1
|
Hattori M. Regulatory mechanism of Reelin activity: a platform for exploiting Reelin as a therapeutic agent. Front Mol Neurosci 2025; 18:1546083. [PMID: 39931643 PMCID: PMC11808024 DOI: 10.3389/fnmol.2025.1546083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
Reelin is a secreted glycoprotein that was initially investigated in the field of neuronal development. However, in recent decades, its role in the adult brain has become increasingly important, and it is now clear that diminished Reelin function is involved in the pathogenesis and progression of neuropsychiatric and neurodegenerative disorders, including schizophrenia and Alzheimer's disease (AD). Reelin activity is regulated at multiple steps, including synthesis, posttranslational modification, secretion, oligomerization, proteolytic processing, and interactions with extracellular molecules. Moreover, the differential use of two canonical receptors and the presence of non-canonical receptors and co-receptors add to the functional diversity of Reelin. In this review, I summarize recent findings on the molecular mechanisms of Reelin activity. I also discuss possible strategies to enhance Reelin's function. A complete understanding of Reelin function and its regulatory mechanisms in the adult central nervous system could help ameliorate neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Mitsuharu Hattori
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| |
Collapse
|
2
|
Ferreira A, Timmerman E, Staes A, Vuylsteke M, De Muynck L, Gevaert K. Protein interactors of 3-O sulfated heparan sulfates in human MCI and age-matched control cerebrospinal fluid. Sci Data 2023; 10:121. [PMID: 36879013 PMCID: PMC9986659 DOI: 10.1038/s41597-023-02009-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/07/2023] [Indexed: 03/08/2023] Open
Abstract
Heparan sulfates (HS) proteoglycans are commonly found on the cell surface and mediate many processes. Binding of HS ligands is determined by the sulfation code on the HS chain that can be N-/2-O/6-O- or 3-O-sulfated, generating heterogenous sulfation patterns. 3-O sulfated HS (3S-HS) play a role in several (patho)physiological processes such as blood coagulation, viral pathogenesis and binding and internalization of tau in Alzheimer's disease. However, few 3S-HS-specific interactors are known. Thus, our insight into the role of 3S-HS in health and disease is limited, especially in the central nervous system. Using human CSF, we determined the interactome of synthetic HS with defined sulfation patterns. Our affinity-enrichment mass spectrometry studies expand the repertoire of proteins that may interact with (3S-)HS. Validating our approach, ATIII, a known 3S-HS interactor, was found to require GlcA-GlcNS6S3S for binding, similar to what has been reported. Our dataset holds novel, potential HS and 3S-HS protein ligands, that can be explored in future studies focusing on molecular mechanisms that depend on 3S-HS in (patho)physiological conditions.
Collapse
Affiliation(s)
- Andreia Ferreira
- Janssen Research & Development, a Division of Janssen Pharmaceutica N.V., 2340, Beerse, Belgium
- VIB-UGent Center for Medical Biotechnology, B-9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, B-9052, Ghent, Belgium
| | - Evy Timmerman
- VIB-UGent Center for Medical Biotechnology, B-9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, B-9052, Ghent, Belgium
- VIB Proteomics Core, B-9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, B-9000, Ghent, Belgium
| | - An Staes
- VIB-UGent Center for Medical Biotechnology, B-9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, B-9052, Ghent, Belgium
| | | | - Louis De Muynck
- Janssen Research & Development, a Division of Janssen Pharmaceutica N.V., 2340, Beerse, Belgium.
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, B-9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, B-9052, Ghent, Belgium.
