1
|
Xia Y, Wang G, He C, Chen H. A Strong Supramolecular Mechanophore with Controlled Mechanical Strength. Angew Chem Int Ed Engl 2024; 63:e202406738. [PMID: 38869842 DOI: 10.1002/anie.202406738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/14/2024]
Abstract
Supramolecular mechanophores typically exhibit much lower mechanical strengths than covalent counterparts, with strengths usually around 100 pN, which is significantly lower than the nN-scale strength of covalent bonds. Inspired by the slow dissociation kinetics of the cucurbit[7]uril (CB[7])-hexanoate-isoquinoline (HIQ) complex, we discovered that charge-dipole repulsion can be utilized to create strong supramolecular mechanophores. When activated at its -COO- state, the CB[7]-HIQ complex exhibits a high mechanical strength of ~700 pN, comparable to weak covalent bonds such as Au-S bonds or thiol-maleimide adducts. The strength of the CB[7]-HIQ complex can also be tuned with pH in a gradual manner, with a minimum value of ~150 pN at its -COOH state, similar to an ordinary supramolecular conjugate. This research may pave the way for the development of supramolecular architectures that combine the advantages of covalent and supramolecular systems.
Collapse
Affiliation(s)
- Yu Xia
- School of Chemistry and Chemical Engineering, The Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Jinan, 250100, P. R. China
| | - Guannan Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijng, 100029, P. R. China
| | - Chengzhi He
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijng, 100029, P. R. China
| | - Hao Chen
- School of Chemistry and Chemical Engineering, The Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
2
|
Winterhalter C, Pelliciari S, Stevens D, Fenyk S, Marchand E, Cronin N, Soultanas P, Costa TD, Ilangovan A, Murray H. The DNA replication initiation protein DnaD recognises a specific strand of the Bacillus subtilis chromosome origin. Nucleic Acids Res 2023; 51:4322-4340. [PMID: 37093985 PMCID: PMC10201434 DOI: 10.1093/nar/gkad277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/26/2023] Open
Abstract
Genome replication is a fundamental biological activity shared by all organisms. Chromosomal replication proceeds bidirectionally from origins, requiring the loading of two helicases, one for each replisome. However, the molecular mechanisms underpinning helicase loading at bacterial chromosome origins (oriC) are unclear. Here we investigated the essential DNA replication initiation protein DnaD in the model organism Bacillus subtilis. A set of DnaD residues required for ssDNA binding was identified, and photo-crosslinking revealed that this ssDNA binding region interacts preferentially with one strand of oriC. Biochemical and genetic data support the model that DnaD recognizes a new single-stranded DNA (ssDNA) motif located in oriC, the DnaD Recognition Element (DRE). Considered with single particle cryo-electron microscopy (cryo-EM) imaging of DnaD, we propose that the location of the DRE within oriC orchestrates strand-specific recruitment of helicase during DNA replication initiation. These findings significantly advance our mechanistic understanding of bidirectional replication from a bacterial chromosome origin.
Collapse
Affiliation(s)
- Charles Winterhalter
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| | - Simone Pelliciari
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| | - Daniel Stevens
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| | - Stepan Fenyk
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| | - Elie Marchand
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| | - Nora B Cronin
- LonCEM, London Consortium for Cryo-EM, The Francis Crick Institute, London NW1 1AT, UK
| | - Panos Soultanas
- Biodiscovery Institute, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Tiago R D Costa
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Aravindan Ilangovan
- Department of Biochemistry, School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Heath Murray
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| |
Collapse
|
3
|
Winterhalter C, Stevens D, Fenyk S, Pelliciari S, Marchand E, Soultanas P, Ilangovan A, Murray H. SirA inhibits the essential DnaA:DnaD interaction to block helicase recruitment during Bacillus subtilis sporulation. Nucleic Acids Res 2022; 51:4302-4321. [PMID: 36416272 DOI: 10.1093/nar/gkac1060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/04/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2022] Open
Abstract
Bidirectional DNA replication from a chromosome origin requires the asymmetric loading of two helicases, one for each replisome. Our understanding of the molecular mechanisms underpinning helicase loading at bacterial chromosome origins is incomplete. Here we report both positive and negative mechanisms for directing helicase recruitment in the model organism Bacillus subtilis. Systematic characterization of the essential initiation protein DnaD revealed distinct protein interfaces required for homo-oligomerization, interaction with the master initiator protein DnaA, and interaction with the helicase co-loader protein DnaB. Informed by these properties of DnaD, we went on to find that the developmentally expressed repressor of DNA replication initiation, SirA, blocks the interaction between DnaD and DnaA, thereby restricting helicase recruitment from the origin during sporulation to inhibit further initiation events. These results advance our understanding of the mechanisms underpinning DNA replication initiation in B. subtilis, as well as guiding the search for essential cellular activities to target for antimicrobial drug design.
Collapse
Affiliation(s)
- Charles Winterhalter
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| | - Daniel Stevens
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| | - Stepan Fenyk
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| | - Simone Pelliciari
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| | - Elie Marchand
- Research Unit in Biology of Microorganisms, Department of Biology, Université de Namur, Namur, Belgium
| | - Panos Soultanas
- Biodiscovery Institute, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Aravindan Ilangovan
- Blizard Institute, School of Biological and Behavioural Sciences, Queen Mary University of London, Newark street, London E1 2AT, UK
| | - Heath Murray
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne NE2 4AX, UK
| |
Collapse
|
4
|
Regulation of DNA Binding and High-Order Oligomerization of the DnaB Helicase Loader. J Bacteriol 2020; 202:JB.00286-20. [PMID: 32817095 DOI: 10.1128/jb.00286-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/13/2020] [Indexed: 12/27/2022] Open
Abstract
DnaB is an essential primosomal protein that coloads the replicative helicase in many Gram-positive bacteria, including several human pathogens. Although DnaB is tetrameric in solution, it is from a protein family whose members can oligomerize into large complexes when exposed to DNA. It is currently unknown how DNA binding by DnaB is regulated or how these interactions induce changes in its oligomeric state. Here, we investigated DNA binding by DnaB from Bacillus subtilis and the critical human pathogen Staphylococcus aureus We found that B. subtilis DnaB binds double-stranded DNA as a tetramer; however, M13mp18 single-stranded DNA induces high-order oligomerization. Mutating a conserved motif at the C-terminal end of DnaB stimulates single-stranded DNA binding, suggesting that conformational changes in this region regulate DNA substrate preferences. S. aureus DnaB could also be induced to form high-order oligomers with either M13mp18 or PhiX174 single-stranded DNA. Therefore, oligomeric shifts in DnaB are tightly controlled and this activity is conserved between B. subtilis and a pathogenic species.IMPORTANCE DnaB is a replicative helicase loader involved in initiating DNA replication in many bacterial species. We investigated the binding preferences of DnaB for its DNA substrate and determined that the C-terminal end of the protein plays a critical role in controlling DNA interactions. Furthermore, we found that DNA binding in general did not trigger changes to the oligomeric state of DnaB, but rather, certain types of single-stranded DNA substrates specifically induced DnaB to self-assemble into a large complex. This indicates that the structure of DNA itself is an important regulatory element that influences the behavior of DnaB. Importantly, these observations held for both Bacillus subtilis and the pathogenic species Staphylococcus aureus, demonstrating conserved biochemical functions of DnaB in these species.
