1
|
Sim MJW, Li B, Long EO. Peptide-specific natural killer cell receptors. OXFORD OPEN IMMUNOLOGY 2025; 6:iqaf003. [PMID: 40297637 PMCID: PMC12036969 DOI: 10.1093/oxfimm/iqaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/09/2025] [Accepted: 04/15/2025] [Indexed: 04/30/2025] Open
Abstract
Class I and II human leukocyte antigens (HLA-I and HLA-II) present peptide antigens for immunosurveillance by T cells. HLA molecules also form ligands for a plethora of innate, germline-encoded receptors. Many of these receptors engage HLA molecules in a peptide sequence independent manner, with binding sites outside the peptide binding groove. However, some receptors, typically expressed on natural killer (NK) cells, engage the HLA presented peptide directly. Remarkably, some of these receptors display exquisite specificity for peptide sequences, with the capacity to detect sequences conserved in pathogens. Here, we review evidence for peptide-specific NK cell receptors (PSNKRs) and discuss their potential roles in immunity.
Collapse
Affiliation(s)
- Malcolm J W Sim
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Beining Li
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Eric O Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, United States of America
| |
Collapse
|
2
|
Bruton J, Hanke T. Exploitation of Unconventional CD8 T-Cell Responses Induced by Engineered Cytomegaloviruses for the Development of an HIV-1 Vaccine. Vaccines (Basel) 2025; 13:72. [PMID: 39852851 PMCID: PMC11769474 DOI: 10.3390/vaccines13010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/08/2025] [Accepted: 01/12/2025] [Indexed: 01/26/2025] Open
Abstract
After four decades of intensive research, traditional vaccination strategies for HIV-1 remain ineffective due to HIV-1's extraordinary genetic diversity and complex immune evasion mechanisms. Cytomegaloviruses (CMV) have emerged as a novel type of vaccine vector with unique advantages due to CMV persistence and immunogenicity. Rhesus macaques vaccinated with molecular clone 68-1 of RhCMV (RhCMV68-1) engineered to express simian immunodeficiency virus (SIV) immunogens elicited an unconventional major histocompatibility complex class Ib allele E (MHC-E)-restricted CD8+ T-cell response, which consistently protected over half of the animals against a highly pathogenic SIV challenge. The RhCMV68-1.SIV-induced responses mediated a post-infection replication arrest of the challenge virus and eventually cleared it from the body. These observations in rhesus macaques opened a possibility that MHC-E-restricted CD8+ T-cells could achieve similar control of HIV-1 in humans. The potentially game-changing advantage of the human CMV (HCMV)-based vaccines is that they would induce protective CD8+ T-cells persisting at the sites of entry that would be insensitive to HIV-1 evasion. In the RhCMV68-1-protected rhesus macaques, MHC-E molecules and their peptide cargo utilise complex regulatory mechanisms and unique transport patterns, and researchers study these to guide human vaccine development. However, CMVs are highly species-adapted viruses and it is yet to be shown whether the success of RhCMV68-1 can be translated into an HCMV ortholog for humans. Despite some safety concerns regarding using HCMV as a vaccine vector in humans, there is a vision of immune programming of HCMV to induce pathogen-tailored CD8+ T-cells effective against HIV-1 and other life-threatening diseases.
Collapse
Affiliation(s)
- Joseph Bruton
- Hertford College, University of Oxford, Oxford OX1 3BW, UK;
| | - Tomáš Hanke
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
3
|
Gillespie GM, Quastel MN, McMichael AJ. HLA-E: Immune Receptor Functional Mechanisms Revealed by Structural Studies. Immunol Rev 2025; 329:e13434. [PMID: 39753525 PMCID: PMC11698700 DOI: 10.1111/imr.13434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/10/2024] [Indexed: 01/06/2025]
Abstract
HLA-E is a nonclassical, nonpolymorphic, class Ib HLA molecule. Its primary function is to present a conserved nonamer peptide, termed VL9, derived from the signal sequence of classical MHC molecules to the NKG2x-CD94 receptors on NK cells and a subset of T lymphocytes. These receptors regulate the function of NK cells, and the importance of this role, which is conserved across mammalian species, probably accounts for the lack of genetic polymorphism. A second minor function is to present other, weaker binding, pathogen-derived peptides to T lymphocytes. Most of these peptides bind suboptimally to HLA-E, but this binding appears to be enabled by the relative stability of peptide-free, but receptive, HLA-E-β2m complexes. This, in turn, may favor nonclassical antigen processing that may be associated with bacteria infected cells. This review explores how the structure of HLA-E, bound to different peptides and then to NKG2-CD94 or T-cell receptors, relates to HLA-E cell biology and immunology. A detailed understanding of this molecule could open up opportunities for development of universal T-cell and NK-cell-based immunotherapies.
Collapse
MESH Headings
- Humans
- Histocompatibility Antigens Class I/metabolism
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/chemistry
- Animals
- HLA-E Antigens
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Protein Binding
- Antigen Presentation
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/chemistry
- NK Cell Lectin-Like Receptor Subfamily C/metabolism
- Structure-Activity Relationship
- Peptides/chemistry
- Peptides/immunology
- Peptides/metabolism
- NK Cell Lectin-Like Receptor Subfamily D/metabolism
- NK Cell Lectin-Like Receptor Subfamily D/chemistry
- NK Cell Lectin-Like Receptor Subfamily D/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/chemistry
- Protein Conformation
Collapse
Affiliation(s)
| | - Max N. Quastel
- Nuffield Department of Medicine, Center for Immuno‐OncologyUniversity of OxfordOxfordUK
| | - Andrew J. McMichael
- Nuffield Department of Medicine, Center for Immuno‐OncologyUniversity of OxfordOxfordUK
| |
Collapse
|
4
|
Bilev E, Wild N, Momayyezi P, Sala BM, Sun R, Sandalova T, Marquardt N, Ljunggren HG, Achour A, Hammer Q. Emerging mutation in SARS-CoV-2 facilitates escape from NK cell recognition and associates with enhanced viral fitness. PLoS Pathog 2024; 20:e1012755. [PMID: 39652590 DOI: 10.1371/journal.ppat.1012755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 12/19/2024] [Accepted: 11/08/2024] [Indexed: 12/21/2024] Open
Abstract
In addition to adaptive immunity, natural killer (NK) cells of the innate immune system contribute to the control of viral infections. The HLA-E-restricted SARS-CoV-2 Nsp13232-240 epitope VMPLSAPTL renders infected cells susceptible to NK cells by preventing binding to the inhibitory receptor NKG2A. Here, we report that a recently emerged methionine to isoleucine substitution at position 2 (pM2I) of Nsp13232-240 impairs binding of the mutated epitope to HLA-E and diminishes HLA-E/peptide complex stability. Structural analyses revealed altered occupancy of the HLA-E B-pocket as the underlying cause for reduced presentation and stability of the mutated epitope. Functionally, the reduced presentation of the mutated epitope correlated with elevated binding to NKG2A as well as with increased NK cell inhibition. Moreover, the pM2I mutation associated with enhanced estimated viral fitness and was transmitted to descendants of the SARS-CoV-2 BQ.1 variant. Interestingly, the mutated epitope resembles sequences of related peptides found in endemic common cold-causing human coronaviruses. Altogether, these findings indicate compromised peptide presentation as a viral adaptation to evade NK cell-mediated immunosurveillance by enabling enhanced presentation of self-peptide and restoring NKG2A-dependent inhibition of NK cells.
Collapse
Affiliation(s)
- Eleni Bilev
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Nicole Wild
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Pouria Momayyezi
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Benedetta Maria Sala
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet & Division of Infectious Diseases, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Renhua Sun
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet & Division of Infectious Diseases, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Tatyana Sandalova
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet & Division of Infectious Diseases, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Nicole Marquardt
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet & Division of Infectious Diseases, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Quirin Hammer
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
5
|
Okpoluaefe S, Ismail IS, Mohamed R, Hassan N. Adaptive natural killer cell expression in response to cytomegalovirus infection in blood and solid cancer. Heliyon 2024; 10:e32622. [PMID: 38961938 PMCID: PMC11219991 DOI: 10.1016/j.heliyon.2024.e32622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Natural Killer (NK) cells are conventionally thought to be an indefinite part of innate immunity. However, in a specific subset of NK cells, recent data signify an extension of their "duties" in immune surveillance and response, having characteristics of adaptive immunity, in terms of persistence and cytotoxicity. These cells are known as the adaptive or memory-like NK cells, where human cytomegalovirus (HCMV) infection has been shown to drive the expansion of adaptive NKG2C+ NK cells. HCMV is a ubiquitous pathogen whose prevalence differs worldwide with respect to the socioeconomic status of countries. The adaptive NK cell subpopulation is often characterized by the upregulated expression of NKG2C, CD16, and CD2, and restricted expression of NKG2A, FCεRγ and killer immunoglobulin-like receptors (KIR), although these phenotypes may differ in different disease groups. The reconfiguration of these receptor distributions has been linked to epigenetic factors. Hence, this review attempts to appraise literature reporting markers associated with adaptive or memory-like NK cells post-HCMV infection, in relation to solid cancers and hematological malignancies. Adaptive NK cells, isolated and subjected to ex vivo modifications, have the potential to enhance anti-tumor response which can be a promising strategy for adoptive immunotherapy.
Collapse
Affiliation(s)
- Suruthimitra Okpoluaefe
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Penang, Malaysia
- Emerging Infectious Disease Group, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 3200 Bertam, Kepala Batas, Penang, Malaysia
| | - Ida Shazrina Ismail
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Penang, Malaysia
- Breast Cancer Translational Research Program, BCTRP@IPPT, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Penang, Malaysia
| | - Rafeezul Mohamed
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Penang, Malaysia
- Breast Cancer Translational Research Program, BCTRP@IPPT, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Penang, Malaysia
| | - Norfarazieda Hassan
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Penang, Malaysia
- Breast Cancer Translational Research Program, BCTRP@IPPT, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Penang, Malaysia
- Emerging Infectious Disease Group, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 3200 Bertam, Kepala Batas, Penang, Malaysia
| |
Collapse
|
6
|
Wallace Z, Heunis T, Paterson RL, Suckling RJ, Grant T, Dembek M, Donoso J, Brener J, Long J, Bunjobpol W, Gibbs-Howe D, Kay DP, Leneghan DB, Godinho LF, Walker A, Singh PK, Knox A, Leonard S, Dorrell L. Instability of the HLA-E peptidome of HIV presents a major barrier to therapeutic targeting. Mol Ther 2024; 32:678-688. [PMID: 38219014 PMCID: PMC10928138 DOI: 10.1016/j.ymthe.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/14/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024] Open
Abstract
Naturally occurring T cells that recognize microbial peptides via HLA-E, a nonpolymorphic HLA class Ib molecule, could provide the foundation for new universal immunotherapeutics. However, confidence in the biological relevance of putative ligands is crucial, given that the mechanisms by which pathogen-derived peptides can access the HLA-E presentation pathway are poorly understood. We systematically interrogated the HIV proteome using immunopeptidomic and bioinformatic approaches, coupled with biochemical and cellular assays. No HIV HLA-E peptides were identified by tandem mass spectrometry analysis of HIV-infected cells. In addition, all bioinformatically predicted HIV peptide ligands (>80) were characterized by poor complex stability. Furthermore, infected cell elimination assays using an affinity-enhanced T cell receptor bispecific targeted to a previously reported HIV Gag HLA-E epitope demonstrated inconsistent presentation of the peptide, despite normal HLA-E expression on HIV-infected cells. This work highlights the instability of the HIV HLA-E peptidome as a major challenge for drug development.
Collapse
Affiliation(s)
- Zoë Wallace
- Immunocore Ltd., Abingdon, Oxfordshire OX14 4RY, UK.
| | - Tiaan Heunis
- Immunocore Ltd., Abingdon, Oxfordshire OX14 4RY, UK
| | | | | | | | | | - Jose Donoso
- Immunocore Ltd., Abingdon, Oxfordshire OX14 4RY, UK
| | | | - Joshua Long
- Immunocore Ltd., Abingdon, Oxfordshire OX14 4RY, UK
| | | | | | - Daniel P Kay
- Immunocore Ltd., Abingdon, Oxfordshire OX14 4RY, UK
| | | | | | | | | | - Andrew Knox
- Immunocore Ltd., Abingdon, Oxfordshire OX14 4RY, UK
| | | | - Lucy Dorrell
- Immunocore Ltd., Abingdon, Oxfordshire OX14 4RY, UK
| |
Collapse
|
7
|
Castaño-Núñez ÁL, Montes-Cano MA, García-Lozano JR, Ortego-Centeno N, García-Hernández FJ, Espinosa G, Graña-Gil G, Sánchez-Bursón J, Juliá MR, Solans R, Blanco R, Barnosi-Marín AC, Gómez de la Torre R, Fanlo P, Rodríguez-Carballeira M, Rodríguez-Rodríguez L, Camps T, Castañeda S, Alegre-Sancho JJ, Martín J, González-Escribano MF. The complex HLA-E-nonapeptide in Behçet disease. Front Immunol 2023; 14:1080047. [PMID: 37638008 PMCID: PMC10449640 DOI: 10.3389/fimmu.2023.1080047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/04/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction The knowledge of the aetiology of Behçet disease (BD), an immune-mediated vasculitis, is limited. HLA-B, mainly HLA-B51, and HLA-A molecules are associated with disease, but the ultimate cause of this association remains obscure. There is evidence that NK cells participate in the etiopathology of BD. NK cells have activator and inhibitor surface receptors, like the KIR and the NKG2 families. Classical HLA-class I molecules (A, B and C) are keys in the activity control of the NK because they are KIR ligands. Most NKG2 receptors bind HLA-E, which presents only nonapeptides derived from the signal peptide of other class-I molecules. Objective This study investigates the contribution of the pair HLA-E and ligand, nonapeptide derived from the 3-11 sequence of the signal peptides of class I classical molecules, to the susceptibility to BD. Methods We analyzed the frequency of the HLA-derivated nonapeptide forms in 466 BD patients and 444 controls and an HLA-E functional dimorphism in a subgroup of patients and controls. Results: In B51 negative patients, the frequency of VMAPRTLLL was lower (70.4% versus 80.0% in controls; P=0.006, Pc=0.04, OR=0.60, 95%CI 0.41-0.86), and the frequency of VMAPRTLVL was higher (81.6% versus 71.4% in controls; P=0.004, Pc=0.03, OR=1.78, 95%CI 1.20-2.63). In homozygosity, VMAPRTLLL is protective, and VMAPRTLVL confers risk. The heterozygous condition is neutral. There were no significant differences in the distribution of the HLA-E dimorphism. Discussion Our results explain the association of BD with diverse HLA-A molecules, reinforce the hypothesis of the involvement of the NK cells in the disease and do not suggest a significant contribution of the HLA-E polymorphism to disease susceptibility.