| |
Collapse
|
3
|
Ou SHI, Xiu J, Nagasaka M, Xia B, Zhang SS, Zhang Q, Swensen JJ, Spetzler D, Korn WM, Zhu VW, Liu SV. Identification of Novel CDH1-NRG2α and F11R-NRG2α Fusions in NSCLC Plus Additional Novel NRG2α Fusions in Other Solid Tumors by Whole Transcriptome Sequencing. JTO Clin Res Rep 2021; 2:100132. [PMID: 34589990 PMCID: PMC8474258 DOI: 10.1016/j.jtocrr.2020.100132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Introduction A novel CD74-NRG2α fusion has recently been identified in NSCLC. We surveyed a large tumor database comprehensively profiled by whole transcriptome sequencing to investigate the incidence and distribution of NRG2 fusions among various solid tumors. Methods Tumor samples submitted for clinical molecular profiling at Caris Life Sciences (Phoenix, AZ) that underwent whole transcriptome sequencing (NovaSeq [Illumina, San Diego, CA]) were retrospectively analyzed for NRG2 fusion events. All NRG2 fusions with sufficient reads (> three junctional reads spanning ≥ seven nucleotides) were identified for manual review, characterization of fusion class, intact functional domains, EGF-like domain isoforms, breakpoints, frame retention, and co-occurring alterations by next-generation sequencing (NextSeq [Illumina, San Diego, CA], 592 genes). Results Seven inframe functional (containing the intact EGF-like domain) NRG2α fusions were identified, namely, the following: (1) NSCLC (two of 9600, 0.02%: CDH1-NRG2α [C11, N2], F11R-NRG2α [F1, N4]); (2) endometrial (two of 3060, 0.065%: CPM-NRG2α [C2, N2], OPA3-NRG2α [O1, N2]); (3) ovarian (one of 5030, 0.02%: SPON1-NRG2α [S6, N2]); (4) prostate (one of 1600, 0.063%: PLPP1-NRG2α [P1, N2]); and (5) carcinoma of unknown origin (one of 1400, 0.07%: CYSTM1-NRG2α [C2, N2]). No NRG2β fusions were identified. Both NSCLC samples contained the reciprocal NRG2 fusions (NRG2-CDH1, NRG2-F11R). Almost all inframe NRG2α fusions have no (N = 6, 85.7%) or low (N = 1, 14.3%) programmed death-ligand 1 expression. No additional known driver mutations were identified in these seven NRG2α fusion-positive tumor samples. Conclusions Similar to NRG1 fusions, NRG2α fusions are recurrent and rare ligand-fusions in NSCLC and other multiple tumor types, especially gynecologic malignancies.
Collapse
Affiliation(s)
- Sai-Hong Ignatius Ou
- Department of Medicine, University of California Irvine School of Medicine, Orange, California.,Chao Family Comprehensive Cancer Center, Orange, California
| | | | - Misako Nagasaka
- Department of Medical Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan.,Division of Neurology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Bing Xia
- Division of Oncology, Department of Medicine, USC Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, California
| | - Shannon S Zhang
- Department of Medicine, University of California Irvine School of Medicine, Orange, California
| | | | | | | | | | - Viola W Zhu
- Department of Medicine, University of California Irvine School of Medicine, Orange, California.,Chao Family Comprehensive Cancer Center, Orange, California
| | - Stephen V Liu
- Division of Hematology-Oncology, Department of Medicine, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, District of Columbia
| |
Collapse
|
4
|
Nagae M, Suzuki K, Yasui N, Nogi T, Kohno T, Hattori M, Takagi J. Structural studies of reelin N-terminal region provides insights into a unique structural arrangement and functional multimerization. J Biochem 2021; 169:555-564. [PMID: 33377147 DOI: 10.1093/jb/mvaa144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/03/2020] [Indexed: 01/31/2023] Open
Abstract
The large, secreted glycoprotein reelin regulates embryonic brain development as well as adult brain functions. Although reelin binds to its receptors via its central part, the N-terminal region directs multimer formation and is critical for efficient signal transduction. In fact, the inhibitory antibody CR-50 interacts with the N-terminal region and prevents higher-order multimerization and signalling. Reelin is a multidomain protein in which the central part is composed of eight characteristic repeats, named reelin repeats, each of which is further divided by insertion of a epidermal growth factor (EGF) module into two subrepeats. In contrast, the N-terminal region shows unique 'irregular' domain architecture since it comprises three consecutive subrepeats without the intervening EGF module. Here, we determined the crystal structure of the murine reelin fragment named RX-R1 including the irregular region and the first reelin repeat at 2.0-Å resolution. The overall structure of RX-R1 has a branched Y-shaped form. Interestingly, two incomplete subrepeats cooperatively form one entire subrepeat structure, though an additional subrepeat is inserted between them. We further reveal that Arg335 of RX-R1 is crucial for binding CR-50. A possible self-association mechanism via the N-terminal region is proposed based on our results.