Collapse
|
5
|
Martin E, Williams HEL, Pitoulias M, Stevens D, Winterhalter C, Craggs TD, Murray H, Searle MS, Soultanas P. DNA replication initiation in Bacillus subtilis: structural and functional characterization of the essential DnaA-DnaD interaction. Nucleic Acids Res 2019; 47:2101-2112. [PMID: 30534966 PMCID: PMC6393240 DOI: 10.1093/nar/gky1220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/15/2018] [Accepted: 11/22/2018] [Indexed: 02/06/2023] Open
Abstract
The homotetrameric DnaD protein is essential in low G+C content gram positive bacteria and is involved in replication initiation at oriC and re-start of collapsed replication forks. It interacts with the ubiquitously conserved bacterial master replication initiation protein DnaA at the oriC but structural and functional details of this interaction are lacking, thus contributing to our incomplete understanding of the molecular details that underpin replication initiation in bacteria. DnaD comprises N-terminal (DDBH1) and C-terminal (DDBH2) domains, with contradicting bacterial two-hybrid and yeast two-hybrid studies suggesting that either the former or the latter interact with DnaA, respectively. Using Nuclear Magnetic Resonance (NMR) we showed that both DDBH1 and DDBH2 interact with the N-terminal domain I of DnaA and studied the DDBH2 interaction in structural detail. We revealed two families of conformations for the DDBH2-DnaA domain I complex and showed that the DnaA-interaction patch of DnaD is distinct from the DNA-interaction patch, suggesting that DnaD can bind simultaneously DNA and DnaA. Using sensitive single-molecule FRET techniques we revealed that DnaD remodels DnaA-DNA filaments consistent with stretching and/or untwisting. Furthermore, the DNA binding activity of DnaD is redundant for this filament remodelling. This in turn suggests that DnaA and DnaD are working collaboratively in the oriC to locally melt the DNA duplex during replication initiation.
Collapse
Affiliation(s)
- Eleyna Martin
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Huw E L Williams
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Matthaios Pitoulias
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Daniel Stevens
- Centre for Bacterial Cell Biology, Medical School, Newcastle University, Newcastle NE2 4AX, UK
| | - Charles Winterhalter
- Centre for Bacterial Cell Biology, Medical School, Newcastle University, Newcastle NE2 4AX, UK
| | - Timothy D Craggs
- Sheffield Institute for Nucleic Acids, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK
| | - Heath Murray
- Centre for Bacterial Cell Biology, Medical School, Newcastle University, Newcastle NE2 4AX, UK
| | - Mark S Searle
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
- Correspondence may also be addressed to Mark S. Searle. Tel: +44 115 9513567; Fax: +44 115 9513564;
| | - Panos Soultanas
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
- To whom correspondence should be addressed. Tel: +44 115 9513525; Fax: +44 115 9513564;
| |
Collapse
|
6
|
Matthews LA, Simmons LA. Cryptic protein interactions regulate DNA replication initiation. Mol Microbiol 2018; 111:118-130. [PMID: 30285297 DOI: 10.1111/mmi.14142] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/13/2022]
Abstract
DNA replication is a fundamental biological process that is tightly regulated in all cells. In bacteria, DnaA controls when and where replication begins by building a step-wise complex that loads the replicative helicase onto chromosomal DNA. In many low-GC Gram-positive species, DnaA recruits the DnaD and DnaB proteins to function as adaptors to assist in helicase loading. How DnaA, its adaptors and the helicase form a complex at the origin is unclear. We addressed this question using the bacterial two-hybrid assay to determine how the initiation proteins from Bacillus subtilis interact with each other. We show that cryptic interaction sites play a key role in this process and we map these regions for the entire pathway. In addition, we found that the SirA regulator that blocks initiation in sporulating cells binds to a surface on DnaA that overlaps with DnaD. The interaction between DnaA and DnaD was also mapped to the same DnaA surface in the human pathogen Staphylococcus aureus, demonstrating the broad conservation of this surface. Therefore, our study has unveiled key protein interactions essential for initiation and our approach is widely applicable for mapping interactions in other signaling pathways that are governed by cryptic binding surfaces.
Collapse
Affiliation(s)
- Lindsay A Matthews
- Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109-1048, USA
| | - Lyle A Simmons
- Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109-1048, USA
| |
Collapse
|
7
|
van Eijk E, Paschalis V, Green M, Friggen AH, Larson MA, Spriggs K, Briggs GS, Soultanas P, Smits WK. Primase is required for helicase activity and helicase alters the specificity of primase in the enteropathogen Clostridium difficile. Open Biol 2017; 6:rsob.160272. [PMID: 28003473 PMCID: PMC5204125 DOI: 10.1098/rsob.160272] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/22/2016] [Indexed: 12/16/2022] Open
Abstract
DNA replication is an essential and conserved process in all domains of life and may serve as a target for the development of new antimicrobials. However, such developments are hindered by subtle mechanistic differences and limited understanding of DNA replication in pathogenic microorganisms. Clostridium difficile is the main cause of healthcare-associated diarrhoea and its DNA replication machinery is virtually uncharacterized. We identify and characterize the mechanistic details of the putative replicative helicase (CD3657), helicase-loader ATPase (CD3654) and primase (CD1454) of C. difficile, and reconstitute helicase and primase activities in vitro. We demonstrate a direct and ATP-dependent interaction between the helicase loader and the helicase. Furthermore, we find that helicase activity is dependent on the presence of primase in vitro. The inherent trinucleotide specificity of primase is determined by a single lysine residue and is similar to the primase of the extreme thermophile Aquifex aeolicus. However, the presence of helicase allows more efficient de novo synthesis of RNA primers from non-preferred trinucleotides. Thus, loader–helicase–primase interactions, which crucially mediate helicase loading and activation during DNA replication in all organisms, differ critically in C. difficile from that of the well-studied Gram-positive Bacillus subtilis model.
