracellular trafficking of Env is also regulated by gp41CD through interactions with a variety of cellular proteins. Furthermore, gp41CD has been implicated in the incorporation of Env into virions through an interaction with the virally encoded matrix protein. Most recently, the gp41CDs of HIV-1 and SIV were shown to activate the key cellular-transcription factor NF-κB via the serine/threonine kinase TAK1. Less well understood are the cytotoxicity- and apoptosis-inducing activities of gp41CD as well as potential roles in modulating the actin cytoskeleton and overcoming host cell restrictions. In this review, we summarize what is currently known about the cytoplasmic domains of HIV-1 and SIV and attempt to integrate the wealth of information in terms of defined functional activities.
Collapse
Affiliation(s)
- Thomas S. Postler
- New England Primate Research Center, Department of Microbiology and Immunobiology, Harvard Medical School, Southborough, Massachusetts, USA
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ronald C. Desrosiers
- New England Primate Research Center, Department of Microbiology and Immunobiology, Harvard Medical School, Southborough, Massachusetts, USA
| |
Collapse
|
18
|
Steckbeck JD, Kuhlmann AS, Montelaro RC. C-terminal tail of human immunodeficiency virus gp41: functionally rich and structurally enigmatic. J Gen Virol 2012; 94:1-19. [PMID: 23079381 PMCID: PMC3542723 DOI: 10.1099/vir.0.046508-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The human immunodeficiency virus (HIV) and acquired immunodeficiency syndrome (AIDS) pandemic is amongst the most important current worldwide public health threats. While much research has been focused on AIDS vaccines that target the surface viral envelope (Env) protein, including gp120 and the gp41 ectodomain, the C-terminal tail (CTT) of gp41 has received relatively little attention. Despite early studies highlighting the immunogenicity of a particular CTT sequence, the CTT has been classically portrayed as a type I membrane protein limited to functioning in Env trafficking and virion incorporation. Recent studies demonstrate, however, that the Env CTT has other important functions. The CTT has been shown to additionally modulate Env ectodomain structure on the cell and virion surface, affect Env reactivity and viral sensitivity to conformation-dependent neutralizing antibodies, and alter cell–cell and virus–cell fusogenicity of Env. This review provides an overview of the Env structure and function with a particular emphasis on the CTT and recent studies that highlight its functionally rich nature.
Collapse
Affiliation(s)
- Jonathan D. Steckbeck
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Anne-Sophie Kuhlmann
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Ronald C. Montelaro
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| |
Collapse
|
19
|
Identification and characterization of five intramembrane metalloproteases in Anabaena variabilis. J Bacteriol 2012; 194:6105-15. [PMID: 22961855 DOI: 10.1128/jb.01366-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Regulated intramembrane proteolysis (RIP) involves cleavage of a transmembrane segment of a protein, releasing the active form of a membrane-anchored transcription factor (MTF) or a membrane-tethered signaling protein in response to an extracellular or intracellular signal. RIP is conserved from bacteria to humans and governs many important signaling pathways in both prokaryotes and eukaryotes. Proteases that carry out these cleavages are named intramembrane cleaving proteases (I-CLips). To date, little is known about I-CLips in cyanobacteria. In this study, five putative site-2 type I-Clips (Ava_1070, Ava_1730, Ava_1797, Ava_3438, and Ava_4785) were identified through a genome-wide survey in Anabaena variabilis. Biochemical analysis demonstrated that these five putative A. variabilis site-2 proteases (S2Ps(Av)) have authentic protease activities toward an artificial substrate pro-σ(K), a Bacillus subtilis MTF, in our reconstituted Escherichia coli system. The enzymatic activities of processing pro-σ(K) differ among these five S2Ps(Av). Substitution of glutamic acid (E) by glutamine (Q) in the conserved HEXXH zinc-coordinated motif caused the loss of protease activities in these five S2Ps(Av), suggesting that they belonged to the metalloprotease family. Further mapping of the cleaved peptides of pro-σ(K) by Ava_4785 and Ava_1797 revealed that Ava_4785 and Ava_1797 recognized the same cleavage site in pro-σ(K) as SpoIVFB, a cognate S2P of pro-σ(K) from B. subtilis. Taking these results together, we report here for the first time the identification of five metallo-intramembrane cleaving proteases in Anabaena variabilis. The experimental system described herein should be applicable to studies of other RIP events and amenable to developing in vitro assays for I-CLips.