Collapse
Affiliation(s)
- Masamichi Nagae
- Department of Molecular Immunology, Research Institute for Microbial Diseases.,Laboratory of Molecular Immunology, Immunology Frontier Research Center (iFReC), Osaka University, 3-1 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Kei Suzuki
- Institute for Protein Research, Osaka University, 3-2 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | - Norihisa Yasui
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Terukazu Nogi
- Graduate School of Medical Life Science, Yokohama City University, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Takao Kohno
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 467-8603, Japan
| | - Mitsuharu Hattori
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 467-8603, Japan
| | - Junichi Takagi
- Institute for Protein Research, Osaka University, 3-2 Yamada-Oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
5
|
Pahle J, Muhia M, Wagener RJ, Tippmann A, Bock HH, Graw J, Herz J, Staiger JF, Drakew A, Kneussel M, Rune GM, Frotscher M, Brunne B. Selective Inactivation of Reelin in Inhibitory Interneurons Leads to Subtle Changes in the Dentate Gyrus But Leaves Cortical Layering and Behavior Unaffected. Cereb Cortex 2021; 30:1688-1707. [PMID: 31667489 PMCID: PMC7132935 DOI: 10.1093/cercor/bhz196] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Reelin is an extracellular matrix protein, known for its dual role in neuronal migration during brain development and in synaptic plasticity at adult stages. During the perinatal phase, Reelin expression switches from Cajal-Retzius (CR) cells, its main source before birth, to inhibitory interneurons (IN), the main source of Reelin in the adult forebrain. IN-derived Reelin has been associated with schizophrenia and temporal lobe epilepsy; however, the functional role of Reelin from INs is presently unclear. In this study, we used conditional knockout mice, which lack Reelin expression specifically in inhibitory INs, leading to a substantial reduction in total Reelin expression in the neocortex and dentate gyrus. Our results show that IN-specific Reelin knockout mice exhibit normal neuronal layering and normal behavior, including spatial reference memory. Although INs are the major source of Reelin within the adult stem cell niche, Reelin from INs does not contribute substantially to normal adult neurogenesis. While a closer look at the dentate gyrus revealed some unexpected alterations at the cellular level, including an increase in the number of Reelin expressing CR cells, overall our data suggest that Reelin derived from INs is less critical for cortex development and function than Reelin expressed by CR cells.
Collapse
Affiliation(s)
- Jasmine Pahle
- Institute for Structural Neurobiology, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Mary Muhia
- Institute of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Robin J Wagener
- Neurology Clinic, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Anja Tippmann
- Institute for Structural Neurobiology, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.,Department of Systems Neuroscience, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, University of Göttingen, 37075 Göttingen, Germany
| | - Hans H Bock
- Clinic of Gastroenterology and Hepatology, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Janice Graw
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jochen F Staiger
- Institute for Neuroanatomy, University Medical Center Göttingen, Georg-August-University Göttingen, 37075 Göttingen, Germany
| | - Alexander Drakew
- Institute for Structural Neurobiology, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.,Institute of Clinical Neuroanatomy, Faculty of Medicine, 60590 Frankfurt, Germany
| | - Matthias Kneussel
- Institute of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Gabriele M Rune
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Michael Frotscher
- Institute for Structural Neurobiology, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Bianka Brunne
- Institute for Structural Neurobiology, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.,Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| |
Collapse
|
6
|
Junqueira Alves C, Silva Ladeira J, Hannah T, Pedroso Dias RJ, Zabala Capriles PV, Yotoko K, Zou H, Friedel RH. Evolution and Diversity of Semaphorins and Plexins in Choanoflagellates. Genome Biol Evol 2021; 13:6149127. [PMID: 33624753 PMCID: PMC8011033 DOI: 10.1093/gbe/evab035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2021] [Indexed: 12/22/2022] Open
Abstract
Semaphorins and plexins are cell surface ligand/receptor proteins that affect cytoskeletal dynamics in metazoan cells. Interestingly, they are also present in Choanoflagellata, a class of unicellular heterotrophic flagellates that forms the phylogenetic sister group to Metazoa. Several members of choanoflagellates are capable of forming transient colonies, whereas others reside solitary inside exoskeletons; their molecular diversity is only beginning to emerge. Here, we surveyed genomics data from 22 choanoflagellate species and detected semaphorin/plexin pairs in 16 species. Choanoflagellate semaphorins (Sema-FN1) contain several domain features distinct from metazoan semaphorins, including an N-terminal Reeler domain that may facilitate dimer stabilization, an array of fibronectin type III domains, a variable serine/threonine-rich domain that is a potential site for O-linked glycosylation, and a SEA domain that can undergo autoproteolysis. In contrast, choanoflagellate plexins (Plexin-1) harbor a domain arrangement that is largely identical to metazoan plexins. Both Sema-FN1 and Plexin-1 also contain a short homologous motif near the C-terminus, likely associated with a shared function. Three-dimensional molecular models revealed a highly conserved structural architecture of choanoflagellate Plexin-1 as compared to metazoan plexins, including similar predicted conformational changes in a segment that is involved in the activation of the intracellular Ras-GAP domain. The absence of semaphorins and plexins in several choanoflagellate species did not appear to correlate with unicellular versus colonial lifestyle or ecological factors such as fresh versus salt water environment. Together, our findings support a conserved mechanism of semaphorin/plexin proteins in regulating cytoskeletal dynamics in unicellular and multicellular organisms.