Collapse
Affiliation(s)
- Ángel Luís Castaño-Núñez
- Department of Immunology, Hospital Universitario Virgen del Rocío (IBiS, CSIC, US), Sevilla, Spain
| | | | - José-Raúl García-Lozano
- Department of Immunology, Hospital Universitario Virgen del Rocío (IBiS, CSIC, US), Sevilla, Spain
| | | | | | - Gerard Espinosa
- Department Autoimmune Diseases, Hospital Universitari Clínic, Barcelona, Spain
| | - Genaro Graña-Gil
- Department of Rheumatology, Complejo Hospitalario Universitario A Coruña, Coruña, Spain
| | | | - María Rosa Juliá
- Department of Immunology, Hospital Universitari Son Espases, Palma de Mallorca, Spain
| | - Roser Solans
- Department of Internal Medicine, Autoimmune Systemic Diseases Unit, Hospital Vall d’Hebron, Universidad Autonoma de Barcelona, Barcelona, Spain
| | - Ricardo Blanco
- Department of Rheumatology, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | | | | | - Patricia Fanlo
- Department of Internal Medicine, Hospital Virgen del Camino, Pamplona, Spain
| | | | | | - Teresa Camps
- Department of Internal Medicine, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Santos Castañeda
- Department of Rheumatology, Hospital de la Princesa, IIS-Princesa, Madrid, Spain
| | | | - Javier Martín
- Instituto de Parasitología y Biomedicina “López-Neyra”, CSIC, PTS Granada, Granada, Spain
| | | |
Collapse
|
8
|
Huisman BD, Guan N, Rückert T, Garner L, Singh NK, McMichael AJ, Gillespie GM, Romagnani C, Birnbaum ME. High-throughput characterization of HLA-E-presented CD94/NKG2x ligands reveals peptides which modulate NK cell activation. Nat Commun 2023; 14:4809. [PMID: 37558657 PMCID: PMC10412585 DOI: 10.1038/s41467-023-40220-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 07/13/2023] [Indexed: 08/11/2023] Open
Abstract
HLA-E is a non-classical class I MHC protein involved in innate and adaptive immune recognition. While recent studies have shown HLA-E can present diverse peptides to NK cells and T cells, the HLA-E repertoire recognized by CD94/NKG2x has remained poorly defined, with only a limited number of peptide ligands identified. Here we screen a yeast-displayed peptide library in the context of HLA-E to identify 500 high-confidence unique peptides that bind both HLA-E and CD94/NKG2A or CD94/NKG2C. Utilizing the sequences identified via yeast display selections, we train prediction algorithms and identify human and cytomegalovirus (CMV) proteome-derived, HLA-E-presented peptides capable of binding and signaling through both CD94/NKG2A and CD94/NKG2C. In addition, we identify peptides which selectively activate NKG2C+ NK cells. Taken together, characterization of the HLA-E-binding peptide repertoire and identification of NK activity-modulating peptides present opportunities for studies of NK cell regulation in health and disease, in addition to vaccine and therapeutic design.
Collapse
Affiliation(s)
- Brooke D Huisman
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Ning Guan
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Timo Rückert
- Innate Immunity, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), ein Leibniz Institut, Berlin, Germany
| | - Lee Garner
- Centre for Immuno-Oncology, Old Road Campus Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nishant K Singh
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Andrew J McMichael
- Centre for Immuno-Oncology, Old Road Campus Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Geraldine M Gillespie
- Centre for Immuno-Oncology, Old Road Campus Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Chiara Romagnani
- Innate Immunity, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), ein Leibniz Institut, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael E Birnbaum
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA.
- Department of Biological Engineering, MIT, Cambridge, MA, USA.
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.
| |
Collapse
|
9
|
He W, Gea-Mallorquí E, Colin-York H, Fritzsche M, Gillespie GM, Brackenridge S, Borrow P, McMichael AJ. Intracellular trafficking of HLA-E and its regulation. J Exp Med 2023; 220:214089. [PMID: 37140910 PMCID: PMC10165540 DOI: 10.1084/jem.20221941] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/13/2023] [Accepted: 04/17/2023] [Indexed: 05/05/2023] Open
Abstract
Interest in MHC-E-restricted CD8+ T cell responses has been aroused by the discovery of their efficacy in controlling simian immunodeficiency virus (SIV) infection in a vaccine model. The development of vaccines and immunotherapies utilizing human MHC-E (HLA-E)-restricted CD8+ T cell response requires an understanding of the pathway(s) of HLA-E transport and antigen presentation, which have not been clearly defined previously. We show here that, unlike classical HLA class I, which rapidly exits the endoplasmic reticulum (ER) after synthesis, HLA-E is largely retained because of a limited supply of high-affinity peptides, with further fine-tuning by its cytoplasmic tail. Once at the cell surface, HLA-E is unstable and is rapidly internalized. The cytoplasmic tail plays a crucial role in facilitating HLA-E internalization, which results in its enrichment in late and recycling endosomes. Our data reveal distinctive transport patterns and delicate regulatory mechanisms of HLA-E, which help to explain its unusual immunological functions.
Collapse
Affiliation(s)
- Wanlin He
- Nuffield Department of Medicine, Center for Immuno-Oncology, University of Oxford, Oxford, UK
| | - Ester Gea-Mallorquí
- Nuffield Department of Medicine, Center for Immuno-Oncology, University of Oxford, Oxford, UK
| | - Huw Colin-York
- Kennedy Institute of Rheumatology, University of Oxford , Oxford, UK
| | - Marco Fritzsche
- Kennedy Institute of Rheumatology, University of Oxford , Oxford, UK
| | - Geraldine M Gillespie
- Nuffield Department of Medicine, Center for Immuno-Oncology, University of Oxford, Oxford, UK
| | - Simon Brackenridge
- Nuffield Department of Medicine, Center for Immuno-Oncology, University of Oxford, Oxford, UK
| | - Persephone Borrow
- Nuffield Department of Medicine, Center for Immuno-Oncology, University of Oxford, Oxford, UK
| | - Andrew J McMichael
- Nuffield Department of Medicine, Center for Immuno-Oncology, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Saunders PM, Brooks AG, Rossjohn J. Oyez, Oyez, Oyez! Nat Immunol 2023:10.1038/s41590-023-01541-x. [PMID: 37308666 DOI: 10.1038/s41590-023-01541-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Philippa M Saunders
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew G Brooks
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia.
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Cardiff, UK.
| |
Collapse
|
11
|
Kim SJ, Karamooz E. MR1- and HLA-E-Dependent Antigen Presentation of Mycobacterium tuberculosis. Int J Mol Sci 2022; 23:14412. [PMID: 36430890 PMCID: PMC9693577 DOI: 10.3390/ijms232214412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
MR1 and HLA-E are highly conserved nonclassical antigen-presenting molecules. They can present antigens derived from Mycobacterium tuberculosis to a distinct subset of MR1-restricted or HLA-restricted CD8+ T cells. MR1 presents small microbial metabolites, and HLA-E presents peptides and glycopeptides. In this review, we will discuss the current understanding of MR1 and HLA-E antigen presentation in the context of Mycobacterium tuberculosis infection.
Collapse
Affiliation(s)
- Se-Jin Kim
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, USA
- Medical Scientist Training Program, Oregon Health & Science University, Portland, OR 97239, USA
| | - Elham Karamooz
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
12
|
Shirane M, Yawata N, Motooka D, Shibata K, Khor SS, Omae Y, Kaburaki T, Yanai R, Mashimo H, Yamana S, Ito T, Hayashida A, Mori Y, Numata A, Murakami Y, Fujiwara K, Ohguro N, Hosogai M, Akiyama M, Hasegawa E, Paley M, Takeda A, Maenaka K, Akashi K, Yokoyama WM, Tokunaga K, Yawata M, Sonoda KH. Intraocular human cytomegaloviruses of ocular diseases are distinct from those of viremia and are capable of escaping from innate and adaptive immunity by exploiting HLA-E-mediated peripheral and central tolerance. Front Immunol 2022; 13:1008220. [PMID: 36341392 PMCID: PMC9626817 DOI: 10.3389/fimmu.2022.1008220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/20/2022] [Indexed: 01/24/2023] Open
Abstract
Human cytomegalovirus (HCMV) infections develop into CMV diseases that result in various forms of manifestations in local organs. CMV-retinitis is a form of CMV disease that develops in immunocompromised hosts with CMV-viremia after viruses in the peripheral circulation have entered the eye. In the HCMV genome, extensive diversification of the UL40 gene has produced peptide sequences that modulate NK cell effector functions when loaded onto HLA-E and are subsequently recognized by the NKG2A and NKG2C receptors. Notably, some HCMV strains carry UL40 genes that encode peptide sequences identical to the signal peptide sequences of specific HLA-A and HLA-C allotypes, which enables these CMV strains to escape HLA-E-restricted CD8+T cell responses. Variations in UL40 sequences have been studied mainly in the peripheral blood of CMV-viremia cases. In this study, we sought to investigate how ocular CMV disease develops from CMV infections. CMV gene sequences were compared between the intraocular fluids and peripheral blood of 77 clinical cases. UL40 signal peptide sequences were more diverse, and multiple sequences were typically present in CMV-viremia blood compared to intraocular fluid. Significantly stronger NK cell suppression was induced by UL40-derived peptides from intraocular HCMV compared to those identified only in peripheral blood. HCMV present in intraocular fluids were limited to those carrying a UL40 peptide sequence corresponding to the leader peptide sequence of the host's HLA class I, while UL40-derived peptides from HCMV found only in the peripheral blood were disparate from any HLA class I allotype. Overall, our analyses of CMV-retinitis inferred that specific HCMV strains with UL40 signal sequences matching the host's HLA signal peptide sequences were those that crossed the blood-ocular barrier to enter the intraocular space. UL40 peptide repertoires were the same in the intraocular fluids of all ocular CMV diseases, regardless of host immune status, implying that virus type is likely to be a common determinant in ocular CMV disease development. We thus propose a mechanism for ocular CMV disease development, in which particular HCMV types in the blood exploit peripheral and central HLA-E-mediated tolerance mechanisms and, thus, escape the antivirus responses of both innate and adaptive immunity.
Collapse
Affiliation(s)
- Mariko Shirane
- Department of Ophthalmology, Kyushu University, Fukuoka, Japan
| | - Nobuyo Yawata
- Department of Ocular Pathology and Imaging Science, Kyushu University, Fukuoka, Japan
- Ocular inflammation and Immunology, Singapore Eye Research Institute, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| | - Daisuke Motooka
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
| | - Kensuke Shibata
- Department of Ocular Pathology and Imaging Science, Kyushu University, Fukuoka, Japan
- Department of Microbiology and Immunology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Seik-Soon Khor
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yosuke Omae
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Toshikatsu Kaburaki
- Department of Ophthalmology, The University of Tokyo Hospital, Tokyo, Japan
- Department of Ophthalmology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Ryoji Yanai
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Hisashi Mashimo
- Department of Ophthalmology, Japan Community Health Care Organization Hospital, Osaka, Japan
| | - Satoshi Yamana
- Department of Ophthalmology, Kyushu University, Fukuoka, Japan
| | - Takako Ito
- Department of Ophthalmology, Kyushu University, Fukuoka, Japan
| | - Akira Hayashida
- Department of Ophthalmology, Kyushu University, Fukuoka, Japan
| | - Yasuo Mori
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
| | - Akihiko Numata
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
| | - Yusuke Murakami
- Department of Ophthalmology, Kyushu University, Fukuoka, Japan
| | - Kohta Fujiwara
- Department of Ophthalmology, Kyushu University, Fukuoka, Japan
| | - Nobuyuki Ohguro
- Department of Ophthalmology, Japan Community Health Care Organization Hospital, Osaka, Japan
| | - Mayumi Hosogai
- Department of Ophthalmology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Masato Akiyama
- Department of Ocular Pathology and Imaging Science, Kyushu University, Fukuoka, Japan
| | - Eiichi Hasegawa
- Department of Ophthalmology, Kyushu University, Fukuoka, Japan
| | - Michael Paley
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Atsunobu Takeda
- Department of Ophthalmology, Kyushu University, Fukuoka, Japan
| | - Katsumi Maenaka
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
| | - Wayne M. Yokoyama
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Bursky Center for Human Immunology and Immunotherapy Programs, Washington University, St. Louis, MO, United States
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Makoto Yawata
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research, ASTAR, Singapore, Singapore
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Pediatrics, National University Health System, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- National University Singapore Medicine Immunology Translational Research Programme, National University of Singapore, Singapore, Singapore
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Kyushu University, Fukuoka, Japan
| |
Collapse
|
13
|
Prašnikar E, Perdih A, Borišek J. What a Difference an Amino Acid Makes: An All-Atom Simulation Study of Nonameric Peptides in Inhibitory HLA-E/NKG2A/CD94 Immune Complexes. Front Pharmacol 2022; 13:925427. [PMID: 35991867 PMCID: PMC9385950 DOI: 10.3389/fphar.2022.925427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
MHC class I antigen E (HLA-E), a ligand for the inhibitory NKG2A/CD94 receptor of the immune system, is responsible for evading the immune surveillance in several settings, including senescent cell accumulation and tumor persistence. The formation of this ligand-receptor interaction promotes the inhibition of the cytolytic action of immune system natural killer (NK) cells and CD8+ T-cells expressing this receptor. The final outcome of the HLA-E/NKG2A/CD94 interaction on target cells is also highly dependent on the identity of the nonameric peptide incorporated into the HLA-E ligand. To better understand the role played by a nonameric peptide in these immune complexes, we performed a series of multi-microsecond all-atom molecular dynamics simulations. We generated natural and alternative variants of the nonameric peptide bound to the HLA-E ligand alone or in the HLA-E/NKG2A/CD94 complexes. A systematic study of molecular recognition between HLA-E and peptides led to the development of new variants that differ at the strategic 6th position (P6) of the peptide and have favorable in silico properties comparable to those of natural binding peptides. Further examination of a selected subset of peptides in full complexes revealed a new variant that, according to our previously derived atomistic model, can interfere with the signal transduction via HLA-E/NKG2A/CD94 and thus prevent the target cell from evading immune clearance by NK and CD8+ T-cells. These simulations provide an atomistic picture of how a small change in amino acid sequence can lead to a profound effect on binding and molecular recognition. Furthermore, our study also provides new data on the peptide interaction motifs as well as the energetic and conformational properties of the binding interface, laying the structure-based foundation for future development of potential therapeutic peptides, peptidomimetics, or even small molecules that would bind to the HLA-E ligand and abrogate NKG2A/CD94 recognition. Such external intervention would be useful in the emerging field of targeting senescent cells in a variety of age-related diseases, as well as in novel cancer immunotherapies.