Collapse
|
20
|
Retroviral env glycoprotein trafficking and incorporation into virions. Mol Biol Int 2012; 2012:682850. [PMID: 22811910 PMCID: PMC3395148 DOI: 10.1155/2012/682850] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/08/2012] [Accepted: 05/31/2012] [Indexed: 11/17/2022] Open
Abstract
Together with the Gag protein, the Env glycoprotein is a major retroviral structural protein and is essential for forming infectious virus particles. Env is synthesized, processed, and transported to certain microdomains at the plasma membrane and takes advantage of the same host machinery for its trafficking as that used by cellular glycoproteins. Incorporation of Env into progeny virions is probably mediated by the interaction between Env and Gag, in some cases with the additional involvement of certain host factors. Although several general models have been proposed to explain the incorporation of retroviral Env glycoproteins into virions, the actual mechanism for this process is still unclear, partly because structural data on the Env protein cytoplasmic tail is lacking. This paper presents the current understanding of the synthesis, trafficking, and virion incorporation of retroviral Env proteins.
Collapse
|
21
|
Postler TS, Desrosiers RC. The cytoplasmic domain of the HIV-1 glycoprotein gp41 induces NF-κB activation through TGF-β-activated kinase 1. Cell Host Microbe 2012; 11:181-93. [PMID: 22341466 PMCID: PMC3285415 DOI: 10.1016/j.chom.2011.12.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 11/22/2011] [Accepted: 12/28/2011] [Indexed: 12/20/2022]
Abstract
The human and simian immunodeficiency viruses (HIV and SIV) primarily infect lymphocytes, which must be activated for efficient viral replication. We show that the cytoplasmic domain of the transmembrane glycoprotein gp41 (gp41CD) of both HIV-1 and SIV induces activation of NF-κB, a cellular factor important for proviral genome transcription and lymphocyte activation. This NF-κB activating property localized to a region 12-25 (SIV) or 59-70 (HIV-1) residues from the gp41 membrane-spanning domain. An siRNA-based screen of 42 key NF-κB regulators revealed that gp41CD-mediated activation occurs through the canonical NF-κB pathway via TGF-β-activated kinase 1 (TAK1). TAK1 activity was required for gp41CD-mediated NF-κB activation, and HIV-1-derived gp41CD physically interacted with TAK1 through the same region required for NF-κB activation. Importantly, an NF-κB activation-deficient HIV-1 mutant exhibited increased dependence on cellular activation for replication. These findings demonstrate an evolutionarily conserved role for gp41CD in activating NF-κB to promote infection.
Collapse
Affiliation(s)
- Thomas S. Postler
- New England Primate Research Center, Department of Microbiology and Molecular Genetics, Harvard Medical School, Southborough, Massachusetts 01772-9102, U.S.A
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ronald C. Desrosiers
- New England Primate Research Center, Department of Microbiology and Molecular Genetics, Harvard Medical School, Southborough, Massachusetts 01772-9102, U.S.A
| |
Collapse
|
22
|
Checkley MA, Luttge BG, Freed EO. HIV-1 envelope glycoprotein biosynthesis, trafficking, and incorporation. J Mol Biol 2011; 410:582-608. [PMID: 21762802 PMCID: PMC3139147 DOI: 10.1016/j.jmb.2011.04.042] [Citation(s) in RCA: 341] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 04/14/2011] [Accepted: 04/15/2011] [Indexed: 12/13/2022]
Abstract
The HIV-1 envelope (Env) glycoproteins play an essential role in the virus replication cycle by mediating the fusion between viral and cellular membranes during the entry process. The Env glycoproteins are synthesized as a polyprotein precursor (gp160) that is cleaved by cellular proteases to the mature surface glycoprotein gp120 and the transmembrane glycoprotein gp41. During virus assembly, the gp120/gp41 complex is incorporated as heterotrimeric spikes into the lipid bilayer of nascent virions. These gp120/gp41 complexes then initiate the infection process by binding receptor and coreceptor on the surface of target cells. Much is currently known about the HIV-1 Env glycoprotein trafficking pathway and the structure of gp120 and the extracellular domain of gp41. However, the mechanism by which the Env glycoprotein complex is incorporated into virus particles remains incompletely understood. Genetic data support a major role for the cytoplasmic tail of gp41 and the matrix domain of Gag in Env glycoprotein incorporation. Still to be defined are the identities of host cell factors that may promote Env incorporation and the role of specific membrane microdomains in this process. Here, we review our current understanding of HIV-1 Env glycoprotein trafficking and incorporation into virions.