Collapse
Affiliation(s)
- Chrystian Junqueira Alves
- Friedman Brain Institute, Nash Family Department of Neuroscience and Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Júlia Silva Ladeira
- Programa de Pós-graduação em Modelagem Computacional, Universidade Federal de Juiz de Fora, Minas Gerais, Brazil
| | - Theodore Hannah
- Friedman Brain Institute, Nash Family Department of Neuroscience and Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Roberto J Pedroso Dias
- Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Minas Gerais, Brazil
| | - Priscila V Zabala Capriles
- Programa de Pós-graduação em Modelagem Computacional, Universidade Federal de Juiz de Fora, Minas Gerais, Brazil
| | - Karla Yotoko
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Hongyan Zou
- Friedman Brain Institute, Nash Family Department of Neuroscience and Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Roland H Friedel
- Friedman Brain Institute, Nash Family Department of Neuroscience and Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
7
|
Li C, Kuss M, Kong Y, Nie F, Liu X, Liu B, Dunaevsky A, Fayad P, Duan B, Li X. 3D Printed Hydrogels with Aligned Microchannels to Guide Neural Stem Cell Migration. ACS Biomater Sci Eng 2021; 7:690-700. [PMID: 33507749 DOI: 10.1021/acsbiomaterials.0c01619] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Following traumatic or ischemic brain injury, rapid cell death and extracellular matrix degradation lead to the formation of a cavity at the brain lesion site, which is responsible for prolonged neurological deficits and permanent disability. Transplantation of neural stem/progenitor cells (NSCs) represents a promising strategy for reconstructing the lesion cavity and promoting tissue regeneration. In particular, the promotion of neuronal migration, organization, and integration of transplanted NSCs is critical to the success of stem cell-based therapy. This is particularly important for the cerebral cortex, the most common area involved in brain injuries, because the highly organized structure of the cerebral cortex is essential to its function. Biomaterials-based strategies show some promise for conditioning the lesion site microenvironment to support transplanted stem cells, but the progress in demonstrating organized cell engraftment and integration into the brain is very limited. An effective approach to sufficiently address these challenges has not yet been developed. Here, we have implemented a digital light-processing-based 3D printer and printed hydrogel scaffolds with a designed shape, uniaxially aligned microchannels, and tunable mechanical properties. We demonstrated the capacity to achieve high shape precision to the lesion site with brain tissue-matching mechanical properties. We also established spatial control of bioactive molecule distribution within 3D printed hydrogel scaffolds. These printed hydrogel scaffolds have shown high neuro-compatibility with aligned neuronal outgrowth along with the microchannels. This study will provide a biomaterial-based approach that can serve as a protective and guidance vehicle for transplanted NSC organization and integration for brain tissue regeneration after injuries.
Collapse
Affiliation(s)
- Cui Li
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.,Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Mitchell Kuss
- Mary & Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Yunfan Kong
- Mary & Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Fujiao Nie
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Xiaoyan Liu
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Bo Liu
- Mary & Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Anna Dunaevsky
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Pierre Fayad
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Xiaowei Li
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
8
|
Wu L, Li L, Liang Y, Chen X, Mou P, Liu G, Sun X, Qin B, Zhang S, Zhao C. Identification of differentially expressed long non-coding RNAs and mRNAs in orbital adipose/connective tissue of thyroid-associated ophthalmopathy. Genomics 2020; 113:440-449. [PMID: 32919017 DOI: 10.1016/j.ygeno.2020.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/15/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
Extracellular matrix remodeling and orbital adipose/connective tissue expansion are two key features of thyroid-associated ophthalmopathy (TAO). Recent studies have indicated the critical role of long non-coding RNAs (lncRNAs) in the pathogenesis of ocular disorders. However, little is known about the roles of lncRNAs in orbital adipose/connective tissue of TAO. In this study, the profiles of lncRNAs and mRNAs in the orbital adipose/connective tissue of TAO were identified by RNA sequencing. A total of 809 differential lncRNAs and 607 differential mRNAs were identified, among which 52 genes were found to be significantly related to the extracellular matrix. Co-expression network analysis suggested that lncRNAs might regulate extracellular matrix remodeling in orbital adipose/connective tissue of TAO. Additionally, the target genes of lncRNAs involved in the lipid metabolism and cytokine-cytokine receptor interaction were also identified. These results may provide potential regulatory mechanisms of lncRNAs in the orbital adipose/connective tissue of TAO.