Collapse
Affiliation(s)
- Erika van Eijk
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Vasileios Paschalis
- School of Chemistry, Center for Biomolecular Sciences, University of Nottingham, UK
| | - Matthew Green
- School of Chemistry, Center for Biomolecular Sciences, University of Nottingham, UK
| | - Annemieke H Friggen
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marilynn A Larson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA.,National Strategic Research Institute, Omaha, NE 68105, USA
| | | | - Geoffrey S Briggs
- School of Chemistry, Center for Biomolecular Sciences, University of Nottingham, UK
| | - Panos Soultanas
- School of Chemistry, Center for Biomolecular Sciences, University of Nottingham, UK
| | - Wiep Klaas Smits
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
8
|
Jameson KH, Wilkinson AJ. Control of Initiation of DNA Replication in Bacillus subtilis and Escherichia coli. Genes (Basel) 2017; 8:E22. [PMID: 28075389 PMCID: PMC5295017 DOI: 10.3390/genes8010022] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 12/16/2016] [Accepted: 12/20/2016] [Indexed: 01/21/2023] Open
Abstract
Initiation of DNA Replication is tightly regulated in all cells since imbalances in chromosomal copy number are deleterious and often lethal. In bacteria such as Bacillus subtilis and Escherichia coli, at the point of cytokinesis, there must be two complete copies of the chromosome to partition into the daughter cells following division at mid-cell during vegetative growth. Under conditions of rapid growth, when the time taken to replicate the chromosome exceeds the doubling time of the cells, there will be multiple initiations per cell cycle and daughter cells will inherit chromosomes that are already undergoing replication. In contrast, cells entering the sporulation pathway in B. subtilis can do so only during a short interval in the cell cycle when there are two, and only two, chromosomes per cell, one destined for the spore and one for the mother cell. Here, we briefly describe the overall process of DNA replication in bacteria before reviewing initiation of DNA replication in detail. The review covers DnaA-directed assembly of the replisome at oriC and the multitude of mechanisms of regulation of initiation, with a focus on the similarities and differences between E. coli and B. subtilis.
Collapse
Affiliation(s)
- Katie H Jameson
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.
| | - Anthony J Wilkinson
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK.
| |
Collapse
|
9
|
Huang YH, Lien Y, Huang CC, Huang CY. Characterization of Staphylococcus aureus Primosomal DnaD Protein: Highly Conserved C-Terminal Region Is Crucial for ssDNA and PriA Helicase Binding but Not for DnaA Protein-Binding and Self-Tetramerization. PLoS One 2016; 11:e0157593. [PMID: 27304067 PMCID: PMC4909229 DOI: 10.1371/journal.pone.0157593] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 06/01/2016] [Indexed: 11/18/2022] Open
Abstract
The role of DnaD in the recruitment of replicative helicase has been identified. However, knowledge of the DNA, PriA, and DnaA binding mechanism of this protein for the DnaA- and PriA-directed replication primosome assemblies is limited. We characterized the DNA-binding properties of DnaD from Staphylococcus aureus (SaDnaD) and analyzed its interactions with SaPriA and SaDnaA. The gel filtration chromatography analysis of purified SaDnaD and its deletion mutant proteins (SaDnaD1-195, SaDnaD1-200 and SaDnaD1-204) showed a stable tetramer in solution. This finding indicates that the C-terminal region aa 196-228 is not crucial for SaDnaD oligomerization. SaDnaD forms distinct complexes with ssDNA of different lengths. In fluorescence titrations, SaDnaD bound to ssDNA with a binding-site size of approximately 32 nt. A stable complex of SaDnaD1-195, SaDnaD1-200, and SaDnaD1-204 with ssDNA dT40 was undetectable, indicating that the C-terminal region of SaDnaD (particularly aa 205-228) is crucial for ssDNA binding. The SPR results revealed that SaDnaD1-195 can interact with SaDnaA but not with SaPriA, which may indicate that DnaD has different binding sites for PriA and DnaA. Both SaDnaD and SaDnaDY176A mutant proteins, but not SaDnaD1-195, can significantly stimulate the ATPase activity of SaPriA. Hence, the stimulation effect mainly resulted from direct contact within the protein-protein interaction, not via the DNA-protein interaction. Kinetic studies revealed that the SaDnaD-SaPriA interaction increases the Vmax of the SaPriA ATPase fivefold without significantly affecting the Km. These results indicate that the conserved C-terminal region is crucial for ssDNA and PriA helicase binding, but not for DnaA protein-binding and self-tetramerization.
Collapse
Affiliation(s)
- Yen-Hua Huang
- School of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Chien-Kuo N. Rd., Taichung City, Taiwan
| | - Yi Lien
- School of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Chien-Kuo N. Rd., Taichung City, Taiwan
| | - Chien-Chih Huang
- School of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Chien-Kuo N. Rd., Taichung City, Taiwan
| | - Cheng-Yang Huang
- School of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Chien-Kuo N. Rd., Taichung City, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, No.110, Sec.1, Chien-Kuo N. Rd., Taichung City, Taiwan
- * E-mail:
| |
Collapse
|
10
|
Chen Y, Ma K, Hu T, Jiang B, Xu B, Tian W, Sun JZ, Zhang W. Investigation of the binding modes between AIE-active molecules and dsDNA by single molecule force spectroscopy. NANOSCALE 2015; 7:8939-8945. [PMID: 25920935 DOI: 10.1039/c5nr01247c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
AIE (aggregation-induced emission)-active molecules hold promise for the labeling of biomolecules as well as living cells. The study of the binding modes of such molecules to biomolecules, such as nucleic acids and proteins, will shed light on a deeper understanding of the mechanisms of molecular interactions and eventually facilitate the design/preparation of new AIE-active bioprobes. Herein, we studied the binding modes of double-stranded DNA (dsDNA) with two types of synthetic AIE-active molecules, namely, tetraphenylethene-derived dicationic compounds (cis-TPEDPy and trans-TPEDPy) and anthracene-derived dicationic compounds (DSAI and DSABr-C6) using single molecule force spectroscopy (SMFS) and circular dichroism (CD) spectroscopy. The experimental data indicate that DSAI can strongly intercalate into DNA base pairs, while DSABr-C6 is unable to intercalate into DNA due to the steric hindrance of the alkyl side chains. Cis-TPEDPy and trans-TPEDPy can also intercalate into DNA base pairs, but the binding shows strong ionic strength dependence. Multiple binding modes of TPEDPy with dsDNA have been discussed. In addition, the electrostatic interaction enhanced intercalation of cis-TPEDPy with dsDNA has also been revealed.