Collapse
Affiliation(s)
- Mary Ann Checkley
- Virus-Cell Interaction Section, HIV Drug Resistance Program National Cancer Institute Frederick, MD 21702
| | - Benjamin G. Luttge
- Virus-Cell Interaction Section, HIV Drug Resistance Program National Cancer Institute Frederick, MD 21702
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Drug Resistance Program National Cancer Institute Frederick, MD 21702
| |
Collapse
|
23
|
Santos-Costa Q, Parreira R, Moniz-Pereira J, Azevedo-Pereira JM. Molecular characterization of the env gene of two CCR5/CXCR4-independent human immunodeficiency 2 primary isolates. J Med Virol 2009; 81:1869-81. [PMID: 19774680 DOI: 10.1002/jmv.21619] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Human immunodeficiency virus 2 (HIV-2) infection is characterized by a slower disease progression and lower transmission rates. The molecular features that could be assigned as directly involved in this in vivo phenotype remain essentially unknown, and the importance of HIV-2 as a model to understand pathogenicity of HIV infection has been frequently underestimated. The early events of the HIV replication cycle involve the interaction between viral envelope glycoproteins and cellular receptors: the CD4 molecule and a chemokine receptor, usually CCR5 or CXCR4. Despite the importance of these two chemokine receptors in human immunodeficiency virus 1 (HIV-1) entry into cells, we have previously shown that in some HIV-2 asymptomatic individuals, a viral population exists that is unable to use both CCR5 and CXCR4. The goal of the present study was to investigate whether possible regions in the env gene of these viruses might account for this phenotype. From the molecular characterization of these env genes we could not detect any correlation between V3 loop sequence and viral phenotype. In contrast, it reveals the existence of remarkable differences in the V1/V2 and C5 regions of the surface glycoprotein, including the loss of a putative glycosilation site. Moreover, in the transmembrane glycoprotein some unique sequence signatures could be detected in the central ectodomain and second heptad repeat (HR2). Some of the mutations affect well-conserved residues, and may affect the conformation and/or the dynamics of envelope glycoproteins complex, including the SU-TM association and the modulation of viral entry function.
Collapse
Affiliation(s)
- Quirina Santos-Costa
- Centro de Patogénese Molecular - Unidade dos Retrovirus e Infecções Associadas, Universidade de Lisboa, Lisboa 1649-003, Portugal
| | | | | | | |
Collapse
|
24
|
Identification of the cellular prohibitin 1/prohibitin 2 heterodimer as an interaction partner of the C-terminal cytoplasmic domain of the HIV-1 glycoprotein. J Virol 2009; 84:1355-65. [PMID: 19906925 DOI: 10.1128/jvi.01641-09] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Our studies aim to elucidate the functions carried out by the very long, and in its length highly conserved, C-terminal cytoplasmic domain (Env-CT) of the HIV-1 glycoprotein. Mass spectrometric analysis of cellular proteins bound to a tagged version of the HIV Env-CT led to the identification of the prohibitin 1 and 2 proteins (Phb1 and Phb2). These ubiquitously expressed proteins, which exist as stable heterodimers, have been shown to have multiple functions within cells and to localize to multiple cellular and extracellular compartments. The specificity of binding of the Phb1/Phb2 complex to the Env-CT was confirmed in various manners, including coimmunoprecipitation with authentic provirally encoded, full-length Env. Strong binding was dependent on Env residues 790 to 800 and could be severely inhibited by the double mutation L799R/L800Q but not by mutation of these amino acids individually. Analysis of the respective mutant virions revealed that their different abilities to bind Phb1/Phb2 correlated with their replicative properties. Thus, mutated virions with single mutations [HIV-Env-(L799R) and HIV-Env-(L800Q)] replicated similarly to wild-type HIV, but HIV-Env-(L799R/L800Q) virions, which cannot bind Phb1/Phb2, exhibited a cell-dependent replicative phenotype similar to that of HIV-Env-Tr712, lacking the entire Env-CT domain. Thus, replicative spread was achieved, although somewhat delayed, in "permissive" MT-4 cells but failed to occur in "nonpermissive" H9 T cells. These results point to binding of the Phb1/Phb2 complex to the Env-CT as being of importance for replicative spread in nonpermissive cells, possibly by modulating critical Phb-dependent cellular process(es).