Collapse
Affiliation(s)
- Lianqun Wu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai 200031, China
| | - Lei Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai 200031, China
| | - Yu Liang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai 200031, China
| | - Xinxin Chen
- Department of Ophthalmology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 20003, China
| | - Pei Mou
- Department of Ophthalmology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 20003, China
| | - Guohua Liu
- Department of Ophthalmology, Qilu Children's Hospital of Shandong University, 430 Jingshi Road, Jinan 250022, China
| | - Xiantao Sun
- Department of Ophthalmolgoy, Children's Hospital Affiliated of Zhengzhou University, 255 Gangdu Road, Zhengzhou 450053, China
| | - Bing Qin
- Department of Ophthalmolgoy, Suqian First Hospital, 120 Suzhi Road, Suqian 223800, China
| | - Shujie Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai 200031, China.
| | - Chen Zhao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, 83 Fenyang Road, Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, 83 Fenyang Road, Shanghai 200031, China.
| |
Collapse
|
9
|
Pei J, Kinch LN, Grishin NV. FlyXCDB—A Resource for Drosophila Cell Surface and Secreted Proteins and Their Extracellular Domains. J Mol Biol 2018; 430:3353-3411. [DOI: 10.1016/j.jmb.2018.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/31/2018] [Accepted: 06/02/2018] [Indexed: 02/06/2023]
|
10
|
Yang J, Chi L. Characterization of structural motifs for interactions between glycosaminoglycans and proteins. Carbohydr Res 2017; 452:54-63. [PMID: 29065343 DOI: 10.1016/j.carres.2017.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/02/2017] [Accepted: 10/16/2017] [Indexed: 11/24/2022]
Abstract
Glycosaminoglycans (GAGs) are a family of linear and anionic polysaccharides that play essential roles in many biological and physiological processes. Interactions between GAGs and proteins regulate function in many proteins and are related to many human diseases and disorders. The structural motifs and mechanisms for interactions between GAGs and proteins are not fully understood. Specific bindings, including minor but unique sequences sporadically distributed along the GAG chains or variably sulfated domains interspersed by undersulfated regions, may be specifically recognized by defined domains of a variety of proteins. Understanding the molecular basis of these interactions will provide a template for developing novel glycotherapeutic agents. The present article reviews recent methodologies and progress on the characterization of structural motifs in both GAGs and proteins involved in GAG-protein interactions. The analytical approaches are categorized into three groups: affinity-based methods; molecular docking, nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography; and mass spectrometry (MS) techniques. The advantages and limitations of each category of methods are discussed and are based on examples of using these techniques to investigate binding between GAGs and proteins.
Collapse
Affiliation(s)
- Jiyuan Yang
- National Glycoengineering Research Center, Shandong University, Jinan 250100, China
| | - Lianli Chi
- National Glycoengineering Research Center, Shandong University, Jinan 250100, China.
| |
Collapse
|
11
|
Alowolodu O, Johnson G, Alashwal L, Addou I, Zhdanova IV, Uversky VN. Intrinsic disorder in spondins and some of their interacting partners. INTRINSICALLY DISORDERED PROTEINS 2016; 4:e1255295. [PMID: 28232900 DOI: 10.1080/21690707.2016.1255295] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 10/22/2016] [Accepted: 10/27/2016] [Indexed: 12/28/2022]
Abstract
Spondins, which are proteins that inhibit and promote adherence of embryonic cells so as to aid axonal growth are part of the thrombospondin-1 family. Spondins function in several important biological processes, such as apoptosis, angiogenesis, etc. Spondins constitute a thrombospondin subfamily that includes F-spondin, a protein that interacts with Aβ precursor protein and inhibits its proteolytic processing; R-spondin, a 4-membered group of proteins that regulates Wnt pathway and have other functions, such as regulation of kidney proliferation, induction of epithelial proliferation, the tumor suppressant action; M-spondin that mediates mechanical linkage between the muscles and apodemes; and the SCO-spondin, a protein important for neuronal development. In this study, we investigated intrinsic disorder status of human spondins and their interacting partners, such as members of the LRP family, LGR family, Frizzled family, and several other binding partners in order to establish the existence and importance of disordered regions in spondins and their interacting partners by conducting a detailed analysis of their sequences, finding disordered regions, and establishing a correlation between their structure and biological functions.