Collapse
Affiliation(s)
- Eva Prašnikar
- Theory Department, Laboratory for Chemical Informatics, National Institute of Chemistry, Ljubljana, Slovenia
- Faculty of Medicine, Graduate School of Biomedicine, University of Ljubljana, Ljubljana, Slovenia
| | - Andrej Perdih
- Theory Department, Laboratory for Computational Biochemistry and Drug Design, National Institute of Chemistry, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Andrej Perdih, ; Jure Borišek,
| | - Jure Borišek
- Theory Department, Laboratory for Chemical Informatics, National Institute of Chemistry, Ljubljana, Slovenia
- *Correspondence: Andrej Perdih, ; Jure Borišek,
| |
Collapse
|
14
|
Walters LC, Rozbesky D, Harlos K, Quastel M, Sun H, Springer S, Rambo RP, Mohammed F, Jones EY, McMichael AJ, Gillespie GM. Primary and secondary functions of HLA-E are determined by stability and conformation of the peptide-bound complexes. Cell Rep 2022; 39:110959. [PMID: 35705051 PMCID: PMC9380258 DOI: 10.1016/j.celrep.2022.110959] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/11/2022] [Accepted: 05/23/2022] [Indexed: 11/19/2022] Open
Abstract
MHC-E regulates NK cells by displaying MHC class Ia signal peptides (VL9) to NKG2A:CD94 receptors. MHC-E can also present sequence-diverse, lower-affinity, pathogen-derived peptides to T cell receptors (TCRs) on CD8+ T cells. To understand these affinity differences, human MHC-E (HLA-E)-VL9 versus pathogen-derived peptide structures are compared. Small-angle X-ray scatter (SAXS) measures biophysical parameters in solution, allowing comparison with crystal structures. For HLA-E-VL9, there is concordance between SAXS and crystal parameters. In contrast, HLA-E-bound pathogen-derived peptides produce larger SAXS dimensions that reduce to their crystallographic dimensions only when excess peptide is supplied. Further crystallographic analysis demonstrates three amino acids, exclusive to MHC-E, that not only position VL9 close to the α2 helix, but also allow non-VL9 peptide binding with re-configuration of a key TCR-interacting α2 region. Thus, non-VL9-bound peptides introduce an alternative peptide-binding motif and surface recognition landscape, providing a likely basis for VL9- and non-VL9-HLA-E immune discrimination.
Collapse
Affiliation(s)
- Lucy C Walters
- Nuffield Department of Medicine Research Building, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Daniel Rozbesky
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Karl Harlos
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Max Quastel
- Nuffield Department of Medicine Research Building, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Hong Sun
- Nuffield Department of Medicine Research Building, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Sebastian Springer
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Robert P Rambo
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Fiyaz Mohammed
- Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Andrew J McMichael
- Nuffield Department of Medicine Research Building, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK.
| | - Geraldine M Gillespie
- Nuffield Department of Medicine Research Building, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK.
| |
Collapse
|
15
|
Marin IA, Gutman-Wei AY, Chew KS, Raissi AJ, Djurisic M, Shatz CJ. The nonclassical MHC class I Qa-1 expressed in layer 6 neurons regulates activity-dependent plasticity via microglial CD94/NKG2 in the cortex. Proc Natl Acad Sci U S A 2022; 119:e2203965119. [PMID: 35648829 PMCID: PMC9191652 DOI: 10.1073/pnas.2203965119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/20/2022] [Indexed: 12/30/2022] Open
Abstract
During developmental critical periods, circuits are sculpted by a process of activity-dependent competition. The molecular machinery involved in regulating the complex process of responding to different levels of activity is now beginning to be identified. Here, we show that the nonclassical major histocompatibility class I (MHCI) molecule Qa-1 is expressed in the healthy brain in layer 6 corticothalamic neurons. In the visual cortex, Qa-1 expression begins during the critical period for ocular dominance (OD) plasticity and is regulated by neuronal activity, suggesting a role in regulating activity-dependent competition. Indeed, in mice lacking Qa-1, OD plasticity is perturbed. Moreover, signaling through CD94/NKG2, a known cognate Qa-1 heterodimeric receptor in the immune system, is implicated: selectively targeting this interaction phenocopies the plasticity perturbation observed in Qa-1 knockouts. In the cortex, CD94/NKG2 is expressed by microglial cells, which undergo activity-dependent changes in their morphology in a Qa-1–dependent manner. Our study thus reveals a neuron–microglial interaction dependent upon a nonclassical MHCI molecule expressed in L6 neurons, which regulates plasticity in the visual cortex. These results also point to an unexpected function for the Qa-1/HLA-E (ligand) and CD94/NKG2 (receptor) interaction in the nervous system, in addition to that described in the immune system.
Collapse
Affiliation(s)
- Ioana A. Marin
- Department of Biology, Stanford University, Stanford, CA 94035
- Department of Neurobiology, Stanford University, Stanford, CA 94035
| | - Alan Y. Gutman-Wei
- Department of Biology, Stanford University, Stanford, CA 94035
- Department of Neurobiology, Stanford University, Stanford, CA 94035
| | - Kylie S. Chew
- Department of Biology, Stanford University, Stanford, CA 94035
- Department of Neurobiology, Stanford University, Stanford, CA 94035
| | - Aram J. Raissi
- Department of Biology, Stanford University, Stanford, CA 94035
- Department of Neurobiology, Stanford University, Stanford, CA 94035
| | - Maja Djurisic
- Department of Biology, Stanford University, Stanford, CA 94035
- Department of Neurobiology, Stanford University, Stanford, CA 94035
| | - Carla J. Shatz
- Department of Biology, Stanford University, Stanford, CA 94035
- Department of Neurobiology, Stanford University, Stanford, CA 94035
| |
Collapse
|
16
|
D'Amico S, D'Alicandro V, Compagnone M, Tempora P, Guida G, Romania P, Lucarini V, Melaiu O, Falco M, Algeri M, Pende D, Cifaldi L, Fruci D. ERAP1 Controls the Interaction of the Inhibitory Receptor KIR3DL1 With HLA-B51:01 by Affecting Natural Killer Cell Function. Front Immunol 2021; 12:778103. [PMID: 34917091 PMCID: PMC8669763 DOI: 10.3389/fimmu.2021.778103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022] Open
Abstract
The endoplasmic reticulum aminopeptidase ERAP1 regulates innate and adaptive immune responses by trimming peptides for presentation by major histocompatibility complex (MHC) class I molecules. Previously, we have shown that genetic or pharmacological inhibition of ERAP1 on murine and human tumor cell lines perturbs the engagement of NK cell inhibitory receptors Ly49C/I and Killer-cell Immunoglobulin-like receptors (KIRs), respectively, by their specific ligands (MHC class I molecules), thus leading to NK cell killing. However, the effect of ERAP1 inhibition in tumor cells was highly variable, suggesting that its efficacy may depend on several factors, including MHC class I typing. To identify MHC class I alleles and KIRs that are more sensitive to ERAP1 depletion, we stably silenced ERAP1 expression in human HLA class I-negative B lymphoblastoid cell line 721.221 (referred to as 221) transfected with a panel of KIR ligands (i.e. HLA-B*51:01, -Cw3, -Cw4 and -Cw7), or HLA-A2 which does not bind any KIR, and tested their ability to induce NK cell degranulation and cytotoxicity. No change in HLA class I surface expression was detected in all 221 transfectant cells after ERAP1 depletion. In contrast, CD107a expression levels were significantly increased on NK cells stimulated with 221-B*51:01 cells lacking ERAP1, particularly in the KIR3DL1-positive NK cell subset. Consistently, genetic or pharmacological inhibition of ERAP1 impaired the recognition of HLA-B*51:01 by the YTS NK cell overexpressing KIR3DL1*001, suggesting that ERAP1 inhibition renders HLA-B*51:01 molecules less eligible for binding to KIR3DL1. Overall, these results identify HLA-B*51:01/KIR3DL1 as one of the most susceptible combinations for ERAP1 inhibition, suggesting that individuals carrying HLA-B*51:01-like antigens may be candidates for immunotherapy based on pharmacological inhibition of ERAP1.
Collapse
Affiliation(s)
- Silvia D'Amico
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Valerio D'Alicandro
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Mirco Compagnone
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Patrizia Tempora
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Giusy Guida
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Paolo Romania
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Valeria Lucarini
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Ombretta Melaiu
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Michela Falco
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Mattia Algeri
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Daniela Pende
- Laboratory of Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Loredana Cifaldi
- Academic Department of Pediatrics (DPUO), Bambino Gesù Children Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy.,Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Doriana Fruci
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Bambino Gesù Children Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
17
|
Vaurs J, Douchin G, Echasserieau K, Oger R, Jouand N, Fortun A, Hesnard L, Croyal M, Pecorari F, Gervois N, Bernardeau K. A novel and efficient approach to high-throughput production of HLA-E/peptide monomer for T-cell epitope screening. Sci Rep 2021; 11:17234. [PMID: 34446788 PMCID: PMC8390762 DOI: 10.1038/s41598-021-96560-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/10/2021] [Indexed: 12/05/2022] Open
Abstract
Over the past two decades, there has been a great interest in the study of HLA-E-restricted αβ T cells during bacterial and viral infections, including recently SARS-CoV-2 infection. Phenotyping of these specific HLA-E-restricted T cells requires new tools such as tetramers for rapid cell staining or sorting, as well as for the identification of new peptides capable to bind to the HLA-E pocket. To this aim, we have developed an optimal photosensitive peptide to generate stable HLA-E/pUV complexes allowing high-throughput production of new HLA-E/peptide complexes by peptide exchange. We characterized the UV exchange by ELISA and improved the peptide exchange readout using size exclusion chromatography. This novel approach for complex quantification is indeed very important to perform tetramerization of MHC/peptide complexes with the high quality required for detection of specific T cells. Our approach allows the rapid screening of peptides capable of binding to the non-classical human HLA-E allele, paving the way for the development of new therapeutic approaches based on the detection of HLA-E-restricted T cells.
Collapse
Affiliation(s)
- Juliette Vaurs
- P2R "Production de Protéines Recombinantes", Université de Nantes, CRCINA, SFR-Santé, INSERM, CNRS, CHU Nantes, Nantes, France
| | - Gaël Douchin
- P2R "Production de Protéines Recombinantes", Université de Nantes, CRCINA, SFR-Santé, INSERM, CNRS, CHU Nantes, Nantes, France
| | - Klara Echasserieau
- P2R "Production de Protéines Recombinantes", Université de Nantes, CRCINA, SFR-Santé, INSERM, CNRS, CHU Nantes, Nantes, France
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France
| | - Romain Oger
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France
- LabEx IGO «Immunotherapy, Graft, Oncology», Nantes, France
| | - Nicolas Jouand
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, 44000, Nantes, France
| | - Agnès Fortun
- P2R "Production de Protéines Recombinantes", Université de Nantes, CRCINA, SFR-Santé, INSERM, CNRS, CHU Nantes, Nantes, France
- Université de Nantes, CHU de Nantes, Cibles et médicaments des infections et du cancer, IICiMed, EA 1155, 44000, Nantes, France
| | - Leslie Hesnard
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France
| | - Mikaël Croyal
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, 44000, Nantes, France
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, 44000, Nantes, France
- CRNH-Ouest Mass Spectrometry Core Facility, 44000, Nantes, France
| | - Frédéric Pecorari
- P2R "Production de Protéines Recombinantes", Université de Nantes, CRCINA, SFR-Santé, INSERM, CNRS, CHU Nantes, Nantes, France
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France
| | - Nadine Gervois
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France.
- LabEx IGO «Immunotherapy, Graft, Oncology», Nantes, France.
| | - Karine Bernardeau
- P2R "Production de Protéines Recombinantes", Université de Nantes, CRCINA, SFR-Santé, INSERM, CNRS, CHU Nantes, Nantes, France.
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France.
| |
Collapse
|
18
|
Prašnikar E, Perdih A, Borišek J. All-Atom Simulations Reveal a Key Interaction Network in the HLA-E/NKG2A/CD94 Immune Complex Fine-Tuned by the Nonameric Peptide. J Chem Inf Model 2021; 61:3593-3603. [PMID: 34196180 PMCID: PMC8389527 DOI: 10.1021/acs.jcim.1c00414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Indexed: 01/15/2023]
Abstract
Natural killer (NK) cells, an important part of the innate immune system, can clear a wide variety of pathological challenges, including tumor, senescent, and virally infected cells. They express various activating and inhibitory receptors on their surface, and the balance of interactions between them and specific ligands displayed on the surface of target cells is critical for NK cell cytolytic function and target cell protection. The CD94/NKG2A heterodimer is one of the inhibitory receptors that interacts with its trimeric ligand consisting of HLA-E, β2m, and a nonameric peptide. Here, multi-microsecond-long all-atom molecular dynamics simulations of eight immune complexes elucidate the subtleties of receptor (NKG2A/CD94)-ligand (HLA-E/β2m/peptide) molecular recognition that mediate the NK cell protection from a geometric and energetic perspective. We identify key differences in the interactions between the receptor and ligand complexes, which are via an entangled network of hydrogen bonds fine-tuned by the ligand-specific nonameric peptide. We further reveal that the receptor protein NKG2A regulates the NK cell activity, while its CD94 partner forms the majority of the energetically important interactions with the ligand. This knowledge rationalizes the atomistic details of the fundamental NK cell protection mechanism and may enable a variety of opportunities in rational-based drug discovery for diverse pathologies including viral infections and cancer and elimination of senescent cells associated with potential treatment of many age-related diseases.