Collapse
|
25
|
Kang H, Kim YS, Ko J. A novel isoform of human LZIP negatively regulates the transactivation of the glucocorticoid receptor. Mol Endocrinol 2009; 23:1746-57. [PMID: 19779205 DOI: 10.1210/me.2009-0009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The human leucine zipper protein (LZIP) is a basic leucine zipper transcription factor that is involved in leukocyte migration, tumor suppression, and endoplasmic reticulum stress-associated protein degradation. Although evidence suggests a diversity of roles for LZIP, its function is not fully understood, and the subcellular localization of LZIP is still controversial. We identified a novel isoform of LZIP and characterized its function in ligand-induced transactivation of the glucocorticoid receptor (GR) in COS-7 and HeLa cells. A novel isoform of human LZIP designated as "sLZIP" contains a deleted putative transmembrane domain (amino acids 229-245) of LZIP and consists of 345 amino acids. LZIP and sLZIP were ubiquitously expressed in a variety of cell lines and tissues, with LZIP being much more common. sLZIP was mainly localized in the nucleus, whereas LZIP was located in the cytoplasm. Unlike LZIP, sLZIP was not involved in the chemokine-mediated signal pathway. sLZIP recruited histone deacetylases (HDACs) to the promoter region of the mouse mammary tumor virus luciferase reporter gene and enhanced the activities of HDACs, resulting in suppression of expression of the GR target genes. Our findings suggest that sLZIP functions as a negative regulator in glucocorticoid-induced transcriptional activation of GR by recruitment and activation of HDACs.
Collapse
Affiliation(s)
- Hyereen Kang
- School of Life Sciences and Biotechnology, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul 136-701, Korea
| | | | | |
Collapse
|
26
|
Fenard D, Houzet L, Bernard E, Tupin A, Brun S, Mougel M, Devaux C, Chazal N, Briant L. Uracil DNA Glycosylase 2 negatively regulates HIV-1 LTR transcription. Nucleic Acids Res 2009; 37:6008-18. [PMID: 19696076 PMCID: PMC2764447 DOI: 10.1093/nar/gkp673] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Numerous cellular factors belonging to the DNA repair machineries, including RAD18, RAD52, XPB and XPD, have been described to counteract human immunodeficiency virus type 1 (HIV-1) replication. Recently, Uracil DNA glycosylase 2 (UNG2), a major determinant of the uracil base excision repair pathway, was shown to undergo rapid proteasome-dependent degradation following HIV-1 infection. However, the specific role of intracellular UNG2 depletion during the course of HIV-1 infection is not clearly understood. Our study shows for the first time that overexpression of UNG2 inhibits HIV-1 replication. We demonstrate that this viral inhibition is correlated with a marked decrease in transcription efficiency as shown by monitoring HIV-1 LTR promoter activity and quantification of HIV-1 RNA levels. Interestingly, UNG2 inhibits LTR activity when stimulated by Tat transactivator or TNFalpha, while barely affected using Phorbol ester activation. Mutational analysis of UNG2 indicates that antiviral activity may require the integrity of the UNG2 catalytic domain. Altogether, our data indicate that UNG2 is likely to represent a new host defense factor specifically counteracted by HIV-1 Vpr. The molecular mechanisms involved in the UNG2 antiviral activity still remain elusive but may rely on the sequestration of specific cellular factor(s) critical for viral transcription.
Collapse
Affiliation(s)
- David Fenard
- Université Montpellier 1, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, CNRS, UMR 5236, CPBS, F-34965 Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Qi M, Lei T, Zhou L, Chen XD, Long H, Long QQ, Zhang RR, Yang ZQ, Gan L. Cloning, characterization, chromosomal mapping and tissue transcription analysis of porcine CREB2 and CREB3 genes. Folia Biol (Praha) 2009; 55:137-144. [PMID: 19691921 DOI: 10.14712/fb2009055040137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
CREB2 and CREB3 are two important members of the ATF/CREB family, which negatively and positively regulates CRE-dependent transcription in vitro. Here we report the cloning, chromosome mapping and tissue transcription analysis of CREB2 and CREB3 in pigs. The full-length coding sequence of CREB2 and CREB3 is 1047 bp and 1098 bp, encoding 348 and 365 amino acids, respectively. Porcine CREB3 comprises nine exons and eight introns, whereas CREB2 consists of three exons and two introns. CREB2 and CREB3 were cytogenetically assigned to porcine chromosome 5p and 1q28, respectively. Tissue transcription analysis revealed that both porcine CREB2 and CREB3 mRNA were ubiquitously detected in all examined tissues. Additionally, we cloned the 5' flank genomic sequence of porcine CREB3 and characterized several putative transcription factor recognition sites including SP1, NF-kappaB, AP-1 and AP-2 in its promoter region. Our studies provide basic molecular information helpful for further investigation of the function of the two genes in pig models.