Collapse
Affiliation(s)
- Oluwole Alowolodu
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida , Tampa, FL, USA
| | - Gbemisola Johnson
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida , Tampa, FL, USA
| | - Lamis Alashwal
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida , Tampa, FL, USA
| | - Iqbal Addou
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida , Tampa, FL, USA
| | - Irina V Zhdanova
- Department of Anatomy & Neurobiology, Boston University School of Medicine , Boston, MA, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; USF Health Byrd Alzheimer Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
12
|
Kletzin A, Heimerl T, Flechsler J, van Niftrik L, Rachel R, Klingl A. Cytochromes c in Archaea: distribution, maturation, cell architecture, and the special case of Ignicoccus hospitalis. Front Microbiol 2015; 6:439. [PMID: 26029183 PMCID: PMC4429474 DOI: 10.3389/fmicb.2015.00439] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/23/2015] [Indexed: 01/25/2023] Open
Abstract
Cytochromes c (Cytc) are widespread electron transfer proteins and important enzymes in the global nitrogen and sulfur cycles. The distribution of Cytc in more than 300 archaeal proteomes deduced from sequence was analyzed with computational methods including pattern and similarity searches, secondary and tertiary structure prediction. Two hundred and fifty-eight predicted Cytc (with single, double, or multiple heme c attachment sites) were found in some but not all species of the Desulfurococcales, Thermoproteales, Archaeoglobales, Methanosarcinales, Halobacteriales, and in two single-cell genome sequences of the Thermoplasmatales, all of them Cren- or Euryarchaeota. Other archaeal phyla including the Thaumarchaeota are so far free of these proteins. The archaeal Cytc sequences were bundled into 54 clusters of mutual similarity, some of which were specific for Archaea while others had homologs in the Bacteria. The cytochrome c maturation system I (CCM) was the only one found. The highest number and variability of Cytc were present in those species with known or predicted metal oxidation and/or reduction capabilities. Paradoxical findings were made in the haloarchaea: several Cytc had been purified biochemically but corresponding proteins were not found in the proteomes. The results are discussed with emphasis on cell morphologies and envelopes and especially for double-membraned Archaea-like Ignicoccus hospitalis. A comparison is made with compartmentalized bacteria such as the Planctomycetes of the Anammox group with a focus on the putative localization and roles of the Cytc and other electron transport proteins.
Collapse
Affiliation(s)
- Arnulf Kletzin
- Department of Biology, Sulfur Biochemistry and Microbial Bioenergetics, Technische Universität Darmstadt Darmstadt, Germany
| | - Thomas Heimerl
- Fakultät für Biologie und Vorklinische Medizin, Zentrum für Elektronenmikroskopie, Universität Regensburg Regensburg, Germany
| | - Jennifer Flechsler
- Fakultät für Biologie und Vorklinische Medizin, Zentrum für Elektronenmikroskopie, Universität Regensburg Regensburg, Germany
| | - Laura van Niftrik
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen Nijmegen, Netherlands
| | - Reinhard Rachel
- Fakultät für Biologie und Vorklinische Medizin, Zentrum für Elektronenmikroskopie, Universität Regensburg Regensburg, Germany
| | - Andreas Klingl
- Department of Biology I, Plant Development, Biocenter LMU Munich Planegg-Martinsried, Germany
| |
Collapse
|
13
|
Zhu LH, Wang A, Luo P, Wang X, Jiang DS, Deng W, Zhang X, Wang T, Liu Y, Gao L, Zhang S, Zhang X, Zhang J, Li H. Mindin/Spondin 2 inhibits hepatic steatosis, insulin resistance, and obesity via interaction with peroxisome proliferator-activated receptor α in mice. J Hepatol 2014; 60:1046-1054. [PMID: 24445216 DOI: 10.1016/j.jhep.2014.01.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 12/16/2013] [Accepted: 01/06/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Obesity and its related pathologies, such as hepatic steatosis, are associated with chronic inflammation and insulin resistance (IR), which contribute to cardiovascular disease. Our previous studies indicated that Spondin 2 has a protective role in the context of cardiovascular and cerebrovascular diseases. Whether Spondin 2 is also associated with the development of hepatic steatosis and IR remains unclear. METHODS Wild-type mice, Spondin 2-knockout (KO) mice, hepatic-specific Spondin 2 transgenic (Spondin 2-TG) mice, high fat diet (HFD)-induced obese mice injected with an adenovirus expressing Spondin 2-specific shRNA or a Spondin 2 mutant and genetically obese (ob/ob) mice injected with an adenovirus expressing Spondin 2 were fed normal chow (NC) or HFD for indicated time to induce obesity, hepatic steatosis, inflammation, and IR. Biomedical, histological, and metabolic analyses were conducted to identify pathologic alterations in these mice. The molecular mechanisms of Spondin 2 functions were explored in mice and in hepatocytes or cell lines. RESULTS Consistent with Spondin 2 repression in the livers of HFD-induced and ob/ob mice, the Spondin 2-KO or hepatic-specific Spondin 2 knockdown mice exhibited more severe obesity, hepatic steatosis, inflammation, and IR upon HFD. Conversely, these pathological conditions were significantly improved in the Spondin 2-TG mice or Spondin 2-overexpressing ob/ob mice. Spondin 2 interacts with PPARα to regulate PPARα-target genes, thereby improving the pathological phenotypes. In contrast, the hepatic overexpression of mutant Spondin 2 without the PPARα-interacting domain failed to improve the aggravated phenotypes observed in the Spondin 2-KO mice. CONCLUSION Spondin 2 regulates hepatic lipid metabolism and alleviates hepatic steatosis, obesity, inflammation, and IR in mice via its interaction with PPARα.