Collapse
Affiliation(s)
- Eva Prašnikar
- National
Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Graduate
School of Biomedicine, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Andrej Perdih
- National
Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Jure Borišek
- National
Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
19
|
Prašnikar E, Perdih A, Borišek J. Nonameric Peptide Orchestrates Signal Transduction in the Activating HLA-E/NKG2C/CD94 Immune Complex as Revealed by All-Atom Simulations. Int J Mol Sci 2021; 22:6670. [PMID: 34206395 PMCID: PMC8268078 DOI: 10.3390/ijms22136670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/17/2022] Open
Abstract
The innate immune system's natural killer (NK) cells exert their cytolytic function against a variety of pathological challenges, including tumors and virally infected cells. Their activation depends on net signaling mediated via inhibitory and activating receptors that interact with specific ligands displayed on the surfaces of target cells. The CD94/NKG2C heterodimer is one of the NK activating receptors and performs its function by interacting with the trimeric ligand comprised of the HLA-E/β2m/nonameric peptide complex. Here, simulations of the all-atom multi-microsecond molecular dynamics in five immune complexes provide atomistic insights into the receptor-ligand molecular recognition, as well as the molecular events that facilitate the NK cell activation. We identify NKG2C, the HLA-Eα2 domain, and the nonameric peptide as the key elements involved in the molecular machinery of signal transduction via an intertwined hydrogen bond network. Overall, the study addresses the complex intricacies that are necessary to understand the mechanisms of the innate immune system.
Collapse
Affiliation(s)
- Eva Prašnikar
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia;
- Graduate School of Biomedicine, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000 Ljubljana, Slovenia
| | - Andrej Perdih
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia;
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Jure Borišek
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia;
| |
Collapse
|
20
|
Sullivan LC, Nguyen THO, Harpur CM, Stankovic S, Kanagarajah AR, Koutsakos M, Saunders PM, Cai Z, Gray JA, Widjaja JML, Lin J, Pietra G, Mingari MC, Moretta L, Samir J, Luciani F, Westall GP, Malmberg KJ, Kedzierska K, Brooks AG. Natural killer cell receptors regulate responses of HLA-E-restricted T cells. Sci Immunol 2021; 6:eabe9057. [PMID: 33893172 DOI: 10.1126/sciimmunol.abe9057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/25/2021] [Indexed: 12/11/2022]
Abstract
Human cytomegalovirus (CMV) infection can stimulate robust human leukocyte antigen (HLA)-E-restricted CD8+ T cell responses. These T cells recognize a peptide from UL40, which differs by as little as a single methyl group from self-peptides that also bind HLA-E, challenging their capacity to avoid self-reactivity. Unexpectedly, we showed that the UL40/HLA-E T cell receptor (TCR) repertoire included TCRs that had high affinities for HLA-E/self-peptide. However, paradoxically, lower cytokine responses were observed from UL40/HLA-E T cells bearing TCRs with high affinity for HLA-E. RNA sequencing and flow cytometric analysis revealed that these T cells were marked by the expression of inhibitory natural killer cell receptors (NKRs) KIR2DL1 and KIR2DL2/L3. On the other hand, UL40/HLA-E T cells bearing lower-affinity TCRs expressed the activating receptor NKG2C. Activation of T cells bearing higher-affinity TCRs was regulated by the interaction between KIR2D receptors and HLA-C. These findings identify a role for NKR signaling in regulating self/non-self discrimination by HLA-E-restricted T cells, allowing for antiviral responses while avoiding contemporaneous self-reactivity.
Collapse
Affiliation(s)
- Lucy C Sullivan
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia.
- Lung Transplant Service, The Alfred Hospital and Monash University Melbourne, Victoria 3000, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia
| | - Christopher M Harpur
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia
| | - Sanda Stankovic
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia
| | - Abbie R Kanagarajah
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia
| | - Marios Koutsakos
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia
| | - Philippa M Saunders
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia
| | - Zhangying Cai
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia
| | - James A Gray
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia
| | - Jacqueline M L Widjaja
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia
| | - Jie Lin
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia
| | - Gabriella Pietra
- Department of Experimental Medicine (DiMES). University of Genoa, Genoa 16132, Italy
- Unità Operativa Complessa Immunologia, Ospedale Policlinico San Martino, Genoa 16132, Italy
| | - Maria Cristina Mingari
- Department of Experimental Medicine (DiMES). University of Genoa, Genoa 16132, Italy
- Unità Operativa Complessa Immunologia, Ospedale Policlinico San Martino, Genoa 16132, Italy
- Center of Excellence for Biomedical Research, University of Genoa, Genoa 16132, Italy
| | - Lorenzo Moretta
- Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Pediatrico Bambino Gesù, 00165 Roma, Italy
| | - Jerome Samir
- School of Medical Sciences and The Kirby Institute, UNSW, Sydney, New South Wales, Australia
| | - Fabio Luciani
- School of Medical Sciences and The Kirby Institute, UNSW, Sydney, New South Wales, Australia
| | - Glen P Westall
- Lung Transplant Service, The Alfred Hospital and Monash University Melbourne, Victoria 3000, Australia
| | - Karl J Malmberg
- KG Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo 0318, Norway
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo 0310, Norway
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 14186 Stockholm, Sweden
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia
| | - Andrew G Brooks
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute, Parkville, Victoria 3010, Australia.
| |
Collapse
|
21
|
MR1-restricted T cells: the new dawn of cancer immunotherapy. Biosci Rep 2021; 40:226783. [PMID: 33185693 PMCID: PMC7670570 DOI: 10.1042/bsr20202962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/06/2020] [Accepted: 10/26/2020] [Indexed: 12/03/2022] Open
Abstract
Cancer immunotherapy has recently undergone rapid development into a validated therapy for clinical use. The adoptive transfer of engineered autologous T cells, such as chimeric antigen receptor (CAR) T cells, has been remarkably successful in patients with leukemia and lymphoma with cluster of differentiation (CD)19 expression. Because of the higher number of antigen choices and reduced incidence of cytokine release syndrome (CRS) than CAR-T cells, T cell receptor (TCR)-T cells are also considered a promising immunotherapy. More therapeutic targets for other cancers need to be explored due to the human leukocyte antigen (HLA)-restricted recognition of TCR-T. Major histocompatibility complex (MHC), class I-related (MR1)-restricted T cells can recognize metabolites presented by MR1 in the context of host cells infected with pathogens. MR1 is expressed by all types of human cells. Recent studies have shown that one clone of a MR1-restricted T (MR1-T) cell can recognize many types of cancer cells without HLA-restriction. These studies provide additional information on MR1-T cells for cancer immunotherapy. This review describes the complexity of MR1-T cell TCR in diseases and the future of cancer immunotherapy.
Collapse
|
22
|
Honjo Y, Takano K, Ichinohe T. Characterization of novel zebrafish MHC class I U lineage genes and their haplotype. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103952. [PMID: 33279476 DOI: 10.1016/j.dci.2020.103952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Major histocompatibility complex (MHC) genes are essential for distinguishing between individuals in all jawed vertebrates. Although MHC class I (mhc1) genes in zebrafish comprise distinct haplotypes, not all members of the mhc1 gene family have been fully characterized. In this study, we report the identification of two novel U lineage genes isolated from the WIK strain of zebrafish. These new mhc1 genes, named una and uoa, are located in tandem on chromosome 19 with >70% homology to previously isolated U genes. Sequencing of their neighboring genes revealed that una and uoa form a unique haplotype different from the previously known U lineage haplotypes. Additionally, we determined the expression profiles of U, Z, and L genes in three different tissues. These findings collectively suggest that mhc1 U lineage genes and their haplotypes in zebrafish are more divergent than previously considered, and their expression patterns vary significantly among different tissues.
Collapse
Affiliation(s)
- Yasuko Honjo
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, Hiroshima, Japan.
| | - Kosuke Takano
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, Hiroshima, Japan; Division of Hematology, National Defence Medical College, Tokorozawa, Saitama, Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
23
|
Walters LC, McMichael AJ, Gillespie GM. Detailed and atypical HLA-E peptide binding motifs revealed by a novel peptide exchange binding assay. Eur J Immunol 2020; 50:2075-2091. [PMID: 32716529 DOI: 10.1002/eji.202048719] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/19/2020] [Accepted: 07/23/2020] [Indexed: 11/05/2022]
Abstract
Diverse SIV and HIV epitopes that bind the rhesus homolog of HLA-E, Mamu-E, have recently been identified in SIVvaccine studies using a recombinant Rhesus cytomegalovirus (RhCMV 68-1) vector, where unprecedented protection against SIV challenge was achieved. Additionally, several Mycobacterial peptides identified both algorithmically and following elution from infected cells, are presented to CD8+ T cells by HLA-E in humans. Yet, a comparative and comprehensive analysis of relative HLA-E peptide binding strength via a reliable, high throughput in vitro assay is currently lacking. To address this, we developed and optimized a novel, highly sensitive peptide exchange ELISA-based assay that relatively quantitates peptide binding to HLA-E. Using this approach, we screened multiple peptides, including peptide panels derived from HIV, SIV, and Mtb predicted to bind HLA-E. Our results indicate that although HLA-E preferentially accommodates canonical MHC class I leader peptides, many non-canonical, sequence diverse, pathogen-derived peptides also bind HLA-E, albeit generally with lower relative binding strength. Additionally, our screens demonstrate that the majority of peptides tested, including some key Mtb and SIV epitopes that have been shown to elicit strong Mamu-E-restricted T cell responses, either bind HLA-E extremely weakly or give signals that are indistinguishable from the negative, peptide-free controls.
Collapse
Affiliation(s)
- Lucy C Walters
- Nuffield Department of Medicine Research Building, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Andrew J McMichael
- Nuffield Department of Medicine Research Building, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Geraldine M Gillespie
- Nuffield Department of Medicine Research Building, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
24
|
NKG2A/CD94 Is a New Immune Receptor for HLA-G and Distinguishes Amino Acid Differences in the HLA-G Heavy Chain. Int J Mol Sci 2020; 21:ijms21124362. [PMID: 32575403 PMCID: PMC7352787 DOI: 10.3390/ijms21124362] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/08/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cell therapies are a tool to antagonize a dysfunctional immune system. NK cells recognize malignant cells, traffic to a tumor location, and infiltrate the solid tumor. The immune checkpoint molecule human leukocyte antigen (HLA)-G is upregulated on malignant cells but not on healthy surrounding cells, the requirement of understanding the basis of receptor mediated events at the HLA-G/NK cell interface becomes obvious. The NK cell receptors ILT2 and KIR2DL4 have been described to bind to HLA-G; however, their differential function and expression levels on NK cell subsets suggest the existence of an unreported receptor. Here, we performed a ligand-based receptor capture on living cells utilizing sHLA-G*01:01 molecules coupled to TriCEPS and bound to NK cells followed by mass spectrometric analyses. We could define NKG2A/CD94 as a cognate receptor of HLA-G. To verify the results, we used the reciprocal method by expressing recombinant soluble heterodimeric NKG2A/CD94 molecules and used them to target HLA-G*01:01 expressing cells. NKG2A/CD94 could be confirmed as an immune receptor of HLA-G*01:01. Despite HLA-G is marginal polymorphic, we could previously demonstrate that the most common allelic subtypes HLA-G*01:01/01:03 and 01:04 differ in peptide repertoire, their engagement to NK cells, their catalyzation of dNK cell proliferation and their impact on NK cell development. Continuing these studies with regard to NKG2A/CD94 engagement we engineered recombinant single antigen presenting K562 cells and targeted the surface expressed HLA-G*01:01, 01:03 or 01:04 molecules with NKG2A/CD94. Specificity and sensitivity of HLA-G*01:04/NKG2A/CD94 engagement could be significantly verified. The binding affinity decreases when using K562-G*01:03 or K562-G*01:01 cells as targets. These results demonstrate that the ligand-receptor assignment between HLA-G and NKG2A/CD94 is dependent of the amino acid composition in the HLA-G heavy chain. Understanding the biophysical basis of receptor-mediated events that lead to NK cell inhibition would help to remove non-tumor reactive cells and support personalized mild autologous NK cell therapies.
Collapse
|
25
|
Grant EJ, Nguyen AT, Lobos CA, Szeto C, Chatzileontiadou DSM, Gras S. The unconventional role of HLA-E: The road less traveled. Mol Immunol 2020; 120:101-112. [PMID: 32113130 DOI: 10.1016/j.molimm.2020.02.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/16/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022]
Abstract
Histocompatibility Leukocyte Antigens, or HLAs, are one of the most polymorphic molecules in humans. This high degree of polymorphism endows HLA molecules with the ability to present a vast array of peptides, an essential trait for responding to ever-evolving pathogens. Unlike classical HLA molecules (HLA-Ia), some non-classical HLA-Ib molecules, including HLA-E, are almost monomorphic. Several studies show HLA-E can present self-peptides originating from the leader sequence of other HLA molecules, which signals to our immune system that the cell is healthy. Therefore, it was traditionally thought that the chief role of HLA-E in the body was in immune surveillance. However, there is emerging evidence that HLA-E is also able to present pathogen-derived peptides to the adaptive immune system, namely T cells, in a manner that is similar to classical HLA-Ia molecules. Here we describe the early findings of this less conventional role of HLA-E in the adaptive immune system and its importance for immunity.