Collapse
Affiliation(s)
- Ying Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Liu N, Chen Y, Peng B, Lin Y, Wang Q, Su Z, Zhang W, Li H, Shen J. Single-molecule force spectroscopy study on the mechanism of RNA disassembly in tobacco mosaic virus. Biophys J 2014; 105:2790-800. [PMID: 24359751 DOI: 10.1016/j.bpj.2013.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/22/2013] [Accepted: 10/09/2013] [Indexed: 12/17/2022] Open
Abstract
To explore the disassembly mechanism of tobacco mosaic virus (TMV), a model system for virus study, during infection, we have used single-molecule force spectroscopy to mimic and follow the process of RNA disassembly from the protein coat of TMV by the replisome (molecular motor) in vivo, under different pH and Ca(2+) concentrations. Dynamic force spectroscopy revealed the unbinding free-energy landscapes as that at pH 4.7 the disassembly process is dominated by one free-energy barrier, whereas at pH 7.0 the process is dominated by one barrier and that there exists a second barrier. The additional free-energy barrier at longer distance has been attributed to the hindrance of disordered loops within the inner channel of TMV, and the biological function of those protein loops was discussed. The combination of pH increase and Ca(2+) concentration drop could weaken RNA-protein interactions so much that the molecular motor replisome would be able to pull and disassemble the rest of the genetic RNA from the protein coat in vivo. All these facts provide supporting evidence at the single-molecule level, to our knowledge for the first time, for the cotranslational disassembly mechanism during TMV infection under physiological conditions.
Collapse
Affiliation(s)
- Ningning Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, P. R. China; School of Chemistry and Material Science, Liaoning Shihua University, Fushun, P. R. China
| | - Ying Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, P. R. China
| | - Bo Peng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
| | - Yuan Lin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
| | - Qian Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China; Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina.
| | - Zhaohui Su
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
| | - Wenke Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, P. R. China.
| | - Hongbin Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, P. R. China; Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jiacong Shen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, P. R. China
| |
Collapse
|
12
|
Jameson KH, Rostami N, Fogg MJ, Turkenburg JP, Grahl A, Murray H, Wilkinson AJ. Structure and interactions of the Bacillus subtilis sporulation inhibitor of DNA replication, SirA, with domain I of DnaA. Mol Microbiol 2014; 93:975-91. [PMID: 25041308 PMCID: PMC4285326 DOI: 10.1111/mmi.12713] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2014] [Indexed: 11/29/2022]
Abstract
Chromosome copy number in cells is controlled so that the frequency of initiation of DNA replication matches that of cell division. In bacteria, this is achieved through regulation of the interaction between the initiator protein DnaA and specific DNA elements arrayed at the origin of replication. DnaA assembles at the origin and promotes DNA unwinding and the assembly of a replication initiation complex. SirA is a DnaA-interacting protein that inhibits initiation of replication in diploid Bacillus subtilis cells committed to the developmental pathway leading to formation of a dormant spore. Here we present the crystal structure of SirA in complex with the N-terminal domain of DnaA revealing a heterodimeric complex. The interacting surfaces of both proteins are α-helical with predominantly apolar side-chains packing in a hydrophobic interface. Site-directed mutagenesis experiments confirm the importance of this interface for the interaction of the two proteins in vitro and in vivo. Localization of GFP-SirA indicates that the protein accumulates at the replisome in sporulating cells, likely through a direct interaction with DnaA. The SirA interacting surface of DnaA corresponds closely to the HobA-interacting surface of DnaA from Helicobacter pylori even though HobA is an activator of DnaA and SirA is an inhibitor.
Collapse
Affiliation(s)
- Katie H Jameson
- Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
| | | | | | | | | | | | | |
Collapse
|
13
|
Shi N, Ugaz VM. An entropic force microscope enables nano-scale conformational probing of biomolecules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:2553-2557. [PMID: 24648409 DOI: 10.1002/smll.201303046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 01/21/2014] [Indexed: 06/03/2023]
Affiliation(s)
- Nan Shi
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, Texas, 77843, USA
| | | |
Collapse
|
14
|
Donczew R, Zakrzewska-Czerwińska J, Zawilak-Pawlik A. Beyond DnaA: the role of DNA topology and DNA methylation in bacterial replication initiation. J Mol Biol 2014; 426:2269-82. [PMID: 24747048 DOI: 10.1016/j.jmb.2014.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 12/31/2022]
Abstract
The replication of chromosomal DNA is a fundamental event in the life cycle of every cell. The first step of replication, initiation, is controlled by multiple factors to ensure only one round of replication per cell cycle. The process of initiation has been described most thoroughly for bacteria, especially Escherichia coli, and involves many regulatory proteins that vary considerably between different species. These proteins control the activity of the two key players of initiation in bacteria: the initiator protein DnaA and the origin of chromosome replication (oriC). Factors involved in the control of the availability, activity, or oligomerization of DnaA during initiation are generally regarded as the most important and thus have been thoroughly characterized. Other aspects of the initiation process, such as origin accessibility and susceptibility to unwinding, have been less explored. However, recent findings indicate that these factors have a significant role. This review focuses on DNA topology, conformation, and methylation as important factors that regulate the initiation process in bacteria. We present a comprehensive summary of the factors involved in the modulation of DNA topology, both locally at oriC and more globally at the level of the entire chromosome. We show clearly that the conformation of oriC dynamically changes, and control of this conformation constitutes another, important factor in the regulation of bacterial replication initiation. Furthermore, the process of initiation appears to be associated with the dynamics of the entire chromosome and this association is an important but largely unexplored phenomenon.
Collapse
Affiliation(s)
- Rafał Donczew
- Institute of Immunology and Experimental Therapy, Department of Microbiology, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland.
| | - Jolanta Zakrzewska-Czerwińska
- Institute of Immunology and Experimental Therapy, Department of Microbiology, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland; Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-138 Wrocław, Poland.
| | - Anna Zawilak-Pawlik
- Institute of Immunology and Experimental Therapy, Department of Microbiology, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland.
| |
Collapse
|
15
|
Abstract
Binding of small molecules with DNA plays an important role in many biological functions such as DNA replication, repair, and transcription. These interactions also offer enormous potential as targets for diagnostics and therapeutics, leading to intense interest in development of methods to probe the underlying binding events. In this chapter, we present a new approach to investigate the structural changes that accompany binding of DNA and small molecules. Instead of relying on conventional yet delicate single-molecule imaging methods, we show how a single microchip gel electrophoresis experiment incorporating both constant electric field and on-off actuation over a specific frequency range enables fundamental structural parameters (e.g., contour and persistence lengths) to be simultaneously determined. The microchip format offers an attractive combination of simplicity and scale-up potential that makes it amenable for high-throughput screening.