Collapse
Affiliation(s)
- Li-Hua Zhu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Aibing Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Pengcheng Luo
- Department of Urology, Renmin Hospital of Wuhan University, 99, Ziyang Rd, Wuhan, Hubei Province 430060, China; Huangshi Central Hospital, Hubei Polytechnic University, Huangshi, Hubei Province 435000, China
| | - Xinan Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Ding-Sheng Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Xiaofei Zhang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Tao Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Yi Liu
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lu Gao
- Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shumin Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China
| | - Xiaodong Zhang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jie Zhang
- Department of Urology, Renmin Hospital of Wuhan University, 99, Ziyang Rd, Wuhan, Hubei Province 430060, China; Huangshi Central Hospital, Hubei Polytechnic University, Huangshi, Hubei Province 435000, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China.
| |
Collapse
|
14
|
Keates T, Cooper CD, Savitsky P, Allerston CK, Phillips C, Hammarström M, Daga N, Berridge G, Mahajan P, Burgess-Brown NA, Müller S, Gräslund S, Gileadi O. Expressing the human proteome for affinity proteomics: optimising expression of soluble protein domains and in vivo biotinylation. N Biotechnol 2011; 29:515-25. [PMID: 22027370 PMCID: PMC3383991 DOI: 10.1016/j.nbt.2011.10.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 10/10/2011] [Accepted: 10/12/2011] [Indexed: 11/17/2022]
Abstract
The generation of affinity reagents to large numbers of human proteins depends on the ability to express the target proteins as high-quality antigens. The Structural Genomics Consortium (SGC) focuses on the production and structure determination of human proteins. In a 7-year period, the SGC has deposited crystal structures of >800 human protein domains, and has additionally expressed and purified a similar number of protein domains that have not yet been crystallised. The targets include a diversity of protein domains, with an attempt to provide high coverage of protein families. The family approach provides an excellent basis for characterising the selectivity of affinity reagents. We present a summary of the approaches used to generate purified human proteins or protein domains, a test case demonstrating the ability to rapidly generate new proteins, and an optimisation study on the modification of >70 proteins by biotinylation in vivo. These results provide a unique synergy between large-scale structural projects and the recent efforts to produce a wide coverage of affinity reagents to the human proteome.
Collapse
Affiliation(s)
- Tracy Keates
- The Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Christopher D.O. Cooper
- The Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Pavel Savitsky
- The Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Charles K. Allerston
- The Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Claire Phillips
- The Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Martin Hammarström
- The Structural Genomics Consortium, Department of Biochemistry and Biophysics, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Neha Daga
- The Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Georgina Berridge
- The Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Pravin Mahajan
- The Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Nicola A. Burgess-Brown
- The Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Susanne Müller
- The Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Susanne Gräslund
- The Structural Genomics Consortium, Department of Biochemistry and Biophysics, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Opher Gileadi
- The Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
- Corresponding author:
| |
Collapse
|
15
|
Yasui N, Kitago Y, Beppu A, Kohno T, Morishita S, Gomi H, Nagae M, Hattori M, Takagi J. Functional importance of covalent homodimer of reelin protein linked via its central region. J Biol Chem 2011; 286:35247-56. [PMID: 21844191 DOI: 10.1074/jbc.m111.242719] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reelin is a 3461-residue secreted glycoprotein that plays a critical role in brain development through its action on target neurons. Although it is known that functional reelin protein exists as multimer formed by interchain disulfide bond(s) as well as through non-covalent interactions, the chemical nature of the multimer assembly has been elusive. In the present study, we identified, among 122 cysteines present in full-length reelin, the single critical cysteine residue (Cys(2101)) responsible for the covalent multimerization. C2101A mutant reelin failed to assemble into disulfide-bonded multimers, whereas it still exhibited non-covalently associated high molecular weight oligomeric states in solution. Detailed analysis of tryptic fragments produced from the purified reelin proteins revealed that the minimum unit of the multimer is a homodimeric reelin linked via Cys(2101) present in the central region and that this cysteine does not connect to the N-terminal region of reelin, which had been postulated as the primary oligomerization domain. A surface plasmon resonance binding assay confirmed that C2101A mutant reelin retained binding capability toward two neuronal receptors apolipoprotein E receptor 2 and very low density lipoprotein receptor. However, it failed to show signaling activity in the assay using the cultured neurons. These results indicate that an intact higher order architecture of reelin multimer maintained by both Cys(2101)-mediated homodimerization and other non-covalent association present elsewhere in the reelin primary structure are essential for exerting its full biological activity.