Collapse
Affiliation(s)
- Emma J Grant
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Andrea T Nguyen
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Christian A Lobos
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Christopher Szeto
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Demetra S M Chatzileontiadou
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Stephanie Gras
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
26
|
Del Zotto G, Antonini F, Pesce S, Moretta F, Moretta L, Marcenaro E. Comprehensive Phenotyping of Human PB NK Cells by Flow Cytometry. Cytometry A 2020; 97:891-899. [PMID: 32198974 DOI: 10.1002/cyto.a.24001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/13/2020] [Accepted: 02/21/2020] [Indexed: 12/14/2022]
Abstract
The NK cell compartment provides powerful innate defenses against virus-infected and tumor cells. Specific NK cell receptors control this process and maintain the immune system homeostasis and prevent autoimmunity. A wide variety of NK cell subsets with different functional capabilities exist and this reflects not only the different maturation stages of NK cells but also different microenvironments in which they can operate. In this review, we will give an overview on the various NK cell subsets present in peripheral blood of healthy donors in order to clearly and univocally identify them on the basis of their phenotypic traits using flow cytometry. © 2020 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Genny Del Zotto
- Core Facilities, Area Aggregazione Servizi e Laboratori Diagnostici, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Francesca Antonini
- Core Facilities, Area Aggregazione Servizi e Laboratori Diagnostici, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Silvia Pesce
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Francesca Moretta
- Department of Laboratory Medicine, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Italy
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Emanuela Marcenaro
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| |
Collapse
|
27
|
Patel JK, Shabir S, Sharif A, Briggs D, Chan W, Borrows R. Recipient HLA-C7 and Protection From Polyomavirus Nephropathy. Transplantation 2019; 103:e388. [PMID: 31651735 DOI: 10.1097/tp.0000000000002902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Jaya K Patel
- Department of Nephrology, Queen Elizabeth Hospital Birmingham, United Kingdom
- King Edward High School for Girls, Edgbaston, Birmingham, United Kingdom
| | - Shazia Shabir
- Department of Nephrology, Queen Elizabeth Hospital Birmingham, United Kingdom
| | - Adnan Sharif
- Department of Nephrology, Queen Elizabeth Hospital Birmingham, United Kingdom
| | - David Briggs
- National Blood Service, Edgbaston, Birmingham, United Kingdom
| | - Winnie Chan
- Department of Nephrology, Queen Elizabeth Hospital Birmingham, United Kingdom
| | - Richard Borrows
- Department of Nephrology, Queen Elizabeth Hospital Birmingham, United Kingdom
| |
Collapse
|
28
|
Ogg G, Cerundolo V, McMichael AJ. Capturing the antigen landscape: HLA-E, CD1 and MR1. Curr Opin Immunol 2019; 59:121-129. [PMID: 31445404 DOI: 10.1016/j.coi.2019.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/12/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022]
Abstract
T cell receptor (TCR) recognition of antigens presented by relatively non-polymorphic MHC-like molecules is emerging as a significant contributor to health and disease. These evolutionarily ancient pathways have been inappropriately labelled 'non-conventional' because their roles were discovered after viral-specific peptide presentation by polymorphic MHC class I molecules. We suggest that these pathways are complementary to mainstream peptide presentation. HLA-E, CD1 and MR1 can present diverse self and foreign antigens to TCRs and therefore contribute to tissue homeostasis, pathogen defence, inflammation and immune responses to cancer. Despite presenting different classes of antigens, they share many features and are under common selective pressures. Through understanding their roles in disease, therapeutic manipulation for disease prevention and treatment should become possible.
Collapse
Affiliation(s)
- Graham Ogg
- MRC Human Immunology Unit, and Oxford NIHR Biomedical Research Centre, University of Oxford, UK
| | | | - Andrew J McMichael
- Nuffield Department of Medicine Research Building, University of Oxford, UK.
| |
Collapse
|
29
|
Kamiya T, Seow SV, Wong D, Robinson M, Campana D. Blocking expression of inhibitory receptor NKG2A overcomes tumor resistance to NK cells. J Clin Invest 2019; 129:2094-2106. [PMID: 30860984 PMCID: PMC6486333 DOI: 10.1172/jci123955] [Citation(s) in RCA: 250] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 02/26/2019] [Indexed: 12/14/2022] Open
Abstract
A key mechanism of tumor resistance to immune cells is mediated by expression of peptide-loaded HLA-E in tumor cells, which suppresses natural killer (NK) cell activity via ligation of the NK inhibitory receptor CD94/NKG2A. Gene expression data from approximately 10,000 tumor samples showed widespread HLAE expression, with levels correlating with those of KLRC1 (NKG2A) and KLRD1 (CD94). To bypass HLA-E inhibition, we developed a way to generate highly functional NK cells lacking NKG2A. Constructs containing a single-chain variable fragment derived from an anti-NKG2A antibody were linked to endoplasmic reticulum-retention domains. After retroviral transduction in human peripheral blood NK cells, these NKG2A Protein Expression Blockers (PEBLs) abrogated NKG2A expression. The resulting NKG2Anull NK cells had higher cytotoxicity against HLA-E-expressing tumor cells. Transduction of anti-NKG2A PEBL produced more potent cytotoxicity than interference with an anti-NKG2A antibody and prevented de novo NKG2A expression, without affecting NK cell proliferation. In immunodeficient mice, NKG2Anull NK cells were significantly more powerful than NKG2A+ NK cells against HLA-E-expressing tumors. Thus, NKG2A downregulation evades the HLA-E cancer immune-checkpoint, and increases the anti-tumor activity of NK cell infusions. Because this strategy is easily adaptable to current protocols for clinical-grade immune cell processing, its clinical testing is feasible and warranted.
Collapse
Affiliation(s)
- Takahiro Kamiya
- Department of Pediatrics and National University Cancer Institute Singapore, National University of Singapore, Singapore
| | - See Voon Seow
- Department of Pediatrics and National University Cancer Institute Singapore, National University of Singapore, Singapore
| | - Desmond Wong
- Department of Pediatrics and National University Cancer Institute Singapore, National University of Singapore, Singapore
| | | | - Dario Campana
- Department of Pediatrics and National University Cancer Institute Singapore, National University of Singapore, Singapore
| |
Collapse
|
30
|
Sharpe HR, Bowyer G, Brackenridge S, Lambe T. HLA-E: exploiting pathogen-host interactions for vaccine development. Clin Exp Immunol 2019; 196:167-177. [PMID: 30968409 PMCID: PMC6468186 DOI: 10.1111/cei.13292] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2019] [Indexed: 12/11/2022] Open
Abstract
Viruses, when used as vectors for vaccine antigen delivery, can induce strong cellular and humoral responses against target epitopes. Recent work by Hansen et al. describes the use of a cytomegalovirus‐vectored vaccine, which is able to generate a stable effector‐memory T cell population at the sites of vaccination in rhesus macaques. This vaccine, targeted towards multiple epitopes in simian immunodeficiency virus (SIV), did not induce classical CD8+ T cells. However, non‐canonical CD8+ T cell induction occurred via major histocompatibility complex (MHC) class II and MHC‐E. The MHC‐E‐restricted T cells could recognize broad epitopes across the SIV peptides, and conferred protection against viral challenge to 55% of vaccinated macaques. The human homologue, human leucocyte antigen (HLA)‐E, is now being targeted as a new avenue for vaccine development. In humans, HLA‐E is an unusually oligomorphic class Ib MHC molecule, in comparison to highly polymorphic MHC class Ia. Whereas MHC class Ia presents peptides derived from pathogens to T cells, HLA‐E classically binds defined leader peptides from class Ia MHC peptides and down‐regulates NK cell cytolytic activity when presented on the cell surface. HLA‐E can also restrict non‐canonical CD8+ T cells during natural infection with various pathogens, although the extent to which they are involved in pathogen control is mostly unknown. In this review, an overview is provided of HLA‐E and its ability to interact with NK cells and non‐canonical T cells. Also discussed are the unforeseen beneficial effects of vaccination, including trained immunity of NK cells from bacille Calmette–Guérin (BCG) vaccination, and the broad restriction of non‐canonical CD8+ T cells by cytomegalovirus (CMV)‐vectored vaccines in pre‐clinical trials.
Collapse
Affiliation(s)
- H R Sharpe
- Nuffield Department of Medicine, Jenner Institute, University of Oxford, Oxford, UK
| | - G Bowyer
- Nuffield Department of Medicine, Jenner Institute, University of Oxford, Oxford, UK
| | - S Brackenridge
- Nuffield Department of Medicine, NDM Research Building, University of Oxford, Oxford, UK
| | - T Lambe
- Nuffield Department of Medicine, Jenner Institute, University of Oxford, Oxford, UK
| |
Collapse
|
31
|
Ravindranath MH, Filippone EJ, Devarajan A, Asgharzadeh S. Enhancing Natural Killer and CD8 + T Cell-Mediated Anticancer Cytotoxicity and Proliferation of CD8 + T Cells with HLA-E Monospecific Monoclonal Antibodies. Monoclon Antib Immunodiagn Immunother 2019; 38:38-59. [PMID: 31009335 PMCID: PMC6634170 DOI: 10.1089/mab.2018.0043] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/13/2019] [Indexed: 12/16/2022] Open
Abstract
Cytotoxic NK/CD8+ T cells interact with MHC-I ligands on tumor cells through either activating or inhibiting receptors. One of the inhibitory receptors is CD94/NKG2A. The NK/CD8+ T cell cytotoxic capability is lost when tumor-associated human leukocyte antigen, HLA-E, binds the CD94/NKG2A receptor, resulting in tumor progression and reduced survival. Failure of cancer patients to respond to natural killer (NK) cell therapies could be due to HLA-E overexpression in tumor tissues. Preventing the inhibitory receptor-ligand interaction by either receptor- or ligand-specific monoclonal antibodies (mAbs) is an innovative passive immunotherapeutic strategy for cancer. Since receptors and ligands can be monomeric or homo- or heterodimeric proteins, the efficacy of mAbs may rely on their ability to distinguish monospecific (private) functional epitopes from nonfunctional common (public) epitopes. We developed monospecific anti-HLA-E mAbs (e.g., TFL-033) that recognize only HLA-E-specific epitopes, but not epitopes shared with other HLA class-I loci as occurs with currently available polyreactive anti-HLA-E mAbs. Interestingly the amino acid sequences in the α1 and α2 helices of HLA-E, critical for the recognition of the mAb TFL-033, are strikingly the same sequences recognized by the CD94/NKG2A inhibitory receptors on NK/CD8+ cells. Such monospecific mAbs can block the CD94/NKG2A interaction with HLA-E to restore NK cell and CD8+ anticancer cell cytotoxicity. Furthermore, the HLA-E monospecific mAbs significantly promoted the proliferation of the CD4-/CD8+ T cells. These monospecific mAbs are also invaluable for the specific demonstration of HLA-E on tumor biopsies, potentially indicating those tumors most likely to respond to such therapy. Thus, they can be used to enhance passive immunotherapy once phased preclinical studies and clinical trials are completed. On principle, we postulate that NK cell passive immunotherapy should capitalize on both of these features of monospecific HLA-E mAbs, that is, the specific determination HLA-E expression on a particular tumor and the enhancement of NK cell/CD8+ cytotoxicity if HLA-E positive.
Collapse
Affiliation(s)
| | - Edward J Filippone
- Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Asokan Devarajan
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Shahab Asgharzadeh
- Department of Pediatrics and Pathology, Children's Hospital, Keck School of Medicine, USC, Los Angeles, California
| |
Collapse
|
32
|
Jiang J, Natarajan K, Margulies DH. MHC Molecules, T cell Receptors, Natural Killer Cell Receptors, and Viral Immunoevasins-Key Elements of Adaptive and Innate Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1172:21-62. [PMID: 31628650 DOI: 10.1007/978-981-13-9367-9_2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecules encoded by the Major Histocompatibility Complex (MHC) bind self or foreign peptides and display these at the cell surface for recognition by receptors on T lymphocytes (designated T cell receptors-TCR) or on natural killer (NK) cells. These ligand/receptor interactions govern T cell and NK cell development as well as activation of T memory and effector cells. Such cells participate in immunological processes that regulate immunity to various pathogens, resistance and susceptibility to cancer, and autoimmunity. The past few decades have witnessed the accumulation of a huge knowledge base of the molecular structures of MHC molecules bound to numerous peptides, of TCRs with specificity for many different peptide/MHC (pMHC) complexes, of NK cell receptors (NKR), of MHC-like viral immunoevasins, and of pMHC/TCR and pMHC/NKR complexes. This chapter reviews the structural principles that govern peptide/MHC (pMHC), pMHC/TCR, and pMHC/NKR interactions, for both MHC class I (MHC-I) and MHC class II (MHC-II) molecules. In addition, we discuss the structures of several representative MHC-like molecules. These include host molecules that have distinct biological functions, as well as virus-encoded molecules that contribute to the evasion of the immune response.