Collapse
Affiliation(s)
- Nan Shi
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | | |
Collapse
|
16
|
Abstract
From microbes to multicellular eukaryotic organisms, all cells contain pathways responsible for genome maintenance. DNA replication allows for the faithful duplication of the genome, whereas DNA repair pathways preserve DNA integrity in response to damage originating from endogenous and exogenous sources. The basic pathways important for DNA replication and repair are often conserved throughout biology. In bacteria, high-fidelity repair is balanced with low-fidelity repair and mutagenesis. Such a balance is important for maintaining viability while providing an opportunity for the advantageous selection of mutations when faced with a changing environment. Over the last decade, studies of DNA repair pathways in bacteria have demonstrated considerable differences between Gram-positive and Gram-negative organisms. Here we review and discuss the DNA repair, genome maintenance, and DNA damage checkpoint pathways of the Gram-positive bacterium Bacillus subtilis. We present their molecular mechanisms and compare the functions and regulation of several pathways with known information on other organisms. We also discuss DNA repair during different growth phases and the developmental program of sporulation. In summary, we present a review of the function, regulation, and molecular mechanisms of DNA repair and mutagenesis in Gram-positive bacteria, with a strong emphasis on B. subtilis.
Collapse
|
17
|
Abstract
Much of our knowledge of the initiation of DNA replication comes from studies in the gram-negative model organism Escherichia coli. However, the location and structure of the origin of replication within the E. coli genome and the identification and study of the proteins which constitute the E. coli initiation complex suggest that it might not be as universal as once thought. The archetypal low-G+C-content gram-positive Firmicutes initiate DNA replication via a unique primosomal machinery, quite distinct from that seen in E. coli, and an examination of oriC in the Firmicutes species Bacillus subtilis indicates that it might provide a better model for the ancestral bacterial origin of replication. Therefore, the study of replication initiation in organisms other than E. coli, such as B. subtilis, will greatly advance our knowledge and understanding of these processes as a whole. In this minireview, we highlight the structure-function relationships of the Firmicutes primosomal proteins, discuss the significance of their oriC architecture, and present a model for replication initiation at oriC.
Collapse
|
18
|
Liu N, Zhang W. Feeling Inter- or Intramolecular Interactions with the Polymer Chain as Probe: Recent Progress in SMFS Studies on Macromolecular Interactions. Chemphyschem 2012; 13:2238-56. [DOI: 10.1002/cphc.201200154] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Indexed: 01/30/2023]
|
19
|
Abstract
Threading of DNA through the central channel of a replicative ring helicase is known as helicase loading, and is a pivotal event during replication initiation at replication origins. Once loaded, the helicase recruits the primase through a direct protein-protein interaction to complete the initial 'priming step' of DNA replication. Subsequent assembly of the polymerases and processivity factors completes the structure of the replisome. Two replisomes are assembled, one on each strand, and move in opposite directions to replicate the parental DNA during the 'elongation step' of DNA replication. Replicative helicases are the motor engines of replisomes powered by the conversion of chemical energy to mechanical energy through ATP binding and hydrolysis. Bidirectional loading of two ring helicases at a replication origin is achieved by strictly regulated and intricately choreographed mechanisms, often through the action of replication initiation and helicase-loader proteins. Current structural and biochemical data reveal a wide range of different helicase-loading mechanisms. Here we review advances in this area and discuss their implications.
Collapse
Affiliation(s)
- Panos Soultanas
- School of Chemistry, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| |
Collapse
|
20
|
Zhang W, Lü X, Zhang W, Shen J. EMSA and single-molecule force spectroscopy study of interactions between Bacillus subtilis single-stranded DNA-binding protein and single-stranded DNA. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:15008-15015. [PMID: 22054219 DOI: 10.1021/la203752y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this article, interactions between Bacillus subtilis single-stranded DNA binding proteins (BsSSB) and single-stranded DNA (ssDNA) were systematically studied. The effect of different molar ratios between BsSSB and ssDNA on their binding modes was first investigated by electrophoretic mobility shift assays (EMSAs). It is found that a high molar ratio of BsSSB to ssDNA can produce BsSSB-ssDNA complexes formed in the mode of two proteins binding one 65-nt (nucleotide) ssDNA whereas a low molar ratio facilitates the formation of BsSSB-ssDNA complexes in the mode of one protein binding one 65-nt ssDNA. Furthermore, two binding modes are in dynamic equilibrium. The unbinding force of BsSSB-ssDNA complexes was measured quantitatively in solutions with different salt concentrations by using AFM-based single-molecule force spectroscopy (SMFS). Our results show that the unbinding force is about 10 pN higher at high salt concentration (0.5 M NaCl) than at low salt concentration (0.1 M NaCl) and the lifetime of BsSSB-ssDNA complexes at high salt concentration is twice as long as that at low salt concentration. These results indicate that more tightly packed BsSSB-ssDNA complexes can form at high salt (0.5 M NaCl) concentration. In addition, the results of EMSA show that ssDNA, which is bound to BsSSB, can dissociate from BsSSB in the presence of the cDNA strand, indicating the dynamic nature of BsSSB-ssDNA interactions.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | | | | | | |
Collapse
|
21
|
Collier C, Machón C, Briggs GS, Smits WK, Soultanas P. Untwisting of the DNA helix stimulates the endonuclease activity of Bacillus subtilis Nth at AP sites. Nucleic Acids Res 2011; 40:739-50. [PMID: 21954439 PMCID: PMC3258159 DOI: 10.1093/nar/gkr785] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Bacterial nucleoid associated proteins play a variety of roles in genome maintenance and dynamics. Their involvement in genome packaging, DNA replication and transcription are well documented but it is still unclear whether they play any specific roles in genome repair. We discovered that untwisting of the DNA double helix by bacterial non-specific DNA binding proteins stimulates the activity of a repair endonuclease of the Nth/MutY family involved in abasic site removal during base excision repair. The essential Bacillus subtilis primosomal gene dnaD, coding for a protein with DNA-untwisting activity, is in the same operon with nth and the promoter activity of this operon is transiently stimulated by H(2)O(2). Consequently, dnaD mRNA levels persist high upon treatment with H(2)O(2) compared to the reduced mRNA levels of the other essential primosomal genes dnaB and dnaI, suggesting that DnaD may play an important role in DNA repair in addition to its essential role in replication initiation. Homologous Nth repair endonucleases are found in nearly all organisms, including humans. Our data have wider implications for DNA repair as they suggest that genome associated proteins that alter the superhelicity of the DNA indirectly facilitate base excision repair mediated by repair endonucleases of the Nth/MutY family.