Collapse
Affiliation(s)
- Norihisa Yasui
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Tan K, Lawler J. The structure of the Ca²+-binding, glycosylated F-spondin domain of F-spondin - A C2-domain variant in an extracellular matrix protein. BMC STRUCTURAL BIOLOGY 2011; 11:22. [PMID: 21569239 PMCID: PMC3117680 DOI: 10.1186/1472-6807-11-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 05/10/2011] [Indexed: 11/12/2022]
Abstract
Background F-spondin is a multi-domain extracellular matrix (ECM) protein and a contact-repellent molecule that directs axon outgrowth and cell migration during development. The reelin_N domain and the F-spondin domain (FS domain) comprise a proteolytic fragment that interacts with the cell membrane and guides the projection of commissural axons to floor plate. The FS domain is found in F-spondins, mindins, M-spondin and amphiF-spondin. Results We present the crystal structure of human F-spondin FS domain at 1.95Å resolution. The structure reveals a Ca2+-binding C2 domain variant with an 8-stranded antiparallel β-sandwich fold. Though the primary sequences of the FS domains of F-spondin and mindin are less than 36% identical, their overall structures are very similar. The unique feature of F-spondin FS domain is the presence of three disulfide bonds associated with the N- and C-termini of the domain and a highly conserved N-linked glycosylation site. The integrin-binding motif found in mindin is not conserved in the F-spondin FS domain. Conclusion The structure of the F-spondin FS domain completes the structural studies of the multiple-domain ECM molecule. The homology of its core structure to a common Ca2+- and lipid-binding C2 domain suggests that the F-spondin FS domain may be responsible for part of the membrane targeting of F-spondin in its regulation of axon development. The structural properties of the FS domain revealed in this study pave the way for further exploration into the functions of F-spondin.
Collapse
Affiliation(s)
- Kemin Tan
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA.
| | | |
Collapse
|
17
|
Sheiner L, Santos JM, Klages N, Parussini F, Jemmely N, Friedrich N, Ward GE, Soldati-Favre D. Toxoplasma gondii transmembrane microneme proteins and their modular design. Mol Microbiol 2010; 77:912-29. [PMID: 20545864 PMCID: PMC2982875 DOI: 10.1111/j.1365-2958.2010.07255.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Host cell invasion by the Apicomplexa critically relies on regulated secretion of transmembrane micronemal proteins (TM-MICs). Toxoplasma gondii possesses functionally non-redundant MIC complexes that participate in gliding motility, host cell attachment, moving junction formation, rhoptry secretion and invasion. The TM-MICs are released onto the parasite's surface as complexes capable of interacting with host cell receptors. Additionally, TgMIC2 simultaneously connects to the actomyosin system via binding to aldolase. During invasion these adhesive complexes are shed from the surface notably via intramembrane cleavage of the TM-MICs by a rhomboid protease. Some TM-MICs act as escorters and assure trafficking of the complexes to the micronemes. We have investigated the properties of TgMIC6, TgMIC8, TgMIC8.2, TgAMA1 and the new micronemal protein TgMIC16 with respect to interaction with aldolase, susceptibility to rhomboid cleavage and presence of trafficking signals. We conclude that several TM-MICs lack targeting information within their C-terminal domains, indicating that trafficking depends on yet unidentified proteins interacting with their ectodomains. Most TM-MICs serve as substrates for a rhomboid protease and some of them are able to bind to aldolase. We also show that the residues responsible for binding to aldolase are essential for TgAMA1 but dispensable for TgMIC6 function during invasion.
Collapse
Affiliation(s)
- Lilach Sheiner
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland Phone: + 41 22 379 5656, Fax: + 41 22 379 5702
| | - Joana M. Santos
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland Phone: + 41 22 379 5656, Fax: + 41 22 379 5702
| | - Natacha Klages
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland Phone: + 41 22 379 5656, Fax: + 41 22 379 5702
| | - Fabiola Parussini
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405, USA
| | - Noelle Jemmely
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland Phone: + 41 22 379 5656, Fax: + 41 22 379 5702
| | - Nikolas Friedrich
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland Phone: + 41 22 379 5656, Fax: + 41 22 379 5702
| | - Gary E. Ward
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405, USA
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland Phone: + 41 22 379 5656, Fax: + 41 22 379 5702
| |
Collapse
|
18
|
Affiliation(s)
- Takao Kohno
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Mitsuharu Hattori
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
19
|
Abstract
The purpose of this review is to provide a better understanding for the LRP co-receptor-mediated Wnt pathway signaling. Using proteomics, we have also subdivided the LRP receptor family into six sub-families, encompassing the twelve family members. This review includes a discussion of proteins containing a cystine-knot protein motif (i.e., Sclerostin, Dan, Sostdc1, Vwf, Norrin, Pdgf, Mucin) and discusses how this motif plays a role in mediating Wnt signaling through interactions with LRP.
Collapse
|