Collapse
Affiliation(s)
- Jiansheng Jiang
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Room 11D07, 10 Center Drive, Bethesda, MD, 20892-1892, USA.
| | - Kannan Natarajan
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Room 11D07, 10 Center Drive, Bethesda, MD, 20892-1892, USA
| | - David H Margulies
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 10, Room 11D12, 10 Center Drive, Bethesda, MD, 20892-1892, USA
| |
Collapse
|
33
|
Wang X, Piersma SJ, Nelson CA, Dai YN, Christensen T, Lazear E, Yang L, Sluijter M, van Hall T, Hansen TH, Yokoyama WM, Fremont DH. A herpesvirus encoded Qa-1 mimic inhibits natural killer cell cytotoxicity through CD94/NKG2A receptor engagement. eLife 2018; 7:38667. [PMID: 30575523 PMCID: PMC6320069 DOI: 10.7554/elife.38667] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 12/20/2018] [Indexed: 11/13/2022] Open
Abstract
A recurrent theme in viral immune evasion is the sabotage of MHC-I antigen presentation, which brings virus the concomitant issue of ‘missing-self’ recognition by NK cells that use inhibitory receptors to detect surface MHC-I proteins. Here, we report that rodent herpesvirus Peru (RHVP) encodes a Qa-1 like protein (pQa-1) via RNA splicing to counteract NK activation. While pQa-1 surface expression is stabilized by the same canonical peptides presented by murine Qa-1, pQa-1 is GPI-anchored and resistant to the activity of RHVP pK3, a ubiquitin ligase that targets MHC-I for degradation. pQa-1 tetramer staining indicates that it recognizes CD94/NKG2A receptors. Consistently, pQa-1 selectively inhibits NKG2A+ NK cells and expression of pQa-1 can protect tumor cells from NK control in vivo. Collectively, these findings reveal an innovative NK evasion strategy wherein RHVP encodes a modified Qa-1 mimic refractory to MHC-I sabotage and capable of specifically engaging inhibitory receptors to circumvent NK activation.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Sytse J Piersma
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, United States
| | - Christopher A Nelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Ya-Nan Dai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Ted Christensen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Eric Lazear
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Liping Yang
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, United States
| | - Marjolein Sluijter
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Ted H Hansen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Wayne M Yokoyama
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States.,Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, United States
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States.,Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, United States.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, United States
| |
Collapse
|
34
|
Hannoun Z, Lin Z, Brackenridge S, Kuse N, Akahoshi T, Borthwick N, McMichael A, Murakoshi H, Takiguchi M, Hanke T. Identification of novel HIV-1-derived HLA-E-binding peptides. Immunol Lett 2018; 202:65-72. [PMID: 30172717 PMCID: PMC6291738 DOI: 10.1016/j.imlet.2018.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/07/2018] [Accepted: 08/23/2018] [Indexed: 01/13/2023]
Abstract
Non-classical class Ib MHC-E molecule is becoming an increasingly interesting component of the immune response. It is involved in both the adaptive and innate immune responses to several chronic infections including HIV-1 and, under very specific circumstances, likely mediated a unique vaccine protection of rhesus macaques against pathogenic SIV challenge. Despite being recently in the spotlight for HIV-1 vaccine development, to date there is only one reported human leukocyte antigen (HLA)-E-binding peptide derived from HIV-1. In an effort to help start understanding the possible functions of HLA-E in HIV-1 infection, we determined novel HLA-E binding peptides derived from HIV-1 Gag, Pol and Vif proteins. These peptides were identified in three independent assays, all quantifying cell-surface stabilization of HLA-E*01:01 or HLA-E*01:03 molecules upon peptide binding, which was detected by HLA-E-specific monoclonal antibody and flow cytometry. Thus, following initial screen of over 400 HIV-1-derived 15-mer peptides, 4 novel 9-mer peptides PM9, RL9, RV9 and TP9 derived from 15-mer binders specifically stabilized surface expression of HLA-E*01:03 on the cell surface in two separate assays and 5 other binding candidates EI9, MD9, NR9, QF9 and YG9 gave a binding signal in only one of the two assays, but not both. Overall, we have expanded the current knowledge of HIV-1-derived target peptides stabilizing HLA-E cell-surface expression from 1 to 5, thus broadening inroads for future studies. This is a small, but significant contribution towards studying the fine mechanisms behind HLA-E actions and their possible use in development of a new kind of vaccines.
Collapse
Affiliation(s)
- Zara Hannoun
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Zhansong Lin
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Simon Brackenridge
- NDM Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nozomi Kuse
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | | | - Nicola Borthwick
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Andrew McMichael
- NDM Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | | | - Tomáš Hanke
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom; International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
35
|
Walters LC, Harlos K, Brackenridge S, Rozbesky D, Barrett JR, Jain V, Walter TS, O'Callaghan CA, Borrow P, Toebes M, Hansen SG, Sacha JB, Abdulhaqq S, Greene JM, Früh K, Marshall E, Picker LJ, Jones EY, McMichael AJ, Gillespie GM. Pathogen-derived HLA-E bound epitopes reveal broad primary anchor pocket tolerability and conformationally malleable peptide binding. Nat Commun 2018; 9:3137. [PMID: 30087334 PMCID: PMC6081459 DOI: 10.1038/s41467-018-05459-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 07/04/2018] [Indexed: 12/31/2022] Open
Abstract
Through major histocompatibility complex class Ia leader sequence-derived (VL9) peptide binding and CD94/NKG2 receptor engagement, human leucocyte antigen E (HLA-E) reports cellular health to NK cells. Previous studies demonstrated a strong bias for VL9 binding by HLA-E, a preference subsequently supported by structural analyses. However, Mycobacteria tuberculosis (Mtb) infection and Rhesus cytomegalovirus-vectored SIV vaccinations revealed contexts where HLA-E and the rhesus homologue, Mamu-E, presented diverse pathogen-derived peptides to CD8+ T cells, respectively. Here we present crystal structures of HLA-E in complex with HIV and Mtb-derived peptides. We show that despite the presence of preferred primary anchor residues, HLA-E-bound peptides can adopt alternative conformations within the peptide binding groove. Furthermore, combined structural and mutagenesis analyses illustrate a greater tolerance for hydrophobic and polar residues in the primary pockets than previously appreciated. Finally, biochemical studies reveal HLA-E peptide binding and exchange characteristics with potential relevance to its alternative antigen presenting function in vivo.
Collapse
Affiliation(s)
- Lucy C Walters
- Nuffield Department of Medicine Research Building, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Karl Harlos
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, OX3 7BN, UK
| | - Simon Brackenridge
- Nuffield Department of Medicine Research Building, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Daniel Rozbesky
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, OX3 7BN, UK
| | - Jordan R Barrett
- Nuffield Department of Medicine Research Building, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Vitul Jain
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, OX3 7BN, UK
| | - Thomas S Walter
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, OX3 7BN, UK
| | - Chris A O'Callaghan
- Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford, OX3 7BN, UK
| | - Persephone Borrow
- Nuffield Department of Medicine Research Building, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Mireille Toebes
- Department Molecular Oncology and Immunology, B6 Plesmanlaan 121, Amsterdam, 1066CX, The Netherlands
| | - Scott G Hansen
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Jonah B Sacha
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Shaheed Abdulhaqq
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Justin M Greene
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Klaus Früh
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Emily Marshall
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Louis J Picker
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, OX3 7BN, UK
| | - Andrew J McMichael
- Nuffield Department of Medicine Research Building, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
| | - Geraldine M Gillespie
- Nuffield Department of Medicine Research Building, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
| |
Collapse
|
36
|
Parham P, Guethlein LA. Genetics of Natural Killer Cells in Human Health, Disease, and Survival. Annu Rev Immunol 2018; 36:519-548. [PMID: 29394121 DOI: 10.1146/annurev-immunol-042617-053149] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Natural killer (NK) cells have vital functions in human immunity and reproduction. In the innate and adaptive immune responses to infection, particularly by viruses, NK cells respond by secreting inflammatory cytokines and killing infected cells. In reproduction, NK cells are critical for genesis of the placenta, the organ that controls the supply of oxygen and nutrients to the growing fetus. Controlling NK cell functions are interactions of HLA class I with inhibitory NK cell receptors. First evolved was the conserved interaction of HLA-E with CD94:NKG2A; later established were diverse interactions of HLA-A, -B, and -C with killer cell immunoglobulin-like receptors. Characterizing the latter interactions is rapid evolution, which distinguishes human populations and all species of higher primate. Driving this evolution are the different and competing selections imposed by pathogens on NK cell-mediated immunity and by the constraints of human reproduction on NK cell-mediated placentation. Promoting rapid evolution is independent segregation of polymorphic receptors and ligands throughout human populations.
Collapse
Affiliation(s)
- Peter Parham
- Department of Structural Biology and Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, California 94305, USA; ,
| | - Lisbeth A Guethlein
- Department of Structural Biology and Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, California 94305, USA; ,
| |
Collapse
|
37
|
Sullivan LC, Walpole NG, Farenc C, Pietra G, Sum MJW, Clements CS, Lee EJ, Beddoe T, Falco M, Mingari MC, Moretta L, Gras S, Rossjohn J, Brooks AG. A conserved energetic footprint underpins recognition of human leukocyte antigen-E by two distinct αβ T cell receptors. J Biol Chem 2017; 292:21149-21158. [PMID: 28972140 PMCID: PMC5743087 DOI: 10.1074/jbc.m117.807719] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/20/2017] [Indexed: 11/06/2022] Open
Abstract
αβ T cell receptors (TCRs) interact with peptides bound to the polymorphic major histocompatibility complex class Ia (MHC-Ia) and class II (MHC-II) molecules as well as the essentially monomorphic MHC class Ib (MHC-Ib) molecules. Although there is a large amount of information on how TCRs engage with MHC-Ia and MHC-II, our understanding of TCR/MHC-Ib interactions is very limited. Infection with cytomegalovirus (CMV) can elicit a CD8+ T cell response restricted by the human MHC-Ib molecule human leukocyte antigen (HLA)-E and specific for an epitope from UL40 (VMAPRTLIL), which is characterized by biased TRBV14 gene usage. Here we describe an HLA-E-restricted CD8+ T cell able to recognize an allotypic variant of the UL40 peptide with a modification at position 8 (P8) of the peptide (VMAPRTLVL) that uses the TRBV9 gene segment. We report the structures of a TRBV9+ TCR in complex with the HLA-E molecule presenting the two peptides. Our data revealed that the TRBV9+ TCR adopts a different docking mode and molecular footprint atop HLA-E when compared with the TRBV14+ TCR-HLA-E ternary complex. Additionally, despite their differing V gene segment usage and different docking mechanisms, mutational analyses showed that the TCRs shared a conserved energetic footprint on the HLA-E molecule, focused around the peptide-binding groove. Hence, we provide new insights into how monomorphic MHC molecules interact with T cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Binding Sites
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cells, Cultured
- Clone Cells
- Conserved Sequence
- Crystallography, X-Ray
- Energy Metabolism
- Epitope Mapping
- Epitopes, T-Lymphocyte
- Histocompatibility Antigens Class I/chemistry
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/metabolism
- Humans
- Models, Molecular
- Molecular Docking Simulation
- Mutagenesis, Site-Directed
- Mutation
- Peptide Fragments/chemistry
- Peptide Fragments/genetics
- Peptide Fragments/metabolism
- Protein Conformation
- Protein Interaction Domains and Motifs
- Receptors, Antigen, T-Cell, alpha-beta/agonists
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/metabolism
- HLA-E Antigens
Collapse
Affiliation(s)
- Lucy C Sullivan
- From the Department of Microbiology and Immunology and Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne 3000, Australia
| | - Nicholas G Walpole
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute and
| | - Carine Farenc
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute and
| | - Gabriella Pietra
- Department of Experimental Medicine (DiMES) and
- Unità Operativa Complessa Immunologia, Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Matthew J W Sum
- From the Department of Microbiology and Immunology and Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne 3000, Australia
| | - Craig S Clements
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute and
| | - Eleanor J Lee
- From the Department of Microbiology and Immunology and Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne 3000, Australia
| | - Travis Beddoe
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute and
| | - Michela Falco
- Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Pediatrico Bambino Gesù, 00165 Roma, Italy, and
| | - Maria Cristina Mingari
- Department of Experimental Medicine (DiMES) and
- Unità Operativa Complessa Immunologia, Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Center of Excellence for Biomedical Research, University of Genoa, 16132 Genoa, Italy
| | - Lorenzo Moretta
- Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Pediatrico Bambino Gesù, 00165 Roma, Italy, and
| | - Stephanie Gras
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute and
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute and
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, Wales, United Kingdom
| | - Andrew G Brooks
- From the Department of Microbiology and Immunology and Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne 3000, Australia,
| |
Collapse
|
38
|
Versluis MAC, Marchal S, Plat A, de Bock GH, van Hall T, de Bruyn M, Hollema H, Nijman HW. The prognostic benefit of tumour-infiltrating Natural Killer cells in endometrial cancer is dependent on concurrent overexpression of Human Leucocyte Antigen-E in the tumour microenvironment. Eur J Cancer 2017; 86:285-295. [PMID: 29059634 DOI: 10.1016/j.ejca.2017.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/14/2017] [Indexed: 01/24/2023]
Abstract
BACKGROUND Human Leucocyte Antigen- E (HLA-E) has been reported as both a positive and negative prognostic marker in cancer. This apparent discrepancy may be due to opposing actions of HLA-E on tumour-infiltrating immune cells. Therefore, we evaluated HLA-E expression and survival in relation to the presence of intratumoural natural killer (NK) cells and cytotoxic T cells (CTLs). METHODS Tissue microarrays (TMAs) of endometrial tumours were used for immunohistochemical staining of parameters of interest. The combined impact of clinical, pathological and immune parameters on survival was analysed using log rank testing and Cox regression analyses. RESULTS Upregulation of HLA-E was associated with an improved disease-free and disease-specific survival in univariate analysis (HR 0.58 95% CI 0.37-0.89; HR 0.42 95% CI 0.25-0.73, respectively). In multivariate analysis, the presence of NK cells predicts survival with a hazard ratio (HR) 0.28 (95% confidence interval (CI) 0.09-0.91) when HLA-E expression is upregulated; but it is associated with a worse prognosis when HLA-E expression is normal (HR 13.43, 95% CI 1.70-106.14). By contrast, the prognostic benefit of T cells was not modulated by HLA-E expression. CONCLUSIONS Taken together, we demonstrate that the prognostic benefit of NK cells, but not T-cells, is influenced by HLA-E expression in endometrial cancer (EC) and propose a model to explain our observations.