Collapse
Affiliation(s)
- Christopher Collier
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | | | | | | | |
Collapse
|
22
|
AFM IMAGING AND SINGLE-MOLECULE FORCE SPECTROSCOPY STUDIES ON MACROMOLECULAR INTERACTIONS AT SINGLE-MOLECULE LEVEL. ACTA POLYM SIN 2011. [DOI: 10.3724/sp.j.1105.2011.11124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Liu K, Song Y, Feng W, Liu N, Zhang W, Zhang X. Extracting a Single Polyethylene Oxide Chain from a Single Crystal by a Combination of Atomic Force Microscopy Imaging and Single-Molecule Force Spectroscopy: Toward the Investigation of Molecular Interactions in Their Condensed States. J Am Chem Soc 2011; 133:3226-9. [DOI: 10.1021/ja108022h] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kai Liu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | | | | | | | | | - Xi Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
24
|
Cao Y, Li H. Single-molecule force-clamp spectroscopy: dwell time analysis and practical considerations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:1440-1447. [PMID: 21117668 DOI: 10.1021/la104130n] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Single-molecule force-clamp spectroscopy has become a powerful tool for studying protein folding/unfolding, bond rupture, and enzymatic reactions. Different methods have been developed to analyze force-clamp spectroscopy data on polyproteins to obtain kinetic parameters characterizing the mechanical unfolding of proteins, which are often modeled as a two-state process (a Poisson process). However, because of the finite number of domains in polyproteins, the statistical analysis of the force-clamp spectroscopy data is different from that of a classical Poisson process, and the equivalency of different analysis methods remains to be proven. In this article, we show that these methods are equivalent and lead to accurate measurements of the unfolding rate constant. We also demonstrate that distinct from the constant-pulling-velocity experiments, in which the unfolding rate extracted from the data is dependent on the number of protein domains in the polyproteins (the N effect), force-clamp experiments do not show any N effect. Using a simulated data set, we also highlighted important practical considerations that one needs to take into account when using the single-molecule force-clamp spectroscopy technique to characterize the unfolding energy landscape of proteins.
Collapse
Affiliation(s)
- Yi Cao
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
25
|
Primosomal proteins DnaD and DnaB are recruited to chromosomal regions bound by DnaA in Bacillus subtilis. J Bacteriol 2010; 193:640-8. [PMID: 21097613 DOI: 10.1128/jb.01253-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The initiation of DNA replication requires the binding of the initiator protein, DnaA, to specific binding sites in the chromosomal origin of replication, oriC. DnaA also binds to many sites around the chromosome, outside oriC, and acts as a transcription factor at several of these. In low-G+C Gram-positive bacteria, the primosomal proteins DnaD and DnaB, in conjunction with loader ATPase DnaI, load the replicative helicase at oriC, and this depends on DnaA. DnaD and DnaB also are required to load the replicative helicase outside oriC during replication restart, independently of DnaA. Using chromatin immunoprecipitation, we found that DnaD and DnaB, but not the replicative helicase, are associated with many of the chromosomal regions bound by DnaA in Bacillus subtilis. This association was dependent on DnaA, and the order of recruitment was the same as that at oriC, but it was independent of a functional oriC and suggests that DnaD and DnaB do not require open complex formation for the stable association with DNA. These secondary binding regions for DnaA could be serving as a reservoir for excess DnaA, DnaD, and DnaB to help properly regulate replication initiation and perhaps are analogous to the proposed function of the datA locus in Escherichia coli. Alternatively, DnaD and DnaB might modulate the activity of DnaA at the secondary binding regions. All three of these proteins are widely conserved and likely have similar functions in a range of organisms.
Collapse
|
26
|
Gao Y, Zhang H, Zhang M, Zhang H, Yu X, Kong W, Zha X, Wu Y. N-Terminal Deletion Effects of Human Survivin on Dimerization and Binding to Smac/DIABLO in Vitro. J Phys Chem B 2010; 114:15656-62. [PMID: 21062054 DOI: 10.1021/jp1036603] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yang Gao
- State Key Laboratory for Supramolecular Structure and Materials, Jilin University, No. 2699, Qianjin Street, Changchun 130012 China, The State Engineering Laboratory of AIDS Vaccine, Jilin University, No. 2699, Qianjin Street, Changchun 130012 China, and Sichuan Tumor Hospital & Institute, Chengdu 610041 China
| | - Huafei Zhang
- State Key Laboratory for Supramolecular Structure and Materials, Jilin University, No. 2699, Qianjin Street, Changchun 130012 China, The State Engineering Laboratory of AIDS Vaccine, Jilin University, No. 2699, Qianjin Street, Changchun 130012 China, and Sichuan Tumor Hospital & Institute, Chengdu 610041 China
| | - Min Zhang
- State Key Laboratory for Supramolecular Structure and Materials, Jilin University, No. 2699, Qianjin Street, Changchun 130012 China, The State Engineering Laboratory of AIDS Vaccine, Jilin University, No. 2699, Qianjin Street, Changchun 130012 China, and Sichuan Tumor Hospital & Institute, Chengdu 610041 China
| | - Haihong Zhang
- State Key Laboratory for Supramolecular Structure and Materials, Jilin University, No. 2699, Qianjin Street, Changchun 130012 China, The State Engineering Laboratory of AIDS Vaccine, Jilin University, No. 2699, Qianjin Street, Changchun 130012 China, and Sichuan Tumor Hospital & Institute, Chengdu 610041 China
| | - Xianghui Yu
- State Key Laboratory for Supramolecular Structure and Materials, Jilin University, No. 2699, Qianjin Street, Changchun 130012 China, The State Engineering Laboratory of AIDS Vaccine, Jilin University, No. 2699, Qianjin Street, Changchun 130012 China, and Sichuan Tumor Hospital & Institute, Chengdu 610041 China
| | - Wei Kong
- State Key Laboratory for Supramolecular Structure and Materials, Jilin University, No. 2699, Qianjin Street, Changchun 130012 China, The State Engineering Laboratory of AIDS Vaccine, Jilin University, No. 2699, Qianjin Street, Changchun 130012 China, and Sichuan Tumor Hospital & Institute, Chengdu 610041 China
| | - Xiao Zha
- State Key Laboratory for Supramolecular Structure and Materials, Jilin University, No. 2699, Qianjin Street, Changchun 130012 China, The State Engineering Laboratory of AIDS Vaccine, Jilin University, No. 2699, Qianjin Street, Changchun 130012 China, and Sichuan Tumor Hospital & Institute, Chengdu 610041 China
| | - Yuqing Wu
- State Key Laboratory for Supramolecular Structure and Materials, Jilin University, No. 2699, Qianjin Street, Changchun 130012 China, The State Engineering Laboratory of AIDS Vaccine, Jilin University, No. 2699, Qianjin Street, Changchun 130012 China, and Sichuan Tumor Hospital & Institute, Chengdu 610041 China
| |
Collapse
|
27
|
Marston FY, Grainger WH, Smits WK, Hopcroft NH, Green M, Hounslow AM, Grossman AD, Craven CJ, Soultanas P. When simple sequence comparison fails: the cryptic case of the shared domains of the bacterial replication initiation proteins DnaB and DnaD. Nucleic Acids Res 2010; 38:6930-42. [PMID: 20587500 PMCID: PMC2978336 DOI: 10.1093/nar/gkq465] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 05/08/2010] [Accepted: 05/11/2010] [Indexed: 12/05/2022] Open
Abstract
DnaD and DnaB are essential DNA-replication-initiation proteins in low-G+C content Gram-positive bacteria. Here we use sensitive Hidden Markov Model-based techniques to show that the DnaB and DnaD proteins share a common structure that is evident across all their structural domains, termed DDBH1 and DDBH2 (DnaD DnaB Homology 1 and 2). Despite strong sequence divergence, many of the DNA-binding and oligomerization properties of these domains have been conserved. Although eluding simple sequence comparisons, the DDBH2 domains share the only strong sequence motif; an extremely highly conserved YxxxIxxxW sequence that contributes to DNA binding. Sequence alignments of DnaD alone fail to identify another key part of the DNA-binding module, since it includes a poorly conserved sequence, a solvent-exposed and somewhat unstable helix and a mobile segment. We show by NMR, in vitro mutagenesis and in vivo complementation experiments that the DNA-binding module of Bacillus subtilis DnaD comprises the YxxxIxxxW motif, the unstable helix and a portion of the mobile region, the latter two being essential for viability. These structural insights lead us to a re-evaluation of the oligomerization and DNA-binding properties of the DnaD and DnaB proteins.