Collapse
Affiliation(s)
- M Qi
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Susceptibility to virus-cell fusion at the plasma membrane is reduced through expression of HIV gp41 cytoplasmic domains. Virology 2008; 376:69-78. [PMID: 18400243 DOI: 10.1016/j.virol.2008.02.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 01/14/2008] [Accepted: 02/23/2008] [Indexed: 11/22/2022]
Abstract
The cytoplasmic tail of the HIV transmembrane protein plays an important role in viral infection. In this study we analyzed the role of retroviral cytoplasmic tails in modulating the cytoskeleton and interfering with virus-cell fusion. HeLaP4 cells expressing different HIV cytoplasmic tail constructs showed reduced acetylated tubulin levels whereas the cytoplasmic tail of MLV did not alter microtubule stability indicating a unique function for the lentiviral cytoplasmic tail. The effect on tubulin is mediated through the membrane proximal region of the HIV cytoplasmic tail and was independent of membrane localization. Site-directed mutagenesis identified three motifs in the HIV-2 cytoplasmic tail required to effect the reduction in acetylated tubulin. Both the YxxPhi domain and amino acids 21 to 45 of the HIV-2 cytoplasmic tail need to be present to change the level of acetylated tubulin in transfected cells. T-cells stably expressing one HIV-2 cytoplasmic tail derived construct showed also a reduction in acetylated tubulin thus confirming the importance of this effect not only for HeLaP4 and 293T cells. Challenge experiments using transiently transfected HeLaP4 cells and T cells stably expressing an HIV cytoplasmic tail construct revealed both reduced virus-cell fusion and replication of HIV-1(NL4.3) compared to control cells. In the virus-cell fusion assay only virions pseudotyped with either HIV or MLV envelopes showed reduced fusion efficiency, whereas VSV-G pseudotyped virions where not affected by the expression of HIV derived cytoplasmic tail constructs, indicating that fusion at the plasma but not endosomal membrane is affected. Overexpression of human histone-deacetylase 6 (HDAC6) and constitutively active RhoA resulted in a reduction of acetylated tubulin and reduced virus-cell fusion as significant as that observed following expression of HIV cytoplasmic tail constructs. Inhibition of HDAC6 showed a strong increase in acetylated tubulin and increase of virus-cell fusion confirming the correlation between post-translational modification of tubulin and virus-cell fusion. These results thus identify tubulin and its post-translational modification as a new cellular target for interference with HIV-cell fusion.
Collapse
|
29
|
A novel protein, Luman/CREB3 recruitment factor, inhibits Luman activation of the unfolded protein response. Mol Cell Biol 2008; 28:3952-66. [PMID: 18391022 DOI: 10.1128/mcb.01439-07] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Luman/CREB3 (also called LZIP) is an endoplasmic reticulum (ER)-bound cellular transcription factor. It has been implicated in the mammalian unfolded protein response (UPR), as well as herpes simplex virus reactivation from latency in sensory neurons. Here, we report the identification of a novel Luman recruitment factor (LRF). Like Luman, LRF is a UPR-responsive basic-region leucine zipper protein that is prone to proteasomal degradation. Being a highly unstable protein, LRF interacts with Luman through the leucine zipper region and promotes Luman degradation. LRF was found to recruit the nuclear form of Luman to discrete nuclear foci, which overlap with the nuclear receptor coactivator GRIP1 bodies, and repress the transactivation activity of Luman. Compared to LRF+/+ mouse embryonic fibroblast (MEF) cells, the levels of CHOP, EDEM, and Herp were elevated in LRF-/- MEF cells. We propose that LRF is a negative regulator of the UPR. For Luman, it may represent another level of regulation following Luman proteolytic cleavage on the ER and nuclear translocation. In addition to inducing rapid Luman turnover, LRF may repress the transactivation potential of Luman by sequestering it in the LRF nuclear bodies away from key cofactors (such as HCF-1) that are required for transcriptional activation.
Collapse
|