Collapse
Affiliation(s)
- M A C Versluis
- Department of Gynaecology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.
| | - S Marchal
- Department of Gynaecology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - A Plat
- Department of Gynaecology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - G H de Bock
- Department of Epidemiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - T van Hall
- Department of Clinical Oncology, Leiden University Medical Centre, Leiden, The Netherlands
| | - M de Bruyn
- Department of Gynaecology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - H Hollema
- Department of Pathology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - H W Nijman
- Department of Gynaecology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
39
|
Tsamadou C, Fürst D, Vucinic V, Bunjes D, Neuchel C, Mytilineos D, Gramatzki M, Arnold R, Wagner EM, Einsele H, Müller C, Schrezenmeier H, Mytilineos J. Human leukocyte antigen-E mismatch is associated with better hematopoietic stem cell transplantation outcome in acute leukemia patients. Haematologica 2017; 102:1947-1955. [PMID: 28883078 PMCID: PMC5664399 DOI: 10.3324/haematol.2017.169805] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 09/04/2017] [Indexed: 01/18/2023] Open
Abstract
The immunomodulatory role of human leukocyte antigen (HLA)-E in hematopoietic stem cell transplantation (HSCT) has not been extensively investigated. To this end, we genotyped 509 10/10 HLA unrelated transplant pairs for HLA-E, in order to study the effect of HLA-E as a natural killer (NK)-alloreactivity mediator on HSCT outcome in an acute leukemia (AL) setting. Overall survival (OS), disease free survival (DFS), relapse incidence (RI) and non-relapse mortality (NRM) were set as endpoints. Analysis of our data revealed a significant correlation between HLA-E mismatch and improved HSCT outcome, as shown by both univariate (53% vs 38%, P=0.002, 5-year OS) and multivariate (hazard ratio (HR)=0.63, confidence interval (CI) 95%=0.48-0.83, P=0.001) analyses. Further subgroup analysis demonstrated that the positive effect of HLA-E mismatch was significant and pronounced in advanced disease patients (n=120) (5-year OS: 50% vs 18%, P=0.005; HR=0.40, CI 95%=0.22-0.72, P=0.002; results from univariate and multivariate analyses, respectively). The study herein is the first to report an association between HLA-E incompatibility and improved post-transplant prognosis in AL patients who have undergone matched unrelated HSCT. Combined NK and T cell HLA-E-mediated mechanisms may account for the better outcomes observed. Notwithstanding the necessity for in vitro and confirmational studies, our findings highlight the clinical relevance of HLA-E matching and strongly support prospective HLA-E screening upon donor selection for matched AL unrelated HSCTs.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Alleles
- Bone Marrow Transplantation
- Female
- Genotype
- Hematopoietic Stem Cell Transplantation/adverse effects
- Hematopoietic Stem Cell Transplantation/methods
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Testing
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/therapy
- Male
- Middle Aged
- Potassium Channels, Inwardly Rectifying/genetics
- Prognosis
- Survival Analysis
- Transplantation Conditioning
- Transplantation, Homologous
- Treatment Outcome
- Young Adult
- HLA-E Antigens
Collapse
Affiliation(s)
- Chrysanthi Tsamadou
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg - Hessen, and University Hospital Ulm, Germany
- Institute of Transfusion Medicine, University of Ulm, Germany
| | - Daniel Fürst
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg - Hessen, and University Hospital Ulm, Germany
- Institute of Transfusion Medicine, University of Ulm, Germany
| | - Vladan Vucinic
- Department of Hematology/Oncology, University of Leipzig, Germany
| | - Donald Bunjes
- Department of Internal Medicine III, University of Ulm, Germany
| | - Christine Neuchel
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg - Hessen, and University Hospital Ulm, Germany
- Institute of Transfusion Medicine, University of Ulm, Germany
| | | | - Martin Gramatzki
- Division of Stem Cell Transplantation and Immunotherapy, 2 Department of Medicine, University of Kiel, Germany
| | - Renate Arnold
- Hematology/Oncology Department, Charité Campus Virchow-Klinikum, Berlin, Germany
| | - Eva Maria Wagner
- Department of Internal Medicine III, Johannes Gutenberg-University Mainz, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital Würzburg, Germany
| | - Carlheinz Müller
- ZKRD - Zentrale Knochenmarkspender-Register für Deutschland, German National Bone Marrow Donor Registry, Germany
- DRST - German Registry for Stem Cell Transplantation, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg - Hessen, and University Hospital Ulm, Germany
- Institute of Transfusion Medicine, University of Ulm, Germany
| | - Joannis Mytilineos
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg - Hessen, and University Hospital Ulm, Germany
- Institute of Transfusion Medicine, University of Ulm, Germany
- DRST - German Registry for Stem Cell Transplantation, Ulm, Germany
| |
Collapse
|
40
|
Tronik‐Le Roux D, Renard J, Vérine J, Renault V, Tubacher E, LeMaoult J, Rouas‐Freiss N, Deleuze J, Desgrandschamps F, Carosella ED. Novel landscape of HLA-G isoforms expressed in clear cell renal cell carcinoma patients. Mol Oncol 2017; 11:1561-1578. [PMID: 28815885 PMCID: PMC5664004 DOI: 10.1002/1878-0261.12119] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/21/2017] [Accepted: 07/29/2017] [Indexed: 12/14/2022] Open
Abstract
Immune checkpoints are powerful inhibitory molecules that promote tumor survival. Their blockade is now recognized as providing effective therapeutic benefit against cancer. Human leukocyte antigen G (HLA-G), a recently identified immune checkpoint, has been detected in many types of primary tumors and metastases, in malignant effusions as well as on tumor-infiltrating cells, particularly in patients with clear cell renal cell carcinoma (ccRCC). Here, in order to define a possible anticancer therapy, we used a molecular approach based on an unbiased strategy that combines transcriptome determination and immunohistochemical labeling, to analyze in-depth the HLA-G isoforms expressed in these tumors. We found that the expression of HLA-G is highly variable among tumors and distinct areas of the same tumor, testifying a marked inter- and intratumor heterogeneity. Moreover, our results generate an inventory of novel HLA-G isoforms which includes spliced forms that have an extended 5'-region and lack the transmembrane and alpha-1 domains. So far, these isoforms could not be detected by any method available and their assessment may improve the procedure by which tumors are analyzed. Collectively, our approach provides the first extensive portrait of HLA-G in ccRCC and reveals data that should prove suitable for the tailoring of future clinical applications.
Collapse
Affiliation(s)
- Diana Tronik‐Le Roux
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)Direction de la Recherche Fondamentale (DRF)Service de Recherche en Hemato‐Immunologie (SRHI)ParisFrance
- UMR_E5IUHHôpital Saint‐LouisUniversite Paris DiderotSorbonne Paris CiteFrance
| | - Julie Renard
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)Direction de la Recherche Fondamentale (DRF)Service de Recherche en Hemato‐Immunologie (SRHI)ParisFrance
- UMR_E5IUHHôpital Saint‐LouisUniversite Paris DiderotSorbonne Paris CiteFrance
| | - Jérôme Vérine
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)Direction de la Recherche Fondamentale (DRF)Service de Recherche en Hemato‐Immunologie (SRHI)ParisFrance
- Service d'Anatomo‐PathologieAP‐HP, Hôpital Saint‐LouisParisFrance
| | - Victor Renault
- Centre d'Etudes du Polymorphisme HumainFondation Jean DaussetParisFrance
| | - Emmanuel Tubacher
- Centre d'Etudes du Polymorphisme HumainFondation Jean DaussetParisFrance
| | - Joel LeMaoult
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)Direction de la Recherche Fondamentale (DRF)Service de Recherche en Hemato‐Immunologie (SRHI)ParisFrance
- UMR_E5IUHHôpital Saint‐LouisUniversite Paris DiderotSorbonne Paris CiteFrance
| | - Nathalie Rouas‐Freiss
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)Direction de la Recherche Fondamentale (DRF)Service de Recherche en Hemato‐Immunologie (SRHI)ParisFrance
- UMR_E5IUHHôpital Saint‐LouisUniversite Paris DiderotSorbonne Paris CiteFrance
| | - Jean‐François Deleuze
- Centre d'Etudes du Polymorphisme HumainFondation Jean DaussetParisFrance
- Centre National de GénotypageInstitut de GénomiqueCEAEvryFrance
| | - François Desgrandschamps
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)Direction de la Recherche Fondamentale (DRF)Service de Recherche en Hemato‐Immunologie (SRHI)ParisFrance
- Service d'UrologieAP‐HP, Hôpital Saint‐LouisParisFrance
| | - Edgardo D. Carosella
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)Direction de la Recherche Fondamentale (DRF)Service de Recherche en Hemato‐Immunologie (SRHI)ParisFrance
- UMR_E5IUHHôpital Saint‐LouisUniversite Paris DiderotSorbonne Paris CiteFrance
| |
Collapse
|
41
|
Newhook N, Fudge N, Grant M. NK cells generate memory-type responses to human cytomegalovirus-infected fibroblasts. Eur J Immunol 2017; 47:1032-1039. [DOI: 10.1002/eji.201646819] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/21/2017] [Accepted: 05/02/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Nicholas Newhook
- Immunology and Infectious Diseases Program; Division of BioMedical Sciences; Faculty of Medicine; Memorial University of Newfoundland; St. John's NL Canada
| | - Neva Fudge
- Immunology and Infectious Diseases Program; Division of BioMedical Sciences; Faculty of Medicine; Memorial University of Newfoundland; St. John's NL Canada
| | - Michael Grant
- Immunology and Infectious Diseases Program; Division of BioMedical Sciences; Faculty of Medicine; Memorial University of Newfoundland; St. John's NL Canada
| |
Collapse
|
42
|
Guberina H, Rebmann V, Wagner B, da Silva Nardi F, Dziallas P, Dolff S, Bienholz A, Wohlschlaeger J, Bankfalvi A, Heinemann FM, Witzke O, Zoet YM, Claas FHJ, Horn PA, Kribben A, Doxiadis IIN. Association of high HLA-E expression during acute cellular rejection and numbers of HLA class I leader peptide mismatches with reduced renal allograft survival. Immunobiology 2017; 222:536-543. [PMID: 27871782 DOI: 10.1016/j.imbio.2016.10.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 10/15/2016] [Indexed: 01/15/2023]
Abstract
Non-classical Human Leukocyte Antigen (HLA)-E preferentially presents leader peptides derived from classical HLA-class I molecules. HLA-E can trigger opposed immune responses by interacting with inhibitory NKG2A or by activating NKG2C receptors on NK and T-cells. We studied the impact of HLA-E on renal allograft survival during acute cellular rejection. HLA-E expression was up-regulated in acute cellular rejection (ACR) biopsies (n=12) compared to biopsies from 13 renal allografts with no rejection-signs. HLA-E up-regulation was correlated with numbers of HLA-class I leader peptide mismatches (p=0.04). CD8+ and CD56+ infiltrating cells correlated with HLA-E expression (p<0.0001 and p=0.0009, respectively). Activating NKG2C receptor dominated on effector cells in biopsies and peripheral blood during ACR potentially allowing HLA-E-mediated immune activation. Moreover, HLA-E expression correlated with deterioration in renal allograft function (p<0.008) and reduced allograft survival (p=0.002). Our findings provide evidence that during renal allograft rejection HLA-E along with high numbers of mismatched HLA-class I leader peptides might represent additional targets for immune-activating responses.
Collapse
Affiliation(s)
- Hana Guberina
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany; Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| | - Vera Rebmann
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Bettina Wagner
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Fabiola da Silva Nardi
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany; CAPES Foundation, Ministry of Education of Brazil, Brasília, DF 70.040-020, Brazil
| | - Phillip Dziallas
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Sebastian Dolff
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany; Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Anja Bienholz
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Jeremias Wohlschlaeger
- Institute for Pathology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Agnes Bankfalvi
- Institute for Pathology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Falko M Heinemann
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Oliver Witzke
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany; Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Yvonne M Zoet
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, Leiden, The Netherlands, Netherlands
| | - Frans H J Claas
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, Leiden, The Netherlands, Netherlands
| | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Andreas Kribben
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ilias I N Doxiadis
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, Leiden, The Netherlands, Netherlands
| |
Collapse
|
43
|
Kordelas L, Steckel NK, Horn PA, Beelen DW, Rebmann V. The Activating NKG2C Receptor Is Significantly Reduced in NK Cells after Allogeneic Stem Cell Transplantation in Patients with Severe Graft-versus-Host Disease. Int J Mol Sci 2016; 17:E1797. [PMID: 27801784 PMCID: PMC5133798 DOI: 10.3390/ijms17111797] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 10/18/2016] [Accepted: 10/20/2016] [Indexed: 11/21/2022] Open
Abstract
Natural killer (NK) cells play a central role in the innate immune system. In allogeneic stem cell transplantation (alloSCT), alloreactive NK cells derived by the graft are discussed to mediate the elimination of leukemic cells and dendritic cells in the patient and thereby to reduce the risk for leukemic relapses and graft-versus-host reactions. The alloreactivity of NK cells is determined by various receptors including the activating CD94/NKG2C and the inhibitory CD94/NKG2A receptors, which both recognize the non-classical human leukocyte antigen E (HLA-E). Here we analyze the contribution of these receptors to NK cell alloreactivity in 26 patients over the course of the first year after alloSCT due to acute myeloid leukemia, myelodysplastic syndrome and T cell Non-Hodgkin-Lymphoma. Our results show that NK cells expressing the activating CD94/NKG2C receptor are significantly reduced in patients after alloSCT with severe acute and chronic graft-versus-host disease (GvHD). Moreover, the ratio of CD94/NKG2C to CD94/NKG2A was reduced in patients with severe acute and chronic GvHD after receiving an HLA-mismatched graft. Collectively, these results provide evidence for the first time that CD94/NKG2C is involved in GvHD prevention.