Collapse
Affiliation(s)
- Farhat Y. Marston
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, School of Chemistry, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK and Department of Biology, Building 68-530, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - William H. Grainger
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, School of Chemistry, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK and Department of Biology, Building 68-530, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Wiep Klaas Smits
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, School of Chemistry, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK and Department of Biology, Building 68-530, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Matthew Green
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, School of Chemistry, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK and Department of Biology, Building 68-530, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andrea M. Hounslow
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, School of Chemistry, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK and Department of Biology, Building 68-530, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alan D. Grossman
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, School of Chemistry, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK and Department of Biology, Building 68-530, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - C. Jeremy Craven
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, School of Chemistry, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK and Department of Biology, Building 68-530, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Panos Soultanas
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, School of Chemistry, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK and Department of Biology, Building 68-530, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
28
|
Chaurasiya KR, Paramanathan T, McCauley MJ, Williams MC. Biophysical characterization of DNA binding from single molecule force measurements. Phys Life Rev 2010; 7:299-341. [PMID: 20576476 PMCID: PMC2930095 DOI: 10.1016/j.plrev.2010.06.001] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 05/19/2010] [Accepted: 05/20/2010] [Indexed: 11/25/2022]
Abstract
Single molecule force spectroscopy is a powerful method that uses the mechanical properties of DNA to explore DNA interactions. Here we describe how DNA stretching experiments quantitatively characterize the DNA binding of small molecules and proteins. Small molecules exhibit diverse DNA binding modes, including binding into the major and minor grooves and intercalation between base pairs of double-stranded DNA (dsDNA). Histones bind and package dsDNA, while other nuclear proteins such as high mobility group proteins bind to the backbone and bend dsDNA. Single-stranded DNA (ssDNA) binding proteins slide along dsDNA to locate and stabilize ssDNA during replication. Other proteins exhibit binding to both dsDNA and ssDNA. Nucleic acid chaperone proteins can switch rapidly between dsDNA and ssDNA binding modes, while DNA polymerases bind both forms of DNA with high affinity at distinct binding sites at the replication fork. Single molecule force measurements quantitatively characterize these DNA binding mechanisms, elucidating small molecule interactions and protein function.
Collapse
Affiliation(s)
- Kathy R. Chaurasiya
- Department of Physics, Northeastern University 111 Dana Research Center Boston, Massachusetts 02115
| | - Thayaparan Paramanathan
- Department of Physics, Northeastern University 111 Dana Research Center Boston, Massachusetts 02115
| | - Micah J. McCauley
- Department of Physics, Northeastern University 111 Dana Research Center Boston, Massachusetts 02115
| | - Mark C. Williams
- Department of Physics, Northeastern University 111 Dana Research Center Boston, Massachusetts 02115
- Center for Interdisciplinary Research on Complex Systems Northeastern University 111 Dana Research Center Boston, Massachusetts 02115
| |
Collapse
|
29
|
Liu N, Peng B, Lin Y, Su Z, Niu Z, Wang Q, Zhang W, Li H, Shen J. Pulling Genetic RNA out of Tobacco Mosaic Virus Using Single-Molecule Force Spectroscopy. J Am Chem Soc 2010; 132:11036-8. [DOI: 10.1021/ja1052544] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ningning Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China, State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China, Department of Chemistry and Biochemistry and NanoCenter, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, and Department of Chemistry, University of British
| | - Bo Peng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China, State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China, Department of Chemistry and Biochemistry and NanoCenter, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, and Department of Chemistry, University of British
| | - Yuan Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China, State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China, Department of Chemistry and Biochemistry and NanoCenter, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, and Department of Chemistry, University of British
| | - Zhaohui Su
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China, State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China, Department of Chemistry and Biochemistry and NanoCenter, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, and Department of Chemistry, University of British
| | - Zhongwei Niu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China, State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China, Department of Chemistry and Biochemistry and NanoCenter, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, and Department of Chemistry, University of British
| | - Qian Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China, State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China, Department of Chemistry and Biochemistry and NanoCenter, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, and Department of Chemistry, University of British
| | - Wenke Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China, State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China, Department of Chemistry and Biochemistry and NanoCenter, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, and Department of Chemistry, University of British
| | - Hongbin Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China, State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China, Department of Chemistry and Biochemistry and NanoCenter, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, and Department of Chemistry, University of British
| | - Jiacong Shen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China, State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China, Department of Chemistry and Biochemistry and NanoCenter, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, and Department of Chemistry, University of British
| |
Collapse
|
30
|
Liu N, Bu T, Song Y, Zhang W, Li J, Zhang W, Shen J, Li H. The nature of the force-induced conformation transition of dsDNA studied by using single molecule force spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:9491-9496. [PMID: 20178341 DOI: 10.1021/la100037z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Single-stranded DNA binding proteins (SSB) interact with single-stranded DNA (ssDNA) specifically. Taking advantage of this character, we have employed Bacillus subtilis SSB protein to investigate the nature of force-induced conformation transition of double-stranded DNA (dsDNA) by using AFM-based single molecule force spectroscopy (SMFS) technique. Our results show that, when a dsDNA is stretched beyond its contour length, the dsDNA is partially melted, producing some ssDNA segments which can be captured by SSB proteins. We have also systematically investigated the effects of stretching length, waiting time, and salt concentration on the conformation transition of dsDNA and SSB-ssDNA interactions, respectively. Furthermore, the effect of proflavine, a DNA intercalator, on the SSB-DNA interactions has been investigated, and the results indicate that the proflavine-saturated dsDNA can be stabilized to the extent that the dsDNA will no longer melt into ssDNA under the mechanical force even up to 150 pN, and no SSB-DNA interactions are detectable.