Collapse
MESH Headings
- Adult
- Aged
- Female
- Graft vs Host Disease/immunology
- Graft vs Host Disease/pathology
- Graft vs Host Disease/prevention & control
- Histocompatibility Antigens Class I/immunology
- Humans
- Immunity, Innate/genetics
- Killer Cells, Natural/immunology
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Lymphoma, Non-Hodgkin/immunology
- Lymphoma, Non-Hodgkin/pathology
- Lymphoma, Non-Hodgkin/therapy
- Male
- Middle Aged
- Myelodysplastic Syndromes/immunology
- Myelodysplastic Syndromes/pathology
- Myelodysplastic Syndromes/therapy
- NK Cell Lectin-Like Receptor Subfamily C/biosynthesis
- NK Cell Lectin-Like Receptor Subfamily C/immunology
- NK Cell Lectin-Like Receptor Subfamily D/biosynthesis
- NK Cell Lectin-Like Receptor Subfamily D/immunology
- Stem Cell Transplantation/adverse effects
- Transplantation, Homologous/adverse effects
- HLA-E Antigens
Collapse
Affiliation(s)
- Lambros Kordelas
- Department of Bone Marrow Transplantation, University Hospital Essen, Essen 45147, Germany.
| | - Nina-Kristin Steckel
- Department of Bone Marrow Transplantation, University Hospital Essen, Essen 45147, Germany.
| | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, Essen 45147, Germany.
| | - Dietrich W Beelen
- Department of Bone Marrow Transplantation, University Hospital Essen, Essen 45147, Germany.
| | - Vera Rebmann
- Institute for Transfusion Medicine, University Hospital Essen, Essen 45147, Germany.
| |
Collapse
|
44
|
Horowitz A, Djaoud Z, Nemat-Gorgani N, Blokhuis J, Hilton HG, Béziat V, Malmberg KJ, Norman PJ, Guethlein LA, Parham P. Class I HLA haplotypes form two schools that educate NK cells in different ways. Sci Immunol 2016; 1. [PMID: 27868107 DOI: 10.1126/sciimmunol.aag1672] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Natural killer (NK) cells are lymphocytes having vital functions in innate and adaptive immunity, as well as placental reproduction. Controlling education and functional activity of human NK cells are various receptors that recognize HLA class I on the surface of tissue cells. Epitopes of polymorphic HLA-A,-B and -C are recognized by equally diverse killer cell immunoglobulin-like receptors (KIR). In addition, a peptide cleaved from the leader sequence of HLA-A,-B or -C must bind to HLA-E for it to become a ligand for the conserved CD94:NKG2A receptor. Methionine/threonine dimorphism at position -21 of the leader sequence divides HLA-B allotypes into a majority having -21T that do not supply HLA-E binding peptides and a minority having -21M, that do. Genetic analysis of human populations worldwide shows how haplotypes with -21M HLA-B rarely encode the KIR ligands: Bw4+HLA-B and C2+HLA-C KIR. Thus there are two fundamental forms of HLA haplotype: one preferentially supplying CD94:NKG2A ligands, the other preferentially supplying KIR ligands. -21 HLA-B dimorphism divides the human population into three groups: M/M, M/T and T/T. Mass cytometry and assays of immune function, shows how M/M and M/T individuals have CD94:NKG2A+ NK cells which are better educated, phenotypically more diverse and functionally more potent than those in T/T individuals. Fundamental new insights are given to genetic control of NK cell immunity and the evolution that has limited the number of NK cell receptor ligands encoded by an HLA haplotype. These finding suggest new ways to dissect the numerous clinical associations with HLA class I.
Collapse
Affiliation(s)
- Amir Horowitz
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA; Stanford Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Zakia Djaoud
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA; Stanford Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Neda Nemat-Gorgani
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA; Stanford Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jeroen Blokhuis
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA; Stanford Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Hugo G Hilton
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA; Stanford Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Vivien Béziat
- Center for Infectious Medicine, Department of Medicine, Karolinska Institute, Stockholm, Sweden; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
| | - Karl-Johan Malmberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institute, Stockholm, Sweden; Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0310 Oslo, Norway
| | - Paul J Norman
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA; Stanford Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lisbeth A Guethlein
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA; Stanford Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Peter Parham
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA; Stanford Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
45
|
Joosten SA, Sullivan LC, Ottenhoff THM. Characteristics of HLA-E Restricted T-Cell Responses and Their Role in Infectious Diseases. J Immunol Res 2016; 2016:2695396. [PMID: 27699181 PMCID: PMC5028793 DOI: 10.1155/2016/2695396] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/28/2016] [Accepted: 07/10/2016] [Indexed: 12/31/2022] Open
Abstract
Human HLA-E can, in addition to self-antigens, also present pathogen-derived sequences, which elicit specific T-cell responses. T-cells recognize their antigen presented by HLA-E highly specifically and have unique functional and phenotypical properties. Pathogen specific HLA-E restricted CD8+ T-cells are an interesting new player in the field of immunology. Future work should address their exact roles and relative contributions in the immune response against infectious diseases.
Collapse
Affiliation(s)
- Simone A. Joosten
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Lucy C. Sullivan
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3010, Australia
| | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| |
Collapse
|
46
|
Sullivan LC, Berry R, Sosnin N, Widjaja JML, Deuss FA, Balaji GR, LaGruta NL, Mirams M, Trapani JA, Rossjohn J, Brooks AG, Andrews DM. Recognition of the Major Histocompatibility Complex (MHC) Class Ib Molecule H2-Q10 by the Natural Killer Cell Receptor Ly49C. J Biol Chem 2016; 291:18740-52. [PMID: 27385590 DOI: 10.1074/jbc.m116.737130] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Indexed: 01/15/2023] Open
Abstract
Murine natural killer (NK) cells are regulated by the interaction of Ly49 receptors with major histocompatibility complex class I molecules (MHC-I). Although the ligands for inhibitory Ly49 were considered to be restricted to classical MHC (MHC-Ia), we have shown that the non-classical MHC molecule (MHC-Ib) H2-M3 was a ligand for the inhibitory Ly49A. Here we establish that another MHC-Ib, H2-Q10, is a bona fide ligand for the inhibitory Ly49C receptor. H2-Q10 bound to Ly49C with a marginally lower affinity (∼5 μm) than that observed between Ly49C and MHC-Ia (H-2K(b)/H-2D(d), both ∼1 μm), and this recognition could be prevented by cis interactions with H-2K in situ To understand the molecular details underpinning Ly49·MHC-Ib recognition, we determined the crystal structures of H2-Q10 and Ly49C bound H2-Q10. Unliganded H2-Q10 adopted a classical MHC-I fold and possessed a peptide-binding groove that exhibited features similar to those found in MHC-Ia, explaining the diverse peptide binding repertoire of H2-Q10. Ly49C bound to H2-Q10 underneath the peptide binding platform to a region that encompassed residues from the α1, α2, and α3 domains, as well as the associated β2-microglobulin subunit. This docking mode was conserved with that previously observed for Ly49C·H-2K(b) Indeed, structure-guided mutation of Ly49C indicated that Ly49C·H2-Q10 and Ly49C·H-2K(b) possess similar energetic footprints focused around residues located within the Ly49C β4-stand and L5 loop, which contact the underside of the peptide-binding platform floor. Our data provide a structural basis for Ly49·MHC-Ib recognition and demonstrate that MHC-Ib represent an extended family of ligands for Ly49 molecules.
Collapse
Affiliation(s)
- Lucy C Sullivan
- From the Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Richard Berry
- the Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia, the ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Natasha Sosnin
- the Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia, The Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3010, Parkville, Australia
| | - Jacqueline M L Widjaja
- From the Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Felix A Deuss
- the Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia, the ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Gautham R Balaji
- the Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia, the ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Nicole L LaGruta
- From the Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia, the Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Michiko Mirams
- From the Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Joseph A Trapani
- the Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia, The Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3010, Parkville, Australia
| | - Jamie Rossjohn
- the Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia, the ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia, the Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, Wales, United Kingdom, and
| | - Andrew G Brooks
- From the Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia,
| | - Daniel M Andrews
- the Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| |
Collapse
|
47
|
Saunders PM, Vivian JP, O'Connor GM, Sullivan LC, Pymm P, Rossjohn J, Brooks AG. A bird's eye view of NK cell receptor interactions with their MHC class I ligands. Immunol Rev 2016; 267:148-66. [PMID: 26284476 DOI: 10.1111/imr.12319] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The surveillance of target cells by natural killer (NK) cells utilizes an ensemble of inhibitory and activating receptors, many of which interact with major histocompatibility complex (MHC) class I molecules. NK cell recognition of MHC class I proteins is important developmentally for the acquisition of full NK cell effector capacity and during target cell recognition, where the engagement of inhibitory receptors and MHC class I molecules attenuates NK cell activation. Human NK cells have evolved two broad strategies for recognition of human leukocyte antigen (HLA) class I molecules: (i) direct recognition of polymorphic classical HLA class I proteins by diverse receptor families such as the killer cell immunoglobulin-like receptors (KIRs), and (ii) indirect recognition of conserved sets of HLA class I-derived peptides displayed on the non-classical HLA-E for recognition by CD94-NKG2 receptors. In this review, we assess the structural basis for the interaction between these NK receptors and their HLA class I ligands and, using the suite of published KIR and CD94-NKG2 ternary complexes, highlight the features that allow NK cells to orchestrate the recognition of a range of different HLA class I proteins.
Collapse
Affiliation(s)
- Philippa M Saunders
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Julian P Vivian
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
| | - Geraldine M O'Connor
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Lucy C Sullivan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Phillip Pymm
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
| | - Jamie Rossjohn
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Andrew G Brooks
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
48
|
Douik H, Romdhane NA, Guemira F. Are HLA-E*0103 alleles predictive markers for nasopharyngeal cancer risk? Pathol Res Pract 2016; 212:345-9. [PMID: 26896927 DOI: 10.1016/j.prp.2016.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 01/26/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a particular entity of head neck cancer, tightly related to Epstein-Barr virus infection and thus to HLA genes. In this study, we aimed to analyze HLA-E polymorphism in NPC advent and prognosis. 130 unrelated patients with CNP and 180 unrelated and healthy controls were included in our study. HLA-E genotyping was performed by PCR/RFLP method; SPSS (13.0) was used for statistical analysis, and survival curbs were established with the "Kaplan-Meier" method (Log Rank<0.05). RESULTS We found a significant difference within HLA-E*103 variants between patients and controls: E*1031 and E*1032 were associated with CNP (OR=1.613, p=0.013 and OR=1.0809, p=0.055), and E*1033 with controls (OR=0.254, p<10(-4)). CONCLUSION Our study reveals that HLA-E polymorphism is associated with nasopharyngeal cancer. HLA-E expression studies could be used to understand the implication of E*103 variants.
Collapse
Affiliation(s)
- Hayet Douik
- Clinical Biology Department, Salah Azaiz Institute of Cancer, 1006 Bab Saadoun, Tunis, Tunisia.
| | - Neila Attia Romdhane
- Statistic and Epidemiology Department, Faculty of Medicine, 1007, Djebel Lakhdar, La Rabta, Tunis, Tunisia
| | - Fethi Guemira
- Clinical Biology Department, Salah Azaiz Institute of Cancer, 1006 Bab Saadoun, Tunis, Tunisia
| |
Collapse
|
49
|
Hansen SG, Wu HL, Burwitz BJ, Hughes CM, Hammond KB, Ventura AB, Reed JS, Gilbride RM, Ainslie E, Morrow DW, Ford JC, Selseth AN, Pathak R, Malouli D, Legasse AW, Axthelm MK, Nelson JA, Gillespie GM, Walters LC, Brackenridge S, Sharpe HR, López CA, Früh K, Korber BT, McMichael AJ, Gnanakaran S, Sacha JB, Picker LJ. Broadly targeted CD8⁺ T cell responses restricted by major histocompatibility complex E. Science 2016; 351:714-20. [PMID: 26797147 PMCID: PMC4769032 DOI: 10.1126/science.aac9475] [Citation(s) in RCA: 243] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 01/06/2016] [Indexed: 12/22/2022]
Abstract
Major histocompatibility complex E (MHC-E) is a highly conserved, ubiquitously expressed, nonclassical MHC class Ib molecule with limited polymorphism that is primarily involved in the regulation of natural killer (NK) cells. We found that vaccinating rhesus macaques with rhesus cytomegalovirus vectors in which genes Rh157.5 and Rh157.4 are deleted results in MHC-E-restricted presentation of highly varied peptide epitopes to CD8αβ(+) T cells, at ~4 distinct epitopes per 100 amino acids in all tested antigens. Computational structural analysis revealed that MHC-E provides heterogeneous chemical environments for diverse side-chain interactions within a stable, open binding groove. Because MHC-E is up-regulated to evade NK cell activity in cells infected with HIV, simian immunodeficiency virus, and other persistent viruses, MHC-E-restricted CD8(+) T cell responses have the potential to exploit pathogen immune-evasion adaptations, a capability that might endow these unconventional responses with superior efficacy.
Collapse
Affiliation(s)
- Scott G. Hansen
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Helen L. Wu
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Benjamin J. Burwitz
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Colette M. Hughes
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Katherine B. Hammond
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Abigail B. Ventura
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Jason S. Reed
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Roxanne M. Gilbride
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Emily Ainslie
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - David W. Morrow
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Julia C. Ford
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Andrea N. Selseth
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Reesab Pathak
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Daniel Malouli
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Alfred W. Legasse
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Michael K. Axthelm
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Jay A. Nelson
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | | | - Lucy C. Walters
- Nuffield Department of Medicine, University of Oxford, OX37FZ, United Kingdom
| | - Simon Brackenridge
- Nuffield Department of Medicine, University of Oxford, OX37FZ, United Kingdom
| | - Hannah R. Sharpe
- Nuffield Department of Medicine, University of Oxford, OX37FZ, United Kingdom
| | - César A. López
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory
| | - Klaus Früh
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Bette T. Korber
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory
- The New Mexico Consortium, Los Alamos, NM 87545
| | - Andrew J. McMichael
- Nuffield Department of Medicine, University of Oxford, OX37FZ, United Kingdom
| | - S. Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory
| | - Jonah B. Sacha
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Louis J. Picker
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| |
Collapse
|
50
|
HLA-E: Presentation of a Broader Peptide Repertoire Impacts the Cellular Immune Response-Implications on HSCT Outcome. Stem Cells Int 2015; 2015:346714. [PMID: 26366178 PMCID: PMC4549550 DOI: 10.1155/2015/346714] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/14/2015] [Accepted: 05/20/2015] [Indexed: 01/28/2023] Open
Abstract
The HLA-E locus encodes a nonclassical class Ib molecule that serves many immune functions from inhibiting NK cells to activating CTLs. Structural analysis of HLA-E/NKG2A complexes visualized fine-tuning of protective immune responses through AA interactions between HLA-E, the bound peptide, and NKG2A/CD94. A loss of cellular protection through abrogation of the HLA-E/NKG2A engagement is dependent on the HLA-E bound peptide. The role of HLA-E in posttransplant outcomes is not well understood but might be attributed to its peptide repertoire.
To investigate the self-peptide repertoire of HLA-E∗01:01 in the absence of protective HLA class I signal peptides, we utilized soluble HLA technology in class I negative LCL cells in order to characterize HLA-E∗01:01-bound ligands by mass-spectrometry. To understand the immunological impact of these analyzed ligands on NK cell reactivity, we performed cellular assays. Synthesized peptides were loaded onto recombinant T2 cells expressing HLA-E∗01:01 molecules and applied in cytotoxicity assays using the leukemia derived NK cell line (NKL) as effector. HLA-E in complex with the self-peptides demonstrated a shift towards cytotoxicity and a loss of cell protection.
Our data highlights the fact that the HLA-E-peptidome is not as restricted as previously thought and support the suggestion of a posttransplant role for HLA-E.
Collapse
|