Collapse
Affiliation(s)
- Ningning Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Yu Y, Wu G, Liu K, Zhang X. Force required to disassemble block copolymer micelles in water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:9183-9186. [PMID: 20465263 DOI: 10.1021/la101235e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The force required to disassemble block copolymer micelles in water has been directly investigated via atomic force microscopy-based single-molecule force spectroscopy. The force needed to disassemble block copolymer micelles of poly(acrylic acid)-polyfluorene-poly(acrylic acid) in water is found to be 23 pN. The force increases as the stretching velocity increases, indicating that micelle disassembly is a dynamic process. In addition, the disassembly force is sensitive to the properties of the solvents. This study represents the first attempt to employ single-molecule force spectroscopy to directly measure the force needed to disassemble block copolymer micelles in water.
Collapse
Affiliation(s)
- Ying Yu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | | | | | | |
Collapse
|
32
|
Grainger WH, Machón C, Scott DJ, Soultanas P. DnaB proteolysis in vivo regulates oligomerization and its localization at oriC in Bacillus subtilis. Nucleic Acids Res 2010; 38:2851-64. [PMID: 20071750 PMCID: PMC2874997 DOI: 10.1093/nar/gkp1236] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Initiation of bacterial DNA replication at oriC is mediated by primosomal proteins that act cooperatively to melt an AT-rich region where the replicative helicase is loaded prior to the assembly of the replication fork. In Bacillus subtilis, the dnaD, dnaB and dnaI genes are essential for initiation of DNA replication. We established that their mRNAs are maintained in fast growing asynchronous cultures. DnaB is truncated at its C-terminus in a growth phase-dependent manner. Proteolysis is confined to cytosolic, not to membrane-associated DnaB, and affects oligomerization. Truncated DnaB is depleted at the oriC relative to the native protein. We propose that DNA-induced oligomerization is essential for its action at oriC and proteolysis regulates its localization at oriC. We show that DnaB has two separate ssDNA-binding sites one located within residues 1–300 and another between residues 365–428, and a dsDNA-binding site within residues 365–428. Tetramerization of DnaB is mediated within residues 1–300, and DNA-dependent oligomerization within residues 365–428. Finally, we show that association of DnaB with the oriC is asymmetric and extensive. It encompasses an area from the middle of dnaA to the end of yaaA that includes the AT-rich region melted during the initiation stage of DNA replication.
Collapse
Affiliation(s)
- William H Grainger
- Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | | | | | |
Collapse
|
33
|
Intragenic and extragenic suppressors of temperature sensitive mutations in the replication initiation genes dnaD and dnaB of Bacillus subtilis. PLoS One 2009; 4:e6774. [PMID: 19707554 PMCID: PMC2727948 DOI: 10.1371/journal.pone.0006774] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 07/30/2009] [Indexed: 12/03/2022] Open
Abstract
Background The Bacillus subtilis genes dnaD and dnaB are essential for the initiation of DNA replication and are required for loading of the replicative helicase at the chromosomal origin of replication oriC. Wild type DnaD and DnaB interact weakly in vitro and this interaction has not been detected in vivo or in yeast two-hybrid assays. Methodology/Principal Findings We isolated second site suppressors of the temperature sensitive phenotypes caused by one dnaD mutation and two different dnaB mutations. Five different intragenic suppressors of the dnaD23ts mutation were identified. One intragenic suppressor was a deletion of two amino acids in DnaD. This deletion caused increased and detectable interaction between the mutant DnaD and wild type DnaB in a yeast two-hybrid assay, similar to the increased interaction caused by a missense mutation in dnaB that is an extragenic suppressor of dnaD23ts. We isolated both intragenic and extragenic suppressors of the two dnaBts alleles. Some of the extragenic suppressors were informational suppressors (missense suppressors) in tRNA genes. These suppressor mutations caused a change in the anticodon of an alanine tRNA so that it would recognize the mutant codon (threonine) in dnaB and likely insert the wild type amino acid (alanine). Conclusions/Significance The intragenic suppressors should provide insights into structure-function relationships in DnaD and DnaB, and interactions between DnaD and DnaB. The extragenic suppressors in the tRNA genes have important implications regarding the amount of wild type DnaB needed in the cell. Since missense suppressors are typically inefficient, these findings indicate that production of a small amount of wild type DnaB, in combination with the mutant protein, is sufficient to restore some DnaB function.
Collapse
|
34
|
Marbouty M, Saguez C, Chauvat F. The cyanobacterial cell division factor Ftn6 contains an N-terminal DnaD-like domain. BMC STRUCTURAL BIOLOGY 2009; 9:54. [PMID: 19698108 PMCID: PMC2736966 DOI: 10.1186/1472-6807-9-54] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 08/21/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND DNA replication and cell cycle as well as their relationship have been extensively studied in the two model organisms E. coli and B. subtilis. By contrast, little is known about these processes in cyanobacteria, even though they are crucial to the biosphere, in utilizing solar energy to renew the oxygenic atmosphere and in producing the biomass for the food chain. Recent studies have allowed the identification of several cell division factors that are specifics to cyanobacteria. Among them, Ftn6 has been proposed to function in the recruitment of the crucial FtsZ proteins to the septum or the subsequent Z-ring assembly and possibly in chromosome segregation. RESULTS In this study, we identified an as yet undescribed domain located in the conserved N-terminal region of Ftn6. This 77 amino-acids-long domain, designated here as FND (Ftn6 N-Terminal Domain), exhibits striking sequence and structural similarities with the DNA-interacting module, listed in the PFAM database as the DnaD-like domain (pfam04271). We took advantage of the sequence similarities between FND and the DnaD-like domains to construct a homology 3D-model of the Ftn6 FND domain from the model cyanobacterium Synechocystis PCC6803. Mapping of the conserved residues exposed onto the FND surface allowed us to identify a highly conserved area that could be engaged in Ftn6-specific interactions. CONCLUSION Overall, similarities between FND and DnaD-like domains as well as previously reported observations on Ftn6 suggest that FND may function as a DNA-interacting module thereby providing an as yet missing link between DNA replication and cell division in cyanobacteria. Consistently, we also showed that Ftn6 is involved in tolerance to DNA damages generated by UV rays.
Collapse
Affiliation(s)
- Martial Marbouty
- CEA, iBiTec-S, SBIGeM, LBI, Bat 142 CEA-Saclay, F-91191 Gif sur Yvette CEDEX, France.
| | | | | |
Collapse
|